
Specification Test Coverage Adequacy Criteria = Specification Test Generation
Inadequacy Criteria?

Mats P.E. Heimdahl, Devaraj George, Robert Weber

Department of Computer Science and Engineering, University of Minnesota
E-mail: {heimdahl,devaraj,weber}@cs.umn.edu

Abstract

The successful analysis technique model checking can be
employed as a test-case generation technique to generate
tests from formal models. When using a model checker for
test case generation, we leverage the witness (or counter-
example) generation capability of model-checkers for con-
structing test cases. Test criteria are expressed as temporal
properties and the witness traces generated for these prop-
erties are instantiated to create complete test sequences,
satisfying the criteria. In this report we describe an ex-
periment where we investigate the fault finding capability
of test suites generated to provide three specification cov-
erage metrics proposed in the literature (state , transition,
and decision coverage). Our findings indicate that although
the coverage may seem reasonable to measure the adequacy
of a test suite, they are unsuitable when used to generate
test suites. In short, the generated test sequences techni-
cally provide adequate coverage, but do so in a way that
tests only a small portion of the formal model. We con-
clude that automated testing techniques must be pursued
with great caution and that new coverage criteria targeting
formal specifications are needed.

1. Introduction

Model checking techniques have been proposed as one
method for automatically deriving test sequences from for-
mal models or, in certain circumstances, from code [4, 7, 3,
8, 16, 13]. These proposed test case generation approaches
leverage the witness (or counter-example) generation capa-
bility of model-checkers for constructing test cases. Test
criteria are expressed as temporal properties. Witness traces
generated for these properties are instantiated to create com-
plete test sequences satisfying the criteria. Nevertheless,
one of the issues that often stymies model-checking is the
state-space explosion problem. As the size of the state-
space to be explored increases, model-checking might be-
come too time-consuming or infeasible. But, in the con-

text of test generation based on structural properties one is
interested in falsifying properties so that counter-examples
can be instantiated to test sequences. In a previous study,
we demonstrated that finding violations of the properties
characterizing a test case is relatively easy and that the
counter-examples can be constructed easily even for quite
large models [11]. Nevertheless, our experiences from this
case study raised some concerns regarding the quality of
the test cases generated. In particular, the test cases were
all very short—typically one step long—and, although they
provided the specification coverage sought, raised concerns
as to their effectiveness in revealing faults. To evaluate the
quality of the generated tests we conducted a large case
study comparing the fault-finding capabilities of tests auto-
matically generated with a model checker to tests generated
randomly. To our surprise (and dismay) the randomly gen-
erated tests performed better than the generated structural
tests. In this paper we report on our case study, discuss
the reasons for the poor performance of the structural tests,
and point out the need for new coverage criteria suitable for
test-case generation from formal specifications.

To evaluate the fault finding capability of test suites
generated to provide three common specification test ad-
equacy criteria (state, transition, and decision coverage),
we conducted an experiment using a model of the mode-
logic in a production sized flight-guidance system, written
in the RSML−e language [19, 20]. We used our framework
for specification-based test generation using the NuSMV
model-checker [11, 15]. The generated tests were then ex-
ecuted on versions of the specification with seeded faults.
The purpose of this study was to determine how well the
structural tests were able to reveal faults as compared to the
same effort expended on random testing.

To summarize our findings, our experiment indicates that
the common specification test adequacy criteria we evalu-
ated are woefully inadequate and are not likely to reveal
faults in our formal model. We identify two reasons for this
inadequacy: (1) the structure of the flight guidance model
leads the model checker to find test cases that technically
provide the right coverage but do not exercise the logic of



the model, the (2) the semantics of the RSML−e specifica-
tion language makes some coverage criteria unsuitable. We
believe theses findings generalize to other systems and for-
malisms and, therefore, new specification coverage criteria
must be developed.

The rest of the paper is organized as follows. Section 2
provides a short overview of related efforts in the area of
test-generation using model checking techniques and briefly
describes our overall approach. Section 3 describes our
testing framework and the formal specification language on
which we based our work. We describe how we conducted
our experiment in Section 4. Section 5 briefly discuss the
test coverage criteria used for this study. Sections 6 and
7 analyzes the results obtained from our experiments, and
Section 8 discusses the implications of the results and points
to further research opportunities.

2. Finding Tests with a Model Checker

Model checkers build a finite state transition system and
exhaustively explore the reachable state space searching for
violations of the properties under investigation [6]. Should a
property violation be detected, the model checker will pro-
duce a counter-example illustrating how this violation can
take place. In short, a counter-example is a sequence of in-
puts that will take the finite state model from its initial state
to a state where the violation occurs.

A model checker can be used to find test cases by for-
mulating a test criterion as a verification condition for the
model checker. For example, we may want to test a tran-
sition (guarded with condition C) between states A and B
in the formal model. We can formulate a condition describ-
ing a test case testing this transition—the sequence of in-
puts must take the model to state A; in state A, C must be
true, and the next state must be B. This is a property ex-
pressible in the logics used in common model checkers, for
example, the logic LTL. We can now challenge the model
checker to find a way of getting to such a state by negat-
ing the property (saying that we assert that there is no such
input sequence) and start verification. We call such a prop-
erty a trap property [8]. The model checker will now search
for a counterexample demonstrating that this trap property
is, in fact, satisfiable; such a counterexample constitutes a
test case that will exercise the transition of interest. By re-
peating this process for each transition in the formal model,
we use the model checker to automatically derive test se-
quences that will give us transition coverage of the model.
Obviously, this general approach can be used to generate
tests for a wide variety of structural coverage criteria, such
as all state variables have take on every value, and all de-
cisions in the model have evaluated to both true and false.
The test generation process is outlined in Figure 1.

The approach discussed above is not unique to our group,

several research groups are actively pursuing model check-
ing techniques as a means for test case generation [1, 2, 3,
8, 13, 16, 12]. Nevertheless, to our knowledge, no experi-
mental data is available about the fault finding capability of
test suites automatically generated to various specification
coverage criteria.

3. NIMBUS and RSML−e

Figure 2 shows an overview of the NIMBUS tools frame-
work we have used as a basis for our test case generation
engine. The user builds a behavioral model of the system
in the fully formal and executable specification language
RSML−e (see below). After evaluating the functionality
and behavioral correctness of the specification using the
NIMBUS simulator, users can translate the specifications to
the PVS or NuSMV input languages for verification (or test
case generation as is the case in this report). The set of LTL
trap properties required to use NuSMV to generate test se-
quences are obtained by traversing the abstract syntax tree
in NIMBUS and then outputting sets of properties whose
counterexamples will provide the correct coverage (the cov-
erage criteria and associated properties are discussed in the
next section).

To generate test cases in NIMBUS, the user would in-
voke the following steps. First, the user would automati-
cally translate the model to the input language of NuSMV
and automatically generate the set of trap properties of inter-
est to achieve desired coverage. Second, the trap properties
are automatically merged with the NuSMV model and the
NuSMV model checker is invoked to collect the counterex-
amples. Third, the counterexamples are processed to extract
test sequences in a generic intermediate test representation.
The intermediate test representation contains (1) the input
in each step, (2) the expected state changes (to state vari-
ables internal to the RSML−e model), and (3) the expected
outputs (if any). Finally, the intermediate test representation
would be translated to the input format for whatever testing
tool is used to test the system under test.

The NIMBUS tools discussed above all operate on the
RSML−e notation — RSML−e is based on the State-
charts [9] like language Requirements State Machine Lan-
guage (RSML) [14]. RSML−e is a fully formal and syn-
chronous data-flow language without any internal broadcast
events (the absence of events is indicated by the −e).

An RSML−e specification consists of a collection of in-
put variables, state variables, input/output interfaces, func-
tions, macros, and constants; input variables are used to
record the values observed in the environment, state vari-
ables are organized in a hierarchical fashion and are used to
model various states of the control model, interfaces act as
communication gateways to the external environment, and
functions and macros encapsulate computations providing



Requirements
Specification Model

(RSML-e)

Test Criteria
(coverage criteria)

Model of
Environment

Model Checker
(e.g., SMV)

Instantiator
(Constraint Solver

Inverse Abstraction)

LTL/CTL
Properties

Counter
Example

Specification-Based
Test Sequence

Model
Abstraction

SE Artifact Tool Generated
Artifact

Legend:

Figure 1. Test sequence generation overview and architecture.

RSML-e Simulator

Translator

Test Case
Generator

Proof Strategy

PVS Input
Language

Property
Specification

NuSMV Input
Language

Trap Properties

PVS

NuSMV

Verification
Result

User

Figure 2. Verification Framework.

increased readability and ease of use.

Figure 3 shows a specification fragment of an RSML−e

specification of the Flight Guidance System1. The figure
shows the definition of a state variable, ROLL. ROLL is the
default lateral mode in the FGS mode logic.

The conditions under which the state variable changes
value are defined in the TRANSITION clauses in the def-
inition. The condition tables are encoded in the macros,
Select ROLL and Deselect ROLL. The tables are
adopted from the original RSML notation—each column of
truth values represents a conjunction of the propositions in
the leftmost column (F represents the negation of the propo-
sition and a ‘*’ represents a ”don’t care” condition). If a ta-
ble contains several columns, we take the disjunction of the
columns; thus, the table is a way of expressing conditions
in a disjunctive normal form.

1We use here the ASCII version of RSML−e since it is much more
compact than the more readable typeset version.

STATE_VARIABLE ROLL : Base_State
PARENT : Modes.On
INITIAL_VALUE : UNDEFINED
CLASSIFICATION : State

TRANSITION UNDEFINED TO Cleared IF NOT Select_ROLL()
TRANSITION UNDEFINED TO Selected IF Select_ROLL()
TRANSITION Cleared TO Selected IF Select_ROLL()
TRANSITION Selected TO Cleared IF Deselect_ROLL()

END STATE_VARIABLE

MACRO Select_ROLL() :
TABLE

Is_No_Nonbasic_Lateral_Mode_Active() : T;
Modes = On : T;

END TABLE
END MACRO

MACRO Deselect_ROLL() :
TABLE

When_Nonbasic_Lateral_Mode_Activated() : T *;
When(Modes = Off) : * T;

END TABLE
END MACRO

Figure 3. A small portion of the FGS specifi-
cation in RSML−e.

4. Experiment Overview

In our experiment, we were interested in answering one
question:

How well do the test cases generated to vari-
ous structural coverage criteria reveal faults as
compared to random tests (generated and run
with the same effort)?

To answer this question, we devised an experiment evalu-
ating the fault finding capability of three commonly sug-
gested specification coverage criteria, state, transition, and
decision coverage. (The criteria will be discussed in detail
in Section 5.)

To provide realistic results, we conducted the experiment
using a close to production model of a flight guidance sys-



Figure 4. Flight Guidance System

tem from Rockwell Collins Inc.2 A Flight Guidance System
(FGS) is a component of the overall Flight Control System
(FCS) in a commercial aircraft. It compares the measured
state of an aircraft (position, speed, and altitude) to the de-
sired state and generate pitch and roll guidance commands
to minimize the difference between the measured and de-
sired state. The FGS can be broken down to mode logic,
which determines which lateral and vertical modes of oper-
ation are active and armed at any given time, and the flight
control laws that accept information about the aircraft’s cur-
rent and desired state and compute the pitch and roll guid-
ance commands. In this case study we have used the mode
logic.

Figure 4 illustrates a graphical view of a FGS in the
NIMBUS environment. The primary modes of interest in
the FGS are the horizontal and vertical modes. The hori-
zontal modes control the behavior of the aircraft about the
longitudinal, or roll, axis, while the vertical modes control
the behavior of the aircraft about the vertical, or pitch, axis.
In addition, there are a number of auxiliary modes, such as
half-bank mode, that control other aspects of the aircraft’s
behavior. The FGS is ideally suited for test case generation
using model checkers since it is discrete—the mode logic

2We thank Dr. Steve Miller and Dr. Alan Tribble of Rockwell Collins
Inc. for the information on flight control systems and for letting us use the
RSML−e models they have developed using NIMBUS.

MACRO When_LGA_Activated() :
TABLE
Select_LGA() : T;
PREV_STEP(..LGA) = Selected : F;
Is_This_Side_Active : *; /* Was T */

END TABLE
END MACRO

Figure 5. An example fault seeded into the
FGS model.

consists entirely of enumerated and Boolean variables.
To provide targets for our testing effort, we created a col-

lection of faulty specifications. We first reviewed the revi-
sion history of the FGS model to understand what types of
faults were removed during the original verification process.
We then implemented a random fault seeder to inject repre-
sentative faults to create a suite of faulty specifications. The
faults we seeded fell into the following four categories:

Variable Replacement: A variable reference was replaced
with a reference to another variable of the same type.

Condition Insertion: A condition that was previously
considered a “don’t care” (*) in one of the tables was
changed to T (the condition is required to be true).

Condition Removal: A condition that was previously re-
quired to be true (T) or false (F) in a table was changed
to “don’t care” (*).

Condition Negation: A condition that was previously re-
quired to be true (T) in a table was changed to false
(F), or vice versa.

We used our fault seeder to generate 100 faulty spec-
ifications (25 for each fault class). As an example,
Figure 5 shows a missing condition fault contained in
macro When LGA Activated, the fault was created by
changing the table from requiring the Boolean variable
Is This Side Active that was originally true to a
“don’t care.”

We then performed the experiment by conducting the
following steps for several different structural coverage cri-
teria:

1. We used the original specification to generate a test
suite to a coverage criterion of interest, for example,
transition coverage, and measured the effort involved.

2. We ran the test suite on the 100 faulty specifications
and recorded the number of faults revealed as well as
the time required run the test suite.

3. We used the same effort (the sum of the time used to
generate as well as run the structural test) to generate
and run a randomly generated test suite. We gener-
ated this suite using a statistical testing tool also im-
plemented as part of NIMBUS.



4. Given the results of the previous steps, we compared
the relative fault finding capability of the randomly
generated tests versus the structural tests.

In the remainder of this paper we provide a detailed de-
scription activities involved in the case study and discuss
our findings.

5. Coverage Criteria

For the case study described in this report, we have se-
lected to use three representative specification coverage cri-
teria; state coverage, transition coverage, and decision cov-
erage.

In the following discussion, a test case is to be under-
stood as a sequence of values for the input variables in an
RSML−e specification. This sequence of inputs will guide
the RSML−e specification from its initial state to the struc-
tural element, for example, a transition, the test case was
designed to cover. A test suite is simply a set of such test
cases. As we briefly explained, trap properties are used to
generate counter-examples using a model checker. These
properties are derived from the structural coverage criteria.
For the purposes of illustration, we use the FGS example
discussed in Section 4.

State coverage:

Definition 1. A test suite is said to achieve state coverage
of a state variable in an RSML−e specification, if for each
possible value of the state variable there is at least one test
case in the test suite that assigns that value to the given
variable. The test suite achieves state coverage of the spec-
ification if it achieves state coverage for each state variable.

Consider, for example, the state variable ROLL in the
FGS specification example:
STATE_VARIABLE ROLL : { Cleared, Selected, UNDEFINED };

A test suite would achieve state coverage on ROLL, if for
each of its three different possible values, there is a test case
in which ROLL takes that value. Note that a single test case
might actually achieve this coverage by assigning different
values to ROLL at different points in the sequence. To pro-
vide a comprehensive test suite, however, in this case study
we generate one test case for each state variable value. One
could use the following LTL formulas to generate the test
cases:

1. G ˜(ROLL = Cleared)
2. G ˜(ROLL = Selected)
3. G ˜(ROLL = UNDEFINED)

In each case, the property asserts that ROLL can never
have a specific value and the counter-example produced is
a sequence of values for the system variables starting from
an initial state and ending in a state where ROLL has the
specific value.

Transition Coverage:

Definition 2. A test suite is said to achieve transition cov-
erage of a given RSML−e specification, if each guard con-
dition on a transition (specified as either an AND/OR table
or as a standard Boolean expression) evaluates to true at
some point in some test case and evaluates to false at some
point in some other test case in the test suite.

As an example, consider the transition defined for the
ROLL state variable in Figure 3. If we consider the transi-
tions to Selected guarded by the condition encapsulated
in the macro Select ROLL(), test cases to provide deci-
sion coverage of this decision can be generated using the
following two trap properties.

1. G((Select_ROLL()) -> ˜(ROLL = Selected))
2. G(˜(Select_ROLL()) -> (ROLL = Selected))

Decision Coverage:
In our discussion of decision coverage, we have based our
definitions on our understanding of how the Federal Avia-
tion Administration (FAA) views decision coverage in its
guidelines for software development in accordance with the
DO-178B standard for critical airborne software [10, 17,
18].

Assuming the Boolean operators AND, OR, and NOT,
we use the following definitions for condition and decision:

Condition: A Condition is defined as a Boolean Expres-
sion containing no Boolean Operators. For instance, a
Boolean variable or a relational expression would be
considered as a condition.

Decision: A Decision is Boolean Expression consisting of
conditions and zero or more Boolean operators.

Definition 3. A test suite is said to achieve decision cover-
age of an RSML−e specification, if every decision appear-
ing anywhere in the specification evaluates to true at some
point in some test case and evaluates to false at some point
in some other test case in the test suite.

Note here that we are interested in all decisions, not only
decisions in traditional decision points (such as branches).
Consider the code example below.

1: A := b or c
2:
3: if (d and A) then <stmnts>
4: else <stmnts>

In this code fragment we have two decisions (statements 1
and 3) and we have to make sure the test suite makes both
of them true and false in some test to achieve decision cov-
erage. Note here that it is not required that the truth value of



A must have an impact on the decision point on statement
3, that is, the two test inputs (b,¬c,¬d) and (¬b,¬c,¬d)
would achieve decision coverage of the decision on state-
ment 1, but the value of A would not have an an impact on
the outcome of the decision point on statement 3.

If we adopt this definition of decision coverage to the
specification domain, every Boolean expression used to
guard a transition, used to guard interactions with the en-
vironment, encapsulated in a macro, and used to guard the
cases in a case statement (used in function definitions) will
be considered decisions.

To illustrate decision coverage in the context of RSML−e

consider the state variable definition below (where we have
abstracted away the actual clauses for space reasons).

STATE_VARIABLE Onside_FD: On_Off
PARENT: None

EQUALS On IF TABLE
clause1: T *;
clause2: * F;

END TABLE

EQUALS Off IF
TABLE

clause1: T F *;
macro3(): * T *;
clause3: * * F;

END TABLE
END STATE_VARIABLE

MACRO macro3()
clause21: T *;
clause23: * F;

END MACRO

Here we would have to cover the decisions in the tran-
sition definition of the Onside FD variable as well as the
macro to which one of these transition refers. The trap prop-
erties below will provide decision coverage on the transi-
tions for Onside FD.

1.G(!(X(clause1) V !X(clause2)))
2.G(X(clause1) V !X(clause2))
3.G(!(X(clause1 V

(!clause1 & m_macro3.result) V
!clause3))

4.G((X((clause1 V
(!clause1 & m_macro3.result) V
!clause3))

The decision in the macro is addressed with two additional
trap properties.

1. G(! X(m_macro3.result = 1))
2. G(! X(m_macro3.result = 0))

State Transition Decision
246 342 424

Table 1. Number of trap properties generated
for each coverage criterion

State Transition Decision
1.000 1.127 1.125

Table 2. Average length of the test cases in
the test suites

Test suites generated to these trap properties will guarantee
that each decision would take on both the value true and
false.

To summarize, we have automated the generation of trap
properties for a collection of structural coverage criteria of
formal specifications. In this case study we are using the
three representative criteria described above; state coverage,
transition coverage , and decision coverage.

6. Experimental Results

As mentioned in Section 4, we generated tests to pro-
vide the coverage discussed in the previous section. Ta-
ble 1 summarizes the number of trap properties generated
for each coverage criterion from the FGS specification. We
then generated test sequences using our tools infrastructure.
Experiences regarding the performance of this test genera-
tion is presented in [11]. From our previous study, of inter-
est for this paper is the average length of the test cases gen-
erated (Table 2). We were somewhat surprised by the very
short test cases. A closer examination of the flight guidance
model reveals that the state variables in the model are highly
interconnected (they can move from one value to any other
value in one step) making it possible to, in most cases, cover
the constructs of interest (states, transitions, and decisions)
in one step. In addition, the model checking technology we
used as a test-case generation engine—the bounded model
checker built into NuSMV—is guaranteed to find the short-
est possible counterexample. Thus, we were likely to find
the ”simplest” test case that will exercise the construct of
interest.

The tests we generated were then executed on our fault
seeded models and the fault finding capability compared to
that of tests generated randomly using the same effort as ex-
pended on each structural test set. The results are presented
in Table 3. The results here only reflect the relative fault
finding capability—we made no effort to determine how



Rand. State Tran. Dec.
Var. Repl. 21 14 20 20
Cond. Ins. 5 2 3 4

Cond. Rem. 15 4 11 8
Cond. Neg. 25 12 24 24

Total 66 32 58 56

Table 3. Number of faults revealed by each
test suite

many of the seeded faults actually led to semantically dif-
ferent specifications. To our disappointment, the structural
tests performed consistently worse than our random tests
and we began an investigation to determine why.

7. Discussion

Our initial reaction to our results was to question our im-
plementation of the test case generation—we simply sus-
pected that we erroneously generated tests that did not pro-
vide the desired coverage. A close examination (and specifi-
cation coverage measures) confirmed that the test suites pro-
vided the desired coverage—they just did not reveal many
faults. We found the problems were related to (1) a model
structure that ‘cheats’ the coverage criteria and (2) coverage
criteria that are inadequate with respect to the semantics of
our specification language (as well as other common lan-
guages). Below we elaborate on these two issues.

7.1 Model Structure

As mentioned above, the test-case length was universally
very short and, seemingly, quite poor at revealing faults. To
explain this phenomenon, let us take a closer look at the
flight guidance system used as a case-example.

The FGS is part of a larger flight control system (FCS)
that, among many other components, contains two FGSs—
a left FGS and a right FGS (one for the pilot and one for
the co-pilot). In most situation, only one FGS is actually
flying the aircraft (it is the active FGS), and the other FGS
(the inactive FGS) behaves as a hot spare, receiving all of its
state information from the active FGS. In short, there is an
interface between the FGSs through which they can control
each other and, if it is the active FGS, command the other
FGS into arbitrary state configurations.

Most test-cases that the model checker found took ad-
vantage of this particular feature of the FGS model—the
test cases made the FGS under test the inactive FGS and
simply used the other FGS interface to drive the model to
the desired state (or take the desired transition, or make the
desired condition true or false). For example, when the FGS

State Transition Decision
1.114 1.131 1.139

Table 4. Average length of the test cases in
the test suites after using the invariant

is active there are some rather complex rules for when to en-
ter the ROLL mode. When the FGS is inactive, on the other
hand, all that is required to enter ROLLmode is to command
it there with an input variable. Thus, is is possible for test
cases to achieve coverage by commanding the FGS to go
to states and take transitions—they do not exercise the ac-
tual mode logic of the FGS. Naturally, such test cases will
not reveal any faults seeded in the mode logic of the FGS.
Unfortunately, this is exactly the test case that the bounded
model checker is likely to find—it is most often the simplest
possible way of achieving the test objective.

To solve this problem, we can simply prohibit messages
on the FGS to FGS interface and in that way force the model
checker to find test cases that actually use the mode logic.
For example, we can add an invariant to the model checker
prohibiting the FGS from being inactive.

INVAR (Is_This_Side_Active = 1)

This is technically quite an easy thing to do, but it requires
intimate knowledge of the existence of the FGS-FGS inter-
face and the knowledge that this interface can be “abused”
by the test case generation automation to achieve its objec-
tives. We see this as an issue in many critical systems since
they are typically designed with one or more hot-spares that
need to be kept synchronized.

To investigate the how severe this effect was on the fault
finding capabilities of our test suites, we regenerated the
suites with the above mentioned invariant that keeps the
FGS model in the active state. As can be seen in Ta-
bles 4 and 5, the test case length as well as the fault
finding capability of the test suites went up. The perfor-
mance is still inadequate, however, and random testing per-
forms better. From this work we have come to the con-
clusion that state and transition coverage are clearly inad-
equate in this domain—more elaborate coverage is neces-
sary. We have some hope for various condition based cov-
erage, for example, modified decision and condition cover-
age (MC/DC) [5], but our experiences with simple decision
coverage (discussed next) raises some issues with the adop-
tion of condition based coverage criteria in the specification
domain.

7.2 Inadequate Coverage Criteria

To illustrate the problems with condition based coverage
criteria, consider again the small code fragment we used



State State(a) Tran. Tran.(a)
Var. Repl. 14 17 20 21
Cond. Ins. 2 1 3 3

Cond. Rem. 4 7 11 11
Cond. Neg. 12 21 24 24

Total 32 46 58 59

Table 5. Faults found after using the invariant
that keeps the current side active (results us-
ing the active side are indicated with an (a))

when defining the notion of decision coverage in Section 5.

1: A := b or c
2:
3: if (d and A) then <stmnts>
4: else <stmnts>

As mentioned earlier, two test inputs (b,¬c,¬d) and
(¬b,¬c,¬d) would achieve decision coverage of the deci-
sion on statement 1, but there is no requirement that the
outcome of the decision on statement 1 affects the flow of
the program on statement 3. In fact, there is no require-
ments that the decision under consideration is even evalu-
ated. Consider a minor modification of the example above
where we break out the decision on line 1 to a Boolean func-
tion.

1: func A():
2: {return (b or c)}
3:
4: if (d and A()) then <stmnts>
5: else <stmnts>

If the language has lazy-evaluation, A() will not get called
and the decision (now on line 2) will not even get evalu-
ated. Technically, however, the two test inputs (b,¬c,¬d)
and (¬b,¬c,¬d) would still achieve decision coverage of
the decision on line 2. Naturally, these tests will not reveal
any faults in the function since it will never get executed.
This is exactly the problem we face with the condition based
coverage criteria we have considered such as, for example,
decision coverage and MC/DC coverage—if the decision
of interest is masked out or never evaluated, the test is not
particularly useful. To our knowledge, the condition based
coverage criteria required in practice (for example, in cer-
tification to DO-178B) and used in previous studies do not
require us to take usage information into account. As can
be seen in the data in Table 1, decision coverage did not
reveal as many faults as we expected, largely because the
tests generated satisfied the ‘letter’ of the criterion—the in-
puts make the decision true and false—but not the ‘spirit’
of the criterion—the decision is never actually evaluated.

To solve this problem, the coverage criteria must be mod-
ified to take data flow into account—the criteria must assure
that somehow the decisions are invoked. The unanswered
question is “How?”. We must modify the requirements on
the test suite to require that the decision is exercised in some
way by the test suite. For example, the following are possi-
bilities:

1. Decision invoked at least once for each required truth
assignment,

2. Every invocation of the decision is tested for each re-
quired truth assignment,

3. Every invocation is invoked for each truth assign-
ment of the decision, and the invocation point must
be demonstrated to have an independent impact on the
control flow.

As can be seen above, there are many combinations of con-
dition based and data-flow based coverage criteria that can
be developed. The question is, which ones are likely to re-
veal faults and which ones will give us test suites that are
of a size that makes the test effort tractable? What we
have done in this limited study is to demonstrate that the
basic coverage criteria are clearly inadequate. If given he
same amount of resources, random testing performs signif-
icantly better—there is a clear problems with the structural
specification coverage criteria we evaluated that must be ad-
dressed.

8. Summary and Conclusions

To summarize, in a previous investigation we evaluated
how well model checking techniques scaled when used for
test case generation from formal specifications. [11]. Al-
though the approaches scaled well, our experience from this
experiment cast some doubts as to the effectiveness of the
test cases generated. To evaluate the test suites generated to
structural specification coverage criteria—state, transition,
and decision coverage—we conducted a follow-up exper-
iment where we compared the fault finding capability of
these test suites with randomly generated test data. To pro-
vide a fair comparison, we assured that the effort spent on
structural tests was comparable to the effort spend perform-
ing random tests. To our disappointment, we found that the
structural tests uniformly performed worse than randomly
generated tests. The poor performance of the structural tests
is, in this case study, related to two issues (1) the structure of
the flight guidance system (FGS) under test and (2) a mis-
match between the specification coverage criteria and the
semantics of the specification language.

Part of the FGS functionality allows it to be commanded
into arbitrary states and to take arbitrary transitions. This



functionality is required when the FGS operates as a redun-
dant spare to the second FGS on the flight deck. By using
this interface, it is quite easy to satisfy the state and transi-
tion coverage criteria without actually exercising any of the
‘real’ logic in the system under test and we are unlikely to
reveal many faults in this logic. Condition based coverage
criteria, such as the decision criterion we used in this exper-
iment, as described in the literature, do not require that the
decision of interest actually has an outcome on the control
flow of the system under test. Therefore, it is easy to de-
rive tests that will not reveal any faults in decisions that are
masked out. Therefore, the fault finding capability of this
class of coverage criteria will also be limited.

Our experiences from this experiment raises some con-
cern about the use of automated test case generation from
formal specifications. Effective test case generation clearly
requires an intimate knowledge of the structure and behav-
ior of the system under test so that the tester can, for ex-
ample, block input channels such as the Transfer Switch to
get better quality tests. The coverage criteria used in speci-
fication testing and specification based testing must also be
refined to better fit the semantics of the specification lan-
guages and the structure of the models captured in these
languages. In particular, there is a need to include some
notion of data-flow information in the condition based cov-
erage criteria. We are currently investigating these issues
and hope to have additional results shortly. We do, how-
ever, recognize some of the limitations of our experiments.
First, although we use a realistic model of the FGS as a
case example, we have not conducted experiments on other
models having a different structure. Second, we conducted
the case study with quite simple condition based coverage
criteria such as transition and decision coverage. We are en-
couraging other researchers to conduct similar experiments
on specifications with different structure so the community
can identify a collection of coverage criteria likely to reveal
faults in a broad class of systems while at the same time
being tractable to generate and execute.

References

[1] Proceedings of The First International Workshop on Au-
tomated Program Analysis, Testing and Verificaiton, ICSE
2000. 2000.

[2] P. E. Ammann and P. E. Black. A specification-based cover-
age metric to evaluate test sets. In Proceedings of the Fourth
IEEE International Symposium on High-Assurance Systems
Engineering. IEEE Computer Society, Nov. 1999.

[3] P. E. Ammann, P. E. Black, and W. Majurski. Using model
checking to generate tests from specifications. In Proceed-
ings of the Second IEEE International Conference on For-
mal Engineering Methods (ICFEM’98), pages 46–54. IEEE
Computer Society, Nov. 1998.

[4] J. Callahan, F. Schneider, and S. Easterbrook. Specification-
based testing using model checking. In Proceedings of the
SPIN Workshop, August 1996.

[5] J. Chilenski and S. Miller. Applicability of modified condi-
tion/decision coverage to software testing. Software Engi-
neering Journal, 9:193–200, September 1994.

[6] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999.

[7] A. Engels, L. M. G. Feijs, and S. Mauw. Test generation for
intelligent networks using model checking. In Proceedings
of TACAS’97, LNCS 1217, pages 384–398. Springer, 1997.

[8] A. Gargantini and C. Heitmeyer. Using model checking to
generate tests from requirements specifications. Software
Engineering Notes, 24(6):146–162, November 1999.

[9] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8(3):231–274,
June 1987.

[10] K. Hayhurst, D. Veerhusen, and L. Rierson. A practical tu-
torial on modified condition/decision coverage. Technical
Report NASA/TM-2001-210876, NASA, 2001.

[11] M. P. Heimdahl, S. Rayadurgam, W. Visser, G. Devaraj, and
J. Gao. Auto-generating test sequences using model check-
ers: A case study. In 3rd International Worshop on Formal
Approaches to Testing of Software (FATES 2003).

[12] H. S. Hong, S. D. Cha, I. Lee, O. Sokolsky, and H. Ural.
Data flow testing as model checking. In Proceedings of 2003
International Confernece on Software Engineering, Port-
land, Oregon, May 2003.

[13] H. S. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporal
logic based theory of test coverage and generation. In Pro-
ceedings of the International Conference on Tools and Al-
gorithms for Construction and Analysis of Systems (TACAS
’02), Grenoble, France, April 2002.

[14] N. Leveson, M. Heimdahl, H. Hildreth, and J. Reese.
Requirements Specification for Process-Control Systems.
IEEE Transactions on Software Engineering, 20(9):684–
706, September 1994.

[15] NuSMV: A New Symbolic Model Checking. Available at
http://nusmv.irst.itc.it/.

[16] S. Rayadurgam and M. P. Heimdahl. Coverage based test-
case generation using model checkers. In Proceedings of
the 8th Annual IEEE International Conference and Work-
shop on the Engineering of Computer Based Systems (ECBS
2001), pages 83–91. IEEE Computer Society, April 2001.

[17] RTCA. Software Considerations In Airborne Systems and
Equipment Certification. RTCA, 1992.

[18] F. C. A. S. Team. What is a ”decision” in application of
modified condition/decision coverage and decision coverage
(dc)? Technical Report position paper, 2002.

[19] J. M. Thompson, M. P. Heimdahl, and S. P. Miller. Spec-
ification based prototyping for embedded systems. In Sev-
enth ACM SIGSOFT Symposium on the Foundations on Soft-
ware Engineering, number 1687 in LNCS, pages 163–179,
September 1999.

[20] J. M. Thompson, M. W. Whalen, and M. P. Heimdahl. Re-
quirements capture and evaluation in NIMBUS: The light-
control case study. Journal of Universal Computer Science,
6(7):731–757, July 2000.


