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ABSTRACT
In black-box testing, one is interested in creating a suite
of tests from requirements that adequately exercise the be-
havior of a software system without regard to the internal
structure of the implementation. In current practice, the
adequacy of black box test suites is inferred by examining
coverage on an executable artifact, either source code or a
software model.

In this paper, we define structural coverage metrics di-
rectly on high-level formal software requirements. These
metrics provide objective, implementation-independent mea-
sures of how well a black-box test suite exercises a set
of requirements. We focus on structural coverage crite-
ria on requirements formalized as LTL properties and dis-
cuss how they can be adapted to measure finite test cases.
These criteria can also be used to automatically generate a
requirements-based test suite. Unlike model or code-derived
test cases, these tests are immediately traceable to high-level
requirements. To assess the practicality of our approach, we
apply it on a realistic example from the avionics domain.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation

General Terms
Verification
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1. INTRODUCTION
In black-box testing, one is interested in creating a suite

of tests from requirements that adequately exercise the be-
havior of a software system without regard to the internal
structure of the implementation. This is the preferred style
of testing in safety-critical domains and is advocated by
standards such as DO-178B [27]. Currently, there is no ob-
jective standard for directly determining the adequacy of a
black-box test suite given a set of requirements. Instead,
the adequacy of such suites are inferred by examining differ-
ent coverage metrics on an executable artifact, either source
code [4, 5] or software models [1, 22].

There are several problems with using the executable ar-
tifacts to measure the adequacy of black-box tests. First, it
is an indirect measure: if an implementation is missing func-
tionality, a weak set of black-box tests may yield structural
coverage of the implementation and yet not expose defects of
omission. Conversely, if black-box tests yield poor coverage
of an implementation, an analyst must determine whether
it is because (a) there are missing or implicit requirements,
(b) there is code in the implementation that is not derived
from the requirements, or (c) the set of tests derived from
the requirements was inadequate. Finally, an executable ar-
tifact is necessary to measure the adequacy of the test suite.
This may mean that the adequacy of a test suite cannot be
determined until late in the development process.

Generally, requirements are defined informally as, for ex-
ample, “shall” statements or use-cases. However, recent ef-
forts (e.g., [19]) have formalized and verified software re-
quirements using notations such as temporal logics [9] and
synchronous observers [12]. Given formal requirements, it
is possible to define meaningful coverage metrics directly on
the structure of the requirements.

In this paper, we present coverage metrics on formal high-
level software requirements. These metrics are desirable
because they provide objective, implementation-independent
measures of how well a black-box test suite exercises a set of
requirements. Further, given a set of test cases that achieve
a certain level of structural coverage of the high-level re-
quirements, it is possible to measure model or code cover-
age to objectively assess whether the high-level requirements
have been sufficiently defined for the system. This approach
yields several objective measurements that are not possible



with traditional testing techniques, and integrates and cross-
checks several of the validation and verification activities.

In addition, using the coverage metrics and an executable
formal model, it is possible to autogenerate requirements-
based test cases from properties. This idea has also been
explored by Tan et al. [28], and in several efforts at the
model and/or source code level [1, 24, 11]. The benefit from
generating tests from properties as opposed to models or
code is that the generated test cases can be immediately
traced back to a high-level requirement of interest. This
aspect may be helpful to satisfy the testing guidelines of
rigorous development processes such as DO-178B [27].

The idea of property metrics has also been explored theo-
retically by Tan et al. [28], using metrics based on vacuity [3,
16, 21]. Our work provides new metrics which we believe to
be more practical for measuring coverage given black-box
tests and discusses some of the implications of property-
based testing. To evaluate the requirements coverage met-
rics and the practicality of autogenerating requirements-
based tests, we have implemented a property-based test case
generator and applied our techniques to a realistic system
from the civil avionics domain.

The remainder of the paper is organized as follows. Sec-
tion 2 presents a case example of the flight guidance sys-
tem we use to illustrate our ideas. Our contributions to
requirements-based testing and the test coverage criteria
used are introduced in Section 3. Section 4 discusses how
we generate requirements-based tests for the FGS example
and the results obtained from running the tests. Related
work is discussed in Section 5. Finally, Section 6 discusses
the implications of the results and points to future work in
requirements-based test case generation.

2. THE FLIGHT GUIDANCE SYSTEM
To illustrate our approach we will use an example from

commercial avionics—a Flight Guidance System (FGS). A
Flight Guidance System is a component of the overall Flight
Control System (FCS) in a commercial aircraft. It compares
the measured state of an aircraft (position, speed, and al-
titude) to the desired state and generates pitch and roll-
guidance commands to minimize the difference between the
measured and desired state. The FGS consists of the mode
logic, which determines which lateral and vertical modes
of operation are active and armed at any given time, and
the flight control laws that accept information about the
aircraft’s current and desired state and compute the pitch
and roll guidance commands. In this paper we focus on the
mode logic of the FGS. The requirements and implementa-
tion model used in this paper are described in [18] and are
similar to production systems created by Rockwell Collins
Inc.

3. REQUIREMENTS-BASED TESTING
There is a close relationship between the high-level re-

quirements and the properties captured for verification pur-
poses. As an example, consider the requirement from the
sample FGS shown in Table 1 defining how the Flight Di-
rector (FD) is turned on by the Autopilot (AP). The prop-
erty states that it is globally true (G) that if the Onside FD
is not on and the AP is not engaged, in the next instance
in time (X) if the AP is engaged, then the Onside FD will
also be on. In [19], the full set of informal requirements

“If the onside FD cues are off, the onside FD cues
shall be displayed when the AP is engaged.”

(a)

G((¬Onside FD On ∧ ¬Is AP Engaged) →
X(Is AP Engaged→ Onside FD On))

(b)

Table 1: (a) Sample high-level requirement on the
FGS (b) LTL property for the requirement

for the FGS were translated into 293 properties in Linear
Time Temporal Logic (LTL) [9] and verified over an imple-
mentation model of the mode logic using the NuSMV model
checker. In most cases, as in Table 1, the LTL property is
very similar in structure to the natural language requirement
and the translation was straightforward.

An analyst developing test cases from the informal re-
quirements might derive the scenario in Table 2 to demon-
strate that the requirement is met. Does this adequately
cover this high-level requirement? Does passing such a test
case indicate that the model has correctly captured the be-
havior required through this requirement? If not, what
would additional test cases look like? The specification of
the requirement as a property allows us to define several
objective criteria with which to determine whether we have
adequately tested the requirement. We hypothesize that
coverage of such criteria can serve as a reliable measure of
the thoroughness of the requirements-based testing activi-
ties.

1. Turn the Onside FD off
2. Disengage the AP
3. Engage the AP
4. Verify that the Onside FD comes on

Table 2: Manually developed requirements-based
test scenario

To define suitable coverage metrics, it is possible to adapt
several existing code and modeling coverage metrics, for ex-
ample, [26, 23, 20, 11]. A distinction must be made, how-
ever, between coverage metrics over source code and cov-
erage metrics over requirements. Metrics over code assume
that Boolean expressions can take on both ‘true’ and ‘false’
values. When generating tests from requirements, we usu-
ally are interested in test cases exercising the different ways
of satisfying a requirement (i.e., showing that it is true).
Test cases that presume the requirement is ‘false’ are not
particularly interesting; this is discussed in further detail in
Section 3.1.2.

In this paper, we focus on structural coverage metrics over
LTL. Nevertheless, there are several other notations that can
be used to describe high-level requirements. For example,
SCADE [29] and Reactis [25] use synchronous observers [12].
Synchronous observers are small specifications of high-level
requirements written as state machines or in the same nota-
tion as the software specification, and they run “in parallel”
with the model. The notion of requirements coverage can
now be viewed as structural coverage over the observer. We
will consider requirements formulated as synchronous ob-
servers and the notion of requirements coverage applied to
them in our future work.



3.1 Structural Coverage over LTL Syntax
Structural coverage criteria defined for source code and for

executable modeling languages can be adapted to fit propo-
sitional temporal logics such as CTL and LTL. For instance,
decision coverage of the requirements would require a single
test case that demonstrates that the requirement is satisfied,
such as the manually developed one in Table 2. Typically,
this single positive test case is too weak of a coverage since
it is often possible to derive a useless test case. If we again
consider our sample requirement and formalization from Ta-
ble 1, we can satisfy the decision coverage metric by creating
a test case that leaves the autopilot disengaged throughout
the test and disregards the behavior of the flight director.
Although this test case technically satisfies the property, it
does not shed much light on the correctness of our model.

A better alternative would be to adopt one of the more rig-
orous structural coverage criteria such as vacuity coverage [3]
or the Modified Condition/Decision Coverage (MC/DC) cri-
terion [5, 13], for use in the requirements-based testing do-
main. In this section, we define a requirements coverage
metric called Unique First Cause Coverage (UFC) that is
adapted from MC/DC criterion.

MC/DC is a structural coverage metric that is designed to
demonstrate the independent effect of basic Boolean condi-
tions (i.e., subexpressions with no logical operators) on the
Boolean decision (expression) in which they occur. A test
suite is said to satisfy MC/DC if executing the test cases in
the test suite will guarantee that:

• every point of entry and exit in the model has been
invoked at least once,

• every basic condition in a decision in the model has
taken on all possible outcomes at least once, and

• each basic condition has been shown to independently
affect the decision’s outcome

Note that each instance of a condition within a formula is
treated separately: the formula (A ∧ B) ∨ A) has three ba-
sic conditions, and we must determine the independence of
each instance of A separately. In this paper we use masking
MC/DC [13] to determine the independence of conditions.
In masking MC/DC, a basic condition is masked if vary-
ing its value cannot affect the outcome of a decision due to
structure of the decision and the value of other conditions.
To satisfy masking MC/DC for a basic condition, we must
have test states in which the condition is not masked and
takes on both ‘true’ and ‘false’ values.

3.1.1 MC/DC Coverage of Decisions
In masking MC/DC, the masking criteria are defined over

Boolean operators (and, in the case of imperative programs,
loops and selection statements). For example, given the
expression A ∧B, to show the independence of B, we must
hold the value of A to true; otherwise varying B will not
affect the outcome of the expression. When we consider
decisions with multiple Boolean operators, we must ensure
that the test results for one operator are not masked out
by the behavior of other operators. For example, given A ∨
(B ∧ C) the tests for B ∧ C will not affect the outcome of
the decision if A is true.

It is straightforward to describe the set of required MC/DC
assignments for a decision as a set of Boolean expressions.

Each expression is designed to show whether a particular
condition positively or negatively affects the outcome of a
decision. That is, if the expression is true, then the corre-
sponding condition is guaranteed to affect the outcome of
the decision. Given a decision A, we define A+ to be the set
of expressions necessary to show that all of the conditions in
A positively affect the outcome of A, and A− to be the set of
expressions necessary to show that the all of the conditions
in A negatively affect the outcome of A.

We can define A+ and A− schematically over the structure
of complex decisions as follows:

x+ = {x} (where x is a basic condition)

x− = {¬x} (where x is a basic condition)

The positive and negative test cases for conditions are
simply the singleton sets containing the condition and
its negation, respectively.

(A ∧B)+ = {a ∧B | a ∈ A+} ∪ {A ∧ b | b ∈ B+}
(A ∧B)− = {a ∧B | a ∈ A−} ∪ {A ∧ b | b ∈ B−}

To get positive MC/DC coverage of A ∧ B, we need
to make sure that every element in A+ uniquely con-
tributes to making A ∧ B true while holding B true,
and symmetrically argue for the elements of B+. The
argument for negative MC/DC coverage is the same,
except we show that A∧B is false by choosing elements
of A− and B−.

(A ∨B)+ = {a ∧ ¬B | a ∈ A+} ∪ {¬A ∧ b | b ∈ B+}
(A ∨B)− = {a ∧ ¬B | a ∈ A−} ∪ {¬A ∧ b | b ∈ B−}

To get positive (negative) MC/DC coverage over A ∨
B, we need to make sure that every element in A+

(A−) uniquely contributes to making A∨B true (false)
while holding B false, and the symmetric argument for
elements of B+ (B−).

(¬A)+ = A−

(¬A)− = A+

The positive and negative MC/DC coverage sets for
¬A swap the positive and negative obligations for A.

Each of the expressions in the positive and negative sets
can be seen as defining a constraint over a program or model
state. The process of satisfying MC/DC involves determin-
ing whether each of these constraints is satisfied by some
state that is reached by a test within a test suite.

3.1.2 Unique-First-Cause (UFC) Coverage
Since requirements captured as LTL properties define paths

rather than states, we broaden our view of structural cover-
age to accommodate satisfying paths rather than satisfying
states. The idea is to measure whether we have sufficient
tests to show that all atomic conditions within the property
affect the outcome of the property. We can define these test
paths by extending the constraints for state-based MC/DC
to include temporal operators. These operators describe the
path constraints required to reach an acceptable state. The
idea is to characterize a trace π = s0 → s1 → . . . in which
the formula holds for states s0 . . . sk−1, then passes through
state sk, in which the truth or falsehood of the formula is
determined by the atomic condition of interest. For satis-
fying traces, we require that the formula continue to hold
thereafter.



A test suite is said to satisfy UFC coverage over a set of
LTL formulas if executing the test cases in the test suite will
guarantee that:

• every basic condition in a formula has taken on all
possible outcomes at least once

• each basic condition has been shown to independently
affect the formula’s outcome.

We define independence in terms of the shortest satisfying
path for the formula. Thus, if we have a formula A and a
path π, an atom α in A is the unique first cause if, in the first
state along π in which A is satisfied, it is satisfied because
of atom α. To make this notion concrete, suppose we have
the formula F(a ∨ b) and a path P = s0 → s1 → . . . in
which a was initially true in step s2 and b was true in step
s5. For path P , a (but not b) would satisfy the unique first
cause obligation. It is possible to generalize this definition
to unique cause, which states that an atom α is necessary
for the satisfaction of A, but space concerns prevent us from
covering both formulations in this paper.

The definition above takes the evenhanded view that all
formulas will be satisfiable, that is, there are some traces
in which the property is true and some in which it is false.
Nevertheless, we eventually want a system in which all of
the properties (requirements) are valid. Therefore, we are
primarily concerned with the positive set of test cases for
a formula. It is necessary, however, to define the negative
UFC constraint sets since when an LTL formula, say f , is
negated, the positive UFC constraints of ¬f is evaluated as
the negative UFC constraints of f .

For the formalization of UFC coverage of requirements
expressed as LTL properties we will use the notational con-
ventions that were defined above for Boolean expressions
and extend them to include temporal operators in LTL.

We extend A+ and A− defined over states to define sat-
isfying paths over LTL temporal operators as follows:

G(A)+ = {A U (a ∧ G(A)) | a ∈ A+}
F(A)− = {¬A U (a ∧G(¬A)) | a ∈ A−}

G(A) is true if A is true along all states within a path.
The A U (a ∧ G(A)) formula ensures that each el-
ement a in A+ contributes to making A true at some
state along a path in which A is globally true.

F(A)− is the dual of G(A)+, so the obligations match
after negating A and a.

F(A)+ = {¬A U a | a ∈ A+}
G(A)− = {A U a | a ∈ A−}

The independent effect of a ∈ A+ for the F(A) formula
is demonstrated by showing that it is the first cause
for A to be satisfied. Similar to the previous definition,
G(A)− is the dual of F (A)+.

X(A)+ = {X(a) | a ∈ A+}
X(A)− = {X(a) | a ∈ A−}

The independent effects of a ∈ A+ (resp. a ∈ A−) are
demonstrated by showing that they affect the formula
in the next state.

(A U B)+ =
{(A ∧ ¬B) U ((a ∧ ¬B) ∧ (A U B)) | a ∈ A+} ∪
{(A ∧ ¬B) U b | b ∈ B+}
For the formula A U B to hold, A must hold in all
states until we reach a state where B holds. There-
fore, positive UFC coverage for this would mean we

have to ensure that every element in A+ contributes
to making A true along the path and every element in
B+ contributes to completing the formula.

The formula to the left of the union provides positive
UFC over A in (A U B). Recall that an ‘until’ formula
is immediately satisfied if B holds. Therefore, in order
to show that some specific atom in A (isolated by the
formula a) affects the outcome, we need to show that
this atom is necessary before B holds. This is accom-
plished by describing the prefix of the path in which
a affects the outcome as: (A ∧ ¬B) U (a ∧ ¬B). In
order to ensure that our prefix is sound, we still want
B to eventually hold, we add (A U B) to complete the
formula.

The formula on the right of the union is similar and
asserts that some b ∈ B is the unique first cause for B
to be satisfied.

(A U B)− =
{(A ∧ ¬B) U ((a ∧ ¬B) | a ∈ A−} ∪
{(A ∧ ¬B) U (b ∧ ¬(A U B)) | b ∈ B−}
For the formula A U B to be falsified, there is some
state in which A is false before B is true. The formula
to the left of the union demonstrates that a ∈ A−

uniquely contributes to the falsehood of the formula
by describing a path in which A holds (and B does
not — otherwise the formula A U B would be true)
until a state in which both a and B are false.

The formula to the right demonstrates that b ∈ B−

uniquely contributes to the falsehood of the formula
by describing a path in which A U B eventually fails,
but A holds long enough to contain state b falsifying
B.

The formulations above define a rigorous notion of re-
quirements coverage over execution traces. Since we have
been working with linear time temporal logic, the defini-
tions apply over infinite traces. Naturally, test cases must
by necessity be finite; therefore, the notion of requirements
coverage must apply to finite traces.

3.1.3 Adapting Formulas to Finite Tests
LTL is normally formulated over infinite paths while test

cases correspond to finite paths. Nevertheless, the notion of
coverage defined in the previous section can be straightfor-
wardly adapted to consider finite paths as well. There is a
growing body of research in using LTL formulas as monitors
during testing [17, 10, 2], and we can adapt these ideas to
check whether a test suite has sufficiently covered a property.

Manna and Pnueli [17] define LTL over incomplete mod-
els, that is, models in which some states do not have succes-
sor states. In this work, the operators are given a best-effort
semantics, that is, a formula holds if all evidence along the
finite path supports the truth of the formula. The most
significant consequence of this formulation is that the next
operator (X) is split into two operators: X! and X, which
are strong and weak next state operators, respectively. The
strong operator is always false on the last state in a finite
path, while the weak operator is always true.

It is straightforward to define a formal semantics for LTL
over finite paths. We assume that a state is a labeling L :
V → {T, F} for a finite set of variables V , and that a finite
path π of length k is a sequence of states s1 → s2 → ...→ sk.



1. π � true
2. π � p iff |π| > 0 and p ∈ L(s1)
3. π � ¬A iff π 2 A
4. π � (A ∧B) iff π � A and π � B
5. π � (A ∨B) iff π � A or π � B
6. π � X(A) iff |π| ≤ 1 or π2 � A
7. π � X!(A) iff |π| > 1 and π2 � A
8. π � G(A) iff ∀1 ≤ i ≤ |π| πi � A
9. π � F (A) iff for some 1 ≤ i ≤ |π| πi � A
10. π � A U B iff there is some 1 ≤ i ≤ |π|

where πi � B and ∀j = 1..(i− 1), πj � A

Table 3: Semantics of LTL over Finite Paths

Test1:
Atom Step1 Step2 Step3
a t t f
b t f t
c f f f

Test2:
Atom Step1 Step2
a t t
b t f
c f t

Table 4: Test Suite for Property ((a ∨ b) U c)

We write πi for the suffix of π starting with state si, and the
length of the path as |π|. Given these definitions, the formal
semantics of LTL over finite paths is defined in Table 3.
As expected, these definitions correspond with the standard
semantics except that they do not require that G properties
hold infinitely (only over the length of the finite path), and
do not require X properties to hold in the last state of a
finite path.

The semantics in Table 3 are sensible and easy to under-
stand but may be too strong for measuring test coverage.
We may want to consider tests that show the independence
of one of the atoms even if they are “too short” to discharge
all of the temporal logic obligations for the original property.
For example, consider the formula:

((a ∨ b) U c)

and the test cases in Table 4. Are these two test cases suf-
ficient to show the independent effects of a, b, and c? From
one perspective, test 1 is (potentially) a prefix of a path that
satisfies ((a ∨ b) U c) and independently shows that a and
b affect the outcome of the formula; the test case illustrates
that the formula holds with only a or only b being true.
Test 2 shows the independent effect of c. From another per-
spective (the perspective of the finite semantics described
above), test 1 does not satisfy the formula (since the finite
semantics in Table 3 requires that for the until formula to
hold, c must become true in the path), so cannot be used to
show the independent effect of any of the atoms.

The issue with these tests (and with finite paths in gen-
eral) is that there may be doubt as to whether the property
as a whole will hold. This issue is explored in [10], which de-
fines three different semantics for temporal operators: weak,
neutral, and strong. The neutral semantics are the semantics
of [17] described in Table 3. The weak semantics do not re-
quire eventualities (F and the right side of U) to hold along
a finite path, and so describe prefixes of paths that may sat-

isfy the formula as a whole. The strong semantics always fail
on G operators, and therefore disallow finite paths if there
is any doubt as to whether the stated formula is satisfied.

Since we believe that the test cases in Table 4 adequately
illustrate the independence of a and b, we slightly weaken
our LTL obligations. Given a formula f , we are interested
in a prefix of an accepting path for f that is long enough to
demonstrate the independence of our condition of interest.
Thus, we want the operators leading to this demonstration
state to be neutral1 , but the operators afterwards can be
weak.

The strong and weak semantics are a coupled dual pair be-
cause the negation operator switches between them. In [10],
the semantics are provided as variant re-formulations of the
neutral semantics. However, they can also be described as
syntactic transformations of neutral formulas that can then
be checked using the neutral semantics. We define weak [F ]
to be the weakening of a formula F and strong [F ] to be the
strengthening of formula F . The transformations weak and
strong are defined in Table 6. We refer the reader to [10] for
a full description of the three semantics and their effect on
provability within the defined logic.

Given these transformations, we can re-formulate the nec-
essary UFC paths in LTL. The idea is that we want a prefix
of a satisfying path that conclusively demonstrates that a
particular condition affects the outcome of the formula. To
create such a prefix, we want a neutral formula up to the
state that demonstrates the atomic condition and a weak
formula thereafter. The modified formulas defining UFC
over finite prefixes are shown in Table 7.

The only formulas that are changed in Table 7 from the
original formulation in Section 3.1.2 are G(A)+, F (A)−, one
branch of (A U B)+, and one branch of (A U B)−. These
are the formulas that have additional obligations to match
a prefix of an accepting path after showing how the focus
condition affects the path.

3.1.4 Discussion
It is possible to take two views when measuring the cov-

erage of requirements from a given test suite. The first
perspective states that each test case must have sufficient
evidence to demonstrate that the formula of interest is true
and that a condition of interest affects the outcome of the
formula. This perspective can be achieved using the neutral
finite LTL rules and our original property formulation.

The second perspective states that each test case is a prefix
of an accepting path for the formula of interest and that
the condition of interest affects the outcome of the formula.
This perspective can be achieved using the weakened UFC
obligations shown in Table 7.

Making this discussion concrete, given our example for-
mula:

f = ((a ∨ b) U c)

the UFC obligations for the original and modified rules are
shown in Table 5. In the original formulation, the first two
obligations are not satisfied by the test suite in Table 4 be-
cause c never becomes true in the first test case. In the
weakened formulation, however, the requirement is covered
because the first test case is a potential prefix of an accepting
path.

1The strong semantics are too strong – any property con-
taining a G-operator will be disproved.



1. weak [true] = true 12. strong [true] = true
2. weak [p] = p 13. strong [p] = p
3. weak [¬A] = ¬strong [A] 14. strong [¬A] = ¬ weak [A]
4. weak [A ∧B] = weak [A] ∧ weak [B] 15. strong [A ∧B] = strong [A] ∧ strong [B]
5. weak [A ∨B] = weak [A] ∨ weak [B] 16. strong [A ∨B] = strong [A] ∨ strong [B]
6. weak [X!(A)] = X(weak [A]) 17. strong [X!(A)] = X!(strong [A])
7. weak [X(A)] = X(weak [A]) 18. strong [X(A)] = X!(strong [A])
8. weak [G(A)] = G(weak [A]) 19. strong [G(A)] = false
9. weak [F (A)] = true 20. strong [F (A)] = F (strong [A])
10. weak [A U B] = weak [A] W 2weak [B] 21. strong [A U B] = strong [A] U strong [B]
11. weak [A W B] = weak [A] Wweak [B] 22. strong [A W B] = strong [A] U strong [B]

Table 6: Definitions of weak and strong LTL transformations

G(A)+ = {A U (a ∧ weak[G(A)]) | a ∈ A+}
G(A)− = {A U a | a ∈ A−}
F (A)+ = {¬A U a | a ∈ A+}
F (A)− = {¬A U (a ∧ weak[G(¬A)]) | a ∈ A−}
(A U B)+ = {(A ∧ ¬B) U ((a ∧ ¬B) ∧ weak[A U B]) | a ∈ A+} ∪

{(A ∧ ¬B) U b | b ∈ B+}
(A U B)− = {(A ∧ ¬B) U ((a ∧ ¬B) | a ∈ A−} ∪

{(A ∧ ¬B) U (b ∧ (¬weak[A U B])) | b ∈ B−}
X(A)+ = {X(a) | a ∈ A+}
X(A)− = {X(a) | a ∈ A−}

Table 7: Weakened UFC LTL Formulas describing Accepting Prefixes

Original Fomulation:
{ ((a ∨ b) ∧ ¬c) U (a ∧ ¬c ∧ ((a ∨ b) U c)),

((a ∨ b) ∧ ¬c) U (b ∧ ¬c ∧ ((a ∨ b) U c)),
((a ∨ b) ∧ ¬c) U c }

Weakened Formulation:
{ ((a ∨ b) ∧ ¬c) U (a ∧ ¬c ∧ ((a ∨ b) W c)),

((a ∨ b) ∧ ¬c) U (b ∧ ¬c ∧ ((a ∨ b) W c)),
((a ∨ b) ∧ ¬c) U c }

Table 5: UFC obligations for ((a ∨ b) U c)

3.2 Automatically Generating Requirements-
Based Tests

Several research efforts have developed techniques for au-
tomatic generation of tests from formal models using model
checkers as test case generation tools [22, 23, 20, 11]. Model
checkers build a finite state transition system and exhaus-
tively explore the reachable state space searching for vio-
lations of the properties under investigation [9]. Should a
property violation be detected, the model checker will pro-
duce a counterexample illustrating how this violation can
take place. In short, a counterexample is a sequence of in-
puts that will take the finite state model from its initial state
to a state where the violation occurs.

One way to use a model checker to find test cases is by
formulating a test criterion as a verification condition for
the model checker. In the previous section, we described
UFC over paths and defined sets of LTL formulas that were
sufficient to show that a particular atomic condition affects
the outcome of the property. Given this set and a formal
model of the software system, we can now challenge the

2W is the Weak Until operator, defined in LTL as
p W q ≡ (p U q) ∨G(p)

model checker to find a way of generating a path to satisfy-
ing one of these formulas by asserting that there is no such
path (i.e., negating the formula). We call such a formula a
trap formula or trap property [11]. The model checker will
now search for a counterexample demonstrating that this
trap property is, in fact, satisfiable; such a counterexample
constitutes a test case that will show the UFC obligation
of interest over the model. By repeating this process for
all formulas within the set derived from a property, we can
derive UFC coverage of the property over the model. By
performing this process on all requirements properties of in-
terest, we can derive a test suite that generates the UFC set
of requirements. We illustrate this process in the case study
in the following section.

4. CASE STUDY
To assess the feasibility of auto-generating tests from re-

quirements on a moderately-sized example, we generated a
set of requirements-based tests from the FGS case example
described in Section 2. The test cases were generated in
three ways. First, we simply negated the formal require-
ments (LTL properties) and provided them as trap proper-
ties to the model checker; the resulting test suite provides
one test case for each requirement. Second, we generated
trap properties for what we call requirements antecedent
coverage. Requirements antecedent coverage ensures that
in requirements of the form G(A → B) the antecedent be-
comes true at least once along a satisfying path so that the
requirement is not vacuously satisfied (antecedent is false
throughout). Third, we generated trap properties for the
positive UFC (Unique First Cause) obligations discussed in
Section 3.1 and used the model checker to generate UFC-
adequate tests over the requirements. In this initial experi-
ment we were interested in determining (1) the feasibility of
generating such tests with a model checker, (2) the number



of test cases needed to provide requirements UFC coverage
for a substantial and realistic example, and (3) what cover-
age of the model these test sets would provide.

To provide realistic results, we conducted the case study
using the requirements and model of the close to produc-
tion model of a flight guidance system we introduced ear-
lier in the paper. This example consists of 293 informal
requirements formalized as LTL properties as well as a for-
mal model captured in our research notation RSML-e [30].
All the properties in the FGS system are safety properties,
there are no liveness properties.

4.1 Setup
The case study followed 3 major steps:

Trap Property Generation: We started with the 293
requirements of the FGS expressed formally as LTL proper-
ties. We generated three sets of trap properties from these
formal LTL properties.

First, we generated tests to provide requirements cover-
age; one test case per requirement illustrating one way in
which this requirement is met. We obtained these test cases
by simply negating each requirement captured as an LTL
property and challenged the model checker to find a test
case.

Second, we generated tests to provide requirements an-
tecedent coverage. Consider the requirement

G(A→ B)

Informally, it is always the case that when A holds B will
hold. A test case providing requirements antecedent cover-
age over such a requirement will ensure that the antecedent
A becomes true at least once along the satisfying path. That
is, the test case would satisfy the obligation

G(A→ B) ∧ F (A)

We implemented a transformation pass over the LTL spec-
ifications so that for requirements of the form G(A → B)
we would generate trap properties requiring A to hold some-
where along the path.

Third, we generated tests to provide requirements UFC
coverage over the syntax (or structure) of the required LTL
properties. The rules for performing UFC over temporal op-
erators were explained in Section 3.1. Using these rules, we
implemented a transformation pass over the LTL specifica-
tions to generate trap properties for both the neutral and
weakened UFC notions discussed in section 3.1 (we used
the same implementation to generate tests for requirements
coverage, and requirements antecedent coverage mentioned
above). However, both neutral and weakened notions of
UFC result in the same test suite for this case example,
since the LTL property set for the FGS system has no ‘fu-
ture’ and ‘until’ temporal operators. We only generated the
positive UFC set over the temporal properties since each of
the properties is known to hold of the model.

Although the properties were already known to hold of
the model, generating tests is still a useful excercise. For a
developer, it provides a rich source of requirements-derived
tests that can be used to test the behavior of the object code.
For the purposes of this paper, it provides a straightforward
way to test the fault finding capability and completeness of
our metrics.

Test suite Generation: To generate the test cases
we leveraged a test case generation environment that was

built in a previous project [15]. This environment uses the
bounded model checker in NuSMV for test case generation.
We automatically translate the FGS model to the input lan-
guage of NuSMV, generate all needed trap properties, and
transform the NuSMV counterexamples to input scripts for
the Nimbus RSML-e simulator so that the tests can be run
on the model under investigation. Previously, we had en-
hanced the Nimbus framework with a tool to measure dif-
ferent kinds of coverage over RSML-e models [14]. There-
fore, we could run the test cases on the RSML-e models and
measure the resulting coverage.

Coverage Measurement: We measured coverage over
the FGS model in RSML-e. We ran all three test suites (re-
quirements coverage, requirements antecedent coverage, and
requirements UFC coverage) over the model and recorded
the model coverage obtained by each. We measured
State coverage, Transition coverage, Decision coverage, and
MC/DC coverage.
• State Coverage: (Often referred to as variable do-

main coverage.) Requires that the test set has test
cases that enable each control variable (Boolean or
enumerated variable) defined in the model to take on
all possible values in its domain at least once.

• Transition Coverage: Analogous to the notion of
branch coverage in code and requires that the test set
has test cases that exercise every transition definition
in the model at least once.

• Decision Coverage: Each decision occurring in the
model evaluates to true at some point in some test case
and evaluates to false at some point in some other test
case.

• Modified Condition and Decision Coverage
(MC/DC): Every condition within the decision has
taken on all possible outcomes at least once and every
condition has been shown to independently affect the
decision’s outcome.

4.2 Results and Analysis
We used our tools to automatically generate and run three

test suites for the FGS; one suite for requirements coverage,
one for requirements antecedent coverage and another one
for requirements UFC coverage. The results from our ex-
periment are summarized in Tables 8 and 9.

Requirements
coverage

Antecedent
coverage

UFC
coverage

Trap Properties 293 293 887
Test Cases 293 293 715

Time Expended 3 min 14 min 35 min

Table 8: Summary of the test case generation re-
sults.

Table 8 shows the number of test cases in each test suite
and the time it took to generate them. It is evident from the
table that the UFC coverage test suite is three times larger
than the requirements coverage and requirements antecedent
coverage test suites and can therefore be expected to provide
better coverage of the model than the other two test suites.
Also, the time expended in generating the UFC coverage
test suite was significantly higher than the time necessary
to generate the other two test suites.

We observe that our algorithm generating UFC over the
syntax of the requirements generated 887 trap properties.



Nevertheless, only 715 of them generated counterexamples3.
For the remaining 172 properties, the UFC trap property is
valid, which means that the condition that it is designed to
test does not uniquely affect the outcome of the property.
In each of these cases the original formula was vacuous [3],
that is, the atomic condition was not required to prove the
original formula. We discuss the issue of vacuity checking
further in Section 5.

Although it was possible to explain many of the vacu-
ous conditions through implementation choices that satis-
fied stronger claims than the original properties required,
the number of vacuous conditions was startling and pointed
out several previously unknown weaknesses in our original
property set. Rather than correcting the incorrectly vacu-
ous formulas in our property set before proceeding with our
experiment, we decided to use the property set “as-is” as a
representative set of requirements that might be provided
before a model is constructed. If test cases were manually
constructed from this set of requirements, we postulate that
many of these weaknesses would be found when trying to
construct test cases for the vacuous conditions.

For all three coverage metrics mentioned, we did not min-
imize the size of the test suites generated. In previous work
we found that test suite reduction while maintaining desired
coverage can adversely affect fault finding [14]. However, the
work in [14] was based on test suites generated using model
coverage criteria. We plan to explore the effect of test suite
reduction techniques on test suites generated using require-
ments coverage criteria in our future work.

Model
Coverage

Metric

Requirements
coverage

Antecedent
coverage

UFC
coverage

State 37.19% 98.78% 99.12%
Transition 31.97% 89.53% 99.42%

Decision 46.42% 85.75% 83.02%
MC/DC 0.32% 23.87% 53.53%

Table 9: Summary of the model coverage obtained
by running the requirements based tests.

In Table 9 we show the coverage of the formal model
achieved when running the test cases providing require-
ments coverage, requirements antecedent coverage and re-
quirements UFC coverage respectively. We measured four
different model coverage criteria as mentioned in Section 4.1.

The results in Table 9 show that the test suite generated
to provide requirements coverage (one test case per require-
ment) gives very low state, transition, and decision coverage,
and almost no MC/DC coverage. This is in part due to the
structure of the properties. Most of the requirements in the
FGS system are of the form

G(a→ Xb)

The test cases found for such properties are generally those
in which the model goes from the initial state to a state
where a is false, thus trivially satisfying the requirement.
Such test cases exercise a very small portion of the model

3We initially used the NuSMV bounded model checker with
depth 5, that is, we only looked for test cases with a length
of 5 steps or shorter. If the bounded model checker did not
find such a test case we provided the trap property to the
symbolic model checker in NuSMV and found that in all
cases it verified the property as being true; that is, there
was no test case for this particular UFC obligation.

and the resultant poor model coverage is not at all surpris-
ing.

The requirements antecedent coverage is a stronger metric
than the requirements coverage measure. It gives high state,
transition and decision coverage over the model. However,
the MC/DC coverage generated over the model is low. As
mentioned earlier, many of the requirements in the FGS
system are of the form

G(a→ Xb)

Requirements antecedent coverage will ensure that the test
cases found for such properties will exercise the antecedent
a (i.e., make a true). Therefore, the requirement is not
trivially satisfied and we get longer test cases and, thus,
better model coverage than the requirements coverage test
suite.

On the other hand, the test suite generated for UFC over
the syntax of the properties provides high state, transition,
and decision coverage. Nevertheless, the decision coverage
provided by the UFC test suite is in this experiment lower
than that provided by the requirements antecedent coverage
test suite. When we looked more closely at both test suites
we found that for variables specified in the property (we call
these variables of interest), both test suites had the same
values. In other words, for the variables of interest, the
UFC test suite is a superset of the requirements antecedent
coverage test suite. However, for variables not mentioned
in the properties (we call these free variables), the model
checker has the freedom to choose any suitable value for that
variable. We found that the values for these free variables
differed between the two test suites. We believe that this is
the reason for the antecedent coverage test suite generating
a higher decision coverage over the model than the UFC
test suite; the model checking algorithm in NuSMV simply
picked values for the free variables that happened to give
the requirements antecedent test suite better coverage. If we
could control the selection of the free variables the UFC test
suite would yield the same or higher decision coverage than
the requirements antecedent coverage test suite. Clearly, the
test case generation method plays an important role in the
types of test cases generated. We plan to explore the effect
of different test case generation methods in our future work.

The UFC test suite generated low MC/DC coverage over
the model, although not as low as the other two test suites.
After some thought, it became clear that this is due in part
to the structure of the requirements defined for the FGS.
Consider the requirement

“When the FGS is in independent mode, it shall be active”

This was formalized as a property as follows:

G(m Independent Mode Condition.result →
X(Is This Side Active = 1))

Informally, it is always the case (G) that if the condition
for being in independent mode is true, in the next state the
FGS will always be active. Note here that the condition
determining if the FGS is to be in independent mode is
abstracted to a macro (Boolean function) returning a result
(the .result on the left hand side of the implication). Many
requirements for the FGS were of that general structure.

G(Macro name.result→ X b)



Therefore, when we perform UFC over this property struc-
ture, we do not perform UFC over the—potentially very
complex—condition making up the definition of the macro
since this condition has been abstracted away in the prop-
erty definition.

The macro Independent Mode Condition is defined in
RSML-e as:

MACRO Independent_Mode_Condition():

TABLE

Is_LAPPR_Active : T *;

Is_VAPPR_Active : T *;

Is_Offside_LAPPR_Active : T *;

Is_Offside_VAPPR_Active : T *;

Is_VGA_Active : * T;

Is_Offside_VGA_Active : * T;

END TABLE

END MACRO

Since the structure of Independent Mode Condition is not
captured in the required property, the test cases generated
to cover the property will not be required to exercise the
structure of the macro and we will most likely only cover
one of the MC/DC cases needed to adequately cover the
macro.

Note that this problem is not related to the method we
have presented in this paper; rather, the problem lies with
the original definition of the properties. Properties should
not be stated using internal variables, functions, or macros
of the model under investigation; to avoid a level of circu-
lar reasoning (using concepts defined in the model to state
properties of the model) the properties should be defined
completely in terms of the input variables to the model. If a
property must be stated using an internal variable (or func-
tion) then additional requirements (properties) are required
to define the behavior of the internal variable in terms of
inputs to the system. In this example, a collection of addi-
tional requirements defining the proper values of all macro
definitions should be captured. These additional require-
ments would necessitate the generation of more test cases
to achieve requirements UFC coverage and we would pre-
sumably get significantly better coverage of the model.

To get a better idea of how many additional test cases
UFC coverage would necessitate when we add requirements
defining macros, we considered the sample requirement
property mentioned earlier:

G(m Independent Mode Condition.result →
X(Is This Side Active = 1))

We constructed a property defining the
Independent Mode Condition macro. When we performed
UFC over this additional macro defining requirement we
got 13 additional test cases. This result shows that adding
requirements that define all the macros would make a
substantial difference to the test suite size and presumably
the model coverage.

5. RELATED WORK
The work in this paper is closely related to work assessing

the completeness and correctness of formulae in temporal
logics. The most similar work involves vacuity checking of
temporal logic formulas [3, 16, 21]. Intuitively, a model
M vacuously satisfies property f if a subformula φ of f is

not necessary to prove whether or not f is true. Formally,
a formula is vacuous if we can replace φ by any arbitrary
formula ψ in f without affecting the validity of f :

M � f ≡ M � f [φ← ψ]

Beer et al. [3] shows that it is possible to detect whether
a formula contains vacuity by checking whether each of its
atomic subformulas can be replaced by ‘true’ or ‘false’ with-
out affecting the validity of the original formula (the choice
depends on the structure of the formula and whether it is
satisfied or not). To place it in our terms, this check deter-
mines whether each atomic condition independently affects
the formula in question. This approach can be used to gen-
erate witness counterexamples for each atomic condition,
similar to the trap properties for UFC that are described
in Section 4. Nevertheless, the goal of this work is quite
different than ours. The purpose of performing vacuity de-
tection on a formula over a model is to see whether or not
a valid formula can be replaced by a stronger valid formula.
This stronger formula may indicate problems within either
the formula or the model. Our work is concerned with ad-
equately testing requirements, potentially in the absence of
a model. The complete vacuity check defined in [3] is one
possible metric for assessing the adequacy of a test set. It
is simpler and more rigorous metric than our UFC metric
when used for test generation. In future work, we plan to
reformulate the metric in [3] to support “partial” weakening
(as described in Section 3.1.3) and investigate its effective-
ness.

Tan et al. [28] use the vacuity check presented in [3] to
define a property coverage metric over LTL formulas. They
present a model-checking assisted approach that generates
a test suite based on the property coverage criteria that is
finite in size and in length. Their main motivation is to en-
able the testing of linear temporal properties on the imple-
mentation by generating a black-box or white-box test suite
that satisfies the defined property coverage metric. The goal
of our work is to define a structural coverage metric based
on requirements that allows us to measure the adequacy of
black-box test suites. Also, Tan et al. [28] do not have any
notion of test weakening and their notion of acceptable black
box tests, while rigorous, is not very practical. The reason is
that to test a finite prefix of a lasso shaped test, they repeat
the loop part of the lasso n times where n is the number of
system states. Many of the systems used in practice have
very large n, thus making their methodology of generating
acceptable black-box tests highly impractical. Also, they do
not address the efficacy of their proposed metric.

In our case study we examined how well coverage of
requirements mapped to coverage of an implementation
model. This is similar to recent research assessing the com-
pleteness of LTL properties over models. In [8], Chockler
et al. propose coverage metrics for formal verification based
on metrics used in hardware simulation. Mutations, captur-
ing the different metrics of coverage, are applied to a given
design and the resultant mutant designs are examined with
respect to a given specification. Two coverage checks were
performed on the mutant design: falsity coverage (does the
mutant still satisfy the specification?), and vacuity coverage
(if the mutant design still satisfies the specification, does it
satisfy it vacuously?). Symbolic algorithms to compute the
different types of coverage are proposed. In [7, 6], Chockler
et al. propose additional metrics to determine whether all



parts of a model are covered by requirements. Our goal is
to create a coverage metric that when provided a robust set
of formal requirements and a test suite satisfying the met-
ric will yield a high level of coverage of an implementation
using standard coverage metrics. Chockler’s work provides
a more direct (and potentially accurate) assessment of the
adequacy of the requirements. The process of building the
set of mutant specifications and re-checking the properties is
very expensive, however, and may not be feasible in practice.

6. DISCUSSION
In this paper, we explore the idea of requirements coverage

and define three potential metrics that could be used to
assess requirements coverage. To our knowledge, the notion
of requirements coverage as a test adequacy criterion has not
been previously addressed in any systematic way. There are
several potential benefits of defining requirements adequacy
criteria, including:

• a direct measure of how well a black-box test suite
addresses a set of requirements,

• an implementation independent assessment of the ad-
equacy of a suite of black-box tests,

• a means for measuring the adequacy of requirements
on a given implementation,

• a formal framework that, given a model, allows for
autogeneration of tests that are immediately traceable
to requirements

Our hypothesis is that given a complete set of require-
ments and a rigorous testing metric, we should achieve a
high level of coverage of an implementation of the require-
ments. If this hypothesis is true, then a requirements-based
test suite can be used to help determine the completeness
of a set of requirements with respect to an implementation,
and a test suite which yields high requirements coverage and
low model coverage illustrates one of three problems:

1. The model is incorrect. The model allows behaviors
not specified by the requirements. Hence a test suite
that provides a high level of requirements coverage will
not cover these incorrect behaviors, thus resulting in
poor model coverage.

2. There are missing requirements. Here, the model un-
der investigation may be correct and more restrictive
than the behavior defined in the original requirement;
the original requirements are simply incomplete and
allow behaviors that should not be there. Hence we
need additional requirements to restrict these behav-
iors. These additional requirements necessitate the
creation of more test cases to achieve requirements cov-
erage and will, presumably, lead to better coverage of
the model.

3. The criteria chosen for requirements coverage is too
weak.

Given a robust and complete set of requirements, we still
do not necessarily anticipate 100% MC/DC coverage of a
model given 100% UFC coverage of the requirements. There
are usually several designs that may satisfy a “good” set of
requirements and these designs will introduce details that
may not be covered by requirements-based tests.

This report only provides the start of the rigorous explo-
ration of metrics for requirements-based testing; we have
merely defined the notion and explored the feasibility of
the approach. There are several topics that require further
study:

Requirements formalization: Since formalizing high-
level requirements is a rather new concept not generally
practiced, there is little experience with how to best cap-
ture the informal requirements as formal properties. Find-
ing a formalism and notation that is acceptable to practicing
developers, requirements engineers, and domain experts is
necessary. In our work we have used CTL and LTL, but we
are convinced that there are notations better suited to the
task at hand.

Requirements coverage criteria: To our knowledge,
there has been little other work on defining coverage cri-
teria for high-level software requirements. Therefore, we do
not know what coverage criteria will be useful in practice.
We must find coverage criteria that (1) help us assess test
suites as to their effectiveness in finding problems in imple-
mentations derived from the requirements and (2) do not
require test suites of unreasonable size.

Requirements versus model coverage: We must ex-
plore the relationship between requirements-based struc-
tural coverage and model or code-based structural cover-
age. Given a “good” set of requirements properties and a
test suite that provides a high level of structural coverage
of the requirements, is it possible to achieve a high level of
structural coverage of the formal model and of the generated
code? That is, does structural coverage at the requirements
level translate into structural coverage at the code level?

Test case generation method: We plan to evaluate the
effect that different test case generation methods have on
the fault finding capability and model coverage achieved by
test suites that provide a high level of structural coverage of
the requirements. We plan to investigate a variety of model
checkers and their strategies in this regard.

In sum, we believe that the notion of coverage metrics
for requirements-based testing holds promise and we look
forward to exploring each of these topics in future investi-
gations.
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