
Compositional Verification of a Medical Device System∗

Anitha Murugesan
Department of Computer
Science and Engineering
University of Minnesota

200 Union Street,
Minneapolis, Minnesota 55455

anitha@cs.umn.edu

Michael W. Whalen
Department of Computer
Science and Engineering
University of Minnesota

200 Union Street,
Minneapolis, Minnesota 55455

whalen@cs.umn.edu

Sanjai Rayadurgam
Department of Computer
Science and Engineering
University of Minnesota

200 Union Street,
Minneapolis, Minnesota 55455

rsanjai@cs.umn.edu

Mats P.E. Heimdahl
Department of Computer
Science and Engineering
University of Minnesota

200 Union Street,
Minneapolis, Minnesota 55455
heimdahl@cs.umn.edu

ABSTRACT
Complex systems are by necessity hierarchically organized.
Decomposition into subsystems allows for intellectual con-
trol, as well as enabling different subsystems to be created
by distinct teams. This decomposition affects both require-
ments and architecture. The architecture describes the struc-
ture and this affects how requirements “flow down” to each
subsystem. Moreover, discoveries in the design process may
affect the requirements. Demonstrating that a complex sys-
tem satisfies its requirements when the subsystems are com-
posed is a challenging problem.

In this paper, we present a medical device case exam-
ple where we apply an iterative approach to architecture
and verification based on software architectural models. We
represent the hierarchical composition of the system in the
Architecture Analysis & Design Language (AADL), and use
an extension to the AADL language to describe the require-
ments at different levels of abstraction for compositional
verification. The component-level behavior for the model
is described in Simulink/Stateflow. We assemble proofs of
system level properties by using the Simulink Design Verifier
to establish component-level properties and an open-source
plug-in for the OSATE AADL environment to perform the
compositional verification of the architecture. This combi-
nation of verification tools allows us to iteratively explore
design and verification of detailed behavioral models, and
to scale formal analysis to large software systems.

∗This work has been partially supported by NSF grants
CNS-0931931 and CNS-1035715.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HILT’13, November 12–14, 2013, Pittsburgh, PA, USA.
Copyright 2013 ACM 978-1-4503-2467-0/13/11 ...$15.00.
http://dx.doi.org/10.1145/2527269.2527272 .

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications—
Methodologies - Requirements flow down; D.2.4 [Software
Engineering]: Software/Program Verification—Formal meth-
ods; Model checking

Keywords
Compositional Verification; System Decomposition; Cyber
Physical Systems

1. INTRODUCTION
Software is ubiquitous in safety-critical systems, which

have the potential to cause loss of life, injury, or other se-
rious damage to property and environment. The size and
complexity of this software continues to grow, making it
ever more difficult to capture the correct requirements, de-
sign the software correctly, and verify to a high level of con-
fidence that we have the right requirements and that the
software indeed satisfies those requirements. To make de-
sign and construction possible, such a complex system is
typically organized as a composition of subsystems that can
themselves be further decomposed if necessary. This hier-
archical aspect of design is of crucial importance; it allows
the complexity of the entire system to be managed through
partitioning and abstraction.

One question related to this decomposition of a system is
whether a constraint is considered a requirement or a de-
sign decision. The answer depends largely on one’s per-
spective: design decisions at one level of abstraction nat-
urally become requirements on the next lower level of ab-
straction. This dichotomy illustrates the natural interplay
between system/software architecture and requirements re-
finement. In research and in practice, however, software
architecture and software requirements tend to be quite dis-
tinct, supported by different research communities, tools and
techniques. Based on Nuseibeh’s TwinPeaks idea [31], we
advocate a close and iterative relationship between software
requirements and architecture [36]. Given adequate tools,

this approach allows quick iterations between requirements
and design, and supports efficient verification of the ade-
quacy of the decomposition, i.e., the requirements allocated
to the subsystems and their architectural connections imply
the requirements at the next higher level of abstraction.

In this paper, we describe an application of this approach
to the control software of a medical device—a Patient Con-
trolled Analgesia Infusion Pump. We model the system
architecture in the Architectural Analysis & Design Lan-
guage (AADL) [33] and the component level behavior in the
Simulink and Stateflow languages [24, 25]. For requirements,
we start from textual system requirements expressed in nat-
ural language (English). We formalize these requirements
using an extension of the AADL language that supports
specification of formal textual requirements for systems at
different levels of the system hierarchy within the AADL
model. Currently our extension allows specification of tem-
poral logic invariants using a structuring mechanism similar
to the Property Specification Language (PSL) [16]. We then
use the AGREE framework [5]—a compositional verifica-
tion framework developed for AADL verification by Rock-
well Collins and University of Minnesota,—to prove that
system requirements are established, given the architectural
structure of the system and the requirements allocated to
sub-systems in the architecture.

The sample system used in this paper is a medical device—
a Generic Patient Controlled Analgesia (GPCA) infusion
pump system [1]. Infusion pumps are medical devices used
to accurately infuse liquids into a patient’s bloodstream.
Medical devices, such as infusion pumps, are suitable sys-
tems to explore since they are generally safety-critical and
the maturity level of the V&V process has often been insuffi-
cient to ensure the safety and overall quality of the devices.
Infusion pumps have been involved in numerous incidents
that have resulted in harm to the patient. The US Food
and Drug Administration (FDA), through its Infusion Pump
Improvement Initiative, has sought to pro-actively increase
the safety of these devices by establishing additional regula-
tory requirements for infusion pump manufacturers. In this
context, the research community—in collaboration with the
FDA—is exploring various methods to improve the safety
of infusion pump systems. Our aim is to contribute to this
initiative by building a powerful and scalable proof frame-
work and evaluate its effectiveness by applying it to various
medical devices.

We have modeled the GPCA architecture using AADL
and the behavior of the architectural components in Simulink
and Stateflow. We are in the process of formalizing and
proving the GPCA system and software requirements. We
have currently formalized and proved a significant fraction
(about 30%) of the top-level software requirements using
compositional verification. We expect to complete the for-
malization and verification of the remainder in the near fu-
ture (we are aware of no technical hurdles; it is simply a
matter of time). The component-level proofs and architec-
tural proofs are established efficiently: our component level
models require ≈4 minutes to prove and the architectural
proofs are in the order of 2 seconds.

In any development effort, we expect that requirements,
architectures, and components will co-evolve as the project
progresses. Requirements naturally influence the architec-
ture and design, architectural consideration may expose the
need for new or modified requirements, and the verification

efforts are likely to reveal flaws in the requirements as well as
the architecture and design [28]. We also anticipate that ver-
ification of different parts may involve formal evidence (for
example, proof) as well as empirical and analytic evidence
(for example, testing, inspections, etc.). Given appropri-
ate tools, it may be possible to perform top-to-bottom sys-
tem level formal proofs; however, the approach is designed
to support selective proofs for the portions of the system
that are most critical, or that can be easily addressed with
automated tools. Finally, we have attempted to use estab-
lished notations for component-level behavior (Simulink and
Stateflow) and architectural description (AADL) supported
by commercial or open-source tools. Our hope is to demon-
strate that this approach is a reasonable and cost-effective
engineering solution for construction of safety-critical sys-
tems; an approach that could be readily adopted into indus-
trial practice.

2. TARGET SYSTEM
Infusion pumps are medical cyber physical systems used

for controlled delivery of liquid drugs into a patient’s body
according to a physician’s prescription (the set of instruc-
tions that governs infusion rates for a medication). These
pumps may be classified into various kinds depending on
their features, construction, and usage. Patient-Controlled
Analgesia (PCA) pumps are generally equipped with a fea-
ture that allows patients to self-administer a controlled amount
of drug (a patient-bolus), typically a pain medication.

Figure 1: Environment—GPCA System Overview

Figure 1 shows an external intravenous Generic Patient
Controlled Analgesia (GPCA) device in a typical usage en-
vironment, a hospital or a clinic. In an infusion system, the
clinician operates the GPCA device, programs the prescrip-
tion information, loads the drug, connects the device with
the patient, and responds to exceptional conditions that oc-
cur during the therapy. The patient receives the medication
from the device through an intravenous needle. The pa-
tient can self-administer prescribed amounts of additional
drug by requesting a bolus, a request usually done by press-
ing a bolus request button accessible at the patient’s bed.
The hospital pharmacy database is a repository that stores
manufacturer provided drug information (for example, up-
per limits on infusion rates for a specific drug).

In short, the GPCA system has three primary functions
(1) deliver the drug based on the prescribed schedule and
patient requests, (2) prevent hazards that may arise during
its usage, and (3) monitor and notify the clinician of any
exceptional conditions encountered. In this paper we will
focus our attention on the architecture and behavior of the
software portion of the overall GPCA system.

3. ARCHITECTURE AND REQUIREMENTS

System A

… C2

Flow up: Environmental constraints and
modified system requirements from C2

System C2

X

Y

Z
System Z

… …

• Determine subcomponents
• Allocate requirements to subcomponents
• Verify that subcomponent requirements

establish system requirements

Flow down:
requirements for C2

Figure 2: Requirements and Architectural Decom-
position

Once systems become sufficiently complex, they are de-
composed into subsystems that are created by several dis-
tinct teams. Thus, the requirements on the system as a
whole must be decomposed and allocated to each of the sub-
systems. This decomposition touches both requirements and
architecture, since the architecture describes the structure
of the decomposition, and this will affect how requirements
“flow down” to each subsystem. We believe that require-
ments should be organized into hierarchies that follow the
architectural decomposition of the system because the act
of decomposing a system into components induces a require-
ments analysis effort in which we need to ascertain whether
the requirements allocated to subcomponents in the archi-
tecture are sufficient to establish the system-level require-
ments. Equally importantly, we need to determine whether
any assumptions on a component’s environment made when
allocating requirements to that component can be estab-
lished. This is shown informally in Figure 2. As we begin
to allocate requirements to components, we may find that
the architecture we have chosen simply cannot satisfy the
system-level requirements. This may cause us to re-architect
the system to allow us to meet the system level requirement,
levy additional constraints on the external environment, or
renegotiate the system-level requirement [36].

The GPCA is a physical device that contains an infusion
pump, a user interface containing an input panel as well as
audio and visual alarms, a variety of sensors related to the
current status of the device, and a microcontroller contain-
ing software to control the device. For the software archi-
tecture, we have chosen to largely mimic the structure of
the physical system. Thus, the major sub-systems include
(1) Alarm—responsible for monitoring exceptional condi-
tions and raising alerts to avoid hazards to the patient, (2)
Infusion—responsible for determining the current mode of

the system and commanding the flow of drug out of the de-
vice, (3) Mode—responsible for managing the top-level op-
erating mode of the system, and (4) Logging—responsible
for logging the status of the device. These subsystems are
shown in Figure 3. As we are currently focusing on the soft-
ware controller, we are not yet describing the user-interface
portion of the GPCA software.

Figure 3: Software architecture of the GPCA con-
troller

To illustrate the architectural decomposition with respect
to the software requirements for the GPCA pump, consider
the following system level requirement:

When performing infusion, if the remain-
ing volume of drug in the reservoir drops below
the empty-drug-threshold, the GPCA Pump shall
raise visual and aural alarms and stop infusion.

When allocated to software, this requirement addresses the
inputs and outputs of the software (as opposed to the phys-
ical phenomena addressed in the system requirement):

When in the infusing-mode, if the estimated
drug remaining in the drug reservoir drops below
the empty drug threshold (estimated-drug-remaining
< empty-drug-threshold), the GPCA software shall
issue the visual-alarm and aural-alarm commands,
and stop the infusion.

Since the particular infusion pump we are modeling does
not measure the volume of drug infused, the remaining drug
volume is estimated by subtracting the estimated volume of
drug infused from the initial volume of the drug contained
in the reservoir.

The software requirement is further decomposed and al-
located to the Alarms (ALARM in Figure 3) and Infusion
Manager (IM) components. Here, the solution is to require
the Alarms component to monitor the estimated remaining
drug and—when it drops below the threshold—raise a crit-
ical alarm:

When in the infusing-mode, if the estimated
drug remaining in the drug reservoir is below the
empty drug threshold (estimated-drug-remaining
< empty-drug-threshold), the Alarms subsystem
shall set the highest-level-alarm to 4 (critical alarm)
and set the empty-drug-alarm indicator in current-
alarm.

The Alarms subsystem defines four levels of severity from
level 1 (informational) to level 4 (critical). These levels are
used by the rest of the system to determine correct infusing
and logging behavior. The Infusion Manager component
is responsible for receiving the notification from the Alarm
component and signaling the hardware to stop infusion by
commanding the flow rate to zero:

The infusion manager shall stop infusion when-
ever a critical alarm occurs (highest-level-alarm=4)

In addition, the Infusion Manager component is respon-
sible for estimating the remaining reservoir volume. If the
sub-component requirements are adequate, it will be possi-
ble to demonstrate that the higher level software require-
ment is actually met by our design.

In the full system, there are dozens of requirements al-
located to software relating to the correct behavior of the
system. The requirements involve correct diagnosis of sen-
sor and actuator failures, tolerances for infusion, logging,
self test, and many other aspects. An interested reader can
examine the full GPCA requirements at the following web
site: http://crisys.cs.umn.edu/gpca.shtml.

3.1 Architectural Modeling and AADL
In order to document, visualize, and analyze the architec-

ture of the GPCA system, we need to model it. When mod-
eling embedded safety-critical systems such as the GPCA,
it is desirable to have an architectural model that supports
descriptions of both hardware and software components and
their interactions. We need to document component inter-
faces, interconnections between components, and require-
ments on components, without describing the implementa-
tions of those components. At the leaf level, component
implementations are defined separately using model-based
development tools or by traditional programming languages,
as appropriate.

The Architecture Analysis and Description Language
(AADL) is a notation that suits these needs. AADL sup-
ports many of the constructs needed to model embedded
systems such as processes, threads, devices (sensors and ac-
tuators), processors, buses, and memory. Furthermore, it
contains an extension mechanism (called an annex) that can
be used to extend the language to support additional fea-
tures, such as requirements modeling. AADL, now an SAE
standard [33], is a textual language that can be expressed
graphically and is accompanied by a UML profile. AADL
includes constructs that describe both software and hard-
ware components, as well as mapping software components
to physical resources and the devices with which they com-
municate. It allows for specification of interfaces for flow of
control and data. The basic building block of this notation
is a component, defined by its category (hardware, software,
or composite), type (how the component interacts with the
outside world), and its implementation (an instance of the
component type). Note that there can be many instances
of one component type. For example, highly available sys-
tems often have redundant computing resources to support
failover; these can be represented as instances of a single
component type. Our current GPCA example does not have
redundant processing elements, but these may be added in
the future.

The graphical representation in AADL of the GPCA
software architecture is shown in Figure 3. The

GPCA SW Impl Instance describes an instantiation of the
GPCA SW system. In the GPCA model, inputs and out-
puts are defined along the left side of the figure. We
group the inputs from different sources: operator in-
puts (OP IN), operator commands (OP CMD IN), drug
database inputs (DB IN), patient inputs (PATIENT IN),
sensor inputs (SENSOR IN), and system configuration in-
puts (CONFIG IN), in order to simplify signal routing
throughout the model. In the current model, these six
input sources contain 76 different scalar signals. Connec-
tions between components can be immediate (visualized by
lines in the diagram containing the >> symbol) or delayed
(visualized by “plain” lines). The designation determines
whether communication between components will happen
in the same time frame or delayed by one time frame; im-
mediate connections induce data-dependency constraints on
scheduling of components. Given a deterministic single-
processor system, these correspond to immediate connec-
tions and 1/z-delayed connections in Simulink/Stateflow.
To remove clutter from the figure, we do not show con-
nections from the subsystems to the system boundary; the
inputs and outputs of the subsystems are connected to the
inports and outports of the system with the same name.

AADL is supported by a growing number of tools, includ-
ing tools that support editing and import/export of AADL
models, as well as tools that allow one to analyze different
aspects of the model—correctness of the connections, com-
ponent resource usage within limits, etc. However, AADL
does not have a built-in means of associating requirements
with different components within the architecture, nor does
it have support reasoning about requirements. The AGREE
framework addresses these issues by adding support for re-
quirements capture and formal verification (described in
more detail in the next section) to the OSATE AADL tool.

3.2 Reasoning about Architectural Models
with AGREE

To convincingly argue that a system has the desired effect
in its environment (the system satisfies its requirements),
Hammond et al. developed the notion of a Satisfaction Argu-
ment, based on Jackson and Zave’s World and the Machine
model [13, 17]. This approach attempts to establish that
system requirements hold through an argument involving (i)
the specification of the system behavior and (ii) assumptions
about the domain of the system.

To formalize satisfaction arguments, assume-guarantee
contracts [27] provide an appropriate mechanism for captur-
ing the information needed from other modeling domains to
reason about system-level properties. In this formulation,
guarantees correspond to component requirements, and as-
sumptions correspond to the environmental constraints that
are used in verifying the component requirements. For for-
mally verified components, assumptions are assertions or in-
variants on component inputs that are used in the proof
process. A contract specifies precisely the information that
is needed to reason about the component’s interaction with
other parts of the system. Furthermore, the contract mech-
anism supports a hierarchical decomposition of the verifica-
tion process that follows the natural hierarchy in the system
model.

In our framework, we use the past-time operator subset
of past-time linear temporal logic (PLTL) [19]. Temporal
logics like PLTL include operators for reasoning about the

A
Assumption:
 Input < 20
Guarantee:
 Output < 2*Input

B

C

Assumption:
 Input < 20
Guarantee:
 Output < Input + 15

Assumption: none
Guarantee:
 Output < Input1 + Input2

Assumption:
 Input <= 9
Guarantee:
 Output < 50

Figure 4: Toy Architecture with Properties

behavior of propositions over a sequence of instants in time.
For example, to say that property P is always true at every
instant in time (i.e., it is “globally” true), one would write
G(P), where G stands for “globally”.

Figure 4 illustrates the compositional verification condi-
tions for a toy example. In this example, we would like to
establish at the system (S) level that the output signal is
always less than 50, given that the input signal is less than
10. We can prove this using the assumptions and guaran-
tees provided by the subcomponents A, B, and C that are
organized hierarchically. This figure shows one layer of de-
composition, but the idea generalizes to arbitrarily many
layers. We want to be able to compose proofs starting from
the leaf components (those whose implementation is speci-
fied outside of the architecture model) recursively through
all the layers of the architecture.

The correctness obligations are the form G(H(A) ⇒ P),
which informally means that it is always the case that if
assumption A has been true from the beginning of the ex-
ecution up until this instant (A is historically true), then
guarantee P is true. For the obligation in Figure 4, our
goal is to prove the formula G(H(AS) ⇒ PS) given the
contracted behavior G(H(Ac) ⇒ Pc) for each component
c within the system. To prove the obligation, we establish
generic verification conditions that together are sufficient to
establish the goal formula. In the example, this means that
for the system S we want to prove that Output < 50 assum-
ing that Input < 10 and the contracts for components A, B,
and C are satisfied. For a system with n components there
are n + 1 verification conditions: one for each component
and one for the system as a whole. The component ver-
ification conditions establish that the assumptions of each
component are implied by the system level assumptions and
the properties of its sibling components. For this system the
verification conditions generated would be:

G(H(AS)⇒ AA)
G(H(AS ∧ PA)⇒ AB)
G(H(AS ∧ PA ∧ PB)⇒ AC)
G(H(AS ∧ PA ∧ PB ∧ PC)⇒ PS)

In general, these verification conditions may be cyclic, but
if there is a delay element in the cycle we can use induc-
tion over time as in [27]. The system level verification con-
dition shows that the system guarantees follow from the
system assumptions and the properties of each subcompo-
nent. This is essentially an expansion of the original goal,
G(H(AS)⇒ PS), with the additional information obtained
from each component.

3.3 GPCA System Architecture and Require-
ments in AADL/AGREE

AADL distinguishes between a system, which describe the
input/output interface of an AADL aggregate, and system
implementations, which describe the internal structure of
the system. Each system type may have several implementa-
tions. We define requirements contracts in a system because
requirements are defined over the input/output interface of
the component and should not be defined in terms of imple-
mentation details. However, we perform proofs at the system
implementation level, where we can use the contracts of sub-
components and their architectural relationship to establish
system level properties. So, in Figure 3, we are examining
the implementation of the GPCA SW system, which is de-
fined in terms of TLM, ALARM, IM, and LOG systems.
The structure of the subsystems is hidden; instead we prove
the obligations for GPCA SW using the contracts defined
by the subsystems. For each layer of the architecture, we
establish, for each implementation of a system, that the im-
plementation meets the requirements of the system defined
in the layer. Transitively, we thus establish that the re-
quirements of the top-level system are proved given that the
properties of the lowest layer leaf-level components are true.

An example of the notation for the AGREE framework
is shown in Figure 5. The language is based on Property
Specification Language (PSL) [16] and defines a Lustre lan-
guage [11] “flavor” for the PSL Boolean layer expressions
and definitions. Lustre is a synchronous dataflow language
that describes the behavior of a system through a set of
equations, and it can be viewed as a textual analogue to
Simulink block diagrams. In this notation, it is possible
to define constants, local variables, reusable fragments of
temporal logic (called properties), and to make guarantees
(called assertions) and assumptions. In specifications, we
can reference values of input and output ports;additionally,
we can describe stateful relationships between variables us-
ing the ‘prev’ expression, which provides the value of a vari-
able from the previous step of execution of the system (the
second argument to this expression provides its value in the
initial state). Given this notation, it is possible to encode
the requirements that we described informally in the previ-
ous section. For example, the empty reservoir requirement
from the previous section is formally specified in REQ 59.
The structure of contracts is the same for the subcompo-
nents, though of course the interfaces and properties are
specialized to the functionality of each subcomponent.

4. BEHAVIORAL MODELING
In the work described in this paper, the detailed compo-

nent behavior for the GPCA System has been modeled in
Simulink and Stateflow. Simulink and Stateflow are devel-
oped by MathWorks [22]. Simulink is a data flow graphical
language as well as a tool for modeling and simulating dy-
namic systems (both the language and the tool are generally
referred to as Simulink). Stateflow is a state-based notation
similar to David Harel’s Statecharts notation [14] (again,
Stateflow also refers to the tool). Both Simulink and State-
flow are tightly integrated in the MATLAB environment and
can, as mentioned earlier, refer to other languages available
in the environment. Although both Stateflow and Simulink,
in our opinion, have many problems with their semantics
(such as the lack of proper type systems, the event seman-

system GPCA_SW
features
OP_IN: in data port DATATYPES::Operator_Inputs.Impl;
OP_CMD_IN: in data port DATATYPES::Operator_Commands.Impl;
DB_IN: in data port DATATYPES::Drug_Database_Inputs.Impl;
PATIENT_IN: in data port DATATYPES::Patient_Inputs.Impl;
SENSOR_IN: in data port DATATYPES::Device_Sensor_Inputs.Impl;
CONFIG_IN: in data port DATATYPES::Device_Configuration_Inputs.Impl;
ALARM_OUT: out data port DATATYPES::Alarm_Outputs.Impl;
LOG_OUT: out data port DATATYPES::Log_Outputs.Impl;
TLM_OUT : out data port DATATYPES::Top_Level_Mode_Outputs.Impl;
INFUSION_OUT: out data port DATATYPES::Infusion_Manager_Outputs.Impl;

properties
PSL_Properties::Contract => "
-- Constants

const IM_MODE_OFF : int = 0;
const IM_MODE_IDLE : int = 1;
const IM_MODE_PAUSED : int = 2;

...

-- macros
property in_off = INFUSION_OUT.Current_System_Mode = IM_MODE_OFF;
property in_idle = INFUSION_OUT.Current_System_Mode = IM_MODE_IDLE;
property in_paused = INFUSION_OUT.Current_System_Mode = IM_MODE_PAUSED;

...

-- SYSTEM REQUIREMENTS

...
-- REQ 4 :

property RE_system_on_implies_idle =
((not prev(TLM_OUT.System_On, true) and (TLM_OUT.System_On)) => in_idle);

assert RE_system_on_implies_idle;
...
-- REQ 6 :

property mode_off_implies_infusion_rate_zero =
in_off => (INFUSION_OUT.Commanded_Flow_Rate = 0);

assert mode_off_implies_infusion_rate_zero;
...
-- REQ 59:
property empty_reservoir_implies_no_flow =
((((prev(INFUSION_OUT.Reservoir_Volume, 0)) < CONFIG_IN.Empty_Reservoir_Val)

and prev(INFUSION_OUT.Infusing, false)) =>
(INFUSION_OUT.Commanded_Flow_Rate = 0));

assert empty_reservoir_implies_no_flow;
...

-- SYSTEM LEVEL ASSUMPTIONS

assume DB_IN.flow_rate_kvo > 0 ;
assume CONFIG_IN.audio_level_val > 0 ;
assume CONFIG_IN.empty_reservoir_val > 0 ;

--
-- End of Infusion Manager Contract
--
";

end GPCA_SW;

Figure 5: Portions of GPCA AADL/Agree Model

tics in Stateflow, the distinction between transition actions
and condition actions, etc.), they are by far the most widely
used notations in industry and suit our modeling needs well.

Furthermore, since our goal is to demonstrate the power of
formal reasoning, it is essential to have verification support
for the behavioral modeling notation. The MathWorks now
supports a plug-in formal verification tool, the Simulink De-
sign Verifier [23], for verification of Simulink and Stateflow
behavioral models.

Finally, since one of the goals with the effort described
in this paper was to illustrate how to perform architectural
modeling, behavioral modeling, and compositional verifica-
tion in practice, our aim was to work with commercially
supported and/or mature open source tools so that adopt-
ing our work in industrial settings would have a low thresh-
old. Thus, Simulink, Stateflow, and AGREE were natural
choices.

4.1 Alarms Component
The Alarms component monitors the system for any ex-

ceptional conditions, prioritizes conditions if there are mul-
tiple simultaneous exceptional conditions, and raises vi-
sual/audio notifications depending on the situation. Fig-
ure 6 shows the top level model of the Alarms component.
The dashed ”roundangles” indicate state-machines that exist
in parallel but that will execute in the sequence indicated
by the sequence numbers (in this case, CheckAlarms and
then Notification). The CheckAlarms state-machine deter-
mines which alarms to raise based on the the current infor-
mation of the system. Figure 7 shows the behavioral model
of the reservoir empty alarms feature, one of the sub-states
of CheckAlarms state-machine. The behavior is relatively
simple: if infusion is in progress (information gathered from
the Infusion Manager component discussed below), and the
estimated volume remaining in the reservoir (also from the
Infusion Manager) is less than the Empty Reservoir thresh-
old, the reservoir is considered empty and the alarm will be
raised. In the Alarms module there are currently 18 differ-
ent alarms that can be raised. The alarms range from low
criticality alarms that amount to an on screen notification
to the clinician and no disruption of the therapy, to highly
critical alarms (such as Empty Reservoir or Air In Line)
that necessitate a visual and aural notification (determined
by the Notification state-machine) as well as suspension of
therapy.

4.2 Infusion Manager Component
The Infusion Manager is responsible for maintaining the

state of the infusion of drug into the patient and, based
on the therapy selected, determining the appropriate flow-
rate for the infusion. In addition, the Infusion Manager is
responsible for estimating the total volume infused and the
remaining reservoir volume. The top level of the Infusion
Manager can be seen in Figure 8.

Initially, the Infusion Manager is idle and no infusion is
taking place. After the pump has been configured, that
is, the various infusion parameters have been set, the clin-
ician can commence the delivery of an infusion therapy as
shown in Figure 8; Figure 9 shows the details of the ther-
apy behavior. When delivering therapy, the pump may be
actively delivering drug (ACTIVE) or drug delivery may be
suspended (PAUSED). System may be PAUSED for two rea-
sons; (1) a critical alarm may have been raised necessitating
the cessation of drug delivery (information from the Alarms
subsystem), or (2) the clinician has requested a pause to
perform some action.

When the pump is delivering therapy (in the ACTIVE
state), this particular version of the GPCA can provide three
types of therapy: (1) a basal infusion rate that is the basis
for the therapy, (2) a higher patient requested bolus rate
that is limited in duration and frequency (to prevent patient
self-inflicted overdoses), and (3) a clinician programmed in-
termittent bolus regime where the patient gets an extra dose
of drug at regularly scheduled intervals (see Figure 10). De-
pending on various conditions, the infusion pump will switch
between these delivery therapies. As an example, consider a
scenario where the pump is delivering therapy at the basal
flow rate. The patient requests a bolus dose and—if all pre-
conditions are met—this therapy is turned on. In this case,
the patient bolus takes precedence over all other therapies
and the flow rate delivered to the patient is determined by

the patient bolus rate. When the patient bolus has been de-
livered, the previous therapy is resumed. In this model, the
prioritization of the various therapies is handled by the AR-
BITER state machine. The inclusion of an arbiter as well as
the modeling of the various therapies as parallel state ma-
chines was done for clarity, modularity, and product family
reasons; this structure makes it relatively easy to add ad-
ditional therapies without causing ripple-effects throughout
the model. The details and rationale related to the struc-
turing of the behavioral models is outside the scope of this
paper and has been discussed elsewhere [30].

4.3 Specification of Behavioral Requirements
The required properties of the architectural components is

captured in AGREE using the past-time subset of past-time
linear temporal logic—PLTL (Section 3.2). Unfortunately,
the verification tools available for Simulink and Stateflow do
not currently support this formalism for property specifica-
tion. Naturally, it would be highly desirable if the property
specification language was consistent throughout the model-
ing effort; this is a tool integration and engineering problem
we have not yet addressed. Instead, we recapture the re-
quired component properties for verification in the Simulink
Design Verifier. The Simulink Design Verifier requires all
properties to be specified as Boolean expressions in one of
the available MATLAB notations. For example, the empty
reservoir property for the Alarms component depicted in
Figure 11 is captured as a Simulink verification block. The
input signals on the left side are the same inputs that are
provided to the Alarms component capturing the compo-
nent behavior (as discussed in the previous section). The
gray circle containing a P (for property) indicates that the
verification tools will attempt to verify that this Simulink
block always generates a signal that is True; if the signal is
ever False, the tools have revealed a property violation and
will report a counterexample. The logic of the verification
condition is in Figure 11 expressed using embedded MAT-
LAB, a subset of the MATLAB computing language that
supports efficient code generation for deployment in embed-
ded systems.

Alternatively, the verification conditions could be cap-
tured using the Simulink or Stateflow notations. The same
condition captured as a Simulink model can be seen in Fig-
ure 12.

In our work we have preferred using embedded MATLAB
code. Capturing properties in this notation has several ad-
vantages. First, the property can be structured to closely
resemble the natural language “shall” requirements in the
requirement document as well as the PLTL properties used
in AGREE. This closeness in structure reduces the oppor-
tunities for transcription mistakes and makes the properties
easier to inspect. In the future, the translation between the
AGREE properties and the Design Verifier properties will be
automated. Second, the textual notations makes it easy to
comment out properties as the verification process is under-
way (verifying all properties all the time may be a waste of
time when there is one problematic property of interest). Fi-
nally, we have developed preference for the textual notation
since we find it quicker and easier to create and maintain
the required properties textually.

Figure 6: Alarm Behavioral Model Top-Level State Machine

Figure 7: Behavioral model of the reservoir empty alarms feature.

Figure 8: Infusion Manager Behavioral Model Top-Level State Machine

Figure 9: Therapy state machine.

Figure 10: The three main therapies and the arbiter determining which one is in control of the pump.

Figure 11: Alarm component property for Empty Reservoir check expressed in embedded MATLAB.

Figure 12: Alarm component property for Empty Reservoir check expressed in Simulink.

5. VERIFYING THE GPCA SYSTEM
To verify the GPCA system behavior, it is necessary to

prove that the components satisfy their component-level re-
quirements and that the component-level requirements are
adequate to establish the system-level requirements for each
level within the architectural hierarchy. These activities
were performed in parallel, with one team member leading
the component-level verification effort and another leading
the architecture-level verification.

5.1 Verification Approach and Tools
For the verification effort of the GPCA model, we

used two different model checking tools. For the
Simulink/Stateflow verification, we used the Simulink De-
sign Verifier (SLDV) [23], and for the architectural verifica-
tion, we used the recently developed Rockwell Collins JKind
tool1. Both of the tools use k-induction [34] algorithms im-
plemented on top of a Satisfiability Modulo Theories (SMT)
solver [8] to reason about infinite-state models involving real
(rational) numbers and bounded or unbounded integers.

5.2 Verification Results
The verification results for our current analysis are shown

in Table 1. Currently, we are analyzing component-level
properties for the Alarms and Infusion Manager components
(we expect to add properties related to logging and the top-
level system modes in the near future). For composing anal-
ysis results, we are using AADL and the AGREE OSATE
plug-in. All data gathering was performed on a Dell Lati-
tude E6430 running Windows 7 64-bit edition with an Intel
Core i7-3720QM CPU running at 2.60 GHz and 6 GB of
RAM. For each slot in the table, we ran the verification
three times and recorded the mean time (though variance
was quite low between runs).

To evaluate the scalability of the architectural analysis,
we also created a model in Simulink that contains all of
the behavioral models in the AADL architectural model;
we call the composite Simulink model the monolithic model.
We can then check the scalability of the compositional vs.
monolithic analysis by analyzing the same system twice:

1Available at: https://github.com/agacek/jkind

Compositional Approach: In this approach, the
component-level properties for the Alarms and Infu-
sion Manager subsystems are proven using Simulink
Design Verifier; these properties are then used to
prove the system property.

Monolithic Approach: In this approach, the monolithic
model containing the Alarms and Infusion Manager
subsystems as well as the 19 system-level properties is
analyzed using Simulink Design Verifier.

For the monolithic model, Simulink Design Verifier is
unable to prove the current set of system-level properties
within 60 minutes. For the compositional approach, the to-
tal time required for analysis is slightly under 5 minutes
(46.5 + 224.5 + 2 = 273 seconds). Notably, the time re-
quired for the compositional portion of the analysis was only
2 seconds. As we add additional subsystems and additional
functionality and proof obligations to the component-level
models, we expect the difference in analysis time to become
more pronounced.

6. DISCUSSION
In the process of conducting this case study, we gained

some methodological insights towards model structuring and
verification.

6.1 Model Structure
It is crucial to structure the component models carefully

taking into consideration their various uses and evolution.
Initially, we placed both the functional model and require-
ments models (properties) into the same Simulink model.
However, we wanted the Simulink models to serve two im-
portant purposes—code-generation and verification. Also,
we wanted the implementation of the component and the
specification of the requirements for that component to be
able to evolve in parallel, given that the input/output inter-
face for the component is stable. To support these desires,
we create three models for each component. For compo-
nent foo, we create the model foo_functional.mdl to cap-
ture the detailed component behavior, foo_properties.mdl

Alarms Sub-
System

Infusion Manager
Sub-System

Monolithic Model AADL Model

Number of Inputs 45 21 55 55
Number of Outputs 10 11 15 15
Number of Properties 11 15 19 19
Design Verifier Execution Time 46.5s 224.5s >3600s (12/19 proved) NA
AGREE Execution Time NA NA NA 2s

Table 1: Verification Results

to capture the requirements for the component, and foo_-
verification.mdl that connects the functional and require-
ments models. Eventually, given an AADL model containing
the I/O structure and requirements allocated to the compo-
nent, we plan to auto-generate the verification models. We
intend to use the functional models to generate code using
the MATLAB code-generation tools; code that can then be
executed and tested on the target platform.

6.2 Debugging
The formalization effort found errors in requirements, ar-

chitectural decomposition, and behavioral models. In terms
of requirements, we found implicit assumptions, ambiguous
textual requirements, and specifications that were not phys-
ically achievable (note that this is not a new insight [12,
28]). For example, we have various requirements related
to under- and over-infusion, where at any instant an over-
or under-infusion amount greater than a certain threshold
vs. the current desired flow rate should trigger a critical
alarm and stop infusion:

SW3.4.5.21.2 The application shall validate
during all infusion modes if the received flow rate
is within programmed flow rate with flow rate pre-
cision of p % of the programmed flow rate of the
respective infusion mode. The received flow rate
shall never be more than MAX ml/hr above the
prescribed flow rate + precision.

These requirements as written, however, are not achiev-
able at start of infusion or during mode transitions (such
as patient bolus), instants where the threshold changes via
a step function and the pump requires a small amount of
time to reach the set point. In the process of formalizing
the requirement, we identified the problem.

The behavioral models contained the largest share of er-
rors found by analysis, usually involving incorrectly spec-
ified boundary conditions. For example, incorrect default
transitions (transitions that occur when a state machine is
first entered) led to several instances where alarms were not
correctly raised at the moment when the fault condition oc-
curred.

In terms of architectural models, a significant error was
found related to the structure of the decomposition that we
had chosen for the system. A property closely related to the
empty reservoir property discussed earlier is:

No infusion shall occur while the drug reser-
voir is below the empty-drug-threshold for the
drug in the reservoir.

This property is violated by the current model. The issue
is that while the Infusion Manager will stop infusion if a crit-
ical alarm occurs, the Alarms subsystem will raise an alarm

for empty reservoir only if the system is infusing. Therefore,
the system must start infusion before the alarm will occur
and cause infusion to stop. To fix this issue, we will split the
Alarms system into a system status and alarms component.
The status component will have an “okToInfuse” output to
handle this case.

Both SLDV and the AGREE tool-set produce counterex-
amples when properties are violated. For behavioral mod-
els, tracing counterexamples is straightforward; they are test
cases that can be run through the simulator for Simulink.
On the other hand, if a counterexample occurs in AGREE,
it is akin to a proof failure; the counterexample is a trace
instance in which the subsystem properties and system as-
sumptions were not strong enough to establish the system
level property. In some cases, these counterexamples can be
very difficult to debug—they may not correspond to actual
executions of the system (because the component level prop-
erties are approximations of the actual system behavior) and
therefore cannot be simulated. It will be important to pro-
vide engineers better tools with which to understand the rel-
evance of different variables towards these counterexamples,
to try to assign blame to subcomponents that likely con-
tributed to the proof failure, and to perform some amount
of automated strengthening by “opening the architectural
boxes” and looking at the behavior of subcomponents. We
are just beginning to investigate better tool support and
engineering aspects of compositional reasoning as part of a
NASA program that started in June 2013.

As mentioned above, the majority of faults have been
found in the behavioral models, but the most difficult to
fix involved the architectural decomposition. The benefit
of having the ability to perform architectural verification is
that these problems can be identified early in the verification
process rather than in integration and system test phases.

6.3 Limitations
Our current approach to verification is restricted in several

ways. First, AGREE currently only handles synchronous
architectural models in which execution proceeds in a de-
terministic discrete sequence of steps. This model must
be extended in order to deal with distributed computations
where components do not share a common clock signal, or
where messages between components are not guaranteed to
be delivered and/or communication times may vary. Sec-
ond, AGREE can verify only invariants, so liveness prop-
erties, such as the system will eventually deliver a message,
cannot be specified in AGREE. In our experience, this is
not as severe a limitation as it may seem. Most systems are
concerned with bounded liveness in which an action must
occur within a time interval; these properties can be written
in AGREE.

The current analysis tools use rationals to model the be-
havior of real numbers; However, most software is imple-
mented using floating point numbers. This can lead to un-
soundness in our analysis of software that uses floating point
arithmetic. Bit-precise floating point reasoning is an area of
active research in the decision procedures community. As
floating point decision procedures become integrated into
SMT solvers, we will add support for accurate analysis of
floating point numbers. Also, AGREE does not support
trigonometric or non-linear functions. These can be approx-
imated in some cases, but many of the interesting numeric
properties of systems simply cannot be specified.

Finally, we are proving properties of models. The models
that we are analyzing are used for code generation, and so
describe a complete implementation of the functional behav-
ior of the GPCA. However, the verification process that we
describe will not catch errors in the MATLAB code genera-
tor or the C tool chain used to compile the generated code.
In addition, external code such as “glue” code for communi-
cation with the actual sensors and actuators and (possibly)
an RTOS are outside the scope of the model and will not be
analyzed.

7. RELATED WORK
Compositional verification has attracted significant re-

search attention because of its viability as a scalable tech-
nique for reasoning about complex systems. These tech-
niques typically employ some form of an assume-guarantee
approach: each component (or module) is shown to indi-
vidually guarantee some desirable properties under certain
assumptions about its environment, which includes other in-
teracting components. These separate arguments are then
combined in a logically coherent fashion to construct an ar-
gument that the full system satisfies its required properties
under the given assumptions about its environment. When
a formal technique such as model-checking is used to verify
the properties, these “arguments” in essence are proofs of
properties for the system models being verified.

Early efforts in such modular reasoning dealt with paral-
lel programs that interact via message passing and shared
variables [29, 18, 32] and recently in the context of behav-
ioral programming frameworks [15]. In our present work, the
focus is on verifying architectural models with behavioral
components that interact through data flow and execute
in some fixed sequential order at every computation step.
The components themselves are modeled as extended finite
state machines which are amenable to model-checking tech-
niques. Event-based composition and verification of finite-
state transition systems has been explored in the contexts
of I/O automata [21], interface automata [6], Computational
Tree Logics [3, 9], and in a process algebraic framework [2].
Hagen et al. discuss verification of safety properties of data-
flow programs in Lustre using model-checking techniques
that use an underlying SMT-solver [10]. In our present work
we use the same SMT-based algorithm to verify properties
in the AGREE framework.

McMillan describes a compositional approach to hardware
verification where the component-level properties are veri-
fied using model-checkers, while the higher level properties
are reasoned about using human assisted proof-techniques
in a semi-automated fashion [26]. In the present work, we
use a similar strategy for proving system properties by lever-
aging the human effort involved in system design for archi-

tectural decomposition as well as requirements allocation
to sub-components. Such a division of labor between man
and machine for full-system verification seems justified given
that, in general, finding a good decomposition that is bene-
ficial for verification is hard [4].

Simulink Design Verifier has been used to analyze cyber-
physical system designs in the transportation domain [7].
Here, various properties of a train-tracking system are veri-
fied using the k-induction and bounded model-checking ca-
pabilities of the tools; the state-space explosion problem is
addressed by adopting various ad-hoc tactics for model op-
timization, property decomposition and induction. In our
work, we address the state-space explosion problem by us-
ing the architectural decomposition to partition the verifi-
cation task for safety properties between AGREE tool and
Simulink Design Verifier.

The SPEEDS approach to embedded system develop-
ment [35] envisions rapid innovations through a model-based
engineering paradigm supported by formal analyses. At its
core, it requires that the architectural description of the sys-
tem is annotated with assume-guarantee style contracts on
components that cover both functional and non-functional
aspects. Our present work can be seen as a key enabler for
realizing the benefits of such an approach in the development
of cyber-physical systems.

The BLESS annex and tool [20] supports reasoning over
component-level behaviors defined using state machines and
a simple imperative language. It supports component invari-
ants and a variety of well-formedness properties for compo-
nent behavior models. Unlike AGREE, which is fully au-
tomated, BLESS uses a user-driven deductive approach to
proof. This allows specification of and reasoning about a
larger class of properties, such as those involving non-linear
arithmetic, than is currently supported with AGREE. On
the other hand, BLESS specifications are defined on indi-
vidual subcomponents and threads; there does not appear
to be a notion of n-level composition of proof results across
threads and systems.

8. CONCLUSION
We have presented a scalable and practical approach to

compositionally verify a realistic medical cyber-physical sys-
tem using commonly used modeling notations and readily
available tools. Our assume-guarantee framework allows one
to formally establish invariants of the full system by leverag-
ing its hierarchical architectural decomposition for verifica-
tion. This also allows the effective utilization of formal verifi-
cation tools at the component-level, which may not be oth-
erwise practical for verifying system-level properties. The
partitioning of verification tasks along architectural lines
has other benefits for system development: it provides early
feedback on key architectural decisions, promotes iterative
exploration of the solution space and fosters a synergistic
evolution of requirements specification and system design.
While there are some limitations in the kinds of models and
properties that can be handled given our present choices of
specification formalisms and verification techniques, we be-
lieve our approach represents a good trade-off point between
the possible and the practical.

9. ACKNOWLEDGEMENTS
We would like to thank Andrew Gacek and Darren Cofer

at Rockwell Collins for their insight and assistance in struc-
turing and debugging the architectural models, and for de-
veloping JKind and AGREE.

10. REFERENCES
[1] Generic infusion pump project,

http://rtg.cis.upenn.edu/gip.php3.

[2] A. Basu, S. Bensalem, M. Bozga, J. Combaz,
M. Jaber, T.-H. Nguyen, and J. Sifakis. Rigorous
component-based system design using the BIP
framework. Software, IEEE, 28(3):41–48, 2011.

[3] E. Clarke, D. Long, and K. L. McMillan.
Compositional model checking. In Logic in Computer
Science, 1989. LICS ’89, Proceedings., Fourth Annual
Symposium on, pages 353–362, 1989.

[4] J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke.
Breaking up is hard to do: an investigation of
decomposition for assume-guarantee reasoning. In
Proceedings of the 2006 international symposium on
Software testing and analysis, ISSTA ’06, pages
97–108, New York, NY, USA, 2006. ACM.

[5] D. D. Cofer, A. Gacek, S. P. Miller, M. W. Whalen,
B. LaValley, and L. Sha. Compositional verification of
architectural models. In A. E. Goodloe and S. Person,
editors, Proceedings of the 4th NASA Formal Methods
Symposium (NFM 2012), volume 7226, pages 126–140,
Berlin, Heidelberg, April 2012. Springer-Verlag.

[6] L. de Alfaro and T. A. Henzinger. Interface automata.
SIGSOFT Softw. Eng. Notes, 26(5):109–120, Sept.
2001.

[7] J.-F. Etienne, S. Fechter, and E. Juppeaux. Using
simulink design verifier for proving behavioral
properties on a complex safety critical system in the
ground transportation domain. In M. Aiguier,
F. Bretaudeau, and D. Krob, editors, Complex
Systems Design & Management, pages 61–72. Springer
Berlin Heidelberg, 2010.

[8] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras,
and C. Tinelli. DPLL(T): Fast decision procedures. In
R. Alur and D. Peled, editors, Proceedings of the 16th
International Conference on Computer Aided
Verification, CAV’04 (Boston, Massachusetts), volume
3114 of Lecture Notes in Computer Science, pages
175–188. Springer, 2004.

[9] O. Grumberg and D.E.Long. Model checking and
modular verification. ACM Transactions on
Programming Languages and Systems, 16(3):843–871,
May 1994.

[10] G. Hagen and C. Tinelli. Scaling up the formal
verification of lustre programs with smt-based
techniques. In Formal Methods in Computer-Aided
Design, 2008. FMCAD ’08, pages 1–9, 2008.

[11] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data flow programming language
LUSTRE. Proceedings of the IEEE, 79(9):1305–1320,
1991.

[12] A. Hall. Seven myths of formal methods. IEEE
Software, September 1990.

[13] J. Hammond, R. Rawlings, and A. Hall. Will it work?
[requirements engineering]. In Requirements

Engineering, 2001. Proceedings. Fifth IEEE
International Symposium on, pages 102 –109, 2001.

[14] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming,
8(3):231–274, June 1987.

[15] D. Harel, R. Lampert, A. Marron, and G. Weiss.
Model-checking behavioral programs. In Proceedings of
the ninth ACM international conference on Embedded
software, EMSOFT ’11, pages 279–288, New York,
NY, USA, 2011. ACM.

[16] IEEE. IEEE Std. 1850-2005. Property Specification
Language (PSL). IEEE, 2005.

[17] M. Jackson and P. Zave. Deriving specifications from
requirements: An example. In Proceedings of the
Seventeenth International Conference on Software
Engineering (ICSE’95), pages 15–24, May 1995.

[18] C. B. Jones. Tentative steps toward a development
method for interfering programs. ACM Trans.
Program. Lang. Syst., 5(4):596–619, Oct. 1983.

[19] J. A. W. Kamp. Tense Logic and the Theory of Linear
Order. PhD thesis, UCLA, 1968.

[20] B. Larson, P. Chalin, and J. Hatcliff. BLESS: Formal
specification and verification of behaviors for
embedded systems with software. In Proceedings of the
5th NASA Formal Methods Symposium.
Springer-Verlag, 2013.

[21] N. A. Lynch and M. R. Tuttle. Hierarchical
correctness proofs for distributed algorithms. In
Proceedings of the sixth annual ACM Symposium on
Principles of distributed computing, PODC ’87, pages
137–151, New York, NY, USA, 1987. ACM.

[22] MathWorks. The MathWorks Inc. corporate web
page. Via the world-wide-web:
http://www.mathworks.com, 2004.

[23] Mathworks Inc. Simulink Design Verifier product web
site.
http://www.mathworks.com/products/sldesignverifier/.

[24] Mathworks Inc. Simulink product web site.
http://www.mathworks.com/products/simulink.

[25] Mathworks Inc. Stateflow product web site.
http://www.mathworks.com.

[26] K. McMillan. A methodology for hardware verification
using compositional model checking. Science of
Computer Programming, 37(1Ű3):279 – 309, 2000.

[27] K. L. McMillan. Circular compositional reasoning
about liveness. Technical Report 1999-02, Cadence
Berkeley Labs, Berkeley, CA 94704, 1999.

[28] S. P. Miller, A. C. Tribble, M. W. Whalen, and
M. P. E. Heimdahl. Proving the shalls: Early
validation of requirements through formal methods.
Int. J. Softw. Tools Technol. Transf., 8(4):303–319,
2006.

[29] J. Misra and K. Chandy. Proofs of networks of
processes. Software Engineering, IEEE Transactions
on, SE-7(4):417–426, 1981.

[30] A. Murugesan, S. Rayadurgam, and M. Heimdahl.
Modes, features, and state-based modeling for clarity
and flexibility. In Fifth International Workshop on
Modeling in Software Engineering, May 2013.

[31] B. Nuseibeh. Weaving together requirements and
architectures. Computer, 34:115–117, 2001.

[32] A. Pnueli. In transition from global to modular
temporal reasoning about programs. In K. Apt, editor,
Logics and Models of Concurrent Systems, volume 13
of NATO ASI Series, pages 123–144. Springer Berlin
Heidelberg, 1985.

[33] SAE-AS5506. Architecture Analysis and Design
Language. SAE, Nov 2004.

[34] M. Sheeran, S. Singh, and G. St̊almarck. Checking
safety properties using induction and a sat-solver. In
FMCAD, pages 108–125, 2000.

[35] SPEculative and Exporatory Design in System
engineering. http://www.speeds.eu.com/, 2006-2009.

[36] M. W. Whalen, A. Gacek, D. Cofer, A. Murugesan,
M. P. Heimdahl, and S. Rayadurgam. Your what is my
how: Iteration and hierarchy in system design.
Software, IEEE, 30(2):54–60, 2013.

