
Structuring Simulink Models for Verification and Reuse∗

Michael W. Whalen, Anitha Murugesan, Sanjai Rayadurgam, Mats P.E. Heimdahl
Department of Computer Science and Engineering

University of Minnesota
200 Union Street, Minneapolis, Minnesota 55455

{whalen, anitha, rsanjai, heimdhal}@cs.umn.edu

ABSTRACT
Model-based development (MBD) tool suites such as Simulink
and Stateflow offer powerful tools for design, development,
and analysis of models. These models can be used for several
purposes: for code generation, for prototyping, as descrip-
tions of an environment (plant) that will be controlled by
software, as oracles for a testing process, and many other as-
pects of software development. In addition, a goal of model-
based development is to develop reusable models that can
be easily managed in a version-controlled continuous inte-
gration process.

Although significant guidance exists for proper structur-
ing of source code for these purposes, considerably less guid-
ance exists for MBD approaches. In this paper, we dis-
cuss structuring issues in constructing models to support use
(and reuse) of models for design and verification in critical
software development projects. We illustrate our approach
using a generic patient-controlled analgesia infusion pump
(GPCA), a medical cyber-physical system.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model checking

General Terms
Verification

Keywords
Model based development, Verification, Simulink design ver-
ifier

1. INTRODUCTION
Model-Based Development (MBD) refers to the use of

domain-specific modeling notations such as Simulink [11] or
SCADE [2] that can be analyzed for desired behavior before
a digital system is built. The use of such modeling languages

∗This work has been partially supported by NSF grants
CNS-0931931 and CNS-1035715.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MiSE ’14, June 2 - June 3, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2849-4/14/06 ...$15.00.

allows a system engineer to create a model of the desired
system, early in the life cycle, that can be executed on the
desktop, analyzed for desired behaviors, and then used to
automatically generate code and test cases. The emphasis
in MBD is to focus the engineering effort on the early life-
cycle activities of modeling, simulation, and analysis, and
to automate the late life-cycle activities of coding and test-
ing. This reduces development costs by finding defects early
in the life-cycle, avoiding rework that is otherwise necessary
when errors are discovered during integration testing, and by
automating coding and the creation of test cases. Thus, in
domains for which the modeling notation is suitable, MBD
can significantly reduce costs while also improving quality.

Recently, MBD has become popular in safety-critical do-
mains such as avionics, automotive, and medical device sys-
tems. When used in these domains, support for verification
and configuration management becomes an important part
of model design. While guideline—notably the MathWorks
Automotive Advisory Board guidelines [9]—exist that pro-
vide low-level design guidance for construction of control
software using MBD tools, there is little, if any, higher-level
guidance for the organization of model files and partitioning
of models. This is a significant lacuna that we seek to ad-
dress because the higher-level organization has a profound
impact on several aspects of safety-critical software develop-
ment. In particular, we would like a decomposition and file
structure that support:

traceability – controller subsystems must be traceable to
specific controller requirements;

configuration management – models should be organized
into multiple files that can be easily managed by file-
based version control systems;

parallel development – models should be organized into
multiple files to support parallel development of sys-
tems by different developers or groups; and,

verification – models should be decomposed to best use
automation and rigor in verification processes.

For traceability, proper structuring is important because
of the different “roles” that models can play within the same
notation. It is often the case that model-based development
notations are used to describe plant models that represent
the environment’s behavior, controller models that represent
the software controller’s behavior, and requirement models
that describe constraints on the allowable behavior of the
controller given the plant. It is desirable to separate these
models into separate files to support verification and reuse
at different points in the software development life cycle.

A sensible decomposition of models also assists in cor-
rect use of the variety of automated verification tools that
are available in an MBD approach. The range of verifi-
cation approaches that are supported under the umbrella
of tools for Simulink models include, among others, proof
(model-checking) using Simulink Design Verifier [12], auto-
mated test generation using Reactis [16], and static analysis
using Polyspace [10]. In order to automate aspects of veri-
fication it is necessary to specify requirements in a fashion
that supports automated verification.

In model-based development, synchronous observers [15]
have become a standard way of representing requirements
formalized as properties. In this representation, each re-
quirement is encoded as a small model that runs in parallel
with the controller and determines whether or not the con-
troller is running correctly. However, care must be taken to
ensure that design information and controller functionality
do not creep into the property models: since the notation is
the same, it is easy and even tempting to include internal
details of the controller model in the specification of prop-
erties. But even small compromises can negatively impact
several aspects of system development.

In this paper we suggest a structuring pattern in which en-
vironment models, verification models, and controller mod-
els are separated and hierarchically organized. We illustrate
the pattern using Simulink/Stateflow, but believe that it is
generally applicable to a variety of MBD notations including
Esterel, SCADE, and UML tools. The properties within the
verification model have access only to the input/output in-
terfaces of the functional controller model, thereby avoiding
the inclusion of internal controller model information in the
properties. This approach:

• suitably shares information between functional con-
troller model and the properties to be verified,

• allows independent and parallel development of func-
tional model and properties,

• supports independent code generation both for the con-
troller model to generate software controllers, and for
property models as runtime monitors,

• supports traceability of properties (requirements) to
appropriate subsystems within an architecture,

• integrates well with file-based configuration manage-
ment systems, and

• supports independent reuse of requirements and con-
troller subsystems across multiple projects.

As such, it fills a void in terms of guidance for architectural
structuring of MBD models. We illustrate our approach
using a medical cyber-physical system.

The rest of the paper is organized as follows. In Section 2,
we briefly explain the Simulink and Stateflow notation. In
Section 3, we motivate the need of modeling guidelines. Sec-
tion 4 describes our structuring approach, and Section 5
discusses benefits and drawbacks of the approach. Section 6
describes closely related work and Section 7 concludes.

2. SIMULINK AND STATEFLOW
In this paper, we describe structuring techniques for

Simulink and Stateflow. Simulink is a data flow graphi-
cal language as well as a tool for modeling and simulating
dynamic systems (both the language and the tool are gen-
erally referred to as Simulink). Stateflow is a state-based

Figure 1: Pump Controller Block Diagram

notation similar to David Harel’s Statecharts notation [7]
(again, Stateflow also refers to the tool). Both Simulink
and Stateflow are tightly integrated in the MATLAB envi-
ronment and can refer to other languages available in the
environment. Although both Stateflow and Simulink, in our
opinion, have many problems with their semantics (such as
the lack of proper type systems, the event semantics in State-
flow, the distinction between transition actions and condi-
tion actions, etc.), they are by far the most widely used
notations in industry and suit our modeling needs well.

We illustrate the notations with an example of a Generic
Patient Controlled Analgesia (GPCA) infusion system [3].
The GPCA is a medical device used to accurately infuse
liquids into a patient’s bloodstream. One component of the
GPCA is the pump controller, shown in Figure 1. This com-
ponent implements a PID controller and is implemented as
a Simulink block diagram. Simulink block diagrams have a
dataflow semantics in which blocks can compute their out-
puts as soon as their inputs have been computed. Each
block in the diagram is either a basic block provided by the
Simulink library or a subsystem that itself is described by
another block diagram.

Figure 2: Alarm Component State Machine

An snapshot of the Stateflow model of ALARM, one of
the sub-systems of GPCA that is responsible for detecting
exceptional conditions and notifying the clinician, is shown
in Figure 2. Stateflow is a variation of StateCharts, which
augment traditional finite state automata with hierarchical
states and parallelism. Stateflow diagrams are useful for
naturally describing complex modal behavior.

Simulink and Stateflow are supported by a number of
Mathworks and third-party tools that can be used for anal-
ysis and verification of models. The Simulink Design Ver-
ifier (SLDV) tool [12] is a tool that supports proofs about
the behavior of Simulink models, and can provide very high
confidence in the correctness of design models.

2.1 Synchronous Observers
The SLDV tool and many other tools can check confor-

mance to requirements specified as synchronous observers,
which are small Simulink/Stateflow models that execute in
parallel with a controller model. Synchronous observers are
simply Boolean signals within the model that are expected
to be invariantly true.

1

2

3

M R

IN_1

IN_2

IN_3
Model Block

Property Block

Figure 3: General proof outline

The idea is illustrated in Figure 3. The property to be
proved is R for a function or model M. The proof objective
block P returns ‘true’ if the property is currently satisfied by
the model or function. For a concrete example, we consider
a requirement on the ALARM component:

While ON and infusing, if reservoir volume < empty
reservoir threshold then the system shall raise a critical
alarm (level 4).

Figure 4: ALARM component property

This property for the ALARM component is depicted in
Figure 4. The input signals to this property block are a sub-
set of input signals from the ALARM controller relevant to
this property, and the output signal of the ALARM behav-
ioral model. The proof objective P (for property) is used
to notify SLDV that this Boolean signal is expected to be
invariantly true. In this case, the verification condition in
Figure 4 is expressed using embedded MATLAB. Alterna-
tively, the verification conditions could be captured using
the Simulink or Stateflow notations.

3. ENGINEERING CONCERNS IN MDB
In model-based development, models play a central role

throughout system development. Models are developed to
understand the problem space, explore the design space, in-
stantiate a solution and verify its sufficiency. Analysis, sim-
ulation, formal verification, code generation, test data gen-
eration and test oracle generation are some of the typical
uses. There has indeed been a tremendous growth in recent
decades in the technologies that underlie model-based de-
velopment, in particular, for conducting early and up-front

analyses and evaluation of crucial design aspects. However,
there is a natural lag in the evolution of processes surround-
ing the use of those technologies for verification. As the tech-
nology gains adoption and sees widespread use, best prac-
tices learned through experience crystallize into guidelines
and standards. Through our experience over the years in
model-based development of safety-critical software inten-
sive systems in multiple domains, we have come to value
certain characteristics of the organization and decomposi-
tion of the models being built, because they decisively im-
pact important engineering concerns. We will first describe
a few key concerns that will provide the context for the sub-
sequent modeling guidelines we propose.

Often developers of critical systems must demonstrate to
the satisfaction of an independent agency—such as a regula-
tory body—that every requirement has been verified to hold
for the system being assessed. Often the key to a success-
ful demonstration is the ability to relate individual require-
ments to specific verification artifacts—good traceability is
required. This traceability needs to be planned, constructed
and maintained throughout the development process. Given
that requirements inevitably see some changes over time, the
verification artifacts necessary to establish traceability must
be able to easily accommodate change; e.g., a change to
a single requirement should not have an undue impact on
the artifacts used model the requirement nor to the func-
tional controller model over which the requirement is veri-
fied. Modularity and compositionality are, therefore, neces-
sary principles in the construction of these models.

Another, closely related, engineering concern for system
development is the ability to identify and control the evo-
lution of the system throughout its life cycle so that one
can reliably answer questions of what, when, why, and how
changes were effected. This helps in demonstrating con-
fidence in the development process, which is often man-
dated for critical systems. Key to this is the ability to
identify, control and audit the artifacts at the appropriate
level of granularity—configuration management is crucial.
To achieve this for software artifacts version control systems
that operate at the granularity of files in a file system are
widely used. Thus, the models, which are software arti-
facts, must be manageable through decomposition into files
at the level of granularity at which changes must be tracked.
Therefore, (logical) granularity of the modeling abstractions
is a significant consideration since this typically determines
the (physical) granularity of modeling artifacts.

As the complexity of the systems being modeled grows and
the capability of the analysis tools scale up, these models are
more likely to be constructed and maintained by teams of
engineers. Thus, division of labor and efficient integration
of the resulting work products become important concerns.
The granularity of model decomposition has a direct bearing
on the division of work, while modularity and composition-
ality determine the efficiency of integration.

Finally, and most importantly, models, we assert, exist
to address important verification concerns. The cost of
verification, despite great strides in technology, continues
to dominate overall development cost for critical systems.
While model-based development pushes verification activ-
ities for the critical system aspects to early stages of de-
velopment, thus reducing the cost of detecting and fixing
defects, traditional verification techniques like testing are
still required to demonstrate confidence in the delivered sys-

tem. However, models, used judiciously, can help automate
the verification activities and thereby reducing cost while
simultaneously supporting our confidence in the end prod-
uct. Specifically, models in MBD straddle both the problem
space (requirements) and the solution space (architecture
and design). Since most models are intended for some form
of analysis, in any given model these two aspects intermingle
and coexist. Some notations make a distinction in represen-
tation (e.g., temporal logic for requirements and finite state
machine for design), while others do not (e.g., Simulink re-
quirements property monitors are notationally the same as
Simulink design blocks). However, the two aspects take on
different roles for different purposes. For example, one may
need unit and integration testing of design models or test
data may be generated from those. On the other hand re-
quirements models may be used to synthesize test oracles.
For purposes of model-checking, the design models represent
how the system behaves, while the requirements models rep-
resent the constraints on what the system must do. These
two aspects—when combined in the same model—must be
carefully structured so that each can independently evolve,
but yet integrate well to serve the purpose at hand. Thus,
model structuring should enable separation of concerns be-
tween these two distinct aspects of the model, irrespective
of the support from the underlying notational formalism.

4. MODEL STRUCTURING
It is crucial to structure the functional models and prop-

erty models carefully taking into consideration their various
uses and evolution. Neither The Mathworks’ documentation
nor related research discusses how to structure the models
for verification and maintenance. In order to get maximal
use out of our models, we partition them both horizontally
and vertically. In this context, horizontal partitioning is
determined by the role the model plays in the software de-
velopment life cycle, and vertical partitioning corresponds
to functional decomposition.

4.1 Horizontal Structuring
The idea of horizontal structuring is shown in Figure 5.

We explain each of the different basic models (shown at left
of Figure 5), and then describe how they can be composed
for different verification purposes as shown at right.

Functional Models are those models that describe the be-
havior of the control software. These are the models
that we would like to verify as fit-to-purpose. It is often
the case in critical systems that functional models are
used to generate software implementations. We must
keep functional models separate from descriptions of
the environment or requirements in order to generate
minimal and efficient code.

Property Models describe representations of require-
ments (often “shall” statements) created in Simulink
and Stateflow. These models emit a set of Boolean
values, one for each requirement, which should always
have the value true during execution. A false value
signals a violation of a requirement.

Environment Models describe the behavior of the sys-
tem to be controlled or plant. When performing sim-
ulations of a controller, it is often the case that one
creates an environment model and then runs the func-
tional model and environment model in parallel, in

which the environment generates inputs to the con-
troller and the controller outputs are fed back into the
environment. The environment may be further decom-
posed into sub-models that describe the physics of the
process being controlled as well as models of sensors
and actuators that sample and affect the process, re-
spectively.

Test Input Models describe vectors of inputs that consti-
tute an open-loop test for the controller model.

Formal Verification Model

Functional
Model

Property
Model

Automated Test Generation Model (REACTIS)

Functional
Model

Property
Model

Functional
Model

Property
Model

Environment
Model

SLDV Proof
Obligations

Reactis
Assertions

Simulation Model

Functional
Model

Property
Model

Environment
Model

Stop
Simulation

Blocks
Test Input

Model
Open-Loop Test Model

Functional
Model

Property
Model

Test Input
Model

Stop
Simulation

Blocks

Basic Models

Figure 5: Horizontal Model Structuring

The horizontal decomposition supports parallel develop-
ment via a separation of concerns; as long as modelers can
agree on the input/output interface for the controller, teams
can independently build property, test, environment, and
controller models that can be straightforwardly integrated.
In addition, the artifacts can be used individually and com-
bined for various purposes. Note that the arrows in Figure 5
describe data flows between models. The formal verifica-
tion model and automated test generation models are “open
loop”: they have system inputs that drive the analysis. The
other models are “closed loop”: the system inputs are pro-
vided by the environmental model or test input model.

Code generation: Since the functional model is isolated
from verification and testing code, an implementation can
straightforwardly be generated from it.

Runtime monitor generation: As the property model
is written in Simulink/Stateflow, it can be compiled in the
same way that the functional model is compiled. By doing
so, it is possible to create efficient runtime monitors “for
free” that can be used to check for errors in the controller
during subsystem and system integration testing over the
generated code.

Proof: The MATLAB tool suite now contains a model
checker called Design Verifier [12]. By combining the func-
tional model with a property model, it is possible to perform
proofs over certain types of models. Although there are scal-
ability limits with Design Verifier, it is often possible to use
it to perform unit proofs of subsystems that can be com-
posed using other tools, as was performed in [14].

Simulation: It is straightforward to combine environ-
ment, controller, and requirements to perform simulation
runs to explore the behavior of the controller.

Automated Test Generation: In situations where the
model is too large to perform model checking or contains
non-linear arithmetic, automatic test case generation can
often provide a rigorous and low-cost way to check control
models. There are many tools that perform test-case gen-
eration, but in the absence of an oracle that can determine
correctness, the tests are not meaningful. In our structuring
approach, the oracle is provided by the property model.

Automated Test Execution: Even with excellent au-
tomation, it will be necessary to write some tests by hand to
create specific scenarios that illustrate the software perfor-
mance and check for specific failures. These tests are usually
purpose-built to check one aspect of the system. However,
in our experience, it is often the case that they may expose
additional defects beyond their scope; by using the property
model as a monitor, it is possible to use existing tests to find
more bugs.

Reuse: To reuse a software component in a critical en-
vironment, it is not enough to just have the code. The
coding process is generally a small part of a safety-critical
development effort; what requires the majority of the time
is creating the requirements, test cases, and other required
artifacts and establishing traceability between the different
artifacts. The horizontal structuring approach packages to-
gether many of these required artifacts in a directory struc-
ture to facilitate reuse in a safety-critical environment.

Also, it is often the case that the requirements are more
stable than the software, and even in cases where software is
re-implemented, many of the component requirements can
be reused. By separating out the formal requirements into
their own file, it is often possible to reuse them even if a
radically different controller implementation is pursued.

Model Conformance: Simulink and Stateflow are very
rich languages, encompassing multiple notions of time (dis-
crete and continuous) and an extremely wide range of basic
blocks. Not all of these blocks are acceptable for control
software due to efficiency or semantic concerns, but they
can significantly simplify environmental descriptions or re-
quirements models. By performing horizontal factoring, it is
straightforward to build simple static analyses that ensure
appropriate blocksets are used based on the model role.

4.2 Vertical Structuring
Along with separation of concerns, we would also like

to have hierarchical structuring of our models to sup-
port understanding and tractable analysis. This is ac-
complished with vertical structuring of models. While in
Simulink/Stateflow it is possible to perform vertical struc-
turing within the context of a single model, it is not well-
suited to our configuration management, traceability, and
verification purposes. Instead, we would like to partition
the system into sets of files for each layer of the architec-
ture. By using multiple files for hierarchical decomposition,
it is possible to independently version the files and to per-
form parallel development that is compatible with version
control and configuration management systems which are
primarily file-based.

This use of multiple files also allows us to perform hori-
zontal structuring at multiple levels of the hierarchy. It is
very often the case that requirements, as well as implementa-
tions, are hierarchically composed [17]. This decomposition
allows us to create property, environment, and test models
appropriate for each level of the requirements hierarchy.

File Management.
This profusion of model files, however, also leads to a file-

management issue. We have structured our model files such
that the directory structure corresponds to the abstraction
hierarchy in the model: if a parent Simulink block diagram
contains a child subsystem, then the directory containing
the parent has a subdirectory with the same name as the
child. The child directory contains the files for each of
the horizontal development activities that are relevant to
it. An example is shown in Figure 6, in which the top-
level GPCA SW system contains a Functional model for
code generation, a Functional Simulation model for simu-
lation, a Properties model for describing requirements, and
a Verification model for performing proofs about the con-
troller. The system also has subdirectories for each of the
subsystems of the GPCA software: Alarms, Configuration
management, Infusion management, Logging, System mon-
itoring, System Status, and Top-Level Mode.

Figure 6: File Organization

Note that this directory structure does not immediately
accommodate reuse, because each child “belongs” to exactly
one parent. However, it is straightforward in MATLAB
to reference models in arbitrary places within the file sys-
tem, and we plan to define a convention for reusable and
application-specific assets. ı̈ż£

5. DISCUSSION
Initially, when we performed verification of Simulink con-

trollers, we placed both the controller and properties into the
same Simulink model. However, we quickly realized that this
was not a good organization. We wanted to be able to gener-
ate component implementations, and for the implementation
of the component and the specification of requirements for
that component to be able to evolve in parallel.

We found that the horizontal and vertical structuring pat-
terns had various merits. First, when the property model is a
synchronous observer, it observes the behaviour or the func-
tional model only using its interfaces. However, when we
placed the properties within the functional model, we were
tempted to use some internal model details such as interme-
diate variables in the property to simplify its specification.
The drawback of using those internal model details is that
the errors in computation of those internal variables may
not be caught by verification.

Second, since only the interfaces were shared between the
functional and property models, internal changes to either of
the models did not affect the other. Hence, we were able to
develop and modify the models in parallel, except in fairly

rare occasions when an interface needed changing. In the
future, our aim is to automatically generate the properties
starting from a compositional reasoning framework, as was
done manually in [14]. The compositional framework allows
us to prove properties of much larger systems than is possible
using monolithic approaches.

In addition, for our GPCA model, the property model
of the components has been reused for verification of other
systems within an product family of infusion pump software
with minimal changes, it appears that it is straightforward
to reuse all of the models.

6. RELATED WORK
Synchronous observers were proposed as a means for veri-

fying Reactive Systems by Nicolas Halbwachs in a sequence
of papers (including [15, 5, 6, 4]) that describe the idea of
synchronous observers, the expressive power of them, and
uses for formal verification and automated testing. There
is little discussion of structuring of models in this work,
but the idea of parallel composition and strict use of inputs
and outputs is introduced. More recently, [1] has proposed
a multi-level refinement/verification approach for Simulink
models using contracts; they discuss structuring in the ab-
stract but do not describe file organization or runtime mon-
itoring. The Mathworks Advisory Board has guidance for
Simulink/Stateflow models documented in [9] for building
software controllers. It discusses which blocksets and design
paradigms are appropriate for autogenerating code. In ad-
dition, we have written about structuring Simulink models
for proper specification of modes [13] and relating controller
models to requirements [8], as well as compositional verifi-
cation of AADL models [17].

7. CONCLUSION
Models play a central role in system engineering for criti-

cal domains, where model-based development methods have
gained widespread adoption. However, there is not much
in terms of guidance and standards that distill the best-
practices for modeling, in stark contrast to coding. Con-
sidering that substantial software implementations are now
likely to be auto-generated, this dissonance calls for urgent
attention. Structuring models in an optimal way to serve
several purposes can be challenging. In this paper we pre-
sented an approach based on horizontal and vertical struc-
turing of models that allowed us to address this effectively
for verification models in Simulink/Stateflow. While we il-
lustrated it using an example from the medical device do-
main, we strongly believe this to be broadly applicable in
domains where traceability, configuration management, par-
allel development and verification are among the prime con-
cerns. Identification, documentation and dissemination of
such successful strategies would eventually lead to a reper-
toire of best-practices and guidelines in the realm of control
system modeling, which we believe, are sorely needed.

8. REFERENCES
[1] P. Boström. Contract-based verification of simulink

models. In S. Qin and Z. Qiu, editors, Formal Methods
and Software Engineering, volume 6991 of Lecture

Notes in Computer Science, pages 291–306. Springer
Berlin Heidelberg, 2011.

[2] Esterel-Technologies. SCADE Suite product
description. http://www.esterel-technologies.com/v2/
scadeSuiteForSafetyCriticalSoftwareDevelop-
ment/index.html,
2004.

[3] U. Food and D. Administration. White Paper:
Infusion Pump Improvement Initiative. April 2010.

[4] N. Halbwachs. A synchronous language at work: the
story of lustre. In MEMOCODE 2005, pages 3–11,
July 2005.

[5] N. Halbwachs, J.-C. Fernandez, and A. Bouajjanni.
An executable temporal logic to express safety
properties and its connection with the language lustre.
In Sixth International Symp. on Lucid and Intensional
Programming, ISLIP’93, Quebec, April 1993.

[6] N. Halbwachs and P. Raymond. Validation of
synchronous reactive systems: From formal verification
to automatic testing. In P. Thiagarajan and R. Yap,
editors, Advances in Computing Science Ů ASIANŠ99,
volume 1742 of Lecture Notes in Computer Science,
pages 1–12. Springer Berlin Heidelberg, 1999.

[7] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming,
8(3):231–274, June 1987.

[8] M. Heimdahl, L. Duan, A. Murugesan, and
S. Rayadurgam. Modeling and requirements on the
physical side of cyber-physical systems. In Second
International Workshop on the Twin Peaks of
Requirements and Architecture, May 2013.

[9] Mathworks advisory board core modeling guidelines.
http://www.mathworks.com/automotive/standards/
maab.html.

[10] MathWorks Inc. Polyspace. Via the world-wide-web:
http://www.mathworks.com/polyspace.

[11] MathWorks Inc. Simulink.
http://www.mathworks.com/products/simulink.

[12] MathWorks Inc. Simulink Design Verifier.
http://www.mathworks.com/products/sldesignverifier.

[13] A. Murugesan, S. Rayadurgam, and M. Heimdahl.
Modes, features, and state-based modeling for clarity
and flexibility. In Fifth International Workshop on
Modeling in Software Engineering, May 2013.

[14] A. Murugesan, M. W. Whalen, S. Rayadurgam, and
M. P. Heimdahl. Compositional verification of a
medical device system. In ACM International
Conference on High Integrity Language Technology
(HILT) 2013. ACM, November 2013.

[15] P. R. Nicolas Halbwachs, Fabienne Lagnier.
Synchronous Observers and the Verification of
Reactive Systems. In Third International Conference
on Algebraic Methodology and Software Technology,
AMAST’93, Workshops in Computing, June 1993.

[16] Reactive systems inc. Reactis Product Description.
http://www.reactive-systems.com/index.msp.

[17] M. W. Whalen, A. Gacek, D. Cofer, A. Murugesan,
M. P. Heimdahl, and S. Rayadurgam. Your what is my
how: Iteration and hierarchy in system design.
Software, IEEE, 30(2):54–60, 2013.

