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Abstract—In testing, the test oracle is the artifact that deter-
mines whether an application under test executes correctly. The
choice of test oracle can significantly impact the effectiveness
of the testing process. However, despite the prevalence of tools
that support the selection of test inputs, little work exists for
supporting oracle creation.

In this work, we propose a method of supporting test oracle
creation. This method automatically selects the oracle data—the
set of variables monitored during testing—for expected value
test oracles. This approach is based on the use of mutation
analysis to rank variables in terms of fault-finding effectiveness,
thus automating the selection of the oracle data. Experiments
over four industrial examples demonstrate that our method
may be a cost-effective approach for producing small, effective
oracle data, with fault finding improvements over current
industrial best practice of up to 145.8% observed.

Keywords-testing, test oracles, oracle data, oracle selection,
verification

I. INTRODUCTION

There are two key artifacts to consider when testing
software: the test data—the inputs given to the applica-
tion under test—and the test oracle, which determines if
the application executes correctly. Substantial research has
focused on supporting the creation of effective test inputs
but relatively little attention has been paid to the creation of
oracles. We are interested in the development of automated
tools that support the creation of part or all of a test oracle.

Of particular interest in our work are expected value
test oracles [27]. Consider the following testing process
for a software system: (1) the tester selects test inputs
using some criterion (structural coverage, random testing,
engineering judgement, etc.), potentially employing auto-
mated test generation techniques; (2) the tester then defines
concrete, expected values for these inputs for one or more
variables (internal state variables or output variables) in the
program, thus creating an expected value test oracle. The set
of variables for which expected values are defined is termed
the oracle data set [28]. Our focus is on critical systems;
past experience with industrial practitioners indicates that
expected value test oracles are commonly used in testing
such systems.
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Figure 1. Supporting Expected Value Test Oracle Creation

We present an approach to automatically select the oracle
data for use by expected value oracles. Our motivation is
twofold. First, existing research indicates that the choice
of oracle has a significant impact on the effectiveness of
the testing process [32], [3], [28], [27]. However, current
widespread practice is to define expected values for only the
outputs, a practice that can be suboptimal. Second, manually
defining expected values is a potentially time-consuming and
consequently, expensive process. Thus in practice the naive
solution of “monitor everything” is not feasible because of
the high cost of creating the oracle. Even in situations where
an executable software specification can be used as an oracle,
e.g., in some model-based development scenarios, limited
visibility into embedded systems or the high cost of logging
often make it highly desirable to have the oracle observe
only a small subset of all variables.

Our goal is to support the creation of test oracles by
selecting oracle data such that the fault finding potential of
the testing process is maximized with respect to the cost.
We illustrate our proposed approach in Figure 1. First, we
generate a collection of mutants from the system under
test. Second, the test suite (generated externally) is run
against the mutants using the original system as the oracle
(fully automated back-to-back testing). Third, we measure
how often each variable in the system reveals a fault in a
mutant and—based on this information—we rank variable
effectiveness in terms of fault finding. Finally, we estimate—
based on this ranking—which variables to include in the
oracle data for an expected value oracle. The underlying
hypothesis is that, as with mutation-based test data selection,
oracle data that is likely to reveal faults in the mutants
will also be likely to reveal faults in the actual system
under test. This oracle data selection process is completely
automated and requires no manual intervention. Once this



oracle data is selected, the tester defines expected values for
each element of the oracle data. Testing then commences
with a—hopefully—small and highly effective oracle.

We hypothesize that this oracle creation support process
will produce an oracle data set that is more effective at
fault finding than an oracle data set selected with a standard
approach, such as the monitoring of all output variables.
To evaluate our hypothesis, we have evaluated our approach
using four commercial sub-systems from the civil avionics
domain. To our knowledge, there are no alternative ap-
proaches to oracle data selection discussed in the literature.
To provide an evaluation in the absence of related work,
we perform a comparison against two common baseline
approaches: (1) current practice, favoring the outputs of the
system under test as oracle data, and (2) simple random
selection of the oracle data set. In addition, we also compare
to an idealized scenario where the seeded faults in the
mutants are identical to the faults in the actual system
under test; thus, providing an estimate of the maximum
fault finding effectiveness we could hope to achieve with
any oracle data selection support method.

Our results indicate that our approach is generally suc-
cessful with respect to the baseline approaches, performing
as well or better in almost all scenarios, with best-case
improvement of 145.8%, and consistent improvements in
the 5-30% range. Furthermore, we have also found that our
approach often performs almost as well as the estimated
maximum. We therefore conclude that our approach may
be a cost effective method of supporting the creation of an
oracle data set.

II. BACKGROUND & RELATED WORK

In software testing, a test oracle is the artifact used to
determine whether the software is working correctly [25].
We are interested in test oracles defined as expected values;
test oracles that, for each test input, specify concrete values
the system is expected to produce for one or more variables
(internal state and/or output). During testing, the oracle
compares the actual values against the expected values1. We
term such oracles expected value oracles. In our experience
with industrial partners such test oracles are commonly used
when testing critical software systems.

Our goal is to support the selection of the oracle data [27]
or oracle data set2. The oracle data is the subset of internal
state variables and outputs for which expected values are
specified. For example, an oracle may specify expected
values for all of the outputs; we term this an output-only
oracle. This type of oracle appears to be the most common
expected value oracle used in testing critical systems. Other
types of test oracles include output-base oracles, whose

1For our case examples, all variables are scalar and cannot be a heap
object or pointers. Thus, comparison is straightforward.

2Oracle data roughly corresponds to Richardson et al.’s concept of oracle
information [25].

oracle data contain all the outputs, followed by some number
of internal states, and maximum oracles, whose oracle data
contain all of the outputs and internal state variables. In
the remainder of this paper, we will refer to the size of an
oracle, where size refers to the number of variables used in
the oracle data set.

Larger oracle data sets are generally more powerful than
smaller oracle data sets [27], [32], [3]. This phenomenon is
due to fault propagation—faults leading to incorrect states
do not always propagate and manifest themselves as failures
in a variable in the oracle data set. By using larger oracle
data, we can improve the likelihood we will detect faults.

While the maximum oracle is always (provably) the most
effective expected value test oracle, it is often prohibitively
expensive to use. This is the case when (1) expected val-
ues must be manually specified (consulting requirements
documents as needed), a highly labor intensive process, or
(2) when the cost of monitoring a large oracle data set is
prohibitive, e.g., when testing embedded software on the
target platform. In current practice, testers must manually
select the oracle data set without the aid of automation; this
process is naturally dependent on the skill of the tester. We
therefore wish to automatically construct small, but effective
oracle data sets for expected value oracles.

Work on test oracles often consists of methods of con-
structing test oracles from other software engineering arti-
facts [2]. In our work, we are not constructing the entire test
oracle; rather, we are identifying an effective oracle data set
for an expected value oracle. We are not aware of any work
proposing or evaluating alternative methods of selecting the
oracle data set.

Voas and Miller suggest that the PIE approach, which—
like our work—relies on a form of mutation analysis, could
be used to select internal variables for monitoring [31],
though evaluation of this idea is lacking. More recent work
has demonstrated how test oracle selection can impact the
effectiveness of testing, indicating a need for effective oracle
selection techniques [28], [27]. Xie and Memon explore
methods of constructing test oracles specifically for GUI
systems, yielding several recommendations [32]. Briand et
al. demonstrate for object-oriented systems that expected
value oracles outperform state-based invariants, with the
former detecting faults missed by the latter [3]. Several
tools exist for automatically generating invariant-based test
oracles for use in regression testing, including Eclat [20],
DiffGen [29], and work by Evans and Savoy [8]. Note that
these tools do not quantify the potential effectiveness of
invariants, and thus—unlike our approach—no prioritization
can be performed.

Fraser and Zeller use mutation testing to generate both
test inputs and test oracles [10] for Java programs. The test
inputs are generated first, followed by generation of post-
conditions capable of distinguishing the mutants from the
program with respect to the test inputs. Unlike our work,



the end result of their approach is a complete test case, with
inputs paired with expected results (in this case assertions).
Such tests, being generated from the program under test,
are guaranteed to pass (excepting program crashes). Accord-
ingly, the role of the user in their approach differs: the user
must decide, for each input and assertion pair, if the program
is working correctly. Thus, in some sense their approach is
more akin to invariant generation than traditional software
testing. The most recent version of this work attempts to
parameterize (generalize) the result of their approach to
simplify the user’s task [11]. However, this creates the
possibility of producing false positives, where a resulting
parameterized input/assertion can indicate faults when none
exist (5.9% to 12.7% during evaluation), further changing
the user’s task. With respect to evaluation, no comparisons
against baseline methods of automated oracle selection are
performed; developer tests+assertions are compared against,
but the cost, i.e., number of developer tests/assertions, is
not controlled, and thus relative cost-effectiveness cannot
accurately be assessed.

Our work chiefly differs in that we are trying to support
creation of a test oracle, rather than completely automate
it. The domain and type of oracles generated also differ, as
does the nature of the test inputs used in our evaluation.

Mutation analysis was originally introduced as a method
of evaluating the effectiveness of test input selection meth-
ods [7]. Subsequent work also explored the use of muta-
tion analysis as a means of generating tests. In [16], Jia
and Harman summarize both the technical innovations and
applications related to mutation testing. To the best of our
knowledge, only Fraser and Zeller have leveraged this to
address test oracles.

III. ORACLE DATA SELECTION

Our approach for selecting the oracle data set is based on
the use of mutation testing for selecting test inputs [16]. In
mutation testing, a large set of programs, termed mutants, are
created by seeding various faults (either automatically or by
hand) into a system. A test input capable of distinguishing
the mutant from the original program is said to kill the
mutant. In our work, we adopt this approach for oracle
creation support. Rather than generate test inputs that kill
the mutants, however, we generate an oracle data set that—
when used in an expected value oracle, and with a fixed
set of test inputs—kills the mutants. To accomplish this, we
perform the following basic steps:

1) Generate several mutants, called the training set, from
our system under test.

2) Run test inputs, provided by the tester, over the
training set and the original system, determining which
variables distinguish each mutant from the original
system.

3) Process this information to create a list of variables or-
dered in terms of apparent fault finding effectiveness,

the the variable ranking.
4) Examine this ranking, along with the mutants and test

inputs, to estimate (as X) how large the oracle data
set should be. Alternatively, the tester can specify X
based on the testing budget.

5) Select the top X variables in the ranking as the oracle
data.

While conceptually simple, there are several relevant
parameters that can be varied for each step. The following
subsections will outline these parameters, as well as the
rationale for the decisions that we have made for each step.

A. Mutant Generation and Test Input Source

During mutation testing, mutants are created from an
implementation of a system by introducing a single fault
into the program. Each fault is created by either inserting a
new operator into the system or by replacing an operator or
variable with a different operator or variable. This mutation
generation is designed such that all mutants produced are
both syntactically and semantically valid: no mutant will
“crash” the system under test. The mutation testing operators
used in this experiment are similar to those used by other
researchers, for example, arithmetic, relational, and boolean
operator replacement, boolean variable negation, constant
replacement, and delay introduction (that is, use the stored
value of the variable from the previous computational cycle
rather than the newly computed value). A detailed descrip-
tion is available in [21].

The type of faults used to create mutants may impact
the effectiveness of the selected oracle data when used to
test the actual system under test. Note that the type of
mutants used in the evaluation in this report are similar to
those used in [1] where the authors found that generated
mutants are a reasonable substitute for actual failures in
testing experiments. This offers evidence that our use of
mutation testing will support the creation of oracles useful
for real systems.

Our approach can be used with any set of test inputs.
In this work, we assume the tester is equipped with an
existing set of test inputs and wishes to determine what
oracle data is likely to be effective with said test inputs.
This assumption allows the numerous existing methods of
test input selection to be paired with our approach for oracle
data selection. Furthermore, this scenario is the most likely
within our domain of interest.

B. Variable Ranking

Once we have generated mutants, we then run the test
inputs over both the mutants and the original program.
During execution of these inputs, we collect the values for
every variable, at every step of every test (i.e., the complete
state at every point of the execution). We term this resulting
data as the trace data. A variable is said to have detected
a fault when the variable value in the original “correct”



system differs from the variable value produced by a mutant,
for some test. We track which mutants are killed by which
variables. Note that duplicate detections, in which a variables
detects the same mutant in multiple tests, are not counted.

Once we have computed this information, we can produce
a set of variables ranked according to effectiveness. One
possible method of producing this ranking is simply to order
variables by the number of mutants killed. However, the
effectiveness of individual variables can be highly correlated.
For example, when a variable va is computed using the value
of a variable vb: if vb is incorrect for some test input, it is
highly probable that va is also incorrect. Thus, while va and
vb may be highly effective when used in the oracle data set,
the combination of both is likely to be only marginally more
effective than the use of either alone.

To avoid selecting a set of variables that are individually
effective, but ineffective as a group, we have elected to use
a greedy algorithm for solving the set covering problem [6]
to produce a ranked set of variables. In the set covering
problem, we are given several sets with some elements
potentially shared between the sets. Our goal is to select the
minimum set of elements such that one element from each
set has been selected. In this problem each set represents a
mutant, and each element of the set is a variable capable
of detecting the mutant for at least one of the test inputs.
Calculating the smallest possible set covering is an NP-
complete problem [12]. Consequently, we employ a well-
known effective greedy algorithm to solve the problem [5]:
(1) select the element covering the largest number of sets, (2)
remove from consideration all sets covered by said element,
and (3) repeat until all sets are covered.

In our case, each element removed corresponds to a
variable. These variables are placed in a ranking in the order
they were removed. The resulting ranking can then be used
to produce an oracle data set of size n—simply select the
top n elements of the list.

C. Estimating Useful Oracle Data Size

Once we have a calculated the ranked list of variables,
we can select an oracle data set of size 1, 2, etc. up to
the maximum number of variables in the system, with the
choice of size likely made according to some testing budget.
In some scenarios, the tester may have little guidance as to
the appropriate size of the oracle data. In such a scenario, we
would like to offer a recommendation to the tester; we would
like to select an oracle data set such that the size of the set is
justifiable, i.e., not so small that potentially useful variables
are omitted, and not so large that a significant number of
variables not adding value are selected.

To accomplish this, we determine the fault finding effec-
tiveness of oracle data sets of size 1, 2, 3, etc. over our train-
ing set of mutants. The fault finding effectiveness of these
oracles will increase with the oracle’s size, but the increases
will diminish as the oracle size increases. Consequently, it is

possible to define a natural cutoff point for recommending
an oracle size; if the fault finding improvement between an
oracle of size n and size n+ 1 is less than some threshold,
we recommend an oracle of size n.

In practice, establishing a threshold will depend on factors
specific to the testing process. Therefore, in our evaluation,
we explore two potential thresholds: 5% and 2.5%.

IV. EVALUATION

We wish to evaluate if our oracle creation support ap-
proach yields effective oracle data sets. Preferably, we would
directly compare against existing algorithms for selecting
oracle data; however, to the best of our knowledge, no
such methods exist. We therefore compare our technique
against two potential baseline approaches for oracle data set
selection, detailed later, as well as an idealized version of
our own approach. We wish to explore the following research
questions:
Question 1: Is our approach more effective in practice than
current baseline approaches to oracle data selection?
Question 2: What is the maximum potential effectiveness
of the mutation-based approach, and how effective is the
realistic application of our approach in comparison?
Question 3: How does the choice of test input data impact
the effectiveness of our approach?

A. Experimental Setup Overview

In this research, we have used four industrial systems
developed by Rockwell Collins engineers. All four systems
were modelled using the Simulink notation from Mathworks
Inc. [18] and were automatically translated into the Lustre
synchronous programming language [14] in order to take
advantage of existing automation3 .

Two systems, DWM1 and DWM2, represent distinct por-
tions of a Display Window Manager (DWM) for a com-
mercial cockpit display system. Two other systems, Vert-
max Batch and Latctl Batch, describe the vertical and lat-
eral mode logic for a Flight Guidance System.

Subsyst.s Blocks Outputs Internals
DWM1 128 429 9 115
DWM2 3109 11,439 7 569

Vertmax Batch 396 1,453 2 415
Latctl Batch 120 718 1 128

Table I
CASE EXAMPLE INFORMATION

All four systems represent sizable, operational systems.
Information related to these systems is provided in Table I.

For each case example, we performed the following steps:
(1) generated structural test input suites (detailed in Sec-
tion IV-B below), (2) generated training sets (Section IV-C),
(3) generated evaluation sets (Section IV-C), (4) ran test suite

3In practice, Lustre would then be automatically translated to C code,
but this is a syntactic transformation. Our usage of Lustre is purely for
convenience; if applied to C the results here would be identical.



on mutants (Section IV-E), (5) generated oracle rankings
(Section IV-D), and (6) assessed fault finding ability of
each oracle and test suite combination using evaluation sets
(Section IV-E).

B. Test Suite Generation

As noted previously, we assume the tester has an ex-
isting set of test inputs. Consequently, our approach can
be used with any method of test input selection. Since we
are studying the effectiveness using avionics systems, two
structural coverage criteria are likely to be employed: branch
coverage and MC/DC coverage [26]. Several variations of
MC/DC exist—for this study, we use Masking MC/DC, as
it is frequently used within the avionics community [4].

We use a counterexample-based test generation approach
to generate tests satisfying these coverage criteria [13], [24].
This approach is guaranteed to generate a test suite that
achieves the maximum possible coverage. We have used
the NuSMV model checker in our experiments [19] for its
efficiency and we have found the tests produced to be both
simple and short [15].

Counterexample-based test generation results in a separate
test for each coverage obligation. This results in a large
amount of redundancy in the tests generated, as each test
likely covers several coverage obligations. Such an unnec-
essarily large test suite is unlikely to be used in practice. We
therefore reduce each generated test suite while maintaining
coverage. We use a simple randomized greedy algorithm. We
begin by determining the coverage obligations satisfied by
each test generated, and initialize an empty test set reduced.
We then randomly select a test input from the full set of
tests; if it satisfies obligations not satisfied by any test input
in reduced, we add it to reduced. We continue until all tests
have been removed from the full set of tests. We produce 10
different test suites for each case example/coverage criterion
to control for the impact of randomization.

C. Mutant Generation

For each case example, 250 mutants are created by
introducing a single fault into the correct implementation.
We then produce 10 training sets by randomly selecting
10 subsets of 125 mutants. For each training set, the 125
mutants not selected for the training set are used to construct
an evaluation set. We then remove functionally equivalent
mutants from each evaluation set, resulting in a reduction of
0-9 mutants.

We remove functionally equivalent mutants using the
NuSMV model checker. This is possible due to the nature
of the systems in our study—each system is finite, and
thus determining equivalence is decidable, and in practice
fast4. The removal of equivalent mutants is done for the
evaluation sets as it represents a potential threat to validity

4Equivalence checking is fairly routine in the hardware domain; a good
introduction can be found in [30].

in our evaluation; our method is effective only if it detects
faults which can impact the external behavior. Note that the
removal of equivalent mutants for training sets is possible for
the case examples examined (and would likely improve the
effectiveness of our approach), but is not done as it may not
be practical for sufficiently large systems and is generally
undecidable for systems that are not finite.

D. Oracle Data Set Generation

For each set of mutants generated (training sets and
evaluation sets), we generated an oracle ranking using the
approach described in Section III. The rankings produced
from training sets reflect how our approach would be used in
practice; these sets are used in evaluating our research ques-
tions. The rankings produced from evaluation sets represent
an idealized testing scenario, one in which we already know
the faults we are attempting to detect. Rankings generated
from the evaluations sets, termed idealized rankings, hint
at the maximum potential effectiveness of our approach and
the maximum potential effectiveness of oracle data selection
in general, and are used to address Question 2.

We limited each ranking to contain m variables (where
m is 10 or twice the number of output variables, whichever
was larger) since test oracles significantly larger than output-
only oracles were deemed unlikely to be used in practice,
and using larger oracles makes visualizing the more relevant
and thus interesting oracle sizes difficult.

To answer Questions 1 and 3, we compare against two
baseline rankings. First, the output-base approach creates
rankings by first randomly selecting output variables, and
then randomly selecting internal state variables. Thus, the
output-base rankings always list the outputs first (i.e., more
highly ranked) followed by the randomly-selected internal
state variables. This ranking was chosen to reflect what
appears to be the current approach to oracle data selection:
select the outputs first, and if resources permit, select one or
more of the internal state variables. Second, to provide an
unbiased method, the random approach creates completely
random oracle rankings. The resulting rankings are simply
a random ordering of the internal state and output variables.

E. Data Collection

For each given case example, we ran the test suites against
each mutant and the original version of the program. For
each execution of the test suite, we recorded the value of
every internal variable and output at each step of every test
using an in-house Lustre simulator. Note that the time re-
quired to produce a single oracle ranking—generate mutants,
run tests, and apply the greedy set cover algorithm—is quite
small, less than one hour for every case example. This raw
trace data is then used by our algorithm and our evaluation.

The fault finding effectiveness of an oracle is computed
as the percentage of mutants killed versus the number of
mutants in the evaluation set used. We perform this analysis



for each oracle and test suite for every case example, and
use the information produced by this analysis to evaluate
our research questions.

V. RESULTS & DISCUSSION

In this section, we discuss our results in the context
of our three research questions: (Q1) “Is our approach
more effective than existing baseline approaches for oracle
data selection?”, (Q2) “What is the maximum potential
effectiveness of our mutation-based technique, and how does
the real-world effectiveness compare?”, and (Q3) “How
does the choice of test input data impact the effectiveness of
our approach?”.

In Figure 2, we plot the median fault finding effectiveness
of expected value test oracles for increasing oracle sizes5.
Four ranking methods are plotted: both baseline rankings,
our mutation-based approach, and the idealized mutation-
based approach. Median values were used for these plots
as plotting all test suite/training set combinations (using
boxplots, scatter-plots, etc.) yields figures that are very
difficult to interpret. For each subfigure, we plot the number
of outputs as a dashed, vertical blue line. This line represents
the size of an output-only oracle; this is the oracle size that
would generally be used in practice. We also plot the 5%
and 2.5% thresholds for recommending oracle sizes as solid
orange lines (see Section III-C). Note that the 2.5% threshold
is not always met for the oracle sizes explored.

In Table III, we list the median relative improvement
in fault finding effectiveness using our proposed oracle
data creation approach versus the output-base ranking. In
Table IV we list the median relative improvement in fault
finding effectiveness using the idealized mutation-based ap-
proach (an oracle data set built and evaluated on the same
mutants) versus our mutation-based approach. As shown in
Figure 2, random oracle data performs poorly, and detailed
comparisons were thus deemed less interesting and are
omitted.

A. Statistical Analysis

Before discussing the implications of our results, we
would like to first determine which differences observed
are statistically significant. That is, we would like to de-
termine with statistical significance, at what oracle sizes
and for which case examples, (1) the idealized performance
of a mutation-based approach outperforms the real-world
performance of the mutation-based approach, and (2) the
mutation-based approach outperforms the baseline ranking
approaches. We evaluated the statistical significance of our
results using a two-tailed bootstrap permutation test. We
begin by formulating the following statistical hypotheses 6:

5For readability, we do not state “median” relative improvement, “me-
dian” fault finding, etc. in the text, though this what we are referring to.

6As we evaluate each hypothesis for each case example and oracle size,
we are essentially evaluating a set of statistical hypotheses.

H1: For a given oracle size m, the idealized approach
outperforms the standard mutation-based approach.

H2: For a given oracle size m, the standard mutation-
based approach outperforms the output-base ap-
proach.

H3: For a given oracle size m, the standard mutation-
based approach outperforms the random approach.

We then formulate the appropriate null hypotheses:
H01: For a given oracle size m, the fault finding numbers

for the idealized approach are drawn from the same
distribution as the fault finding numbers for the
standard mutation-based approach.

H02: For a given oracle size m, the fault finding numbers
for the standard mutation-base approach approach
are drawn from the same distribution as the fault
finding numbers for the output-base approach.

H03: For a given oracle size m, the fault finding numbers
for the standard mutation-base approach approach
are drawn from the same distribution as the fault
finding numbers for the random approach.

Our observations are drawn from an unknown distribution;
therefore, we cannot fit our data to a theoretical probability
distribution. To evaluate our null hypotheses without any
assumptions on the distribution of our data, we use the two-
tailed bootstrap paired permutation test (a non-parametric
test with no distribution assumptions [9], [17]) with 250,000
samples, with median as the test statistic. Per our exper-
imental design, each evaluation set has a paired training
set, and each training set has paired baseline rankings
(output-base and random). Thus, for each case example and
coverage criteria combination, we can pair each test suite
T + idealized ranking with T + training set ranking (for
H01), and each test suite T + training set ranking with T +
random or output-base ranking (H02, H03). We then apply
the statistical test for each case example, coverage criteria,
and oracle size with α = 0.057.

Our results indicate that null hypotheses H01 and H03
can be rejected for all combinations of case examples,
coverage criteria, and oracle sizes, with p < 0.001. We
therefore accept H1 and H3 for all combinations of case
examples, coverage criteria, and oracle sizes. In the case
of H02, there exist combinations in which the differences
are not statistically significant, or marginally statistically
significant (near α). These combinations mostly correspond
to points of little to no relative improvements over output-
base oracles. We list these p-values results in Table II8 and

7Note that we do not generalize across case examples or coverage
criteria as the appropriate statistical assumption—random selection from the
population of case examples and coverage criteria—is not met. Furthermore,
we do not generalize across oracle sizes as it is possible our approach is
statistically significant for some sizes, but not others. The statistical tests
are employed to where observed differences between oracle data selection
methods are unlikely to be due to chance.

8Also, for Latctl Batch, when using MC/DC tests and an oracle of size
one, H02 cannot be rejected as p = 1.0.



Branch MC/DC
Oracle Size DWM 2 DWM 2 DWM 1

1 0.104 0.013 < 0.001
2 1.0 0.203 < 0.001
3 1.0 1.0 < 0.001
4 0.009 1.0 < 0.001
5 0.047 0.408 < 0.001
6 0.293 0.002 < 0.001
7 0.063 0.063 < 0.001
8 0.475 0.470 1.0
9 0.081 1.0 0.407

10 0.133 0.003 0.248
11 1.0 0.008 0.407
12 1.0 < 0.001 1.0
13 0.294 < 0.001 1.0
14 0.004 < 0.001 0.246

Table II
H02 P-VALUES

highlight all results without statistical significance with a *
in Table III. P-values not specified are < 0.001.

B. Evaluation of Practical Effectiveness (Q1)

When designing an oracle creation support method, the
obvious question to ask is, “Is this better than current
best practice?” As we can see from Figure 2, every oracle
generated outperforms the random approach with statistical
significance, often by a wide margin. We thus can immedi-
ately discard random oracle data selection as a useful method
of oracle data selection, as both our approach and the output-
base approach outperform it in all scenarios. We do not
discuss the random approach further.

We can also see that for both coverage criteria and every
case example, nearly every oracle generated for three of
four systems outperforms the output-base approaches with
statistical significance. The pattern goes as follows: for
oracles smaller than the output-only oracle, our approach
tends to perform relatively well compared to the output-
base approach, with improvements ranging from 0.0 to
145.8%. This reflects the strength of prioritizing variables:
we generally select more effective variables for inclusion
into the oracle data earlier than the output-base approach.
As the test oracle size grows closer in size to the output-only
oracle, the relative improvement decreases, but often (4 of 8
case example/coverage combinations) still outperforms the
output-only oracle, up to 26.4%. Finally, as the test oracle
grows in size beyond the output-only oracle, our relative
improvement when using our approach again grows, with
improvements of 2.2-45% for largest oracles.

This observation is illustrated best using the DWM 1 case
example. Here we see that, for both coverage criteria, while
the output-base ranking method performs relatively well for
small oracle sizes, the set-covering approach nevertheless
ranks the most effective variable first, locating roughly 80.%
and 145.8% more faults than the variable chosen by the
output-base technique for the branch and MC/DC coverage
criteria, respectively. The set-covering oracle continues on to
select a handful of variables that find additional faults, but
as additional outputs are added to the output-base approach

the relative improvement decreases, becoming statistically
insignificant in the case of MC/DC coverage. This indicates
the wisdom of the current approach, but also demonstrates
room for improvement: for branch coverage, the proposed
approach is, at worst, 5.9% better than the output-oracle. For
the MC/DC approach, we show no improvement, though we
achieve similar fault finding to the output-only oracle using
smaller oracles. Finally, as the oracle grows, incorporating
(by necessity) internal state variables, our approach fares
well, as effective internal state variables continue to be
added, reaching up to 14.2% relative improvement.

The only exception occurs for the DWM 2 system. For
this case example, although mutation-based oracles tend to
be roughly equivalent in effectiveness as output-base oracles
(we generally cannot reject H02 at α = 0.05), only for small
or large oracles (approximately +-6 sizes from the output-
only oracle) does our approach do relatively well. Examining
the composition of these oracles indicates why: the ranking
generated using our approach for this case example begins
mostly with output variables, and thus oracles of generated
using our approach are very similar to those generated
using the output-base approach. The performance gain of
mutation-base oracles at small sizes suggest that certain
output variables are far more important than others, but what
is crucially important at all levels up to the total number of
outputs is to choose output variables for the oracle.

However, in a few instances, our approach in fact does
worse (with statistical significance) than the output-base
approach. The issue appears to be the greedy set-coverage
algorithm: for DWM 2, the approach tends to select a
highly effective internal state variable first, which prevents a
computationally related output variable from being selected
for larger oracle data. Given an optimal set cover algorithm,
this issue would likely be avoided. However, eventually, for
larger oracle sizes, this issue is corrected, with statistically
significant improvements of 11.7% and 18.1% observed.

Despite this inconsistency, it seems clear that our ap-
proach can be effective in practice. We can consistently
generate oracle data sets that are effective over different
faults, generally with higher effectiveness than existing
ranking approaches. In cases where our approach does not do
better, the difference observed tends to be small, if present.
Furthermore, we can provide the tester with recommenda-
tions of the cost effective oracle sizes, thus avoiding the need
for testers to manually estimate an effective oracle size.

C. Potential Effectiveness of Oracle Data Selection Ap-
proach (Q2)

As noted previously, there is limited empirical work on
test oracle effectiveness. Consequently, it is difficult to
determine what constitutes effective oracle data selection—
clearly performing well relative to a baseline approach
indicates our approach is effective, but it is hard to argue
the approach is effective in the absolute sense. We therefore
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(a) DWM 1, Branch Inputs
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(b) DWM 1, MC/DC Inputs
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(c) DWM 2, Branch Inputs
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(d) DWM 2, MC/DC Inputs
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(e) Latctl Batch, Branch Inputs
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(f) Latctl Batch, MC/DC Inputs
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(g) Vertmax Batch, Branch Inputs
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(h) Vertmax Batch, MC/DC Inputs

Figure 2. Median Effectiveness of Various Approaches to Oracle Data Selection

posed Q2: what is the maximum potential effectiveness of
a mutation-based approach? To answer this question, we
applied our approach to the same mutants used to evaluate
the oracles in Q1 (as opposed to generating oracles from
a disjoint training set). This represents an idealized testing
scenario in which we already know what faults we are
attempting to find, and thus is used to estimate the maximum
potential of our approach.

The results can be seen in Figure 2 and Table IV. We
can observe from these results that while the potential
performance of a mutation-based oracle is (naturally) al-
most always higher than the real-world performance of our
method, the gap between a realistic implementation of our
approach and the ideal scenario is often quite small. Indeed,
apart from the DWM 2 system, for most case examples
and oracle sizes, the difference between the idealized and



Branch MC/DC
Oracle Size DWM 1 DWM 2 Vertmax Batch Latctl Batch DWM 1 DWM 2 Vertmax Batch Latctl Batch

1 80.0% 50.0%* 34.6% 2.7% 145.8% 40.0% 44.4% 0.0%*
2 17.1% 0.0%* 26.4% 17.6% 9.3% 25.0%* 44.4% 3.8%
3 12.5% 0.0%* 30.5% 25.0% 7.5% 0.0%* 48.3% 3.8%
4 11.1% -10.0% 30.5% 27.5% 5.7% 0.0%* 46.6% 3.8%
5 10.5% -10.0% 38.2% 30.2% 5.3% 0.0%* 49.0% 3.8%
6 10.5% -11.1%* 41.1% 32.6% 5.2% -10.0% 47.5% 3.6%
7 8.1% -10.0%* 44.4% 34.7% 2.6% -11.7%* 47.4% 3.5%
8 5.9% -8.3%* 43.2% 32.5% 0.0%* -4.5%* 46.6% 3.5%
9 7.3% 0.0%* 40.0% 33.3% -1.2%* 0.0%* 44.2% 3.4%

10 7.2% 0.0%* 42.1% 32.6% -1.1%* 8.6% 45.0% 3.4%
11 7.3% 0.0%* – – -1.1%* 12.0% – –
12 8.8% 0.0%* – – 0.0%* 17.3% – –
13 10.6% 6.6%* – – 1.1%* 17.3% – –
14 12.1% 11.7% – – 2.2%* 18.1% – –
15 14.4% – – – 2.3% – – –
16 14.5% – – – 2.2% – – –
17 14.2% – – – 2.2% – – –
18 14.2% – – – 2.2% – – –

Table III
MEDIAN RELATIVE IMPROVEMENT USING MUTATION-BASED SELECTION OVER OUTPUT-BASE SELECTION

realistic scenarios is less than the gap between the output-
base approach and our approach. Thus we can conclude that
while there is clearly room for improvement in oracle data
selection methods, our approach appears to often be quite
effective in terms of absolute performance.

D. Impact of Coverage Criteria (Q3)

Our final question concerns the impact of varying the
coverage criteria—and thus the test inputs—on the relative
effectiveness of oracle selection. In this study, we have used
two coverage criteria of varying strength. Intuitively, it seems
likely that when using stronger test suites (those satisfying
MC/DC in this study), the potential for improving the testing
process via oracle selection would be less, as the test inputs
should do a better job of exercising the code.

Precisely quantifying likeness is difficult; however, as
shown in Figure 2, for each case example the general
relationship seems (to our surprise) to be roughly the same.
For example, for the DWM 1 system, we can see that
despite the overall higher levels of fault finding when using
the MC/DC test suites, the general relationships between
the output-base baseline approach, our approach, and the
idealized approach remain similar. We see a rapid increase in
effectiveness for small oracles, followed by a decrease in the
relative improvement of our approach versus the output-base
baseline as we approach oracles of size 10 (corresponding to
an output-only oracle), followed by a gradual increase in said
relative improvement. In some cases relative improvements
are higher for branch coverage (Latctl Batch) and in others
they are higher for MC/DC (Vertmax Batch).

These results indicate that, perhaps more that the test
inputs used, characteristics of the system under test are
the primary determinant of the relative effectiveness of our
approach. Unfortunately, it is unclear exactly what these
characteristics are. Testers can, of course, estimate the effec-
tiveness of our applying approach by automating our study,
applying essentially the same approach used to provide the

user a suggested oracle size9. However, this is potentially
expensive and provides no insight concerning why our ap-
proach is very good (relative to baseline approaches, and in
an absolute sense) for some systems and merely equivalent
for others. Developing metrics that can allow us to a priori
estimate the effectiveness of our approach is an area for
potential future work.

VI. THREATS TO VALIDITY

External Validity: Our study is limited to four syn-
chronous reactive critical systems. Nevertheless, we believe
these systems are representative of the class of systems
in which we are interested and our results are therefore
generalizable to other systems in the domain.

We have used Lustre [14] as our implementation language
rather than a more common language such as C or C++.
However, as noted previously, systems written in Lustre are
similar in style to traditional imperative code produced by
code generators used in embedded systems development. A
simple syntactic transformation suffices to translate Lustre
code to C code that would be generally be used.

In our study, we have used test cases generated to satisfy
two structural coverage criteria. These criteria were selected
as they are particularly relevant to the domain of interest.
However, there exist many methods generating test inputs,
and it is possible that tests generated according to some
other methodology would yield different results. For ex-
ample, requirements-based black-box tests may be effective
at propagating errors to the output, reducing the potential
improvements for considering internal state variables. We
therefore avoid generalizing our results to other methods of
test input selection, and intend to study how our approach
generalizes to these methods in future work.

9Indeed, automating our study to estimate the effectiveness of our
approach is akin to applying mutation testing to estimate test input/oracle
data effectiveness



Branch MC/DC
Oracle Size DWM 1 DWM 2 Vertmax Batch Latctl Batch DWM 1 DWM 2 Vertmax Batch Latctl Batch

1 3.7% 101.6% 3.6% 4.7% 2.5% 68.0% 2.9% 0.6%
2 8.0% 152.1% 19.5% 8.2% 2.9% 76.9% 6.4% 1.1%
3 12.5% 156.4% 15.4% 15.0% 5.9% 94.9% 6.2% 3.0%
4 14.6% 158.6% 16.1% 13.7% 7.1% 96.0% 7.4% 5.0%
5 16.2% 152.1% 21.0% 13.6% 7.5% 94.6% 7.1% 5.5%
6 17.5% 146.9% 21.9% 12.4% 8.3% 93.5% 8.3% 6.4%
7 19.7% 140.4% 20.9% 17.7% 9.1% 94.3% 9.2% 7.0%
8 22.3% 139.3% 21.7% 20.9% 8.3% 85.7% 10.2% 7.9%
9 22.5% 140.8% 19.6% 14.2% 8.8% 84.2% 9.8% 8.8%

10 20.2% 143.5% 20.2% 16.1% 9.5% 80.8% 10.5% 8.9%
11 21.0% 147.9% – – 9.8% 82.5% – –
12 18.6% 144.2% – – 9.8% 81.0% – –
13 19.3% 144.2% – – 9.8% 83.9% – –
14 17.0% 139.3% – – 9.8% 83.0% – –
15 17.3% – – – 9.7% – – –
16 17.3% – – – 9.5% – – –
17 18.0% – – – 9.7% – – –
18 19.0% – – – 10.1% – – –

Table IV
MEDIAN RELATIVE IMPROVEMENT USING IDEALIZED MUTATION-BASED SELECTION OVER REALISTIC MUTATION-BASED SELECTION

The tests used are effectively unit tests for a Lustre
module, and the behavior of oracles may change when using
tests designed for large system integration. Given that we
are interested in testing systems at this level, we believe
our experiment represents a sensible testing approach and is
applicable to practitioners.

We have generated approximately 250 mutants for each
case example, with 125 mutants used for training sets and
up to 125 mutants used for evaluation. These values are
chosen to yield a reasonable cost for the study. It is possible
the number of mutants is too low. Nevertheless, based on
past experience, we have found results using less than 250
mutants to be representative [22], [23]. Furthermore, pilot
studies showed that the results change little when using more
than this 100 mutants for training or evaluation sets.

Construct Validity: In our study, we measure the fault
finding of oracles and test suites over seeded faults, rather
than real faults encountered during development of the
software. Given that our approach to selecting oracle data
is also based on the mutation testing, it is possible that
using real faults would lead to different results. This is
especially likely if the fault model used in mutation testing
is significantly different than the faults we encounter in
practice. Nevertheless, as mentioned earlier, Andrews et al.
have shown that the use of seeded faults leads to conclusions
similar to those obtained using real faults in similar fault
finding experiments [1].

VII. CONCLUSION AND FUTURE WORK

In this study, we have explored a mutation-based method
for supporting oracle creation. Our approach automates the
selection of oracle data, a key component of expected value
test oracles. Our results indicate that our approach is suc-
cessful with respect to alternative approaches for selecting
oracle data, with improvements up to 145.8% over output-
base oracle data selection, with improvements in the 10%-
30% range relatively common. In cases where our approach

is not more effective, it appears to be comparable to the
output-base approach. We have also found that our approach
performs within an acceptable range from the theoretical
maximum.

While our results are encouraging, and demonstrate that
our approach can be effective using real-world avionics
systems, there are a number of questions that we would like
to explore in the future, including:

• Estimating Training Set Size: Our evaluation indicates
that for our case examples, a reasonable number of
mutants are required to produce effective oracle data
sets. However, when applying our approach to very
large systems, or when using a much larger number of
test inputs, we may wish to estimate the needed training
set size.

• Oracle Data Selection Without Test Inputs: In our
approach, we assume the tester has already generated
a set of test inputs before generating oracle data. We
may wish to generate oracle data without knowing the
test inputs that will ultimately be used. Is oracle data
generated with one set of test inputs effective for other,
different test inputs?
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