
Generating MC/DC Adequate Test Sequences Through
Model Checking ∗

Sanjai Rayadurgam
Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455

rsanjai@cs.umn.edu

Mats P.E. Heimdahl
Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455

heimdahl@cs.umn.edu

ABSTRACT
We present a method for automatically generating test se-
quences to satisfy MC/DC like structural coverage criteria
of software behavioral models specified in state-based for-
malisms. The use of temporal logic for characterizing test
criteria and the application of model-checking techniques
for generating test sequences to those criteria have been
of interest in software verification research for some time.
Nevertheless, criteria for which constraints span more than
one test sequence, such as the Modified Condition/Decision
Coverage (MC/DC) mandated for critical avionics software,
cannot be characterized in terms of a single temporal prop-
erty.

This paper discusses a method for recasting two-sequence
constraints in the original model as a single sequence con-
straint expressed in temporal logic on a slightly modified
model. The test-sequence generated by a model-checker for
the modified model can be easily separated into two differ-
ent test-sequences for the original model, satisfying the given
test criteria. The approach has been successful in generat-
ing MC/DC test sequences from a model of the mode-logic
in a flight-guidance system.

1. INTRODUCTION
Software development for critical control systems, such as
the software controlling aeronautics applications and medi-
cal devices, is a costly and time consuming process. When
developing the most critical software, the validation and ver-
ification phase (V&V) consume approximately 50%–70% of
the software development resources. Thus, if the process of
deriving test cases for V&V could be automated and provide
requirements-based and code-based test suites that satisfy
the most stringent standards (such as DO-178B–the stan-
dard governing the development of flight-critical software for

∗This work has been partially supported by NASA grant
NAG-1-224 and NASA contract NCC-01-001.

civil aviation [14]), dramatic time and cost savings would be
realized.

If a software artifact can be represented as a finite state tran-
sition system, model checking techniques [6] can be used to
generate test cases [12]. Model checkers are tools that ex-
plore the reachable state space of a model and report if prop-
erties of interest are violated in some state. If a violation
is detected, the tool will report a sequence of inputs that
brought the system to the violating state. With this capa-
bility we can, for example, assert that the “true” branch out
of a decision point cannot be taken. If this branch in fact
can be taken, the model checker will generate a sequence of
inputs (with associated outputs) that forces the system to
execute this branch—we have found a test case that covers
this branch.

While the model-checking approach has been successful in
generating test sequences to various structural criteria [13],
coverage criteria similar to Modified Decision/Condition Cov-
erage [5] (MC/DC) cannot be directly used in this approach.
MC/DC coverage is designed to demonstrate the indepen-
dent effect of atomic Boolean conditions on the Boolean ex-
pressions in which they occur. Thus, MC/DC test cases
come in pairs, one where the atomic condition evaluates
to false and one where it evaluates to true, but no other
atomic conditions in the Boolean expression are changed.
The model checking approach to test case generation is inca-
pable of capturing such constraints over two test sequences.
To work around this problem, we proposed to predetermine
the Boolean vectors needed for an MC/DC pair and us-
ing those Boolean vectors in the specification of temporal
properties to generate the test sequences [12]. Other re-
searchers [1] have relaxed the MC/DC criterion to decouple
the test sequences, thus making model-checking based test
generation feasible.

In this paper we describe a novel alternative that leverages a
model checker for complete and accurate MC/DC test case
generation. We automatically rewrite the system model by
introducing a small number of auxiliary variables to capture
the constraints that span more than one test-sequence. We
also introduce a special system reset transition to restore
a system to its initial state. With these small modifica-
tions, a test constraint spanning two sequences in the origi-
nal model can be expressed as a constraint on a single test-
sequence in the modified model. Model-checking techniques



can then be employed to generate this single test sequence
which can be later factored into two separate test-sequences
for the original model satisfying the actual test criteria. The
modification to the system model can be performed by sim-
ple structural examination of the model without requiring
any detailed analysis. The trade-off is the slightly increased
state-space caused by the auxiliary variables. The benefit
is that test cases can now be generated for the original test
criteria using model-checking based approach, without the
need for either an elaborate pre-processing analysis step or a
relaxed test criterion. We have applied this approach to gen-
erate MC/DC test sequences from a realistic model of the
flight guidance mode logic for business and regional jets.

2. BACKGROUND
Model checkers build a finite state transition system and
exhaustively explore the reachable state space searching for
violations of the properties under investigation [6]. Should a
property violation be detected, the model checker will pro-
duce a counter-example illustrating how this violation can
take place. In short, a counter-example is a sequence of
inputs that will take the finite state model from its initial
state to a state where the violation occurs.

A model checker can be used to find test cases by formulat-
ing a test criterion as a verification condition for the model
checker. For example, we may want to test a transition
(guarded with condition C) between states A and B in the
formal model. We can formulate a condition describing a
test case testing this transition—the sequence of inputs must
take the model to state A; in state A, C must be true, and
the next state must be B. This is a property expressible in
the logics used in common model checkers, for example, the
logic LTL. We can now challenge the model checker to find
a way of getting to such a state by negating the property
(saying that we assert that there is no such input sequence)
and start verification. The model checker will now search
for a counterexample demonstrating that this property is,
in fact, satisfiable; such a counterexample constitutes a test
case that will exercise the transition of interest. By repeat-
ing this process for each transition in the formal model, we
use the model checker to automatically derive test sequences
that will give us transition coverage of the model. This ap-
proach has been successfully used to generate test cases to
various criteria and from specifications in a variety of formal
languages [7, 4, 3, 12, 10].

Nevertheless, not all useful test criteria can be expressed
in an appropriate temporal logic that is amenable to model-
checking [10]. One such criterion applicable to source code is
Modified Condition/Decision Coverage [5]. Offutt et.al [11]
define an analogous (but not equivalent) criterion for state-
transition systems called full-predicate coverage. Black et.al
[1] discuss the difficulty in using a model-checking approach
to generate test cases for full-predicate coverage and define
a less strict criterion called uncorrelated full-predicate cover-
age using the notion of Boolean derivatives and demonstrate
how test cases to satisfy this criterion can be obtained using
a model-checker.

Here we present an alternative approach that does not re-
quire relaxing the coverage criterion. Rather, by modifying
the system model in a simple and systematic way, we obtain

test cases that are fully MC/DC (or full-predicate coverage)
adequate. These modifications involve adding Boolean vari-
ables recording the truth values of predicates in a decision
point.

3. MC/DC COVERAGE CRITERION
In [12] we formulated various coverage criteria in temporal
logic and demonstrated how model-checking could be used
to derive test sequences for those criteria.

One of the important structural coverage criteria that is
used in the avionics software domain is the MC/DC cri-
terion. It was developed to meet the need for extensive
testing of complex boolean expressions in safety-critical ap-
plications [5]. MC/DC was developed as a practical and rea-
sonable compromise between decision coverage and multiple
condition coverage. It has been in use for several years in
the commercial avionics industry. The important aspect of
this criterion is the requirement that testing should demon-
strate the independent effect of atomic boolean conditions
on the boolean expressions in which they occur. In [12] we
defined a similar test criterion for our transitions systems,
called clause-wise guard coverage that captures this notion
of independent effect of clauses on predicates.

A test suite is said to satisfy MC/DC (or claus-wise cover-
age) if executing the test cases in the test suite will guarantee
that:

• every point of entry and exit in the model has been
invoked at least once,

• every basic condition in a decision in the model has
taken on all possible outcomes at least once, and

• each basic condition has been shown to independently
affect the decision’s outcome

where a basic condition is an atomic Boolean valued expres-
sion that cannot be broken into Boolean sub-expressions.
A basic condition is shown to independently affect a deci-
sion’s outcome by varying only that condition while holding
all other conditions at that decision point fixed. Thus, a
pair of test cases must exist for each basic condition in the
test-suite to satisfy MC/DC. However, test case pairs for
different basic conditions need not necessarily be disjoint.
In fact, the size of MC/DC adequate test-suite can be as
small as N + 1 for a decision point with N conditions.

4. MC/DC THROUGH MODEL CHECKING
As mentioned earlier, the basic approach to test case gener-
ation using model-checking is to recognize that a test case
is simply a finite execution trace of a system. If one can
characterize this execution trace as a temporal logic prop-
erty to be verified, model-checking techniques can be used
to produce a witness trace for the property. It has also been
observed [1] that criteria such as MC/DC that have con-
straints involving more than one test case cannot be handled
in this fashion. The crux of the problem is that each execu-
tion trace, i.e., each test case, is characterized by a separate
temporal formula and therefore constraints involving two or
more execution traces must necessarily span multiple tem-
poral formulas, and, therefore, multiple runs of the model-



checker. This means that one must employ some mecha-
nism outside model-checking to ensure satisfaction of those
constraints across multiple executions of the model-checker.
In our earlier work, we assumed such a mediating mecha-
nism that would resolve the MC/DC coverage constraints
between the pair of test cases and provided specific Boolean
valued vectors which were used to formulate two separate
temporal properties. Nevertheless, such mediation involves
boolean constraint satisfaction, an analysis as complex as
model-checking itself. Further, it worked only under an as-
sumption of independence of atomic conditions, which may
not be satisfied in realistic systems, thus leading to temporal
formulas that do not have corresponding execution traces in
the system.

To overcome this problem, we here propose to augment the
original model with auxiliary system variables and transi-
tions in such a fashion that the pair of execution traces (test
cases) in the original model can be seen as a single concate-
nated execution trace in the augmented model. This execu-
tion trace can be characterized by a single temporal formula
and, therefore, model-checking can be used to produce the
concatenated test case. The result can then be easily post-
processed and the single execution trace can be split into
a pair of execution traces of the original model—a pair of
execution traces satisfying the MC/DC criterion.

4.1 Augmenting the System Model
Informally, our approach is based on the idea that to get
MC/DC coverage of a specific decision point it would be
enough to (1) find a test sequence from the initial state to
the decision point of interest, (2) remember the truth values
of the conditions in the decision point, and then (3) find
a continuation of this test sequence that takes us back to
the decision point, but this time one of the conditions has
a different truth value and the outcome of the decision is
different. To achieve this, we must augment our model to
address two concerns:

Concatenation: The two test sequences in an MC/DC
pair must somehow be concatenated into a single test
sequence.

Propagation: Truth values of conditions and decision of
interest must be propagated from one test sequence to
the other in the pair, so that MC/DC constraint can
be enforced.

Since reactive system models typically assume an implicit
control loop at the outermost level we can typically find
these cycles without modifying the model in any way. Nev-
ertheless, this cannot be guaranteed. To address this issue,
we propose to augment the model with a special hard re-
set transition that restores the system to its initial state.
Now, two finite execution traces of the original model can
be viewed as a single execution trace containing the two
traces separated by a hard reset. Given this extension, we
can achieve concatenation of two sequences by stating that
we want to (1) reach a decision point, (2) see a hard reset,
and then (3) reach the same decision point again. Figure 1
pictorially illustrates the idea.

tresetsstart

reset -free -paths

auxiliary constants
to propagate
truth values

x not x

Figure 1: Concatenated test sequence.

PVS input
language

Nimbus

Simulator

Translator

Verification
Result

user

PVS

Proof Strategy
-eRSML

NuSMV input
language

Property

Specification

NuSMV

Figure 2: Verification Framework.

Once we can concatenate two test cases into one, what re-
mains is to propagate information containing the values of
the clauses and the guard predicate from the decision point
in the first segment to the same decision point in the next
segment, so that the MC/DC pair constraint can be en-
forced. The information to be passed is a Boolean vector
containing the values of the clauses in the guard and so
the number of additional variables required to augment the
model is proportional to the number of clauses in the guard.

Assuming that there are n clauses in the guard in the de-
cision point (transition) of interest, the values can be prop-
agated through n auxiliary Boolean variables u1, ...un that
have unknown but fixed values, i.e., their value in each exe-
cution trace is fixed but may vary from one trace to another.
These variables may assume either Boolean value at the be-
ginning of the execution of the augmented model. The next
state relation for these variables can be simply specified as
u′i = ui, i.e., the variables retain their initial values through
the execution trace.

These variables serve the purpose of propagating the truth
values of clauses from the decision point in the first segment
to the same decision point in the next segment. What we
must do is to make this connection in the temporal formula
characterizing our concatenated test sequence. The values
of the n clauses in the decision in first segment are asserted
to be equivalent to the boolean vector (u1, ..., un).

5. CASE STUDY
To validate this approach to generating test cases for MC/DC
coverage, we implemented it in our Nimbus toolset for an-
alyzing and executing RSML−e specifications. We then ap-
plied our tool to a realistic flight guidance system provided
by one of our industrial partners.

Figure 2 shows an overview of our tools framework. The user
builds a behavioral model of the system in the fully formal
and executable specification language RSML−e. The specifi-



cation is then fed to the Nimbus simulator which checks that
the specification is well formed and type correct, and allows
the analyst a flexible execution environment for specification
validation. After the specification is validated, the analyst
can translate the specification to the PVS or NuSMV input
languages for verification.

As part of this toolset we implemented a test-case genera-
tion framework that uses the NuSMV model-checker as the
test-case generation engine. The tool automatically gen-
erates trap properties systematically from the specification
for various structural coverage criteria, such as state, tran-
sition, condition, or, of particular interest for this report,
MC/DC coverage. The model is then translated to the in-
put language of NuSMV using our verification infrastruc-
ture discussed above, and the trap properties are used as
a property specification to generate counterexamples which
become the test set satisfying the given criteria. This pro-
cess is fully automated and requires no manual intervention.

Our results are not in any way limited to the research lan-
gauge RSML−e on which Nimbus operates—our approach
is applicable to a wide spectrum of languages, for example,
SCR [9], Lustre [8], and Esterel [2].

5.1 Results
To evaluate the scalability of the approach, we generated
suites of MC/DC trap properties for our collection of flight
guidance models. In the case study, we used the Nimbus
tool to generate property specifications for the MC/DC test-
criterion which were then provided to the NuSMV model-
checker along with the translated RSML−e specification.
We used both the symbolic model checker and the bounded
model checker provided in NuSMV. The results of generat-
ing test sequences based on the trap properties in Table ??
are included in Table 1. The symbolic model checker failed
to complete the test case generation for FGS-05.

As evident from our case study, there are clear limitations to
the capabilities of the symbolic model checker. The majority
of the time was spent on counterexample generation—each
property generates a counterexample and the time necessary
to generate hundreds of counterexamples quickly became un-
acceptable.

The bounded model checker, on the other hand, scaled be-
yond our expectations. The main problem with a bounded
model checker is that we have to put a limit on the search
depth—we can only find counterexamples shorter than the
maximum search depth we have selected. In verification
tasks, this is a serious problem—if we fail to find a coun-
terexample within our search depth we will not know if the
property is true or if the counterexample is longer than the
search depth allows. Nevertheless, in test case generation,
this is not a serious issue. If we fail to find a test case within
our predetermined search depth we are no worse off than we
were before we had the automated tools—we would simply
have to either (1) find the test case by hand or (2) determine
that a test case for this MC/DC condition does not exist.

To summarize, our approach to MC/DC test case generation
from formal specifications seems to scale well, at least when
we use a bounded model checker. The ability to generate

hundreds of complete test sequences in less than a minute is
a revolutionary improvement over current state of the prac-
tice. Our experiences with bounded model checking in this
domain have been generally positive and we see this as the
ideal tool for this problem. Two characteristics of test case
generation leads us to this conclusion; (1) the test cases
(counterexamples) are typically short so most of them can
be found within a relatively small search depth and (2) the
consequences of not finding a counterexample are merely a
nuisance, not catastrophic.

6. CONCLUSION
We have demonstrated how model-checking techniques can
be used to generate truly MC/DC adequate test sequences.
The method is amenable to complete automation and we
have implemented the test generation approach in our Nim-
bus tools. More importantly, it suggests a general approach
for handling test criteria that impose constraints spanning
multiple test-sequences. By augmenting the original model
with auxiliary information it is possible reduce such con-
straints to single sequence constraints, which can be ex-
pressed in an appropriate temporal logic. The method is
simple and practical as has been indicated in our case-studies
and we expect this to scale well to even larger systems.

7. REFERENCES
[1] P. Ammann, P. E. Black, and W. Ding. Model

checkers in software testing. Technical Report
NIST-IR 6777, National Institute of Standards and
Technology, 2002.

[2] G. Berry and G. Gonthier. The Esterel synchronous
programming language: Design, semantics,
implementation. Science of Computer Programming,
19(2):87–152, 1992.

[3] P. E. Black. Modeling and marshaling: Making tests
from model checker counterexamples. In Proc. of the
19th Digital Avionics Systems Confrence, October
2000.

[4] J. Callahan, F. Schneider, and S. Easterbrook.
Specification-based testing using model checking. In
Proceedings of the SPIN Workshop, August 1996.

[5] J. J. Chilenski and S. P. Miller. Applicability of
modified condition/decision coverage to software
testing. Software Engineering Journal, pages 193–200,
September 1994.

[6] E. M. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 1999.

[7] A. Gargantini and C. Heitmeyer. Using model
checking to generate tests from requirements
specifications. Software Engineering Notes,
24(6):146–162, November 1999.

[8] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous dataflow programming language
lustre. Proceedings of the IEEE, 79(9):1305–1320,
September 1991.

[9] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw.
SCR∗: A toolset for specifying and analyzing



FGS-00 FGS-01 FGS-02 FGS-03 FGS-04 FGS-05

NuSMV Symbolic 1.4 3.8 11.9 91.5 4760 NA
NuSMV Bounded 1.8 1.7 3.0 5.0 17.2 45.4

Table 1: Execution time to generate test sequences. All times are given in seconds.

requirements. In Proceedings of the Tenth Annual
Conference on Computer Assurance, COMPASS 95,
1995.

[10] H. S. Hong, I. Lee, O. Sokolsky, and H. Ural. A
temporal logic based theory of test coverage and
generation. In Proceedings of the International
Conference on Tools and Algorithms for Construction
and Analysis of Systems (TACAS ’02), Grenoble,
France, April 2002.

[11] A. J. Offutt, Y. Xiong, and S. Liu. Criteria for
generating specification-based tests. In Proceedings of
the Fifth IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS
’99), October 1999.

[12] S. Rayadurgam and M. P. Heimdahl. Coverage based
test-case generation using model checkers. In
Proceedings of the 8th Annual IEEE International
Conference and Workshop on the Engineering of
Computer Based Systems (ECBS 2001), pages 83–91.
IEEE Computer Society, April 2001.

[13] S. Rayadurgam and M. P. Heimdahl. Test-Sequence
Generation from Formal Requirement Models. In
Proceedings of the 6th IEEE International Symposium
on the High Assurance Systems Engineering (HASE
2001), Boca Raton, Florida, October 2001. To appear.

[14] RTCA. Software Considerations In Airborne Systems
and Equipment Certification. RTCA, 1992.


