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Abstract. This paper describes a design flow and supporting tools to significantly 
improve the design and verification of complex cyber-physical systems. We focus 
on system architecture models composed from libraries of components and 
complexity-reducing design patterns having formally verified properties. This 
allows new system designs to be developed rapidly using patterns that have been 
shown to reduce unnecessary complexity and coupling between components. 
Components and patterns are annotated with formal contracts describing their 
guaranteed behaviors and the contextual assumptions that must be satisfied for 
their correct operation. We describe the compositional reasoning framework that 
we have developed for proving the correctness of a system design, and provide a 
proof of the soundness of our compositional reasoning approach. An example 
based on an aircraft flight control system is provided to illustrate the method and 
supporting analysis tools.  
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1 Introduction 

Advanced capabilities being developed for the next generation of commercial and 
military aircraft will be based on complex new software. These aircraft will 
incorporate adaptive control algorithms and sophisticated mission software providing 
enhanced functionality and robustness in the presence of failures and adverse flight 
conditions. Unmanned aircraft have already displaced manned aircraft in most 
surveillance missions and are performing many combat missions with increasing 
levels of autonomy. Manned and unmanned aircraft will be required to coordinate 
their activities safely and efficiently in both military and commercial airspace.  

The cyber-physical systems that provide these capabilities are so complex that 
software development and verification is one of the most costly development tasks 
and therefore poses the greatest risk to program schedule and budget. Without 
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significant changes in current development processes, the cost and time of software 
development will become the primary barriers to the deployment of the advanced 
capabilities needed for the next generation of military aircraft.  

DARPA’s META program was undertaken to significantly improve the design, 
manufacture, and verification process for complex cyber-physical systems. The work 
described in this paper directly addresses this goal by allowing the system architecture 
to be composed from libraries of complexity-reducing design patterns with formally 
guaranteed properties. This allows new system designs to be developed rapidly using 
patterns that have been shown to reduce unnecessary complexity and coupling between 
components. This work also deeply embeds formal verification into the design process 
to enable correct-by-construction development of systems that work the first time. The 
use of components with formally specified contracts, design patterns that provide 
formally guaranteed properties, and an architectural modeling language with a well-
defined semantics ensures that the system design is known to meet its requirements even 
before it is implemented. Further details can be found in [1].  

In previous work, we have successfully applied model checking to software 
components that have been created using model-based development (MBD) tools 
such as Simulink [7]. Our objective in this project was to build on this success and 
extend the reach of model checking to system design models. Examples of previous 
work in this area include approaches that essentially flatten the system model by 
elaborating each component and including its implementation in the same language 
used for the system [12]. This approach permits accurate modeling of component 
behaviors and interactions, but suffers from limited scalability. An alternative 
approach replaces each component with a state machine description that is an 
abstraction of the component design [11]. This provides better scalability, but can 
result in the component descriptions that diverge from their implementations and can 
limit the expressiveness of the overall system model.  

The compositional approach we advocate in this paper attempts to exploit the 
verification effort and artifacts that are already part of our software component 
verification work. We do this through the use of formal assume-guarantee contracts 
that correspond to the component requirements for each component. Each component 
in the system model is annotated with a contract that includes the requirements and 
constraints that were specified and verified as part of its development process. We 
then reason about the system-level behavior based on the interaction of the 
component contracts. The use of contracts is also extended to architectural design 
patterns that have been formally verified. This approach allows us to leverage our 
existing MBD process for software components and provides a scalable way to reason 
about the system as a whole.  

Section 2 of this paper presents our architectural modeling framework and describes 
how we have used the AADL and SysML languages to formally specify system designs. 
We have developed a mapping between relevant portions of these languages, as well as 
an automated translation tool and support for contract annotations. Section 3 briefly 
describes our formalization of architectural design patterns. These patterns encapsulate 
several fault-tolerance and synchronization mechanisms, increasing the level of design 
abstraction and supporting verification reuse. Section 4 describes in more detail our 
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compositional verification approach, and Section 5 presents the formulation of our 
method and a proof sketch of its soundness, the main technical contribution of the 
paper. Section 6 presents an example based on an aircraft flight control system, and 
Section 7 briefly describes our tool framework.  

2 Architectural Modeling 

Our domain of interest is distributed real-time embedded systems (including both 
hardware and software), such as comprise the critical functionality in commercial and 
military aircraft. MBD languages and tools are commonly used to implement the 
components of these systems, but the system-level descriptions of the interactions of 
distributed components, resource allocation decisions, and communication 
mechanisms are largely ad hoc. Application of formal analysis methods at the system 
level requires 1) an abstraction that defines how components will be represented in 
the system model, and 2) selection of an appropriate formal modeling language.  

Assumptions and Guarantees. Many aerospace companies have adopted MBD 
processes for production of software components. As a result of aircraft certification 
guidelines, these components must have detailed requirements. We have been 
successful applying formal methods to software component designs because of our 
decision to conform (as much as possible) to existing trends in industry. By formalizing 
the component requirements for verification using a combination of model checking and 
automated translation of the component models, we have made formal analysis 
accessible to embedded system developers. Therefore, one of our goals in this project 
was to create a system modeling methodology that would incorporate existing practices 
and artifacts and be compatible with tools being used in industry.  

In this approach, the architectural model includes interface, interconnections, and 
specifications for components but not their implementation. It describes the interactions 
between components and their arrangement in the system, but the components 
themselves are black boxes. The component implementations are described separately 
by the existing MBD environment and artifacts (or by traditional programming 
languages, where applicable). They are represented in the system model by the subset of 
their specifications that is necessary to describe their system-level interactions.  

Assume-guarantee contracts [4] provide an appropriate mechanism for capturing 
the information needed from other modeling domains to reason about system-level 
properties. In this formulation, guarantees correspond to the component requirements. 
These guarantees are verified separately as part of the component development 
process, either by formal or traditional means. Assumptions correspond to the 
environmental constraints that were used in verifying the component requirements. 
For formally verified components, they are the assertions or invariants on the 
component inputs that were used in the proof process.  

A contract specifies precisely the information that is needed to reason about the 
component’s interaction with other parts of the system. Furthermore, contract 
mechanism supports a hierarchical decomposition of verification process that follows 
the natural hierarchy in the system model.  
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SysML and AADL. The two modeling languages that we have worked with in this 
program are SysML and AADL. These languages were developed for different but 
related purposes. SysML was designed for modeling the full scope of a system, 
including its users and the physical world, while AADL was designed for modeling 
real-time embedded systems. While both SysML and AADL are extensible and can be 
tailored to support either domain, the fundamental constructs each provides reflect 
these differences. For example, AADL lacks many of the constructs for eliciting 
system requirements such as SysML requirement diagrams and use cases, and for 
specifying the behavior of systems such as SysML activity diagrams. On the other 
hand, SysML lacks many of the constructs needed to model embedded systems such 
as processes, threads, processors, buses, and memory.  
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Fig. 1. Flight Control System modeled using SysML 

AADL is a good fit for our domain of interest and provides a sufficiently formal 
notation. However, AADL has yet to gain traction with many industrial users and its 
lack of a stable graphical environment (at least in the most popular available tool, the 
Eclipse-based OSATE) has been a barrier to adoption. Consequently, SysML has 
been adopted by many organizations for system design specification, even though it 
has no formal semantics and no common textual representation.  

Our solution is to allow developers to do at least their initial system development 
in SysML, and provide support for automatic translation to AADL for analysis. We 
have built an Eclipse plugin that provides bidirectional translation between SysML 
and AADL for the domain in which they overlap. We have defined block stereotypes 
in SysML that correspond to AADL objects, thus effectively mapping the semantics 
of AADL onto a subset of SysML. The translation is based on the Enterprise 
Architect SysML tool used by Rockwell Collins. An example system is shown in 
Fig. 1.  
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For SysML to be used to model embedded systems in the same way that AADL 
does, SysML blocks and ports need to be tagged with stereotypes corresponding to 
AADL constructs such as threads and processors. AADL components are represented 
using SysML Blocks with stereotypes. If a SysML block is not tagged with one of 
these stereotypes, the translator treats it as an AADL system. AADL features are 
represented using SysML flow ports with stereotypes. If a SysML flow port is not 
tagged with one of these stereotypes, the translator treats it as an AADL port.  

The translator also translates the package structure from a SysML model to AADL 
and vice versa. When translating from AADL to SysML, the translator will create a 
single SysML block diagram for each AADL package with a SysML block drawn for 
each AADL component type and implementation. The translator will also create a 
single internal block diagram for each AADL implementation that has subcomponents 
showing that implementation, its subcomponents, their features, and connections. 

3 Architectural Design Patterns 

The second technical thrust in our META project was the use of architectural design 
patterns. An architectural design pattern is a transformation applied to a system model 
that implements some desired functionality in a verifiably correct way. Each pattern 
can be thought of as a partial function on the space of system models, mapping an 
initial model to a transformed model with new behaviors. We refer to the transformed 
system as the instantiation of a pattern.  

We have three main objectives in creating architectural design patterns. The first is 
the encapsulation and standardization of good solutions to recurring design problems. 
The synchronization and coordination of distributed computing platforms in avionics 
system is a common source of problems that are often challenging to implement 
correctly. By codifying verified solutions to these problems and making them 
available to developers, we raise level of abstraction and avoid “reinventing the 
wheel.” 

Reuse of verification is the second objective. The architectural design patterns are 
developed in a generic way so that they can be formally verified once, and then 
reused in many different development projects by changing parameters. Each pattern 
has a contract associated with it that specifies constraints on the systems to which it 
can be applied, and specifies the behaviors that can be guaranteed in the transformed 
system. In this way we are able to amortize the verification effort over many systems.  

The final objective is reduction or management of system complexity. An 
architecture pattern can be said to reduce system complexity if it provides an 
abstraction that effectively eliminates a type of component interaction in a way that 
can be syntactically enforced. The PALS (physically asynchronous logically 
synchronous) architecture pattern is an example in which real time tasks are executed 
with bounded asynchrony physically but the asynchronous execution is logically 
equivalent to synchronous execution. This greatly reduces the verification state space.  

Four architectural patterns were implemented in this project: PALS, Replication, 
Leader Selection, and Fusion.  
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The purpose of the PALS pattern is to make portions of a distributed asynchronous 
system operate in virtual synchrony. This allows portions of the system logic to be 
designed and verified as though they will be executed on a synchronous platform, and 
then deployed in the asynchronous system with the same guaranteed behavior. The 
pattern relies on certain timing constraints on the delivery and processing of messages 
that must be enforced by the underlying execution platform. To use the pattern, a 
group of nodes (systems) is selected that are to execute at approximately the same 
time at period T. The outputs (ports) of these nodes are to be received by other nodes 
in the group such that all nodes will receive the same values at each execution step. 
The pattern does not add any new data connections to the model, but assumes that the 
required connections already exist. 

The purpose of the Replication pattern is to create identical copies of portions of 
the system. This is typically used to implement fault tolerance by assigning the copies 
to execute on separate hardware platforms with independent failure modes. To use the 
pattern, one or more nodes (systems) are selected and the number of copies to create 
is specified. Optional arguments for each input and output port on the selected 
systems determine how these ports and their connections are handled in the 
replication process. Each new system and port created is given a unique name. When 
multiple outputs are created they may be merged by the addition of a new system 
block to select, average, or vote the outputs.  

The purpose of the Leader Selection pattern is to coordinate a group of nodes so 
that a single node is agreed upon as the ‘leader’ at any given time. The nodes typically 
correspond to replicated computations hosted on distributed computing resources, and 
are used as part of a fault-tolerance mechanism. If a replicated node fails, this allows a 
non-failed node to be selected as the one which will interact with the rest of the 
system. To use the pattern, a group of N nodes (systems or processes) is identified that 
are to select a leader from among themselves. The leader selection pattern will insert 
new leader selection threads into each of the systems/processes which are to 
participate in leader selection. Each thread will have a unique identifier (an integer) to 
determine its priority in selecting a leader. Connections will be added so that all 
leader selection threads are able to communicate with each other (N-1 input ports, 1 
output port). In addition, each leader selection thread will have an input port from 
which it determines (from other local systems) if it is failed, and an output port which 
will say if it is the leader. These two ports are initially left unconnected. 

The purpose of the Fusion pattern is to insert a component into the architecture that 
combines several component interfaces into a single interface. The component 
supplies properties that define the validation/selection algorithm that is used and its 
impact on the fault tolerance or performance properties of the interfaces. The fusion 
algorithm could provide voting through exact or approximate agreement or by mid-
value selection. The output could correspond to one of the selected inputs or it could 
be a computing average. To use the pattern, the user will select from a predefined set 
of fusion algorithms that are presented in a list. Each option will describe the 
properties and allow the user to browse these as part of the selection process. The user 
will select the type of component to be inserted in the model to perform the fusion 
algorithm. There are three initial choices: System (for abstract system designs), 
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Thread (for software implemented voting), and Device for hardware implementations. 
Finally, the user will select the insertion point for the voter by first selecting an 
existing architecture component that is the current destination of the interfaces to be 
voted. After component selection the user will be presented with a list of input 
interfaces that match the constraints required for the voter that was selected. The user 
can then select the set of interfaces to which the voter will be applied.  

   

Fig. 2. Avionics System, Flight Control System, and Flight Guidance System models that were 
used to demonstrate the use of architectural design patterns 

We have applied these patterns in an Avionics System modeled in AADL. Three 
levels of the system architecture are shown in Fig. 2: the Avionics System, the Flight 
Control System (FCS), and the Flight Guidance System (FGS). The initial system 
model to which we apply the patterns captures the functionality of the system under 
the assumption that nothing ever fails. It only has one set of inputs and outputs and 
has no redundancy in its implementation. We first apply the replication pattern to the 
FGS component to create two redundant copies. This pattern automatically replicates 
ports as necessary and applies a property requiring the copies not be hosted on the 
same hardware. We next apply the Leader Selection pattern to manage the redundant 
copies of the FGS. This pattern inserts pre-verified leader selection functionality as 
new threads inside each FGS to determines the current leader. The Leader Selection 
protocol that we have used requires that the nodes communicate synchronously. To 
satisfy this assumption, we apply the PALS synchronization pattern. The constraints 
of the PALS pattern will be verified during implementation to ensure they can 
actually be satisfied. Finally, the Fusion pattern is used inside the Autopilot 
component to combine the two outputs produced by the active and standby FGS 
copies into a single command input.  

4 System Verification 

The system-level properties that we wish to verify fall into a number of different 
categories requiring different verification approaches and tools. This is also true for 
the contracts that are attached to the components and design patterns used in the 
system model.  

− They may be behavioral properties that describe the state of the system as it 
changes over time. Behavioral properties may be used to describe protocols 
governing component interactions in the system, or the system response to 
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combinations of triggering events. We will use the Property Specification 
Language (PSL) [5] to specify most behavioral properties. An example of a 
behavioral property associated with the Leader Selection pattern is: A failed node 
will not be leader in next step, or G(!device_ok[j]- X(leader[i]!= j)). 

− They may be structural properties of the system model to which the pattern is 
applied (pre-conditions), or of the transformed system model after pattern 
instantiation (post-conditions). Relationships among timing properties in the model 
or constraints on the numbers of various objects in the model are in this category.  

− Some design patterns rely explicitly on resource allocation properties of the 
system, including real-time schedulability, memory allocation, and bandwidth 
allocation. Even after we annotate the model with deadlines and execution times, 
we must still demonstrate that threads can be scheduled to meet their deadlines. 
There are many tools available to support verification of these properties, including 
the ASIIST tool developed by UIUC and Rockwell Collins [8]. 

− Failure analysis of the system often requires the use of probabilistic methods to 
demonstrate that the sufficiency of the proposed fault handling mechanisms. The 
AADL error annex can be used to attach fault behavior models to the system 
design. As part of the META program we have participated in some 
demonstrations based on our example AADL model using the PRISM probabilistic 
model checker [9].  
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Fig. 3. Contracts between patterns used in the Avionics System example 

At the system level, assumptions and guarantees associated with the system 
components and patterns interact and are composed to achieve desired system 
properties. For example, the behavior of the avionics system in our example depends 
upon guarantees provided by the Leader Selection pattern (Fig. 3). Leader Selection 
includes an assumption of synchronous data exchange which is satisfied by the PALS 
pattern guarantees. It also includes an assumption that there will be at least one 
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working node, which is satisfied by the Replication pattern. The PALS pattern, in 
turn, makes assumptions about the timing properties of the underlying execution 
platform and the Replication pattern requires that copies are not co-located. Finally, 
the platform can only guarantee these properties if it verified to satisfy its resource 
allocation constraints, and its probability of failure is sufficiently low.  

The focus of our work is the first two categories: behavioral and structural 
properties. The next section describes our approach to compositional reasoning. 

5 Compositional Reasoning 

Our idea is to partition the formal analysis of a complex system architecture into a 
series of verification tasks that correspond to the decomposition of the architecture. 
By partitioning the verification effort into proofs about each subsystem within the 
architecture, the analysis will scale to handle large system designs. Additionally, the 
approach naturally supports an architecture-based notion of requirements refinement: 
the properties of components necessary to prove a system-level property in effect 
define the requirements for those components. We call the tool that we have created 
for managing these proof obligations AGREE: Assume Guarantee Reasoning 
Environment. 

There were two goals in creating this verification approach. The first goal was to 
reuse the verification already performed on components and design patterns. The 
second goal was to enable distributed development by establishing the formal 
requirements of subcomponents that are used to assemble a system architecture. If we 
are able to establish a system property of interest using the contracts of its 
components, then we have a means for performing virtual integration of components. 
We can use the contract of each of the components as a specification for suppliers and 
have a great deal of confidence that if all the suppliers meet the specifications, the 
integrated system will work properly.  

In our composition formulation, we use past-time LTL [2]. This logic supports a 
uniform formulation of composition obligations that can be used for both liveness 
properties and safety properties. For the reasoning framework, we use the LTL 
operator G (globally) supplemented by the past time operators H (historically) and Z 
(in the previous instant) [3]. They are defined formally over paths σ and time instants 
t as follows:  

σ, t ╞ G(f) ≡ ∀ (u, t ≤ u) : σ, u ╞ f 

σ, t ╞ H(f) ≡ ∀ (u, 0 ≤ u ≤ t) : σ, u ╞ f 

σ, t ╞ Z(f) ≡ (t = 0) ∨ (σ, (t-1) ╞ f ) 

Verification Conditions. Formally, in our framework a component contract is an 
assume-guarantee pair (A, P), where each element of the pair is a PSL formula. 
Informally, the meaning of a pair is “if the assumption is true, then the component 
will ensure that the guarantee is true.” To be precise, we need to require a component  
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to meet its guarantee only if its assumptions have been true up to the current instant. 
We can state this succinctly as a past-time LTL formula G(H(A)  P) 1.  

Components are organized hierarchically into systems as shown in Fig. 1. We want 
to be able to compose proofs starting from the leaf components (those whose 
implementation is specified outside of the architecture model) through several layers 
of the architecture. Each layer of the architecture is considered to be a system with 
inputs and outputs and containing a collection of components. A system S can be 
described by its own contract (As, Ps) plus the contracts of its components CS, so we 
have S = (AS, PS, CS). Components “communicate” in the sense that their formulas 
may refer to the same variables. For a given layer, the proof obligation is to 
demonstrate that the system guarantee Ps is provable given the behavior of its 
subcomponents CS and the system assumption As.  

Our goal is therefore to prove the formula G(H(As)  Ps) given the contracted 
behavior G(H(Ac)  Pc) for each component c within the system. It is conceivable 
that for a given system instance a sufficiently powerful model checker could prove 
this goal directly from the system and component assumptions. However, we take a 
more general approach: we establish generic verification conditions which together 
are sufficient to establish the goal formula. Moreover, we provide verification 
conditions which have the form of safety properties whenever all the assumptions and 
guarantees do not contain the G or F LTL operators. In such cases, this allows the 
verification conditions to be proved even by model checkers which are limited to 
safety properties, such as k-induction model checkers. 

Handling Cycles in the Model. It is often the case that architectural models contain 
cyclic communication paths among components (e.g., the FGS_L and FGS_R in 
Fig. 1), and that these components mutually depend on the correctness of one another. 
Therefore, we need to consider circular reasoning among components. To accomplish 
this, we use a framework similar to the one from Ken McMillan in [4]. We break 
these cycles using induction over time.  

Suppose that we have components A and B that mutually refer to each other’s 
guarantees. When trying to establish the assumptions of A at time t, we will assume 
that the guarantees of B are true only up to time t-1. Therefore, at time instant t there 
is no circularity. To accomplish this reasoning, we define a well-founded order (<) 
between component contracts. If CA < CB, then B can refer to A’s assumptions and 
guarantees at the current instant, while A can refer to B’s assumptions and guarantees 
only at the previous instant.  

Following McMillan, for a contract c ∈ C, we define Θc to be the contracts whose 
assumptions and guarantees are true up to and including time t. We define c^ for a 
contract c to be (Ac ^ Pc) and C^ to be {c^ | c ∈ C}. Every element in Θc must be less 
than c according to the order <, so Θc ⊆ C^. Since we are only considering cycles 
inside system S, its contracts are handled separately and do not need to be included. 
Therefore, the system assumptions are taken to hold up through the current time, and 
the system guarantees are proven separately (as shown below):  

                                                           
1  We use “Promises” P in the place of G for guarantees for presentation because G is an LTL 

operator. Also, in the informal presentation, we represent each of A,P as sets of formulas. The 
formulas here are formed by simple conjunction of the elements of the set. 



136 D. Cofer et al. 

Theorem 1. Let the following be given:  
− S = (AS, PS, CS) with assumption As, guarantee Ps and component contracts CS, 

with a well-founded order < on C  
− Sets Θc ⊆ C^, such that q ∈ Θc implies q<c 
− For all c ∈ C, ╞ G(H(Ac)  Pc) 

Then if for all c ∈ C 
╞ G((H(As) ^ Z(H(C^)) ^ Θc)  Ac) 

and  
╞ G((H(As) ^ H(C^))  Ps)  

then  
╞ G(H(As)  Ps). 

 
In other words, for a system with n components there are n+1 verification conditions: 
one for each component and one for the system as a whole. The component 
verification conditions establish that the assumptions of each component are implied 
by the system level assumptions and the properties of its sibling components. These 
verification conditions are naturally cyclic, but the cycle is broken using the well-
founded ordering < and the one-step delay operator Z. The system level verification 
condition shows that the system guarantees follow from the system assumptions and 
the properties of each subcomponent. This is essentially an expansion of the original 
goal, ╞ G(H(As)  Ps), with additional information obtained from each component. 
 
Proof Sketch. It is possible to prove Theorem 1 directly using induction over time. 
The idea is, at each step, to go through each component (from largest to smallest 
based on the < ordering) and show that its assumptions hold in the current step. Then 
we can use the assumption ╞ G(H(Ac)  Pc) to show that Pc also holds in the current 
step. Once we have done this for each component we can use the system level 
verification condition to show that the system level guarantees hold in the current 
step. Formally, the proof is by induction over time using the strengthened goal 
formula 

 ╞ G(H(As)  (H(Ps) ^ H(C^))) 

The desired goal formula then follows directly. 
Another approach to proving Theorem 1 is to encoding it using McMillan's circular 

reasoning framework. This is fairly straightforward to do. In fact, the two approaches 
show many similarities which provides a strong argument for the quality of approach. 
The details of this equivalence are presented in a companion technical report [6].  

6 Flight Control System Example 

We have applied our compositional verification approach to the avionics system 
model. While there is not space to present the entire example, this section provides a 
summary of the assumptions and guarantees on the flight control system and 
describes one level of reasoning.  
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One of the typical requirements levied on a flight control system has to do with 
transients in the actuator commands. For passenger comfort and safety, a limit is 
placed on the forces that would be experienced by the passengers during normal 
operation. For example, the automation should not command a sharp change in the 
pitch of the aircraft, even in the presence of component failures.  

In our system architecture, this property becomes a constraint on the control 
surface actuator (CSA) output of the system. We would like the commanded pitch to 
be bounded both in terms of the both the actuator angle and its rate of change. In our 
notation, we can write these properties as follows:  

 transient_response_1 : assert  

   true -> abs(CSA.CSA_Pitch_Delta) < MAX_PITCH_DELTA; 

 transient_response_2 : assert  

   true -> abs(CSA.CSA_Pitch_Delta -  

   prev(CSA.CSA_Pitch_Delta, 0.0)) < MAX_PITCH_DELTA_STEP ; 

The “true ->” portion of each property states the property is initially true. The 
remainder of the first property states that the absolute value of the commanded  
pitch (CSA_Pitch_Delta) is less than some constant (MAX_PITCH_DELTA). The 
second property is similar, but states that the difference between the current  
pitch and the previously commanded pitch is less than some constant 
(MAX_PITCH_DELTA_STEP).  

Similarly, we have system-level assumptions related to independence of failures:  

 active_assumption: assume (FD_L.mds.active or  

  FD_R.mds.active) ; 

In our model we make assumptions about at least one FGS being active at all times 
(shown), as well as assumptions about maximum discrepancies between left and right 
side pitch sensors, and a handful of other assumptions. These assumptions state 
maximum discrepancies in the pitch inputs in time and between the left and right 
sides. In order to prove the guarantees for the system, we need to pull in assumptions 
from the left and right FGSs and the autopilot. In the absence of circularity, the tools 
automatically compute the dependency order for reasoning: FCI < {FGS_L, FGS_R}, 
{FGS_L, FGS_R} < AP2. For circular dependencies, the user must decide an order (if 
it is required). In this instance, our proof did not require “same instant” assumptions 
between FGS_L and FGS_R, so the cycles can be broken and verification conditions 
produced automatically by our AGREE tool.  

The proof relies on the guarantees for the components {FGS_L, FGS_R, AP}, and 
uses the system level assumptions to discharge the component level assumptions. In 
addition, the Leader Selection pattern guarantees are brought in as additional facts 
which function as assumptions in the proof. Each set of assumptions and guarantees 
per component is between ½ page and 1 page of text, and the proof for this layer of 
the architecture can be discharged in ~5 seconds by the Kind model checker.  

                                                           
2  The set notation is a shorthand: X < {Y, Z} is the same as X <Y and X < Z. 
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7 Tool Environment 

We have produced a prototype implementation of all the tools described in this paper 
in a single Eclipse environment, shown in Fig. 4 . They have been designed to work 
with the open source OSATE AADL tool developed by the Software Engineering 
Institute.  

 

Fig. 4. Eclipse environment for our translation, pattern instantiation, and verification tools 

The SysML-AADL translator is implemented as an Eclipse plug-in. It provides a 
convenient way to import an initial block diagram model created in SysML into 
OSATE for further development.  

The pattern instantiation tool is implemented as an extension to the EDICT tool 
developed by WW Technology Group. EDICT provides a wide variety analysis 
capabilities for building dependable systems, and now includes the ability to modify 
the system design through application of the architectural patterns described above.  

We have developed two additional Eclipse plugins to implement the  
compositional verification approach described in this paper (AGREE), and a static 
analysis tool called Lute for verifying structural properties of AADL models. These 
tools are available for download through the AADL wiki page at 
http://wiki.sei.cmu.edu/aadl/index.php/RC_META.  

Complex structural assumptions and guarantees can be verified using the Lute 
checker. While Lute is similar to the to the REAL verification system [10], it provides 
several enhancements needed for the META project for specifying and checking 
complex structural properties. A Lute specification is made up of Lute theorems, 
which are computational checks over the structure of the model. A typical Lute 
theorem iterates over a select group of components and aggregates information about 
each before checking a Boolean condition. For example, a Lute theorem may iterate 
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over each process and verify that the maximum deadline for all threads in the process 
is less than or equal to the process deadline. The Lute code for this theorem is shown 
below: 

 theorem Process_Deadline_Greater_Or_Equal_Thread_Deadline 

   foreach p in Process_Set do 

   Thread_Deadlines := {Property(t, “Deadline”)  

    for t in Thread_Set | Owner(t) = p}; 

  check Max(Thread_Deadlines) <= Property(p, “Deadline”); 

  end; 

Since Lute theorems are purely computational, they can be executed without user 
interaction. Thus it is feasible to re-verify the Lute specification every time a 
structural change is made to the model. This enables instant feedback during model 
development.  

The AGREE tool uses the custom AADL property set PSL_Properties to add 
support for compositional reasoning to AADL. The PSL_Properties property set is 
currently implemented simply as an AADL string applied as follows:  

 property set PSL_Properties is 

  Contract: aadlstring applies to (system, process, thread); 

  Facts: aadlstring applies to (system, process, thread); 

 end PSL_Properties; 

That is, it supports contracts and facts on systems, processes, and threads specified as 
AADL strings. Verification of AADL models is performed through the translation of 
the AADL structure and subcomponent assumptions and guarantees into a form 
suitable for model checking. Currently the KIND model checker is supported, but it 
would be straightforward to add support for additional model checkers and theorem 
provers.  

In our initial implementation, subcomponents are assumed to operate synchronously 
with a one-step communication delay between connected subcomponents. This makes 
the analysis tractable and creates a sound approximation of the behavior of the system. 
Any error found during verification corresponds to an error in the actual system. The 
approximation is complete in the case of synchronous systems (e.g. systems using the 
PALS pattern), and incomplete in the general case. Incompleteness means that the 
absence of verification errors does not ensure that the system is correct.  

8 Conclusion 

The work described here was accomplished under the META program which had a 
period of performance of only 12 months. Consequently, what we have presented here 
is just a start in what we consider to be a very important and very interesting research 
area. There is much important work ahead of us.  

First, we plan to extend our compositional verification approach to include more 
complex models of computation. Synchronous computation platforms are found in 
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many avionics systems, but we also need to provide support for multiple execution 
rates, variable delays, and asynchronous computation.  

We have implemented four architectural design patterns to demonstrate the 
concept, but there are many more that we have encountered. In particular, there is a 
great deal of work on standard fault tolerance mechanisms with existing verification 
artifacts that would fit very well into our design pattern scheme.  

The technique we have used to embed contracts in AADL models is expedient but 
semantically shallow. An improved method for annotation of architecture models with 
formal contracts would allow much better integration with the system design and 
more robust tooling. A new AADL annex seems the best way to accomplish this. We 
would also to provide support for some of the features in SysML that are well-suited 
for capturing dynamic requirements, such as activity and sequence diagrams.  
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