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Abstract. Incomplete, inaccurate, ambiguous, and volatile

requirements have plagued the software industry since
its inception. The convergence of model-based develop-
ment and formal methods offers developers of safety-
critical systems a powerful new approach for the early
validation of requirements. This paper describes a case
study conducted to determine if formal methods could
be used to validate system requirements early in the
lifecycle at reasonable cost. Several hundred functional
and safety requirements for the mode logic of a typical
Flight Guidance System were captured as natural lan-
guage “shall” statements. A formal model of the mode
logic was written in the RSML™¢ language and trans-
lated into the NuSMV model checker and the PVS the-
orem prover using translators developed as part of the
project. Each “shall” statement was manually translated
into a NuSMV or PVS property and proven using these
tools. Numerous errors were found in both the origi-
nal requirements and the RSML™¢ model. This demon-
strates that formal models can be written for realistic
systems and that formal analysis tools have matured to
the point where they can be effectively used to find errors
before implementation.
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1 Introduction

Incomplete, inaccurate, ambiguous, and volatile require-
ments have plagued the software industry since its in-
ception. In a 1987 article [10], Fred Brooks wrote
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The hardest single part of building a software sys-

tem is deciding precisely what to build. No other
part of the conceptual work is as difficult as estab-
lishing the detailed technical requirements... No
other part of the work so cripples the resulting
system if done wrong. No other part is as diffi-
cult to rectify later.

Studies have shown that the majority of software errors
are made during requirements analysis, and that most
of these errors are not found until the later phases of
a project. Other studies have shown that the cost of
correcting a requirements error grows dramatically the
later in the product life cycle it is corrected [9,16,50,39].
Researchers have also found that requirements errors are
more likely to affect the safety of a system than errors
introduced during design or implementation [25,30].

The avionics industry has long recognized the need
for better requirements, and has spearheaded the devel-
opment of several methodologies for requirements spec-
ification. The Software Cost Reduction (SCR) method-
ology [23,22] was originally developed to specify the re-
quirements for the A-7 aircraft [38]. It was later extended
to the CoRE methodology by the Software Productivity
Consortium [19] and used to specify the avionics require-
ments on the Lockheed C-130J [20]. The Requirements
State Machine Language (RSML) notation was devel-
oped to specify the requirements for TCAS-II, a colli-
sion avoidance system installed on all commercial air-
craft seating more than 30 passengers [27]. Even State-
charts [21], whose various derivatives make up one of the
most widely accepted modeling notations in use today,
has its roots in the avionics industry.

Despite this legacy, the requirements for most avion-
ics systems are still specified using a combination of nat-
ural language and informal diagrams. In fact, in some
ways, these efforts have actually increased the confu-
sion about what requirements are and how they should
be stated. Should requirements be captured as a list of
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“shall” statements written in a natural language? Or
should requirements be expressed as mathematical mod-
els defining the relationship between the inputs and out-
puts as is done in SCR, CoRE, and RSML? Can the
requirements of a system be completely stated with use
cases? When does one cross the line between require-
ments analysis and design, and why does that matter?

This paper describes a case study conducted by the
Advanced Technology Center of Rockwell Collins, the
Critical Systems Research Group at the University of
Minnesota, and the NASA Langley Research Center to
determine how far formal analysis could be pushed in an
industrial example. In this exercise, a model of the mode
logic of a typical Flight Guidance System was specified
in the Requirements State Machine Language without
Events (RSML™¢ ) notation developed by the Critical
Systems group at the University of Minnesota. Transla-
tors were developed from RSML™¢ to the NuSMV model
checker and the PVS theorem prover. These tools were
then used to verify several hundred properties of the
RSML™¢ model. In the process, several errors were dis-
covered and corrected in the original RSML™¢ model.

The results of this exercise are significant for several
reasons. While the model of the FGS does not describe
a fielded product, it was specifically created to be repre-
sentative in size and complexity of an typical system and
has been used to determine if several proposed methods
or tools would scale to industrial use. As a result, the
success of this exercise demonstrates that formal models
can be written for real problems using notations accept-
able to practicing engineers, and that formal analysis
tools have matured to the point where they can be effi-
ciently used to find errors before implementation.

In previous studies conducted by the authors using
this example, only limited formal analysis was done on
the model, or one model was used for specification and
simulation while another model was created by hand for
formal verification. For example, [31] describes the au-
thors’ experiences modeling the mode logic informally
using the CoRE methodology [19] and the benefits that
were gained from entering this model into the SCR* tool
and using the consistency and completeness checks pro-
vided by SCR* [23,22]. In [11], a portion of the mode
logic was modeled by hand in PVS and several prop-
erties were proven using the PVS theorem prover. In
contrast, in this effort, the same model was used for
specification, review, and simulation, and automatically
translated into other notations for formal verification. In
addition, all of the functional and safety requirements
were formally verified in a clearly cost-effective manner.
Perhaps just as important, this study clarifies the rela-
tionship between requirements stated informally as shall
statements, formal properties stated in notations such
as predicate calculus and temporal logic, and require-
ments models written in notations such as RSML, SCR,
or Statecharts. This is discussed further in Section 4.

2 Background Information

This section describes the role of a Flight Guidance Sys-
tem in a modern aircraft and provides a brief overview of
the RSML™¢ notation, the NIMBUS toolset, the NuSMV
model checker, and the PVS theorem proving system.

2.1 Owverview of a Flight Guidance System

A Flight Guidance System (FGS) is a component of the
overall Flight Control System (FCS). It compares the
measured state of an aircraft (position, speed, and atti-
tude) to the desired state and generates pitch and roll
guidance commands to minimize the difference between
the measured and desired state. These guidance com-
mands are both displayed to the pilot as guidance cues
on the Primary Flight Display (PFD) and sent to the
Autopilot (AP) that moves the control surfaces of the
aircraft to achieve commanded pitch and roll.

The internal structure of the FGS can be broken
down into the mode logic and the flight control laws.
The flight control laws accept information about the air-
craft’s current and desired state and compute the pitch
and roll guidance commands. The mode logic determines
which lateral and vertical modes are armed (attempting
to lock on to a navigation source) and active (providing
guidance to the aircraft) at any given time.

The overall FGS system consists of two identical sub-
systems, one asssociated with the left side of the aircraft
and one with the right side. In most modes of opera-
tion, only one side is active and responds to pilot inputs
and produces outputs. The inactive side simply copies
its internal state from the active side, serving as a hot
backup. In a few critical modes such as Approach and Go
Around, both sides of the FGS are active and generate
outputs that are compared before they are used.

We have used the mode logic of a FGS as an example
in several previous studies [11,24,49]. It is an excellent
example because it is complex and representative of a
class of problems frequently encountered in the design
of embedded control systems.

2.2 The RSML™¢ Specification Language

For this exercise, we specified the FGS mode logic us-
ing the Requirements State Machine Language without
Events (RSML™¢ ) notation. A number of different spec-
ification languages were considered at the start of the
project. The main criteria used in selecting a language
included an emphasis on the specification of require-
ments as opposed to design, a precise formal semantics, a
clear path to integration with formal verification tools,
and the likelihood of future commerical tool support.
The emphasis on requirements specification and formal
semantics reduced the field to RSML and SCR, both of
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which were expressly designed for the modeling of sys-
tem requirements. Of the two, the ongoing of develop-
ment of RSML into a commercial tool, SpecTRM-RL, by
the Safeware Engineering Corporation, was a key factor
in the choice of the closely related RSML™° .

RSML~¢ is based on the Requirements State Ma-
chine Language (RSML) developed by Nancy Leveson’s
group at the University of California at Irvine as a lan-
guage for specifying the behavior of process control sys-
tems [27]. One of the main design goals of RSML was
readability and understandability by non-computer pro-
fessionals such as end-users, engineers in the application
domain, managers, and representatives from regulatory
agencies. RSML was used to specify TCAS-II and this
specification was ultimately adopted by the FAA as the
official specification for TCAS-II [26].

RSML was in turn heavily influenced by State-
charts [21] and uses a similar notion of explicit event
propagation. In the course of developing the TCAS-IT
specification and its independent verification and vali-
dation experiment, it became clear that the most com-
mon source of errors was this dependence on explicit
events [28]. To reduce this problem, the Critical Sys-
tems group at the University of Minnesota developed the
Requirements State Machine Language without Events
(RSML™¢ ) [47,48]. As its name implies, RSML~¢ elim-
inates the use of explicit events and is a fully formal
synchronous language [7]. RSML™¢ is similar to another
derivative of RSML, SpecTRM-RL, developed by Safe-
ware Engineering Corporation, but has a slightly dif-
ferent syntax and semantics and a different underlying
philosophy of how the language should be used in mod-
eling. The full specification of the FGS Mode Logic in
RSML~¢ can be obtained at [34].

An RSML™¢ specification consists of a collection of
input variables, state variables, input/output interfaces,
functions, macros, and constants; input variables are
used to record the values observed in the environment,
state variables are organized in a hierarchical fashion and
are used to model various states of the control model,
interfaces act as communication gateways to the exter-
nal environment, and functions and macros encapsulate
computations providing increased readability and ease
of use.

Figure 1 shows the specification of two macros, Se-
lect_ROLL and Deselect_ROLL, and the specification of
the ROLL state variable in the RSML™¢ specification of
the Flight Guidance System.

Macros are simply named predicates used to improve
the the readability and maintainability of the specifica-
tion. Conditions in the macro definitions are represented
in the AND/OR table format developed for the original
RSML notation to make large predicates easy for pi-
lots and other reviewers to read. Each column of truth
values represents a conjunction of the propositions in
the leftmost column (a “*” represents a “don’t care”
condition). If a table contains several columns, we take

the disjunction of the columns; thus, the table is a way
of expressing conditions in a disjunctive normal form.
For example, the Select_ROLL macro returns the value
(Is_No_Nonbasic_Lateral_ Mode_Active() AND Modes =
On) while the Deslect_ ROLL macro returns the value
(When_Nonbasic_Lateral Mode_Activated() OR Modes
= Off).

The state variable ROLL is the default lateral mode
in the FGS mode logic, and is declared as a child state
of the variable Modes. The ROLL state variable only
has meaning when Modes has the value On. This notion
of hierarchical variables provides the same abstractions
and structuring mechanism as the AND and OR states
in Statecharts, but the semantics are simpler [51].

The conditions under which the state variable
changes value are defined by either direct assignments
or by TRANSITTON clauses. For example, if this side of
the FGS is not the active side, ROLL will take on the
value Offside_ROLL provided from the other side of the
FGS. If this side of the FGS is the active side, its value is
determined by the four transition clauses. The first two
transitions in the definition of the ROLL variable define
what value ROLL is to take on when it becomes defined,
i.e., when its parent variable Modes takes on the value
On. If Select_ROLL is false, ROLL will take on the value
Cleared. If Select_ROLL is true, ROLL takes on the value
Selected. The remaining transitions describe how ROLL
changes back and forth from Cleared to Selected.

Often one needs to refer to values of the variables at a
certain point in the variable’s history. RSML™¢ provides
a construct for doing this, as shown in the following ex-
ample.

MACRO Were_Modes_0ff ()
PREV_STEP (Modes) = Off
END MACRO

In the above example, PREV_STEP(Modes) refers
to the previous value of the state variable Modes.

RSML™¢ transitions are purely condition-based and
free of internal events. As soon as the guards in a vari-
able definition can be evaluated, it will take on its new
value. The variables are partially ordered based on the
data dependency induced by the guard conditions. Sim-
ilar semantics are adopted in the programming language
Lustre [6]. Data-flow semantics removes complex issues
caused by internal events, such as infinite triggering
events (akin to infinite loops in a programming language)
or analysis of micro-steps [12], from the language.

Startup behavior and behavior in the face of sen-
sor failures pose particular challenges when specifying
control systems. Under these circumstances we simply
do not know what the state of the environment might
be. RSML™¢ supports modeling of this uncertainty by
providing the concept of “undefinedness”. One can ex-
plicitly specify the initial value of variables at startup
to be UNDEFINED, such as ROLL = UNDEFINED in
Figure 1. Also, when a parent variable takes on a new
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MACRO
Select. ROLL
Condition:
ﬁ Is_No_Nonbasic_Lateral_Mode_Active()
p| Modes = On
MACRO
Deselect. ROLL
Condition: OR
ﬁ When_Nonbasic_Lateral_Mode_Activated() *
p| Modes = On F
l STATE VARIABLE l
ROLL
Parent: Modes.On
Type: {Cleared, Selected}
Initial Value: UNDEFINED
Classified As: State
:= Offside_ROLL if not Is_This_Side_Active
UNDEFINED —» Cleared if
A[Select ROLLO F
D| Is_This_Side_Active() T
UNDEFINED P Selected if
A["Select_ROLL() T
p| Is_This_Side_Active() T
Cleared » Selected if
ﬁ Select_ROLL() T
p L_Is_This_Side_Active() T
Selected ¥ Cleared if
A MDeselect_ROLL() T
p| Is_This_Side_Active() T

Fig. 1. A Fragment of the FGS Specification in RSML™¢

value, each child variable of the parent value that was
just changed is no longer relevant and must not be used.
RSML™¢ handles this by implicitly assigning these vari-
ables the value UNDEFINED.

2.8 The NuSMV Model Checker

NuSMYV is a symbolic model checker developed as a
joint project between the Formal Methods group in the
Automated Reasoning System Division at the Instituto

Trintino di Cultura (ITC) - Center for Scientific and
Technological Research (IRST), the Mechanized Rea-
soning Groups at the University of Genova and the
University of Trento in Italy, and the Model Check-
ing group at Carnegie Mellon University in the United
States. NuSMV is a reimplementation and extension of
SMV [15], the first model checker based on Binary De-
cision Diagrams (BDDs). NuSMV has been designed to
be an open architecture for model checking, which can
be reliably used for the verification of industrial designs,
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as a core for custom verification tools, as a testbed for
formal verification techniques, and applied to other re-
search areas [3]. Properties to be verified in NuSMV are
specified using either Computation Tree Logic (CTL)
or Linear Time logic (LTL) [15]. Since RSML™¢ is a
synchronous specification language and the FGS mode
logic can be completely specified using only Boolean and
enumerated types, we believed that a symbolic model
checker such as NuSMV would be well suited for analy-
sis of the FGS mode logic.

2.4 The PVS Theorem Prover

PVS is an environment for specification and verification
that has been developed at SRI International’s Com-
puter Science Laboratory. In comparison to other widely
used verification systems such as HOL and ACL2, the
distinguishing characteristic of PVS is that it supports
a highly expressive specification language with a highly
effective interactive theorem prover in which most of the
lower-level proof steps are automated. The system con-
sists of a specification language, a parser, a type checker,
and an interactive proof checker. The PVS specification
language is based on higher-order logic with a richly ex-
pressive type system so that a number of semantic errors
in specification can be caught during type checking. The
PVS prover consists of a powerful collection of inference
steps that can be used to reduce a proof goal to simpler
subgoals that can be discharged automatically by the
primitive proof steps of the prover. The primitive proof
steps involve, among other things, the use of arithmetic
and equality decision procedures, automatic rewriting,
and BDD-based Boolean simplification [37,4]. Since suc-
cessful use of a theorem prover requires considerable ex-
perise, our familiarity with the PVS environment was a
key factor in its selection.

2.5 The NIMBUS Environment

NIMBUS is a requirements engineering environment for
RSML™° models built by the Critical Systems Research
Group at the University of Minnesota. The capabili-
ties of NIMBUS, shown in Figure 2, support a variant
of model-based development we call specification-based
prototyping [47,48] that allows an engineer to evolve a
formal requirements model from a prototype to a pro-
duction system through the use of simulation, inspec-
tion, static analysis, and code generation.
Specification-based prototyping combines the advan-
tages of traditional formal specifications (e.g., precise-
ness and analyzability) with the advantages of rapid
prototyping (e.g., risk management and early end-user
involvement). The approach lets an engineer refine a for-
mal executable model of the system requirements to a
detailed model of the software requirements. Through-
out this refinement process, the specification is used as

an early prototype of the proposed software. By using
the specification as the prototype, most of the problems
that plague traditional code-based prototyping disap-
pear. First, the formal specification will always be con-
sistent with the behavior of the prototype (excluding
real-time response) and the specification is, by defini-
tion, updated as the prototype evolves. Second, the risk
of evolving the prototype into a poorly designed produc-
tion system is largely eliminated.

NIMBUS supports rich simulation capabilities, that
allow an engineer to simulate an RSML™¢ specification
while interacting with (1) user input or text file in-
put scripts, (2) RSML™¢ models of the components in
the environment, (3) software simulations of the compo-
nents, or (4) the physical components themselves (i.e.,
hardware-in-the-loop simulations). It is possible to run
the simulator in real-time or step-time to allow closer
examination of particular scenarios. The simulation ca-
pabilities of the NIMBUS environment are designed to
make it easy to create simple simulations using input
files or user input early in the project lifecycle that can
be refined to accurate simulations with complex environ-
mental models as the project progresses.

NIMBUS also contains a flexible automated transla-
tion framework, allowing RSML™¢ specifications and
properties to be automatically translated to a wide
range of formal analysis tools, including theorem provers
(PVS [4]), model checkers (NuSMYV [3] and the SRI SAL
Toolset [17]), and random search tools (Lurch [35]). It is
important to target multiple analysis tools for two rea-
sons: first, no single tool meets all of our analysis needs,
and each tool is best suited to certain specification and
property styles; second, it allows multiple independent
verification paths for analysis, lessening the chance that
a bug in a tool will affect the correctness of our analysis
process. The translation framework allows us to quickly
target an array of analysis tools with minimum effort.

Using this framework, models are developed in tan-
dem with formal requirements and safety properties that
are expected to hold over the model. We then trans-
late the models and properties to a particular back-
end tool, which determines whether or not the property
holds on the specification. These tools, with the excep-
tion of Lurch, can provide a guarantee that the prop-
erty of interest holds on the specification, which is a
much stronger claim than is possible with testing. These
kinds of analysis are integrated into the specification-
based prototyping approach: many critical safety prop-
erties can be checked even on early iterations of models.

Finally, NIMBUS supports a sophisticated document
generation capability that is suitable for generating high-
quality, cross-referenced (and hyperlinked) documents
that are suitable for formal inspections [18,2] of RSML ¢
models. This capability was used, with no additional
hand-tuning, to create the final NASA contractor report
for the Flight Guidance System [34].
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Fig. 2. The NimBUS Toolset

2.5.1 Translation to Analysis Tools

The NIMBUS toolset translates to a wide variety of anal-
ysis tools. Although there is a great deal of overlap in
terms of what the tools are theoretically able to verify,
they vary widely in terms of how they are used and how
much guidance must be provided by the engineer. Thus,
the requirements for creating a “good” translation vary
depending on the capabilities of the target tool.

When translating to a completely automated tool,
such as a model-checker or random search tool, we want
to transform the specification to minimize the state
space of the specification. Human readability of the re-
sultant model-checker code is not that important for the
actual task of verifying the property of interest. Thus,
when translating to the model-checker, we support op-
tions to build in conservative abstractions that make
model-checking feasible by sacrificing some accuracy and
expressiveness of the original RSML™¢ specification.

On the other hand, theorem-proving with PVS is an
interactive process. In this case, readability of the trans-
lated output and maintaining a close correspondence
with the source specification are of prime importance.
Further, since PVS supports more expressive logics and
reasoning procedures, there is not as great a need to
abstract away details in the source specification. Thus,
the requirements for the translation were that it should
fully capture the semantics of the source language in
an elegant way, producing readable PVS specifications.
Below we provide a brief overview of the translation ap-

proaches. The reader interested in the details is referred
to reports dedicated to the translation details [13,40].

2.5.2 NuSMV Translation

The model checking project was designed with the fol-
lowing goals: (1) the translation must to the largest ex-
tent possible preserve the full power of the source lan-
guage RSML™¢, (2) the translation must require little-
or-no user interaction, (3) counterexamples must be easy
to interpret without detailed knowledge of the trans-
lation process, and, finally, (4) any abstractions must
be fully automated. Although much work remains to be
done—especially with respect to abstraction—the model
checking translation has been used very successfully on
several large case examples. An example of a portion of
the translation to SMV is shown in Figure 3.

Our translation scheme from RSML™¢ to NuSMV is
described in [13] and is similar to the one selected in [12].
As mentioned earlier, the basic constructs in RSML™—¢
are variables and next-state relations for variables. Dis-
regarding the complicating factor of UNDEFINED val-
ues, RSML™¢ variables share a one-to-one correspon-
dence with NuSMV variables. The assignment relations
for RSML™¢ variables can be immediately translated to
SMV variable assignments: each RSML™¢ transition be-
comes an assignment. To describe the situation in which
no transition occurs (so the variable value remains the
same), we add a default case to the SMV assignment that
assigns the variable the value it had in the previous step.
The remaining RSML™¢ constructs (macros, functions,
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MODULE Select_ROLL(Modes,m_Is_No_Nonbasic_Lateral_Mode_Active)

VAR result : boolean;

ASSIGN
init(result):=0 ;
next (result) :=

next(m_Is_No_Nonbasic_Lateral_Mode_Active.result) & next(Modes)=0n ;

MODULE Deselect_ROLL(Modes,m_When_Nonbasic_Lateral_Mode_Activated)

VAR

result : boolean;

ASSIGN
init(result):=0 ;
next (result) :=

next (m_When_Nonbasic_Lateral_Mode_Activated.result) |

VAR
ROLL: {Cleared,Selected,Un_defined } ;

ASSIGN
init (ROLL) :
next (ROLL) :
case
! (next (Modes)= 0On)

Un_defined ;

! (next (Is_This_Side_Active)=1)

! (next (m_Select_ROLL.result)) &
next (Is_This_Side_Active)=1 &
ROLL= Un_defined Cleared
next (m_Select_ROLL.result) &
next (Is_This_Side_Active)=1 &
ROLL= Un_defined

next (m_Select_ROLL.result) &
next(Is_This_Side_Active)=1 &
ROLL=Cleared

next (m_Deselect_ROLL.result) &
next (Is_This_Side_Active)=1 &
ROLL=Selected Cleared
TRUE
esac;

ROLL ;

Selected

Selected

s

’

Un_defined

s

B

(! (next (Modes)=0n)) ;

B

next (Offside_ROLL) ;

Fig. 3. A Fragment of an RSML™¢ Specification Translated to SMV

and interfaces) can all be straightforwardly mapped to
SMV modules.

Undefinedness can be simulated in NuSMV by
adding additional state. Depending on the type of the
variable in question, we simulate undefinedness in one of
two ways. For Boolean and enumerated types, we simply
extend the range of the type with an additional value,
UNDEFINED, that represents the value of the variable
when it is in an undefined state. For numeric quantities,
we add an additional Boolean variable that represents
the undefined-status of the variable. We then use this
additional state to determine whether or not a variable
is UNDEFINED.

Figure 3 shows the SMV translation corresponding
to the RSML™¢ fragment in Figure 1. In this fragment,
the Select_ROLL and Deselect_ ROLL macros are imple-
mented as SMV Modules. These modules are very sim-
ilar to the RSML™¢ macros, but require additional pa-
rameters. These parameters are necessary because SMV
does not support nested module definitions, so any vari-
ables and macros that are used within the body of the
macro must be passed as parameters.

The translation for the ROLL state variable is
slightly more involved. First, we create a SMV vari-
able with the same name. To support UNDEFINED
values, we extend the type of this SMV variable with
Un_defined. Next, the transitions for ROLL are rewrit-
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ten into a set of SMV cases. As described in Section 2.2,
if the Modes state variable is not in state On, then the
value of ROLL is UNDEFINED. This behavior is han-
dled by the first case in the SMV assignment for variable
ROLL. The next five cases correspond to the conditions
and transitions of the ROLL state variable. Finally, if
none of the transitions apply, we want the value of ROLL
to be left unchanged. This behavior is implemented by
the final (TRUE) case in the SMV assignment.

One aspect of the translation that is of theoretical
interest involves domain abstraction on numeric vari-
ables. If RSML™° specifications contain numeric vari-
ables over large domains, then a naive translation will
yield an intractable model-checking problem. In [14], we
describe a theoretically sound domain abstraction tech-
nique for model checking software systems that reduces
the state space of specifications with large-domain vari-
ables. This abstraction technique is integrated into the
N1vBUS NuSMV translator, so that counterexamples on
the abstracted specification can be understood on the
full specification. It is a conservative technique, so cer-
tain classes of properties may yield spurious counterex-
amples on the abstract model but not the full model.
However, it is accurate enough to prove many properties
on models that are otherwise intractable.

2.5.3 PVS Translation

When starting the project, we considered two compet-
ing approaches for representing RSML™¢ specifications
in PVS. The first approach is to view the state-space as
a cross product of the domains of system variables. The
specification is viewed as a collection of constraints de-
termining the set of possible initial states and the set of
possible transitions between states. Then, the transitive
closure of the initial states under the transition relation
constitutes the reachable state-space of the system. The
system will satisfy a certain property of interest if it can
be established that every reachable state satisfies this
property. This view is usually adopted when one is veri-
fying state-based specifications using model-checkers like
SMV or the p-calculus model-checker of PVS. Owre et
al. [36] discuss such an approach to translate require-
ment specifications written in SCR to PVS.

The second approach is to consider state as a point
of observation of certain quantities of interest in the sys-
tem. The system variables represent quantities of inter-
est, i.e., they are mappings from states (the observation
points) to values of those quantities (at those observa-
tion points). When the system responds to changes in its
environment, it moves to a new observation point, i.e.,
to a new state. So each state has an associated (finite)
history or stream of observations up to that point. In
this view, the system specification is a set of constraints
on the histories of observations at each state. If we think
of constraints as Boolean valued quantities constructed
using system variables, then the specification lists a set

of such quantities that are given to be true in every state.
Properties of interest that one wants to prove are also
similar to constraints but one has to establish that these
are true. Bensalem et al. [6] adopt such an approach for
proving properties of control system specified in Lustre
using PVS.

In an earlier version of our translation we adopted
the former approach to translate RSML™¢ specifications
to PVS. However, we found that it was difficult to con-
struct proofs of properties in PVS for large systems using
such an approach. Part of the difficulty arose from the
fact that one had to carry around the complete state
construct in proofs, even though much of the reason-
ing and proof steps involved only a few variables at any
given time. Also, the translated output was quite difficult
to comprehend. The latter approach, which we adopted
subsequently, overcomes these shortcomings.

Our current formalization of RSML™¢ in PVS is
built the second approach. Verification in this context
is checking whether the set of possible histories as con-
strained by the specification satisfy a given predicate.
This formalization has the advantage of retaining both
the structure and the semantics of the RSML™° source
specification in the translated PVS output. Also, induc-
tive streams are easy to formalize in PVS, allowing for a
fairly straightforward reasoning process when construct-
ing proofs.

3 The Requirements Analysis Process

In this section we describe the process we followed in
eliciting, modeling, and analyzing the requirements of
the FGS mode logic. This process is depicted in Figure 4.

In the first phase of elicitation, we collected the sys-
tem requirements as informal “shall” statements. The
next phase modeling, consisted of constructing by hand
an executable RSML™¢model that we believed exhibited
the behavior informally stated in the shall statements.
Throughout creation of the model, we continually used
the simulation capabilities of the Nimbus environment
execute the model and informally confirm that it be-
haved as we expected. In the formal verification phase,
we manually translated the shall statements into formal
properties stated over the model in either CTL or PVS,
and merged these formal properties with the appropriate
translation of the RSML™°model into NuSMV or PVS
created using the translators developed by the Univer-
sity of Minnesota. The NuSMV model checker or the
PVS theorem prover was then used to confirm whether
the property held over the model or not. If a property
was found to not hold, the necessary changes were made
to either the model or property. At each stage of this pro-
cess, corrections were fed back into the previous stage,
ultimately resulting in greatly improved set of require-
ments. This process is described in greater detail in the
following subsections.
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Fig. 4. Overview of Requirements Analysis Process

3.1 Requirements Elicitation

As in most projects, one of our first tasks was to de-
velop an informal understanding of what the system was
to do. A variety of techniques have been advocated for
eliciting requirements, ranging from the traditional list-
ing of shall statements to writing a concepts of opera-
tion document to the development of use cases. Since we
were interested in injecting formal modeling into exist-
ing practices, we chose to start with the lowest common
denominator, simply capturing the requirements as in-
formal shall statements stored in a DOORS ! database.
Examples of a few such requirements for the FGS mode
logic are shown in the left hand column of Table 1 on
page 13.

3.2 Requirements Modeling

Our next step was to create a formal statement of the
black box behavior of the system. We were guided in this
by a methodology developed at Rockwell Collins that
was heavily based on the CoRE methodology developed
by the Software Productivity Consortium [19], which is
in turn based on the SCR methodology [23,22,38].
This model was written in the RSML™¢ language.
One of the great advantages of executable specification
languages such as RSML™¢ or SCR is that they can be
connected to a mockup of their environment, provided
inputs, and their behavior studied. This provides a very
easy way for the developer to get immediate feedback
about the model being created. We used this approach
to continuously review the model under construction.

L DOORS (Dynamic Object Oriented Requirements System) by
Telelogic is a commercial requirements management tool.

Using this capability and simplified models of the envi-
ronment, we were able to simulate a large portion of the
flight deck, including two FGS systems, primary flight
displays, and the flight control panel, as shown in Fig-
ure 5.

When completed, the RSML™¢ model of the FGS
mode logic consisted of 41 input variables, 16 small,
tightly synchronized hierarchical finite state machines,
122 macro or function definitions, 29 output values, and
was roughly 160 pages long. A detailed description of
the model and its simulation environment is available
in [34].

In the course of building the RSML™¢ model, we of-
ten found ourselves going back and modifying the orig-
inal shall statements as shown in Figure 4 on page 9.
Sometimes, they were just wrong. More often, their or-
ganization needed to be changed to provide clear trace-
ability to the model. For example, in the original state-
ment of the requirements, the conditions under which
the mode annunciations and the flight director guidance
cues would be turned on were combined in several shall
statements. We found that the requirements were clearer
if we broke these out as distinct groups of statements.
Gradually, we realized that the revised shall statements
were a clearer and improved description of the system.
Maintaining even a coarse mapping between the shall
statements and the RSML™¢ model forced us to be more
precise in writing down the shall statements.

3.8 Model Checking

As the model neared completion, the University of Min-
nesota team completed the first RSML™¢ to NuSMV
translator. This translator, described in [13], automati-
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cally converted the RSML™° model to the specification
language of the NuSMV model checker. While the auto-
mated translation of the model to NuSMV is shown as
a single dataflow in Figure 4 on page 9, automating this
process was a key step in the entire process. Automating
this process greatly increased our confidence that prop-
erties proven over the translated model would also hold
over the original RSML™“model.

There were a few issues that had to be dealt with for
model checking to be feasible. We knew state space ex-
plosion would be a problem since we had included in the
RSML™¢ model a few integer input variables, such as the
aircraft’s altitude, and a few comparisons that depended
on time. The state space explosion resulting from these
few variables was indeed enough to make the verification
of most properties infeasible using the earliest transla-
tors. While the University of Minnesota team was plan-
ning to develop algorithms that would reduce the size
of the translated model through a variety of abstraction
techniques, these extensions were not yet ready.

Fortunately, algorithms to deal with the time de-
pendencies proved straightforward and were quickly
implemented in the translator. Details of these algo-
rithms can be found in [13]. To deal with the few re-
maining integer variables, we abstracted the model by
hand by replacing comparisons involving these vari-
ables (e.g., Altitude > PreSelectAlt + AltCapBias)
with Boolean inputs representing the result of the com-
parison (e.g., Altitude_Gt_PreSelect_Plus_AltCapBias),
eliminating all integers from the model. 2 Since there
were only a few such computations, this took only a few
hours to implement and did not significantly alter the
specification. These changes reduced the state space of
the model enough that we could check almost any prop-
erty of the mode logic with the NuSMV model checker
in a matter of minutes.

It was feasible to make these abstractions manually
in this particular case because they were so few and so
straightforward. While we have been able to use this
same technique in several other examples, in some do-
mains the number of abstractions that would be needed
would be too large to do reliably by hand. Ideally, these
abstractions would be identified and made automati-
cally during the translation process. As mentioned ear-
lier, work is underway to add these capabilities to the
RSML~¢ to NuSMV translator [14].

At first, we focused on showing that our model sat-
isfied the safety properties we had identified through a
hazard analysis and fault tree analysis [49]. However, it
quickly became apparent that all of the original require-

2 For model checking, the actual values of these expressions are
immaterial as the model checker will evaluate all possible combi-
nations. During simulation, these Boolean inputs are computed in
a small model executing in parallel with the the abstracted speci-
fication. There are no complex timing relationships between these
expressions, so the order and timing of their evaluation is not an
issue.

ments, not just the safety properties, could be stated in
CTL. As a result, we extended our verification to include
all the shall statements captured during elicitation.

Our approach was to state each requirement as a
CTL property over the translated model. Since there was
a close correspondence between names in the RSML™¢
model and the NuSMV model, this quickly became rou-
tine and most of the requirements could be translated
by hand into CTL in a few minutes. A desirable future
enhancement would be the development of a property
specification language in RSML™° so that the translator
could translate the CTL properties automatically along
with the NuSMV model.

All of the requirements could be specified with only
two CTL formats. The first was simply a safety con-
straint that had to be maintained by all reachable states.
For example, the requirement

If this side is active, the mode annunciations shall
be on if and only if the onside FD cues are dis-
played, or the offside FD cues are displayed, or
the AP is engaged

was translated into the CTL property

AG(Is_This_Side_Active ->
(Mode_Annunciations_On <->
(Onside_FD_On | Offside_FD_On = TRUE |
Is_AP_Engaged)))

where the AG operator states that the property must
hold for all globally reachable states and the operators
— > and < — > have their usual meaning of “implies”
and “iff”.

Occasionally, the semantics of RSML™¢ and CTL in-
teracted in inelegant ways. For example the RSML™¢ in-
put variable Offside_FD_On in the above example could
take on the values TRUE, FALSE, or UNDEFINED and
had to be explicitly compared with the value TRUE
in CTL. In contrast, the variable Onside_ FD_On was a
computed internal RSML™¢ Boolean variable that could
only take on the values TRUE and and FALSE and be
used in a CTL expression without explicit comparison.
While it would have been possible to adopt a single spec-
ification style by also comparing true Boolean variables
to TRUE and FALSE, using two different styles was ac-
tually a useful way to emphasize in the CTL expressions
themselves which variables could take on the value UN-
DEFINED.

The second format was a constraint over a state and
all possible next states. For example, the requirement

If the onside FD cues are off, the onside FD cues
shall be displayed when the AP is engaged.

was translated into the CTL property

AG(('Onside_FD_On & !Is_AP_Engaged)->
AX(Is_AP_Engaged -> Onside_FD_0On))
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where the AX operator states the enclosed property
must hold for all states reachable in the next step.

Only these two formats were needed, largely because
RSML™¢€ is a synchronous language in which each tran-
sition to the next system state is computed in a sin-
gle atomic step. All the properties we were interested in
could be stated as simple safety properties over a sin-
gle state, or as a relationship describing how the system
changed in a single step. If we had wanted to verify live-
ness properties, or if portions of the model had been
allowed to evolve asynchronously, other temporal logic
operators such as eventually (F), until (U), or release
(R) would also have been needed [15].

Ultimately, all 281 properties originally stated infor-
mally in English were translated into CTL and checked
using the NuSMV model checker. All 281 properties
could be verified on a 2GHz Pentium 4 processor running
Linux in less than an hour. To track the CTL proper-
ties, we modified the DOORS database to maintain both
the informal and CTL versions of the requirements and
to export a file that could be passed directly into the
NuSMV model. This made it very easy to recheck the
properties after the model was changed, though a sim-
ple “include” statement in the NuSMV language would
have been very helpful. A few of the shall statements
and their CTL properties are shown in Table 1.

These properties are organized by a functional de-
composition of the FGS that closely reflect how the FGS
requirements have traditionally been organized. First,
the ways in which a function can be selected are speci-
fied, followed by the ways in which the function can be
deselected, finally followed by any invariants that must
be maintained during the function’s operation. Func-
tions that can only be active when a “parent” function
is active are nested in a natural outline structure.

The rationale for selecting this organization was to
provide a clear bridge from the traditional specification
of requirements to the formal statement of the proper-
ties. Practicing engineers accept this structure very well,
and are usually intrigued by the clear mapping of infor-
mal shall statements to their formal properties.

8.4 Errors Found Through Model Checking

Use of the model checker produced counter examples
revealing several errors in the RSML™¢ model of the
mode logic that had not been discovered through sim-
ulation. Sometimes, this required a correction to the
RSML™°model as shown in Figure 4 on page 9. Other
times, it was the property itself that needed to be cor-
rected. In either case, corrections were also propagated
back to the original shall statement.
For example, in trying to prove the requirement

If Heading Select mode is not selected, Heading
Select mode shall be selected when the HDG switch
is pressed on the Flight Control Panel.

we discovered two ways in which this property was not
true. First, if another event arrived at the same time as
the HDG switch was pressed, that event could preempt
the HDG switch event. Second, if this side of the FGS
was not active, the HDG switch event was completely
ignored by this side of the FGS. This led us to modify
the requirement to state

If this side is active and Heading Select mode is
not selected, Heading Select mode shall be selected
when the HDG switch is pressed on the FCP (pro-
viding no higher priority event occurs at the same
time).

While longer and more difficult to read than the orig-
inal statement, it has the advantage of being a more ac-
curate description of the system’s behavior. Of course,
we also had to clearly define what a “higher priority”*
event was.

Stating that the FGS needs to be active is a con-
straint well understood by the engineers and the ac-
tual value of this clarification is probably minimal. How-
ever, we also discovered several ways in which important
safety properties, such as having more than one mode ac-
tive or having no mode active when a mode must be ac-
tive, could be violated in our model. The model checker
was relentless in tracking these scenarios down and pre-
senting us with a counter example. Practicing engineers
are well aware of the difficulty of identifying all such
scenarios and have evolved a series of defensive coding
practices to ensure that the safety properties are not vi-
olated. Model checking of the specification allowed us to
provide a rigorous analysis that the specification cannot
violate these properties in the first place.

As one example, an entire class of errors was discov-
ered that involved more than one input event arriving
at the same time. This could occur for a variety of rea-
sons. For example, the pilot might press a switch at the
same time as the system captured a navigation source.
Occasionally, these combinations would drive the model
into an unsafe state.

There are several ways to deal with such simulta-
neous input events. SCR [23,22] makes the “one input
assumption” mandating that only one input variable can
change in any step. This makes reasoning about the spec-
ification simpler, but requires that the developer imple-
ment the system in such a way as to guarantee that only
one input variable can change in each step. In a polling
system, where all the inputs are sampled at periodic in-
tervals, this can only be done by adding additional logic
outside the specification that prioritizes multiple events
and discards lower priority events or queues them for
processing in subsequent steps.

RSML™° normally makes a similar “one input mes-
sage” assumption in which only one message is pro-
cessed in each step, but any number of fields within the
message are allowed to change in a single step. Since
we were uncertain how communication with the outside



Steven P. Miller', Alan C. Tribble!, Michael W. Whalen', and Mats P.E. Heimdahl?: Proving the Shalls 13

Table 1. Sample of English Requirements and CTL Translation from DOORS Database

English Requirement \

CTL Property

1. Mode Annunciations

1.1 Mode Annunciation Selection

If this side is active and the mode annunciations
are off, the mode annunciations shall be turned
on when the onside FD is turned on.

AG(('Mode_Annunciations_-On & |Onside_.F D_On) —
AX ((Is_This_Side_Active = 1 & Onside_FD_On) —
Mode_Annunciations_On))

If this side is active and the mode annunciations
are off, the mode annunciations shall be turned
on when the offside FD is turned on.

AG((IMode_Annunciations_ On& O f fside_.FD_On = FALSE) —
AX((Is_This_Side_Active =1 & Of fside.FD_On = TRUE) —
Mode_Annunciations-On))

If this side is active and the mode annunciations
are off, the mode annunciations shall be turned
on when the AP is engaged.

AG((!Mode_Annunciations_-On & Is_AP_Engaged) —
AX ((Is_This_Side_Active = 1 & Is_AP_Engaged) —
Mode_Annunciations_On))

1.2 Mode Annunciation Deselection

If this side is active and the mode annunciations
are on, the mode annunciations shall be turned
off if the onside FD is off, the offside FD is off,
and the AP is disengaged.

AG(Mode_Annunciations_On —
AX((Is_This_Side_Active = 1 & |Onside_.FD_On &
Of fside.FFD_On = FALSE & !Is_AP_Engaged) —
!Mode_Annunciations_-On))

1.3 Mode Annunciation Operation

The mode annunciations shall not be on at system
power up.

(!Mode_Annunciations_On)

If this side is active the mode annunciations shall
be on if and only if the onside FD cues are dis-
played, or the offside FD cues are displayed, or
the AP is engaged.

AG(Is This_Side_Active =1 —
(Mode_Annunciations-On <
(Onside.FD_On | Of fside_.FD_On = TRUE | [s_AP_Engaged)))

world would ultimately be implemented, we selected an
RSML™¢ option in which all input messages (and hence
all input variables) were read once on each step. This al-
lowed for the possibility that all 41 input variables could
change in the same step.

The problem was simplified somewhat in that only
21 of these input variables were of concern. The other 20
input variables provide state information from the other
FGS used to set the state of the current FGS when it
is the inactive (backup) side and had no impact on the
system state when the current side was active. However,
this still left 21 input variables that could change in a
single step. To deal with this, we assigned a priority to
each input event and only used the highest priority event
in each step, ignoring the lower priority events.

The logic to do this was localized in one part of
the model. In the original specification, each event
was defined as a macro with a name of the format
“When_Event_X” which took on the value TRUE for one
step when the Boolean variable X changed from FALSE
to TRUE. For each such macro, we defined a new macro
named “When_Event_X_Seen” that behaved in the same
way unless a higher priority event occured at the same
time, in which case it remained FALSE. All references in
the specification to “When_Event_X” were then replaced

by references to “When_Event_X_Seen”. In this way, the
prioritization of events could easily be modified without
changing the main body of the specification.

In a few cases, such as the acquisition of a naviga-
tion signal, it was undesirable to simply ignore the event.
In these cases, the macro “When_Event_X_Seen”was
changed to return TRUE whenever the variable X was
TRUE (rather than when the variable changed from
FALSE to TRUE) unless a higher priority event occured
in that step. 3 In this way, the desired action would be
taken in the first step in which no higher priority event
occurred. These changes effectively sequence the events
so that only one can affect the specification at a time.
This is similar to a “one input assumption”, but the se-
quencing is defined within the specification, rather than
outside of it.

In the course of developing this prioritization, we
realized that it was possible for some combinations of
events to be processed in the same step. For example,
an input that changed the active lateral mode could
often (but not always) be processed in the same step
as an input that changed the active vertical mode. In

3 In these cases, the macro probably should have been renamed
to “When_Condition_X_Seen” to better reflect its behavior.
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other words, a partial rather than a total order of the
input events was acceptable. This partial order had three
branches, with a maximum depth of eleven input events
(i.e., eleven priorities) on a single branch. It was quite
straightforward to understand, both by us and by the
engineers who reviewed it for us. Since we could check
both the safety and functional properties of the speci-
fication with NuSMV, we felt confident that the speci-
fied behavior was correct. However, without the power
of formal verification, we would never have been able to
convince ourselves that the safety properties of the sys-
tem were still met when such multiple input events were
allowed.

The handling of multiple input events has been a
recurring issue in our examples, and appears to be a
natural consequence of implementing a formal specifica-
tion on an actual processor where system steps require
a finite amount of time. On the one hand, it is imprac-
tical to ask human beings to reason about all possible
combinations of inputs events in the main body of the
specification. On the other hand, it is very difficult, if
not impossible, to design systems that can guarantee
that only one external input will change during a sys-
tem step. Even interrupt driven systems must prioritize
and queue external events that occur while a higher pri-
ority event is being handled. Our preference is to allow
for the occurrence of multiple inputs, but to keep the
logic that prioritizes the events separate from the logic
that defines the processing of each individual event.

3.5 Theorem Proving

After verification of the mode logic with the NuSMV
model checker was well underway, the University of Min-
nesota team completed the first version of the RSML™¢
to PVS translator. This allowed us to start verifying
properties using the PVS theorem prover.

In contrast to model checkers, theorem provers apply
rules of inference to a specification in order to derive
new properties of interest. Theorem provers are generally
considered harder to use than model checkers, requiring
more expertise on the part of the user. However, theorem
provers are not limited by the size of the state space.

Even though we had been able to verify all the re-
quirements against the RSML™¢ model, we wanted to
assess the use of PVS for a variety of reasons. First, we
knew that not all problem domains would lend them-
selves to verification through model checking as well
as the mode logic had. Models with very large or in-
finite state spaces would not be analyzable using model
checking. We expected to encounter such problems when
analyzing trajectories of aircraft relative to the flight
plan. Also, the mode logic was already starting to strain
the capabilities of NuSMV, and we were concerned that
problems with larger state spaces would exceed its capa-
bilities. For problems just at the limit of model checking,
we speculated that theorem proving might even be more

efficient than model checking. Finally, we had identified
at least one class of properties, comparing the properties
of two arbitrary states that were not temporally related
to each other, that we were unable to state in CTL. An
example of this was the property that any two arbitrary
states with different mode configurations should have
different annunciations (i.e., different mode indications
on the Primary Flight Display) to the pilots.

We started by using PVS to verify some of the prop-
erties already confirmed using NuSMV. Since the same
RSML™¢ model was used to generate the PVS speci-
fication as was used to generate the NuSMV model,
the same handful of manual abstractions were present
in the PVS specification even though they were proba-
bly not necessary for PVS. In the course of completing
the proofs, it became clear that we needed to define and
prove many simple properties of the FGS that could be
used as automatic rewrite rules by PVS. This automated
and simplified the more complex proofs we were inter-
ested in. For example, we followed the RSML™¢ conven-
tion of assigning input variables the initial value of UN-
DEFINED. This prevents the model from making use of
an initial value that does not reflect the actual environ-
ment around it, a common cause of safety errors in auto-
mated systems. As a consequence, all internal variables
and functions dependent on those input variables in-
cluded UNDEFINED in their range, even though guards
in their definitions ensured they could never take on the
value UNDEFINED. By defining and proving properties
stating that these variables and functions were always
defined, PVS was able to automatically resolve large por-
tions of the proofs. As these libraries evolved, we realized
that many of these properties, as well as several useful
PVS strategies (scripts defining sequences of prover com-
mands) could have been automatically produced by the
translator. These were identified as enhancements for fu-
ture versions of the translator.

With this infrastructure in place, some of the proofs
could be constructed in less than an hour. Others took
several hours or even days, usually because they involved
proving many other properties as intermediate lemmas.
One surprise was that users proficient in PVS but unfa-
miliar with the FGS could usually complete a proof as
quickly as someone familiar with the FGS. In fact, most
of the proofs were completed by a graduate student with
no avionics experience. The general process was to break
the desired property down by case splits until a sim-
ple ASSERT or GRIND command could complete that
branch of the proof tree. The structure of the proofs
naturally reversed the dependency ordering defined in
the RSML™¢ specification. Many of the proofs could be
simplified by introducing lemmas describing how inter-
mediate values in the dependency graph changed, but
identifying such lemmas seemed to require a sound un-
derstanding the FGS mode logic. As we gained experi-
ence, we started using the dependency map produced
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by the RSML™¢ toolset to guide us in identifying these
lemmas.

While the proofs might take hours to construct, they
usually executed in less than twenty seconds. This was
significant since the time taken to prove similar proper-
ties using the NuSMV model checker had grown steadily
with the size of the model. If the model had grown much
larger, it is possible that the time to verify a property us-
ing model checking might have become prohibitive. The
time required to run the PVS proofs seemed much less
sensitive to the size of the model.

Since we had already completed the safety analysis
of the mode logic using NuSMV, we decided to focus on
using PVS to study the mode logic for potential forms of
mode confusion. Mode confusion occurs when the oper-
ators of an automated system believe they are in a mode
different than the one they are actually in and make in-
appropriate responses to the automation. Mode confu-
sion can also occur when the operators do not fully un-
derstand the behavior of the automation, i.e., when the
operators have a poor “mental model” of the automa-
tion. Numerous studies have shown that mode confusion
is an important safety concern in automated systems
such as modern avionics systems [8,44-46].

In earlier work [32,33], we had extended a taxon-
omy of design patterns indicative of potential sources
of mode confusion originally developed by Nancy Leve-
son [29]. Other researchers have described ways in which
formal analysis tools can be used to search specifications
for such patterns [11,42,41,43]. We decided to try using
PVS to determine if there were patterns in our require-
ments model that might indicate potential sources of
mode confusion. We were able to use PVS to search for
ways that a system could enter and exit infrequently
used (off normal) modes, ignore pilot inputs, introduce
unintended side effects, enter and exit hidden modes of
operation, and provide insufficient feedback to the pi-
lots [33]. While space does not permit a complete de-
scription, we do present here an example of how PVS
was used to detect ignored pilot inputs.

The basic approach is to prove that each pilot input
provides some visible change in the system state. For
example, to prove that pressing the Flight Director (FD)
switch always causes a change in the visible state, we
attempt to prove the theorem

FD_Switch_Never_Ignored : Theorem
verify ((When_FD_Switch_Pressed AND
No_Higher_Event_Than_FD_Switch)
IMPLIES
(Onside_FD_0On /= PREV(Onside_FD_0n)))

This theorem asserts that if the FD switch is pressed,
and no higher priority event occurs at the same time,
the onside FD guidance cues toggle on and off. Trying
to prove this lemma leads to the following sequent that
must be discharged in PVS

[-1] *(Overspeed_Condition(s!1))

[-2] *(Onside_FD(s!1))=*(Onside_FD(s'!'1-1))
[-3] *(When_FD_Switch_Pressed(s!1))

[-4] *(No_Higher_Event_Than_FD_Switch(s!1))

[1] *(Onside_FD(s!'1-1)) = 0ff
[2] s'1 =0

As with all PVS sequents, we are allowed to assume that
properties above the turnstile (|------- ) are true and
that at least one property from below the turnstile must
be proven true to discharge the proof obligation. The
current state is s!1 and the previous state is s!1-1.

This sequent requires us to prove that either an over-
speed condition cannot occur at arbitary time s!1 [-1],
that the pilot cannot presss the FD switch at time s!1
[-3], that some higher priority event will always occur
when the FD switch is pressed at time s!1 [-4], that
the FD cues must always be off at time s!1-1 just be-
fore the pilot presses the FD switch [1], that s!1 is the
inital state [2], or that the onside FD cues will change
value value at time s!1. The first four are impossible con-
straints on the system inputs, the fifth is precluded since
it implies the FD switch is pressed in the initial state
(which is not possible given the definition of the macro
FD_Switch_Pressed), and the last is what we started out
to prove. From this we can conclude that the property
we are trying to prove is probably false.

The sequent provides us with a clue of what is wrong
in that one way to complete the proof would be to show
that an overspeed condition [-1] cannot occur at time
s!1. This is impossible, but review of the specification
reveals that the FD switch is indeed ignored during an
overspeed condition if the onside FD cues are on. To
confirm that this is the problem, and to document this
case of an ignored pilot input, we define a constraint

FD_Switch_Ignored_During_Overspeed: rCOND
= (When_FD_Switch_Pressed AND
Onside_FD_0On AND Dverspeed_Condition)

identifying the condition in which the FD switch is
pressed, the onside FD is on, and an overspeed condition
exists. We then use this to state an amended version of
the theorem

FD_Switch_Never_Ignored : Theorem
verify((When_FD_Switch_Pressed AND
No_Higher_Event_Than_FD_Switch AND
NOT FD_Switch_Ignored_During_Overspeed)
IMPLIES
(Onside_FD_On /= PREV(Onside_FD_0n)))

stating that the FD switch is never ignored unless it is
pressed during an overspeed condition while the FD cues
are on. This proof completes without difficulty, taking a
little under ten seconds to run.
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In [11], we discuss how PVS was used to detect ig-
nored pilot inputs in small, handcrafted models of the
mode logic. We were not sure that we would be able
to do similar proofs on PVS models translated from a
much larger RSML™¢ model of the mode logic. How-
ever, as this example shows, performing proofs over these
models was no more difficult than doing them over the
handcrafted models once the basic infrastructure was in
place.

4 Observations on Specification Styles

There are at least two well-known styles of formal specifi-
cation. In a property, or axiomatic, style of specification,
one defines properties relating the operations of the type
being specified without providing any information about
the structure of the type itself. The common textbook
example is the specification of a stack through equational
specifications such as top(push(s,e)) = e.

In contrast, in a constructive, or model-based ap-
proach, one defines a new type in terms of primitive
types and constructors provided by the specification lan-
guage. For example, one might define a stack as a record
consisting of an array a of the base type e and an integer
tos representing the top of stack pointer. An operation
such as top might then be defined as top([a, tos]) =
a(tos). That is, top returns the array element pointed at
by tos.

The primary disadvantage of a constructive style of
specification is that it biases the reader towards a par-
ticular implementation. In the example above, the spec-
ification strongly suggests that a stack should be imple-
mented as a record containing an array and an integer.
No such bias exists in the property style of specification
since no information is provided about the structure of
the type being defined. An advantage of a constructive
style of specification is that it is used in common pro-
gramming languages such as C and Ada and most engi-
neers are immediately comfortable with it.

A property oriented specification can also be more
difficult to understand and write. One also has to en-
sure that a property oriented specification is consistent
and complete. A specification is consistent if it always
defines a single value for each operation on the same in-
puts (i.e., each operation is a function). A specification
is complete if a result is specified for every set of inputs
to an operation (i.e., each operation is a total function).

Most constructive specification languages are de-
signed so that only complete and consistent specifica-
tions can be written. In fact, the textbook method for
showing that a property oriented specification is consis-
tent is to create a constructive model of it and prove that
all the properties hold over that model. This establishes
that at least one implementation of the specification ex-
ists and its properties must therefore be consistent.

The analogies to our two styles of requirements speci-
fication are obvious. Requirements written as shall state-
ments in a natural language are simply informal property
oriented specifications. In addition to the usual prob-
lems of ensuring completeness and consistency, they are
also encumbered by the ambiguity of natural language.
This helps to explain why developers working from re-
quirements captured as informal shall statements usually
complain of problems with completeness, consistency,
and ambiguity.

In contrast, requirements captured using notations
such as SCR and RSML™¢ actually are constructive
models of the requirements. Due to the language con-
structs provided, they are inherently complete and con-
sistent in the sense of defining a total function for each
output. However, this also explains why a common reac-
tion to such models is that they contain design decisions.
In all honesty, they do suggest certain design decisions,
even if nothing more than the names of internal variables
that the customer does not care about.

These observations allow us to begin to address the
questions raised in the introduction. The product life-
cycle in the model-based development paradigm starts
with informal techniques, such as writing shall state-
ments in natural language or the development of use
cases, to capture the requirements during the early, elic-
itation phase of the project. This is followed by the cre-
ation of a constructive model of the requirements that
can be used to drive visualizations of the user interface so
that the customer can simulate the requirements model
and provide early feedback and validation. In the anal-
ysis phase, the informal statements are translated into
properties over the model and proven to ensure their
consistency and completeness. High-quality code gener-
ators and test case generators reduce much of the effort
traditionally associated with coding and testing. Finally,
since the models have been carefully developed so as to
encapsulate key functions, selected components can be
reused in the next project; in a sense closing a develop-
ment cycle by providing assets for the next generation in
a family of products. The use of property oriented and
constructive specification styles are indicated as oval and
rectangular artifacts in Figure 4 on page 9.

One of the questions posed in the introduction
was whether requirements should be captured as a list
of shall statements written in a natural language or
whether they should be written as mathematical models
defining the relationship between the inputs and outputs
as is done in SCR, CoRE, and RSML™¢. The observa-
tion that shall statements are just informal statements
of the system properties suggests these positions are not
in conflict. The very commonality of us of shall state-
ments indicates they are a natural and intuitive way for
designers to put their first thoughts on paper. The prob-
lem with shall statements has always been that inconsis-
tencies, incompleteness, and ambiguities are not found
until the later phases of the project. However, by devel-
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oping a formal, constructive model of the requirements
against which the informal shall statements can be ver-
ified, identification of these problems can be forced into
the early modeling, simulation, and analysis phases of
the project.

Another question raised was whether a system’s re-
quirements can be completely specified with use cases.
While more structured than shall statements, as prac-
ticed today use cases normally lack a precise formal se-
mantics and suffer from the same problems of incon-
sistency, incompleteness, and ambiguity as shall state-
ments. While not part of this exercise, it seems rea-
sonable that it should be possible to express use cases
as a sequence of properties describing how the system
responds to its stimuli, and these sequences verified
through simulation and formal analysis. In this way, the
consistency and completeness of use cases could be im-
proved in the same manner as was done for shall state-
ments.

We also raised the question of when does one cross
the line between requirements analysis and design, and
why does that matter? The traditional answer is that
requirements should not contain anything the customer
does not require in order to avoid placing unnecessary
constraints on the developers. For this reason, construc-
tive models are often criticized for introducing design
bias into the requirements. However, the reality is that
for any real system, the requirements will be many and
the models will be large and complex. Large and complex
models need to be structured to be readable and robust
in the face of change, and hopefully to be reused. This
suggests that we should group portions of the model to-
gether that are logically related and likely to change to-
gether, and that requirements analysis should be driven
by some of the same concerns that have traditionally
been associated with the design process. Our preference
is to define requirements analysis as the process of spec-
ifying the complete platform independent (logical) be-
havior of the system and to define design as the process
of mapping of that behavior onto a specific (physical)
platform. In this view, the requirements evolve from the
informal definition gathered during elicitation to a for-
mal, highly structured model suitable for the automatic
generation of code and test cases.

Perhaps the most critical question is the cost effec-
tiveness of formal verification. Traditional experiments
in formal verification have often appeared too expen-
sive because they included the cost of creating a formal
specification (usually in addition to the informal spec-
ification actually used by the developers) and revolved
around techniques such as theorem proving that do re-
quire significant expertise and time. Indeed, the largest
cost in this exercise was creating the RSML™°model of
the FGS. Even though the problem domain was well un-
derstood and had been used in previous exercises, this
still took several weeks for the authors to complete. As
expected for this particular problem, proving properties

using the PVS theorem prover did turn out to be more
expensive than using the NuSMV model checker. How-
ever, manually translating the shall statements into CTL
or PVS properties took only a few minutes, and prov-
ing these properties using NuSMV again took only a few
minutes if the property was true. Of course, if the prop-
erty was false, considerable time was sometimes required
to correct the model, but this should be viewed as a de-
velopment rather than as a verification cost (if the model
had been correctly developed in the first place, the cost
of correction would not have been incurred).

One of the great advantages of model-based develop-
ment is that the formal model is created as an intrinsic
step in the development process. By demonstrating that
such models can be automatically translated into formal
verification tools such as NuSMV and PVS, this exercise
shows that it is feasible to eliminate the cost of develop-
ing a separate specification for the purpose of formal ver-
ification. In addition, this exercise shows that for at least
some industrial systems, model checking can be used to
very inexpensively verify properties of these models and
find errors early in the life-cycle. Our experiences sug-
gest that there are large portions of most systems that
are suitable for verification by model checking.

As discussed in the introduction, the cost of finding
errors late in the life-cycle is enormous. Our conclusions
from this exercise are that if a formal model is created as
an integral step in the development process, the benefit
of using model checking to find errors early in the life-
cycle is highly cost effective. In fact, the returns are so
great that for critical properties, we believe the cost of
theorem proving would also be well justified.

5 Conclusions and Future Directions

We have described how a model of the requirements for
the mode logic of a Flight Guidance System was cre-
ated in the RSML™¢ language from an initial set of re-
quirements stated as shall statements written in English.
Translators were used to automatically generate equiv-
alent models of the mode logic in the NuSMV model
checker and the PVS theorem prover. The original shall
statements were then hand translated into properties
over these models and proven to hold over these models.

The process of creating the RSML™¢ model improved
the informal requirements, and the process of proving
the formal properties found errors in both the original re-
quirements and the RSML™¢ model. Our concerns about
the difficulty of proving properties in the NuSMV and
PVS models that were automatically generated from the
RSML™° models turned out to be unfounded. In fact,
the ease with which these properties were verified leads
us to conclude that formal methods tools are finally ma-
turing to the point where they can be profitably used on
industrial sized problems.
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Several directions exist for further work. We would
like to explore translating use cases into sequences of
properties that can be formally verified, just as was
done with shall statements in this exercise. Stronger ab-
straction techniques are needed to increase the classes of
problems that can be verified using model checkers. Bet-
ter libraries and proof strategies are needed to make the-
orem proving less labor intensive. More work also needs
to be done to identify proof strategies and properties
that can be automatically generated from the model.
Since many systems consist of synchronous components
connected by asynchronous buses, work needs to be done
to determine how properties that span models connected
by asynchronous channels can be verified.

Over the last few years, a small number of commer-
cial modeling languages with formal or nearly formal se-
mantics, such as SCADE [1] or Simulink [5], have gained
widespread acceptance in industry. While not specifi-
cally designed as requirement specification languages,
restricted subsets of these notations can be used in vir-
tually the same way as RSML™¢ . Due to their growing
acceptance by the engineering community, most of our
recent work has been devoted to retargeting our trans-
lators to SCADE and Simulink. Using these tools, we
starting to use model checking to validate the require-
ments of future products.
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