
Coverage Based Test-Case Generation using Model Checkers

Sanjai Rayadurgam and Mats P. E. Heimdahl

Department of Computer Science and Engineering, University of Minnesota
200 Union Street S.E., 4-192, Minneapolis, MN 55455, USA

E-mail: {rsanjai,heimdahl }@cs.umn.edu

Abstract

This paper presents a method for automatically gener-
ating test cases to structural coverage criteria. We show
how a model checker can be used to automatically gener-
ate complete test sequences that will provide a predefined
coverage of any software development artifact that can be
represented as a finite state model. Our goal is to help re-
duce the high cost of developing test cases for safety-critical
software applications that require a certain level of cover-
age for certification, for example, safety-critical avionics
systems that need to demonstrate MC/DC (modified condi-
tion and decision) coverage of the code.

We define a formal framework suitable for modeling soft-
ware artifacts, like, requirements models, software specifi-
cations, or implementations. We then show how various
structural coverage criteria can be formalized and used to
make a model checker provide test sequences to achieve this
coverage. To illustrate our approach, we demonstrate, for
the first time, how a model checker can be used to generate
test sequences for MC/DC coverage of a small case exam-
ple.

1. Introduction

Software development for critical embedded control sys-
tems, such as the software controlling aeronautics applica-
tions and medical devices, is a costly, time consuming, and
error prone process. In such projects, the validation and ver-
ification phase (V&V) consume approximately 50%–70%
of the software development resources. Thus, if the pro-
cess of deriving test cases for V&V could be automated and
provide requirements-based and code-based test suites that
satisfy the most stringent standards (such as DO-178B–the
standard governing the development of flight-critical soft-
ware for civil aviation [29]), dramatic time and cost savings
would be realized.

This paper presents a method for automatically generat-
ing test cases tostructural coverage criteria. We show how
a model checkercan be used to generate complete test se-
quences that provide a predefined coverage of any software
development artifact that can be represented as a finite state
model. We provide a formal framework that is (1) suitable
for defining our test-case generation approach and (2) easily

used to capture finite state representations of software arti-
facts such as program code, software specifications, and re-
quirements models. We show how common structural cov-
erage criteria can be formalized in our framework and ex-
pressed as temporal logic formula used to challenge a model
checker to find test cases. Finally, we demonstrate how a
model checker can be used to generate test sequences for
MC/DC coverage.

If a software artifact, may that be code, specification, or
requirements model, can be represented as a finite state tran-
sition system,model checkingtechniques [11] can be used
to generate test cases. Model checkers are tools that explore
the reachable state space of a model and report if properties
of interest are violated in some state. If a violation is de-
tected, the tool will report a sequence of inputs that brought
the system to the violating state. Here, we show how one
may use various test coverage criteria as challenges to the
model checker. For example, we can assert that the “true”
branch out of a decision point cannot be taken. If this branch
in fact can be taken, the model checker will generate a se-
quence of inputs (with associated outputs) that forces the
code to take this branch—we have found a test case that ex-
ercises this branch (if we talk about branch coverage) or the
condition (if we talk about basic condition coverage) [3].

The remainder of the paper is organized as follows. Sec-
tion 2 provides the relevant background and the goals of
our work. Section 3 defines a formal framework suitable
for model checking in which we can discuss the coverage
of various software engineering artifacts. Section 4 shows
how common structural coverage criteria can be expressed
in terms of the system model. Section 5 discusses how
these criteria can be encoded as temporal logic properties
for model checking and Section 6 illustrates these ideas on a
small example. We discuss and compare some of the related
work by others in Section 7 and then conclude the paper.

2. Background

The notion of test adequacy criteria has been extensively
researched and studied [32, 15]. The criteria establish the
objectives of testing in a quantifiable manner. They help an-
swer questions like, what should be tested, how much test-
ing is required, and how the testing goals could be achieved.

Testing criteria can be classified into different types
based on two orthogonal schemes [32] – thesource of the

information used to specify the criteria andthe underly-
ing testing approachused to satisfy the criteria. Thus,
specification-basedtesting andcode-basedtesting are ex-
amples of classification under the former scheme while un-
der the latter arestructural testing,fault-basedtesting and
error-basedtesting. In structural testing, the criteria is spec-
ified in terms of coverage of certain constructs in the soft-
ware artifact. Traditionally, this has been used for testing
code. Examples include, various code coverage criteria, like
statement coverage, branch coverage, condition coverage
and data-flow testing. In fault-based testing, the criterion is
specified in terms of some measurement of fault-detecting
ability of the tests. Mutation testing is an example of this ap-
proach. Error-based testing requires tests to check the soft-
ware artifact at certain error-prone points which are deter-
mined based on our knowledge about the most likely types
and places for mistakes in the software artifact. Boundary
testing of code is an example of this approach. The same
rationale is often used in creating checklist items for inspec-
tions of software artifacts like specifications and design.

In this paper we deal with structural testing techniques
where the criteria are expressed in terms of the structure
of the system under test. However, rather than making
the method specific to a software artifact, we define a for-
mal model of the system and define the criteria and tech-
niques in terms of the system model. The approach dis-
cussed here could then be applied to any software artifact
that can be mapped to the formal system model. For ex-
ample, one could map specifications written in languages
like SCR [20, 18] and RSML−e [17, 30] to this formal
model. Equally, one could map implementations in lan-
guages like Java to this model using techniques that extract
abstract models from program source code [12, 16]. In par-
ticular, our goal is to build a structural testing framework
that could be applied equally well to both formal specifi-
cations and program code, especially of critical systems,
which is our research focus. We have chosen to work
mainly with condition-based coverage criteriasince they
are easily adaptable to testing of formal specifications as
well as implementations. These criteria are concerned with
how well a test case exercises the conditions guarding the
decision points in a program (or formal specification if we
are interested in specification-based testing). For example,
basic condition coverage requires test cases that make the
condition in each decision point take on both truth values.
Other criteria, such as MC/DC (modified condition and de-
cision coverage [9]) are more involved. MC/DC requires
the test cases to demonstrate that each basic predicate mak-
ing up a condition independently affects the outcome of the
condition. Coverage criteria will be discussed in more detail
in Section 4.

Figure 1 shows the overall view of the test generation
framework. We map software artifacts to a finite state sys-
tem suitable for model checking and use a model checker to
find test cases by formulating the test criterion as a property
to be verified. For example, to test a transition, between
statesA andB, guarded with conditionC, we formulate a
condition describing a test case testing this transition—the
sequence of inputs must take the model to stateA; in state
A, C must be true, and the next state must beB. This is a
property expressible in the logics CTL (computational tree

ex
tra

ct
io

n

m
ap

pi
ng

Formal System

Model

Program Source Code

(Eg. Java)

Requirements

Specification

(Eg. RSML or SCR)

LTL Properties

tra
ns

la
te

Model Checker

� �
� �

Test Criteria

Counter-examples

(test cases)

Figure 1. Test Generation Framework

logic) or LTL (linear time temporal logic) used in common
model checkers. We can now challenge the model checker
to find a path to such a state by negating the property (by as-
serting that there is no such input sequence) and start verifi-
cation. The model checker will search for a counterexample
demonstrating that this property is, in fact, satisfiable; such
a counterexample constitutes a test case that will exercise
the transition of interest. Repeating this process for each
transition in the formal model, we derive test sequences that
provide transition coverage of the model.

3. System Model

To provide a rigorous foundation for our work we present
a formal framework that can be used to capture any software
artifact that can be model checked, such as program code or
formal models.

3.1. State Space

The system model has a finite control component and fi-
nite (but, typically large) or infinite data component. For
our purposes we do not distinguish between control and
data components of the system. We assume that the sys-
tem state is uniquely determined by the value ofn variables,
{x1, x2, . . . , xn}, where eachxi takes its value from its
domainDi. Thus, the reachable state space of the system is
a subset ofD = D1×D2×. . .×Dn, whereD is the domain
of the state vector−→x = (x1, . . . , xn). The system may
move from one state to another subject to the constraints
imposed by its transition relation, which defines the legal
moves. The set of initial values for the variables, which is a
subset ofD, is assumed to be defined by a predicateρ. The
structure of this predicate is similar to that of the transition

relation, discussed next. Note that, in general, some of the
Di may be infinite. However, to generate test cases using a
model checker, finite abstractions of such infinite domains
are necessary. The abstraction methods one could use are
independent of the approach described in this paper. How-
ever, if abstractions are used, the generated test sequences
will have abstract data which must then be made concrete
by applying inverse abstractions.

3.2. Transition Relation

The transition relation is a subset ofD × D, specified
as a boolean predicate on the values of the variables defin-
ing the state-space. We assume that there is a transition
relation for each variable,xi, specifying how the variable
may change its value as the system moves from one state
to another. Informally speaking, the transition relation for
xi can be thought of as specifying three components: a set
of pre-state values ofxi, a set of post-state values forxi

and the condition whichguardswhenxi may change from
a pre-state value to a post-state value. We adopt the usual
convention that primed versions of variables refer to their
post-state values while the unprimed versions refer to their
pre-state values.

Definition 1. A predicateis a boolean valued function pa-
rameterized by variable references.

The transition relation itself could be viewed as a pred-
icate that tests for membership in an appropriate subset of
D×D. But, for our purposes, we need to examine the struc-
ture of the transition relation for a given system. All the
components that make up the transition relations are again
in turn predicates.

Definition 2. A clauseis a predicate that cannot be broken
down into sub-predicates connected by boolean operators.

Clauses, which are atomic units for our purposes, are the
building blocks for the predicates. Predicates are made up
of clauses combined using boolean operators.

Definition 3. A pre-state predicatefor a variablexi is a
predicate whose only parameter is the variable reference
xi. We useαi,j to denote thejth pre-state predicate ofxi.

Definition 4. A post-state predicatefor a variable xi

is a predicate whose parameters are from the set
{x1, ..., xn, x′1, ..., x

′
i}, in which every clause includes the

variable reference,x′i. We useβi,j to denote thejth post-
state predicate ofxi.

Definition 5. A simple transitionfor a variablexi is a con-
junction of a pre-state predicate forxi, a post-state predi-
cate forxi, and a predicate called theguardwhose parame-
ters are from the set{x1, ..., xn, x′1, ..., x′i−1}. We useγi,j

to denote thejth guard andδi,j to denote thejth simple
transition ofxi. Thus,δi,j = αi,j ∧ βi,j ∧ γi,j .

Definition 6. Thecomplete transitionfor a variablexi, de-
notedδi, is the disjunction of all simple transitions forxi.
Thus,δi =

∨ni

j=1 δi,j , whereni is the number of simple
transitions for the variablexi.

Note that the definitions require an ordering among vari-
ables and thus eliminate circular dependencies among the
post-state values of the variables. The transition for a vari-
able can be viewed as a collection of triples,(pre-state, post-
state, guard), where each triple describes a part of the tran-
sition relation for the variable. If any of the components is
absent, it is taken to be the constant predicatetrue.

Finally,

Definition 7. Thetransition relation∆, is the conjunction
of the complete transitions of all the variablesx1, ..., xn.
Thus,∆ =

∧n
i=1 δi.

The initial state predicate,ρ is similar to a transition rela-
tion in which all the guards and the pre-state predicates are
absent (i.e, equivalent to the constant predicatetrue), and
there are no unprimed variable references in the post-state
predicates. Viewed this way,ρ can be thought of as speci-
fying a transition that resets the system from any state to its
initial state.

The demarcation of boundaries between pre-state, guard
and post-state predicates may seem arbitrary. However, this
structure makes it possible to use this formalism to cap-
ture systems described in a variety of languages. In some
state-based specification languages and in the input lan-
guages of model-checkers like SMV, a post-state predicate
of β ≡ (x′ = x) is implicitly assumed to hold when none
of the explicitly specified transitions hold for the variablex.
However, to conform to the structure of the transition rela-
tion defined above, such implicit transitions must be made
explicit. Also, at times, a transition relation may have to
be rewritten to an equivalent relation that conforms to this
structure. Such issues must be handled by the mapping from
a given language to this system model.

3.3. Basic Transition System

We now define a basic transition systemM as a tuple,
M = (D, ∆, ρ), whereD represents the state-space of the
system,∆, represents the transition relation, andρ charac-
terizes the initial system state. This system model will serve
as a basis for formulating various coverage criteria and for
deriving properties that could be refuted by a model-checker
yielding, in the process, valid execution sequences for the
software artifact represented by the model.

4. Structural Coverage Criteria

In Section 2, we briefly discussed condition-based cov-
erage criteria. Here we define a representative collection of
condition-based criteria in terms of our system model.

First, we must formalize the notion of atest caseand a
test suite. The unit of interest to us in our system model
is the simple transition, which, we may recall, is a triple
of predicates,(α, β , γ) specifying the pre-state, post-state
and guard respectively. Since predicates are parameterized
by variable references and states are assignment of values
to variables, it is meaningful to evaluate predicates using
states as arguments. Ifp is a predicate andsi andsj are
states, we usep(si, sj) to denote the value of the predicate

p obtained by substituting the unprimed variable references
with the values of the corresponding variables in statesi

and the primed variable references with the values of the
corresponding variables in statesj . If a predicate is param-
eterized only by unprimed (or only by primed) variable ref-
erences then we usep(si) instead. A test cases is simply a
sequence of states〈s1, . . . , sm〉, where each state is related
to its successor by the transition relation∆, of the system
andρ(s1) is true, i.e.,s1is an initial state. A test suite is a
set of test cases.

4.1. Simple Transition Coverage

Definition 8. A test suite is said to achieve simple transi-
tion coverage for a basic transition systemM = (D,∆, ρ),
if for any simple transition(α, β, γ) of any variablex, there
exists a test cases such that for some i,α(si)∧β(si, si+1)∧
γ(si, si+1) holds true.

In other words, for every simple transition for each vari-
able, there is a test case in the test suite in which the sim-
ple transition is taken. If we think of each simple transi-
tion as defining a possible case for a variable to change its
value as the system moves from one state to another, this
coverage criterion is analogous to branch coverage on code.
Note that in this view of the system there is no distinction
between pre-state, post-state and guard predicates and it is
reflected in the criterion. Since the system model ensures
that all possible transitions are specified explicitly, this cov-
erage criterion is equivalent to saying that all branches are
covered.

4.2. Simple Guard Coverage

Alternatively, if we think of transitions in terms of triples
(pre-state, post-state, guard)and consider the guard as the
equivalent of a decision point in the program, we could de-
fine guard coverage as guard taking bothtrueandfalseval-
ues in the test suite. Formally,

Definition 9. A test suite achieves simple guard coverage
if for any simple transition(α, β, γ) there exist test casess
andt such that for somei andj:

1. α(si)∧β(si, si+1)∧γ(si, si+1) ; i.e., the simple tran-
sition is taken in the transition fromsi to si+1 in the
test cases

2. α(tj) ∧ ¬β(tj , tj+1) ∧ ¬γ(tj , tj+1); i.e., the simple
transition is not taken in the transition fromtj to tj+1

in the test caset

Here the objective is to test both “branches” of the guard
condition. Note that condition (1) by itself is equivalent
to transition coverage which is therefore a weaker criterion
than simple guard coverage. However, in practice, a test
case to satisfy condition (2) can often be combined with
one that satisfies condition (1) for a different guard, thus
achieving simple guard coverage with a test suite which has
roughly the same size as required for simple transition cov-
erage.

4.3. Complete Guard Coverage

If simple guard coverage criterion is at one end of the
spectrum (that does not consider the individual clauses
making up the guard), complete guard coverage is at the
other end, where all possible combinations of truth values
of the guard clauses are tested. This, by definition, is ex-
ponential in the number of clauses in the guard and so can
be used in practice only in guards with a small number of
clauses. Formally,

Definition 10. If the clauses in a guardγ of a simple tran-
sition (α, β, γ) are {c1, ..., cl}, a test suite that achieves
complete guard coverage must include a test cases for any
given boolean vectoru of length l, such that for somei,∧l

k=1 (ck(si, si+1) = uk).

This is analogous to the multiple condition coverage in
program source code. A similar criterion can be defined for
the whole transition instead of considering the guard alone.
If the clauses in the guard are not independent, then there
will be vectorsu for which no feasible solutions exist. In
such cases it is typically the case that there is an error in the
definition of the transition relation. When a model-checker
is used to generate test cases this will manifest as an invari-
ant property of the system.

4.4. Clause-wise Guard Coverage

Finally, we look at the code based coverage criterion
called modified condition/decision coverage (MC/DC) and
define an analogous criterion. MC/DC was developed to
meet the need for extensive testing of complex boolean
expressions in safety-critical applications [9]. Ideally,
one should test every possible combination of values for
the conditions thus achievingmultiple condition coverage.
However, the number of test cases required to achieve this
grows exponentially with the number of conditions and
hence becomes huge or impractical for systems with tens
of conditions per decision point. MC/DC was developed
as a practical and reasonable compromise between decision
coverage and multiple condition coverage. It has been in
use for several years in the commercial avionics industry. A
test suite is said to satisfy MC/DC if executing the test cases
in the test suite will guarantee that:

• every point of entry and exit in the program has been
invoked at least once,

• every condition in a decision in the program has taken
on all possible outcomes at least once, and

• each condition has been shown to independently affect
the decision’s outcome

where a condition is an atomic boolean valued expression
that cannot be broken into boolean sub-expressions. A con-
dition is shown to independently affect a decision’s outcome
by varying only that condition while holding all other con-
ditions at that decision point fixed. Thus, a pair of test
cases must exist for each condition in the test-suite to sat-
isfy MC/DC. However, test case pairs for different condi-
tions need not necessarily be disjoint. In fact, the size of

MC/DC adequate test-suite can be as small asN + 1 for a
decision point withN conditions.

If we think of the system as a realization of the specified
transition relation, it evaluates each predicate on each tran-
sition to determine which transitions are enabled and thus
each predicate becomes a decision point. The predicates
in turn are constructed from clauses – the basic conditions.
For our current purposes, we focus on the guard condition
of the transitions relations.

Definition 11. A test suiteS coversa clausec of the guard
γ of a simple transition(α, β, γ), if it contains two test cases
s andt, such that for somei andj:

1. α(si)∧β(si, si+1)∧γ(si, si+1) ; i.e., the simple tran-
sition is taken in the transition fromsi to si+1 in the
test cases,

2. α(tj) ∧ ¬β(tj , tj+1) ∧ ¬γ(tj , tj+1); i.e., the simple
transition is not taken in the transition fromtj to tj+1

in the test caset,
3. c(si, si+1) = ¬c(tj , tj+1); i.e., the value of the clause

c of the guardγ differs for the two transitions, and
4. ∀d 6= c in γ, d(si, si+1) = d(tj , tj+1); i.e., all other

clauses in the guardγ have the same value in both the
transitions.

The test suiteS meets theclause-wise guard coveragecri-
terion for a basic transition systemM = (D, ∆, ρ), if it
covers each clause of each guardγi,j in every simple tran-
sition δi,j in ∆.

The intuition behind these conditions is that the two test
casess andt together show that the clausec independently
affects the decision of whether or not the simple transition is
taken. Note that the second condition imposes the constraint
that the post-state predicate should not hold for test caset.
This is in tune with the notion that a transition is considered
to be taken if its pre-state and post-state specifications are
met by a pair of consecutive states in a test case. It must
be noted that in both the test cases, the transition relation
for the system∆ should hold true, for each test case by our
definition is a valid sequence of states.

If, however, we considered the simple transition as a
whole without distinguishing the pre-state, the post-state
and the guard components, then the criterion will require
that the post-case predicateβ must hold true also fort.
This will require a test case where either the post-state is
not reachable from the pre-state (∆ evaluates to false) or
the post-state is reachable from the pre-state through some
other simple transition (∆ evaluates to true). In the for-
mer case, every correct implementation should fail the test
case, since the implementation should not reach an unreach-
able state. In the later case, the test cases show that the
guard condition does not independently affect the decision
of whether the particular transition is indeed taken, which
typically points to a specification error. As another varia-
tion, we might consider test cases that satisfy a condition
obtained by negatingβ in condition 1. This will lead to
a test case with either an unreachable state or one that re-
veals non-determinism in the system. While such tests are
interesting and useful, those are not within the scope of the
method discussed here.

Why should we restrict the coverage requirements to just
the guard condition? Should we not include all the clauses
in every simple transition? It is definitely meaningful and
necessary to test all the clauses. In fact, using the criteria as
such on the simple transitions is straightforward. However,
in our formulation of the basic system model, the intent is
that the three components, pre-state, guard and post-state
serve different purposes. We use pre-state predicate in a
way similar to the nodes in a control-flow graph. It marks
regions of interest in the state-space that the system may
visit. The post-state predicate can be thought of as defining
a functional relationship between inputs and outputs as the
system moves across the state-space. The guard condition
is similar to a decision point in a program and it governs
how the system proceeds from one state to another. So, it
is meaningful to apply condition coverage criteria to guard
predicates.

5. Test Case Generation

Our approach to generating test cases involves using the
model-checker as the core engine. A set of properties called
trap properties[14], is generated and the model-checker is
asked to verify the properties one by one. These properties
are constructed in such a way that they fail for the given
system specification, which in our case is the basic transi-
tion systemM = (D, ∆, ρ), leading the model checker to
produce a counter-example. The counter-example shows a
valid sequence of states that any conforming implementa-
tion should follow. This sequence of states becomes a test
case. The task is then to generate the trap properties in such
a way that the set of counter-examples generated will be ad-
equate to satisfy the coverage criteria that we are dealing
with. The properties that we generate can be expressed in
Linear Temporal Logic (LTL) which is handled by model-
checkers likeSPIN [21] and SMV [26]. We will demon-
strate this process with the most complex of the coverage
criteria that we discussed so far, namely, clause-wise guard
coverage (CGC). The process of generating trap properties
for other criteria are similar to this and also easier to gener-
ate because there are no dependencies across different test
cases.

5.1. Trap Property Generation

The trap properties for CGC are derived from the four
conditions defined in Subsection 4.4. The main issue, how-
ever, is that the constraints span two test casess andt. A
trap property can only produce one counter-example. So
the method that generates these properties should handle
the conditions that span multiple test cases. One way to
handle this, is by duplicating the basic transition systemM
and construct a new system which models two instances of
M simultaneously. In general, constraints that spanp test
cases in the original model, could be reduced to those that
span a single test case in a model that includesp simultane-
ous copies ofM . This apparently inefficient approach may
work for some systems. The approach discussed here, how-
ever, uses only a single instance of the model and instead

uses the structure of the predicates to formulate a separate
trap-property for each test case.

Revisiting the conditions defined earlier for the coverage
criterion, we note that conditions (1) and (2) refer to sep-
arate test casess and t, and so they can be directly used
in formulating a pair of trap properties, one for each test
case. Conditions (3) and (4) span the two test casess and
t. If we examine these conditions, they express constraints
on a per-clause basis for each clause of the guard-condition.
The constraints specify either that a clause should evaluate
to the same value in both the test cases [condition (4)] or
that a clause should evaluate to different values in the two
test cases [condition (3)]. Our approach is to instantiate the
clauses to specific values and use those values explicitly in
the trap properties.

Leaving aside, for the moment, the task of actually find-
ing those values, assume that there exists a pair of boolean
vectorsu andv, each of length equal tol, the number of
distinct clauses in the guardγ under consideration. Assume
that the clauses inγ are{c1, ..., cl}. Suppose the clause
under consideration iscm. Then we may rewrite the condi-
tions as:

1. α(si) ∧ β(si, si+1),
2. α(tj) ∧ ¬β(tj , tj+1),

3.
∧l

k=1 ck(si, si+1) = uk, and

4.
∧l

k=1 ck(tj , tj+1) = vk

with the following constraints onu andv :

• um = ¬vm; i.e. the two boolean vectorsu andv differ
in theirmth component

• ∧l
k=1,k 6=m uk = vk; i.e.. the two boolean vectorsu

andv agree in all other components
• γ|ci=ui ∧ ¬γ|ci=vi ; i.e. the guard conditionγ evalu-

ates to true and false respectively when the clausesck

are substituted with the corresponding values from the
vectorsu andv .

With this formulation, it is clear that properties (1) and (3)
deal with only test cases and similarly properties (2) and
(4) deal only with test caset. We now formulate a pair of
trap properties as follows:

1. G
(
α ∧

(∧l
k=1 ck = uk

)
⇒ ¬β

)
; i.e., it is globally

true for the basic transition systemM that if the pre-
state conditionα holds and the clauses in the guard
evaluate to truth values indicated by the vectoru, then
the post-state conditionβ will not hold. A counter-
example to this will be a transition from a reachable
statesi to a statesi+1where the pre-state conditionα
holds atsi and the post-state conditionβ holds at state
si+1and the clauses in the guard evaluate to the truth
values specified by the vectoru, making the guardγ
hold true.

2. G
(
α ∧

(∧l
k=1 ck = vk

)
⇒ β

)
; i.e., it is globally

true for the basic transition systemM that if the pre-
state conditionα holds and the clauses in the guard

evaluate to truth values indicated by the vectorv
then the post-state conditionβ will hold. A counter-
example to this will be a transition from a reachable
statesi to a statesi+1where the pre-state conditionα
holds atsi but the post-state conditionβ does not hold
at statesi+1and the clauses in the guard evaluate to
the truth values specified by the vectorv, making the
guardγ false.

Note that we have moved the guardγ to the constraints
on the vectors. This reformulation is equivalent to the orig-
inal set of properties under the following assumption:

If a clausec independently affects the value of a
guardγ in a basic transition systemM , then for
any assignment of truth values to the remaining
clauses inγ that does not mask the effect ofc on
γ, there exists two test casess and t of the ba-
sic transition systemM that stand witness to the
independence ofc, simultaneously conforming to
the truth assignment for the remaining clauses.

It is possible that this does not hold in some cases. If so, the
model-checker may end up proving the trap property. If that
happens, it may mean that the property is an invariant of the
system or that there is a specification error. In either case,
additional work is required either in constructing a differ-
ent trap property, or in correcting the specifications before
proceeding.

The constraints onu andv must be handled by the mech-
anism that produces the two vectors. The vector pair could
be generated, for example, using the method discussed
in[27] or [23]. We could also use the model-checker itself
to generate the(u, v) pair by lettingu andv vectors as in-
put variables for a system that models two instances of the
guardγ in terms of the components ofu andv vectors re-
spectively, and asserting that there is no such pair(u, v) for
which the guard evaluates to different truth values:

G
((

um = ¬vm ∧∧l
k=1,k 6=m uk = vk

)
⇒ (¬γu ∨ γv)

)

The counter example produced will be an assignment of
truth values to the boolean vectorsu andv such that they
differ only in themth component and the guardγ evaluates
to trueunderu andfalseunderv.

6. Illustrative Example

We now illustrate the process using a simple example.
We use an RSML−e model of a cruise control system and
generate test cases for CGC. In the process, we also describe
the mapping from the RSML−e language specifications to
the basic transition system model. The structure of the spec-
ifications, in particular, the tables describing the next state
transitions are used to generate the vectorsu andv that in-
stantiate the truth assignments for the clauses.

The example we consider is a simple cruise-control sys-
tem that appeared in [8]. It combines a small part of
the collision-avoidance logic from the TCAS II specifica-
tion [24] with cruise-control logic for automobiles. We
specified this system using RSML−e and translated it1 to

1The translation was made by hand, but the semantics of RSML−e

easily lends itself to automatic translation.

Variable:
Sensitivity

Location:

Cruise_Control_System

Transition:

Low High

Condition:

Sensitivity_Setting =
Sensitivity_Type::Sens_High
 T
 *

..
Own_Velocity IN_STATE High
 *
 T

..
Front_Velocity IN_STATE Low
 *
 T

Cruise_Control_System

Own_Velocity

Low
 Med
 High

Front_Velocity

Low
 Med
 High

Sensitivity

Low
 High

Cruise_Control

Off
 Standby
 Cruise
 Override

Figure 2. Cruise Control System

SMV (Cadence Berkeley Labs version) [25], to generate
test cases. The complete SMV code for the example is avail-
able in [28]. Figure 2 shows a portion of the RSML−e spec-
ification containing the state machine and a definition of a
state transition from stateLow to stateHigh for the state
variableSensitivity. Each column represents a conjunction
of the truth values in the column and the columns form a
disjunction, A * represents adon’t care condition. If we
were instead interested in generating test cases from source
code, the transition may be implemented as a decision-point
in the system event-loop that assigns values to variables, as
follows:

if (Prev_Sensitivity == ST_Low)
if (SensitivitySetting == TY_Sens_High

|| (Own_Velocity == High
&& Front_Velocity == Low))

Sensitivity = ST_High;

Either way, the system can be modeled as a basic tran-
sition system and used in our approach. The system
has four state variablesOwnVelocity , Front Velocity ,
Sensitivity andCruise Control . The velocities can
be in one of the three states,Low, Medium, High and the
cruise control system can be in one of the four statesOff ,
Standby , Cruise andOverride . The sensitivity can be
High or Low depending on user setting or based on the
states of the own and front vehicle velocities.

Let us consider the transition fromLow to High for
Sensitivity . This transition can be taken if either the

sensitivity is set to high or the velocity of own vehicle is
high while that of the front vehicle is low. Thus the guard
condition for this simple transition is:

DV_SensitivitySetting = TY_Sens_High /*1*/
| (EQ_Own_Velocity = ST_High /*2*/

& EQ_Front_Velocity = ST_Low) /*3*/

There are three clauses and hence a total of six trap
properties are required to generate test cases to cover the
guard. The following three(u, v) boolean vector pairs can
be used:([T F F],[F F F]), ([F T T],[F F T]),
([F T T],[F T F]) . In each pair, the first boolean vector
makes the guard true and the second makes it false. Since
the second and third pairs have a vector in common, there
are only five distinct trap properties: (the “P” prefixed vari-
ables store the value of the variable in the previous state):

1. G((P_Sensitivity = Low)
& (DV_Sensitivity = TY_Sens_High)
& !(EQ_Own_Velocity = ST_High)
& !(EQ_Front_Velocity = ST_Low)

=> !(Sensitivity = High))

2. G((P_Sensitivity = Low)
& !(DV_Sensitivity = TY_Sens_High)
& !(EQ_Own_Velocity = ST_High)
& !(EQ_Front_Velocity = ST_Low)

=> (Sensitivity = High))

3. G((P_Sensitivity = Low)
& !(DV_Sensitivity = TY_Sens_High)
& (EQ_Own_Velocity = ST_High)
& (EQ_Front_Velocity = ST_Low)

=> !(Sensitivity = High))

4. G((P_Sensitivity = Low)
& !(DV_Sensitivity = TY_Sens_High)
& !(EQ_Own_Velocity = ST_High)
& (EQ_Front_Velocity = ST_Low)

=> (Sensitivity = High))

5. G((P_Sensitivity = Low)
& !(DV_Sensitivity = TY_Sens_High)
& (EQ_Own_Velocity = ST_High)
& !(EQ_Front_Velocity = ST_Low)

=> (Sensitivity = High))

Properties 1 and 3 assert that the transition is not taken,
while properties 2, 4 and 5 assert that the transition is taken.
Each of these, when asserted as a global property of the sys-
tem, forces the model checker to produce a counter-example
to the assertion. For example, when property 1 is asserted,
SMV produces a two-step counter-example:

DV_Front_Speed 0 50
DV_Own_Speed 0 0

DV_Sensitivity TY_Sens_Low TY_Sens_High
EQ_Front_Velocity ST_Low ST_High

EQ_Own_Velocity ST_Low ST_Low
EQ_Sensitivity ST_Low ST_High

P_EQ_Sensitivity ST_NONE ST_Low

This counter-example shows a case where the sensitivity
changes because of the change in the sensitivity setting by
the user, which was the intended test case for which the trap
property 1 was generated. Similarly, the intent of property
2 is to show that under similar conditions when sensitivity
setting is not changed by the user, theSensitivity state
remains inST Low and the counter-example produced by
SMV demonstrates this:

DV_Front_Speed 0 50
DV_Own_Speed 0 0

DV_Sensitivity TY_Sens_Low TY_Sens_Low
EQ_Front_Velocity ST_Low ST_High

EQ_Own_Velocity ST_Low ST_Low
EQ_Sensitivity ST_Low ST_Low

P_EQ_Sensitivity ST_NONE ST_Low

In the above counter examples, the input data variables
are the ones prefixed with “DV”. The values of theseDV
variables across the steps form a sequence of test inputs.
The values that we would like to observe are those of the
state variables which are prefixed with “EQ”. These form
the expected system outputs. Any implementation conform-
ing to the specification of the cruise control system should
produce these outputs for the given test inputs.

7. Related Work

Researchers have looked at various ways of defining test
criteria based on specification. Recently, Offutt,et al. [27],
defined various specification-based test coverage criteria for
generating tests from state-based specifications and mea-
sured their effectiveness in terms of their fault-finding capa-
bilities when used on a Cruise Control system specification
written in SCR. In our current work, we have defined the
criteria in terms of an underlying formal definition of the
system model and proposed a systematic method to gener-
ate test cases.

To our knowledge, two other research groups have at-
tempted to use model checking to generate test cases. Gar-
gantini and Heitmeyer [14] describe a method for generat-
ing test sequences from requirements specified in the SCR
notation. Our approach to test case generation using model-
checker is similar to theirs. To derive a test sequence, a
trap property is defined which violates some known prop-
erty of the specification. The model-checker is then used
to produce a counter-example to the trap property. The
counter-example assigns a sequence of values to the abstract
inputs and outputs of the system, thus making it a test se-
quence. The high level of abstraction used when modeling
with SCR, requires that the abstract sequences must be in-
stantiated with actual data, a non-trivial task.

Ammann and Black [2, 1] combine mutation analysis
with model-checking based test case generation. They de-
fine a specification based coverage metric for test suites us-
ing the ratio of the number of mutants killed by the test
suite to the total number of mutants. Their approach uses
a model-checker to generate mutation adequate test suites.
The mutants are produced by systematically applying mu-
tation operators to both the properties specification and

the operational specification, producing respectively, both
positive test cases which a correct implementation should
pass, and negative test cases which a correct implementa-
tion should fail.

Blackburn and Busser [5] map specifications written in
SCR to the formalism of their T-VEC tools in terms of
pre-conditions and functional mappings from inputs to out-
puts. The T-VEC tool then generates test vectors as pairs of
pre/post system states. However, a valid sequence of inputs
that leads the system to the state-pair is not generated. Bur-
ton,et al. [6], discuss the use of theorem-proving approach
for generating test cases. Callahan,et al. [7], describe how
traces from a simulation of the implementation can be veri-
fied by a simulation of the specification where the expected
outputs are computed using theSPIN model-checker. En-
gels,et al. [13], also useSPIN to generate test sequences
where thetesting purposeis defined as a verification goal
by the test engineer.

The main challenge for all these approaches is to find ap-
propriate abstraction techniques to reduce the model size.
State space explosion and infinite state spaces (caused by
floating point and integer variables) are major obstacles in
model checking software artifacts that must be addressed.
Work in the area of abstraction techniques [10, 22, 19, 31]
can be leveraged to create models amenable to model-
checking. However, the main issue is the loss of detail in
the abstraction process that makes instantiation of a test se-
quence from a counter example a non-trivial task.

8. Conclusion and Future Work

We have demonstrated an approach to automate test-case
generation for software engineering artifacts such as code
and formal specifications. We use structural coverage cri-
teria to define what test cases are needed and the test cases
are then generated using the power of a model checker to
generate counter-examples. We explained the process with
an example. Initial results indicate that the approach will
scale well to larger systems and have the potential to dra-
matically reduce the costs associated with generating test
cases to high levels of structural coverage.

The use of model-checkers as a test generation tool is be-
ing actively explored by some other researchers [4, 1, 14].
There are, however, several challenges that need to be ad-
dressed in the future. First, the problem of state space ex-
plosion can affect the search for counter-examples. Ab-
straction techniques that reduce the state-space could make
instantiating the test case with concrete data somewhat dif-
ficult since the counter example would be presented in the
abstract domain. One of the main advantages of a model-
checking approach to test generation is automatic instanti-
ation of the test sequences with actual data for the system
inputs and outputs. Ways of instantiating counter-examples
with specific data values in the presence of abstraction must
be investigated. Second, environment specification is al-
ways a difficult issue in modeling systems. Often, the en-
vironment is modeled in a conservative fashion allowing
more behavior for the environment than is actually possible.
When such a model of the environment is used, the gener-
ated test cases may not be useful since they may represent

scenarios that cannot happen. A human tester would possi-
bly take environment constraints into account and generate
more realistic test cases. Incorporating environment con-
straints in the trap properties without adversely affecting the
search for counter-example is a problem worth exploring.

References

[1] P. E. Ammann and P. E. Black. A specification-based cover-
age metric to evaluate test sets. InProceedings of the Fourth
IEEE International Symposium on High-Assurance Systems
Engineering. IEEE Computer Society, Nov. 1999.

[2] P. E. Ammann, P. E. Black, and W. Majurski. Using model
checking to generate tests from specifications. InProceed-
ings of the Second IEEE International Conference on For-
mal Engineering Methods (ICFEM’98), pages 46–54. IEEE
Computer Society, Nov. 1998.

[3] B. Beizer.Software testing techniques. Van Nostrand Rein-
hold, New York, 2nd edition, 1990.

[4] P. E. Black. Modeling and marshaling: Making tests from
model checker counterexamples. InProc. of the 19th Digital
Avionics Systems Confrence, October 2000.

[5] M. R. Blackburn, R. D. Busser, and J. S. Fontaine. Auto-
matic generation of test vectors for SCR-style specifications.
In Proceedings of the 12th Annual Conference on Computer
Assurance, COMPASS’97, June 1997.

[6] S. Burton, J. Clark, and J. McDermid. Testing, proof and
automation. An integrated approach. InProceedings of First
International Workshop on Automated Program Analysis,
Testing and Verification, June 2000.

[7] J. Callahan, F. Schneider, and S. Easterbrook. Specification-
based testing using model checking. InProceedings of the
SPIN Workshop, August 1996.

[8] W. Chan, R. Anderson, P. Beame, and D. Notkin. Com-
bining constraint solving and symbolic model checking for
a class of systems with non-linear constraints. InProc. of
CAV’97, LNCS 1254, pages 316–327. Springer, June 1997.

[9] J. J. Chilenski and S. P. Miller. Applicability of modified
condition/decision coverage to software testing.Software
Engineering Journal, pages 193–200, September 1994.

[10] E. M. Clarke, O. Grumberg, and D. E. Long. Model
checking and abstraction.ACM Transaction on Program-
ming Languages and Systems, 16(5):1512–1542, September
1994.

[11] E. M. Clarke, O. Grumberg, and D. Peled.Model Checking.
MIT Press, 1999.

[12] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,
S. Laubach, and H. Zheng. Bandera : Extracting Finite-state
Models from Java Source Code. InProc. of the 22nd Int’l
Conf. on Software Engineering, pages 439–448, June 2000.

[13] A. Engels, L. M. G. Feijs, and S. Mauw. Test generation for
intelligent networks using model checking. InProceedings
of TACAS’97, LNCS 1217, pages 384–398. Springer, 1997.

[14] A. Gargantini and C. Heitmeyer. Using model checking to
generate tests from requirements specifications.Software
Engineering Notes, 24(6):146–162, November 1999.

[15] J. B. Goodenough and S. L. Gerhart. Toward a theory of
testing: Data selection criteria. In R. T. Yeh, editor,Current
trends in programming methodology. Prentice Hall, 1979.

[16] K. Havelund and T. Pressburger. Model checking Java pro-
grams using Java PathFinder.International Journal on Soft-
ware Tools for Technology Transfer, 1999.

[17] M. P. Heimdahl, J. M. Thompson, and B. J. Czerny. Spec-
ification and analysis of intercomponent communication.
IEEE Computer, pages 47–54, April 1998.

[18] C. Heitmeyer, R. Jeffords, and B. Labaw. Automated con-
sistency checking of requirements specifications.ACM
Transactions on Software Engineering and Methodology,
5(3):231–261, July 1996.

[19] C. Heitmeyer, J. K. Jr., B. Labaw, M. Archer, and R. Bharad-
waj. Using abstraction and model checking to detect safety
violations in requirements specifications.IEEE Transac-
tions on Software Engineering, 24(11):927–948, November
1998.

[20] C. L. Heitmeyer, B. L. Labaw, and D. Kiskis. Consistency
checking of SCR-style requirements specifications. InPro-
ceedings of the Second IEEE International Symposium on
Requirements Engineering, March 1995.

[21] G. J. Holzmann. The model checkerSPIN. IEEE Transac-
tions on software Engineering, pages 279–295, May 1997.

[22] G. J. Holzmann. Designing executable abstractions. InProc.
of the 2nd Workshop on Formal Methods in Software Prac-
tice. ACM, 1998.

[23] R. Jasper, M. Brennan, K. Williamson, B. Currier, and
D. Zimmerman. Test data generation and feasible path anal-
ysis. InProc. of Int’l Symp. on Software Testing and Analy-
sis, pages 95–107, August 1994.

[24] N. G. Leveson, M. Heimdahl, H. Hildreth, and J. Reese.
TCAS II Requirements Specification.

[25] K. L. McMillan. Symbolic Model Verifer (SMV) - Cadence
Berkeley Laboratories Version. Available at http://www-
cad.eecs.berkeley.edu/˜kenmcmil/smv.

[26] K. L. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, 1993.

[27] A. J. Offutt, Y. Xiong, and S. Liu. Criteria for generating
specification-based tests. InProceedings of the Fifth IEEE
International Conference on Engineering of Complex Com-
puter Systems (ICECCS ’99), October 1999.

[28] S. Rayadurgam and M. P. Heimdahl. Coverage based test
data generation using model checkers. Technical Report 01-
005, Dept. of Computer Science and Engineering, Univer-
sity of Minnesota, Minneapolis, January 2001.

[29] RTCA. Software Considerations In Airborne Systems and
Equipment Certification. RTCA, 1992.

[30] J. M. Thompson, M. W. Whalen, and M. P. Heimdahl. Re-
quirements capture and evaluation inNIMBUS: The light-
control case study.Journal of Universal Computer Science,
6(7):731–757, July 2000.

[31] M. Young. How to leave out details: Error-preserving ab-
stractions of state-space models. InProceedings of the Sec-
ond Workshop on Software Testing, Verification, and Analy-
sis (TAV 2), 1988.

[32] H. Zhu, P. Hall, and J. R. May. Software Unit Test Coverage
and Adequacy.ACM Computing Surveys, 29(4):366–427,
December 1997.

