
A. Goodloe and S. Person (Eds.): NFM 2012, LNCS 7226, pp. 126–140, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Compositional Verification of Architectural Models

Darren Cofer1, Andrew Gacek1, Steven Miller1, Michael Whalen2,
Brian LaValley3, and Lui Sha4

1 Rockwell Collins Advanced Technology Center
{ddcofer,ajgacek,spmiller}@rockwellcollins.com

2 University of Minnesota
whalen@cs.umn.edu
3 WW Technology Group

blavalley@wwtechgroup.com
4 University of Illinois
lrs@uiuc.edu

Abstract. This paper describes a design flow and supporting tools to significantly
improve the design and verification of complex cyber-physical systems. We focus
on system architecture models composed from libraries of components and
complexity-reducing design patterns having formally verified properties. This
allows new system designs to be developed rapidly using patterns that have been
shown to reduce unnecessary complexity and coupling between components.
Components and patterns are annotated with formal contracts describing their
guaranteed behaviors and the contextual assumptions that must be satisfied for
their correct operation. We describe the compositional reasoning framework that
we have developed for proving the correctness of a system design, and provide a
proof of the soundness of our compositional reasoning approach. An example
based on an aircraft flight control system is provided to illustrate the method and
supporting analysis tools.

Keywords: Cyber-physical systems, design patterns, formal methods, model
checking, compositional verification, SysML, AADL, META, DARPA.

1 Introduction

Advanced capabilities being developed for the next generation of commercial and
military aircraft will be based on complex new software. These aircraft will
incorporate adaptive control algorithms and sophisticated mission software providing
enhanced functionality and robustness in the presence of failures and adverse flight
conditions. Unmanned aircraft have already displaced manned aircraft in most
surveillance missions and are performing many combat missions with increasing
levels of autonomy. Manned and unmanned aircraft will be required to coordinate
their activities safely and efficiently in both military and commercial airspace.

The cyber-physical systems that provide these capabilities are so complex that
software development and verification is one of the most costly development tasks
and therefore poses the greatest risk to program schedule and budget. Without

 Compositional Verification of Architectural Models 127

significant changes in current development processes, the cost and time of software
development will become the primary barriers to the deployment of the advanced
capabilities needed for the next generation of military aircraft.

DARPA’s META program was undertaken to significantly improve the design,
manufacture, and verification process for complex cyber-physical systems. The work
described in this paper directly addresses this goal by allowing the system architecture
to be composed from libraries of complexity-reducing design patterns with formally
guaranteed properties. This allows new system designs to be developed rapidly using
patterns that have been shown to reduce unnecessary complexity and coupling between
components. This work also deeply embeds formal verification into the design process
to enable correct-by-construction development of systems that work the first time. The
use of components with formally specified contracts, design patterns that provide
formally guaranteed properties, and an architectural modeling language with a well-
defined semantics ensures that the system design is known to meet its requirements even
before it is implemented. Further details can be found in [1].

In previous work, we have successfully applied model checking to software
components that have been created using model-based development (MBD) tools
such as Simulink [7]. Our objective in this project was to build on this success and
extend the reach of model checking to system design models. Examples of previous
work in this area include approaches that essentially flatten the system model by
elaborating each component and including its implementation in the same language
used for the system [12]. This approach permits accurate modeling of component
behaviors and interactions, but suffers from limited scalability. An alternative
approach replaces each component with a state machine description that is an
abstraction of the component design [11]. This provides better scalability, but can
result in the component descriptions that diverge from their implementations and can
limit the expressiveness of the overall system model.

The compositional approach we advocate in this paper attempts to exploit the
verification effort and artifacts that are already part of our software component
verification work. We do this through the use of formal assume-guarantee contracts
that correspond to the component requirements for each component. Each component
in the system model is annotated with a contract that includes the requirements and
constraints that were specified and verified as part of its development process. We
then reason about the system-level behavior based on the interaction of the
component contracts. The use of contracts is also extended to architectural design
patterns that have been formally verified. This approach allows us to leverage our
existing MBD process for software components and provides a scalable way to reason
about the system as a whole.

Section 2 of this paper presents our architectural modeling framework and describes
how we have used the AADL and SysML languages to formally specify system designs.
We have developed a mapping between relevant portions of these languages, as well as
an automated translation tool and support for contract annotations. Section 3 briefly
describes our formalization of architectural design patterns. These patterns encapsulate
several fault-tolerance and synchronization mechanisms, increasing the level of design
abstraction and supporting verification reuse. Section 4 describes in more detail our

128 D. Cofer et al.

compositional verification approach, and Section 5 presents the formulation of our
method and a proof sketch of its soundness, the main technical contribution of the
paper. Section 6 presents an example based on an aircraft flight control system, and
Section 7 briefly describes our tool framework.

2 Architectural Modeling

Our domain of interest is distributed real-time embedded systems (including both
hardware and software), such as comprise the critical functionality in commercial and
military aircraft. MBD languages and tools are commonly used to implement the
components of these systems, but the system-level descriptions of the interactions of
distributed components, resource allocation decisions, and communication
mechanisms are largely ad hoc. Application of formal analysis methods at the system
level requires 1) an abstraction that defines how components will be represented in
the system model, and 2) selection of an appropriate formal modeling language.

Assumptions and Guarantees. Many aerospace companies have adopted MBD
processes for production of software components. As a result of aircraft certification
guidelines, these components must have detailed requirements. We have been
successful applying formal methods to software component designs because of our
decision to conform (as much as possible) to existing trends in industry. By formalizing
the component requirements for verification using a combination of model checking and
automated translation of the component models, we have made formal analysis
accessible to embedded system developers. Therefore, one of our goals in this project
was to create a system modeling methodology that would incorporate existing practices
and artifacts and be compatible with tools being used in industry.

In this approach, the architectural model includes interface, interconnections, and
specifications for components but not their implementation. It describes the interactions
between components and their arrangement in the system, but the components
themselves are black boxes. The component implementations are described separately
by the existing MBD environment and artifacts (or by traditional programming
languages, where applicable). They are represented in the system model by the subset of
their specifications that is necessary to describe their system-level interactions.

Assume-guarantee contracts [4] provide an appropriate mechanism for capturing
the information needed from other modeling domains to reason about system-level
properties. In this formulation, guarantees correspond to the component requirements.
These guarantees are verified separately as part of the component development
process, either by formal or traditional means. Assumptions correspond to the
environmental constraints that were used in verifying the component requirements.
For formally verified components, they are the assertions or invariants on the
component inputs that were used in the proof process.

A contract specifies precisely the information that is needed to reason about the
component’s interaction with other parts of the system. Furthermore, contract
mechanism supports a hierarchical decomposition of verification process that follows
the natural hierarchy in the system model.

 Compositional Verification of Architectural Models 129

SysML and AADL. The two modeling languages that we have worked with in this
program are SysML and AADL. These languages were developed for different but
related purposes. SysML was designed for modeling the full scope of a system,
including its users and the physical world, while AADL was designed for modeling
real-time embedded systems. While both SysML and AADL are extensible and can be
tailored to support either domain, the fundamental constructs each provides reflect
these differences. For example, AADL lacks many of the constructs for eliciting
system requirements such as SysML requirement diagrams and use cases, and for
specifying the behavior of systems such as SysML activity diagrams. On the other
hand, SysML lacks many of the constructs needed to model embedded systems such
as processes, threads, processors, buses, and memory.

ibd [SysML Internal Block] Flight_Control_System_Impl [Flight_Control_System]

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L

NAV_R

THROT_L THROT_RYOKE_L YOKE_R

Flight_Control_System

Flight_Control_System_Impl

A

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L

NAV_R

THROT_L THROT_RYOKE_L YOKE_R

THROT_L
THROT_R

YOKE_L YOKE_R

FCI

FCI : Flight_Crew_Interface

THROT_L
THROT_R

YOKE_L YOKE_R

FCI

GC_L GC_R

CSA

AP : Autopilot_System

GC_L GC_R

CSA

AD

AH

VNAV

NAV

LSI

GC

FCI

LSO

FGS_L : Fl ight_Guidance_System

AD

AH

VNAV

NAV

LSI

GC

FCI

LSO

AD

AH

VNAV

NAV

LSI

GC

FCI

LSO

FGS_R : Fl ight_Guidance_System

AD

AH

VNAV

NAV

LSI

GC

FCI

LSO

FGSRtoAP

YOKER2FCIYOKEL2FCI

THROTL2FCI

AP2CSA

NAVLtoFGSL

FMLtoFGSL

AHLtoFGSL

ADLtoFGSL

THROTR2FCI

FGSLtoAP

FGSLtoFGSR

FGSRtoFDR

ADRtoFGSR

AHRtoFGSR

FMRtoFGSR

NAVRtoFGSR

FCItoFGSL

FGSRtoFGSL

FCItoFGSR

FGSLtoFDL

Fig. 1. Flight Control System modeled using SysML

AADL is a good fit for our domain of interest and provides a sufficiently formal
notation. However, AADL has yet to gain traction with many industrial users and its
lack of a stable graphical environment (at least in the most popular available tool, the
Eclipse-based OSATE) has been a barrier to adoption. Consequently, SysML has
been adopted by many organizations for system design specification, even though it
has no formal semantics and no common textual representation.

Our solution is to allow developers to do at least their initial system development
in SysML, and provide support for automatic translation to AADL for analysis. We
have built an Eclipse plugin that provides bidirectional translation between SysML
and AADL for the domain in which they overlap. We have defined block stereotypes
in SysML that correspond to AADL objects, thus effectively mapping the semantics
of AADL onto a subset of SysML. The translation is based on the Enterprise
Architect SysML tool used by Rockwell Collins. An example system is shown in
Fig. 1.

130 D. Cofer et al.

For SysML to be used to model embedded systems in the same way that AADL
does, SysML blocks and ports need to be tagged with stereotypes corresponding to
AADL constructs such as threads and processors. AADL components are represented
using SysML Blocks with stereotypes. If a SysML block is not tagged with one of
these stereotypes, the translator treats it as an AADL system. AADL features are
represented using SysML flow ports with stereotypes. If a SysML flow port is not
tagged with one of these stereotypes, the translator treats it as an AADL port.

The translator also translates the package structure from a SysML model to AADL
and vice versa. When translating from AADL to SysML, the translator will create a
single SysML block diagram for each AADL package with a SysML block drawn for
each AADL component type and implementation. The translator will also create a
single internal block diagram for each AADL implementation that has subcomponents
showing that implementation, its subcomponents, their features, and connections.

3 Architectural Design Patterns

The second technical thrust in our META project was the use of architectural design
patterns. An architectural design pattern is a transformation applied to a system model
that implements some desired functionality in a verifiably correct way. Each pattern
can be thought of as a partial function on the space of system models, mapping an
initial model to a transformed model with new behaviors. We refer to the transformed
system as the instantiation of a pattern.

We have three main objectives in creating architectural design patterns. The first is
the encapsulation and standardization of good solutions to recurring design problems.
The synchronization and coordination of distributed computing platforms in avionics
system is a common source of problems that are often challenging to implement
correctly. By codifying verified solutions to these problems and making them
available to developers, we raise level of abstraction and avoid “reinventing the
wheel.”

Reuse of verification is the second objective. The architectural design patterns are
developed in a generic way so that they can be formally verified once, and then
reused in many different development projects by changing parameters. Each pattern
has a contract associated with it that specifies constraints on the systems to which it
can be applied, and specifies the behaviors that can be guaranteed in the transformed
system. In this way we are able to amortize the verification effort over many systems.

The final objective is reduction or management of system complexity. An
architecture pattern can be said to reduce system complexity if it provides an
abstraction that effectively eliminates a type of component interaction in a way that
can be syntactically enforced. The PALS (physically asynchronous logically
synchronous) architecture pattern is an example in which real time tasks are executed
with bounded asynchrony physically but the asynchronous execution is logically
equivalent to synchronous execution. This greatly reduces the verification state space.

Four architectural patterns were implemented in this project: PALS, Replication,
Leader Selection, and Fusion.

 Compositional Verification of Architectural Models 131

The purpose of the PALS pattern is to make portions of a distributed asynchronous
system operate in virtual synchrony. This allows portions of the system logic to be
designed and verified as though they will be executed on a synchronous platform, and
then deployed in the asynchronous system with the same guaranteed behavior. The
pattern relies on certain timing constraints on the delivery and processing of messages
that must be enforced by the underlying execution platform. To use the pattern, a
group of nodes (systems) is selected that are to execute at approximately the same
time at period T. The outputs (ports) of these nodes are to be received by other nodes
in the group such that all nodes will receive the same values at each execution step.
The pattern does not add any new data connections to the model, but assumes that the
required connections already exist.

The purpose of the Replication pattern is to create identical copies of portions of
the system. This is typically used to implement fault tolerance by assigning the copies
to execute on separate hardware platforms with independent failure modes. To use the
pattern, one or more nodes (systems) are selected and the number of copies to create
is specified. Optional arguments for each input and output port on the selected
systems determine how these ports and their connections are handled in the
replication process. Each new system and port created is given a unique name. When
multiple outputs are created they may be merged by the addition of a new system
block to select, average, or vote the outputs.

The purpose of the Leader Selection pattern is to coordinate a group of nodes so
that a single node is agreed upon as the ‘leader’ at any given time. The nodes typically
correspond to replicated computations hosted on distributed computing resources, and
are used as part of a fault-tolerance mechanism. If a replicated node fails, this allows a
non-failed node to be selected as the one which will interact with the rest of the
system. To use the pattern, a group of N nodes (systems or processes) is identified that
are to select a leader from among themselves. The leader selection pattern will insert
new leader selection threads into each of the systems/processes which are to
participate in leader selection. Each thread will have a unique identifier (an integer) to
determine its priority in selecting a leader. Connections will be added so that all
leader selection threads are able to communicate with each other (N-1 input ports, 1
output port). In addition, each leader selection thread will have an input port from
which it determines (from other local systems) if it is failed, and an output port which
will say if it is the leader. These two ports are initially left unconnected.

The purpose of the Fusion pattern is to insert a component into the architecture that
combines several component interfaces into a single interface. The component
supplies properties that define the validation/selection algorithm that is used and its
impact on the fault tolerance or performance properties of the interfaces. The fusion
algorithm could provide voting through exact or approximate agreement or by mid-
value selection. The output could correspond to one of the selected inputs or it could
be a computing average. To use the pattern, the user will select from a predefined set
of fusion algorithms that are presented in a list. Each option will describe the
properties and allow the user to browse these as part of the selection process. The user
will select the type of component to be inserted in the model to perform the fusion
algorithm. There are three initial choices: System (for abstract system designs),

132 D. Cofer et al.

Thread (for software implemented voting), and Device for hardware implementations.
Finally, the user will select the insertion point for the voter by first selecting an
existing architecture component that is the current destination of the interfaces to be
voted. After component selection the user will be presented with a list of input
interfaces that match the constraints required for the voter that was selected. The user
can then select the set of interfaces to which the voter will be applied.

Fig. 2. Avionics System, Flight Control System, and Flight Guidance System models that were
used to demonstrate the use of architectural design patterns

We have applied these patterns in an Avionics System modeled in AADL. Three
levels of the system architecture are shown in Fig. 2: the Avionics System, the Flight
Control System (FCS), and the Flight Guidance System (FGS). The initial system
model to which we apply the patterns captures the functionality of the system under
the assumption that nothing ever fails. It only has one set of inputs and outputs and
has no redundancy in its implementation. We first apply the replication pattern to the
FGS component to create two redundant copies. This pattern automatically replicates
ports as necessary and applies a property requiring the copies not be hosted on the
same hardware. We next apply the Leader Selection pattern to manage the redundant
copies of the FGS. This pattern inserts pre-verified leader selection functionality as
new threads inside each FGS to determines the current leader. The Leader Selection
protocol that we have used requires that the nodes communicate synchronously. To
satisfy this assumption, we apply the PALS synchronization pattern. The constraints
of the PALS pattern will be verified during implementation to ensure they can
actually be satisfied. Finally, the Fusion pattern is used inside the Autopilot
component to combine the two outputs produced by the active and standby FGS
copies into a single command input.

4 System Verification

The system-level properties that we wish to verify fall into a number of different
categories requiring different verification approaches and tools. This is also true for
the contracts that are attached to the components and design patterns used in the
system model.

− They may be behavioral properties that describe the state of the system as it
changes over time. Behavioral properties may be used to describe protocols
governing component interactions in the system, or the system response to

 Compositional Verification of Architectural Models 133

combinations of triggering events. We will use the Property Specification
Language (PSL) [5] to specify most behavioral properties. An example of a
behavioral property associated with the Leader Selection pattern is: A failed node
will not be leader in next step, or G(!device_ok[j]- X(leader[i]!= j)).

− They may be structural properties of the system model to which the pattern is
applied (pre-conditions), or of the transformed system model after pattern
instantiation (post-conditions). Relationships among timing properties in the model
or constraints on the numbers of various objects in the model are in this category.

− Some design patterns rely explicitly on resource allocation properties of the
system, including real-time schedulability, memory allocation, and bandwidth
allocation. Even after we annotate the model with deadlines and execution times,
we must still demonstrate that threads can be scheduled to meet their deadlines.
There are many tools available to support verification of these properties, including
the ASIIST tool developed by UIUC and Rockwell Collins [8].

− Failure analysis of the system often requires the use of probabilistic methods to
demonstrate that the sufficiency of the proposed fault handling mechanisms. The
AADL error annex can be used to attach fault behavior models to the system
design. As part of the META program we have participated in some
demonstrations based on our example AADL model using the PRISM probabilistic
model checker [9].

LS

PALS Rep

Platform

synchronous
communication

one node
operational

timing
constraints

not
co-located

Avionics
System

leader transition
bounded

A
S

S
U

M
P

T
IO

N
S

G
U

A
R

A
N

T
E

E
S

RT sched
& latency

Error
model

Behavior

Structure

Resource Probabilistic

Fig. 3. Contracts between patterns used in the Avionics System example

At the system level, assumptions and guarantees associated with the system
components and patterns interact and are composed to achieve desired system
properties. For example, the behavior of the avionics system in our example depends
upon guarantees provided by the Leader Selection pattern (Fig. 3). Leader Selection
includes an assumption of synchronous data exchange which is satisfied by the PALS
pattern guarantees. It also includes an assumption that there will be at least one

134 D. Cofer et al.

working node, which is satisfied by the Replication pattern. The PALS pattern, in
turn, makes assumptions about the timing properties of the underlying execution
platform and the Replication pattern requires that copies are not co-located. Finally,
the platform can only guarantee these properties if it verified to satisfy its resource
allocation constraints, and its probability of failure is sufficiently low.

The focus of our work is the first two categories: behavioral and structural
properties. The next section describes our approach to compositional reasoning.

5 Compositional Reasoning

Our idea is to partition the formal analysis of a complex system architecture into a
series of verification tasks that correspond to the decomposition of the architecture.
By partitioning the verification effort into proofs about each subsystem within the
architecture, the analysis will scale to handle large system designs. Additionally, the
approach naturally supports an architecture-based notion of requirements refinement:
the properties of components necessary to prove a system-level property in effect
define the requirements for those components. We call the tool that we have created
for managing these proof obligations AGREE: Assume Guarantee Reasoning
Environment.

There were two goals in creating this verification approach. The first goal was to
reuse the verification already performed on components and design patterns. The
second goal was to enable distributed development by establishing the formal
requirements of subcomponents that are used to assemble a system architecture. If we
are able to establish a system property of interest using the contracts of its
components, then we have a means for performing virtual integration of components.
We can use the contract of each of the components as a specification for suppliers and
have a great deal of confidence that if all the suppliers meet the specifications, the
integrated system will work properly.

In our composition formulation, we use past-time LTL [2]. This logic supports a
uniform formulation of composition obligations that can be used for both liveness
properties and safety properties. For the reasoning framework, we use the LTL
operator G (globally) supplemented by the past time operators H (historically) and Z
(in the previous instant) [3]. They are defined formally over paths σ and time instants
t as follows:

σ, t ╞ G(f) ≡ ∀ (u, t ≤ u) : σ, u ╞ f

σ, t ╞ H(f) ≡ ∀ (u, 0 ≤ u ≤ t) : σ, u ╞ f

σ, t ╞ Z(f) ≡ (t = 0) ∨ (σ, (t-1) ╞ f)

Verification Conditions. Formally, in our framework a component contract is an
assume-guarantee pair (A, P), where each element of the pair is a PSL formula.
Informally, the meaning of a pair is “if the assumption is true, then the component
will ensure that the guarantee is true.” To be precise, we need to require a component

 Compositional Verification of Architectural Models 135

to meet its guarantee only if its assumptions have been true up to the current instant.
We can state this succinctly as a past-time LTL formula G(H(A)  P) 1.

Components are organized hierarchically into systems as shown in Fig. 1. We want
to be able to compose proofs starting from the leaf components (those whose
implementation is specified outside of the architecture model) through several layers
of the architecture. Each layer of the architecture is considered to be a system with
inputs and outputs and containing a collection of components. A system S can be
described by its own contract (As, Ps) plus the contracts of its components CS, so we
have S = (AS, PS, CS). Components “communicate” in the sense that their formulas
may refer to the same variables. For a given layer, the proof obligation is to
demonstrate that the system guarantee Ps is provable given the behavior of its
subcomponents CS and the system assumption As.

Our goal is therefore to prove the formula G(H(As)  Ps) given the contracted
behavior G(H(Ac)  Pc) for each component c within the system. It is conceivable
that for a given system instance a sufficiently powerful model checker could prove
this goal directly from the system and component assumptions. However, we take a
more general approach: we establish generic verification conditions which together
are sufficient to establish the goal formula. Moreover, we provide verification
conditions which have the form of safety properties whenever all the assumptions and
guarantees do not contain the G or F LTL operators. In such cases, this allows the
verification conditions to be proved even by model checkers which are limited to
safety properties, such as k-induction model checkers.

Handling Cycles in the Model. It is often the case that architectural models contain
cyclic communication paths among components (e.g., the FGS_L and FGS_R in
Fig. 1), and that these components mutually depend on the correctness of one another.
Therefore, we need to consider circular reasoning among components. To accomplish
this, we use a framework similar to the one from Ken McMillan in [4]. We break
these cycles using induction over time.

Suppose that we have components A and B that mutually refer to each other’s
guarantees. When trying to establish the assumptions of A at time t, we will assume
that the guarantees of B are true only up to time t-1. Therefore, at time instant t there
is no circularity. To accomplish this reasoning, we define a well-founded order (<)
between component contracts. If CA < CB, then B can refer to A’s assumptions and
guarantees at the current instant, while A can refer to B’s assumptions and guarantees
only at the previous instant.

Following McMillan, for a contract c ∈ C, we define Θc to be the contracts whose
assumptions and guarantees are true up to and including time t. We define c^ for a
contract c to be (Ac ^ Pc) and C^ to be {c^ | c ∈ C}. Every element in Θc must be less
than c according to the order <, so Θc ⊆ C^. Since we are only considering cycles
inside system S, its contracts are handled separately and do not need to be included.
Therefore, the system assumptions are taken to hold up through the current time, and
the system guarantees are proven separately (as shown below):

1 We use “Promises” P in the place of G for guarantees for presentation because G is an LTL

operator. Also, in the informal presentation, we represent each of A,P as sets of formulas. The
formulas here are formed by simple conjunction of the elements of the set.

136 D. Cofer et al.

Theorem 1. Let the following be given:
− S = (AS, PS, CS) with assumption As, guarantee Ps and component contracts CS,

with a well-founded order < on C
− Sets Θc ⊆ C^, such that q ∈ Θc implies q<c
− For all c ∈ C, ╞ G(H(Ac)  Pc)

Then if for all c ∈ C
╞ G((H(As) ^ Z(H(C^)) ^ Θc)  Ac)

and
╞ G((H(As) ^ H(C^))  Ps)

then
╞ G(H(As)  Ps).

In other words, for a system with n components there are n+1 verification conditions:
one for each component and one for the system as a whole. The component
verification conditions establish that the assumptions of each component are implied
by the system level assumptions and the properties of its sibling components. These
verification conditions are naturally cyclic, but the cycle is broken using the well-
founded ordering < and the one-step delay operator Z. The system level verification
condition shows that the system guarantees follow from the system assumptions and
the properties of each subcomponent. This is essentially an expansion of the original
goal, ╞ G(H(As)  Ps), with additional information obtained from each component.

Proof Sketch. It is possible to prove Theorem 1 directly using induction over time.
The idea is, at each step, to go through each component (from largest to smallest
based on the < ordering) and show that its assumptions hold in the current step. Then
we can use the assumption ╞ G(H(Ac)  Pc) to show that Pc also holds in the current
step. Once we have done this for each component we can use the system level
verification condition to show that the system level guarantees hold in the current
step. Formally, the proof is by induction over time using the strengthened goal
formula

 ╞ G(H(As)  (H(Ps) ^ H(C^)))

The desired goal formula then follows directly.
Another approach to proving Theorem 1 is to encoding it using McMillan's circular

reasoning framework. This is fairly straightforward to do. In fact, the two approaches
show many similarities which provides a strong argument for the quality of approach.
The details of this equivalence are presented in a companion technical report [6].

6 Flight Control System Example

We have applied our compositional verification approach to the avionics system
model. While there is not space to present the entire example, this section provides a
summary of the assumptions and guarantees on the flight control system and
describes one level of reasoning.

 Compositional Verification of Architectural Models 137

One of the typical requirements levied on a flight control system has to do with
transients in the actuator commands. For passenger comfort and safety, a limit is
placed on the forces that would be experienced by the passengers during normal
operation. For example, the automation should not command a sharp change in the
pitch of the aircraft, even in the presence of component failures.

In our system architecture, this property becomes a constraint on the control
surface actuator (CSA) output of the system. We would like the commanded pitch to
be bounded both in terms of the both the actuator angle and its rate of change. In our
notation, we can write these properties as follows:

 transient_response_1 : assert

 true -> abs(CSA.CSA_Pitch_Delta) < MAX_PITCH_DELTA;

 transient_response_2 : assert

 true -> abs(CSA.CSA_Pitch_Delta -

 prev(CSA.CSA_Pitch_Delta, 0.0)) < MAX_PITCH_DELTA_STEP ;

The “true ->” portion of each property states the property is initially true. The
remainder of the first property states that the absolute value of the commanded
pitch (CSA_Pitch_Delta) is less than some constant (MAX_PITCH_DELTA). The
second property is similar, but states that the difference between the current
pitch and the previously commanded pitch is less than some constant
(MAX_PITCH_DELTA_STEP).

Similarly, we have system-level assumptions related to independence of failures:

 active_assumption: assume (FD_L.mds.active or

 FD_R.mds.active) ;

In our model we make assumptions about at least one FGS being active at all times
(shown), as well as assumptions about maximum discrepancies between left and right
side pitch sensors, and a handful of other assumptions. These assumptions state
maximum discrepancies in the pitch inputs in time and between the left and right
sides. In order to prove the guarantees for the system, we need to pull in assumptions
from the left and right FGSs and the autopilot. In the absence of circularity, the tools
automatically compute the dependency order for reasoning: FCI < {FGS_L, FGS_R},
{FGS_L, FGS_R} < AP2. For circular dependencies, the user must decide an order (if
it is required). In this instance, our proof did not require “same instant” assumptions
between FGS_L and FGS_R, so the cycles can be broken and verification conditions
produced automatically by our AGREE tool.

The proof relies on the guarantees for the components {FGS_L, FGS_R, AP}, and
uses the system level assumptions to discharge the component level assumptions. In
addition, the Leader Selection pattern guarantees are brought in as additional facts
which function as assumptions in the proof. Each set of assumptions and guarantees
per component is between ½ page and 1 page of text, and the proof for this layer of
the architecture can be discharged in ~5 seconds by the Kind model checker.

2 The set notation is a shorthand: X < {Y, Z} is the same as X <Y and X < Z.

138 D. Cofer et al.

7 Tool Environment

We have produced a prototype implementation of all the tools described in this paper
in a single Eclipse environment, shown in Fig. 4 . They have been designed to work
with the open source OSATE AADL tool developed by the Software Engineering
Institute.

Fig. 4. Eclipse environment for our translation, pattern instantiation, and verification tools

The SysML-AADL translator is implemented as an Eclipse plug-in. It provides a
convenient way to import an initial block diagram model created in SysML into
OSATE for further development.

The pattern instantiation tool is implemented as an extension to the EDICT tool
developed by WW Technology Group. EDICT provides a wide variety analysis
capabilities for building dependable systems, and now includes the ability to modify
the system design through application of the architectural patterns described above.

We have developed two additional Eclipse plugins to implement the
compositional verification approach described in this paper (AGREE), and a static
analysis tool called Lute for verifying structural properties of AADL models. These
tools are available for download through the AADL wiki page at
http://wiki.sei.cmu.edu/aadl/index.php/RC_META.

Complex structural assumptions and guarantees can be verified using the Lute
checker. While Lute is similar to the to the REAL verification system [10], it provides
several enhancements needed for the META project for specifying and checking
complex structural properties. A Lute specification is made up of Lute theorems,
which are computational checks over the structure of the model. A typical Lute
theorem iterates over a select group of components and aggregates information about
each before checking a Boolean condition. For example, a Lute theorem may iterate

 Compositional Verification of Architectural Models 139

over each process and verify that the maximum deadline for all threads in the process
is less than or equal to the process deadline. The Lute code for this theorem is shown
below:

 theorem Process_Deadline_Greater_Or_Equal_Thread_Deadline

 foreach p in Process_Set do

 Thread_Deadlines := {Property(t, “Deadline”)

 for t in Thread_Set | Owner(t) = p};

 check Max(Thread_Deadlines) <= Property(p, “Deadline”);

 end;

Since Lute theorems are purely computational, they can be executed without user
interaction. Thus it is feasible to re-verify the Lute specification every time a
structural change is made to the model. This enables instant feedback during model
development.

The AGREE tool uses the custom AADL property set PSL_Properties to add
support for compositional reasoning to AADL. The PSL_Properties property set is
currently implemented simply as an AADL string applied as follows:

 property set PSL_Properties is

 Contract: aadlstring applies to (system, process, thread);

 Facts: aadlstring applies to (system, process, thread);

 end PSL_Properties;

That is, it supports contracts and facts on systems, processes, and threads specified as
AADL strings. Verification of AADL models is performed through the translation of
the AADL structure and subcomponent assumptions and guarantees into a form
suitable for model checking. Currently the KIND model checker is supported, but it
would be straightforward to add support for additional model checkers and theorem
provers.

In our initial implementation, subcomponents are assumed to operate synchronously
with a one-step communication delay between connected subcomponents. This makes
the analysis tractable and creates a sound approximation of the behavior of the system.
Any error found during verification corresponds to an error in the actual system. The
approximation is complete in the case of synchronous systems (e.g. systems using the
PALS pattern), and incomplete in the general case. Incompleteness means that the
absence of verification errors does not ensure that the system is correct.

8 Conclusion

The work described here was accomplished under the META program which had a
period of performance of only 12 months. Consequently, what we have presented here
is just a start in what we consider to be a very important and very interesting research
area. There is much important work ahead of us.

First, we plan to extend our compositional verification approach to include more
complex models of computation. Synchronous computation platforms are found in

140 D. Cofer et al.

many avionics systems, but we also need to provide support for multiple execution
rates, variable delays, and asynchronous computation.

We have implemented four architectural design patterns to demonstrate the
concept, but there are many more that we have encountered. In particular, there is a
great deal of work on standard fault tolerance mechanisms with existing verification
artifacts that would fit very well into our design pattern scheme.

The technique we have used to embed contracts in AADL models is expedient but
semantically shallow. An improved method for annotation of architecture models with
formal contracts would allow much better integration with the system design and
more robust tooling. A new AADL annex seems the best way to accomplish this. We
would also to provide support for some of the features in SysML that are well-suited
for capturing dynamic requirements, such as activity and sequence diagrams.

Acknowledgements. This work was sponsored in part by AFRL under contract
FA8650-10-C-7081 in the DARPA META program and NSF grant CNS-1035715.

References

[1] Cofer, D.D., Miller, S.P., Gacek, A.J., Whalen, M.W., LaValley, B., Sha, L., Al-
Nayeem, A.: Complexity-Reducing Design Patterns for Cyber-Physical Systems. Air
Force Research Laboratory Technical Report AFRL-RZ-WP-TR-2011-2098 (2011)

[2] Kamp, J.A.W.: Tense Logic and the Theory of Order. Ph.D. Thesis, UCLA (1968)
[3] The NuSMV Toolset Users Manual (2005), http://nusmv.irst.itc.it/
[4] McMillan, K.L.: Circular Compositional Reasoning about Liveness. Technical Report

1999-02, Cadence Berkeley Labs, Berkeley CA (1999)
[5] IEEE Standard for Property Specification Language (PSL). IEEE Std 1850-2005 (2005)
[6] Whalen, M., Gacek, A., Cofer, D.: Circular Hierarchical Reasoning using Past Time

LTL. Technical Report 2011-1, University of Minnesota Software Engineering Center
(2011), http://www.umsec.umn.edu/publications

[7] The Mathworks Inc. Simulink Product Web Site,
http://www.mathworks.com/products/simulink

[8] Nam, M.-Y., Pellizzoni, R., Sha, L., Bradford, R.M.: ASIIST: Application Specific I/O
Integration Support Tool for Real-Time Bus Architecture Designs. In: 2009 14th IEEE
International Conference on Engineering of Complex Computer Systems (June 2009)

[9] Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic Symbolic Model Checking
with PRISM: A Hybrid Approach. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002.
LNCS, vol. 2280, pp. 52–66. Springer, Heidelberg (2002)

[10] Gilles, O., Hugues, J.: Expressing and Enforcing User-Defined Constraints of AADL
Models. In: Engineering of Complex Computer Systems (ICECCS), pp. 337–342 (2010)

[11] Ölveczky, P.C., Boronat, A., Meseguer, J.: Formal Semantics and Analysis of
Behavioral AADL Models in Real-Time Maude. In: Hatcliff, J., Zucca, E. (eds.)
FMOODS/FORTE 2010. LNCS, vol. 6117, pp. 47–62. Springer, Heidelberg (2010)

[12] Jahier, E., Halbwachs, N., Raymond, P., Nicollin, X., Lesens, D.: Virtual Integration of
AADL models by a translation into synchronous programs. In: EMSOFT 2007. ACM
(2007)

