Evolutionary and ontogenetic patterns of diet and support for tropical niche conservatism in the origins of the latitudinal diversity gradient in clupeiforms (anchovies, herrings, and relatives)

A DISSERTATION SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY

Joshua Patrick Egan

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Andrew M. Simons

August 2019

© Joshua Patrick Egan 2019

Acknowledgements

This research was made possible by a huge amount of help and support from my advisor, Andrew Simons. I also received invaluable assistance from my committee Sharon Jansa, Keith Barker, and David Fox. I am very grateful for my fabulous partner, Kaila Akina, who supported me during my time as a student. Thanks to the friends who assisted with my dissertation research and I thank the following people in particular: Peter Hundt, Uik-Sen Chew, Chien-Hsien Kuo, Nong Kaeoprakan, Michael Bradley, Christina Buelow, Michael Hammer, Prasert Tongnunui, Marcus Sheaves, the 2013 Summer Institute in Taiwan staff, Gao Zheng Aquaculture, and the students at National Chiavi University (Taiwan), James Cook University (Australia), Rajamangala Institute of Technology (Thailand), and University of Southern Alabama (USA) who helped with fieldwork. Thanks to A. Buchheister for providing advice on statistical analysis of diet data. I thank the following people and institutions for tissue samples: Dr. Melanie Stiassny and Dr. Barbara Brown (American Museum of Natural History), Victoria Magath (University of Hamburg Zoological Museum), Dr. Kwang-Tsao Shao (Academia Sinica Biodiversity Research Museum), Dr. Larry Page (Florida Museum of Natural History), and Mark Adams (South Australian Museum). This work was funded in part by the Lerner-Gray Memorial Fund for Marine Research (American Museum of Natural History), Dayton Research Fund (Bell Museum of Natural History, University of Minnesota), the Minnesota Agricultural Experiment Station, and the East Asia and Pacific Summer Institutes Program from the National Science Council of Taiwan and the National Science Foundation, U.S.A. (1316912). During my doctoral research I received financial support from a National Science Foundation Graduate Research Fellowship (00039202).

i

This dissertation is dedicated to my family.

Abstract

The increase in species richness from the poles to the equator is one of the most pervasive and enigmatic spatial patterns of biodiversity. This latitudinal diversity gradient has been intensively studied since it was first described in 1807 and yet there is still no accepted explanation for its existence. My dissertation tested hypotheses about the origins of the latitudinal diversity gradient in the ecologically and economically important clupeiform fishes (anchovies, sardines, and relatives) with a focus on the hypothesized role of niche breadth evolution in the formation of the diversity gradient. My first chapter described the diets of near-shore, marine clupeiforms from Taiwan and compared their diets to cooccurring fish species. My second dissertation chapter identified increasing ranges of prey-size consumption through ontogeny in twelve species of Indo-Pacific clupeiforms. For my third dissertation chapter, I inferred a time-calibrated clupeiform phylogeny and patterns of diet evolution, which revealed a latitudinal herbivory gradient in clupeiforms. My fourth dissertation chapter found support for climate niche conservatism in the origins of the latitudinal diversity gradient in clupeiforms using diet data from chapter one, two, and three and the phylogeny from chapter three. My dissertation research contributes to the development of biological theory and efforts to sustainably manage fisheries.

TABLE OF CONTENTS

List of tables	.VI
List of figures	VII
Chapter 1. Diets and trophic guilds of small fishes from coastal marine habitats in	
western Taiwan	
Introduction	1
Materials and Methods	3
Results	7
Discussion	.10
Chapter 2. Trophic niches through ontogeny in twelve species of Indo-Pacific marine	;
Clupeoidei (herrings, sardines, and anchovies)	
Introduction	53
Materials and Methods	56
Results	62
Discussion	65
Chapter 3. Phylogenetic analysis of trophic niche evolution reveals a latitudinal	
herbivory gradient in Clupeoidei (herrings, anchovies, and allies)	
Introduction	80
Materials and Methods	83
Results	91
Discussion	95

Chapter 4. Niche breadth, diversification rates, and latitude decoupled in clupeiform fishes (anchovies, sardines, allies): support for tropical conservatism in the origins of the latitudinal diversity gradient

Introduction	
Materials and Methods	124
Results	132
Discussion	
Bibliography	

LIST OF TABLES

Table 1.1. Individual-level diet data specimen catalog numbers	16
Table 1.2. Prey types comprising prey categories.	40
Table 1.3. Percent frequency of plants and detritus	41
Table 1.4. Fishes collected in Taiwan from estuaries versus beaches	
Table 1.5. Most important prey types of each trophic guild	
Table 1.6. Parameters estimated by simple linear regressions	46
Table 1.7. Review of previous diet studies	47
Table 2.1. Clupeoid species included in study	72
Table 2.2. Information associated with collecting events	72
Table 2.3. Prey types in each prey category	73
Table 2.4. Prey width quantile regression equations	74
Table 2.5. Relative prey width quantile regression equations	74
Table 3.1. Taxon and locus sampling	
Table 3.2. Clupeoid character data	105
Table 3.3. Diets of ten clupeiform species.	111
Table 4.1. Clupeiform character data	145
Table 4.2. Diet data for 24 clupeiform species.	152
Table 4.3. Prey types comprising each prey category	153
Table 4.4. Important prey categories in each trophic guild	154
Table 4.5. Trophic guild versus niche breadth ANOVA results	155
Table 4.6. Niche breadth versus climate ANOVA	

LIST OF FIGURES

Figure 1.1. Locations of sampling sites in Taiwan	50
Figure 1.2. Dendrogram showing clupeiform diet relationships	51
Figure 1.3. Prey width/standard length relationships	52
Figure 2.1. Dendrogram based upon prey types	75
Figure 2.2. Dendrogram based upon prey sizes	76
Figure 2.3. Predator size versus prey size scatter plots	77
Figure 2.4. Predator size versus relative prey size scatter plots	78
Figure 2.5. Niche breadth and maximum prey width versus predator size scatter plot	t79
Figure 3.1. Time-calibrated 6-gene clupeoid phylogeny	112
Figure 3.2. Time-calibrated 4-gene clupeoid phylogeny	113
Figure 3.3. Clupeoid diet and habitat use transitions	114
Figure 3.4. Evolutionary history of diet in Clupeoidei	115
Figure 3.5. Number of clupeoids at 5 [°] latitudinal transects	116
Figure 3.6. Contmaps of herbivory and latitude	117
Figure 4.1. Clupeiform prey type consumption dendrogram	157
Figure 4.2. Evolutionary history of diet in clupeiforms	158
Figure 4.3. Evolution of maximum latitude in clupeiforms	159
Figure 4.4. Net diversification rates in clupeiforms	160

CHAPTER 1

Diets and trophic guilds of small fishes from coastal marine habitats in western

Taiwan

1. Introduction

Food web structure in shallow, coastal, marine ecosystems is variable over space and time (Deegan and Garritt 1997; Wilson and Sheaves 2001; Vander Zanden and Fetzer 2007; Bergamino et al. 2011). In these ecosystems, assemblages of small-sized fishes comprise a significant proportion of consumer biomass. Small-sized fishes play diverse roles in food webs, consuming a variety of prey types ranging from detritus to fishes and transferring energy and nutrients within and between food webs (Hajisamae et al. 2003; Baker and Sheaves 2005; Inoue et al. 2005; Nelson et al. 2013). The diets of many small, coastal fishes are poorly studied, especially in tropical and subtropical environments. This limits the resolution and accuracy of food web models and antagonizes attempts to describe and understand spatial and temporal variation in food web structure (Kitching 1987; Winemiller 1990; Montoya and Solé 2003).

Trophic guilds are groups of species eating similar prey (Root 1967; Simberloff and Dayan 1991; Garrison and Link 2000). Assigning fishes to trophic guilds facilitates comparisons of food web structure by synthesizing and reducing the complexity of diet data (Simberloff and Dayan 1991; Garrison and Link 2000; Elliot et al. 2007; Simon et al. 2013). Preliminary research shows that tropical and subtropical fish assemblages in shallow, marine environments typically contain five to eight of the following trophic guilds when analyses are based upon prey types consumed: herbivores, omnivores, insectivores, piscivores, detritivores, crustacivores (sometimes multiple guilds), annelidivores, and molluskivores (Hajisamae et al. 2003; Nakamura et al. 2003; Kanou et al. 2004; Inoue et al. 2005; Elliot et al. 2007; Nanjo et al. 2008; Nakane et al. 2011; Zagars et al. 2013). Certain guilds such as crustacivores and zooplanktivores are reported by nearly every study, but other guilds such as herbivores and molluscivores appear to be less common. Additional diet studies representing the diversity of habitat types are required to understand drivers of trophic guild representation in coastal ecosystems.

Measuring fish prey size consumption, and how it changes through ontogeny, can provide insight into fish biology, coastal fish community composition, and food web structure that is not gained by only quantifying the types of prey consumed. Biologically meaningful differences in prey size consumption can occur between fishes consuming the same prey types. Datasets that also describe prey size consumption may better identify potential interspecific competition or explain species coexistence and allow predictions of changes in fish populations in response to fluctuations in prey populations (Werner 1977; Paszkowski et al. 1989; Shannon et al. 2004). A coarse understanding of prey size consumption can be gleaned by identifying prey types. For example, zooplankton prey are likely smaller than fish prey. However, because much variation in prey size exists within prey categories, information is lost when prey are not directly measured. Furthermore, prey size data are needed for the development of models that predict fish prey sizes using fish predator size data, which is useful when modeling food webs and making management decisions when diet data are unavailable (Scharf et al. 2000; Gravel et al. 2013).

The objectives of this study were to: (1) quantify the diets of small, near-shore, marine fishes from four localities along the Western coast of Taiwan (Republic of China), (2) identify trophic guilds in these assemblages, (3) describe ontogenetic shifts in maximum prey size consumption, and (4) determine if fish standard length (SL) predicts maximum prey size consumption at the assemblage level. This study described the diets of 54 fish species and is the first assemblage-level diet study of near-shore fishes in Taiwan. This research provides insight into coastal, marine food web structure and data useful for ecosystem-based fisheries management and comparative evolutionary and ecological research.

2. Materials and methods

2.1 Fish collecting and identification

Small fishes (small species and small individuals from larger growing species) were collected from two sandy beaches and two muddy, mangrove-lined estuaries at depths less than 1.5 m in Western Taiwan during the rainy season in 2013 and 2014 (Figure. 1.1): (1) subtropical Chonggang Estuary, Houlong Township, Miaoli County (24.622886

N, 120.754339 E), (2) tropical Haomei Beach, Budai Township, Chiayi County (23.363514 N, 120.129653 E), (3) tropical Haomei Estuary, Budai Township, Chiayi County (23.360451 N, 120.130372 E), and (4) tropical Shuang Chun Beach, Beimen District, Tainan City (23.305965 N, 120.108181 E). A beach seine (8.7 m x 1.9 m x 0.5 cm mesh) was used to capture fish. This study did not quantify prey availability in the environment. After capture, fish were euthanized with tricaine methanesulfonate then placed on ice to prevent degradation of specimens during transport. Whole specimens were fixed in a 10% formaldehyde solution, transferred to 70% ethanol for long-term storage, and deposited in the fish collection at the University of Minnesota James Ford Bell Museum of Natural History (JFBM), Minnesota, U.S.A. Museum catalog numbers associated with specimens are in Table 1.1. Fishes were identified with the help of dichotomous keys (Carpenter and Niem 1999; Chakrabarty et al. 2010).

2.2 Diet quantification

The SL of each specimen was measured using digital calipers following Hubbs and Lagler (1941), except for Hemiramphidae species, for which SL was measured to the tip of the upper jaw (Shakman and Kinzelbach 2006). Digestive tract contents were then dissected onto microscope slides, taking care to avoid contaminating samples with fragments of fish tissue, which can be confused with detritus. Fishes digest different prey types at different rates, which can bias diet quantification if digestive tract contents are heavily digested (Gannon 1976). Therefore, only relatively undigested prey in the anterior portion of the digestive tract were examined (Hundt et al. 2014; Costalago et al. 2015). Prey were identified to the lowest practical taxonomic level using dissecting and binocular microscopes. Rocks and sand were not counted as prey items. The largest representative of every prey type from each fish was photographed with a microscope-mounted Spot InsightTM digital camera (Model 14.2 Color Mosaic;

www.spotimaging.com) and its maximum width measured using ImageJ software (Schneider et al. 2012; imagej.nih.gov/ij/). An index of gut fullness was not quantified because this measurement is time-consuming, difficult to estimate accurately for small specimens, and there is no consensus that these indices are important for simple descriptions of fish diets (Hyslop 1980). The diet of each species was expressed as frequency of occurrence, which is calculated by dividing the number of fish a particular type of prey was positively identified in by the total number of fish (for the species in question) with prey in their digestive tracts (Baker et al. 2014). Alternative diet quantification approaches exist. Because this study examined the diets of many individuals, the frequency of occurrence method was selected. This method has been demonstrated to be faster than many approaches while still yielding comparable results (Baker et al. 2014). Only fish species represented by at least five individuals were included in statistical analyses unless noted otherwise, following Nakamura et al. (2003). Three barracuda species *Sphyraena* spp. were combined into a single group for analysis because sample sizes were small and all individuals ate the same prey. Sixteen prey categories were used for trophic guild analyses (Table 1.4). Prey categories were not strictly taxonomic and included prey that were morphologically or functionally similar (e.g. Collembola is placed in the Crustacea prey category because of some similarities aquatic members of this taxon share with other members of the Crustacea prey category). An unpaired t-test was used to test for differences in mean fish SL between beach and estuary habitats. A P-value of < 0.05 was the threshold for statistical significance for all comparisons unless noted otherwise and all statistical analyses were implemented in program R v. 3.3.1 (R Development Core Team 2016).

2.3 Trophic guild analyses

Many fishes undergo ontogenetic diet shifts. In these cases it is appropriate to separate species into length groups prior to trophic guild analyses (Scharf et al. 2000; Specziár and Rezsu 2009). Consequently, all species with sample sizes of at least 10 individuals were tested for ontogenetic shifts in prey types consumed. Data from all sites were pooled and species were divided into 5 mm SL bins. When necessary, adjacent bins were collapsed until each bin contained at least five individuals. The dissimilarity in prey type consumption between SL groups was estimated using Czekanowski Dissimilarity index matrices (Czekanowski 1909) using the program R "vegan" package (Oksanen et al. 2016). Plant material and detritus were not included in analysis if there was strong evidence that they were incidentally ingested (Table 1.3).

Two approaches were used to determine if diet differences between SL groups were statistically significant. First, a bootstrap randomization approach was employed. Resampling with replacement for 1,000 iterations was conducted according to the "RA4" algorithm (Lawlor 1980). This method is commonly used in diet studies (Jaksić and Medel 1990; Specziár and Rezsu 2009; Buchheister and Latour 2015). Additionally, the Similarity Profile (Simprof) permutation method was implemented (Clarke et al. 2008). One thousand permutations were specified and a P-value of < 0.01 was used to determine statistical significance following Clarke et al. (2008). The Simprof analyses used the Simprof function in the program R "clustsig" package (Whitaker and Christman 2015). After testing for ontogenetic diet shifts and dividing species into multiple groups for analysis if needed, trophic guilds were identified via hierarchical agglomerative clustering using Czekanowski Dissimilarities with group-average linkage with data from all localities pooled. Clusters were considered to be trophic guilds if bootstrapping and Simprof analyses (following conditions described above) identified them as significantly dissimilar from other clusters.

2.4 Prey size consumption

Patterns of maximum prey width consumption were examined by pooling prey width data from all sites. It was not feasible to measure detrital particle widths directly. These were assigned a width of one *u*m based upon observations of detritus from several specimens with a binocular microscope. Simple linear regression was used to test for correlation between maximum prey width and SL for individual species and at the assemblage level. For the assemblage level analysis all diet data were included, even for species excluded from other analyses because fewer than five individuals were sampled.

3. Results

3.1 Fish collecting and identification

Fifty-four fish species were collected from the four sampling sites (Table 1.4). Fifty-two species occurred in estuaries and 18 along sandy beaches. Eighteen species were collected at multiple sites and 16 in both estuary and sandy beach habitats. Two to three species, all collected in Haomei Estuary (Figure. 1.1), have not been previously reported to occur Taiwan: barcheek amoya *Acentrogobius moloanus* (Herre 1927), goby *Aulopareia unicolor* (Valenciennes 1837), and possibly bluemarked drombus *Drombus ocyurus*, for which identification is preliminary. Fishes ranged in size from 11.74 - 97.11 (mean: 36.75) and 14.70 - 151.2 (mean: 35.80) mm SL in beach and estuary habitats, respectively. Mean fish SL was not significantly different between beach and estuary habitats (unpaired *t*-test, t = 0.50, d.f. = 169, P > 0.05).

3.2 Diet quantification

Of the fishes examined, 599 contained identifiable prey, 468 from estuaries and 131 from sandy beaches. Prey that occurred in the greatest number of individuals were copepods, eggs, detritus, pennate diatoms, Cirripedia cypris, and algae. Zooplankton was the most frequently occurring prey category in 20 of the 31 species subjected to cluster analysis (Figure. 1.2). Eggs were found in 25 of 31 species, but they were never the most common prey item. Fish were found in five of 31 species and were the most frequently occurring prey in *Sphyraena* spp. Detritus was the most commonly occurring prey in largescale mullet *Chelon macrolepis* (Smith 1846), longarm mullet *Moolgarda cunnesius*

(Valenciennes 1836), and Istern Pacific gizzard shad *Nematalosa come* (Richardson 1846). Detritus and phytoplankton were found in 25 and 22 of 31 species, respectively, but in most cases they occurred in small quantities and were likely incidentally ingested.

3.3 Trophic guilds

No ontogenetic shifts in prey type consumption were discovered. The Simprof analysis identified six statistically significant clusters corresponding to the following trophic guilds: (1) piscivores, (2) crustacivores, (3) detritivores, (4) omnivores, (5) zooplanktivores, and (6) terrestrial invertivores (Figure. 1.2 and Table 1.5). All trophic guilds occurred in estuaries. The piscivore, terrestrial invertivore, and omnivore guilds did not occur along sandy beaches. Bootstrap resampling identified a critical dissimilarity value of 0-67 as the threshold for statistical significance. This yielded three statistically significant clusters corresponding to the piscivore and crustacivore trophic guilds and a combined cluster of the detritivore, omnivore, zooplanktivore, and terrestrial invertivore guilds (Figure. 1.2).

3.4 Prey size consumption

Eight species of fish exhibited statistically significant ontogenetic shifts in maximum prey width consumption. Maximum prey width and SL were positively correlated in seven species and negatively correlated in the detritivorous *C. macrolepis* (Table 1.6, Figure 1.3a). A statistically significant positive correlation was found between SL and

maximum prey width at the assemblage level. This relationship is stronger with detritivores excluded from the analysis (Table 1.6 and Figure 1.3b).

4. Discussion

Diet studies of fishes are needed to improve my understanding of coastal marine food webs. This study describes the diets, trophic guilds, and size relationships between fish predators and their prey in near-shore, marine and estuarine habitats in Western Taiwan. Copepods were identified as key prey in the investigated fish communities. The trophic guild scheme proposed by this study is largely consistent with similar fish assemblages. Eight species of fishes were found to exhibit ontogenetic shifts in maximum prey width consumption and fish SL was predictive of maximum prey width consumption in this assemblage. This study provides information that can inform comparative evolutionary and ecological research and ecosystem-based fisheries management in coastal tropical and subtropical ecosystems.

4.1 Fish diets

The first objective of this study was to describe the diets of small, near-shore, marine and estuarine fishes in Taiwan. The diets of 54 species were described, including three species for which no diet data were previously available and 52 species that have never been subjected to gut content analysis in Taiwan (Lin et al. 2007; Table 1.7). The diets described herein are largely congruent with previous research (Table 1.7); however,

consumption of terrestrial insects by the Sumatran silverside *Hypoatherina valenciennei* (Bleeker 1854) has not been previously reported and scale eating by doublespotted queenfish *Scomberoides lysan* (Forsskål 1775), reported by Major (1973), was not observed.

Most fishes sampled were zooplanktivores (Figure 1.2) and the most common prey were copepods, followed by eggs, detritus, and pennate diatoms. Many similar studies of coastal fish assemblages also report that copepods are one of the most frequently consumed prey types (Kanou et al. 2004; Inoue et al. 2005; Nanjo et al. 2008; Nakane et al. 2011). This demonstrates their importance in tropical and subtropical near-shore food webs and suggests copepods may be key regulators of predator population sizes via bottom-up effects, a role they play in some temperate marine ecosystems (Frederiksen et al. 2006). Phytoplankton was more frequently consumed and fishes and crustaceans less frequently consumed in this study than several other studies (Kanou et al. 2004; Inoue et al. 2005; Nanjo et al. 2008; Nakane et al. 2011). It is unclear why phytoplankton was more prevalent in the present study, but this could be a result of methodology. In many species phytoplankton was present in very small quantities and likely incidentally ingested. These small quantities were often detected when viewing prey through a binocular microscope prior to photography for prey size measurements. This, in combination with the frequency of occurrence method of diet quantification, may have artificially inflated the importance of phytoplankton in the diets of some fishes. The present study was restricted to smaller sizes of fish than many similar studies, which may partially explain why fishes and crustaceans were consumed relatively infrequently

(detailed inter-study comparisons of the fish sizes examined are not possible because individual-level data are typically not reported). Environmental factors such as habitat or prey availability also may have contributed to this result. Nakane et al. (2011) sampled a similar size-range of fishes (9 to 285 mm SL) and report that Mysidacea and Amphipoda were the most important prey in 26 and 20 species of marine sandy beach fishes, respectively. Baker and Sheaves (2005) report many piscivores in shallow coastal habitats in Australia within the SL range sampled by the present study, which also contrasts with several previous studies (Inoue et al. 2005; Nanjo et al. 2008; Nakane et al. 2011).

4.2 Trophic guilds

The second objective of this study was to identify trophic guilds. The Simprof analysis identified six trophic guilds and bootstrapping identified three (Table 1.5 and Figure. 1.2). The six-guild scheme is most similar to previous studies and the trophic guild classification for estuaries outlined by Elliot et al. (2007). Bootstrapping identified a dissimilarity value of 0.67 as the cut-off for statistical significance. This is very similar to the critical dissimilarity value of 0.69 identified via bootstrapping in a study of trophic guilds in a temperate fish assemblage (Buchhiester and Latour 2015) and only slightly more stringent than the arbitrary dissimilarity threshold of 0.60 used by many previous studies (Nakamura et al. 2003; Inoue et al. 2005; Nanjo et al. 2008). All guilds identified by this study, except the omnivore guild, are frequently represented in similar assemblages (Kanou et al. 2004; Inoue et al. 2005; Nanjo et al. 2008; Nakane et al. 2011).

This indicates there is considerable consistency in food web structure among coastal fish assemblages. The omnivore cluster was often present in comparable studies, but not significantly different from either the zooplanktivore or detritivore guilds (e.g. Nakamura et al. 2003; Nanjo et al. 2008). This study did not identify herbivore, annelidivore, or molluscivore trophic guilds, although fish did consume these prey types. Fish size does not explain these results because these guilds frequently contain fishes within the SL range examined (Kanou et al. 2004; Inoue et al. 2005; Nanjo et al. 2008; Nakane et al. 2011). The absence of herbivores and molluscivores is not surprising because these guilds are less common, indicating their representation may be relatively more dependent on environmental factors than common guilds such as zooplanktivore. Limited annelid consumption is more surprising because this guild is common in soft-bottomed coastal marine and estuarine environments (Hajisamae et al. 2003; Kanou et al. 2004; Inoue et al. 2005; Nanjo et al. 2008) where polychaetes are abundant (Sarkar et al. 2005; Froján et al. 2006). This study did not quantify prey availability in the environment. A survey of the macroinvertebrate communities in the areas this study sampled may help determine if limited polychaete availability contributed to this result.

4.3 Prey size consumption

A positive correlation between SL and maximum prey width consumption was identified in seven species and a negative correlation in a single detritivorous species (Table 1.6 and Figure. 1.3a). This finding is consistent with previous research reporting ontogenetic shifts in prey size consumption, even in the absence of shifts in prey type consumption (Scharf et al. 2000; Jensen et al. 2008; Specziár and Rezsu 2009). It is likely that additional ontogenetic shifts in prey size consumption as well as ontogenetic shifts in prey type consumption would be identified with examination of a wider range of fish SLs and larger sample sizes.

Fish SL was correlated with maximum prey width consumption at the assemblage level (Figure. 1.3b). This is consistent with previous studies finding that the maximum prey sizes consumed is typically positively correlated with SL in fish assemblages (Scharf et al. 2000). The detritivores *C. macrolepis*, *M. cunnesius*, and *N. come*, which ate very small prey even at long SLs, were an exception to this pattern. When these species were excluded from the analysis, linear regression better accounted for variation in maximum prey width consumption (Table 1.6 and Figure. 1.3a). Consequently, predictions of prey size consumption based upon SL may be undermined if detritivory is unaccounted for, even at short SLs. In near-shore fish assemblages in Taiwan detritivores likely provide a unique direct trophic link between detritus and piscivores (Wilson et al. 2003; Hundt et al. 2014).

4.4 Implications and conclusions

This study described the diets, trophic guilds, and size relationships between fish predators and their prey in near-shore marine fish assemblages in Taiwan. The findings of this study are congruent with previous research and add to a growing body of work showing consistent representation of some trophic guilds in marine fish assemblages (e.g. zooplanktivores and crustacivores), but variable representation of others (e.g. herbivores and terrestrial invertivores). This suggests that certain trophic guilds may exhibit particularly tight links with environmental attributes. Additional diet studies of marine fishes, especially those with accompanying descriptions of the habitats sampled, adjacent habitat types, and prey availability, are needed to identify the factors governing spatial variation in trophic guild representation. The trophic guilds identified by this study are consistent with the estuarine trophic guilds of Elliot et al. (2007), which supports the use of this framework in ecosystem-based fisheries management. The diet data and trophic guild scheme produced by this study contribute to my understanding of the biology of marine fishes and food web structure and ecosystem-based fisheries management. **Table 1.1.** Individual-level diet data with locality collected, standard length (SL), and James Ford Bell Museum catalog number (JFBM). Gastropoda and Bivalva refer to planktonic stages unless noted otherwise.

		SL		
Species	Locality	(mm)	Diet	JFBM
Acanthopagrus sp.	Haomei estuary	30.48	Gammaridea, shrimp, eggs	47999
Acentrogobius moloanus	Haomei estuary	23.08	Copepoda, egg Copepoda, pennate diatom, Merismopedia, macrophyte	47503
Acentrogobius moloanus	Haomei estuary	23.95	fragments, detritus	47587
Acentrogobius moloanus	Haomei estuary	24.61	filimentous algae, detritus	47503
Acentrogobius moloanus	Haomei estuary	25.94	Bivalve veliger, eggs Nematoda, Merismopedia, copepoda, chain	47650
Acentrogobius moloanus	Haomei estuary	28.38	cyanobacteria, detritus	47650
Acentrogobius moloanus	Haomei estuary	28.90	Copepoda, detritus Filamentous algae, Merismopedia, pennate diatoms, copepoda, detritus,	47596
Acentrogobius moloanus	Haomei estuary	30.84	cyanobacteria Detritus, copepoda, plant	47650
Acentrogobius moloanus	Haomei estuary	51.63	leaf, dinoflagellata Merismopedia, detritus, plant leaf, pennate diatoms,	47587
Acentrogobius moloanus	Haomei estuary	61.37	copepoda, other algae Copepoda, filamentous algae, plant leaf, pennate diatom, Polychaeta,	47587
Acentrogobius nebulosus	Haomei estuary	24.73	Nematoda, detritus Copepoda, gammaridea,	47503
Acentrogobius nebulosus	Haomei estuary	36.01	eggs, leaf Filamentous algae, plant	47995
Acentrogobius nebulosus	Haomei estuary	40.42	leaf Copepoda Merismopedia	47503
Acentrogobius nebulosus	Haomei estuary	42.84	leaves Detritus, filamentous algae, other algae. Polychaeta	47596
Acentrogobius nebulosus	Haomei estuary	47.29	copepoda, gammeridea Other algae, plant fragments, copepoda	48338
Acentrogobius nebulosus	Haomei estuary		detritus Copepoda, eggs, pennate diatom, nematode	47596
Acentrogobius cf plaufamii	Haomei estuary	25.62	Merismopedia, detritus Copepoda, Crustacean	47650
Acentrogobius cf plaufamii	Haomei estuary	26.34	nauplii	47650
Acentrogobius cf plaufamii	Haomei estuary	28.32	Filamentous algae, detritus	47596

			Copepoda, Merismopedia, Nematoda, pennate diatoms,	
Acentrogobius cf plaufamii	Haomei estuary	30.56	detritus Gammeridea, copepoda,	47650
Acentrogobius cf plaufamii	Haomei estuary	30.76	filamentous algae, egg Amphipoda filamentous	47997
Acentrogobius cf plaufamii	Haomei estuary	32.31	algae	47997
Albula vulpes	estuary Shuang Chun	77.99	Fish, gammaridea Gammeridea filamentous	47956
Alepes djedaba	beach Chonggang	18.94	algae	48026
Alepes djedaba	estuary Chonggang	26.44	Copepoda Filamentous algae,	48008
Alepes djedaba	estuary	27.83	copepoda, pennate diatom	48008
Alepes djedaba	Haomei estuary Chonggang	28.34	Copepoda	48002
Alepes djedaba	estuary	28.94	Pennate diatom, copepoda	48008
Alepes djedaba	Haomei beach	33.18	Copepoda	48031
Alepes djedaba	Haomei estuary Shuang Chun	36.63	Copepoda Detritus, copepoda, pennate	48002
Alepes djedaba	beach	41.15	diatoms, Tintinnida Copepoda, detritus,	48026
Alepes djedaba	Haomei estuary	42.16	filamentous algae	48021
Alepes djedaba	Haomei estuary	43.96	Copepoda Filamentous algae,	48021
Alepes djedaba	Haomei estuary	44.57	copepoda, fish, unidentifiable Crustacea Filamentous algae,	48021
Alepes djedaba	Haomei estuary	48.24	copepoda	48021
Alepes djedaba	Haomei estuary	50.80	Copepoda, fish	48021
Alepes djedaba	Haomei beach	78.98	Shrimp, fish	47628
Alepes djedaba	Haomei beach	83.95	Shrimp	47628
Alepes djedaba	Haomei beach	84.09	Shrimp, filamentous algae	47628
Alepes djedaba	Haomei beach	86.64	Thryssa setirostris, shrimp Shrimp, fish, filamentous	47628
Alepes djedaba	Haomei beach	88.20	algae Filamentous algae, shrimp,	47628
Alepes djedaba	Haomei beach	88.43	egg, Tintinnida, detritus	47628
Alepes djedaba	Haomei beach	88.94	Shrimp, fish	47628
Ambassis cf. gymnocephalus	Haomei beach	18.74	Cirripedia cypris, copepoda	47989
Ambassis cf. gymnocephalus	Haomei beach	20.47	Cirripedia cypris, copepoda	47989
Ambassis cf. gymnocephalus	Haomei beach	20.91	Cirripedia cypris, copepoda Cirripedia cypris, copepoda,	47989
Ambassis cf. gymnocephalus	Haomei beach	21.10	amphipoda Cirripedia cypris, copepoda,	47989
Ambassis cf. gymnocephalus	Haomei beach	23.29	decapoda megalopa, eggs	47989
Ambassis cf. gymnocephalus	Haomei estuary	25.41	Copepoda	48005
Ambassis cf. gymnocephalus	Haomei beach Houmeili	28.29	Copepoda, Cirripedia cypris Copepoda, eggs, centric	47590
Ambassis cf. gymnocephalus	estuary	28.32	diatom	47885

	TT		Commente Clamante a	
Ambassis of gymnocenhalus	estuary	28 42	algae eggs	47885
Ambassis of mmnocanhalus	Haomei beach	20.42	Copenada	47500
Amoussis ci. gymnocephaius	Houmeili	29.08	Copepoda Crustacea	47390
Ambassis cf. gymnocephalus	estuary Houmeili	29.82	nauplii, eggs	47885
Ambassis cf. gymnocephalus	estuary	30.68	Copepoda, eggs	47885
Ambassis cf. gymnocephalus	Haomei beach	31.44	Copepoda	47590
	Houmeili		Copepoda, Crustacea	
Ambassis cf. gymnocephalus	estuary	33.90	nauplii, eggs	47885
Ambassis cf. gymnocephalus	Haomei beach Houmeili	34.10	Copepoda Copepoda, decapod zoea,	47590
Ambassis cf. gymnocephalus	estuary Houmeili	34.27	eggs	47885
Ambassis cf. gymnocephalus	estuary Houmeili	35.27	Copepoda Copepoda decapod zoea	47885
Ambassis cf. gymnocephalus	estuary	35.43	eggs	47885
Ambassis cf. gymnocephalus	estuary	38.74	Copepoda, eggs Copepoda, Cirripedia cypris, filamentous algae,	47885
Ambassis cf. gymnocephalus	Haomei beach Houmeili	40.46	decapoda, eggs Copepoda, decapoda zoea,	47989
Ambassis cf. gymnocephalus	estuary Houmeili	41.21	Crustacea nauplii	47885
Ambassis miops	estuary	25.55	Gastropoda	47502
Ambassis miops	Haomei estuary Houmeili	25.85	Tintinnida, copepoda	48025
Ambassis miops	estuary	26.58	Copepoda, eggs, Tintinnida	47502
Aulopareia unicolor	Haomei estuary Chonggang	39.75	Copepoda, egg Copepoda, Cirripedia	47997
Bathygobius sp.	estuary	27.33	cypris, bivalve veliger Pennate diatom detritus	47550
Boleophthalmus		109.2	Crustacea, terrestrial plant	
pectinirostris	Haomei estuary	9	fragment, Merismopedia	47646
Bothidae sp.	Haomei estuary Chonggang	69.36	Shrimp, fish	47998
Callionymus sagitta	estuary	28.00	Detritus, copepoda Copepoda, unidentifiable	47969
Callionymus sagitta	Chonggang estuary Chonggang	41.10	Crustacea, Cirripedia cypris, centric diatom, Bivalva Amphipoda, unidentifiable	47517
<i>Carangidae</i> sp.	estuary	15.78	Crustacea	47967
Carangoides sp.	Haomei estuary Shuang Chun	26.10	Copepoda, trematoda	47887
Caranx sexfasciatus	beach	39.68	Fish Formicidae detritus	48677
Chanos chanos	Haomei estuary	79.93	filamentous algae	48150
Chanos chanos	Haomei estuary	87.85	Detritus Centric diatoms other	48150
Chanos chanos	Haomei estuary	96.63	algae, detritus Centric diatom, filamentous algae, dinoflagellata	48150
Chelon macrolepis	Haomei	22.60	detritus	47990

			Centric and pennate diatoms, copepoda, egg,	
Chelon macrolepis	Haomei beach Shuang Chun	23.75	detritus	47990
Chelon macrolepis	beach	24.26	Detritus	47976
Chelon macrolepis	Shuang Chun beach	24.44	Detritus, Cirripedia cypris Detritus, copepoda, Cirripedia cypris, centric and pennate diatoms, bivalve larvae	47976
Chelon macrolepis	Haomei beach	24.47	dinoflagellata	47990
Chelon macrolepis	Haomei estuary Shuang Chun	24.78	Detritus, pennate diatoms Detritus, copepoda, Bivalva,	48024
Chelon macrolepis	beach Shuang Chun	25.89	shrimp	47976
Chelon macrolepis	beach Shuang Chun	27.03	Detritus Unidentifiable Crustacea,	47976
Chelon macrolepis	beach	27.51	detritus, filamentous algae	47976
Chelon macrolepis	Haomei beach	27.86	Pennate diatoms, dinoflagellata, detritus	47990
Chelon macrolepis	Haomei beach	27.86	Detritus, Gastropoda, dinoflagellata, egg, pennate diatoms Pennate and centric diatom, filamentous algae, copepoda cypris, Cirripedia, dinoflagellata, Polychaata	47990
Chelon macrolepis	Haomei beach Shuang Chun	28.13	detritus	47990
Chelon macrolepis	beach	28.26	Detritus	47976
Chelon macrolepis	Shuang Chun beach	28.26	Gastrapoda, copepoda Detritus, egg, copepoda, Cirrinodia gunria, poppata	47976
Chelon macrolepis	Haomei beach	28.93	diatoms, Nematoda Centric and pennate diatoms, dinoflagellata, filamentous algae, egg	47990
Chelon macrolepis	Haomei beach	31.54	Gastropoda, detritus	47990
Chelon macrolepis	Shuang Chun beach	32.90	Detritus Centric, pennate, and colonial diatoms, filamentous algae, eggs,	47976
Chelon macrolepis	Haomei estuary	32.94	Gastropoda, Crustacea nauplii, detritus Centric and pennate diatoms, filamentous algae, eggs, detritus,	48024
Chelon macrolepis	Haomei estuary	33.13	Merismopedia Cyanobacteria, centric and	48024
Chelon macrolepis	Haomei estuary	33.44	pennate diatoms, other	47583

algae, detritus

	Shuang Chun			
Chelon macrolepis	beach	35.51	Detritus, egg Eggs, dinoflagellata, centric and pennate diatoms, Crustacea nauplii	47976
Chelon macrolepis	Haomei beach	39.18	copepoda, detritus Detritus, centric and pennate diatoms, eggs, Merismopedia, copepoda,	47990
Chelon macrolepis	Haomei estuary	39.27	macrophyte, other algae	47583
Chelon macrolepis	Haomei estuary	40.04	Merismopedia Detritus, pennate diatoms, eggs, Gastropoda, Merismopedia,	47583
Chelon macrolepis	Haomei estuary	41.32	cyanobacteria Dinoflagellata, centric and pennate diatoms, copepoda,	47649
Chelon macrolepis	Haomei beach	41.39	detritus Detritus, centric and pennate diatoms, eggs, Crustacea	47990
Chelon macrolepis	Haomei estuary	43.84	nauplii, Gastropoda Detritus, eggs, cyanobacteria, Merismopedia, pennate	48024
Chelon macrolepis	Haomei estuary	47.62	diatoms	47649
Chelon macrolepis	Haomei estuary	48.88	Detritus, centric diatom, egg	47883
			Detritus, pennate diatoms,	
Chelon macrolepis	Haomei estuary	49.21	egg, Merismopedia Detritus, filamentous algae, pennate diatoms, Tintinnida,	47649
Chelon macrolepis	Haomei estuary	52.44	eggs, copepoda, hydrozoa	47501
Chelon macrolepis	Haomei beach	66.08	Detritus Mud, unidentifiable	47595
Chelon macrolepis	Haomei beach Shuang Chun	76.69	Crustacea	47595
Chelon macrolepis	beach Shuang Chun	92.62	Detritus	47976
Chelon macrolepis	beach	97.11	Detritus Detritus pennate diatoms	47976
Chelon subviridis	Haomei estuary	62.73	Foraminifera, egg Detritus, cyanobacteria, Merismopedia, egg, pennate	48672
Crenimugil crenilabis	Haomei estuary	67.10	diatoms	48674
Cryptocentrus yatsui	Haomei estuary	24.24	Copepoda, filamentos algae	47996
Cryptocentrus yatsui	Haomei estuary	28.92	Copepoda	47996
Cryptocentrus yatsui	Haomei estuary	36.20	Copepoda Merismopedia, macrophyte fragment, Foraminifera,	47996
Cryptocentrus yatsui	Haomei estuary	38.03	detritus, copepoda	47587

Cryptocentrus yatsui	Haomei estuary	38.63	Copepoda Merismopedia, copepoda,	47650
Drombus cf. ocyurus	Haomei estuary	19.07	amphipoda	47650
Drombus cf. ocyurus	Haomei estuary	21.55	copepoda, mamentous algae, eggs Filamentous algae, ostracoda, copepoda, Merismopedia, pennate	47997
Drombus cf. ocyurus	Haomei estuary	22.96	diatoms	47997
Drombus cf. ocyurus	Haomei estuary	23.07	Copepoda	47997
Drombus cf. ocyurus	Haomei estuary	24.15	Copepoda	47650
Drombus cf. ocyurus	Haomei estuary	24.16	Filamentous algae, copepoda, amphipoda, eggs Filamentous algae, copepoda, pennate diatoms	47997
Drombus cf. ocyurus	Haomei estuary	24.50	cyanobacteria Copepoda, Merismopedia, Nematoda, detritus, pennate	47997
Drombus cf. ocyurus	Haomei estuary	25.04	diatom	47650
Drombus cf. ocyurus	Haomei estuary	26.15	Copepoda, gammeridea Copepoda, gammeridea, filamentous algae, pennate	47997
Drombus cf. ocyurus	Haomei estuary Chonggang	27.03	diatom	47997
Dussumieria elopsoides	estuary Chonggang	40.25	Unidentifiable Crustacea Copepoda, unidentifiable	47516
Dussumieria elopsoides	estuary Chonggang	41.52	Crustacea	47516
Dussumieria elopsoides	estuary Chonggang	42.94	Unidentifiable Crustacea Fish, unidentifiable	47516
Dussumieria elopsoides	estuary Chonggang	43.55	Crustacea	47516
Dussumieria elopsoides	estuary Chonggang	44.11	Shrimp	47516
Dussumieria elopsoides	estuary Chonggang	44.16	Decapoda, fish Fish, unidentifiable	47516
Dussumieria elopsoides	estuary Chonggang	45.70	Crustacea Crustacea nauplii,	47516
Encrasicholina heteroloba	estuary Chonggang	26.14	Cirripedia cypris	48013
Encrasicholina heteroloba	estuary Chonggang	27.67	Copepoda	48013
Encrasicholina heteroloba	estuary Chonggang	27.96	Cirripedia	48013
Encrasicholina heteroloba	estuary Chonggang	28.47	Cirripedia cypris, copepoda	48013
Encrasicholina heteroloba	estuary Chonggang	28.62	Nauplii	48013
Encrasicholina heteroloba	estuary Chonggang	28.73	Copepoda	48013
Encrasicholina heteroloba	estuary Chonggang	28.73	Cirripedia cypris	48013
Encrasicholina heteroloba	estuary	28.89	Copepoda	48013

Encrasicholina heteroloba	Chonggang estuary	29.73	Copepoda	48013
	Chonggang			
Encrasicholina heteroloba	estuary	29.84	Cirripedia cypris, copepoda Copepoda, bivalve larvae,	48013
Encrasicholina heteroloba	Haomei beach	47.52	cypris, egg, detritus Copepoda, cyanobacteria, macrophyte, Nematoda, Gastropoda, detritus	47978
Eubleekeria splendens	Oigu estuary	33.26	pennate diatom	48046
Fubleekeria splendens	Haomei beach	37.42	Copenoda eggs amphinoda	47881
Luoreeker tu spientiens	Haomer beach	57.72	Copepoda, eggs, ampinpoda Copepoda, eggs, Nematoda, pennate diatoms, Foraminifera, benthic	47001
Eubleekeria splendens	Haomei beach	46.19	Gastropoda, plant, detritus Copepoda, detritus, Bivalva	48594
Eubleekeria splendens	Qigu estuary	47.01	larvae Copepoda, detritus, Polychaeta, gammeridea	48046
Eubleekeria splendens	beach Chonggang	56.97	hydrozoa, shrimp Copepoda, Cirripedia	48027
Eublekeeria splendens	estuary	14.70	cypris, centric diatoms	48009
Eublekeeria splendens	Chonggang estuary Chonggang	14.96	Copepoda, Cirripedia cypris, eggs, Bivalva larvae Copepoda, Cirripedia	48009
Eublekeeria splendens	estuary	15.15	cypris, eggs Copepoda, bivalve larvae,	48009
Eublekeeria splendens	Chonggang estuary Chonggang	16.67	nauplii, eggs Copepoda, Cirripedia	48009
Eublekeeria splendens	estuary Chonggang	17.36	cypris, centric diatoms Copepoda, Cirripedia	47968
Eublekeeria splendens	estuary	17.40	cypris, Bivalva	48009
Eublekeeria splendens	Chonggang estuary	18.00	Copepoda, Gastropoda	47968
Eublekeeria splendens	Chonggang estuary	19.28	Unidentifiable Crustacea Copepoda, Cirripedia	47968
Eublekeeria splendens	Chonggang estuary Chonggang	19.63	nauplii and cypris, appendicularia, cladocera	48009
Eublekeeria splendens	estuary	19.68	Copepoda, pennate diatom	47968
Eublekeeria splendens	estuary Chonggang	19.69	nauplii, eggs	48009
Eublekeeria splendens	estuary	20.31	Copepoda Copepoda Cirripedia	47968
Eublekeeria splendens	estuary	20.40	nauplii, Nematoda Copepoda, Cirripedia	48009
Eublekeeria splendens	Chonggang estuary	20.42	cypris, Bivalva, centric diatoms	47968
Eublekeeria splendens	Chonggang estuary	21.99	Copepoda, Cirripedia nauplii and cypris,	48009

append	dicularia	

Eublekeeria splendens	Chonggang estuary	23.16	Copepoda, Cirripedia cypris and exopod Copepoda, centric and pennate diatoms, eggs	47968
Eublekeeria splendens	Chonggang estuary	23.30	sillicoflagellata, cyanobacteria, Foraminifera, Bivalva Copepoda, Bivalva, Cirripedia nauplii and	47968
Eublekeeria splendens	Chonggang estuary	25.07	cypris, Polychaeta, Tintinnida	48009
Eublekeeria splendens	Chonggang estuary	25.43	Cirripedia cypris, pennate diatom, cyanobacteria Copepoda, other algae, pennate diatoms	47968
Eublekeeria splendens	Chonggang estuary	26.00	unidentifiable Crustacea, sipuncula, eggs, Bivalva	47968
Gazza minuta	Chonggang	28.36	Shrimp	48012
Gerres limhatus	Haomei estuary	20.50	Copepoda eggs	48595
Gerres limbatus	Haomei estuary	37.61	Copepoda, eggs Nematoda	47655
	finoliter estuary	57.01	Copepoda, Crustacea	17000
Hypoatherina valenciennei	Haomei estuary	28.04	naulpii	47994
			Cirripedia cypris, copepoda,	
Hypoatherina valenciennei	Haomei beach	30.65	nauplii Cirripedia cypris, copepoda,	47983
Hypoatherina valenciennei	Haomei beach	31.50	gammeridea Cirripedia cypris, copepoda,	47983
Hvpoatherina valenciennei	Haomei beach	34.16	Bivalva veliger	47983
<i>Hypoatherina valenciennei</i>	Haomei estuary	43.24	Copepods	47465
<i>Hypoatherina valenciennei</i>	Haomei estuary	45.10	Hymenoptera, detritus	47465
<i>Hypoatherina valenciennei</i>	Haomei estuary	46.70	Hymenoptera	47465
	-			
Hypoatherina valenciennei	Haomei estuary	48.19	Copepods	47465
Hyporhamphus sp.	Haomei estuary	53.63	Terrestrial insects, copepoda	47586
Hyporhamphus sp.	Haomei estuary	67.77	Copepoda, terrestrial insect, plant leaf Copepoda, plant leaves, eggs, filamentous algae, pennate diatoms terrestrial	47586
Hyporhamphus sp.	Haomei estuary	73.40	insect	47586
Hyporhamphus sp.	Haomei beach	77.50	Copepoda, terrestrial insect, filamentous algae, eggs Filamentous algae,	47647
Hyporhamphus sp.	Haomei estuary	86.23	Merismopedia, decapod	47586

Lutianus argentimaculatus	Haomei estuarv	126.5 0	zoea, eggs, terrestrial insects, pennate diatoms Filamentous algae, dinoflagellata, fish, eggs, detritus	48221
,			Detritus, egg, centric and	
Moolgarda cunnesius	Haomei beach	20.20	pennate diatoms, copepoda Copepoda, pennate diatoms, filamentous algae, Bivalva larvae, Merismopedia,	48673
Moolgarda cunnesius	Haomei beach	25.88	detritus Filamentous algae, eggs,	48673
Moolgarda cunnesius	Haomei beach	26.00	copepoda Detritus, pennate diatoms, dinoflagellata,	48673
	Chonggang		unidentifiable Crustacea,	
Moolgarda cunnesius	estuary	27.65	copepoda, Crustacea nauplii Centric and pennate	47958
	Chonggang		diatoms, eggs, plant,	
Moolgarda cunnesius	estuary	27.69	detritus, filamentous algae	47958
Moolgarda cunnesius	Haomei beach	28.19	Detritus Centric and pennate diatoms, filamentous algae,	48675
Moolgarda cunnesius	Haomei beach	28.35	egg, Merismopedia, detritus	48673
Moolgarda cunnesius	Haomei beach	28.45	diatoms, cyanobacteria Centric diatoms.	48673
Moolgarda cunnesius	Haomei beach	28.49	cyanobacteria, detritus Detritus, filamentous and other algae, Merismopedia, centric and pennate diatoms,	48673
Moolgarda cunnesius	Haomei beach	30.01	eggs	48673
Moolgarda cunnesius	Chonggang estuary Chonggang	30.45	Detritus Centric and pennate diatom,	47958
Moolgarda cunnesius	estuary	31.82	detritus	47958
Moolgarda cunnesius	Chonggang estuary	32.55	Centric and pennate diatoms, detritus Detritus, filamentous algae,	47958
Moolgarda cunnesius	Haomei beach	32.81	eggs, pennate diatoms, Bivalva Filamantous algae, detritus	47981
Moolgarda cunnesius	Haomei beach	33.66	pennate diatom	48675
Moolgarda cunnesius	Haomei beach Chonggang	34.00	Detritus, egg Eggs, pennate diatoms,	48675
Moolgarda cunnesius	estuary	34.60	dinoflagellata, detritus	47958
Moolgarda cunnesius	Haomei beach Chonggang	34.66	Pennate diatom, detritus	48675
Moolgarda cunnesius	estuary	35.31	Pennate diatoms, detritus Filamentous algae, other algae, eggs, detritus	47958
Moolgarda cunnesius	Haomei beach	35.33	dinoflagellata	48673

			Detritus, Cirripedia cypris, Crustacea nauplii, filamentous algae, Gastropoda, dinoflagellata, centric, pennate, and	
Moolgarda cunnesius	Haomei estuary Chonggang	35.47	colonial diatoms, eggs Pennate diatoms, eggs,	48003
Moolgarda cunnesius	estuary Chonggang	36.95	dinoflagellata, detritus	47958
Moolgarda cunnesius	chonggang	37.21	Pennate diatoms, detritus Eggs, centric diatom, pennate diatom, Foraminifera Nematoda	47958
Moolgarda cunnesius	estuary	37.76	detritus Detritus, eggs, dinoflagellata, filamentous	47958
Moolgarda cunnesius	Haomei estuary	38.63	algae, centric diatoms	48003
Moolgarda cunnesius	Chonggang estuary	38.85	Eggs, detritus	47958
Moolgarda cunnesius	Chonggang estuary	43.55	Pennate diatoms, filamentous algae, eggs, detritus Pennate diatoms, Crustacea nauplii, dinoflagellata,	47958
Moolgarda cunnesius	Haomei beach	65.76	formanifera, Tintinnida, egg, detritus Detritus, Cirripedia cypris,	47626
Nematalosa come	Chonggang estuary	28.18	egg, ostracoda, centric diatom, copepoda Detritus, copepoda,	47960
Nematalosa come	Chonggang estuary	31.25	Cirripedia cypris, centric diatom	47960
Nematalosa come	Chonggang estuary	32.08	Detritus, macrophyte, other algae, phytoflagellata Copepoda, Crustacea	47960
Nematalosa come	Haomei estuary Chonggang	33.20	nauplii, centric diatom Detritus, dinoflagellete,	48018
Nematalosa come	estuary	33.33	centric diatom, egg Copepoda, detritus, Cirrinedia cypris, decapod	47960
Nematalosa come	Haomei beach	33.56	zoea	47984
Nematalosa come	Chonggang estuary	33.64	Detritus, pennate diatom	47960
Nematalosa come	Haomei estuary	34.64	Detritus Conenoda detritus	48018
Nematalosa come	Haomei estuary Chonggang	35.33	Crustacea nauplii, egg Detritus, filamentous and	48018
Nematalosa come	estuary Chonggang	36.44	other algae, egg Detritus, filamentous algae,	47960
Nematalosa come	estuary Chonggang	36.82	macrophyte, pennate diatom Filamentous algae, detritus,	47960
Nematalosa come	estuary	38.30	pennate diatom	47960

Nematalosa come	Chonggang estuary	39.17	Deritus, dinoflatelleta, filamentous and other algae, macrophyte Detritus, pennate diatom, Crustacea nauplii,	47960
Nematalosa come	Haomei estuary	42.74	copepoda, planktonic Gastropoda, egg Pennate and centric diatoms,	48151
Nematalosa come	Haomei estuary	43.79	dinoflagellata, detritus Detritus, pennate diatom, unidentifiable Crustagea	48151
Nematalosa come	Haomei estuary Chonggang	44.95	egg Detritus cyanobacteria	48151
Nematalosa come	estuary	45.97	centric diatom, limpet, egg	47960
Nematalosa come	Haomei estuary	54.53	Detritus, pennate diatom Cyanobacteria, filamentous algae, Crustacea nauplii.	48151
Nematalosa come	Haomei estuary	59.59	pennate diatom, detritus	48151
Nematalosa come	Haomei estuary	60.48	Detritus, pennate diatom, filamentous algae	48151
Nematalosa come	Haomei estuary	60.51	Pennate diatoms, detritus, eggs, Merismopedia	48151
Nematalosa come	Haomei estuary	61.08	Detritus, cyanobacteria, pennate diatom	48151
	5		Algae, pennate diatom,	
Nematalosa come	Haomei estuary	64.14	detritus Pennate and centric diatoms	48151
Nematalosa come	Haomei estuary	66.78	detritus Merismonedia, other algae	48151
Nematalosa come	Haomei estuary	73.88	detritus Other algae, pennate	47648
Nematalosa come	Haomei estuary	74.13	diatom, detritus, Merismopedia, Bivalva Cyanobacteria, pennate	47648
Nematalosa come	Haomei estuary Chonggang	76.27 151.1	Merismopedia	47582
Nematalosa come	estuary	2	Copepoda, detritus Centric diatom, Gastropoda	47620
Netuma thalassina	Chonggang estuary	49.10	contribution, Gastropoda, pennate diatom, unidentified benthic Crustacea, Cirripedia cypris, eggs, copepoda, detritus Cirripedia cypris, Polychaeta, copepoda, eggs, centric diatom,	47514
Netuma thalassina	Chonggang estuary	51.28	dinoflagellate, unidentifiable Crustacea, detritus Copepoda, eggs, decapoda,	47514
Netuma thalassina	Chonggang estuary	51.30	centric diatoms, pennate diatoms, hydrozoa,	47514

	Chonggang		dinoflagellata, detritus, Cirripedia cypris Cirripedia cypris, filamentous algae, centric diatoms, eggs, copenada	
Netuma thalassina	estuary	51.75	detritus Cirripedia cypris, Gastropoda, copepoda, eggs, centric diatom, detritus, bivalve larvae,	47514
Netuma thalassina	Chonggang estuary	52.73	pennate diatom, unidentifiable Crustacea Copepoda, Cirripedia cypris, Cirripedia exopods,	47514
Netuma thalassina	chonggang estuary	53.02	centric diatom, detritus, bivalve larvae Copepoda, Cirripedia	47514
Netuma thalassina	Chonggang estuary	54.23	cypris, macrophyte, bivalve larvae, detritus, eggs Filamentous algae, copepoda, eggs, Cirripedia	47514
Netuma thalassina	Chonggang estuary	55.48	cypris, detritus, large unidentifiable Crustacea	47514
Netuma thalassina	Chonggang estuary	55.74	Eggs, copepoda, Cirripedia cypris, detritus	47514
Netuma thalassina	Chonggang estuary	61.94	Copepoda, Cirripedia cypris, eggs, centric diatom, detritus Copepoda, cyanobacteria, Crustacea nauplii, pennate diatoms, Nematoda,	47514
Oligolepis acutipennis	Haomei estuary	30.57	Merismopedia, detritus	47650
Oligolepis acutipennis	Haomei estuary	34.54	Merismopedia, pennate diatom, copepoda, detritus Copepoda, centric diatom, Merismopedia, pennate diatom, cyanobacteria, other	47596
Oligolepis acutipennis	Haomei estuary	36.30	algae	47650
Paraplagusia bilineata	estuary	30.35	Crustacea	47549
Paraplagusia bilineata Paraplagusia bilineata	Chonggang estuary Chonggang estuary	35.78 36.47	Shrimp Shrimp, unidentifiable benthic Crustacea	48010 48010
Paraplagusia bilineata	Chonggang estuary	38.89	Copepoda, decapoda	48010
Paraplagusia bilineata	Chonggang estuary	81.47	Detritus, filamentou algae, unidentified benthic Crustacea	47970
Photopectoralis bindus	Haomei beach	11.74	Copepoda, eggs	47992
-------------------------------	----------------------------	-------	---	-------
Photopectoralis bindus	Haomei beach	11.88	Copepoda, eggs Copepoda, eggs	47992
Photopectoralis bindus	Haomei beach	13.98	gammeridea	47992
Photopectoralis bindus	Haomei beach	14.20	Copepoda, Gastropoda, eggs	47992
<i>Photopectoralis bindus</i>	Haomei beach	15.80	Copepoda	47992
Photopectoralis bindus	Haomei beach	15.87	Copepoda, eggs	47992
Photopectoralis bindus	Haomei beach	17.53	Copepoda Copepoda, eggs,	47992
Photopectoralis bindus	Haomei beach	19.56	gammeridea Copepoda, Cirripedia	47992
Photopectoralis bindus	Haomei beach	21.00	nauplii Copepoda, eggs.	47992
Photopectoralis bindus	Haomei beach	21.69	filamentous algae Copepoda, eggs, filamentous algae	47881
Photopectoralis bindus	Haomei beach Houmeili	22.53	Crustacea nauplii	47881
Photopectoralis bindus	estuary	22.89	Copepoda, eggs Copepoda, amphipoda,	48000
Photopectoralis bindus	Haomei beach	23.06	pennate diatom	47881
Photopectoralis bindus	Haomei estuary	23.39	Copepoda	48000
Photopectoralis bindus	Haomei estuary	23.54	Copepoda	47584
Photopectoralis bindus	Haomei beach Houmeili	24.66	Copepoda, eggs	47992
Photopectoralis bindus	estuary	26.04	Copepoda, eggs, amphipoda	48000
	Houmeili			
Photopectoralis bindus	estuary Houmeili	26.30	Copepoda	48000
Photopectoralis bindus	estuary	26.43	Copepoda	48000
Photopectoralis bindus	Haomei estuary	26.62	Copepoda	47584
Photopectoralis bindus	Haomei estuary	27.20	Copepoda	48000
Photopectoralis bindus	Haomei estuary	27.71	Copepoda	47654
Photopectoralis bindus	Haomei estuary Houmeili	27.83	Copepoda, eggs	47654
Photopectoralis bindus	estuary	27.91	Copepoda Copepoda, filamentous algae, eggs, Merismopedia	48000
Photopectoralis bindus	Haomei beach	28.16	Nematoda, amphipoda Copepoda Cirripedia	47881
Photopectoralis bindus	Haomei estuary	28.55	nauplii, eggs Copepoda, filamentous algae, pennate diatoms.	47584
Photopectoralis bindus	Haomei estuary	29.56	eggs, cyanobacteria Copepoda, eggs,	47654
Photopectoralis bindus	Haomei estuary	29.60	Merismopedia	47654
Photopectoralis bindus	Haomei estuary	29.63	Copepoda	47584
Photopectoralis bindus	Haomei estuary	29.87	Copepoda, eggs	47584

Photopectoralis bindus	Haomei beach	30.32	Copepoda, Nematoda	47881
Photopectoralis bindus	Haomei estuary	30.99	Copepoda, eggs	47584
Photopectoralis bindus	Haomei estuary	31.17	Copepoda, eggs	47584
Photopectoralis bindus	Haomei estuary	32.01	Copepoda, eggs, pennate diatoms, Merismopedia Copepoda, eggs	47654
Photopectoralis bindus	Haomei estuary	32.28	filamentous algae Copepoda, Polychaeta.	47654
Photopectoralis bindus	Haomei estuary	32.46	detritus	47584
Photopectoralis bindus	Haomei estuary	32.91	Copepoda, eggs	47584
Photopectoralis bindus	Haomei estuary	33.10	Copepoda Copepoda, eggs,	47584
Photopectoralis bindus	Haomei estuary	33.28	Merismopedia Copepoda, eggs, filamentous algae,	47654
Photopectoralis bindus	Haomei estuary	33.40	Merismopedia Copepoda, eggs, filamentous algae, pennate	47654
Photopectoralis bindus	Haomei estuary Houmeili	33.54	diatoms	47654
Photopectoralis bindus	estuary	33.83	Copepoda, eggs, amphipoda Copepoda, eggs,	48000
Photopectoralis bindus	Haomei estuary Houmeili	34.19	filamentous algae	47654
Photopectoralis bindus	estuary	34.21	Copepoda, eggs, amphipoda	48000
Photopectoralis bindus	Haomei beach	34.25	Copepoda, eggs	47881
Photopectoralis bindus	Haomei beach	35.80	Copepoda, eggs Copepoda, eggs,	47881
Photopectoralis bindus	Houmeili estuary	36.33	gammeridea, filamentous algae, detritus Copepoda, gammeridea,	48000
Photopectoralis bindus	Houmeili estuary	36.34	eggs, pennate diatoms, unidentifiable Crustacea Copepoda Merismopedia	48000
Photopectoralis bindus	Haomei estuary	38.55	pennate diatoms, eggs Copepoda, macrophyte,	47654
Photopectoralis bindus	Houmeili estuary	60.42	eggs, detritus, unidentifiable Crustacea, gammeridea Copepoda, centric and	48000
Sardinella gibbosa	Chonggang estuary	30.84	colonial diatoms, Cirripedia cypris Copepoda, Cirripedia cypris, filamentous algae,	47505
Sardinella gibbosa	Chonggang estuary	30.94	centric diatoms, eggs, detritus, collembola	47962
Sardinella gibbosa	Chonggang estuary	31.53	Copepoda, Cirripedia cypris, ostracoda, eggs Chaetognatha, Cirripedia	47962
Sardinella gibbosa	Chonggang estuary	32.01	cypris, copepoda, detritus, ostracoda, eggs	47962

Sardinella gibbosa	Chonggang estuary	33.40	Copepoda, Cirripedia cypris and exopods, eggs, pennate diatom	47962
Sardinella gibbosa	Chonggang estuary	35.04	Copepoda, Cirripedia cypris, eggs, centric diatoms Copepoda, Cirripedia	47962
Sardinella gibbosa	Chonggang estuary	35.79	cypris, centric diatom, detritus Copepoda, dinoflagellata,	47962
Sardinella gibbosa	Chonggang estuary	36.61	centric diatom, detritus, trematoda Copepoda, centric diatom,	47962
Sardinella gibbosa	Chonggang estuary	37.18	detritus, bivalve larvae, Cirripedia cypris, Crustacea nauplii, cladocera, eggs	47505
Sardinella gibbosa	Chonggang estuary	42.41	detritus, eggs, Cirripedia nauplii Copepoda, centric diatom, detritus, cerrepedia cypris,	47962
Sardinella gibbosa	Chonggang estuary	58.03	eggs, bivalve larvae, dinoflagellata, filamentous algae	47505
Sardinella gibbosa	Chonggang estuary	74.35	nauplii, Cirripedia cypris, egg, detritus Copepoda, Gastropoda,	47621
Sardinella lemuru	Chonggang estuary	48.40	eggs, pennate diatom, Bivalva veliger, Nematoda, detritus	48015
Sardinella lemuru	Chonggang estuary	53.55	Pennate diatoms, other algae, eggs Copepoda, other algae,	47961
Sardinella lemuru	Chonggang estuary	54.24	centric and pennate diatoms, eggs, macrophyte, Gastropoda, detritus, Foraminifera Centric and pennate diatoms, Cirripedia cypris,	47961
Sardinella lemuru	Chonggang estuary	58.21	filamentous and other algae, copepoda, detritus	47961
Sciaenidae sp.	Chonggang estuary	53.56	Shrimp	47528
Scomberoides lysan	Chonggang estuary	26.28	Shrimp	47966
scomberoides lysan	Haomei beach	20.66	Copepoda	4/588
Scomberoides lysan	Haomei beach	29.62	Copepoda, eggs	47588
Scomberoides lysan	Chonggang estuary	38.54	Unidentifiable Crustacea, filamentous algae	47529
Scomberoides lysan	estuary	38.96	Nematoda	47966

Scomberoides lysan
Scomberoides lysan
Secutor interruptus
Sillago asiatica
Sillago asiatica
Sillago asiatica
Sillago asiatica

Chonggang
estuary
Haomei beach
Chonggang
estuary
Chonggang
estuary
Haomei estuary
Chonggang
Haomei beach
Haomei beach
Chonggang
estuary
Haomei beach
Chonggang
Haomei beach
Haomei beach
Shuang Chun
beach
Haomei beach
Snuang Chun
Chonggang
estuary
Haomei beach
Chonggang
estuary
Haomei beach
Haomei beach
Chonggang
estuary
Chonggang
Chonggang
estuary
Chonggang
estuary
Chonggang
estuary
Haomeı estuary
Haomei estuary
Haomei estuary
Haomei beach

39.99	Copepoda	47529
42.16	Copepoda, colonial diatom	47588
43.01	Shrimp Cirripedia cypris, centric	47529
48.95	diatom, copepoda	47529
53.20	Cirripedia exopods	48022
61.63	Fish	47622
62.93	Shrimp, filamentous algae	47624
67.45	Shrimp, fish	47624
69.70	Decapoda megalopa, fish	47622
70.65	Shrimp	47624
93.58	Fish	47622
17.61	Copepoda, eggs	47882
18.16	Copepoda	47882
22.79	Copepoda	48027
23.48	Copepoda, eggs	47882
25.42	Copepoda	48027
26.32	Copepoda	47527
28.24	Copepoda, eggs, Gastropoda Copepoda, Crustacea	47882
28.37	nauplii	47527
28.59	Copepoda, eggs	47882
28.64	Copepoda, eggs	47882
29.03	Copepoda	47527
29.83	Copepoda	47527
30.53	Copepoda	47527
30.72	Copepoda	47527
31.10	Copepoda	47527
31.26	Copepoda	47527
31.58	Copepoda	47527
32.27	nauplii	47527
20.85	algae	47884
24.61	Copepoda	47585
25.72	Copepoda, eggs	47652
=	Copepoda, Polychaeta,	
27.36	Cirripedia cypris, eggs	47982

Sillago asiatica	Haomei estuary	29.16	Copepoda Amphipoda, copepoda,	47585
Sillago asiatica	Chonggang estuary	35.83	Cirripedia cypris, eggs, dinoflagellata	48016
Sillago asiatica	Haomei beach	40.94	Detritus, eggs, copepoda Gammeridea, copepoda	47644
Sillago asiatica	Haomei estuary	46.98	eggs	48001
Sillago asiatica	Haomei beach	49.02	Copepoda, detritus Pennate diatoms,	47991
Sillago asiatica	Haomei beach	52.44	amphipoda Copepoda, gammeridea,	47991
Sillago asiatica	Haomei estuary	53.29	Polychaeta Detritus, copepoda, Polychaeta, gammeridea,	48001
Sillago asiatica	Haomei estuary	54.62	eggs Detritus, copepoda, eggs,	47585
Sillago asiatica	Haomei beach	62.46	Polychaeta	47644
Sillago asiatica	Haomei estuary	73.50 133.2	Copepoda, eggs, detritus	47585
Sphyraena barracuda	Haomei estuary Chonggang	0	Fish	47597
Sphyraena flavicauda	estuary Chonggang	80.85	Unidentifiable fish	47515
Sphyraena jello	estuary	50.58	Fish	48014
Sphyraena jello	Haomei estuary Chonggang	81.15 103.8	Fish, eggs	48676
Sphyraena jello	estuary Houmeili	6	Fish (stolephorus)	47963
Stolephorus indicus	estuary Houmeili	20.26	Copepoda Copepoda, eggs, Bivalva	48020
Stolephorus indicus	estuary Houmeili	22.92	larvae, decapod zoea	48020
Stolephorus indicus	estuary	23.29	Copepoda, Gastropoda	48020
Stolephorus indicus	Haomei estuary Houmeili	23.66	Copepoda	48020
Stolephorus indicus	estuary	25.13	Copepoda	48020
Stolephorus indicus	Haomei estuary	25.49	Copepoda, Gastropoda	48020
Stolephorus indicus	Haomei estuary Houmeili	25.99	Copepoda, trematoda Gastropoda, copepoda,	48006
Stolephorus indicus	estuary	27.05	trematoda	48020
Stolephorus indicus	Haomei estuary	27.37	Copepoda Copepoda, trematoda,	48006
Stolephorus indicus	Haomei estuary	27.93	Gastropoda	48006
Stolephorus indicus	Haomei estuary Houmeili	27.97	Copepoda Gastropoda, Bivalva larvae,	48006
Stolephorus indicus	estuary	28.10	copepoda, trematoda	48020
Stolephorus indicus	Haomei estuary Houmeili	28.17	Copepoda, trematoda	48006
Stolephorus indicus	estuary Houmeili	28.37	Gastropoda, copepoda	48020
Stolephorus indicus	estuary	28.87	Gastropoda, copepoda	48020
Stolephorus indicus	Houmeili	30.56	Gastropoda, trematoda,	48020

	estuary		copepoda	
	,		Copepoda, Gastropoda.	
Stolephorus indicus	Haomei estuary	31.04	trematoda, decapoda zoea	48006
1	5		Copepoda, bivalve larvae,	
Stolephorus indicus	Haomei estuary	31.31	Gastropoda	48020
Stolephorus indicus	Haomei estuary	31.38	Copepoda, Gastropoda	48006
	Houmeili		Gastropoda, trematoda,	
Stolephorus indicus	estuary	32.80	copepoda	48020
G 1 1 · 1·	II	22.40	Copepoda, Gastropoda,	10000
Stolephorus indicus	Haomei estuary	33.40	trematoda Conenada Castronada	48006
Stolenhorus indicus	Haomei estuary	34 38	detritus	48020
Stolephorus indicus	Haomei estuary	34.48	Conenada Gastronada	48006
Stotephol us indicus		54.40	Copepoda, Gastropoda	40000
G 1 1 · 1·	Houmeili	25.16	Contrary la constant la	49030
Stolephorus indicus	estuary	35.16	Gastropoda, copepoda	48020
Stolephorus indicus	Haomei estuary	36.89	Copepoda	48006
Stolephorus indicus	Haomei estuary	37.05	Copepoda, decapoda zoea	48006
-	-		Decapoda, decapoda zoea,	
Staland and in diana	Haamai aataama	41.00	decapoda megalopa,	10000
Stolephorus indicus	Chonggang	41.00	Gastropoda, copepoda	48006
Stolenhorus insularis	estuary	19 78	Foos	47504
storephon us insurunts	obtuar y	17.70	Copepoda, centric diatom.	17501
Stolephorus insularis	Haomei beach	25.00	eggs, Bivalva	47865
•	Chonggang			
Stolephorus insularis	estuary	25.19	Copepoda, eggs	47623
a 1 1	Chonggang		Bivalve larvae, Cirripedia	
Stolephorus insularis	estuary	25.19	cypris, eggs, copepoda	47504
Stolenhomic insularie	Chonggang	25.64	Copepoda, eggs,	17673
Stotephorus insuturis	Chonggang	25.04	Chaetoghatha	47023
Stolephorus insularis	estuary	26.01	Copepoda	47623
1	,		Copepoda, Cirripedia	
	Chonggang		cypris, bivalve veliger,	
Stolephorus insularis	estuary	26.90	decapod zoea, eggs	47623
a. 1. 1. 1. 1. 1.	TT · ·	07.00	Copepoda, decapod zoea,	470 (2
Stolephorus insularis	Haomei estuary	27.00	eggs, centric diatoms	47863
Stolanhorus insularis	Chonggang	27.14	bivalve	17623
Stotephorus insuluris	estuary	27.14	Copepoda eggs Cirripedia	47023
Stolephorus insularis	Haomei beach	27.37	cvpris	47593
1	Chonggang		51	
Stolephorus insularis	estuary	27.69	Copepoda	47623
	Chonggang		Bivalve larvae, Cirripedia	
Stolephorus insularis	estuary	27.91	cypris, eggs, copepoda	47504
G 1 1 · 1 ·	Chonggang	20.04	Cirripedia cypris, bivalve	47(22
Stolephorus insularis	Chonggang	28.04	larvae, eggs, copepoda Bivalve larvae, Cirripedia	4/623
Stolephorus insularis	estuary	28.08	cypris eggs conepoda	47504
storephonus insurunts	Chonggang	20.00	-J.F.1.5, 0555, 00popouu	17004
Stolephorus insularis	estuary	28.12	Eggs, Cirripedia cypris	47504
-	Chonggang		Bivalve larvae, Cirripedia	
Stolephorus insularis	estuary	28.21	cypris, eggs, copepoda	47504

~	Chonggang			
Stolephorus insularis	estuary Chonggang	28.67	Bivalve larve, copepoda	47504
Stolephorus insularis	estuary Chonggang	28.75	Eggs, copepoda Copepoda, Cirripedia	47504
Stolephorus insularis	estuary	29.64	cypris, eggs, bivalve larvae	47623
Stolephorus insularis	Haomei estuary	30.23	Copepoda	47581
Stolephorus insularis	Haomei estuary	30.79	Copepoda, bivalve larvae Copepoda, bivalve veliger, centric diatoms, filamentous	47464
Stologhowig in gularia	Chonggang	20.92	and other algae, decapod	17504
Stolephorus insularis	Chonggang	30.83	Eggs, Cirripedia cypris,	4/504
Stolephorus insularis	estuary Chonggang	31.02	bivalve larvae Bivalve larvae Cirripedia	47504
Stolephorus insularis	estuary	31.32	cypris, eggs, copepoda Copepoda, Bivalva larvae, unidentifiable Crustacea	47504
Stolephorus insularis	Haomei estuary	31.59	decapod zoea Copepoda, bilvalve veliger, filamentous algae,	47581
Stolephorus insularis	Chonggang estuary	31.76	Cirripedia cypris, Gastropoda, eggs Copepoda, bivalve larvae,	47623
Stolephorus insularis	Chonggang estuary	32.33	Cirripedia cypris, eggs, decapoda Copepoda bivalve larvae	47623
Stolephorus insularis	Haomei estuary	32.81	egg Copepoda, eggs, bivalve veliger, decanoda, decanoda	47464
Stolephorus insularis	Haomei estuary	33.26	zoa	47863
Stolephorus insularis	Haomei estuary	33.65	Copepoda, bivalve larvae	47464
Stolephorus insularis	Haomei estuary	34.95	Copepoda, bivalve larvae	47464
Stolephorus insularis	Haomei estuary	37.82	Copepoda	47464
Stolephorus insularis	Haomei estuary	39.74	Copepoda, bivalve larvae	47464
Stolephorus insularis	Haomei estuary	40.85	Copepoda, bivalve larvae Copepoda, decapod zoea, Cirripedia cypris, bivalve	47464
Stolephorus insularis	Haomei estuary	42.20	larvae, detritus	47581
Stolephorus insularis	Chonggang estuary Chonggang	43.17	cirripedia cypris, copepoda, shrimp, eggs, bivalve larvae Cirripedia cypris, copepoda,	47504
Stolephorus insularis	estuary Chonggang	45.76	shrimp, bivalve larvae	47504
Stolephorus insularis	estuary Chonggang	45.80	Shrimp Bivalve veliger, Cirripedia	47504
Stolephorus insularis	estuary Chonggang	45.83	cypris, mysida Bivalve veliger, Cirripedia	47504
Stolephorus insularis	estuary Chonggang	46.47	cypris Cirripedia cypris, copepoda,	47504
Stolephorus insularis	estuary	46.79	shrimp Bivalve veliger, Cirripedia cypris, pennate diatom	47504
Stolephorus insularis	estuary	47.43	Gastropoda	47504

	Chonggang		Bivalve veliger, shrimp, copepoda, Cirripedia cypris,	
Stolephorus insularis	estuary Chonggang	47.77	filamentous algae Detritus, copepoda,	47504
Takifugu niphobles	estuary	34.66	decapoda Gastropoda (benthic),	47518
	Chonggang		Cirripedia cypris,	
Takifugu niphobles	estuary Chonggang	38.73	amphipoda	47518
Takifugu niphobles	estuary Chonggang	40.84	Amphipoda	47964
Takifugu niphobles	estuary Chonggang	54.28	Shrimp, detritus Amphipoda, detritus,	47964
Takifugu niphobles	estuary	56.09	isopoda Copepoda, unidentifiable	47964
Terapon jarbua	Haomei estuary	22.29	Crustacea, detritus Fish, isopoda, amphipoda, Polychaeta, decapoda,	47642
Terapon jarbua	Haomei estuary	37.38	Bivalva Macrophyte, trematoda, ostracoda, unidentifiable	48004
Terapon jarbua	Haomei estuary	62.09	Crustacea Copepoda, Cirripedia curria deconada datritus	47627
Thryssa chefuensis	estuary Chonggang	28.34	Chaetognatha copepoda	47959
Thryssa chefuensis	estuary Chonggang	30.06	detritus	47959
Thryssa chefuensis	estuary Chonggang	31.71	Copepoda	47959
Thryssa chefuensis	estuary Chonggang	32.45	Ostracoda	47959
Thryssa chefuensis	estuary Chonggang	33.11	Macrophyte, copepoda Cirripedia cypris, copepoda,	47959
Thryssa chefuensis	estuary Chonggang	33.18	detritus Copepoda, Polychaeta,	47959
Thryssa chefuensis	estuary Chonggang	33.43	trematoda	47959
Thryssa chefuensis	estuary Chonggang	34.29	Copepoda Copepoda, Chaetognatha,	47959
Thryssa chefuensis	estuary Chonggang	36.19	gammeridea, Crustacea	47959
Thryssa chefuensis	estuary	37.30	Copepoda, trematoda Chaetognatha, copepoda, Cirripedia cypris, egg, unidentifiable benthic	47959
Thryssa chefuensis	Chonggang estuary	41.74	Crustacea, Polychaeta, decapod zoea Copepoda, Chaetognatha,	47959
Thryssa chefuensis	estuary Chonggang	44.26	Crustacea	47959
Thryssa chefuensis	estuary	44.44	Chaetognatha Decapoda megalopa,	47959
Thryssa chefuensis	Chonggang estuary	46.62	Chaetognatha, shrimp, copepoda, eggs	47959

	Chonggang			
Thryssa chefuensis	estuary Chonggang	47.65	Copepoda, Chaetognatha	47959
Thryssa chefuensis	estuary Chonggang	47.93	Copepoda	47959
Thryssa chefuensis	estuary Chonggang	50.43	Decapoda, copepoda	47959
Thryssa chefuensis	estuary Chonggang	50.55	Chaetognatha, copepoda Chaetognatha, copepoda,	47959
Thryssa chefuensis	estuary Chonggang	55.52	Cirripedia cypris, detritus Filamentous algae,	47959
Thryssa chefuensis	estuary	58.14	copepods, Chaetognatha	47959
Thryssa hamiltonii	Haomei estuary	19.44	Copepoda	47458
Thryssa hamiltonii	Haomei estuary	19.77	Copepoda	47458
Thryssa hamiltonii	Haomei beach	20.30	Copepoda	47985
Thryssa hamiltonii	Haomei estuary	20.31	Copepoda	47458
Thryssa hamiltonii	Haomei estuary Houmeili	20.41	Copepoda Copepoda, unidentifiable	47458
Thryssa hamiltonii	estuary	20.77	Crustacea	48019
Thryssa hamiltonii	Haomei estuary	20.84	Copepoda	47458
Thryssa hamiltonii	Haomei beach	21.69	Centric diatoms, copepoda	47985
Thryssa hamiltonii	Haomei estuary Houmeili	21.93	Copepoda	47598
Thryssa hamiltonii	estuary	22.00	Copepoda, decapod zoea	48019
Thryssa hamiltonii	Haomei estuary Houmeili	22.29	Copepoda	48400
Thryssa hamiltonii	estuary Houmeili	22.41	Copepoda	48019
Thryssa hamiltonii	estuary Houmeili	22.47	Copepoda	48019
Thryssa hamiltonii	estuary	22.48	Copepoda	48019
Thryssa hamiltonii	Haomei estuary	22.57	Copepoda	47598
Thryssa hamiltonii	Haomei estuary Houmeili	22.57	Copepoda	48007
Thryssa hamiltonii	estuary	22.77	Copepoda	48019
Thryssa hamiltonii	Haomei beach	22.77	Copepoda	47985
Thryssa hamiltonii	Haomei estuary	23.17	Copepoda	48007
Thryssa hamiltonii	Haomei estuary Houmeili	23.26	Copepoda	47458
Thryssa hamiltonii	estuary	23.30	Copepoda, Gastropoda	48019
Thryssa hamiltonii	Haomei estuary	23.41	Copepoda	47458
Thryssa hamiltonii	Haomei estuary	23.50	Copepoda	48007
Thryssa hamiltonii	Haomei estuary	23.67	Copepoda	47458
Thryssa hamiltonii	Haomei estuary	23.69	Copepoda Copepoda, centric diatom,	48007
	Houmeili		Gastropoda, Crustacea	
Thryssa hamiltonii	estuary Houmeili	23.73	nauplıı	48019
Thryssa hamiltonii	estuary	23.81	Copepoda	48019
Thryssa hamiltonii	Haomei estuary	24.06	Copepoda	47598
Thryssa hamiltonii	Haomei estuary	24.15	Copepoda, bivalve larvae	47598

Thryssa hamiltonii	Haomei estuary	24.36	Copepoda	47862
Thryssa hamiltonii	Haomei estuary	24.40	Copepoda, mystery eggs	48007
Thryssa hamiltonii	Haomei estuary	24.53	Copepoda Copepoda, Crustacea	48007
Thryssa hamiltonii	Haomei estuary Houmeili	24.60	nauplii Copepoda, centric diatom,	48007
Thryssa hamiltonii	estuary	24.62	Gastropoda, trematoda	48019
Thryssa hamiltonii	Haomei estuary	24.63	Copepoda Copepoda, Crustacea	47458
Thryssa hamiltonii	Haomei estuary	25.23	nauplii, eggs	48007
Thryssa hamiltonii	Haomei estuary	25.48	Copepoda	48007
Thryssa hamiltonii	Haomei beach	25.58	Copepoda, ostracoda, egg	47985
Thryssa hamiltonii	Haomei estuary	26.24	Copepoda	47598
Thryssa hamiltonii	Haomei estuary	26.48	Copepoda	47598
Thryssa hamiltonii	Haomei estuary Houmeili	26.68	Copepoda	47458
Thryssa hamiltonii	estuary	26.73	Copepoda, trematoda	48019
Thryssa hamiltonii	Haomei estuary	27.16	Copepoda	48007
Thryssa hamiltonii	Haomei estuary	27.20	Copepoda Copepoda, decapoda megalopa, centric diatom, Chaetognatha, trematoda,	47458
Thryssa hamiltonii	Haomei beach	27.69	eggs	47985
Thryssa hamiltonii	Haomei estuary Houmeili	28.02	Copepoda Copepoda, egg, Bivalva	47862
Thryssa hamiltonii	estuary Houmeili	28.11	larva Copepoda, centric diatom,	48019
Thryssa hamiltonii	estuary	28.49	Gastropoda, Bivalva	48019
Thryssa hamiltonii	Haomei estuary Houmeili	28.54	Copepoda Copepoda, centric diatom,	47458
Thryssa hamiltonii	estuary Houmeili	29.01	Gastropoda, trematoda Copepoda, Gastropoda, centric diatoms, colonial	48019
Thryssa hamiltonii	estuary	29.33	diatoms, decapod zoea	48019
Thryssa hamiltonii	Haomei estuary	29.61	Copepoda	47458
Thryssa hamiltonii	Haomei estuary	30.01	Copepoda	47458
Thryssa hamiltonii	Haomei estuary	30.17	Copepoda	47458
Thryssa hamiltonii	Haomei estuary	30.19	Copepoda, decapoda zoea Copepoda, Gastropoda,	47458
	Houmeili		Cirripedia cypris, centric	
Thryssa hamiltonii	estuary	30.87	diatom	48019
Thryssa hamiltonii	Haomei estuary	31.19	Copepoda Copepoda, eggs, pennate	47458
Thryssa hamiltonii	Haomei estuary	31.38	diatom	48007
Thryssa hamiltonii	Haomei beach	31.55	Unidentifiable Crustacea	48030
Thryssa hamiltonii	Haomei estuary	31.63	Copepoda, amphipoda Copepoda, bivalve veliger,	47458
Thryssa hamiltonii	Haomei estuary	32.28	eggs	47862
Thryssa hamiltonii	Haomei estuary	32.35	Copepoda	47458
Thryssa hamiltonii	Haomei estuary	32.89	Copepoda	47862
Thryssa hamiltonii	Haomei estuary	33.70	Copepoda, eggs	47862

Thryssa hamiltonii	Haomei estuary	33.88	Copepoda	47458
Thryssa hamiltonii	Haomei beach	34.09	Copepoda, Cirripedia cypris	47591
Thryssa hamiltonii	Haomei estuary	35.48	Copepoda	47862
Thryssa hamiltonii	Haomei estuary	35.55	Copepoda	47862
Thryssa hamiltonii	Haomei estuary	36.78	Copepoda	47862
Thryssa hamiltonii	Haomei estuary	39.34	Copepoda, shrimp	47862
Thryssa hamiltonii	Haomei estuary	41.88	Copepoda, eggs	47862
			Bivalva, copepoda, fish,	
Thuman hamiltonii	Houmeili	50.69	Polychaeta, Cirripedia	49010
Thryssa namillonii Thryssa satinostnis	Usamai basah	30.08 20.70	Eggs	48019
Thryssa settrostris	Haomei beach	20.79	Eggs	4/004
Thryssa settrostris	Haomei beach	22.33	Copepoda, eggs	4/804
Thryssa settrostris	Haomei estuary	22.40	Copepoda	4/463
Inryssa settrostris	Haomei beach	22.65	Copepoda	4/9//
Thryssa setirostris	Haomei beach	23.03	Copepods, eggs	47864
Thryssa setirostris	Haomei beach	23.14	Copepods, eggs	47864
Thryssa setirostris	Haomei beach	23.26	Eggs, copepoda	47864
Thryssa setirostris	Haomei beach	23.33	Trematoda Concenda orga	47977
Thrussa setirostris	Haomei beach	23 63	Foraminifera macrophyte	47864
Thryssa setirostris	Haomei beach	24 35	Gammeridia	47645
Thryssa setirostris	Haomei beach	24.35	Copepoda	47645
111 9550 5011 0511 15		21.37	Calanoid copepoda,	17015
Thryssa setirostris	Haomei estuary	25.23	Crustacea nauplii	47463
Thryssa setirostris	Haomei beach	25.38	Copepoda	47645
			Copepoda, decapoda,	
Thryssa setirostris	Haomei estuary	25.46	detritus	47463
Thryssa setirostris	Haomei beach	25.75	Trematoda	47645
Thryssa setirostris	Haomei estuary	25.88	Copepoda	47463
Thrussa setirostris	Haomei beach	25.95	Copepoda, gammeridea,	47986
Thryssa settrostris	Haomei beach	25.95	Conepoda	47980
Thryssu settrostris		20.00	Gastropoda, copepoda,	47045
			filamentous algae,	
			dinoflagellata, Crustacea	
Thryssa setirostris	Haomei estuary	26.87	nauplii	47463
Thryssa setirostris	Haomei estuary	27.55	Copepoda, decapoda	47463
			Gastropoda, decanoda	
Thrvssa setirostris	Haomei estuary	27.56	megalopa	47463
Thryssa setirostris	Haomei estuary	27.72	Copepoda	47463
2	5		Copepoda, bivalve veliger,	
Thryssa setirostris	Haomei estuary	28.39	eggs	47463
Thryssa setirostris	Haomei estuary	28.48	Copepoda, gastrapoda, eggs	47463
Thryssa setirostris	Haomei beach	29.43	Copepoda	47645
	Shuang Chun			
Trachinotus blochii	beach	41.69	Polychaete	47975

Trachinotus blochii	Shuang Chun beach	44.20	Shrimp	47975
Trachinotus blochii	Haomei beach	60.13	Copepoda Bivalva, copepoda, hvdrozoa, Cirripedia	47625
Trachinotus blochii	Haomei beach	60.72	exopods, caprellidae	47589
Trachinotus blochii	Haomei beach	61.03	Copepoda Bivalva, copepoda, eggs, centric diatoms, pennate diatoms, hydrozoa, Cirripedia exopods, echinodermata larvae, collembola, caprellidae,	47625
Trachinotus blochii	Haomei beach	61.64	other algae, detritus Bivalva, eggs, copepoda, Crustacea, centric diatoms, hydrozoa, Cirripedia exopods, detritus,	47589
Trachinotus blochii	Haomei beach	62.96	collembola, gastrapoda Bivalva, copepoda, eggs,	47589
Trachinotus blochii	Haomei beach	66.25	centric diatoms Bivalva, eggs, copepoda, centric diatoms Nematoda	47589
Trachinotus blochii	Haomei beach	66.82	detritus Detritus copenoda	47589
Trachinotus blochii	Haomei beach	72.77	Polychaeta Terrestrial insects, Gastropoda filamentous	47625
Zenarchopterus sp.	Haomei estuary	25.54	algae, copepoda Gastropoda Crustacea	47993
Zenarchopterus sp.	Haomei estuary	32.33	nauplii, colonial diatom Terrestrial insects,	48023
Zenarchopterus sp.	Haomei estuary	33.16	Gastropoda, copepod	47993
Zenarchopterus sp.	Haomei estuary	33.53	Copepoda, terrestrial	48023
Zenarchopterus sp.	Haomei estuary	38.13	insects, Gastropoda Terrestrial insect.	48023
Zenarchopterus sp.	Haomei estuary Houmeili	38.17	Gastropoda Terrestrial insects	48023
Zenarchopterus sp.	estuary	39.82	Gastropoda, Araneae Terrestrial insects,	47993
Zenarchopterus sp.	Houmeili estuary Houmeili	40.64	Gastropoda, filamentous algae, copepoda	48023
Zenarchopterus sp.	estuary Houmeili	45.42	Plants, terrestrial insects Terrestrial insects.	47993
Zenarchopterus sp.	estuary	52.72	Gastropoda	48023

	Houmeili			
Zenarchopterus sp.	estuary	52.78	Plants, terrestrial insects	47993

Table 1.2 Prey types comprising each prey category used for statistical analysis of fish

 diets. Prey categories are not strictly taxonomic.

Prey category	Prey category composition				
Detritus (Det)	Detritus				
	Copepoda, Bivalva and Gastropoda veligers, Ostracoda, Cirrepedia				
Zooplankton (Zoo)	cypris and exopods, Crustacea nauplii, Decapoda zoea, Echinodermata				
	larvae, Cladocera, Appendicularia, planktonic Hydrozoa, Trematoda				
Benthic mollusca (Mol)	Gastropoda, Bivalva				
Eggs (Egg)	Vertebrate and invertebrate eggs				
Plants (Pla)	Aquatic and terrestrial macrophytes				
Algae (Alg)	Algae, cyanobacteria				
Dhadan lan latan (Dha)	Centric and pennate diatoms, Dinoflagellata, Silicoflagellata, Tintinnida,				
Phytoplankton (Phy)	Phytoflagellata				
Crustagge (Cru)	Decapoda adults and megalopa, shrimp, Amphipoda, Isopoda,				
Clustacea (Clu)	Collembola				
Foraminifera (For)	Foraminifera				
Nematoda (Nem)	Nematoda				
Polychaeta (Pol)	Polychaeta				
Fish (Fis)	Actinopterygii				
Terrestrial invertebrata					
(Ter)	Insecta, Araneae				
Hydrozoa (Hyd)	Sessile Hydrozoa				
Sipuncula (Sip)	Sipuncula				
Chaetognatha (Cha)	Chaetognatha				

Table 1.3. Observed percent frequency of plants and detritus (A), corrected %

 frequencies used in statistical analyses (B), and justification for considering plants and/or

 detritus as incidentally ingested material. Morphological evidence consisted of

 observations of trophic structures such as jaws, teeth, and the gastrointestinal tract.

Species	Detr	itus	Pla	nts	Instification	Deferences
Species	Α	В	А	B	Justification	References
Acentrogobius nebulosus	83	0			Morphology, small quantities of detritus in guts, and previous study of this species Morphology, small quantities	Heithaus et al. 2011; Zagars et al. 2013
Alepes djedaba	70	0			of detritus in guts, and previous study of this species Morphology, small quantities	Sivakami 1990; Raje 1993; Deshmukh 2007
Encrasicholina heteroloba	9	0			of detritus in guts, and previous study of this species Morphology, small quantities of detritus in guts, and	Rao 1967; Milton et al. 1990
Hypoatherina valenciennei	13	0			previous study of this species Morphology, small quantities of detritus in guts, and diet data from closely related	Nakane et al. 2011 Hajisamae et al. 2003; 2004; Hajisamae and Ibrahim 2008; Seah et al.
Eubleekeria splendens	10	0			species Morphology, small quantities of detritus in guts, benthic feeding, and previous study of	2009
Netuma thalassina	100	0	10	0	this species Morphology, small quantities of detritus in guts, benthic feeding, and diet data from	Rainboth 1996
Paraplagusia bilineata	20	0			closely related species Morphology, small quantities of detritus in guts, and diet data from closely related	Lakshmi 2010 Hajisamae et al. 2003; 2004; Hajisamae and Ibrahim 2008; Seah et al.
Photopectoralis bindus	6	0	2	0	species Morphology, small quantities of detritus in guts, and diet data from closely related	2009 Hajisamae et al. 2003; 2004; Hajisamae and Ibrahim 2008; Seah et al.
Secutor interruptus	6	0			species Morphology, small quantities of detritus in guts, benthic feeding, and diet data from	2009 Hajisamae et al. 2003; 2004; Hajisamae and Ibrahim 2008; Krück et
Sillago asiatica	43	0			closely related species	al. 2009 Chacko 1948; De Troch et al. 1998; Hajisamae et al. 2003: Hajisamae and
Stolephorus indicus	4	0			of detritus in guts, and previous study of this species	Ibrahim 2008; Horinouchi et al. 2012

Stolephorus insularis	2	0			Morphology, small quantities of detritus in guts, and previous study of this species Morphology, small quantities	Rao 1967
Takifugu niphobles	60	0			of detritus in guts, and previous study of this species Morphology, small quantities of detritus in guts, and diet	Yamahira et al. 1996; Nakane et al. 2011
Thryssa chefuensis	20	0	5	0	data from closely related species Morphology, small quantities	Hajisamae et al. 2003; Baker and Sheaves 2005
Thryssa setirostris	4	0	4	0	of detritus in guts, and previous study of this species Morphology, small quantities	Hajisamae et al. 2003
Trachinotus blochii	70	0			of detritus in guts, and previous study of this species	Nakane et al. 2011

Table 1.4. Species of fish collected in Taiwan, number of individuals collected in estuary(Individuals estuaries) and beach (Individuals beaches) habitats, range of standard lengths(SL) sampled, and trophic guild (abbreviations defined in Table 1.3) if estimated.

Species	Individuals	Individuals	Trophic	SL range
Species	estuaries	beaches	guild	(mm)
Acanthopagrus sp.	1			30.48
Acentrogobius moloanus	9		Omni	23.08-61.37
Acentrogobius nebulosus	6		Omni	24.73-47.29
Acentrogobius cf plaufamii	6		Omni	25.62-32.31
Albula vulpes	1			77.99
Alepes djedaba	10	10	Crus	18.94-88.94
Ambassis cf gymnoephalus	11	10	Zoop	18.74-41.21
Ambassis miops	3			25.55-26.58
Aulopareia unicolor	1			39.75
Bathygobius sp.	1			27.33
Boleophthalmus pectinirostris	1			109.29
Bothidae sp.	1			69.36
Callionymus sagitta	2			28.00-41.10
Carangidae sp.	1			15.78
Carangoides sp.	1			26.10
Caranx sexfasciatus		1		39.68
Chanos chanos	3			79.93-96.63
Chelon macrolepis	12	23	Detr	22.60-97.11
Chelon subviridis	1			62.73
Crenimugil crenilabis	1			67.10
Cryptocentrus yatsui	5		Zoop	24.24-38.63

Drombus cf ocyurus	10		Omni	19.07-27.03
Dussumieria elopsoides	7		Crus	40.25-45.70
Encrasicholina heteroloba	10	1	Zoop	26.14-47.52
Eubleekeria splendens	20	2	Zoop	14.70-56.97
Gazza minuta	1			28.36
Gerres limbatus	2			20.08-37.61
Hypoatherina valenciennei	5	3	Zoop	28.04-48.19
Hyporhamphus sp.	5		Terr	47.45-65.36
Lutjanus argentimaculatus	1			126.50
Moolgarda cunnesius	21	7	Detr	20.20-65.76
Nematalosa come	27	1	Detr	28.18-151.12
Netuma thalassina	10		Zoop	49.10-61.94
Oligolepis acutipennis	3			30.57-36.30
Paraplagusia bilineata	5		Crus	30.35-81.47
Photopectoralis bindus	33	18	Zoop	11.74-60.42
Sardinella gibbosa	12		Zoop	30.84-74.35
Sardinella lemuru	4			48.40-58.21
Sciaenidae sp.	1			53.56
Scomberoides lysan	10	6	Crus	26.28-93.58
Secutor interruptus	10	8	Zoop	17.61-32.27
Sillago asiatica	9	5	Zoop	20.85-73.5
Sphyraena barracuda	1		Pisc	133.20
Sphyraena flavicauda	1		Pisc	80.85
Sphyraena jello	3		Pisc	50.58-103.86
Stolephorus indicus	27		Zoop	20.26-41.00
Stolephorus insularis	41	2	Zoop	19.78-47.77
Takifugu niphobles	5		Crus	34.66-56.09
Terapon jarbua	1	2		22.29-62.09

Thryssa chefuensis	20		Zoop	28.34-58.14
Thryssa hamiltonii	65	7	Zoop	19.44-50.68
Thryssa setirostris	10	15	Zoop	20.79-29.43
Trachinotus blochii		10	Zoop	41.69-66.82
Zenarchopterus sp.	11		Terr	25.54-52.78
Total:	468	131		

Table 1.5. Five most important prey types, listed in order of importance, of each trophicguild identified in this study.

Guild	Important prey
Crustacivores (Crus)	Crustacea nekton, zooplankton, fish, algae, phytoplankton
Detritivores (Detr)	Detritus, phytoplankton, eggs, algae, zooplankton
Omnivores (Omni)	Zooplankton, algae, detritus, phytoplankton, plant matter
Piscivores (Pisc)	Fish, eggs
Terrestrial invertivores (Terr)	Terrestrial invertebrates, zooplankton, plant matter, eggs, phytoplankton
Zooplanktivores (Zoop)	Zooplankton, eggs, phytoplankton, crustacea nekton, algae

Table 1.6. Parameters estimated by simple linear regressions of fish standard length vs.

 maximum prey width for individual species with a statistically significant correlation

 between standard length and prey width and analyses including all species and all species

 except detritivores.

Species	Slope	Intercept	r ²	p-value
Alepes djedeba (Adje)	42.41	-1201.82	0.75	< 0.0001
Chelon macrolepis (Cmac)	-2.41	242.38	0.10	0.0336
Photopectoralis bindus (Pbin)	2.11	237.84	0.07	0.0369
Scomberoides lysan (Slys)	39.23	-336.89	0.34	0.0165
Stolephorus indicus (Sind)	26.43	-434.31	0.41	0.0002
Stolephorus insularis (Sins)	21.86	-304.07	0.39	< 0.0001
Thryssa hamiltonii (Tham)	20.10	-181.33	0.28	< 0.0001
Thryssa setirostris (Tset)	32.88	-524.51	0.16	0.0290
All species	18.07	-196.26	0.22	< 0.0001
All species except detritivores	24.50	-352.92	0.35	< 0.0001

Table 1.7. Review of previous diet studies on species investigated in the present study (when identified to the species-level) with remarks on congruence between studies. For references it is indicated if gut content analysis (GCA) or stable isotope analysis (SI) was used to describe diets and, when available, the range or mean of fish lengths examined in mm total length (TL), fork length (FL), or standard length (SL).

			References (diet quantification method;
Species	SL (mm)	Congruence	sizes examined)
Acentrogobius moloanus	23.08-61.37	Yes Detritus, plant material, and phytopankton found	Zagars et al. 2013 (SI & GCA; 25-60 SL)
Acentrogobius nebulosus	24.73-47.29	in this study likely incidentally consumed	Heithaus et al. 2011 (SI, 52.6 mean TL); Zagars et al. 2013 (SI & GCA, 20-30 SL),
	77.00	N/	Colton and Alevizon 1983 (256-630 SL); Crabtree et al. 1998 (228-702 FL);
Albula vulpes	77.99	Y es Detritus found in this	Inberger and Posada 2005 (336-644 FL)
Alepes djedaba	18.94-88.94	study likely incidentally consumed	Sivakami 1990 (150-319 TL); Raje 1993 (151-336 TL); Deshmukh 2007
			Venkataraman 1963 (GCA; 45-91 TL); Martin and Blaber 1983 (GCA; <30 &
Ambassis cf. gymnoephalus	18.74-41.21	Yes	>30 SL groups)
Ambassis miops Aulopareia unicolor	25.55-26.58 39.75	Yes No data available	Nanjo et al. 2008 (GCA; 20-46 SL)
Boleophthalmus pectinirostris	109.29	In contrast to Yang, this study found crustacea	Yang et al. 2003 (GCA: 19-110 SL)
Callionymus sagitta	28.00-41.10	No data available	
Carany serfasciatus	39.68	Vec	Blaber and Cyrus 1983 (GCA; 35-500 SL); Bachok et al. 2004 (GCA; 370-700 SL); Baker and Sheaves 2005 (GCA; 28- 265 EL)
	57.00		Chacko 1949 (120-1200 TL); Tampi 1958 (GCA; 282-1003 SL); Nakane et al. 2011
Chanos chanos	79.93-96.63	Yes	(29-39 SL) Blaber and Whitfield 1977 (GCA; 10-59 SL): Lip et al. 2007 (SL & GCA): Navio
Chelon macrolepis	22.60-97.11	Yes	et al. 2008 (GCA; 44-202 SL)
Chelon subviridis	62.73	Yes	Fatema et al. 2015 (GCA) Blaber and Whitfield 1977 (GCA; 10-59
Crenimugil crenilabis	67.10	Yes	SL)
Cryptocentrus yatsui	24.24-38.63	No data available	

Drombus cf. ocyurus	19.07-27.03	No data available	
Dussumieria elopsoides	40.25-45.70	Yes Ves detritus found in	Chacko 1949 (GCA; 90-200 SL); Rao 1967 (GCA; 48-125 SL)
Encrasicholina heteroloba	26.14-47.52	this study likely incidentally consumed Yes, detritus found in this study likely	Rao 1967 (GCA; 55-68 TL); Milton et al. 1990 (GCA; 34-68 SL)
Eubleekeria splendens	14.70-56.97	incidentally consumed	Chew et al. 2012 (SI & GCA) Seah et al. 2009 (GCA): Seah et al. 2011
Gazza minuta Gerres limbatus	28.36 20.08-37.61	Yes Yes This is the first study to report terrestrial insects,	(GCA) Prabhakara Rao 1968 (GCA)
Hypoatherina valenciennei	28.04-48.19	detritus found in this study likely incidentally consumed Zooplankton and	Kanou et al. 2004 (GCA; 11-15 SL); Inoue et al. 2005 (GCA; 64-83 SL); Nakane et al. 2011 (GCA; 18-64 SL)
Lutjanus argentimaculatus	126.50	crustacea	De Troch et al. 1998 (GCA; 20-120 SL) Blaber and Whitfield 1977 (SI & GCA;
Moolgarda cunnesius	20.20-65.76 28.18-	Yes	19-59 SL); Lin et al. 2007 (SI)
Nematalosa come	151.12	Yes Yes, detritus and plant material found in this study likely incidentally	Nanjo et al. 2008 (GCA; 37-257 SL)
Netuma thalassina	49.10-61.94	consumed	Rainboth 1996 (GCA)
Oligolenis acutinennis	30 57-36 30	Yes	Nanio et al. 2008 (GCA: 42 SL)
Paraplagusia bilineata	30.35-81.47	Yes	Lakshmi 2010 (GCA) Seah et al. 2009 (GCA); Seah et al. 2011 (GCA): Bao et al. 2015 (GCA: $35, 127$
Photopectoralis bindus	11.74-60.42	Yes	(GCA), Rab et al. 2015 (GCA, 55-127 TL) Chacko 1949 (GCA); Nyunja et al. 2002
Sardinella gibbosa	30.84-74.35	Yes	(GCA); Mavuti et al. 2004 (GCA; 57-94 SL); Shahraki et al. 2014 (SI) Horinouchi et al. 2012 (GCA: 32 9-40.8
Sardinella lemuru	48.40-58.21	Yes This study did not observe scale eating reported by Major et al	TL) Blaber and Cyrus 1983 (GCA: 20-60 SL)
Scomberoides lysan Secutor interruptus Sillago asiatica	26.28-93.58 17.61-32.27 20.85-73.5	1973 No data available No data available	Major 1973 (GCA; 21.8-127 SL)
Sphyraena barracuda	133.20	Yes	De Troch et al. 1998 (GCA; 90-350 SL)
Sphyraena flavicauda	80.85	Yes	Nakamura et al. 2003 (GCA; 87-133 SL)

Sphyraena jello	50.58- 103.86	Yes	Hajisamae et al. 2003 (GCA; 91 mean TL); Bachok et al. 2004 (GCA; 550-1000 SL)
			Chacko 1949 (GCA; 40-140 TL); De Troch et al. 1998 (GCA; 40-75 SL); Hajisamae et al. 2003 (GCA; 60 mean TL); Hajisamae and Ibrahim 2008 (GCA; 66 mean SL); Horinouchi et al. 2012
Stolephorus indicus	20.26-41.00	Yes	(GCA; 42-70.1 TL)
Stolephorus insularis	19.78-47.77	Yes Detritus found in this	Rao 1967 (GCA; 40-75 SL)
		study likely incidentally	Yamahira et al. 1996 (GCA); Nakane et
Takifugu niphobles	34.66-56.09	consumed	al. 2011 (GCA; 15-118 SL) Nanio et al. 2008 (GCA: 31-173 SL):
Terapon jarbua	22.29-62.09	Yes	Nakane et al. 2003 (GCA; 51-175 SL),
Thryssa chefuensis	28.34-58.14	No data available	
			Bapat and Bal 1950 (GCA; 22-93 TL); Rao 1967 (GCA; 165 SL); Brewer et al. 1995 (GCA; 115-200 SL); Salini et al. 1998 (GCA; 74-270 SL); Hajisamae et al. 2003 (GCA; 40 mean TL); Baker and Sheaves 2005 (GCA; 66-207 FL); Hajisamae and Ibrahim 2008 (GCA; 79 mean TL); Taher 2010 (GCA; 81-215 TL); Zagars et al. 2013 (SI & GCA; 57-
Thryssa hamiltonii	19.44-50.68	Yes	101 SL); Hajisamae et al. 2003 (GCA: 55 mean
Thryssa setirostris	20.79-29.43	Yes	TL)
Trachinotus blochii	41.69-66.82	Yes	Nakane et al. 2011 (GCA; 85-98 SL)

Figure 1.1. (a) Locations of sampling sites in Taiwan (Chonggang Estuary (Cho), Haomei Estuary and Beach (Hao), and Shuang Chun Beach (Shu). Large-scale maps of each site with points denoting location sampled: (b) Chonggang Estuary, (c) Haomei beach (B) and estuary (E), and (d) Shuang Chun Beach.

Figure 1.2. Dendrogram depicting results of cluster analysis based on Czekanowski Dissimilarity showing diet relationships of near-shore marine and estuarine fishes in Taiwan. The red line marks dissimilarity of 0:67, the critical dissimilarity value indicating statistically significant clusters obtained by bootstrapping. Trophic guilds identified by similarity profile analysis are labeled using abbreviations defined in Table 1.3. The percent frequency the 16 prey groups occurred within each species is shown. Prey groups are labeled with three-letter abbreviations described in Table 1.2.

Figure 1.3. (a) Regression lines of maximum prey width consumed versus standard length for species with a statistically significant correlation between these variables. (b) Scatter plot with regression lines of maximum prey width consumed versus standard length of fish for near-shore marine and estuarine fishes in Taiwan. Blue points represent detritivores. The blue and black regression lines are estimated when detritivores are included and excluded from analysis, respectively. Species abbreviations and regression parameters are in Table 1.6.

CHAPTER 2

Trophic niches through ontogeny in twelve species of Indo-Pacific marine Clupeoidei (herrings, sardines, and anchovies)

1. Introduction

My understanding of processes in ecology and evolutionary biology is often hampered by the absence of fundamental knowledge of the biology of species. The trophic niche is an aspect of species biology that is foundational to understanding many biological processes, including interspecific and intraspecific interactions within biotic communities, morphological evolution, and spatial patterns of species richness and community structure (MacArthur and Levins 1967; Gaines and Lubchenco 1982; Floeter et al. 2005; Olden et al. 2006; Crowder and Snyder 2010; Day et al. 2011; Egan et al. 2018a, Ch3). In many species the trophic niche is poorly described, lacking quantitative estimates of the prey sizes and types consumed. Furthermore, diet studies often do not consider ontogeny, creating the assumption that diet is constant throughout an individual's existence. Herein I quantify the trophic niches of twelve ecologically and economically important Indo-Pacific marine clupeoids (herrings, sardines, and anchovies; Whitehead et al. 1988; Cury et al. 2000; Majluf et al. 2017).

In many coastal marine ecosystems small schooling fishes have a large influence on food web dynamics and structure (Cury et al. 2000; Daskalov et al. 2007; Casini et al. 2009; Nelson et al. 2013; Sheaves et al. 2016). These fishes generally feed at low trophic levels, consuming prey items such as zooplankton, small nekton, phytoplankton, macroalgae, and detritus (Espinoza and Bertrand 2008; Costalago and Palomera 2014; Hundt et al. 2014; Buchheister and Latour 2015; Egan et al. 2017, Ch1; Egan et al. 2018, Ch3). Many small coastal fishes attain very large population sizes, transfer substantial amounts of energy between lower and higher trophic levels within and between food webs (Nelson et al. 2013; Sheaves et al. 2016), exert top-down control on populations of plankton and small nekton (Daskalov et al. 2007; Casini et al. 2009), and exert bottom-up control on predator populations (Cury et al. 2000). Despite their importance in marine ecosystems, the diets of many small coastal fishes are either completely unknown or only preliminarily described.

Most fish diet studies quantify the types of prey consumed and frequently use these data to assign predators to trophic guilds, which are groups of species that eat similar prey (Root 1967; Garrison and Link 2000). Assigning predators to trophic guilds is useful because it reduces the complexity of diet data, making it easier to include in statistical analyses (Garrison and Link 2000; Egan et al. 2018a, Ch3). Prey size is also a highly informative aspect of diet because different prey sizes are associated with distinct functional requirements for predators (Pearre 1986; Scharf et al. 2000; Krebs and Turingan 2003; Mihalitsis and Bellwood 2017). For example, gape plays a major role in limiting the maximum size of prey a predator can consume (Pearre 1986; Sabatés and Saiz 2000; Krebs and Turingan 2003; Mihalitsis and Bellwood 2017). Measurements of prey size consumption by small fishes have revealed variation in diet not captured by prey type data. For example, variation in prey size consumption exists between and

within zooplanktivorous species largely overlapping in prey type consumption (Pepin and Penney 1997; Ayón et al. 2011; Costalago et al. 2015; Brosset et al. 2016). Subtle differences in prey size consumption have been linked to distinct, large fluctuations in population sizes driven by changes in zooplankton size availability in the Peruvian Humboldt Current (Ayón et al. 2011) and Mediterranean Sea (Brosset et al. 2016). This demonstrates that incorporating prey size data in future ecological and evolutionary research and fisheries population modeling will likely be informative.

Accounting for ontogeny is important when considering the ecological and evolutionary implications of diet because many fishes exhibit ontogenetic diet shifts. Consequently, at different points in ontogeny species may perform very different ecosystem functions (Polis 1984; Linzmaier et al. 2018). Fishes most often consume increasingly larger and more evasive prey as they grow. However, some species exhibit diet shifts from mostly zooplankton to large quantities of sessile and sometimes very small materials such as plants, algae, or detritus (Pepin and Penney 1997; Sabatés and Saiz 2000; Scharf et al. 2010; Scharf and Schlight 2000; Horinouchi et al. 2012; Costalago and Palomera 2014; Henrique et al. 2014; Egan et al. 2017, Ch1; Linzmaier et al. 2018). The rate and extent of ontogenetic diet changes are variable between species and can be difficult to predict using simple measures of morphology such as predator length or gape (Scharf et al. 2000; Gravel et al. 2013; Egan et al. 2017, Ch1).

This study quantifies the trophic niches of twelve species of Indo-Pacific clupeoids (Table 2.1). I adhered to the resource-utilization formulation of the realized ecological

niche concept, which defines the ecological niche as a multidimensional volume with each niche axis describing the use of a particular resource. Niche breadth describes the range of resource use along a single niche axis. I used the resource-utilization formulation of the niche concept because there are well-defined rules for its measurement and it focuses on organismal resource use, which facilitates inter- and intraspecific comparisons of organismal biology (MacArthur and Levins 1967; Schoener 2009; Devictor et al. 2010). I used my diet data to address four objectives: (1) assign species to trophic guilds based upon prey type and size consumption, (2) identify ontogenetic shifts in prey type and size consumption, (3) test the hypotheses that niche breadth, measured as the range of prey sizes consumed, and relative niche breadth (ratio of niche breadth to predator size) are positively correlated with predator size, and (4) test the hypotheses that maximum prey size consumption and relative maximum prey size consumption (ratio of maximum prey size to predator size) are positively correlated with predator size. This research provides detailed information on trophic ecology that will be useful for future ecological and evolutionary research and inform ecosystem-based fisheries management.

2. Materials and Methods

2.1 Fish collecting and identification

I collected ten clupeoid species in Australia, Taiwan, and Thailand by gill netting, cast netting, and beach seining (Table 2.1). Because the goal of this study was to characterize realized trophic niches at the species level, I attempted to collect my target species at multiple times and locations to capture spatial and temporal diet variation, which is known to occur in clupeoid fishes (Costalago and Palomera 2014). To maximize my chances of obtaining fish specimens containing relatively undigested prey, I set gill nets set for a maximum of 20 minutes. I collected nine clupeoids in nearshore areas with sandy and muddy substrate at depths <10 m, often near creek and river mouths: shorthead anchovy (*Encrasicholina heteroloba*), China anchovy (*Stolephorus chinensis*), Indian anchovy (*Stolephorus indicus*), Hardenberg's anchovy (*Stolephorus insularis*), Chefoo thryssa (*Thryssa chefuensis*), goldstripe sardinella (*Sardinella gibbosa*), Hamilton's thryssa (*Thryssa hamiltonii*), broadhead anchovy (*Stolephorus brachycephalus*), and longjaw thryssa (*Thryssa setirostris*). I collected Castelnau's herring (*Herklotsichthys castelnaui*) in mangrove-lined creeks and estuaries with muddy substrate at depths <3m. Following capture, I euthanized fishes with MS-222 and placed them on ice to maintain the integrity of gut contents during transport.

I also obtained specimens from fish markets (Table 2.1). I only collected fresh fish that were immediately frozen or placed on ice by fishers following capture. From markets I obtained Dussumier's thryssa (*Thryssa dussumieri*), additional *T. hamiltonii* and *S. gibbosa* specimens, and two epipelagic species that, although still considered coastal, typically occur further offshore than the other species in my dataset (JPE personal observation; Whitehead et al. 1988): *E. heteroloba* and the buccaneer anchovy (*Encrasicholina punctifer*).

I fixed whole specimens in a 10% formalin solution, transferred specimens to 70% ethanol for long-term storage, and deposited them in the fish collection at the University

of Minnesota James Ford Bell Museum of Natural History (JFBM), Minnesota, U.S.A. Catalog numbers associated with specimens are in Table 2.2. I identified specimens using dichotomous keys (Munroe and Nizinski 1999a; Munroe et al. 1999) and in a previous study (Egan et al. 2018a, Ch3) verified my identifications using nuclear and mitochondrial gene sequences. I borrowed additional preserved fish specimens for gut content analysis from the American Museum of Natural History (AMNH) and the Museum and Art Gallery of the Northern Territory (MAGNT).

2.2 Diet quantification

I measured the standard length (SL) of each fish (Hubbs and Lagler 1941) using digital calipers, then dissected gut contents onto a microscope slide with a 1 x 1 mm grid. I only examined prey in the anterior portion of digestive tracts because some prey types digest more readily than others, which can bias diet descriptions if heavily digested gut contents are considered (Gannon 1976; Hyslop 1980). I quantified prey in the first ¼ of digestive tracts in species with no stomachs and prey in the digestive tract up to the posterior end of stomach in species with stomachs. I excluded predators with empty digestive tracts and predators with primarily highly degraded prey in the anterior portion of their digestive tracts from my study. I identified prey to the lowest practical taxonomic level (Table 2.3), photographed prey using a microscope-mounted Spot Insight digital camera (Model 14.2 Color Mosaic; www.spotimagin.com), and measured the maximum width, maximum length, and area to the nearest 0.001 mm if prey were in adequate condition using ImageJ software (www.imagej.nih.gov/ij). I excluded fins from measurements of fishes and

appendages and the urosome from crustacean measurements. Using my prey

measurements and cylinder (for filamentous algae and pennate diatoms) and ellipsoid (for other prey types) equations I estimated the volumes of individual prey following Alcaraz et al. (2003) and Espinoza and Bertrand (2008). In cases when I was only able to measure the width of a prey item, I used simple linear regression to make width-based estimates of prey volume. To maximize the number of prey size measurements included in my dataset I also measured previously unmeasured prey from fish included in a diet study that only considered the types and maximum sizes of prey consumed (Egan et al. 2017, Ch1) and included prey measurements previously reported in Egan et al. (2018a, Ch3). The predator specimens and prey measurements included in previous studies are identified in Table 2.2. I expressed fish diets as percent volume (volume of prey type divided by the total volume of prey). I did not incorporate a measure of gut fullness to weight the contribution of individual fish to diet descriptions because diets were described from pooled individual prey items. However, the prey volume and number of prey items contributed by each fish to diet descriptions is reported in Table 2.2.

2.3 Statistical analyses

I conducted all statistical analyses in program R 3.3.1 (www.r-project.org) and used a p value of <0.05 as the threshold for statistical significance for all comparisons. For cluster analyses grouping predators based upon dietary similarity I reduced the resolution of my prey type and size data. I condensed the 37 total types of prey identified into nine prey categories based upon the morphological and functional similarity of the prey, rather than taxonomy (Table 2.3). These categories are similar to prey categories used in previous diet studies (Nakamura et al. 2003; Hundt et al. 2014; Egan et al. 2017, Ch1). The prey type categories likely exhibited differences in the sizes of prey they contained, but I did not use prey size as a criterion when defining prey type categories. I condensed individual prey width measurements into bins and expressed prey size consumption as the proportion of total prey volume consumed within each width bin. The narrowest bin contained prey widths from 0 to 100 um and each subsequent bin doubled in size (e.g. 100 um < 300 um, 300 um < 600 um, etc.). This study focused on prey width because prey width is considered to be highly informative for inter- and intraspecific comparisons of diet because this dimension often sets a limit on the maximum size of prey a predator can consume (Pearre 1986; Krebs and Turingan 2003; Mihalitsis and Bellwood 2017). In statistical analyses and niche breadth estimates I did not include prey type categories or prey width bins comprising less than 1% of the diet by volume.

I identified ontogenetic shifts in prey type and prey size consumption using hierarchical agglomerative cluster and regression analyses. First, I divided each fish species into SL groups spanning 10 mm. To ensure small sample sizes did not unduly impact my findings, I excluded predator SL groups containing feIr than 5 individuals in prey type analyses following Nakamura et al. (2003) and Hundt et al. (2014) and predator SL groups containing feIr than 10 individuals from prey size analyses. Using the prey size and prey type datasets separately, I calculated diet dissimilarity (Bray-Curtis dissimilarity indices; Bray and Curtis 1957; Somerfield 2008) between SL groups, then grouped predators via the complete linkage hierarchical agglomerative clustering method

(Legendre and Legendre 2012) with the vegan R package (Oksanen et al. 2016). I identified statistically significant intraspecific predator groups using a bootstrap randomization approach commonly used in diet studies (Lawlor 1980: Jaksić and Medel 1990; Buchheister and Latour 2015; Egan et al. 2017, Ch1). For all cluster analyses I performed 1000 bootstrap iterations, sampling with replacement according to the RA4 algorithm (Lawlor 1980). Multiple statistically significant predator groups within a species indicated ontogenetic differences in prey type and prey size consumption. Additionally, for species with at least 20 individuals sampled, I used quantile regression with the quantreg R package (Koenker et al. 2018) to test for correlations between minimum (0.01 quantile), median (0.5), and maximum (0.99 quantile) prey widths and relative prey widths (prey width/predator SL) and SL following Scharf et al. (1998). I used quantile regression because Breusch-Pagen Tests conducted with the lmtest R package (Hothorn et al. 2017) revealed heteroscedastic variance distributions in most of my prey width/predator SL datasets. The pattern of increasing variance of minimum, mean, and maximum prey width with increasing predator SL observed in my study is common in prey size/predator size datasets (Scharf et al. 1998; Scharf et al. 2000).

Prey size was the focal resource axis of this study. Therefore, I estimated niche breadth as the range of prey widths consumed and did not combine any SL groups because the range of predator sizes included in estimates can impact niche breadth (JPE personal observation). I tested for correlations between niche breadth and SL (lower SL limit of predator size bin), relative niche breadth (niche breadth/lower SL limit of predator size bin) and SL, maximum prey size consumed and SL, and relative maximum prey size (maximum prey size/lower SL limit of predator size bin) and SL using simple linear regression. I used linear regression rather than quantile regression because these datasets did not have heteroscedastic variance distributions.

I delimited trophic guilds based upon prey type and prey size consumption separately using the hierarchical agglomerative clustering and bootstrap randomization approaches described above. For trophic guild analysis I maintained statistically significant intraspecific SL groups and combined intraspecific SL groups that were not significantly dissimilar. I considered clusters of predators that were significantly dissimilar to be trophic guilds.

I examined diet variation between fish sampling events using hierarchical agglomerative clustering and bootstrap randomization. I formed 10 mm SL groups for all species within each sampling event and quantified prey type consumption for all SL groups. If species did not have multiple groups within the same SL range containing at least five individuals, I excluded them from the analysis.

3. Results

My diet dataset included volume estimates for 12,401 prey items, 10,559 (85%) of which were generated by this study and 1,842 (15%) were previously reported in Egan et al. (2018a, Ch3), but not used to examine ontogenetic diet changes or calculate niche breadth, from 619 individual fish predators containing identifiable prey (Table 2.1; Table 2.2). Zooplankton and crustacean nekton were the most pervasive prey types in my dataset (Figure. 1). Fish were found in the diets of five anchovy species: *E. punctifer, S. chinensis, T. chefuensis, T. hamiltonii*, and *T. setirostris*. The algae, Annelida, egg, Enteropneusta, phytoplankton, and plant categories were not prevalent in any predator species.

Agglomerative clustering and bootstrap randomization identified statistically significant ontogenetic shifts in both prey type and width consumption in *S. brachycephalus*, *S. indicus*, *S. insularis*, and *T. hamiltonii*, prey type shifts in *E. heteroloba*, *E. punctifer*, and *S. gibbosa*, a prey width shift in *T. chefuensis*, and no diet shifts in *H. castelnaui* and *T. setirostris*. I was unable to collect enough *S. chinensis* and *T. dussumieri* samples to include these species in ontogenetic diet analyses. Based upon the findings of my intraspecific cluster analyses, the 42 initial prey type predator SL groups were collapsed into 19 SL groups and the 32 prey width predator SL groups were collapsed into 18 SL groups for subsequent trophic guild analyses (Figure 2.1; Figure 2.2).

Quantile regression identified ontogenetic shifts in prey width consumption in all nine species analyzed. Eight, eight, and six species exhibited changes in maximum, median, and minimum prey width consumption, respectively (Figure 2.3; Table 2.4). Quantile regression identified small, but statistically significant ontogenetic shifts in relative prey width consumption in eight of the nine species analyzed. Six, eight, and five species exhibited changes in maximum, median, and minimum relative prey width consumption, respectively (Figure 2.4; Table 2.5). Combined regression of all predator species found statistically significant positive correlations between niche breadth and predator SL (p <
0.001; $r^2 = 0.75$; Figure 2.5a), maximum prey width and predator SL (p < 0.001; $r^2 = 0.80$; Figure 2.5c), and relative maximum prey width and predator SL (p = 0.03; $r^2 = 0.14$; Figure 2.5d), but didn't find a statistically significant correlation between relative niche breadth and predator SL (p = 0.13; $r^2 = 0.04$; Figure 2.5b).

Agglomerative clustering and bootstrap randomization identified three prey type and five prey width trophic guilds (Figure 2.1; Figure 2.2). The zooplanktivore prey type guild contained seven SL groups from seven species. Fishes in this guild were generally small (19.77-77.39 mm SL) and all had diets containing between 84% and 100% zooplankton, a prey category dominated by copepods. The piscivore guild contained a single SL group: E. punctifer (64.31-69.15 mm). This E. punctifer SL group had a diet comprised of 50% small fishes, 6% crustacean nekton, and 44% zooplankton. The crustacivore prey type guild contained eleven predator groups from eleven species. Fishes in this guild were generally larger than fishes in the zooplanktivore guild (20.79-165.25 mm SL) and had diets containing between 36% and 100% nektonic Crustacea. Some species assigned to the crustacivore guild also ate large quantities of zooplankton and four species consumed fish. There was overlap in predator SL between many of the prey width guilds, but generally larger predators were associated with larger prey (Figure 2.2). The two prey width guilds containing predators that mainly ingested prey <600 um wide corresponded to the zooplanktivore prey type guild and the three prey width guilds containing predators that mainly ingested prey >600 um wide corresponded to the piscivore and crustacivore prey type guilds.

Eleven predator SL bins belonging to six species contained sufficient sample sizes to examine intraspecific differences in prey type consumption between sampling events. Fifteen of the 24 total intraspecific comparisons were <5% different and 23 of 24 comparisons were <50% different. *Thryssa hamiltonii* 30.01-39.34 mm varied up to 56% between sampling events in the relative proportions of crustacean nekton versus zooplankton consumed. The critical dissimilarity threshold of 54% identified this as the only case of statistically significant intraspecific variation in prey type consumption between sampling events. Prey types that comprised substantial proportions of the diets of SL groups were present in diets from every sampling event, except in *S. brachycephalus* 40.68-49.63 mm. In this case crustacean nekton were important in the diet, but were not identified in fish collected during one sampling event.

4. Discussion

The trophic niche is an aspect of species biology that is foundational to understanding many biological processes. This study described the prey size and type consumption of twelve species of Indo-Pacific clupeoids through ontogeny. Cluster analysis and quantile regression found significant changes in diet through ontogeny in eight species and cluster analysis identified three prey type and five prey size trophic guilds. I identified positive relationships between niche breadth and predator SL, maximum prey width and predator SL, and relative maximum prey width and predator SL. I found no statistically significant correlation between relative niche breadth and predator SL. My data illustrate that

measuring prey size in addition to prey type offers insight into fish trophic ecology by finding substantial inter- and intraspecific variation in diet not revealed by prey type data.

My diet descriptions are generally congruent with previous diet studies regarding prey type consumption, but comparable prey size data were not available for any of my study species: *E. heteroloba* (Milton et al. 1990; Nair 1998; Abrantes and Sheaves 2009), *E. punctifer* (Nair 1998; Salarpmy et al. 2008), *H. castelnaui* (Abrantes 2009), *S. gibbosa* (Mavuti et al. 2004; Abrantes et al. 2009), *S. indicus* (Hajisamae and Ibrahim 2008; Horinouchi et al. 2012), *S. insularis* (Hayase et al. 1999), *T. dussumieri* (Chacko 1949), and *T. hamiltonii* (Baker and Sheaves 2005; Taher 2010). No previous diet data were available for *S. brachycephalus*, *S. chinensis*, *T. chefuensis*, or *T. setirostris*.

My diet dataset revealed ontogenetic changes in both prey width and type consumption in Indo-Pacific clupeoids. Statistically significant changes in prey width were detected in more species than changes in prey type and changes in prey width typically occurred within narrower predator SL ranges than changes in prey type (Table 2.4; Figure 2.1; Figure 2.2; Figure 2.3). For each of the three predator species that did not exhibit ontogenetic prey type changes I only examined a relatively narrow range of SLs and small numbers of individuals (Table 2.1; Table 2.2). Analysis of additional specimens with different SLs might reveal ontogenetic prey type changes in these species. Nearly all changes in prey type were from zooplankton to crustacean nekton, a shift previously documented in many species of small fishes (Pepin and Penney 1997; Nakamura et al. 2003; Horinouchi et al. 2012; Egan et al. 2017, Ch1). The change in prey type detected in *E. punctifer* resulted from differences in the quantity of small fishes versus crustacean nekton consumed (Figure 2.1). This difference may reflect prey availability rather than a meaningful ontogenetic diet shift because the prey size data show that the small fishes and crustacean nekton consumed by *E. punctifer* were similar in size.

All species that exhibited ontogenetic changes in prey type also exhibited changes in prey width consumption, which is not surprising given that my prey type categories likely exhibit size differences, and two species exhibited changes in prey width without changes in type. Congruent with previous research (Pepin and Penney 1997; Conway et al. 1998; Krebs and Turingan 2003), changes in prey width consumption were detected within very narrow SL ranges in some species (e.g. T. setirostris 20.79-29.43 mm SL and S. insularis 19.78-47.77 mm SL). This shows that changes in prey size can occur without major changes in the type of prey consumed and that prey size data allow diets to be described at a higher resolution than prey type data when prey are grouped into coarse prey categories such those used in the present and numerous previous studies (Nakamura et al. 2003; Hundt et al. 2014; Buchheister and Latour 2015; Egan et al. 2017, Ch1). Changes in prey size may be more closely linked to changes in predator standard length than changes in prey type because it is a more direct measure of a prey attribute with functional relevance to the predator (Pearre 1986; Krebs and Turingan 2003; Mihalitsis and Bellwood 2017). The most dramatic prey size changes were in the maximum widths of prey consumed followed by median and finally minimum prey widths. A pattern of greater changes in maximum than mean/median or minimum prey widths through ontogeny appears to be common in fishes (Pepin and Penney 1997; Scharf et al. 2000;

Scharf and Schlight 2000; Jensen et al. 2008). Many of the clupeoids consumed substantial numbers of small prey through ontogeny, but at bigger predator sizes small prey items contributed minimally to the total volume of prey consumed. For example, in three SL groups belonging to three different species prey less than 300 um wide comprised 48%, 50%, and 68% of the diet by number, but only comprised <0.01%, 6%, and 10% of the diet by volume, respectively. This suggests that large, infrequently captured prey may be a crucial component of the energetic intake of some species of clupeoids and may have a substantial impact on the evolution of feeding morphology and behavior. Future research could further examine the contributions of different prey sizes to fish diets by estimating the energetic costs of capturing different sizes and types of prey.

Regression analyses simultaneously incorporating data from all twelve clupeoids supported the hypotheses that niche breadth and maximum prey width are positively correlated with predator SL (Figure 2.5a,c), as has been previously reported (Pepin and Penney 1997; Scharf et al. 2000; Scharf and Schlight 2000; Costalago and Palomera 2014; Henrique et al. 2014). There was substantial interspecific variation in niche breadth within predator size bins and prey type trophic guilds, which indicates that additional research on morphological correlates of niche breadth and spatial and temporal variation in niche breadth are warranted. All predators in my study appear to exclusively feed by selectively consuming whole, individual prey. Predators that suspension feed or bite pieces from larger prey are not expected to necessarily exhibit the same positive relationships between niche breadth and maximum prey size consumption and predator SL (Horinouchi et al. 2012; Henrique et al. 2014; Egan et al. 2017, Ch1; Linzmaier et al. 2018). The positive relationship between niche breadth and predator SL and ontogenetic changes in prey type and width consumption show that niche breadth estimates are sensitive to the predator sizes and range of predator sizes considered. Furthermore, my study shows that large, infrequently consumed prey can have a big impact on estimates of niche breadth for some species. Consequently, studies measuring niche breadth should include narrow ranges of predator sizes in breadth estimates, report the size ranges of predators examined, sample a sufficient number of predators, and ideally, use mass- or volume-based methods to describe diets.

In the clupeoid species examined, relative mean, median, and maximum prey width consumption changed very little through ontogeny, although several of the changes were statistically significant (Figure 2.4; Table 2.5). Minimum and median relative prey width often decreased slightly through ontogeny and relative maximum prey width exhibited modest increases in some species. The analysis simultaneously incorporating data from all twelve clupeoids supported the hypothesized positive relationship between relative maximum prey width and predator SL (Figure 2.5d), but didn't find a statistically significant correlation between relative niche breadth and predator SL (Figure 2.5b). Previous studies have also reported largely constant relative prey size consumption through ontogeny, but unlike my study did not find a statistically significant positive relationship between maximum prey size consumption and SL (Pearre 1996; Munk 1997; Scharf et al. 2000). Congruent with my study, previous studies found no correlations between relative niche breadth and predator SL (Pearre 1996; Scharf et al. 2000). Few

studies have examined relationships between relative prey size and predator size and have primarily focused on fishes that selectively consume individual prey (Pearre 1996; Munk 1997; Scharf et al. 2000). More research is needed to examine additional fish trophic diversity, such as herbivores, which may exhibit different relationships between relative prey size and predator size.

Cluster analyses revealed three prey type and five prey width trophic guilds in the clupeoids examined by my study. This adds to a growing body of work showing that there is substantial variation in the diets of small, coastal fishes and cautions against considering these species as functionally equivalent when modeling food webs, making inferences about species interactions and the evolution of diet, or making natural resources management decisions. My identification of more prey size than prey type trophic guilds further highlights the usefulness of prey size data. These seemingly small differences in prey size consumption likely have meaningful ecological and evolutionary implications. Small differences in prey size consumption similar to those reported herein have already been linked to distinct population dynamics in clupeoid fishes (Ayón et al. 2011; Brosset et al. 2016). My data support the hypothesis that interspecific differences in prey size consumption might be a form of resource partitioning that limits competition and facilitates the coexistence of many species of small fishes in coastal, marine ecosystems (Macpherson 1981), an idea that should be explored further by future research. The prey type trophic guild analysis emphasizes the importance of zooplankton, especially Copepoda, and small crustacean nekton, especially shrimps, in the diets of small coastal fishes.

My preliminary analysis revealed modest intraspecific differences in prey type consumption between sampling events, with only one instance of statistically significant variation. Important prey types were identified in nearly every sampling event a species was collected. Previous studies have also documented moderate spatial and temporal intraspecific diet variation (Scharf and Schlight 2000; Jensen et al. 2008; Costalago and Palomera 2014). Therefore, when describing realized trophic niches at the species level it is important to sample target species multiple times from multiple places if possible. Trophic niche descriptions based upon predators collected during a single event will likely underrepresent the range of prey types and sizes consumed by a species and thus, should be considered with due caution.

4.1 Conclusions

This study described the trophic niches of twelve species of Indo-Pacific clupeoids, assigned clupeoid predators to trophic guilds based upon prey types and sizes, identified ontogenetic changes in diet, and identified positive correlations between niche breadth, maximum prey width, and relative maximum prey width and predator size. I documented substantial dietary variation within a group of fishes often viewed as homogenous. My regression and agglomerative cluster analyses showed that measuring prey size in addition to prey type offers additional, higher-resolution information about fish trophic ecology. The data produced by this study will be useful for future ecological and evolutionary research and fisheries management.

Table 2.1 Clupeoid predator species included in study (Species), number of individual predators sampled (n), standard length range of predators sampled (SL), number of prey measured (n Prey), and collection locations (Locations).

Species	n	SL (mm)	n Prey	Locations
Encrasicholina heteroloba	46	26.14-79.38	990	Taiwan
Encrasicholina punctifer	17	64.31-79.71	416	Taiwan, Thailand
Herklotsichthys castelnaui	50	50.18-77.39	1389	Australia
Sardinella gibbosa	21	30.84-125.46	937	Taiwan
Stolephorus brachycephalus	114	26.12-81.23	1556	Australia
Stolephorus chinensis	16	59.69-70.46	380	Thailand
Stolephorus indicus	60	22.93-109.17	1473	Australia, Taiwan, Thailand
Stolephorus insularis	43	19.78-47.77	1560	Taiwan
Thryssa chefuensis	55	26.96-96.70	273	Taiwan
Thryssa dussumieri	16	94.81-120.51	199	Taiwan
Thryssa hamiltonii	145	19.44-188.16	2740	Australia, Taiwan, Thailand
Thryssa setirostris	36	20.79-138.81	488	Australia, Taiwan
Total	619		12401	

Table 2.2 Information associated with each collecting event made by the authors of this

 study: the museum (Museum), catalog number (Catalog), and dates (Date:

 day/month/year) associated with each collecting event. Collections from fish markets and

those not made by the authors of this study are not included in this table.

Species	Museum	Catalog	Date	Latitude	Longitud e	Locality
Encrasicholina heteroloba	JFBM	48013	30/Apr/14	24.62 ⁰ N	120.750 E	Chonggang Estuary, Houlong Township, Miaoli County, Taiwan
Herklotsichthys castelnaui	JFBM	48059	1/Jul/14	18.52° S	146.270 E	Mouth of Herbert River, Queensland, Australia
Herklotsichthys castelnaui	JFBM	48082	3/Jul/14	18.42 ⁰ S	146.210 E	Hinchinbrook Island across crom Fischer's Creek, Queensland, Australia
Herklotsichthys castelnaui	JFBM	48110	26/Nov/14	18.45° S	146.150 E	Small side channel near Fisher's Creek, Queensland, Australia
Sardinella gibbosa	JFBM	47505	1/Aug/13	24.62 ⁰ N	120.750 E	Chonggang Estuary, Houlong Township, Miaoli County, Taiwan
Sardinella gibbosa	JFBM	47621	12/Aug/13	24.62 ⁰ N	120.750 E	Chonggang Estuary, Houlong Township, Miaoli County, Taiwan
Sardinella gibbosa	JFBM	47962	12/Jun/14	24.62 ⁰ N	120.750 E	Chonggang Estuary, Houlong Township, Miaoli County, Taiwan
Stolephorus brachycephalus	JFBM	48223	18/Jul/14	19.22 ⁰ S	146.780 E	RoIs Bay, Townsville, Queensland, Australia
Stolephorus brachycephalus	JFBM	48146	21/Jul/14	19.22 ⁰ S	146.780 E	RoIs Bay, Townsville, Queensland, Australia
Stolephorus brachycephalus	JFBM	48116	27/Jul/14	19.22 ⁰ S	146.780 E	RoIs Bay, Townsville, Queensland, Australia
Stolephorus chinensis	JFBM	48797	2/Dec/15	7.22 ⁰ N	99.540 E	Estuary off Samran Beach, Trang Province, Thailand
Stolephorus chinensis	JFBM	48793	3/Dec/15	7.22 ⁰ N	99.540 E	Estuary off Samran Beach, Trang Province, Thailand
Stolephorus chinensis	JFBM	48917	5/Dec/15	7.19 ⁰ N	100.580 E	South end of Songkhla Lake near Songkhla City, Songkhla Province, Thailand
Stolephorus chinensis	JFBM	48888	6/Dec/15	7.35 ⁰ N	100.310 E	Songkhla Lake, Pak Phayun District, Phatthalung, Thailand
Stolephorus indicus	JFBM	47978	27/May/14	23.36° N	120.120 E	Haomei Beach, Budai Township, Chiayi County
Stolephorus indicus	JFBM	48020	15/Jun/14	23.36° N	120.130 E	Haomei Estuary, Budai Township, Chiayi County, Taiwan
Stolephorus indicus	JFBM	48645	19/Nov/15	7.54 ⁰ N	99.310 E	Sandy Rajamangala Beach near mangrove creeks, Trang Province, Thailand
Stolephorus indicus	JFBM	48655	30/Nov/15	7.54 ⁰ N	99.310 E	Sandy Rajamangala Beach near mangrove creeks, Trang Province, Thailand

Stolephorus insularis	JFBM	47504	1/Aug/13	24.62 ⁰ N	120.750 E	Chonggang Estuary, Houlong Township, Miaoli County, Taiwan
Stolephorus insularis	JFBM	47581	4/Aug/13	23.36° N	120.130 E	Haomei Estuary, Budai Township, Chiayi County, Taiwan
Stolephorus insularis	JFBM	47593	4/Aug/13	23.36 ⁰ N	120.120 E	Haomei Beach, Budai Township, Chiayi County, Taiwan
Stolephorus insularis	JFBM	47623	12/Aug/13	24.62 ⁰ N	120.750 E	Chonggang Estuary, Houlong Township, Miaoli County, Taiwan
Stolephorus insularis	JFBM	47464	14/Aug/13	23.36 ⁰ N	120.130 E	Haomei Estuary, Budai Township, Chiayi County, Taiwan
Stolephorus insularis	JFBM	47863	28/Jul/14	23.36° N	120.130 E	Haomei Estuary, Budai Township, Chiayi County, Taiwan
Stolephorus insularis	JFBM	47865	28/Jul/14	23.36° N	120.120 E	Haomei Beach, Budai Township, Chiayi County
Thryssa chefuensis	JFBM	47959	12/Jun/14	24.62 ⁰ N	120.750 E	Chonggang Estuary, Houlong Township, Miaoli County, Taiwan
Thryssa chefuensis	JFBM	48945	6/May/16	24.62 ⁰ N	120.750 E	Chonggang Estuary, Houlong Township, Miaoli County, Taiwan
Thryssa hamiltonii	JFBM	47598	4/Aug/13	23.36° N	120.130 E	Haomei Estuary, Budai Township, Chiayi County, Taiwan
Thryssa hamiltonii	JFBM	47458	14/Aug/13	23.36 ⁰ N	120.130 E	Haomei Estuary, Budai Township, Chiayi County, Taiwan
Thryssa hamiltonii	JFBM	48799	3/Dec/13	7.15 ⁰ N	99.620 E	Palian Estuary, Trang Province, Thailand
Thryssa hamiltonii	JFBM	47985	14/Jun/14	23.36° N	120.120 E	Haomei Beach, Budai Township, Chiayi County
Thryssa hamiltonii	JFBM	48007	14/Jun/14	23.36° N	120.130 E	Haomei Estuary, Budai Township, Chiayi County, Taiwan
Thryssa hamiltonii	JFBM	48019	15/Jun/14	23.36 ⁰ N	120.130 E	Haomei Estuary, Budai Township, Chiayi County, Taiwan
Thryssa hamiltonii	JFBM	48062	27/Jul/14	19.22° S	146.780 E	RoIs Bay, Townsville, Queensland, Australia
Thryssa hamiltonii	JFBM	48117	27/Jul/14	19.22 ⁰ S	146.780 E	RoIs Bay, Townsville, Queensland, Australia
Thryssa hamiltonii	JFBM	47862	28/Jul/14	23.36° N	120.130 E	Haomei Estuary, Budai Township, Chiayi County, Taiwan
Thryssa hamiltonii	JFBM	48748	30/Nov/15	7.46^0 N	99.350 E	Mangrove creek near south end of Pak Meng Beach, Trang Province, Thailand
Thryssa hamiltonii	JFBM	48871	4/Dec/15	7.46^{0} N	99.350 E	Mangrove creek near south end of Pak Meng Beach, Trang Province, Thailand
Thryssa hamiltonii	JFBM	48884	4/Dec/15	7.46 ⁰ N	99.300 E	Andaman Sea Bay off coast of Pak Meng Beach, Trang Province, Thailand
Thryssa hamiltonii	JFBM	48895	6/Dec/15	7.46 ⁰ N	99.350 E	Mangrove creek near south end of Pak Meng Beach, Trang Province, Thailand
Thryssa setirostris	JFBM	47463	14/Aug/13	23.36 ⁰ N	120.130 E	Haomei Estuary, Budai Township, Chiayi County, Taiwan
Thryssa setirostris	JFBM	47645	14/Aug/13	23.36° N	120.120 E	Haomei Beach, Budai Township, Chiayi County
Thryssa setirostris	JFBM	47977	27/May/14	23.36° N	120.120 E	Haomei Beach, Budai Township, Chiayi County
Thryssa setirostris	JFBM	47986	14/Jun/14	23.36° N	120.120 E	Haomei Beach, Budai Township, Chiayi County
Thryssa setirostris	JFBM	48006	14/Jun/14	23.36 ⁰ N	120.130 E	Haomei Estuary, Budai Township, Chiayi County, Taiwan
Thryssa setirostris	JFBM	47864	28/Jul/14	23.36 ⁰ N	120.120 E	Haomei Beach, Budai Township, Chiayi County

 Table 2.3. Prey types in each prey category (not taxonomic) used for agglomerative

Prey category	Prey category composition
Algae	Filamentous algae
Annelida	Nematoda, Polychaeta, unidentified Annelida
	Amphipoda, Arthropoda, Brachyura, Collembola, Cumacea, Decapoda,
Crustacea	Decapoda megalopa, Gammeridea, Isopoda, Lucifer, shrimp, unidentified
	crustacea nekton
Egg	Invertebrate eggs, fish eggs
Fish	Fish
Enteropneusta	Enteropneusta
Mollusca	Non-planktonic mollusck stages
Phytoplankton	Centric diatom, Dinoflagellata, pennate diatom, single-celled algae
Plant	Aquatic and terrestrial macrophytes
	Bivalva veliger, Chaetognatha, Cirripedia cypris, Cladocera, Copepoda,
Zooplankton	Crustacea nauplii, Decapoda zoea, Gastropoda veliger, Larvacea,
-	Ostracoa, Trematoda

cluster analyses of clupeoid diets.

Table 2.4. Quantile regression equations (equation) and p values (p value) resulting from quantile regressions of predator standard length (SL) in mm versus maximum (0.99 quantile), median (0.50 quantile), and minimum (0.01 quantile) prey width (PW) in um. Regression lines are plotted in Figure 2.3.

Spacios	Quantile 0.9	9	Quantile 0.5	50	Quantile 0.01	
species	Equation	p value	Equation	p value	Equation	p value
E. heteroloba	PW = 7.2SL + 187.1	0.051	PW = 2.4SL + 105.8	< 0.001	PW = -1.4SL + 141.2	0.084
H. castelnaui	PW = 11.2SL-145.4	< 0.001	PW = 1.3SL + 129.9	0.016	PW = -2.4SL + 185.4	0.001
S. gibbosa	PW = 8.0SL+180.98	< 0.001	PW = 1.6SL + 140.3	< 0.001	PW = 1.2SL-12.9	< 0.001
S. brachycephalus	PW = 68.2SL-1457.8	< 0.001	PW = 5.2SL + 77.9	< 0.001	PW = -0.9SL + 111.7	0.008
S. indicus	PW = 27.7SL-381.4	< 0.001	PW = 2.8SL + 111.4	< 0.001	PW = -0.3SL + 109.2	0.320
S. insularis	PW = 34.2SL-552.9	< 0.001	PW = 4.3SL + 42.2	< 0.001	PW = 4.0SL-64.5	0.010
T. chefuensis	PW = 42.2SL-323.2	< 0.001	PW = 7.5SL-85.9	0.049	PW = -0.5SL + 100.6	< 0.001
T. hamiltonii	PW = 45.5SL-713.6	< 0.001	PW = 15.1SL-243.0	< 0.001	PW = 1.6SL-52.3	0.082
T. setirostris	PW = 54.3SL-849.8	< 0.001	PW = 21.4SL-398.5	< 0.001	PW = 10.6SL-220.2	< 0.001

Table 2.5 Quantile regression equations (equation) and p values (p value) resulting from quantile regressions of predator standard length (SL) in mm versus maximum (0.99 quantile), median (0.50 quantile), and minimum (0.01 quantile) relative prey width (RPW) in um. Regression lines are plotted in Figure 2.4.

	Quantile 0.9	9	Quantile 0.50		Quantile 0.01	
Species	Equation	p value	Faustion	p value	Equation	n value
	$PDW = 0.6 \times 10^{-10}$	value	$PDW = 2.8 \times 10^{-10}$	value	$PDW = 7.3 \times 10^{-10}$	p value
E. heteroloba	⁵ SL+1.6x10 ⁻²	0.265	⁵ SL+5.9x10 ⁻³	< 0.001	⁵ SL+5.4x10 ⁻³	< 0.001
	$RPW = 4.4 \times 10^{-10}$		$RPW = -3.7 \times 10^{-10}$		$RPW = -4.8 \times 10^{-10}$	
H. castelnaui	⁵ SL+6.1x10 ⁻³	0.372	⁵ SL+5.7x10 ⁻³	< 0.001	⁵ SL+3.6x10 ⁻³	0.005
	$RPW = -5.8 \times 10^{-5}$		$RPW = -3.7 \times 10^{-10}$		$RPW = -3.8 \times 10^{-10}$	
S. gibbosa	⁵ SL+1.6x10 ⁻²	0.004	⁵ SL+6.9x10 ⁻³	< 0.001	⁶ SL+6.6x10 ⁻⁴	0.073
Ū.	$RPW = 7.0 \times 10^{-4} SL$ -		$RPW = -4.3 \times 10^{-10}$		$RPW = -4.5 \times 10^{-10}$	
S. brachycephalus	2.8×10^{-3}	< 0.001	⁵ SL+8.9x10 ⁻³	0.017	⁵ SL+3.7x10 ⁻³	< 0.001
	$RPW = 1.8 \times 10^{-5}$		$RPW = -5.0 \times 10^{-10}$		$RPW = -8.6 \times 10^{-10}$	
S. indicus	⁴ SL+7.8x10 ⁻³	< 0.001	⁵ SL+8.0x10 ⁻³	< 0.001	⁵ SL+6.1x10 ⁻³	< 0.001
	$RPW = 6.0 \times 10^{-4} SL$ -		$RPW = -3.7 \times 10^{-10}$		$RPW = 7.0 \times 10^{-5} SL$ -	
S. insularis	3.0×10^{-3}	< 0.001	⁵ SL+6.9x10 ⁻³	0.004	2.8x10 ⁻⁴	0.090
	$RPW = 1.3 \times 10^{-10}$		$RPW = 4.5 \times 10^{-10}$		$RPW = -5.0 \times 10^{-10}$	
T. chefuensis	⁴ SL+2.7x10 ⁻²	0.285	⁵ SL+3.5x10 ⁻³	0.471	⁵ SL+4.0x10 ⁻³	0.562
	$RPW = 2.8 \times 10^{-10}$		$RPW = 6.3 \times 10^{-10}$		$RPW = -1.6 \times 10^{-10}$	
T. hamiltonii	⁴ SL+6.1x10 ⁻³	< 0.001	⁵ SL+4.7x10 ⁻³	< 0.001	⁵ SL+3.8x10 ⁻³	0.207
	$RPW = 2.7 \times 10^{-10}$		$RPW = 1.2Sx10^{-1}$		$RPW = 6.5 \times 10^{-5}$	
T. setirostris	⁴ SL+1.3x10 ⁻²	0.001	⁴ SL+2.9x10 ⁻³	< 0.001	⁵ +8.6x10 ⁻³	< 0.001

Fig. 2.1. Dendrogram resulting from hierarchical agglomerative clustering based upon Bray-Curtis dissimilarity of prey types consumed by 19 predator groups representing twelve Indo-Pacific clupeoid species. I calculated Bray-Curtis dissimilarity using nontaxonomic prey categories (Table 2.2). For this analysis I combined intraspecific SL groups that did not exhibit statistically significant differences in prey type consumption. Letters following dendrogram species labels distinguish among predator groups belonging to species with multiple intraspecific SL groups. The dashed red line indicates the critical dissimilarity value (0.73) identified by bootstrapping that indicates statistically significant (P<0.05) clusters (trophic guilds). The number (n) and standard length range (SL) of predators, number of separate sampling events (Events), and number of prey (n prey) measured are shown for each predator group to the right of dendrogram tip labels. Bars show the proportions of prey types consumed by predator groups.

Figure 2.2. Dendrogram resulting from hierarchical agglomerative clustering based upon Bray-Curtis dissimilarity of prey sizes consumed by 18 predator groups representing twelve Indo-Pacific clupeoid species. Letters following dendrogram species labels distinguish among predator groups belonging to species with multiple intraspecific SL groups. The dashed red line indicates the critical dissimilarity value (0.75) identified by bootstrapping that indicates statistically significant (P<0.05) clusters. The number (n) and standard length range (SL) of predators, number of separate sampling events (Events), and number of prey (n prey) measured are shown for each predator group right of dendrogram tip labels. Bars show the proportions of prey widths consumed by predator groups.

Fig. 2.3 Scatter plots of prey width (y-axis) versus predator SL (x-axis) with quantile regression lines of maximum prey width (blue), median prey width (black), and minimum prey width (red) versus predator SL. Below each scatterplot is a line drawing for the corresponding species: (A) *E. heteroloba*, (B) *H. castelnaui*, (C) *S. gibbosa*, (D) *S. brachycephalus*, (E) *S. indicus*, (F) *S. insularis*, (G) *T. chefuensis*, (H) *T. hamiltonii*, and (I) *T. setirostris*. Predator and prey sample sizes and predator SL ranges are in Table 2.1 and regression equations and p-values are in Table 2.3.

Figure 2.4. Scatter plots of relative prey width (y-axis) versus predator SL (x-axis) with quantile regression lines of maximum prey width (blue), median prey width (black), and minimum prey width (red) versus predator SL. Below each scatterplot is a line drawing for the corresponding species: (A) *E. heteroloba*, (B) *H. castelnaui*, (C) *S. gibbosa*, (D) *S. brachycephalus*, (E) *S. indicus*, (F) *S. insularis*, (G) *T. chefuensis*, (H) *T. hamiltonii*, and (I) *T. setirostris*. Predator and prey sample sizes and predator SL ranges are in Table 2.1 and regression equations and p-values are in Table 2.3.

Figure 2.5. Scatter plots with linear regression lines: (A) niche breadth, (B) relative niche breadth, (C) maximum prey width, and (D) relative maximum prey width versus predator SL for 32 predator groups. Regression analyses were based upon measurements of 10,674 prey items from 511 individual fish.

CHAPTER 3

Phylogenetic analysis of trophic niche evolution reveals a latitudinal herbivory gradient in Clupeoidei (herrings, anchovies, and allies)

1. Introduction

Trophic niche evolution can profoundly impact ecological and evolutionary processes, including phenotypic evolution, speciation, and community assembly (Kalko et al. 1998; Duda and Palumbi 2004; Day et al. 2011; Pekár et al. 2011; Davis et al. 2012; Chubaty et al. 2014; Goldman-Huertas et al. 2015; Burin et al. 2016). Understanding biotic and abiotic forces that govern the evolution of trophic niches offers critical insight into biogeographic patterns (Futuyma and Moreno 1988; Floeter et al. 2005; Slatyer et al. 2013; Brown 2014). Herbivory is a particularly interesting trophic niche because there are theorized trade-offs associated with diets containing large quantities of low quality food (little energy per unit mass) and it has been identified as a potential evolutionary "dead-end" that hinders subsequent trophic diversification (Gaines and Lubchenco 1982; Floeter et al. 2005; Lobato et al. 2014; Burin et al. 2016; Sanchez and Trexler 2016). If trade-offs restrict the evolution of herbivory in certain environments and herbivory constrains trophic diversification, there may be predictable geographic patterns of herbivory and trophic evolution (Floeter et al. 2005; 2004; González-Bergonzoni et al. 2012; Chubaty et al. 2014; Sanchez and Trexler 2016).

There are trade-offs associated with herbivory. To meet metabolic demands, herbivores may spend more time foraging, have reduced activity levels, slower digestion, and higher energy allocation to digestive tissues, relative to species consuming primarily high quality prey (Ralston and Horn 1986; Elliott and Bellwood 2003; Floeter et al. 2005; Sanchez and Trexler 2016). Proposed advantages of herbivory include increased prey encounter rates, little energy required to capture prey, and utilization of suboptimal habitats (Floeter et al. 2005). Herbivorous fishes are abundant in many marine and freshwater aquatic communities (Nakamura et al. 2003; Ibañez et al. 2009; González-Bergonzoni et al. 2012; Hundt et al. 2014; Egan et al. 2017, Ch1) and consume low quality prey such as detritus, algae, macrophytes, and phytoplankton (Wilson et al. 2003; Heck et al. 2008; Hundt et al. 2014).

Abiotic environmental gradients might determine geographic patterns of herbivory. High salinity and cold temperature may decrease the probability of herbivory arising in fishes by preventing them from obtaining enough energy to meet metabolic demands (Gaines and Lubchenco 1982; Floeter et al. 2005; González-Bergonzoni et al. 2012). Cold temperatures slow production of detritus and algae and decrease digestion rates, which may limit the evolution of herbivory (Gaines and Lubchenco 1982; Floeter et al. 2005; Behrens and Lafferty 2007; Clements et al. 2009; González-Bergonzoni et al. 2012). The influential "digestion constraint" hypothesis (Gaines and Lubchenco 1982) states that in ectotherms energy requirements are difficult to meet at low temperatures when low quality materials comprise a substantial portion of the diet because digestion rate decreases more quickly than metabolic rate with declining temperature (Brett and Higgs

1970; Horn and Gibson 1990; Floeter et al. 2005). There may be low availability of detrital, algal, and plant matter in marine relative to freshwater habitats (Winemiller and Leslie 1992), a scenario that predicts a negative relationship between salinity and herbivory. Previous studies found negative correlations between herbivory and salinity and herbivory and latitude in fishes, supporting the existence of environmental constraints on herbivory, although herbivores are present in both marine and temperate areas (Floeter et al. 2005; González-Bergonzoni et al. 2012).

Evolutionary transition rates between trophic niches are variable and different trophic niches can have distinct consequences for subsequent ecological diversification (Price et al. 2012; Burin et al. 2016). Some trophic niches may act as "cradles" of diversity from which different trophic niches frequently evolve while others may act as evolutionary "dead-ends" that, once evolved, rarely give rise to additional trophic diversity (Dennis et al. 2011; Price et al. 2012; Lobato et al. 2014; Santini et al. 2015; Burin et al. 2016). Studies describing the evolution of diet in bony fishes find that herbivory may be an evolutionary dead-end because there are frequent transitions to herbivory, but infrequent transitions from herbivory to other diets (Davis et al. 2012; Price et al. 2012; Lobato et al. 2014; Santini et al. 2015; Burin et al. 2016; Lavoué et al. 2017a). Only a handful of studies have investigated the consequences of herbivory for diversification, and few studies have focused on actinopterygian fishes (Lobato et al. 2014).

For this study I investigated trophic niche evolution in Clupeoidei (anchovies, sardines, herrings, and their relatives). Clupeoidei contains over 30 herbivorous species and

freshwater, marine, temperate, and tropical species (Whitehead et al. 1988; Lavoué et al. 2013; Bloom and Lovejoy 2014). Recent studies have identified strongly supported lineages within Clupeodei, but failed to resolve relationships among these lineages, in part because they used a small number of loci and relied heavily on mitochondrial DNA (Bloom and Lovejoy 2012; Lavoué et al. 2013; Bloom and Lovejoy 2014; Lavoué et al. 2017b,c). The most comprehensive phylogenetic hypothesis for Clupeoidei contains 153 of approximately 400 clupeoid species (Bloom and Lovejoy 2014). This phylogeny contains robust sampling of South American taxa, but poor sampling of several trophically diverse Indo-Pacific lineages. For example, the herring genus *Herklotsichthys* (12 species) is entirely missing and the diverse anchovy genera *Stolephorus* (20 species) and *Thryssa* (24 species) and sardines in the genus *Sardinella* (22 species) are each represented by only three species.

In this study, I investigated the evolution of herbivory and associations between herbivory and habitat in clupeoid fishes. My first objective was to use an updated molecular dataset to reconstruct a new clupeoid phylogeny with more representative sampling of Indo-Pacific trophic diversity. I then used this phylogeny to estimate the history of trophic niche evolution in clupeoids and test the hypotheses that herbivory is negatively correlated with salinity and latitude (proxy for temperature).

2. Materials and methods

2.1 Taxon sampling and molecular data collection

This study adhered to the Lavoué et al. (2014) classification of Clupeoidei and revisions suggested for the genus *Encrasicholina* (Hata and Motomura 2017), genus *Sardinella* (Stern et al. 2017), and genera Pseudosetipinna, Setipinna, and Lycothrissa (Lavoué and Ho 2017). I acquired DNA sequences for 191 individuals from 190 clupeoids and the denticle herring *Denticeps clupeoides* to serve as an out-group (Table 3.1). My sampling included all major clupeoid lineages and 67 of 82 genera. I downloaded sequences from GenBank and generated additional sequences from specimens I collected. I extracted total genomic DNA using Qiagen® DNAeasy Blood and Tissue Kits (Qiagen, Valencia, CA) following the manufacturer's protocol. I used polymerase chain reaction (PCR) to amplify four nuclear (rag1, rag2, slc, zic1) and two mitochondrial loci (cvtb, 16s) that have been used extensively for actinopterygian systematics (Li et al. 2007; Li et al. 2010; Near et al. 2012). PCR reactions contained 2.75 µl water, 1.5 µl genomic DNA, 6.25 µl GoTaq® Green Master Mix (Promega, Madison, WI), 1.0 µl primers and were conducted using published PCR cycling protocols and amplification primers (López et al. 2004; Li et al. 2007; Li et al. 2010; Bloom and Lovejoy 2012). I used Exosap to remove excess primers and nucleotides from PCR products (Werle et al. 1994). I sequenced purified PCR products using ABI Prism[®] BigDye Terminator version 3.1 chemistry (Applied Biosystems, Foster City, CA) at the University of Minnesota Biomedical Genomics Center DNA Sequencing and Analysis Facility. I edited sequences, produced contigs and consensus sequences, and aligned consensus sequences using the MUSCLE algorithm (Edgar 2004) in Geneious v. 6.0.3 (www.geneious.com; Biomatters Ltd., Auckland, New Zealand). I confirmed the quality of alignments by visual inspection of sequences and

their amino acid translation and comparing my alignments to alignments previously published by Bloom and Lovejoy (2014), then trimmed sequences to the following lengths (in base pairs): *rag1* 1571, *rag2* 1269, *slc* 770, *zic1* 902, *cytb* 1143, *16s* 1480.

2.2 Phylogenetic analyses

I generated two datasets for phylogenetic analyses. A "6-gene" dataset contained all six loci for a subset of 49 species from major clupeoid lineages for which I had sequences for at least five genes and the outgroup *D. clupeoides*. The purpose of the 6-gene dataset was to resolve higher-level clupeoid relationships. A "4-gene" dataset maximized taxon sampling, containing all 191 individuals and *rag1*, *rag2*, *slc*, and *cytb* gene sequences. The 4-gene dataset excluded *zic1* and *16s* because I did not have these sequences for most species (Table 3.1).

I tested for substitution saturation for each locus in my datasets using the Xia et al. (2003) method in DAMBE6 (Xia 2017). *Rag1* codon positions two and three and all *rag2* codon positions were saturated. I removed *rag1* and *rag2* third codon positions for downstream analyses, but retained *rag1* position two and *rag2* positions one and two because the latter sites were only slightly above the critical saturation index value and preliminary analyses and previous research suggested these positions contained valuable information for resolving recent clupeoid branching events (Bloom and Lovejoy 2012; Bloom and Lovejoy 2014). For all analyses, I selected partitioning schemes and nucleotide substitution models using Bayesian information criterion (BIC) scores in PartitionFinder

v. 1.01 (Lanfear et al. 2012). I did not implement the invariant sites parameter because it is redundant with the gamma distribution parameter (Yang 2006). The best fitting partitioning scheme identified by PartitionFinder for both datasets partitioned by gene and codon position and assigned GTR + gamma nucleotide substitution models to all partitions.

To time-calibrate my phylogeny I used six exponential calibration priors based upon previous reviews of clupeoid fossils and priors implemented by Bloom and Lovejoy (2014) and Lavoué et al. (2017b): (1) I used the crown clupeoid †*Cynoclupea nelsoni* (Malabarba and Dario 2017) to set a minimum age of 125 Ma for the most recent common ancestor (MRCA) of Clupeoidei and set a soft 95% maximum age of 145 Ma due to the absence of Jurassic Clupeomorpha fossils, (2) a *Dorosoma petenense* fossil (Miller 1982) to set a minimum age of 2.5 Ma for the MRCA of *Dorosoma* and set a soft 95% maximum age of 86.3 because most crown clupeoid fossils are younger, (3)-(5) a minimum age of 3.0 Ma and soft 95% maximum age of 86.3 for three sister pairs of anchovies separated by the Isthmus of Panama, and (6) †*Eoengraulis fasolo* (Marramà and Carnevale 2016) to set a minimum age of 50 Ma for the MRCA of Engraulidae and set a soft 95% maximum age of 86.3 Ma. I implemented all six priors when analyzing the 4-gene dataset, but only used the Clupeoidei and Engraulidae priors (priors 1 and 6) when analyzing the 6-gene dataset due to the reduced taxon sampling.

I conducted Bayesian phylogenetic analyses in BEAST v.2.4.5 (Bouckaert et al. 2014) via the CIPRES Science Gateway portal (Miller et al. 2010). For both datasets I

conducted concatenated analyses and species tree analyses via *BEAST and ran five or more identical, independent BEAST runs. All analyses implemented a birth-death speciation prior, an uncorrelated lognormal clock model of molecular evolution, set Markov chain Monte Carlo (MCMC) lengths of 300 million generations, and logged results every 10,000th generation. I visualized results in Tracer v.1.6.0 (Rambaut et al. 2014) to confirm that MCMC runs reached stationarity, sufficient effective sample sizes of parameters (>200), and convergence of independent runs. I checked node age ranges to confirm MCMC correctly sampled from node age calibration priors. I combined trees and removed burnin in LogCombiner v.2.4.5 and used TreeAnnotator v.2.4.5 to generate maximum clade credibility trees (Bouckaert et al. 2014).

I conducted maximum likelihood phylogenetic analyses in RAxML v.8.2.4 (Stamatakis 2014) via CIPRES using 4-gene and 6-gene datasets. All maximum likelihood analyses used the same partitioning scheme implemented in the Bayesian analyses: by gene and codon position with GTR + gamma substitution models. Tree searching and non-parametric bootstrap estimation of node support was conducted simultaneously using the rapid bootstrapping algorithm. I used the bootstopping option, which determines the number of bootstrap replicates required to obtain stable support values and halts analyses automatically.

2.3 Diet data, trophic guilds, and herbivory characters

Trophic guilds are groups of species that eat similar prey (Root 1967; Simberloff and

Dayan 1991; Garrison and Link 2000). To facilitate phylogenetic comparative analysis of herbivory evolution in clupeoids I assigned species to trophic guilds. I collected diet data from large juvenile and adult specimens for 115 clupeoid species from peer-reviewed articles and by quantifying the diet of nine clupeoid species via gut content analysis (Table 3.1; Table 3.2). I condensed 97 total prey types into sixteen prey categories for analysis (Table 3.3). Prey categories were based upon previous studies and focused on morphological and functional similarity of prey rather than taxonomy (Nakamura et al. 2003; Nakane et al. 2011; Egan et al. 2017, Ch1). Diet data were reported in the literature qualitatively and quantitatively as % volume, % number, and % occurrence of prey types. These data provide distinct, but largely congruent descriptions of the relative proportion of prey in the diets of fishes (Hyslop 1980; Baker et al. 2014). In some cases, condensing % occurrence data into prev categories resulted in categories with values over 100%. In these cases I capped the value at 100%. I treated the different quantitative data types equivalently in analyses because a coarse description of diet was sufficient to examine my questions. I used program R v.3.3.1 and a p-value of <0.05 as the threshold for statistical significance for all statistical analyses (www.r-project.org). I calculated differences in prey consumption using Czekanowski dissimilarity index matrices (Czekanowski 1909) and used hierarchical agglomerative clustering to group species based upon dietary similarity using the program R vegan package (Oksansen et al. 2016). I identified statistically significant groupings, which I designated as trophic guilds, using a bootstrap randomization approach previously described by Buchheister and Latour (2015) and Egan et al. (2017, Ch1). I identified major diet differences between trophic guilds and used this information to assign clupeoid species to trophic guilds for which

only qualitative data were available.

I estimated one continuous and one binary herbivory character. I measured the continuous herbivory diet character as the proportion of prey of low nutritional value in clupeoid diets (algae, detritus, phytoplankton, plant, and pollen prey categories). I coded a binary herbivory character based upon my continuous herbivore character and considered a species herbivorous if 20% of its diet was comprised of low quality prey. When possible, I assigned binary herbivore character states for species with no diet data based upon the diets of closely related species and qualitative observations of feeding and digestive structures. The terms herbivore, detritivore, and omnivore are often used inconsistently or interchangeably due to the limited resolution of diet data and differences in research focus. I acknowledge that these can be distinct trophic guilds, but for this study I use the term herbivore to describe any species consuming significant quantities of low quality prey (Floeter et al. 2005; González-Bergonzoni et al. 2012).

2.4 Habitat and range data

I collected clupeoid range and salinity use data from compiled Ocean Biogeographic Information System (www.iobis.org; Grassle 2000) and Global Biodiversity Information Facility (www.gbif.org; GBIF 2017) occurrence records accessed via AquaMaps (Kaschner et al. 2016) and from Whitehead et al. (1988). I used these data to discretely code habitat use in two ways: (1) marine, catadromous, anadromous, or freshwater and (2) primarily feeds in freshwater habitats (catadromous or freshwater) or primarily feeds in marine habitats (anadromous or marine). I recorded the northernmost and southernmost latitude of each species' range and used the absolute value of the latitude of the furthest occurrence of each species from the equator as a continuous character to serve as a proxy for each species' temperature use.

2.5 Statistical analyses

To test my hypothesis that herbivory and latitude are negatively correlated I conducted linear regression of the proportion of herbivorous clupeoid species (binary herbivory character) versus latitude at 5^{0} intervals. I did not include latitudinal transects above 80^{0} in any analyses because no clupeoid species occurred above this latitude. To test my hypothesis that herbivory is positively correlated with freshwater habitats I conducted simple linear regression of salinity (binary predictor variable) versus the proportion of herbivores. I also tested for a difference in the proportion of herbivorous clupeoids between freshwater and marine habitats using the prop.test MASS function.

I also tested my hypotheses using phylogenetically informed methods. All phylogenetic comparative analyses used the time-calibrated clupeoid phylogeny produced by the 4-gene concatenated analysis after removing taxa with missing habitat or diet character data. I estimated the evolutionary history of habitat (freshwater, marine, anadromous, or catadromous) and diet (trophic guilds) using Revell's (2012) modification of Bollback's (2006) Bayesian stochastic character mapping method and the maximum likelihood rerooting method of Yang et al. (1995) using the make.simmap (Revell 2012) and

rerootingMethod phytools (Revell 2012) functions, respectively. I estimated the evolutionary history of continuous character data (herbivory and latitude) using the maximum likelihood-based contMap phytools function. I tested my hypotheses that herbivory and latitude are negatively correlated (two continuous characters) and herbivory and freshwater habitat use are positively correlated (binary discrete predictor variable vs. continuous response variable) in clupeoids using phylogenetic generalized least squares regression (PGLS) with the gls phytools function. In my PGLS analyses the assumption of normally distributed residuals was violated. I explored the consequences of violating this assumption using the MCMCglmm package (Hadfield 2010) to compare pvalues obtained from fitting linear models to my data assuming either normally or exponentially distributed residuals. To examine the impact of phylogenetic correction on linear regression analyses I also conducted standard linear regression of herbivory versus salinity and latitude. I tested for differences in the proportion of evolutionary diet transitions that were from non-herbivore to herbivore (transitions to herbivory/total number of evolutionary transitions) between tropical/subtropical areas $(35^{\circ}S)$ and <35⁰N) and temperate areas (>35⁰S and 35⁰N<) and freshwater and marine habitats using the prop.test MASS function.

3. Results

3.1 Clupeoid phylogenetic relationships and divergence times

The Bayesian 6-gene *BEAST and BEAST concatenated analyses yielded identical

topologies. Bayesian posterior probabilities indicated support for some recent clupeoid branching events, but little support for higher-level relationships. There were no strongly supported differences between Bayesian and maximum likelihood analyses so I only discuss the results of the Bayesian analyses (Figure 3.1). Engraulidae (anchovies), Dussumieriinae (round herrings, rainbow sardines), Spratelloidinae (round herrings), and the Clupeidae subfamilies Clupeinae (herrings), Ehiravinae (sprats), Dorosomatinae (gizzard shads, sardinellas, herrings), and Alosinae (shads, menhadens), were recovered as monophyletic, but not Clupeidae or Dussumieriidae (Figure 3.1). Spratelloidinae was recovered as sister to all remaining Clupeoidei and Chirocentrus (wolf herrings) was sister to all clupeoids except Spratelloidinae. Engraulidae and Pristigasteridae (longfin herrings) were recovered as sister. A lineage containing Dussumieriinae, and all Clupeidae subfamilies was sister to the Engraulidae + Pristigasteridae lineage.

The 4-gene Bayesian *BEAST analyses failed to converge so I only report results of the concatenated BEAST Bayesian analyses (Figure 3.2). There were no strongly supported differences between concatenated Bayesian and maximum likelihood analyses so I only discuss the results of Bayesian analyses (Figure 3.2). Engraulidae, Dussumieriinae, Spratelloidinae, all clupeidae subfamilies except Clupeinae, and Pristigasteridae were recovered as monophyletic, but not Clupeidae or Dussumieriidae (Figure 3.2). Spratelloidinae was recovered sister to all remaining clupeoids. In contrast to the 6-gene analysis Engraulidae was recovered sister to all clupeoids except Spratelloidinae, Chirocentridae was recovered sister to Pristigasteridae, and Pristigasteridae and Chirocentridae were placed in a lineage with Dussumieriinae and Clupeinae. The clupeid

genera *Herklotsichthys*, *Sardinella*, *Pellonula*, and *Microthrissa*, pristigasterid genera Pellona and *Ilisha*, Indo-Pacific anchovy genera *Thryssa* and *Coilia*, and New World anchovy genera *Engraulis*, *Anchoa*, *Anchoviella*, and *Anchovia* were not monophyletic.

Age estimates from the 4-gene and 6-gene Bayesian concatenated analyses were similar (Figure 3.1; Figure 3.2). I estimated an early to middle Cretaceous (mean posterior age of 126 Ma in both analyses) MRCA of Clupeoidei (Figure 3.2). Branching events between major clupeoid lineages were estimated to occur during the middle and late Cretaceous and early Cenozoic: Spratelloidinae (4 gene MRCA = 82 Ma, 6 gene MRCA = 77 Ma), Pristigasteridae + Dussumieriinae + Clupeidae lineage (4 gene MRCA = 79 Ma, 6 gene MRCA = 74 Ma), Engraulidae (4 gene MRCA = 53 Ma; 6 gene MRCA = 50 Ma), and Pristigasteridae (4-gene MRCA = 34 Ma).

3.2 Trophic guilds and character evolution

Hierarchical agglomerative clustering and bootstrap randomization analyses identified eight trophic guilds (most important prey categories shown in parentheses): terrestrial invertivore (terrestrial invertebrates, fish), molluscivore (molluscs, fish), macroalgivore (benthic macroalgae, rotifers), detritivore (detritus, zooplankton), phytoplanktivore (phytoplankton, detritus), piscivore (fish, crustaceans), crustacivore (crustaceans, zooplankton), and zooplanktivore (zooplankton, crustaceans). The zooplanktivore guild contained the most species and the molluscivore and algivore guilds contained the fewest (one species each; Table 3.1). No species in my dataset consumed exclusively low quality prey. Most zooplanktivores occurred in marine environments (~79%). The only macroalgivore inhabits tropical freshwater environments, the only molluscivore is tropical and marine, and all three terrestrial invertivore species inhabit freshwater with two species occurring in the tropics and one in the subtropics. The remaining trophic guilds were found in both freshwater and marine habitats.

Stochastic character mapping and ancestral state reconstruction yielded congruent results regarding the evolutionary history of habitat and diet in clupeoidei so I only discuss the results of stochastic character mapping. Character mapping favored a zooplanktivore trophic guild and marine habitat use as the root character states for Clupeoidei and identified 43.0 and 31.8 average changes between diet and habitat character states, respectively (Figure 3.3 and Figure 3.4). Zooplanktivore to crustacivore (8 transitions) and zooplanktivore to piscivore (8 transitions) were the most common transitions between trophic guilds and marine to freshwater were the most frequent habitat transitions (13 transitions; Figure 3.3). Herbivore trophic guilds evolved three times in tropical freshwater environments, three times is subtropical marine environments, and twice in tropical marine environments (Figure 3.4; Figure 3.5). Character mapping identified an additional origin of herbivory when using binary herbivory coding, rather than trophic guilds because the white sardinella (Sardinella albella) was assigned to the zooplanktivore trophic guild, but also consumed substantial quantities of phytoplankton. There were three transitions between herbivore trophic guilds (phytoplanktivore to detritivore, detritivore to phytoplanktivore, and either detritivore or phytoplanktivore to algivore) and no transitions from an herbivore to non-herbivore guild (Figure 3.3 and

Figure 3.4).

3.2 Spatial patterns of herbivory

Linear regression found a statistically significant negative correlation between latitude and the proportion of herbivorous clupeoid species (p=0.003; Figure 3.5). Linear regression did not find a correlation between salinity and the proportion of herbivores (p=0.108) and the prop.test analysis found no significant difference in the proportion of herbivores between freshwater (9% of species) and marine habitats (14% of species; p=0.107). The PGLS regressions did not identify statistically significant correlations between herbivory and latitude (p=0.588) or herbivory and salinity (p=0.794) and MCMCglmm analyses confirmed that non-significant p-values are obtained in both models assuming exponentially distributed residuals and models assuming normally distributed residuals. Standard linear regression yielded a higher p-value than PGLS for latitude versus herbivory (p=0.927) and a lower p-value than PGLS for salinity vs herbivory (p=0.683). The proportion of total diet transitions that were from non-herbivore to herbivore was significantly greater in tropical/subtropical areas (6 of 21 transitions with S. albella transition included) than temperate areas (0 of 10 transitions; p=0.017). There was no significant difference in the proportion of diet transitions that were from non-herbivore to herbivore in freshwater versus marine habitats (3 transitions in each habitat with S. albella transition included; p=1.0).

4. Discussion

4.1 Clupeoid phylogenetic relationships and divergence times

My phylogenetic hypothesis for Clupeoidei recovers the same major lineages identified by previous studies (reviewed by Lavoué et al. 2014), but relationships among these lineages remain problematic (Bloom and Lovejoy 2012; Lavoué et al. 2013; Bloom and Lovejoy 2014; Lavoué et al. 2017b,c). The 6-gene and 4-gene analyses did find strong support for the position of Spratelloidinae sister to all remaining clupeoids. Bloom and Lovejoy (2014) also recovered Spratelloidinae in this position using nuclear and mitochondrial loci, but using mitochondrial datasets Lavoué et al. (2013) and Lavoué et al. (2017c) placed Spratelloidinae sister all clupeoids except Engraulidae and sister to Chirocentridae, respectively. My 6-gene phylogeny did not confidently place Pristigasteridae, but the 4-gene analysis found strong support for a close affiliation with Clupeinae and Dussumieriinae (Figures 1 and 2). One recent molecular study also recovered Pristigasteridae in a clade with Dussumieriinae and Clupeinae (Li and Ortí 2007), but Lavoué et al. (2013) and Bloom and Lovejoy (2014) recovered Pristigasteridae as sister to Clupeidae with weak support. The minor differences between my phylogenetic hypothesis and previous studies are likely due to my exclusion of the 3rd codon positions of rag1 and rag2 due to substitution saturation, inclusion of additional nuclear markers, and more representative taxon sampling.

Divergence times of major clades estimated by the 4-gene and 6-gene analyses were congruent, but differed from previous studies and were often younger (Figure 3.2; Lavoué et al. 2013; Bloom and Lovejoy 2014; Lavoué et al. 2017b). For example, this study estimated a Cretaceous rather than Jurassic MRCA of Clupeoidei and ages of 34 Ma, 50-53 Ma, and 77-83 Ma, for Pristigasteridae, Engraulidae, and Spratelloidinae. Bloom and Lovejoy (2014) estimated ages of and 71 Ma (Pristigasteridae), 88 Ma (Engraulidae), 108 Ma (Spratelloidinae) and Lavoué et al. (2013) estimated ages of 53 Ma (Pristigasteridae), 73 Ma (Engraulidae), and 57 Ma (Spratelloidinae). These differences are likely largely due to my use of both mitochondrial and nuclear loci and exclusion of two fossils used in previous studies due to controversy regarding their placement (Lavoué et al. 2017b): †*Gasteroclupea branisai*, previously used to set a minimum age of 67 Ma for the MRCA of Pristigasteridae, †*Nolfia riachuelensis,* previously used to set a minimum age of 99 Ma for the MRCA of Clupeidae (Bloom and Lovejoy 2014), †*Lecceclupea ehiravaensis* to set a minimum age of 74 Ma for the MRCA of the clupeid lineage Ehiravini (*Gilchristella* + *Clupeichthys*; Lavoué et al. 2013).

4.2 Trophic guilds and character evolution

The digestion constraint hypothesis suggests that cold temperatures constrain the evolution of herbivory and predicts a negative relationship between herbivory and latitude (Gaines and Lubchenco 1982; Floeter et al. 2005). My linear regression and prop.test analyses support the existence of a latitudinal herbivory gradient, finding a significant negative correlation between the proportion of herbivorous clupeoids and latitude and a grater proportion of transitions from non-herbivore to herbivore in tropical/subtropical (six transitions) than temperate areas (no transitions; Figures 3.5 and

3.6). PGLS analysis found no significant correlation between herbivory and latitude. Keeping in mind the strengths and weaknesses of my various statistical analyses taken together, these findings provide some support for the temperature constraint hypothesis. All clupeid species in herbivorous trophic guilds were historically assigned to one of the two "shad" Clupeidae subfamilies (Dorosomatinae and Alosinae) based on morphology, suggesting this niche evolved rarely. My phylogeny suggests that herbivory evolved multiple times and that herbivorous clupeids and anchovies convergently evolved similar morphologies such as deep, laterally compressed bodies and long digestive tracts (Whitehead et al. 1988).

The detritivorous gizzard shads (*Dorosoma* spp.) and the phytoplanktivorous menhadens (*Brevoortia*) were the only clupeoids in herbivorous trophic guilds with ranges extending into temperate areas. Most species in the gizzard shad and menhaden lineages have primarily subtropical or tropical ranges (Table 3.2) and herbivory was inferred to have evolved in the subtropics prior to colonization of temperate regions in both lineages (Figures 3.4 and 3.5). The long digestive tracts characteristic of *Brevoortia* and *Dorosoma* spp. are an apparent adaptation to digest detritus in addition to zooplankton, potentially allowing them to circumvent temperature constraints of herbivory (Haskell 1959; Schmitz and Baker 1969; Mundahl and Wissing 1987; Smoot and Findlay 2010; Chubaty et al. 2014). *Dorosoma cepedianum* can survive on a strictly detritivorous diet (low quality), but exhibit reduced growth and condition relative to periods when an omnivorous diet (high quality) is consumed, and consume little detritus when zooplankton are abundant (Mundahl and Wissing 1987). Omnivorous herbivory may be

adaptive because it allows *Dorosoma* spp. to maintain energy intake in seasonal temperate environments characterized by fluctuating prey availability (Mundahl and Wissing 1987; Frederiksen et al. 2006; Ayón et al. 2011). Further description and comparison of the digestive physiology and morphology, life history, and behavior of temperate herbivorous fishes may illustrate how these fishes satisfy metabolic demands with diets containing large proportions of poor quality food.

None of my statistical analyses supported the hypothesis that herbivory is negatively correlated with salinity. Clupeoids evolved herbivorous trophic guilds three times in freshwater and five times in marine environments with three of these transitions occurring between herbivorous trophic guilds (Figures 3.3 and 3.4). Previous research that shoId a correlation between herbivory and salinity used data from both offshore and nearshore fish communities (González-Bergonzoni et al. 2012). The majority of marine clupeoid species inhabit nearshore environments (Whitehead et al. 1988). The lack of support for a relationship between freshwater environments and herbivory in clupeoids could be because detrital, algal, and plant material is readily available in nearshore habitats in contrast to offshore habitats (Coates 1993).

My data suggest certain trophic guilds are evolutionary cradles that give rise to ecological diversity, while others are evolutionary dead-ends. Although approximately 50% of the clupeoids included in my study were zooplanktivores, there were no evolutionary transitions to this trophic guild in Clupeoidei (Figures 3.3 and 3.4). Interestingly, zooplanktivory gave rise to all other trophic guilds, except algivory, at least once, which
indicates zooplanktivory acts as an evolutionary cradle capable of giving rise to a diversity of trophic niches. There were three transitions between herbivore guilds and no transitions from an herbivore to non-herbivore guild (Figsures 3.3 and 3.4). These findings are consistent with a general pattern of more transitions to herbivory than from herbivory in fishes, birds, and mammals, and suggests that sometimes herbivory acts as an evolutionary dead-end, limiting subsequent trophic diversification (Davis et al. 2012; Price et al. 2012; Lobato et al. 2014; Santini et al. 2015; Burin et al. 2016). The ecologies of herbivorous clupeoids are diverse. There are catadromous, anadromous, marine, freshwater, tropical, subtropical, and temperate herbivores, with maximum body lengths and lifespans ranging from 18.2 cm (Atlantic anchoveta, *Cetengraulis edentulus*) to 60 cm (Hilsa shad, Tenualosa ilisha) and three years (Pacific anchoveta, Cetengrualis *mysticetus*) to 10 years (Gizzard shad, *Dorosoma cepedianum*), respectively (Whitehead et al. 1988). Although herbivory may hinder trophic diversification, it might not limit other types of ecological diversification. The repeated evolution of herbivory, piscivory, and crustacivory in both freshwater and marine environments suggests that biotic forces such as prey availability and presence or absence of niche overlap with incumbent predators may play an important role in diet evolution within Clupeoidei (Case 1983; Bloom and Lovejoy 2012; Donoghue and Edwards 2014).

The clupeoid trophic guilds I identified will be useful for fisheries management and future ecological and evolutionary research. These trophic guilds can be refined with additional diet data obtained using complementary methods such as stable isotope and gut content analysis. Collecting prey size data may provide valuable insight into clupeoid ecology and evolution because prey size consumption appears to vary within and between trophic guilds (Table 3.2; Egan et al. 2017, Ch1) and size distributions of prey appear to regulate clupeoid population sizes in some ecosystems (Ayón et al. 2011). The species in the algivore and molluscivore trophic guilds should be subjected to additional gut content analysis given the apparent rarity of these guilds within clupeoids and their designation based upon a small number of diet studies (Blaber et al. 1998; Mondal and Kaviraj 2010; Phukan et al. 2012; Shahraki et al. 2014).

Table 3.1. Taxon and locus sampling is shown for 4-gene and 6-gene (indicated with *) phylogenetic analyses. Museum catalog numbers (Catalog #), when available, and Genbank accession numbers are provided for specimens and loci sampled in this study. Sequences generated by this study have bold Genbank accession numbers. Institution codes: James Ford Bell Museum of Natural History (JFBM), French National Museum of Natural History (MNHN-IC), University of Hamburg Zoological Museum (ZMH), Florida Museum of Natural History (FLMNH), Museum and Art Gallery of the Northern Territory (NTM), South Australian Museum (ABTC), American Museum of Natural History (AMNH), and Academia Sinica Biodiversity Research Museum (ASIZP).

Family	Species	Catalog #	slc	rag1	rag2	zic1	16s	cytb
Chirocentridae	Chirocentrus dorab*	JFBM 48145	MG958334	MG958449	MH028406		AP006229	AP006229
Clupeidae	Alosa aestivalis				DQ912146			EU552615
Clupeidae	Alosa alabamae*	JFBM 47422	MG958366	MG958433	MG958300	MG958149	KJ158129	KJ158091
Clupeidae	Alosa algeriensis*	MNHN-IC 2017-0493	MG958368	MG958432	MG958299	MG958148	MG958235	MG958211
Clupeidae	Alosa alosa*	MNHN-IC 2004-1477	MG958367	MG958431	MG958301	MG958164	AP009131	MG958210
Clupeidae	Alosa chrysochloris*	JFBM 48452	MG958365	MG958430	MG958298	MG958147	DQ912081	MG958209
Clupeidae	Alosa fallax*	ZMH 200071	MG958369	MG958381	MG958302	MG958163	EU552737	MG958212
Clupeidae	Alosa mediocris			KJ158146	KJ158110			KJ158093
Clupeidae	Alosa pseudoharengus			DQ912115	DQ912149			AP009132
Clupeidae	Alosa sapidissima			DQ912116	DQ912150			EU552616
Clupeidae	Amblygaster sirm							NC035064
Clupeidae	Anodontostoma chacunda*	JFBM 48111	MG958353	MG958380	MG958280	MG958155	AP011614	MG958218
Clupeidae	Brevoortia aurea							EF564665
Clupeidae	Brevoortia patronus*	JFBM 47414	MG958364	MG958435	MG958297	MG958146	DQ912068	MG958213
Clupeidae	Brevoortia smithi*	FLMNH 2011-0632		MG958434	MG958296	MG958145	KJ158131	MG958214
Clupeidae	Brevoortia tyrannus			DQ912106	DQ912139			EU552614
Clupeidae	Clupea harengus*	MNHN-IC 2017-0506	MG958329	MG958419	MG958288	MG958150	DO912078	MG958195
Clupeidae	Clupea pallasii*	JFBM 47412	MG958372	MG958420	MG958287	MG958139	DO912082	MG958194
Clupeidae	Clupeichthys aesarnensis*	FLMNH 2015-0015	MG958333	MG958402	MG958305		AP011584	MG958202
Clupeidae	Clupeichthys goniognathus							AP011589
Clupeidae	Clupeichthys perakensis*	FLMNH 2014-0249	MG958332	MG958403	MG958304		AP011585	MG958201
Clupeidae	Clupeoides borneensis							AP011586
Cluneidae	Clupeonella cultriventris							AP009615
Clupeidae	Corica soborna	FLMNH 2005-0909	MG958331	MG958401	MG958303			MG958207
Clupeidae	Dorosoma cepedianum*	JFBM 47667	MG958356	MG958450	MG958284	MG958157	DO912062	MG958215
Clupeidae	Dorosoma petenense			KJ158147	KJ158111		- 2,	EU552581
Cluneidae	Ehirava fluviatilis			1010011/	10100111			AP011588
Clupeidae	Escualosa thoracata*	JFBM 48638	MG958357		MG958268		AP011601	MG958171
Cluneidae	Ethmalosa fimbriata							AP009138
Clupeidae	Ethmidium maculatum							AP011602
Clupeidae	Gilchristella aestuaria							EU552578
Cluneidae	Gudusia chapra			K I158145	K I158108			K I158090
Clupeidae	Harengula humeralis			KJ158135	KJ158098			10100000
Clupeidae	Harengula jaguana*	FLMNH 2007-0255		DO912122	DO912156		DO912086	AP011592
Cluneidae	Herklotsichthys blackburni*	NTM 268	MG958362	MG958427	- (MG958140	MG958237	MG958191
Cluneidae	Herklotsichthys castelnaui	IFBM 48081	MG958359	MG958424	MG958271			
Clupeidae	Herklotsichthys dispilonotus	JFBM 48613	MG958355	MG958404	MG958263			MG958190
Cluneidae	Herklotsichthys gotoi*	NTM 166	MG958361	MG958428	MG958270	MG958153	MG958238	MG958192
Cluneidae	Herklotsichthys koningsbergeri	NTM 269	MG958363	MG958426				
Cluneidae	Herklotsichthys linna	NTM 270	MG958360	MG958425				
Cluneidae	Herklotsichthys auadrimaculatus	MNHN-IC 2005-2586	MG958358	MG958423	MG958269			
Clupeidae	Hilsa kelee*	JFBM 48560	MG958327	MG958393	MG958272		AP011613	MG958224
Clupeidae	Hyperlophus vittatus							AP011593
Clupeidae	Konosirus punctatus							AB548682
Clupeidae	Lile stolifera			K I158137	K 1158100			K 1158080
Clupeidae	Limnothrissa miodon							EU552553
Clupeidae	Microthrissa congica							EU552625
Laperane								20002020

Clupeidae	Microthrissa rovauxi*	AMNH 239608	MG958349	MG958412	MG958266		EU552790	MG958217
Chupeidae	Namatalosa coma*	IEBM 48018	MC958326	MC958440	MC958281	MC958154		MC958204
Chupeluae	Nematalosa come	JI BIN 48018	MG936520	MC059441	MG936261	WIG550154	FU660766	MC05930204
Clupeidae	Nematalosa erebi*	NIM A00944	MG958325	MG958441	MG958283		EU552/55	MG958205
Clupeidae	Nematalosa japonica*	JFBM 47453	MG958354	MG958392	MG958282		AP009142	MG958203
Clupeidae	Nematalosa nasus							KC466692
Clupeidae	Odaxothrissa vittata			DO912131	DO912167			AP009231
Chupeidae	Odarothrissa losara						A P011505	A P011595
					1/11/20101		AI 011575	AI 011575
Clupeidae	Opisthonema libertate				KJ158101			KJ158081
Clupeidae	Opisthonema oglinum*	FLMNH 2007-0164	MG958324	MG958391	MG958285		DQ912074	MG958219
Clupeidae	Pellonula leonensis*	AMNH 258349	MG958323	MG958413	MG958264		DQ912095	EU552624
Clupeidae	Pellonula vorax							EU552628
Chupeidae	Potamalosa richmondia*	ABTC 78102	MC958319	MG958417	MG958289		A P011594	MG958197
Chupeidae	Potamatosa rienmonata	AMNUL 220604	MC059219	MC059390	MC059265		11011574	MC059216
Clupeidae	Potamotnrissa acutirostris	AMINH 239604	MG958518	MG958589	MG958205			MG958216
Clupeidae	Potamothrissa obtusirostris							EU552623
Clupeidae	Ramnogaster sp.							GQ890211
Clupeidae	Rhinosardinia amazonica							EU552550
Chineidae	Rhinosardinia hahiensis			K I158149	K I158113			K 1158095
Chupeidae	Sardina pilchardus*	MNHN-IC 2017-0505	MC958322	MC958429	MC958294	MC958144	A P000233	MC958189
Chupeldae	Saraha picharaas	WININ-IC 2017-0505	MG/30322	11(1):5042)	MG/302/4	10750144	AI 007255	A D011(05
Clupeidae	Sardinella albella							AP011605
Clupeidae	Sardinella aurita Genbank			KJ158136				KJ158078
Clupeidae	Sardinella aurita Thailand	JFBM 48669	MG958376	MG958448	MG958277			MG958223
Clupeidae	Sardinella aurita*	MNHN-IC 2017-0508	MG958321	MG958416		MG958159	DQ912067	MG958208
Chineidae	Sardinella aibhosa	IFBM 48174 47442	MC958306	MG958421	MG958274			
Chupeidae	Sardinella huglionaia	A SIZD 011005	MC059217	110750421	MC059275			
Clupeidae	Sarainella nuallensis	ASIZF 911003	MG956517		MG956275			
Clupeidae	Sardinella maderensis	MNHN-IC 2013-0981		MG958422	MG958273			MG958221
Clupeidae	Sardinella melanura*	JFBM 47431	MG958315	MG958377	MG958276	MG958156	MG958239	
Clupeidae	Sardinella sp.*	JFBM 47434	MG958316	MG958415	MG958278	MG958158	MG958240	MG958220
Clupeidae	Sardinons sagax	ABTC 120558	MG958307		MG958295			MG958226
Chupaidaa	Samagalla madagasaariansis							EU552610
Ciupeidae	Suuvagena maaagascariensis							EU332010
Clupeidae	Sauvagella robusta							EU552608
Clupeidae	Sierrathrissa leonensis							EU552593
Clupeidae	Sprattus antipodum							AP011608
Clupeidae	Sprattus muelleri							AP011607
Chupeidae	Sprattus sprattus	MNHN-IC 2017-0507		MC958418	MC958286			MC958193
Chiperdae	Spruttus spruttus	WININ-IC 2017-0507		10/30410	10030200			511330135
Clupeidae	Stolothrissa tanganicae							EU552552
Clupeidae	Tenualosa ilisha							EU552622
Clupeidae	Tenualosa thibaudeaui	JFBM 48960		MG958385	MG958279			MG958229
Denticipitidae	Denticens cluneoides*			DO912100	DO912133		DO912063	EU552629
Duccumieriidae	Dussumiaria acuta*	IFBM 48214 47630		MC958379	MC958267	MC958165	MC958236	MC958206
Dussumerindae	Dussumeria acuia	JI DIVI 48214, 47050		11(1):50577	MG/30207	10/30103	110730250	A D017047
Dussumieriidae	Dussumieria elopsolaes							AP01/94/
Dussumieriidae	Etrumeus golanii*	MNHN-IC 2014-2877	MG958373	MG958436	MG958290	MG958152		MG958196
Dussumieriidae	Etrumeus micropus*	ASIZP 0911923	MG958374	MG958394	MG958291	MG958151		MG958169
								ELISSOS(7
Dussumieriidae	Etrumeus whiteheadi							EU352567
Dussumieriidae	Etrumeus whiteheadi Jenkinsia lamprotaenia			DO912107	DO912140			EU552613
Dussumieriidae Dussumieriidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratolloidos delioatulus*	MNHN IC 2014 2005	MC059212	DQ912107	DQ912140		A P000144	EU552567 EU552613
Dussumieriidae Dussumieriidae Dussumieriidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus*	MNHN-IC 2014-2905	MG958312	DQ912107 MG958400	DQ912140 MG958241		AP009144	EU552613 MG958173
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis*	MNHN-IC 2014-2905 JFBM 47427	MG958312 MG958330	DQ912107 MG958400 MG958399	DQ912140 MG958241 DQ912165.1		AP009144 AP009145	EU552613 EU552613 MG958173 MG958172
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides robustus*	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316	MG958312 MG958330 MG958311	DQ912107 MG958400 MG958399 MG958398	DQ912140 MG958241 DQ912165.1 MG958242		AP009144 AP009145 EU552786	EU552613 EU552613 MG958173 MG958172 MG958170
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides robustus* Amazonsprattus scintilla	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316	MG958312 MG958330 MG958311	DQ912107 MG958400 MG958399 MG958398 JQ012538	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667		AP009144 AP009145 EU552786	EU552567 EU552613 MG958173 MG958172 MG958170 JQ012351
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus * Spratelloides gracilis * Spratelloides robustus * Amazonsprattus scintilla Anchoa cavorum	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316	MG958312 MG958330 MG958311	DQ912107 MG958400 MG958399 MG958398 JQ012538 JO012555	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JO012700		AP009144 AP009145 EU552786	EU552567 EU552613 MG958173 MG958172 MG958170 JQ012351 JO012347
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides robustus* Amazonsprattus scintilla Anchoa cayorum Anchoa chamensis	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316	MG958312 MG958330 MG958311	DQ912107 MG958400 MG958399 MG958398 JQ012538 JQ012555 JQ012553	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 IQ012718		AP009144 AP009145 EU552786	EU352567 EU552613 MG958173 MG958172 MG958170 JQ012351 JQ012351 JQ012375
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae Engraulidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides robustus* Amazonsprattus scintilla Anchoa cayorum Anchoa chamensis Anakas a elumproja	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316	MG958312 MG958330 MG958311	DQ912107 MG958400 MG958399 MG958398 JQ012538 JQ012555 JQ012550	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012718		AP009144 AP009145 EU552786	EU352567 EU552613 MG958173 MG958172 MG958170 JQ012351 JQ012351 JQ012375 IQ012375
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae Engraulidae Engraulidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus * Spratelloides gracilis * Spratelloides robustus * Amazonsprattus scintilla Anchoa cayorum Anchoa chamensis Anchoa colonensis	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316	MG958312 MG958330 MG958311	DQ912107 MG958400 MG958399 MG958398 JQ012538 JQ012555 JQ012563 JQ012559	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012718 JQ012716		AP009144 AP009145 EU552786	EU352567 EU552613 MG958173 MG958172 MG958170 JQ012351 JQ012347 JQ012375 JQ012383
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides robustus* Amazonsprattus scintilla Anchoa cayorum Anchoa colonensis Anchoa colonensis Anchoa cubana	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316	MG958312 MG958330 MG958311	DQ912107 MG958400 MG958399 MG958398 JQ012538 JQ012555 JQ012555 JQ012559 JQ012559 JQ012550	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012710 JQ012716 JQ012705		AP009144 AP009145 EU552786	EU532367 EU552613 MG958173 MG958172 MG958170 JQ012351 JQ012347 JQ012375 JQ012383 JQ012342
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides robustus* Amazonsprattus scintilla Anchoa cayorum Anchoa chamensis Anchoa cubana Anchoa cubana Anchoa delicatissima	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316	MG958312 MG958330 MG958311	DQ912107 MG958400 MG958399 JQ012538 JQ012555 JQ012555 JQ012559 JQ012550 JQ012550 JQ012557	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012718 JQ012716 JQ012705 JQ012704		AP009144 AP009145 EU552786	EU552613 MG958173 MG958172 MG958170 JQ012351 JQ012351 JQ012347 JQ012347 JQ012342 JQ012342 JQ012348
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus * Spratelloides gracilis * Spratelloides robustus * Amcaonsprattus scintilla Anchoa cayorum Anchoa chamensis Anchoa colonensis Anchoa cubana Anchoa delicatissima Anchoa filifera	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316	MG958312 MG958330 MG958311	DQ912107 MG958400 MG958399 JQ012538 JQ012555 JQ012550 JQ012550 JQ012550 JQ012557 JQ012557 JQ012557	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012718 JQ012716 JQ012705 JQ012704 JQ012722		AP009144 AP009145 EU552786	EU552603 EU552613 MG958173 MG958172 JQ012351 JQ012351 JQ012347 JQ012347 JQ012342 JQ012342 JQ012348 JQ012348
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides robustus* Amazonsprattus scintilla Anchoa cayorum Anchoa colonensis Anchoa colonensis Anchoa cubana Anchoa delicatissima Anchoa filifera Anchoa hensetus	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609	MG958312 MG958330 MG958311	DQ912107 MG958400 MG958399 JQ012538 JQ012553 JQ012553 JQ012559 JQ012550 JQ012557 JQ012542 MG958407	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012718 JQ012716 JQ012705 JQ012705 JQ012722 MG958258		AP009144 AP009145 EU552786	EU552601 EU552613 MG958173 MG958172 MG958170 JQ012351 JQ012347 JQ012375 JQ012343 JQ012342 JQ012348 JQ012348 JQ012387
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides robustus* Amazonsprattus scintilla Anchoa cayorum Anchoa colonensis Anchoa colonensis Anchoa cubana Anchoa delicatissima Anchoa filifera Anchoa hepsetus Anchoa hepsetus	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609	MG958312 MG958330 MG958311	DQ912107 MG958400 MG958399 JQ012538 JQ012538 JQ012555 JQ012559 JQ012557 JQ012557 JQ012557 JQ012542 MG958407 IQ012630	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012716 JQ012705 JQ012705 JQ012704 JQ012722 MG958258 HQ012696		AP009144 AP009145 EU552786	EU552607 EU552613 MG958173 MG958170 JQ012351 JQ012342 JQ012342 JQ012342 JQ012348 JQ012347 IQ012379
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus * Spratelloides gracilis * Spratelloides robustus * Amchoa cayorum Anchoa chamensis Anchoa chamensis Anchoa cubana Anchoa delicatissima Anchoa delicatissima Anchoa filifera Anchoa lififera Anchoa lamprotaenia Anchoa langentenia	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609	MG958312 MG958330 MG958311	DQ912107 MG958400 MG958399 JQ012538 JQ012555 JQ012555 JQ012550 JQ012550 JQ012557 JQ012542 MG958407 JQ012630 LQ012630	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012718 JQ012705 JQ012705 JQ012704 JQ012722 MG958258 JQ012696 IQ012696		AP009144 AP009145 EU552786	EU53236/ EU552613 MG958173 MG958172 MG958170 JQ012351 JQ012347 JQ012347 JQ012342 JQ012342 JQ012342 JQ012342 JQ012379 JQ012374
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides robustus* Amchoa cayorum Anchoa chamensis Anchoa chamensis Anchoa cubana Anchoa delicatissima Anchoa delicatissima Anchoa delicatissima Anchoa lepsetus Anchoa lamprotaenia Anchoa lyolepis	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609	MG958312 MG958330 MG958311 MG958342	DQ912107 MG958400 MG958399 JQ012538 JQ012555 JQ012559 JQ012559 JQ012550 JQ012550 JQ012542 MG958407 JQ012630 JQ012630 JQ012573	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012716 JQ012716 JQ012705 JQ012705 JQ012704 JQ012722 MG958258 JQ012696 JQ012688		AP009144 AP009145 EU552786	EU53230/ EU532613 MG958173 MG958172 MG958170 JQ012351 JQ012347 JQ012347 JQ012342 JQ012348 JQ012348 JQ012349 JQ012349 JQ012349
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides robustus* Amazonsprattus scintilla Anchoa cayorum Anchoa colonensis Anchoa colonensis Anchoa colonensis Anchoa delicatissima Anchoa filifera Anchoa ligfera Anchoa lamprotaenia Anchoa lyolepis Anchoa mitchilli*	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012538 JQ012553 JQ012559 JQ012559 JQ012550 JQ012557 JQ012557 JQ012542 MG958407 JQ012630 JQ012573 JQ01253	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012716 JQ012716 JQ012705 JQ012704 JQ012722 MG958258 JQ012696 JQ012688 MG958257	MG958141	AP009144 AP009145 EU552786 JQ012462	EU53250/ EU552613 MG958173 MG958172 MG958170 JQ012351 JQ012375 JQ012375 JQ012383 JQ012342 JQ012348 JQ012387 JQ012379 JQ012379 JQ012344 MG958186
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus * Spratelloides gracilis * Spratelloides gracilis * Amchoa cayorum Anchoa chamensis Anchoa chamensis Anchoa cubana Anchoa delicatissima Anchoa delicatissima Anchoa filifera Anchoa lififera Anchoa lamprotaenia Anchoa lyolepis Anchoa mundeoloides	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012553 JQ012559 JQ012559 JQ012557 JQ012557 JQ012542 MG958407 JQ012630 JQ012573 JQ012553 JQ012553 JQ012553	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012718 JQ012716 JQ012705 JQ012704 JQ012704 JQ012722 MG958258 JQ012688 MG958257 JQ012715	MG958141	AP009144 AP009145 EU552786	EU552601 EU552613 MG958173 MG958172 MG958170 JQ012351 JQ012347 JQ012347 JQ012342 JQ012342 JQ012342 JQ012343 JQ012347 JQ012379 JQ012344 MG958186 JQ012419
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides gracilis* Amchoa cayorum Anchoa chamensis Anchoa colonensis Anchoa cubana Anchoa delicatissima Anchoa delicatissima Anchoa filifera Anchoa lepsetus Anchoa lamprotaenia Anchoa lyolepis Anchoa mitchilli*	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012553 JQ012553 JQ012559 JQ012550 JQ012550 JQ012557 JQ012542 MG958407 JQ012630 JQ012573 JQ012575	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012716 JQ012705 JQ012705 JQ012705 JQ012704 JQ012722 MG958258 JQ012696 JQ012688 MG958257 JQ012690	MG958141	AP009144 AP009145 EU552786 JQ012462	EU53236/ EU552613 MG958173 MG958172 MG958170 JQ012351 JQ012347 JQ012347 JQ012347 JQ012348 JQ012348 JQ012348 JQ012348 JQ012344 MG958186 JQ012419 JQ012373
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides robustus* Amazonsprattus scintilla Anchoa cayorum Anchoa colonensis Anchoa colonensis Anchoa colonensis Anchoa delicatissima Anchoa delicatissima Anchoa filifera Anchoa lamprotaenia Anchoa lamprotaenia Anchoa mitchilli* Anchoa mundeoloides Anchoa nasus Anchoa nasus	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012538 JQ012559 JQ012559 JQ012550 JQ012557 JQ012557 JQ012542 MG958407 JQ012630 JQ012573 JQ012553 JQ012575 JQ012570	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012716 JQ012705 JQ012705 JQ012704 JQ012722 MG958258 JQ012696 JQ012688 MG958257 JQ012715 JQ012690 JQ012690 JQ012690	MG958141	AP009144 AP009145 EU552786 JQ012462	EU55260 EU552613 MG958173 MG958172 JQ012351 JQ012351 JQ012347 JQ012343 JQ012348 JQ012348 JQ012348 JQ012348 JQ012379 JQ012379 JQ012379 JQ012379 JQ012379
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus * Spratelloides gracilis * Spratelloides gracilis * Amcaonsprattus scintilla Anchoa cayorum Anchoa chamensis Anchoa chamensis Anchoa delicatissima Anchoa delicatissima Anchoa lilifera Anchoa lilifera Anchoa lilifera Anchoa lumprotaenia Anchoa lyolepis Anchoa mundeoloides Anchoa nundeoloides Anchoa nasus Anchoa paramensis	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012553 JQ012559 JQ012559 JQ012559 JQ012557 JQ012557 JQ012542 MG958407 JQ012630 JQ012573 JQ012553 JQ012553 JQ012555 JQ012575 JQ012575 JQ012570	DQ912140 MG958241 DQ912165.1 MG958242 JQ012700 JQ012700 JQ012705 JQ012705 JQ012705 JQ012704 JQ012702 MG958258 JQ012688 MG958257 JQ012688 MG958257 JQ012715 JQ012715 JQ012702	MG958141	AP009144 AP009145 EU552786 JQ012462	EU53236/ EU552613 MG958173 MG958172 MG958170 JQ012351 JQ012347 JQ012347 JQ012342 JQ012342 JQ012342 JQ012342 JQ012379 JQ012379 JQ012373 JQ012372
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides gracilis* Amchoa cayorum Anchoa chamensis Anchoa colonensis Anchoa cubana Anchoa delicatissima Anchoa delicatissima Anchoa filifera Anchoa hepsetus Anchoa lamprotaenia Anchoa lyolepis Anchoa mutchilli* Anchoa masus Anchoa panamensis Anchoa parva	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012555 JQ012550 JQ012550 JQ012550 JQ012550 JQ012557 JQ012542 MG958407 JQ012573 JQ012573 JQ012575 JQ012575 JQ012576 JQ012576	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012716 JQ012705 JQ012705 JQ012705 JQ012704 JQ012702 JQ012688 MG958257 JQ012690 JQ012715 JQ012690 JQ012712 JQ012702	MG958141	AP009144 AP009145 EU552786 JQ012462	EU53236/ EU552613 MG958173 MG958172 MG958170 JQ012351 JQ012347 JQ012347 JQ012347 JQ012348 JQ012348 JQ012348 JQ012379 JQ012344 MG958186 JQ012419 JQ012373 JQ0123292 JQ012347
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Amazonsprattus scintilla Anchoa cayorum Anchoa cayorum Anchoa colonensis Anchoa colonensis Anchoa delicatissima Anchoa delicatissima Anchoa delicatissima Anchoa filifera Anchoa hepsetus Anchoa Inaprotaenia Anchoa loylepis Anchoa mitchilli* Anchoa nasus Anchoa parva Anchoa parva Anchoa scofieldi	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012538 JQ012559 JQ012559 JQ012550 JQ012557 JQ012557 JQ012577 JQ012573 JQ012573 JQ012573 JQ012575 JQ012576 JQ012576 JQ012578 JQ012578	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012716 JQ012705 JQ012704 JQ012704 JQ012704 JQ012704 JQ012696 JQ012688 MG958257 JQ012696 JQ012696 JQ012690 JQ012712 JQ012712 JQ012702 JQ012712	MG958141	AP009144 AP009145 EU552786	EU552613 MG958173 MG958173 JQ012351 JQ012347 JQ012347 JQ012348 JQ012348 JQ012348 JQ012348 JQ012348 JQ012348 JQ012348 JQ012379 JQ012379 JQ012379 JQ012379 JQ012379 JQ012377 JQ012379
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides gracilis* Amcaonsprattus scintilla Anchoa cayorum Anchoa chamensis Anchoa chamensis Anchoa clonensis Anchoa delicatissima Anchoa delicatissima Anchoa filifera Anchoa lififera Anchoa lififera Anchoa lamprotaenia Anchoa lyolepis Anchoa mundeoloides Anchoa nasus Anchoa panamensis Anchoa parva Anchoa scofieldi Anchoa spinifer	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012553 JQ012553 JQ012559 JQ012559 JQ012557 JQ012557 JQ012542 MG958407 JQ012630 JQ012533 JQ012553 JQ012555 JQ012575 JQ012558 JQ012558 JQ012558 JQ012551 KJ158140	DQ912140 MG958241 DQ912165.1 MG958242 JQ012700 JQ012700 JQ012718 JQ012705 JQ012705 JQ012704 JQ012702 MG958258 JQ012688 MG958257 JQ012689 JQ012690 JQ012715 JQ012702 JQ012702 JQ012702 JQ012701 KJ158104	MG958141	AP009144 AP009145 EU552786	EU53236/ EU552613 MG958173 MG958172 MG958170 JQ012351 JQ012347 JQ012347 JQ012342 JQ012342 JQ012342 JQ012343 JQ012343 JQ012379 JQ012379 JQ012373 JQ012373 JQ012377 JQ012349 KJ158085
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides gracilis* Amcaonsprattus scintilla Anchoa cayorum Anchoa chamensis Anchoa colonensis Anchoa cubana Anchoa delicatissima Anchoa delicatissima Anchoa filifera Anchoa lamprotaenia Anchoa lapprotaenia Anchoa lapprotaenia Anchoa mutchilli* Anchoa mutchilli* Anchoa masus Anchoa panamensis Anchoa parva Anchoa sofieldi Anchoa sofieldi	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012555 JQ012550 JQ012550 JQ012550 JQ012550 JQ012557 JQ012542 MG958407 JQ012533 JQ012573 JQ012575 JQ012575 JQ012570 JQ012577 JQ012571 KJ158140 JQ012568	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012718 JQ012705 JQ012705 JQ012705 JQ012705 JQ012702 JQ012688 MG958257 JQ012696 JQ012715 JQ012715 JQ012702 JQ012712 JQ012712	MG958141	AP009144 AP009145 EU552786	EU53236/ EU532613 MG958173 MG958172 MG958170 JQ012351 JQ012347 JQ012347 JQ012343 JQ012348 JQ012348 JQ012348 JQ012348 JQ012349 JQ012344 MG958186 JQ012373 JQ012373 JQ012377 JQ012349 JQ012349 JQ012349
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus * Spratelloides gracilis * Amazonsprattus scintilla Anchoa cayorum Anchoa cayorum Anchoa colonensis Anchoa colonensis Anchoa delicatissima Anchoa delicatissima Anchoa delicatissima Anchoa filifera Anchoa hepsetus Anchoa hopepis Anchoa nitchilli * Anchoa nitchilli * Anchoa panva Anchoa parva Anchoa scofieldi Anchoa spinifer Anchoa walkeri Anchoa walkeri	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012538 JQ012553 JQ012559 JQ012550 JQ012550 JQ012557 JQ012557 JQ012573 JQ012573 JQ012573 JQ012573 JQ012575 JQ012570 JQ012576 JQ012571 KJ158140 JQ012568 KJ158142	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012716 JQ012705 JQ012705 JQ012704 JQ012705 JQ012704 JQ012702 MG958258 JQ012696 JQ012688 MG958257 JQ012715 JQ012702 JQ012712 JQ012702 JQ012711 KJ158104 JQ012713	MG958141	AP009144 AP009145 EU552786	EU53236/ EU552613 MG958173 MG958172 MG958170 JQ012351 JQ012347 JQ012347 JQ012348 JQ012348 JQ012348 JQ012348 JQ012377 JQ012377 JQ012377 JQ012377 JQ012377 JQ012377 JQ012377 JQ012377 JQ012377 JQ012379 JQ012377 JQ012379 JQ012377 JQ012392 JQ012377
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides gracilis* Amchoa cayorum Anchoa chamensis Anchoa chamensis Anchoa clonensis Anchoa clonensis Anchoa delicatissima Anchoa filifera Anchoa filifera Anchoa filifera Anchoa litheria Anchoa mundeoloides Anchoa mundeoloides Anchoa panamensis Anchoa panamensis Anchoa panifer Anchoa scofieldi Anchoa scofieldi Anchoa aulkeri Anchoa aulkeri	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012553 JQ012553 JQ012559 JQ012557 JQ012557 JQ012577 JQ012537 JQ012533 JQ012533 JQ012553 JQ012555 JQ012575 JQ012555 JQ012575 JQ012558 JQ012558 JQ012558 JQ012558 JQ012558 JQ012558 JQ012558 JQ012558 JQ012558 JQ012558 JQ012558 JQ012558 JQ012557 JQ012558 JQ012558 JQ012558 JQ012557 JQ012558 JQ012558 JQ012557 JQ012558 JQ012558 JQ012557 JQ012558 JQ012557 JQ012553 JQ012557 JQ012557 JQ012557 JQ012557 JQ012557 JQ012557 JQ012557 JQ012557 JQ012557 JQ012557 JQ012557 JQ012557 JQ012557 JQ012553 JQ012553 JQ012553 JQ012553 JQ012553 JQ012553 JQ012553 JQ012553 JQ012553 JQ012553 JQ012553 JQ012553 JQ012555 JQ012553 JQ012553 JQ012555 JQ012555 JQ012555 JQ012555 JQ012555 JQ012555 JQ012555 JQ012555 JQ012555 JQ012555 JQ012555 JQ012557 JQ012558 JQ012557 JQ012558 JQ012557 JQ012558 JQ012558 JQ012557 JQ012558 JQ012557 JQ012558 JQ012557 JQ012556 JQ012557 JQ012556 JQ02556 JQ012557 JQ01257 JQ012	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012718 JQ012705 JQ012705 JQ012704 JQ012704 JQ012702 JQ012688 MG958257 JQ012690 JQ012715 JQ012702 JQ012702 JQ012701 KJ158104 JQ012713 KJ158104	MG958141	AP009144 AP009145 EU552786	EU53236/ EU552613 MG958173 MG958172 MG958172 JQ012351 JQ012347 JQ012347 JQ012347 JQ012342 JQ012342 JQ012343 JQ012343 JQ012344 MG958186 JQ012419 JQ012373 JQ012377 JQ012349 KJ158087 JQ012369 KJ158087 JQ012369
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides gracilis* Amchoa cayorum Anchoa chamensis Anchoa colonensis Anchoa cubana Anchoa delicatissima Anchoa delicatissima Anchoa delicatissima Anchoa hepsetus Anchoa hepsetus Anchoa lamprotaenia Anchoa hepsetus Anchoa mutchilli* Anchoa mutchilli* Anchoa panamensis Anchoa parva Anchoa spinifer Anchoa spinifer Anchoa sulkeri Anchoa kalkeri Anchoa kalkeri Anchoa kalkeri	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ01253 JQ01255 JQ01255 JQ012559 JQ012559 JQ012559 JQ012559 JQ012557 JQ012542 MG958407 JQ012573 JQ012573 JQ012575 JQ012575 JQ012575 JQ012570 JQ012575 JQ012571 KJ158140 JQ012568 KJ158142 JQ012561	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012716 JQ012705 JQ012705 JQ012704 JQ012705 JQ012702 JQ012696 JQ012688 MG958257 JQ012690 JQ012712 JQ012712 JQ012712 JQ012712 JQ012712 JQ012713 KJ158104 JQ012713 KJ158106 JQ012709	MG958141	AP009144 AP009145 EU552786	EU53236/ EU532613 MG958173 MG958172 MG958172 JQ012351 JQ012347 JQ012347 JQ012347 JQ012348 JQ012348 JQ012348 JQ012348 MG958186 JQ012419 JQ012373 JQ012379 JQ012373 JQ012379 JQ012379 JQ012373 JQ012392 JQ012379 JQ012349 KJ158085 JQ012369 KJ158087 JQ012349
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus * Spratelloides gracilis * Spratelloides gracilis * Amazonsprattus scintilla Anchoa cayorum Anchoa cayorum Anchoa chamensis Anchoa cubana Anchoa delicatissima Anchoa dilifera Anchoa filifera Anchoa filifera Anchoa lamprotaenia Anchoa loolepis Anchoa mitchilli * Anchoa nasus Anchoa parva Anchoa sofieldi Anchoa spinifer Anchoa surinamensis Anchoa surinamensis	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012538 JQ012553 JQ012559 JQ012559 JQ012550 JQ012557 JQ012557 JQ012573 JQ012573 JQ012573 JQ012573 JQ012573 JQ012575 JQ012570 JQ012576 JQ012571 KJ158140 JQ012568 KJ158142 JQ012561 JQ012613	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012716 JQ012705 JQ012705 JQ012704 JQ012705 JQ012704 JQ012702 MG958258 JQ012696 JQ012688 MG958257 JQ012702 JQ012712 JQ012702 JQ012712 JQ012702 JQ012711 KJ158104 JQ012713 KJ158106 JQ012709 JQ012665	MG958141	AP009144 AP009145 EU552786	EU53236/ EU552613 MG958173 MG958173 JQ012351 JQ012347 JQ012347 JQ012348 JQ012348 JQ012348 JQ012348 JQ012379 JQ012379 JQ012379 JQ012377 JQ012379 JQ012377 JQ012392 JQ012372 JQ0
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides gracilis* Amcaonsprattus scintilla Anchoa cayorum Anchoa chamensis Anchoa chamensis Anchoa clonensis Anchoa delicatissima Anchoa delicatissima Anchoa filifera Anchoa lififera Anchoa lififera Anchoa lififera Anchoa nundeoloides Anchoa mundeoloides Anchoa panamensis Anchoa panamensis Anchoa scofieldi Anchoa scofieldi Anchoa akleri Anchoa akleri Anchoa akleri Anchoa sulteri	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012553 JQ012553 JQ012559 JQ012557 JQ012557 JQ012570 JQ012573 JQ012573 JQ012573 JQ012573 JQ012553 JQ012575 JQ012575 JQ012575 JQ012575 JQ012575 JQ012575 JQ012578 JQ01258 JQ012571 KJ158140 JQ012568 KJ158142 JQ012561 JQ012561 JQ012561 JQ012561 JQ012598	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012718 JQ012705 JQ012705 JQ012704 JQ012704 JQ012705 JQ012704 JQ012688 MG958257 JQ012690 JQ012715 JQ012702 JQ012702 JQ012702 JQ012711 KJ158104 JQ012713 KJ158104 JQ012709 JQ012655 JQ012655 JQ012655	MG958141	AP009144 AP009145 EU552786	EU53236/ EU552613 MG958173 MG958172 MG958172 JQ012351 JQ012347 JQ012347 JQ012347 JQ012342 JQ012342 JQ012343 JQ012343 JQ012344 MG958186 JQ012419 JQ012373 JQ012377 JQ012377 JQ012349 KJ158085 JQ012369 KJ158087 JQ012394 JQ012394 JQ012334
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides gracilis* Amcaonsprattus scintilla Anchoa cayorum Anchoa chamensis Anchoa cubana Anchoa cubana Anchoa delicatissima Anchoa delicatissima Anchoa delicatissima Anchoa hepsetus Anchoa hepsetus Anchoa hepsetus Anchoa hepsetus Anchoa mundeoloides Anchoa mundeoloides Anchoa panamensis Anchoa parva Anchoa spinifer Anchoa spinifer Anchoa sulkeri Anchoa surinamensis Anchovia nacrolepidota Anchovia macrolepidota Anchovia surinamensis Anchovia surinamensis Anchovia lalleni Anchoviella alleni Anchoviella balboae	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012555 JQ012550 JQ012550 JQ012550 JQ012550 JQ012557 JQ012542 MG958407 JQ012630 JQ012573 JQ012575 JQ012575 JQ012570 JQ012575 JQ012570 JQ012575 JQ012571 KJ158140 JQ012568 KJ158142 JQ012561 JQ012598 JQ012598 JQ012598 JQ012598	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012718 JQ012705 JQ012705 JQ012704 JQ012705 JQ01266 JQ012688 MG958257 JQ012690 JQ012712 JQ012712 JQ012712 JQ012712 JQ012712 JQ012713 KJ158104 JQ012713 KJ158104 JQ012709 JQ012655 JQ012655 JQ01220	MG958141	AP009144 AP009145 EU552786	EU53236/ EU532613 MG958173 MG958173 JQ012351 JQ012347 JQ012347 JQ012347 JQ012348 JQ012348 JQ012348 JQ012348 JQ012349 JQ012349 JQ012349 JQ012373 JQ012349 JQ012349 JQ012349 KJ158085 JQ012349 KJ158085 JQ012349 KJ158085 JQ012349 KJ158085 JQ012349
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus * Spratelloides gracilis * Amazonsprattus scintilla Anchoa cayorum Anchoa chamensis Anchoa colonensis Anchoa chamensis Anchoa chamensis Anchoa dilicatissima Anchoa dilicatissima Anchoa filifera Anchoa Ingrotaenia Anchoa Ingrotaenia Anchoa Ingrotaenia Anchoa michilli * Anchoa michilli * Anchoa parva Anchoa parva Anchoa scofieldi Anchoa spinifer Anchoa sulkeri Anchoa sulkeri Anchoa surinamensis Anchoa surinamensis Anchoa sulkeri Anchoa sulkeri Anchoa surinamensis Anchoai macrolepidota Anchovie Ila balboae Anchoviella bevirostris	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012538 JQ012553 JQ012559 JQ012559 JQ012550 JQ012557 JQ012557 JQ012573 JQ012573 JQ012573 JQ012573 JQ012575 JQ012570 JQ012576 JQ012571 KJ158140 JQ012561 JQ012613 JQ012561 JQ012566 JQ012608	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012716 JQ012705 JQ012705 JQ012704 JQ012705 JQ012704 JQ012705 JQ012696 JQ012688 MG958257 JQ012690 JQ012712 JQ012702 JQ012711 KJ158104 JQ012713 KJ158106 JQ012709 JQ012665 JQ012655 JQ012655 JQ012720	MG958141	AP009144 AP009145 EU552786	EU53236/ HG958173 MG958173 MG958172 MG958170 JQ012351 JQ012347 JQ012347 JQ012342 JQ012348 JQ012348 JQ012379 JQ012344 MG958186 JQ012419 JQ012377 JQ012377 JQ012377 JQ012377 JQ012377 JQ012377 JQ012377 JQ012377 JQ012377 JQ012377 JQ012377 JQ012377 JQ012379 JQ012377 JQ012372 JQ012377 JQ012372 JQ012377 JQ012372 JQ012377 JQ012372 JQ012377 JQ012372 JQ012377 JQ012372 JQ012377 JQ012372 JQ012377 JQ012372 JQ012377 JQ012372 JQ012377 JQ012372 JQ012377 JQ012372 JQ012377 JQ012372 JQ012377 JQ012372 JQ012377 JQ012372 JQ012377 JQ012371 JQ012371 JQ012371 JQ012412
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides gracilis* Amchoa cayorum Anchoa chamensis Anchoa chamensis Anchoa clonensis Anchoa clonensis Anchoa delicatissima Anchoa delicatissima Anchoa filifera Anchoa filifera Anchoa lamprotaenia Anchoa lopsetus Anchoa nundeoloides Anchoa mundeoloides Anchoa panamensis Anchoa panamensis Anchoa scofieldi Anchoa scofieldi Anchoa sulteri Anchoa sulteri Anchovia surinamensis Anchoviella baebioae Anchoviella baebioae	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012553 JQ012553 JQ012550 JQ012550 JQ012550 JQ012550 JQ012573 JQ012533 JQ012533 JQ012553 JQ012555 JQ012575 JQ012555 JQ012558 JQ012558 JQ012568 KJ158142 JQ012568 KJ158142 JQ012568 KJ158142 JQ012561 JQ012561 JQ012561 JQ012561 JQ012561 JQ012561 JQ012563	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012716 JQ012705 JQ012705 JQ012705 JQ012705 JQ012702 JQ012702 JQ012665 JQ012711 KJ158104 JQ012713 KJ158104 JQ012713 KJ158104 JQ012709 JQ012655 JQ012655 JQ012655 JQ012655 JQ012686	MG958141	AP009144 AP009145 EU552786	EU53236/ EU552613 MG958173 MG958172 MG958172 JQ012351 JQ012347 JQ012347 JQ012347 JQ012342 JQ012343 JQ012342 JQ012343 JQ012349 JQ012379 JQ012379 JQ012379 JQ012379 JQ012379 JQ012379 JQ012377 JQ012349 KJ158085 JQ012394 JQ012394 JQ012333 JQ012371 JQ012339
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides gracilis* Amcaonsprattus scintilla Anchoa cayorum Anchoa chamensis Anchoa cubana Anchoa cubana Anchoa delicatissima Anchoa delicatissima Anchoa delicatissima Anchoa filifera Anchoa hepsetus Anchoa lamprotaenia Anchoa lapprotaenia Anchoa hepsetus Anchoa nasus Anchoa mutchilli* Anchoa mutchilli* Anchoa panamensis Anchoa parva Anchoa sofieldi Anchoa sofieldi Anchovia surinamensis Anchovia macrolepidota Anchovia surinamensis Anchovia macrolepidota Anchoviella alleni Anchoviella balboae Anchoviella curristri	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012553 JQ012559 JQ012550 JQ012550 JQ012550 JQ012550 JQ012570 JQ012630 JQ012573 JQ012573 JQ012575 JQ012575 JQ012575 JQ012575 JQ012576 JQ012578 JQ012568 KJ158142 JQ012561 JQ012568 KJ158142 JQ012561 JQ012598 JQ012598 JQ012598 JQ012605 JQ012605 JQ012605	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012718 JQ012705 JQ012705 JQ012704 JQ012705 JQ01266 JQ012688 MG958257 JQ012690 JQ012712 JQ012702 JQ012712 JQ012702 JQ012703 KJ158106 JQ012709 JQ012655 JQ012200 JQ012655 JQ012200 JQ012655 JQ012200 JQ012655	MG958141	AP009144 AP009145 EU552786	EU55260 EU552613 MG958173 MG958172 JQ012351 JQ012351 JQ012347 JQ012342 JQ012348 JQ012348 JQ012348 JQ012348 JQ012348 JQ012349 JQ012377 JQ012349 KJ158087 JQ012394 JQ01239
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus * Spratelloides gracilis * Spratelloides gracilis * Amazonsprattus scintilla Anchoa cayorum Anchoa chamensis Anchoa chamensis Anchoa chamensis Anchoa dilicatissima Anchoa dilicatissima Anchoa filifera Anchoa lamprotaenia Anchoa loglepis Anchoa michilli * Anchoa michilli * Anchoa parva Anchoa parva Anchoa scofieldi Anchoa spinifer Anchoa sulkeri Anchoa sulkeri Anchoa sulieri Anchoa sulieri Anchoa sulieri Anchoa sulieri Anchoa sulieri Anchoa sulieri Anchoa sulieri Anchoa sulieri Anchoa sulieri Anchoa sulieri Anchoi aucrolepidota Anchoviella balboae Anchoviella bevirostris Anchoviella corrikeri Anchoviella corrikeri	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012553 JQ012553 JQ012559 JQ012559 JQ012557 JQ012557 JQ012573 JQ012573 JQ012573 JQ012573 JQ012575 JQ012575 JQ012575 JQ012575 JQ012571 KJ158140 JQ012568 KJ158142 JQ012561 JQ012561 JQ012561 JQ012561 JQ012561 JQ012563 JQ012566 JQ012608 JQ012608 JQ012608 JQ012605 JQ012608	DQ912140 MG958241 DQ912165.1 MG958242 JQ012700 JQ012700 JQ012716 JQ012705 JQ012705 JQ012704 JQ012702 MG958258 JQ012688 MG958257 JQ012715 JQ012715 JQ012715 JQ012715 JQ012711 KJ158104 JQ012702 JQ012711 KJ158106 JQ012655 JQ012655 JQ012655 JQ012655 JQ012655 JQ012655 JQ012655 JQ012655 JQ012655 JQ012655 JQ012659 JQ012679	MG958141	AP009144 AP009145 EU552786	EU53236/ EU552613 MG958173 MG958172 MG958170 JQ012351 JQ012347 JQ012347 JQ012342 JQ012342 JQ012348 JQ012344 MG958186 JQ012419 JQ012377 JQ012377 JQ012377 JQ012377 JQ012377 JQ012377 JQ012377 JQ012379 JQ012377 JQ012373 JQ012377 JQ012373 JQ012373 JQ012374 JQ012374 JQ012337 JQ012339 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides gracilis* Anchoa cayorum Anchoa chamensis Anchoa chamensis Anchoa clonensis Anchoa clonensis Anchoa delicatissima Anchoa delicatissima Anchoa filifera Anchoa filifera Anchoa lamprotaenia Anchoa lopsetus Anchoa nundeoloides Anchoa mundeoloides Anchoa panamensis Anchoa panamensis Anchoa scofieldi Anchoa scofieldi Anchoa sulteri Anchoa sulteri Anchoa sulteri Anchoa sulteri Anchoa sulteri Anchoa sulteri Anchoa sulteri Anchoa sulteri Anchoa sulteri Anchovia surinamensis Anchoviella bevirostris Anchoviella bervirostris Anchoviella carrikeri Anchoviella guianensis	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012553 JQ012553 JQ012550 JQ012550 JQ012550 JQ012557 JQ012542 MG958407 JQ012630 JQ012573 JQ012553 JQ012555 JQ012575 JQ012575 JQ012575 JQ012568 KJ158142 JQ012568 KJ158142 JQ012568 KJ158142 JQ012561 JQ012561 JQ012561 JQ012563 JQ012563 JQ012565 JQ012563 JQ012563 JQ012563 JQ012564 JQ012605 JQ012605 JQ012605	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012716 JQ012705 JQ012705 JQ012705 JQ012704 JQ012702 JQ012665 JQ012685 MG958257 JQ012715 JQ012715 JQ012712 JQ012713 KJ158104 JQ012713 KJ158104 JQ012713 KJ158104 JQ012705 JQ012655 JQ012655 JQ012655 JQ012655 JQ012659 JQ012659 JQ012659 JQ012657	MG958141	AP009144 AP009145 EU552786	EU53236/ EU552613 MG958173 MG958172 MG958172 JQ012351 JQ012347 JQ012347 JQ012347 JQ012342 JQ012342 JQ012343 JQ012343 JQ012344 MG958186 JQ012419 JQ012379 JQ012379 JQ012379 JQ012377 JQ012349 KJ158085 JQ012377 JQ012349 KJ158085 JQ012377 JQ012349 KJ158085 JQ012377 JQ012374 JQ012374 JQ012334 JQ012412 JQ012334 JQ012412 JQ012335
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides gracilis* Amcaonsprattus scintilla Anchoa cayorum Anchoa chamensis Anchoa cubana Anchoa cubana Anchoa delicatissima Anchoa delicatissima Anchoa delicatissima Anchoa hepsetus Anchoa hepsetus Anchoa hepsetus Anchoa hepsetus Anchoa nasus Anchoa mundeoloides Anchoa mundeoloides Anchoa panamensis Anchoa parva Anchoa spinifer Anchoa spinifer Anchovia surinamensis Anchovia surinamensis Anchovia surinamensis Anchovia lalleni Anchoviella alleni Anchoviella balboae Anchoviella carrikeri Anchoviella guianensis Anchoviella guianensis Anchoviella guianensis Anchoviella guianensis Anchoviella guianensis	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012553 JQ012559 JQ012559 JQ012559 JQ012550 JQ012557 JQ012542 MG958407 JQ012630 JQ012573 JQ012575 JQ012575 JQ012575 JQ012575 JQ012575 JQ012575 JQ012576 JQ012568 KJ158142 JQ012561 JQ012568 KJ158142 JQ012561 JQ012598 JQ012598 JQ012606 JQ012085	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012716 JQ012705 JQ012704 JQ012705 JQ01268 MG958257 JQ012688 MG958257 JQ012690 JQ012712 JQ012712 JQ012712 JQ012702 JQ012713 KJ158106 JQ012709 JQ012655 JQ012655 JQ012655 JQ012207 JQ012657 JQ012677	MG958141	AP009144 AP009145 EU552786	EU552613 MG958173 MG958172 MG958172 JQ012351 JQ012351 JQ012347 JQ012375 JQ012342 JQ012348 JQ012348 JQ012348 JQ012348 JQ012348 JQ012349 JQ012377 JQ012377 JQ012349 KJ158087 JQ012392 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012331 JQ012371 JQ012312 JQ012331 JQ012311 JQ012324 JQ012331 JQ012311 JQ012324 JQ012381 JQ012324 JQ012381
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides gracilis* Anchoa cayorum Anchoa chamensis Anchoa chamensis Anchoa chamensis Anchoa delicatissima Anchoa delicatissima Anchoa filifera Anchoa filifera Anchoa lyolepis Anchoa mitchill* Anchoa namudeoloides Anchoa pamensis Anchoa parmensis Anchoa parmensis Anchoa scofieldi Anchoa scofieldi Anchoa sulkeri Anchoa sulkeri Anchoa sulkeri Anchoa suliteri Anchoa suliteri Anchoa suliteri Anchoa suliteri Anchoa suliteri Anchoa suliteri Anchoi autinamensis Anchovia la leni Anchoviella balboae Anchoviella bevirostris Anchoviella filani Anchoviella guianensis Anchoviella guianensis Anchoviella guianensis	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012553 JQ012553 JQ012559 JQ012559 JQ012557 JQ012557 JQ012542 MG958407 JQ012533 JQ012573 JQ012553 JQ012553 JQ012555 JQ012571 KJ158140 JQ012568 KJ158142 JQ012561 JQ012561 JQ012561 JQ012563 JQ012563 JQ012563 JQ012563 JQ012564 JQ012608 JQ012608 JQ012608 JQ012608 JQ012608 JQ012608 JQ012585 KJ158138	DQ912140 MG958241 DQ912165.1 MG958242 JQ012700 JQ012700 JQ012716 JQ012705 JQ012705 JQ012704 JQ012702 MG958258 JQ012688 MG958257 JQ012715 JQ012715 JQ012715 JQ012702 JQ012711 KJ158104 JQ012703 JQ012703 JQ012655 JQ012655 JQ012655 JQ012655 JQ012659 JQ012677 JQ012673 JQ012673 JQ012673	MG958141	AP009144 AP009145 EU552786	EU53236/ HG958173 MG958172 MG958173 JQ012351 JQ012347 JQ012347 JQ012342 JQ012348 JQ012348 JQ012348 JQ012344 MG958186 JQ012419 JQ012377 JQ012377 JQ012349 KJ158087 JQ012394 JQ012374 JQ012373 JQ012377 JQ012349 KJ158087 JQ012394 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371 JQ012341 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371 JQ012371 JQ012341 JQ012341 JQ012341 JQ012341 JQ012341 JQ012341 JQ012341 JQ012341 JQ012341 JQ012342 JQ012342 JQ012345 JQ012345 JQ012345 JQ012347 JQ012347 JQ012347 JQ012347 JQ012347 JQ012347 JQ012347 JQ012347 JQ012347 JQ012347 JQ012347 JQ012347 JQ012347 JQ012347 JQ012347 JQ012347 JQ012347 JQ012347 JQ012347 JQ012349 KJ158087 JQ012340 KJ158087 JQ012400 KJ158087 JQ012400 KJ158087 JQ01240 KJ158087 JQ012400 KJ158087 KJ158087 KJ15808
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides gracilis* Amchoa cayorum Anchoa chamensis Anchoa cubana Anchoa clubana Anchoa delicatissima Anchoa delicatissima Anchoa delicatissima Anchoa filifera Anchoa lamprotaenia Anchoa lithera Anchoa lamprotaenia Anchoa lopsetus Anchoa nundeoloides Anchoa mundeoloides Anchoa panamensis Anchoa panamensis Anchoa scofieldi Anchoa scofieldi Anchoa sulteri Anchoa sulteri Anchoa sulteri Anchoa sulteri Anchoa sulteri Anchoa sulteri Anchovia surinamensis Anchoviella bevirostris Anchoviella beliboae Anchoviella carrikeri Anchoviella guianensis cf. Anchoviella guianensis Anchoviella guianensis	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012553 JQ012553 JQ012550 JQ012550 JQ012550 JQ012570 JQ012630 JQ012573 JQ012573 JQ012575 JQ012575 JQ012570 JQ012575 JQ012570 JQ012565 JQ012571 K1158140 JQ012568 K1158142 JQ012613 JQ012561 JQ012565 JQ012565 JQ012565 JQ012565 JQ012605 JQ012605 JQ012605 JQ012605 JQ012548 JQ012605 JQ012548 JQ012605 JQ012548 JQ012596	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012716 JQ012705 JQ012705 JQ012704 JQ012705 JQ012704 JQ012702 JQ01266 JQ012685 JQ012702 JQ012711 KJ158104 JQ012713 KJ158104 JQ012703 JQ012655 JQ012655 JQ012655 JQ012655 JQ012657 JQ012657 JQ012657 JQ012657 JQ012657 JQ012634	MG958141	AP009144 AP009145 EU552786	EU53236/ EU552613 MG958173 MG958173 JQ012351 JQ012347 JQ012347 JQ012347 JQ012342 JQ012348 JQ012348 JQ012348 JQ012349 JQ012349 JQ012379 JQ012379 JQ012379 JQ012379 JQ012379 JQ012379 JQ012377 JQ012349 KJ158085 JQ012394 JQ012394 JQ012394 JQ012394 JQ012331 JQ012311 JQ012324 JQ012324 JQ012324 JQ012324 JQ012324 JQ012324 JQ012324 JQ012324 JQ012324 JQ012324 JQ012324
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides gracilis* Amcaonsprattus scintilla Anchoa cayorum Anchoa chamensis Anchoa cubana Anchoa cubana Anchoa delicatissima Anchoa delicatissima Anchoa delicatissima Anchoa hepsetus Anchoa hepsetus Anchoa hepsetus Anchoa hepsetus Anchoa hepsetus Anchoa numdeoloides Anchoa mundeoloides Anchoa panamensis Anchoa parva Anchoa spinifer Anchoa spinifer Anchoa spinifer Anchoa surinamensis Anchovia surinamensis Anchovia lalleni Anchoviella alleni Anchoviella balboae Anchoviella balboae Anchoviella guianensis Anchoviella guianensis Anchoviella guianensis Anchoviella guianensis Anchoviella guianensis Anchoviella guianensis Anchoviella lepidentostole Anchoviella lepidentostole Anchoviella manamensis	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ01253 JQ01255 JQ01255 JQ012550 JQ012550 JQ012550 JQ012550 JQ012570 JQ012573 JQ012573 JQ012573 JQ012575 JQ012575 JQ012575 JQ012570 JQ012575 JQ012575 JQ012575 JQ012575 JQ012568 KJ158142 JQ01266 JQ01268 KJ158142 JQ01266 JQ01268 KJ158138 JQ012606 JQ012585 KJ158138 JQ012596 KJ158138 JQ012596 KJ158139	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012716 JQ012705 JQ012705 JQ012704 JQ012705 JQ01266 JQ012688 MG958257 JQ012690 JQ012712 JQ012712 JQ012712 JQ012702 JQ012712 JQ012702 JQ012713 KJ158104 JQ012709 JQ012655 JQ012655 JQ012655 JQ012655 JQ012657 JQ012657 JQ012677 JQ012677 JQ012637 JQ012634 KJ158103	MG958141	AP009144 AP009145 EU552786	EU53236/ EU552613 MG958173 MG958172 MG958172 JQ012351 JQ012347 JQ012347 JQ012348 JQ012348 JQ012348 JQ012348 JQ012348 JQ012349 JQ012344 MG958186 JQ012349 JQ012377 JQ012349 KJ158087 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012331 JQ012317 JQ012333 JQ012317 JQ012334 JQ012344 JQ012334 JQ012344 JQ012334 JQ012344 JQ0123
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides gracilis* Amchoa cayorum Anchoa chamensis Anchoa chamensis Anchoa chamensis Anchoa clonensis Anchoa delicatissima Anchoa delicatissima Anchoa filifera Anchoa lighera Anchoa lighers Anchoa inchilli* Anchoa nitchilli* Anchoa nitchilli* Anchoa parumensis Anchoa panamensis Anchoa scofieldi Anchoa scofieldi Anchoa sulkeri Anchoa sulkeri Anchoa sulkeri Anchoi autinamensis Anchoviella belboae Anchoviella bervirostris Anchoviella filifera Anchoviella spinifer Anchoviella filifera Anchoviella spinifer Anchoviella filifera Anchoviella	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ012538 JQ012553 JQ012553 JQ012559 JQ012559 JQ012557 JQ012557 JQ012573 JQ012573 JQ012573 JQ012573 JQ012575 JQ012575 JQ012575 JQ012575 JQ012575 JQ012571 KJ158140 JQ012568 JQ012561 JQ012561 JQ012561 JQ012561 JQ012561 JQ012563 JQ012563 JQ012563 JQ012564 JQ012608 JQ012608 JQ012608 JQ012608 JQ012608 JQ012608 JQ012585 KJ158138 JQ012596 KJ158138 JQ012596 KJ158139	DQ912140 MG958241 DQ912165.1 MG958242 JQ012700 JQ012700 JQ012705 JQ012705 JQ012705 JQ012704 JQ012704 JQ012702 JQ012688 MG958257 JQ012688 MG958257 JQ012715 JQ012715 JQ012702 JQ012711 KJ158104 JQ012703 JQ012655 JQ012655 JQ012655 JQ012655 JQ012657 JQ012673 KJ158102 JQ012634 KJ158103	MG958141	AP009144 AP009145 EU552786	EU53236/ EU552613 MG958173 MG958172 MG958170 JQ012351 JQ012347 JQ012347 JQ012342 JQ012342 JQ012348 JQ012344 MG958186 JQ012419 JQ012377 JQ012344 MG958186 JQ012419 JQ012377 JQ012349 KJ158087 JQ012374 JQ012337 JQ012331 JQ012312 JQ012333 JQ012314 JQ012324 JQ012333 JQ012341 JQ012342 JQ012333 JQ012341 JQ012342 JQ012339 JQ012341 JQ012341 JQ012342 JQ012339 JQ012341 JQ012341 JQ012342 JQ012339 JQ012341 JQ012342 JQ012341 JQ012342 JQ012343 JQ012414 JQ012400 KJ158083 JQ012414 KJ158084 JQ012414
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides gracilis* Amchoa cayorum Anchoa chamensis Anchoa cubana Anchoa clubana Anchoa delicatissima Anchoa delicatissima Anchoa delicatissima Anchoa filifera Anchoa filifera Anchoa lamprotaenia Anchoa lopsetus Anchoa lamprotaenia Anchoa yolepis Anchoa mundeoloides Anchoa mundeoloides Anchoa panamensis Anchoa panamensis Anchoa sofieldi Anchoa sofieldi Anchoa sofieldi Anchovia Surinamensis Anchovia Surinamensis Anchovia Surinamensis Anchoviella delongata Anchoviella delongata Anchoviella guianensis ef. Anchoviella guianensis ef. Anchoviella guianensis Anchoviella guianensis	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ01253 JQ012553 JQ012553 JQ012550 JQ012550 JQ012550 JQ012557 JQ012553 JQ012630 JQ012573 JQ012553 JQ012565 JQ012570 JQ012570 JQ012565 JQ012570 JQ012568 KJ158140 JQ012568 KJ158142 JQ012561 JQ012561 JQ012563 JQ012564 JQ012563 JQ012565 JQ012564 JQ012565 JQ012588 JQ012566 JQ012588 JQ012566 JQ012588 JQ012566 JQ012588 JQ012596 KJ158138 JQ012596 KJ158138 JQ012596 KJ158138 JQ012596 KJ158138 JQ012596 KJ158138 JQ012596	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012716 JQ012705 JQ012705 JQ012705 JQ012704 JQ012705 JQ012696 JQ012690 JQ012715 JQ012690 JQ012712 JQ012701 JQ012713 KJ158104 JQ012713 KJ158104 JQ012707 JQ012655 JQ012655 JQ012655 JQ012655 JQ012657 JQ012657 JQ012657 JQ012657 JQ012657 JQ012657 JQ012657 JQ012657 JQ012657 JQ012657 JQ012634 KJ158102 JQ012634 KJ158103 JQ012677	MG958141	AP009144 AP009145 EU552786	EU53236/ EU552613 MG958173 MG958172 MG958173 JQ012351 JQ012347 JQ012347 JQ012347 JQ012342 JQ012343 JQ012342 JQ012343 JQ012349 JQ012349 JQ012379 JQ012349 KJ158085 JQ012349 KJ158085 JQ012349 KJ158085 JQ012349 KJ158085 JQ012341 JQ012324 JQ012339 JQ012341 JQ012324 JQ012341 JQ012342 JQ012341 JQ012342 JQ012341 JQ012342 JQ012341 JQ012342 JQ0
Dussumieriidae Dussumieriidae Dussumieriidae Dussumieriidae Engraulidae	Etrumeus whiteheadi Jenkinsia lamprotaenia Spratelloides delicatulus* Spratelloides gracilis* Spratelloides gracilis* Amazonsprattus scintilla Anchoa cayorum Anchoa cayorum Anchoa cubana Anchoa dulana Anchoa dulana Anchoa dilifera Anchoa filifera Anchoa filifera Anchoa filifera Anchoa hepsetus Anchoa hopepis Anchoa mitchilli* Anchoa namenois Anchoa parva Anchoa parva Anchoa scofieldi Anchoa surinamensis Anchoa surina Anchoa suria Anchoa suria Anchoa suria Anchoa suria Anchoa suria Anchoi a suria Anchoi a lupeoides Anchovie alupeoides Anchoviella dalleni Anchoviella balboae Anchoviella fui Anchoviella guianensis Anchoviella guianensis Anchoviella guianensis Anchoviella guianensis Anchoviella guianensis Anchoviella fielientostole Anchoviella lensis Anchoviella panesis Anchoviella panesis Anchoviella fielientostole Anchoviella panesis Anchoviella panesis Anchoviella panesis Anchoviella guianensis Anchoviella panesis Anchoviella panesis	MNHN-IC 2014-2905 JFBM 47427 ABTC 71316 JFBM 47609 JFBM 47359	MG958312 MG958330 MG958311 MG958342 MG958343	DQ912107 MG958400 MG958399 JQ01253 JQ01255 JQ012559 JQ012559 JQ012559 JQ012550 JQ012570 JQ012573 JQ012573 JQ012573 JQ012575 JQ012575 JQ012575 JQ012575 JQ012575 JQ012575 JQ012576 JQ012575 JQ012576 JQ012568 KJ158142 JQ012561 JQ012588 KJ158142 JQ01266 JQ01268 KJ158138 JQ012606 JQ012585 KJ158138 JQ012585 KJ158138 JQ012598 JQ012585 KJ158138 JQ012589 JQ012585	DQ912140 MG958241 DQ912165.1 MG958242 JQ012667 JQ012700 JQ012716 JQ012705 JQ012704 JQ012705 JQ012686 JQ012688 MG958257 JQ012690 JQ012712 JQ012712 JQ012712 JQ012702 JQ012712 JQ012702 JQ012713 KJ158106 JQ012709 JQ012655 JQ012655 JQ012655 JQ012655 JQ012655 JQ012657 JQ012657 JQ012677 JQ012637 KJ158102 JQ012677 JQ012677 JQ012674 KJ158103 JQ012677 JQ012674	MG958141	AP009144 AP009145 EU552786	EU552613 MG958173 MG958173 JQ012351 JQ012347 JQ012351 JQ012347 JQ012348 JQ012348 JQ012348 JQ012348 JQ012349 JQ012379 JQ012374 JQ012379 JQ012373 JQ012377 JQ012344 MG958186 JQ012419 JQ012377 JQ012349 KJ158087 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012394 JQ012371 JQ012317 JQ012317 JQ012317 JQ012324 JQ012339 JQ012331 JQ012334

Engraulidae	Cetengraulis edentulus			JQ012577	JQ012692			JQ012385
Engraulidae	Ceiling hundhum athun			JQ012379	JQ012094			JQ012390
Engraulidae	Coilia dussumiari	NTM A01706	MC059251	DQ912124 MC058445	DQ912139 MC058247			L0094410 MC058170
Engraulidae	Coilia lindmani	NIM A01790	MG/30351	110/30443	MG/30247			AP011558
Engraulidae	Coilia mystus			DO912126	DO912162			EU694407
Engraulidae	Coilia nasus			DO912123	DO912157			AP009135
Engraulidae	Coilia reynaldi							AP011559
Engraulidae	Encrasicholina heteroloba	JFBM 47433, 48224	MG958335	MG958405	MG958256			MG958168
Engraulidae	Encrasicholina punctifer	JFBM 47659	MG958328	MG958395				MG958174
Engraulidae	Engraulis albidus		MG958348	MG958409	MG958261			MG958167
Engraulidae	Engraulis anchoita							JQ012416
Engraulidae	Engraulis australis	ABTC 82219	MG958345	MG958410				MG958188
Engraulidae	Engraulis encrasicolus*	MNHN-IC 2017-0492	MG958346	MG958411	MG958262	MG958143	JQ012464	MG958187
Engraulidae	Engraulis eurystole			DQ912121	DQ912155			JQ012427
Engraulidae	Engraulis japonicus*	ASIZP 0910621; IEBM 48201	MG958347	MG958408	MG958260	MG958142	AB040676	MG958166
Engraulidae	Engraulis mordax*	JFBM 47413	MG958344	MG958406	MG958259		JQ012455	MG958185
Engraulidae	Engraulis ringens			JQ012533	JQ012731			JQ012426
Engraulidae	Jurengraulis juruensis			JQ012610	JQ012732			JQ012329
Engraulidae	Lycengraulis batesii			JQ012619	JQ012643			JQ012411
Engraulidae	Lycengraulis grossidens			JQ012622	JQ012639			JQ012396
Engraulidae	Lycengraulis poeyi			JQ012621	JQ012642			JQ012370
Engraulidae	Pterengraulis atherinoides			JQ012616	JQ012636			JQ012323
Engraulidae	Setipinna crocodilus			JQ012534	JQ012683			JQ012420
Engraulidae	Setipinna melanochir*	FLMNH 2008-0492	MG958314	MG958388	MG958246		AP011565	MG958227
Engraulidae	Setipinna taty*	JBM 48665	MG958313	MG958387	MG958244		JQ012470	MG958183
Engraulidae	Setipinna tenuifilis*	NTM A01240		MG958386	MG958245		JQ012503	MG958184
Engraulidae	Stolephorus brachycephalus	JFBM 48023	MG958338	MG958446				MG958178
Engraulidae	Stolephorus carpentariae	NTM A03639	MG958339	MG958451	MG958253			
Engraulidae	Stolephorus chinensis	JFBM 48656	MG958310	MG958452				MG958228
Engraulidae	Stolephorus chinensis Genbank							AP011566
Engraulidae	Stolephorus commersionnii	IED) (45464	140050335	140050304	MCOSOSSI	1400201/0		KX/53639
Engraulidae	Stolephorus inalcus*	JFBM 47404	MG958337	MG958396 MC058414	MG958254	MG958160		MG958170 MC058222
Engraulidae	Stolephorus insutaris	JFDM 47304, 47025	MG958550	MG950414 MC058442				MG956255 MC059177
Engraulidae	Stolephorus neisoni	JF DIVI 48003	MG956540	IO012526	10012671			MG950177
Engraulidae	Stolephorus sp. Stolephorus waitei	IFBM 47459	MC958341	MG958442	MG958255			MG958175
Engraulidae	Stolephorus waitei Genbank	51 BNI 47457	110750541	110/30112	110/30235			AP011567
Engraulidae	Thryssa haelama	NTM A01284		MG958378	MH028407			/1101150/
Engraulidae	Thryssa brevicauda	NTM A01244						MG958181
Engraulidae	Thryssa chefuensis	JFBM 47443	MG958350	MG958384	MG958243			MG958230
Engraulidae	Thryssa dussumieri*	JFBM 48211	MG958352	MG958453	MG958248		JQ012468	JQ012363
Engraulidae	Thryssa hamiltonii*	JFBM 47458	MG958309	MG958439	MG958251	MG958162	MG958234	MG958231
Engraulidae	Thryssa kammalensis	JFBM 48657	MG958308	MG958383	MG958250			MG958232
Engraulidae	Thryssa mystax			JQ012537	JQ012680			JQ012366
Engraulidae	Thryssa scratchleyi	NTM A3688		MG958397				MG958182
Engraulidae	Thryssa setirostris	JFBM 47439		MG958444	MG958249			MG958222
Engraulidae	Thryssa spinidens*	JFBM 48784		MG958382	MG958252	MG958161		MG958180
Pristigasteridae	Ilisha africana							AP009140
Pristigasteridae	Ilisha amazonica			KJ158151	KJ158115			KJ158097
Pristigasteridae	Ilisha elongata*	ASIZP 0915694	MG958371	MG958437	MG958293		DQ912090	MG958200
Pristigasteridae	Ilisha megaloptera				KJ158099			KJ158079
Pristigasteridae	Ilisha melastoma	JFBM 47462	MG958370	MG958438				MG958199
Pristigasteridae	llisha sp. Thailand	JFBM 48782	MG958320	MG958447	MH028408			MG958225
Prinstigasteridae	Ouontognatnus mucronatus	IEDM 49659	MC059275	MCOF0200	MC059393			KJ158082
Pristigasteridae	Opisinopierus iardoore	JF BIVI 48038	MG958375	MG958390	MG958292			MG958198
Pristigasteridae	Pellona ditchela			DQ912102	5Q712155			AP011600
Pristigasteridae	Pellona flavininnis			DO912101	DO912134			FU552551
Pristigasteridae	Pellona harroIri			KJ158143	KJ158107			KJ158088
Pristigasteridae	Pristigaster cavana			KJ158150	KJ158114			KJ158096
Pristigasteridae	Pristigaster whiteheadi			KJ158144				KJ158089
Sundasalangidae	Sundasalanx mekongensis							AP006232

Table 3.2. Clupeoid trophic guilds (guild): detritivore = detr, zooplanktivore = zoop, terrestrial invertivore = terr, piscivore = pisc, crustacivore = crus, Macroalgivore = algi, molluscivore = moll, Phytoplanktivore = phyt). Habitat character states: freshwater (FW), marine (M), anadromous (A), and catadromous (C). Latitudinal extremes of each species' geographic range (Lat). Herbivory characters: continuous (C; score of 1.0 = diet entirely herbivorous) and binary (B; 0 = not herbivorous, 1 = herbivorous). Citations for diet data (Diet Citations).

Family	Species	Guild	Hah	Lat	Herbiv	ory	Diet Citations
T anniy	species	Guild	mab	Lat	С	В	Diet Chauons
Chirocentridae	Chirocentrus dorab	Pisc	Μ	35N-20S	0.00	0	Chacko 1949; Venkataraman 1960
Chirocentridae	Chirocentrus nudus		Μ	30N-30S		0	
Clupeidae	Alosa aestivalis	Zoop	А	41N-25N	0.00	0	Stone and Daborn 1987; Winkelman and Van Den Avyle 2002; Buchheister and Latour 2015
Clupeidae	Alosa agone		FW	47N-45N		0	Lucui 2010
Clupeidae	Alosa alabamae	Terr	А	44N-24N	0.07	0	Mickle et al. 2013
Clupeidae	Alosa algeriensis		А	41N-36N		0	
Clupeidae	Alosa alosa	Zoop	А	61N-20N	0.11	0	Correia et al. 2001; Maitland and Lyle 2005
Clupeidae	Alosa braschnikowi		S	48N-35N		0	
Clupeidae	Alosa caspia		Α	48N-37N		0	
Clupeidae	Alosa chrysochloris	Pisc	FW	45N-23N	0.00	0	Whitehead et al. 1988
Clupeidae	Alosa curensis		S	41N-37N		0	
Clupeidae	Alosa fallax	Pisc	А	66N-27N	0.09	0	Aprahamian 1989; Assis et al. 1992; Maitland and Lyle 2005; Skóra et al. 2012; Nachón et al. 2013
Clupeidae	Alosa immaculata		А	50N-41N		0	,
Clupeidae	Alosa kessleri		Α	55N-35N		0	
Clupeidae	Alosa killarnensis		FW	55N-51N		0	
Clupeidae	Alosa macedonica		FW	41N-40N		0	
Clupeidae	Alosa maeotica		S	48N-40N		0	
Clupeidae	Alosa mediocris	Pisc	Α	46N-25N	0.00	0	Buchheister and Latour, 2015
Clupeidae	Alosa pseudoharengus	Zoop	А	55N-34N	0.04	0	Kohler and Ney 1980; Stone and Daborn 1987; Buchheister and Latour 2015; Malek et al. 2016
Clupeidae	Alosa sapidissima	Crus	А	61N-22N	0.00	0	Buchheister and Latour 2015; Malek et al.
Clupeidae	Alosa saposchnikowii		А	49N-35N		0	Malkin and Andrianova 2008
Clupeidae	Alosa sphaerocephala		S	48N-36N		Ő	
Clupeidae	Alosa tanaica		A	49N-36N		0	Kottelat and Freyhof 2007
Clupeidae	Alosa vistonica		FW	42N-41N		0	···· ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··
Clupeidae	Alosa volgensis		А			0	Kottelat and Freyhof 2007
Clupeidae	Amblygaster clupeoides		М	17N-19S		0	Froese and Pauly 2019
Clupeidae	Amblygaster leiogaster		М	30N-23S		0	\$
Clupeidae	Amblygaster sirm	Zoop	М	35N-28S	0.11	0	Whitehead et al. 1988
Clupeidae	Anodontostoma chacunda	Detr	А	31N-23S	0.70	1	Chacko 1949; Venkataraman 1960; Abrantes et al. 2009
Clupeidae	Anodontostoma selangkat		Μ	15N-8S		1	
Clupeidae	Anodontostoma thailandiae		М	24N-0N		1	
Clupeidae	Brevoortia aurea	Phyt	М	22S-38S		1	Sanchez 1989; Froese and Pauly 2017
Clupeidae	Brevoortia gunteri		Μ	30N-17N		1	Castillo-Rivera et al. 1996
Clupeidae	Brevoortia patronus	Phyt	М	31N-19N	0.70	1	Castillo-Rivera et al. 1996; Winemiller et al. 2007
Clupeidae	Brevoortia pectinata		Μ	30S-40S		1	Garcia et al. 2007
Clupeidae	Brevoortia smithi	Phyt	М	37N-23N	0.70	1	Whitehead et al. 1988
Clupeidae	Brevoortia tyrannus	Detr	М	46N-30N	0.80	1	Lewis and Peters 1994
Clupeidae	Clupanodon thrissa		А	41N-6N			
Clupeidae	Clupea harengus	Zoop	М	80N-33N	0.00	0	Gorokhova et al. 2004; Malek et al. 2016
Clupeidae	Clupea pallasii	Zoop	М	77N-33N	0.00	0	Wailes et al. 1935; Barry et al. 1996
Clupeidae	Clupeichthys aesarnensis	Zoop	FW	17N-13N	0.04	0	Sirimongkonthaworn and Fernando 1994; Ariyaratne et al. 2008

Clupeidae	Clupeichthys bleekeri		FW	2N-3S		0	
Clupeidae	Clupeichthys goniognathus		FW	18N-4S		0	Lim et al. 1999
Clupeidae	Clupeichthys perakensis		FW	6N-3N		0	Froese and Pauly 2019 Deinhoth 1006
Clupeidae	Chupeoides borneensis Chupeoides hypselosoma		FW	14IN-45 1N-45		0	Kalilootii 1996
Clupeidae	Clupeoides papuensis		FW	4S-8S		0 0	Allen 1991
Clupeidae	Clupeoides venulosus		FW	5S-8S		0	Allen 1991
Clupeidae	Clupeonella abrau		FW	43N-37N		0	Froese and Pauly 2019
Clupeidae	Clupeonella caspia	_	A	46N-36N		0	Froese and Pauly 2019
Clupeidae	Clupeonella cultriventris	Zoop	A	60N-36N	0.00	0	Kiyashko et al. 2007
Clupeidae	Clupeonella engrauliformis		S	44N-35N 42N 25N		0	Frages and Pauly 2010
Clupeidae	Chupeonella muhlisi		5 FW	43IN-33IN 40N		0	Froese and Pauly 2019
Clupeidae	Chupeonella tscharchalensis		FW	4010		0	Froese and Pauly 2019
Clupeidae	Congothrissa gossei		FW	7N-2S		Õ	Whitehead et al. 1988
Clupeidae	Corica laciniata		FW	12N-2S		0	
Clupeidae	Corica soborna		FW	24N-3S		0	
Clupeidae	Davella malabarica		FW,	13N-6N		0	
Chunaidaa	Danagama angla		M	21N 14N		1	
Clupeidae	Dorosoma anale Dorosoma chavasi		F W FW/	211N-14IN 14N-11N		1	
Ciupeidae	Dorosoma chavesi		T W	1419-1119		1	Kutkuhn 1958: Jude 1973: Mundahl and
Clupeidae	Dorosoma cepedianum	Detr	FW	49N-21N	0.14	1	Wissing 1987
Clupeidae	Dorosoma petenense	Detr	FW	42N-15N	0.44	1	Avyle 2002
Clupeidae	Dorosoma smithi		FW	29N-20N		1	Mihindulaulassocritics and Americainsha
Clupeidae	Ehirava fluviatilis	Zoop	М	14N-4N	0.53	0	2014
Clupeidae	Escualosa elongata		М	15N-8N		0	Haijsamaa at al. 2004: Haijsamaa and
Clupeidae	Escualosa thoracata	Zoop	М	27N-22S	0.02	0	Ibrahim 2008
Clupeidae	Ethmalosa fimbriata	Phyt	С	25N-8S	0.65	1	Fagade and Olaniyan 1972; Blay and Eveson 1982
Clupeidae	Ethmidium maculatum	Zoop	М	0-37S		0	Froese and Pauly 2019
Clupeidae	Gilchristella aestuaria	Zoop	FW	25S-36S	0.02	0	Blaber 1979; Bennett and Branch 1990
Clupeidae	Gonialosa manmina		FW	29N-21N		1	
Clupeidae	Gonialosa modesta		FW	24N-14N		1	
Clupeidae	Gonialosa whiteheadi		FW	7N-4N		1	Mandal and Kassiasi 2010: Dhalaan at al
Clupeidae	Gudusia chapra	Algi	FW	30N-17N	0.64	1	2012 2010; Phukan et al.
Clupeidae	Gudusia variegata		FW	26N-17N		1	
Clupeidae	Harengula clupeola		M	31N-7S		0	
Clupeidae	Harengula humeralis	Diag	M	34N-15N	0.04	0	Vaca Candaias at al. 1004
Clupeidae	Harengula thrissina	PISC	M	43N-378	0.04	0	Froese and Pauly 2019
Clupeidae	Herklotsichthys blackburni		M	148-218		0	Proceed and Fauly 2019
Clupeidae	Herklotsichthys castelnaui	Zoop	M	248-398	0.00	Ő	Abrantes et al. 2009; This study
Clupeidae	Herklotsichthys collettei		Μ	21S-25S		0	
Clupeidae	Herklotsichthys dispilonotus		М	20N-9S		0	
Clupeidae	Herklotsichthys gotoi		М	4S-19S		0	
Clupeidae	Herklotsichthys koningsbergeri	Zoop	M	138-278	0.00	0	Abrantes et al. 2009
Clupeidae	Herklotsichthys lippa		M	98-248 21N 24N		0	
Clupeidae	Herklotsichthys ovalis		M	311N-241N		0	
Clupeidae	Herklotsichthys punctatus		M	37N-12N		0	
Clupeidae	Herklotsichthys guadrimaculatus	Zoop	M	39N-33S	0.06	Ő	Milton et al. 1994
Clupeidae	Herklotsichthys spilurus		Μ	11N-23S		0	
Clupeidae	Hilsa kelee	Zoop	Μ	25N-18S	0.00	0	Blaber 1979
Clupeidae	Hyperlophus translucidus		М	24S-34S		0	
Clupeidae	Hyperlophus vittatus		M	25S-40S		0	E ID I 2010
Clupeidae	Jenkinsia lamprotaenia		M	34N-8N		0	Freese and Pauly 2019
Clupeidae	Jenkinsia majua Jenkinsia parvula		M	201N-91N 14N-8N		0	Froese and Pauly 2019
Clupeidae	Jenkinsia parvuia Ienkinsia stolifera		M	31N-8N		0	Froese and Pauly 2019
Clupeidae	Konosirus punctatus	Detr	M	42N-23N	0.60	1	Kanou et al. 2004; Inoue et al. 2005
Clupeidae	Laeviscutella dekimpei		FW	10N-7S		0	
Clupeidae	Lile gracilis		Μ	33N-5S		0	Froese and Pauly 2019
Clupeidae	Lile nigrofasciata		М			0	
Clupeidae	Lile piquitinga		M	13N-20S		0	
Clupeidae	Lue stolljera Limnothrissa miodon	Zoon	IVI FW/	2018-22 20180	0.00	0	Longh et al. 1083
Clupeidae	Microthrissa congica	Terr	FW	10N-10S	0.00	0	Kimbembi-ma-Ibaka and Nzuki 2001
Clupeidae	Microthrissa minuta		FW	3N-7S	0.00	õ	enter ma readu und rizuki 2001
Clupeidae	Microthrissa moeruensis		FW	6S-10S		0	
Clupeidae	Microthrissa royauxi		FW	8N-7N		0	
Clupeidae	Microthrissa whiteheadi		FW	10N-10S		0	
Clupeidae	Minyclupeoides dentibranchialus		FW	OL 20		0	Encode and Develop 2010
Clupeidae	Nannothrissa parva Nannothrissa stavarti		FW FW	0N-3S		0	Froese and Pauly 2019
Clupeidae	Nematalosa arabica		M	27N-10N		1	
·····						-	

Clupeidae	Nematalosa come	Detr	М	30N-21S	0.70	1	Nanjo et al. 2008; Abrantes et al. 2009
Clupeidae	Nematalosa erebi	Detr	FW	118-378	0.93	1	Pusey et al. 1995; Mederros and Arthington 2008
Clupeidae	Nematalosa flyensis		FW	4S-7S		1	
Clupeidae	Nematalosa galatheae		Α	24N-0		1	
Clupeidae	Nematalosa japonica	Detr	Μ	37N-4N	0.70	1	Froese and Pauly 2019
Clupeidae	Nematalosa nasus	Zoop	М	38N-1N	0.70	1	Froese and Pauly 2019
Clupeidae	Nematalosa papuensis		FW	4S-7S		1	
Clupeidae	Nematalosa persara		М			1	
Clupeidae	Nematalosa resticularia		M	1/0.000		1	
Clupeidae	Nematalosa vlaminghi		M	168-328		I	
Clupeidae	Odaxothrissa ansorgii		FW	16N-155		0	
Clupeidae	Odaxothrissa losera		FW	/IN-145		0	
Clupeidae	Ouuxoinrissu menio Opisthonama barlangai		M	3N 4S		0	
Clupeidae	Opisthonema bulleri		M	25N-5S		0	Froese and Pauly 2019
Clupeidae	Onisthonema libertate		M	28N-3S		0	These and Fadiy 2019
Clupeidae	Opisthonema medirastre		M	36N-6S		Ő	Froese and Pauly 2019
Clupeidae	Opisthonema oglinum	Crus	М	41N-37S	0.32	1	Vega-Cendejas et al. 1994
Clupeidae	Pellonula leonensis		А	17N-5S		0	- Gui
Clupeidae	Pellonula vorax	Pisc	Α	13N-13S	0.20	0	Offem et al. 2009
Clupeidae	Platanichthys platana		FW	25S-36S		0	
Clupeidae	Potamalosa richmondia	Crus	С	32S-39S	0.00	0	Froese and Pauly 2019
Clupeidae	Potamothrissa acutirostris		FW	7N-5S		0	
Clupeidae	Potamothrissa obtusirostris		FW	7N-8S		0	
Clupeidae	Potamothrissa whiteheadi		FW	2S-5S		0	
Clupeidae	Ramnogaster arcuata		M	338-428		0	
Clupeidae	Ramnogaster melanostoma	7	FW	318-388	0.00	0	En and Declar 2010
Clupeidae	Rhinosarainia amazonica	Zoop	FW	10N-85	0.00	0	Freese and Pauly 2019
Ciupeidae	Kninosarainia baniensis		гw	1010-205		0	Garrido et al. 2008: Nikolioudakis et al
Clupeidae	Sardina pilchardus	Zoop	М	68N-14N	0.09	0	2012; Costalago 2012; Costalago et al. 2015
Clupeidae	Sardinella albella	Zoop	М	31N-30S	0.27	1	Venkataraman 1960; Horinouchi et al. 2012
Clupeidae	Sardinella atricauda		Μ	1N-9S		0	
Clupeidae	Sardinella aurita	Zoop	Μ	47N-40S	0.02	0	Tsikliras et al. 2005; Lomiri et al. 2008
Clupeidae	Sardinella brachysoma		М	25N-23S		0	
Clupeidae	Sardinella fiijiense		M	5S-19S		0	
Clupeidae	Sardinella fimbriata		М	30N-11S		0	
Clupeidae	Sardinella gibbosa	Zoop	М	41N-37S	0.00	0	chacko 1949; Nyunja et al. 2002; Mavuti et al. 2004; Abrantes et al. 2009; Shahraki et al. 2014
Clupeidae	Sardinella hualiensis		М	29N-17N		0	
Clupeidae	Sardinella jussieu		М	20N-27S		0	
Clupaidaa	Sandinalla madanansis	Zoon	м	46N 228	0.00	0	Fagade and Olaniyan 1973; Faye et al.
Ciupeidae	sarainella maderensis	Zoop	IVI	4010-255	0.09	0	2012
Clupeidae	Sardinella marquesensis		М	24N-19S		0	
Clupeidae	Sardinella melanura	Zoop	М	26N-23S	0.03	0	Kuthalingam 1961
Clupeidae	Sardinella richardsoni		M	30N-17N		0	
Clupeidae	Sardinella rouxi		M	18N-10S		0	
Clupeidae	Sardinella sindensis		M	30IN-10IN		0	
Clupeidae	Sardinella rumasi		гw M	10IN-14IN 29NI 22NI		0	
Ciupeidae	Sarainella zunasi	_	IVI	30IN-22IN		0	Burchmore et al. 1984: Van de Lingen
Clupeidae	Sardinops sagax Sauvagella madagascariensis	Zoop	M FW	61N-47S 11S-26S	0.08	0	2002; Mketsu 2008; Espinoza et al. 2009
Clupeidae	Sauvagella robusta		FW	158		0	
Clupeidae	Sierrathrissa leonensis		FW	18N-0		0	Whitehead et al. 1988
Clupeidae	Spratelloides delicatulus	Zoop	М	40N-29S	0.00	0	Milton et al. 1990; Nakamura et al. 2003; Mavuti et al. 2004; Gajdzik et al. 2014
Clupeidae	Spratelloides gracilis	Zoop	Μ	33N-30S	0.00	0	Nakane et al. 2011
Clupeidae	Spratelloides lewisi		М	2N-12S		0	
Clupeidae	Spratelloides robustus	Zoop	М	12S-39S	0.00	0	Froese and Pauly 2019
Clupeidae	Spratellomorpha bianalis		M	0-268		0	
Clupeidae	Sprattus antipodum		M	3/8-488		0	
Clupeidae	Sprattus muelleri		M	338 518		0	
Clupeidae	Sprattus novaehollandiae		M	385-455		0	
Clupeidae	Sprattus sprattus	Zoop	M	66N-30N	0.00	0	Moore and Moore 1976; Köster and Möllmann 2000: Gorokhova et al. 2004
Clupeidae	Stolothrissa tanganicae	Zoop	FW	1S-10S	0.00	0	Froese and Pauly 2019
Clupeidae	Strangomera bentincki	· · r	М	30S-37S		1	Arrizaga et al. 1993
Clupeidae	Sundasalanx malleti		FW	0		0	Froese and Pauly 2019
Clupeidae	Sundasalanx megalops		FW	0		0	
Clupeidae	Sundasalanx mekongensis		FW	16N-17N		0	
Clupeidae	Sundasalanx mesops		FW	0		0	
Clupeidae	Sundasalanx microps		FW	2N-0		0	
Chupeidae	Sundasalanx platyrhynchus		FW FW/	U 2NI 19NI		0	
Ciupeiuae	Sumuusununs praecos		1. AA	∠1N-101N		U	

Clupeidae	Tenualosa ilisha	Phyt	А	34N-5N	0.70	1	De and Datta 1990; Dutta et al. 2014
Clupeidae	Tenualosa macrura		А	7N-9S		0	Froese and Pauly 2019
Clupeidae	Tenualosa reevesii		Α	31N-5N		0	Froese and Pauly 2019
Clupeidae	Tenualosa thibaudeaui	Phyt	FW	20N-10N	0.70	1	Froese and Pauly 2019
Clupeidae	Tenualosa toli		A	23N-/S		0	Froese and Pauly 2019
Dussumieriidae	Inramaion nochvagus		FW	0IN-3IN 31N 7S		0	whitehead et al. 1988
Dussumieriidae	Dussumieria elopsoides	Crus	M	36N-19S	0.00	0	Chacko 1949: Venkataraman 1960
Dussumieriidae	Etrumeus acuminatus	Crus	M	36N-18S	0.00	Ő	Chacko 1949, Venkataraman 1960
Dussumieriidae	Etrumeus golanii	Zoop	М	18N-2N	0.00	Õ	Tanaka et al. 2006
Dussumieriidae	Etrumeus makiawa	- 1	М	21N		0	
Dussumieriidae	Etrumeus micropus		М	35N-21N		0	
Dussumieriidae	Etrumeus sadina		Μ	45N-8N		0	Froese and Pauly 2019
Dussumieriidae	Etrumeus whiteheadi	Zoop	М	17S-35S	0.00	0	Froese and Pauly 2019
Dussumieriidae	Etrumeus wongratanai		М	1S-34S		0	
Engraulidae	Amazonsprattus scintilla	Terr	FW	0S-3S	0.00	0	Whitehead et al. 1988
Engraulidae	Anchoa analis		М	27N-21N		0	
Engraulidae	Anchoa argentivittata		M	28N-58		0	
Engraulidae	Anchoa belizensis		M	20N-148		0	
Engraulidae	Anchoa cayorum		M	20IN-10IN 10NL5NL		0	
Engraulidae	Anchoa choerostoma		M	34N-30N		0	
Engraulidae	Anchoa colonensis	Crus	M	23N-7N	0.00	0	This study
Engraulidae	Anchoa compressa	crus	M	36N-20N	0.00	õ	This study
Engraulidae	Anchoa cubana		М	36N-30S		Ő	
Engraulidae	Anchoa curta		М	28N-6S		0	
Engraulidae	Anchoa delicatissima		М	34N-20N		0	
Engraulidae	Anchoa eigenmannia		М	14N-5N		0	
Engraulidae	Anchoa exigua		Μ	28N-5N		0	
Engraulidae	Anchoa filifera		М	23N-27S		0	
Engraulidae	Anchoa helleri		М	32N-25N		0	
Engraulidae	Anchoa hepsetus	Zoop	М	44N-36S	0.00	0	Carr and Adams 1973
Engraulidae	Anchoa ischana		М	33N-3S		0	
Engraulidae	Anchoa januaria		M	4S-29S		0	
Engraulidae	Anchoa lamprotaenia		M	28N-7S		0	
Engraulidae	Anchoa lucida		M	29N-68		0	
Engraulidae	Anchoa iyolepis		M	38IN-275		0	
Engraundae	Anchoa marinii		M	225-405		0	Corr and Adams 1072: Odum and Haald
Engraulidae	Anchoa mitchilli	Zoop	М	42N-16N	0.12	0	1972; Livingston 1982
Engraulidae	Anchoa mundeola		Μ	28N-5N		0	
Engraulidae	Anchoa mundeoloides		Μ	32N-28N		0	
Engraulidae	Anchoa nasus		М	31N-14S		0	
Engraulidae	Anchoa panamensis		М	10N-5N		0	
Engraulidae	Anchoa parva		М	23N-7N		0	
Engraulidae	Anchoa pectoralis		М	1N-27S		0	
Engraulidae	Anchoa scofieldi		M	25N-20N		0	
Engraulidae	Anchoa spinijer		M	14N-205		0	
Engraulidae	Anchoa starksi		M	14IN-45 25 205		0	
Engraulidae	Anchoa trinitatis		M	23-395 14N 7N		0	
Engraulidae	Anchoa walkeri		M	31N-5N		0	
Engraulidae	Anchovia clupeoides	Zoop	M	23N-25S	0.00	Ő	Whitehead et al. 1988
Engraulidae	Anchovia macrolepidota	Zoop	М	30N-5S	0.00	Õ	Whitehead et al. 1988
Engraulidae	Anchovia surinamensis	Zoop	FW	11N-1S	0.09	0	Mérona et al. 2001; Mérona et al. 2008
Engraulidae	Anchoviella alleni		FW	2S-8S		0	-
Engraulidae	Anchoviella balboae		Μ	10N-4N		0	
Engraulidae	Anchoviella blackburni		М	15N-9N		0	
Engraulidae	Anchoviella brevirostris	Zoop	М	10N-27S	0.00	0	Wakabara et al. 1996
Engraulidae	Anchoviella carrikeri		FW	0-15S		0	
Engraulidae	Anchoviella cayennensis		Μ	12N-21S		0	
Engraulidae	Anchoviella elongata		M	19N-9N		0	
Engraulidae	Anchoviella guianensis	7	FW	9N-48	0.00	0	Deules et al. 2012
Engraulidae	Anchoviella jamesi	Zoop	FW	9IN-05	0.00	0	Ropke et al. 2013
Engraulidae	Anchoviella lapidentostola		1. 14	ON 275		0	Froese and Pauly 2010
Engraulidae	Anchoviella manamensis		FW	10N-6N		0	110ese and 1 aury 2019
Engraulidae	Anchoviella nattereri		M	0-48		Ő	
Engraulidae	Anchoviella perezi		M	0.0		Ő	
Engraulidae	Anchoviella perfasciata		М	32N-10N		Ő	
Engraulidae	Anchoviella vaillanti		М	7S-15S		0	
Engraulidae	Cetengraulis edentulus	Phyt	М	23N-28S	1.00	1	Gay et al. 2002; Krumme et al. 2008
Engraulidae	Cetengraulis mysticetus	Phyt	М	32N-4S	0.98	1	Bayliff 1963
Engraulidae	Coilia borneensis		FW	6N-7S		0	
Engraulidae	Coilia brachygnathus	Crus	FW	32N-27N	0.00	0	Zhang et al. 2013
Engraulidae	Coilia coomansi	-	FW	2N-6S	0.07	0	D 10/7
Engraulidae	Coilia dussumieri	Zoop	M	24N-9S	0.00	0	Rao 1967
Engraulidae	Collia grayii		M	33N-7N		0	
Engraulidae	Coula linamani		FW	14N-4S		0	
Engraundae	Coula macrognathos		гW	10IN-55		U	

Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae Engraulidae	Coilia mystus Coilia nasus Coilia neglecta Coilia remcarati Coilia rebentischii Coilia reynaldi	Zoop Zoop	M A M M M	42N-4N 42N-21N 25N-5S 25N-13N 14N-1N 26N-7N	0.00 0.00	0 0 0 0 0	Cheng 1956 Islam and Tanaka 2006
Engraulidae	Encrasicholina heteroloba	Zoop	М	32N-26S	0.01	0	Venkataraman 1960; Rao 1967; Milton et al. 1990: Nair 1998: Abrantes et al. 2009
Engraulidae	Encrasicholina oligobranchus		М	17N-4N		0	al. 1990, Ivan 1990, Abrances et al. 2009
Engraulidae Engraulidae Engraulidae	Encrasicholina pseudoheteroloba Encrasicholina punctifer Encrasicholina purpurea	Zoop	M M M	42N-35S 25N-14N	0.11	0 0 0	Nair 1998; Salarpmy et al. 2008 Froese and Pauly 2019
Engraulidae	Engraulis albiaus Engraulis anchoita	Zoop	M	45N 21S-50S	0.00	0	Capitanio et al. 2005
Engraulidae	Engraulis australis	p	М	20S-47S		0	
Engraulidae	Engraulis capensis		М	16S-26S		0	Discussion and Channellinet 1000. Mission
Engraulidae	Engraulis encrasicolus	Zoop	М	62N-37S	0.00	0	2008; Borme et al. 2009; Costalago et al. 2012
Engraulidae	Engraulis eurystole	Zoon	M	45N-0	0.00	0	Incura et al. 2005: Tanaka et al. 2006
	Engrauits japonicus	Zoop	M	49IN-2IN	0.00	0	Koslow 1981; Whitehead et al. 1988;
Engraulidae	Engraulis mordax	Zoop	М	51N-21N	0.15	0	Barry et al. 1996
Engraulidae Engraulidae	Engraulis ringens Jurengraulis juruensis	Crus	M FW	58-438 0-148	0.02	0	Espinoza and Bertrand 2008
Engraulidae	Lycengraulis batesii	Pisc	FW	9N-7S	0.08	0	Ropke et al. 2013
Engraulidae	Lycengraulis figueiredoi		FW	1N		0	
Engraulidae	Lycengraulis grossidens	Pisc	A	19N-41S	0.00	0	Froese and Pauly 2019
Engraulidae	Lycengraulis limnichthys Lycengraulis poevi	Pise	FW	95 14N-6N	0.00	0	Froese and Pauly 2019
Engraulidae	Papuengraulis micropinna	1 150	M	6S-11S	0.00	0	roose and rully 2019
Engraulidae	Pterengraulis atherinoides	Pisc	FW	11N-7S	0.00	0	Mérona et al. 2001; Krumme et al. 2005
Engraulidae	Setipinna breviceps		M	9N-5S		0	
Engraulidae	Setipinna previjuis Setipinna crocodilus	Pise	FW	28IN-23IN 17N-58	0.00	0	Froese and Pauly 2019
Engraulidae	Setipinna melanochir	Pisc	M	19N-8S	0.00	0	Froese and Pauly 2019
Engraulidae	Setipinna paxtoni		Μ	11S-18S		0	2
Engraulidae	Setipinna phasa		FW	30N-18N		0	Rea 1067: Hong 1000: Chaudhuri et al
Engraulidae	Setipinna taty	Crus	М	24N-9S	0.11	0	2014 Rao 1967; Hong 1990; Chaudhuri et al.
Engraulidae	Setipinna tenuifilis	Pisc	Μ	42N-17S	0.00	0	Froese and Pauly 2019
Engraulidae	Setipinna wheeleri		FW	22N-16N		0	
Engraulidae	Stolephorus advenus		M	7S-14S		0	
Engraulidae	Stolephorus ananraensis Stolephorus apiensis		M	22IN-155 2S-20S		0	
Engraulidae	Stolephorus baganensis		M	16N-7S		Ő	
Engraulidae	Stolephorus brachycephalus	Crus	Μ	58-158	0.00	0	This study
Engraulidae	Stolephorus carpentariae	7	M	3S-32S	0.01	0	
Engraulidae	Stolephorus commersonnii	Zoop Zoop	M	29N-1N 27N-24S	0.01	0	Venkataraman 1960; Blaber 1979; Hayase et al. 1999; Hajisamae and Ibrahim 2008
Engraulidae	Stolephorus dubiosus		М	25N-9S		0	et al. 1999, Hajisanae and Ioranni 2000
Engraulidae	Stolephorus holodon		Μ	24S-40S		0	
Engraulidae	Stolephorus indicus	Zoop	М	30N-37S	0.00	0	Chacko 1949; De Troch et al. 1998; Hajisamae et al. 2003; Hajisamae and Ibrahim 2008; Horinouchi et al. 2012
Engraulidae	Stolephorus insularis	Zoop	Μ	28N-9S	0.00	0	Rao 1967; Hayase et al. 1999
Engraulidae	Stolephorus multibranchus		M	9N-3N		0	
Engraulidae	Stolephorus neisoni Stolephorus pacificus		M	155-205 17N-2N		0	
Engraulidae	Stolephorus ronquilloi		M	17N-7N		Ő	
Engraulidae	Stolephorus shantungensis		Μ			0	
Engraulidae	Stolephorus teguhi		M	1701 110		0	
Engraulidae	Stolephorus tri Stolephorus waitei	Zoon	M	25N-21S	0.00	0	Nair 1998
Engraulidae	Thryssa adelae	Loop	M	37N-21N	0.00	Ő	
Engraulidae	Thryssa aestuaria		Μ	78-328		0	
Engraulidae	Thryssa baelama	Crus	M	31N-25S	0.00	0	Marichamy 1972
Engraulidae	Inryssa brevicauaa Thryssa chefuensis	Crus	M	39N-21N	0.00	0	This study
Engraulidae	Thryssa dayi	Crus	M	27N-6N	0.00	0	ins study
Engraulidae	Thryssa dussumieri	Crus	М	27N-7S	0.00	0	Chacko 1949
Engraulidae	Thryssa encrasicholoides		M	21N-26S		0	
Engraulidae	1 nryssa gautamiensis Thryssa hamiltonii	Pise	M	25IN-4IN 31N-258	0.00	0	This study
Engraulidae	Thryssa kammalensis	Crus	M	9N-11S	0.00	õ	Hajisamae and Ibrahim 2008
Engraulidae	Thryssa kammalensoides		М	21N-13N		0	
Engraulidae	Thryssa malabarica		M	27N-3N		0	
Engraulidae	1 nryssa marasriae		M	98-158		U	

Engr	raulidae	Thryssa mystax	Crus	М	25N-9S	0.00	0	Froese and Pauly 2019
Engr	raulidae	Thryssa polybranchialis		Μ	21N-4N		0	
Engr	raulidae	Thryssa purava		Μ	25N-5N		0	
Engr	raulidae	Thryssa rastosa		FW	6S-9S		0	Allen 1991
Engr	raulidae	Thryssa scratchleyi	Pisc	FW	5S-15S	0.00	0	Froese and Pauly 2019
Engr	raulidae	Thryssa setirostris	Crus	М	28N-40S	0.00	0	Froese and Pauly 2019
Engr	raulidae	Thryssa spinidens	Crus	Μ	25N-3N	0.00	0	This study
Engr	raulidae	Thryssa stenosoma		Μ	25N-15N		0	
Engr	raulidae	Thryssa vitrirostris		Μ	31N-40S		0	
Engr	raulidae	Thryssa whiteheadi		Μ	31N-24N		0	
Prist	tigasteridae	Chirocentrodon bleekerianus		Μ	24N-25S		0	
Prist	tigasteridae	Ilisha africana	Zoop	М	17N-7S	0.00	0	Fagade and Olaniyan 1973; Marcus 1986
Prist	tigasteridae	Ilisha amazonica		FW	1N-12S		0	
Prist	tigasteridae	Ilisha compressa		Μ	30N-23N		0	
Prist	tigasteridae	Ilisha elongata	Pisc	Μ	39N-1S	0.00	0	Rao 1967; Blaber et al. 1998
Prist	tigasteridae	Ilisha filigera		М	24N-0		0	
Prist	tigasteridae	Ilisha fuerthii		Μ	14N-4S		0	Froese and Pauly 2019
Prist	tigasteridae	Ilisha kampeni		Μ	24N-9S		0	
Prist	tigasteridae	Ilisha lunula		Μ	5S-21S		0	
Prist	tigasteridae	Ilisha macrogaster		Μ	9N-3S		0	
Prist	tigasteridae	Ilisha megaloptera	Pisc	Μ	24N-10S	0.00	0	Blaber et al. 1998
Prist	tigasteridae	Ilisha melastoma	Moll	Μ	29N-8S	0.00	0	Blaber et al. 1998; Shahraki et al. 2014
Prist	tigasteridae	Ilisha novacula		FW	24N-14N		0	
Prist	tigasteridae	Ilisha obfuscata		Μ	18N-8N		0	
Prist	igasteridae	Ilisha pristigastroides		М	1S-7S		0	
Prist	igasteridae	Ilisha sirishai		М	31N-0		0	
Prist	tigasteridae	Ilisha striatula		М	26N-5N		0	
Prist	igasteridae	Neoopisthopterus cubanus		М	24N-17N		0	
Prist	tigasteridae	Neoopisthopterus tropicus		М	27N-4S		0	Froese and Pauly 2019
Prist	igasteridae	Odontognathus compressus		М	14N-4N		0	
Prist	tigasteridae	Odontognathus mucronatus		М	12N-26S		0	
Prist	tigasteridae	Odontognathus panamensis		М	14N-5N		0	Froese and Pauly 2019
Prist	tigasteridae	Opisthopterus dovii		М	32N-5S		0	Froese and Pauly 2019
Prist	tigasteridae	Opisthopterus effulgens		Μ	5N-0		0	
Prist	igasteridae	Opisthopterus equatorialis		М	13N-5S		0	
Prist	igasteridae	Opisthopterus macrops	_	М	10N-4N		0	
Prist	igasteridae	Opisthopterus tardoore	Zoop	М	29N-8S	0.00	0	Venkataraman 1960
Prist	igasteridae	Opisthopterus valenciennesi		M	29N-8S		0	
Prist	igasteridae	Pellona altamazonica		FW			0	
Prist	tigasteridae	Pellona castelnaeana	Pisc	FW	0-13S	0.07	0	Mérona et al. 2001; González and Vispo 2003; Pouilly et al. 2004
Prist	igasteridae	Pellona dayi		Μ	18N-8N		0	
Prist	igasteridae	Pellona ditchela	Zoop	FW	25N-30S	0.00	0	Mavuti et al. 2004
Prist	igasteridae	Pellona flavipinnis	Pisc	FW	10N-35S	0.01	0	González and Vispo 2003; Pouilly et al. 2003: Moreira-Hara et al. 2009
Prist	igasteridae	Pellona harroIri		М	12N-30S		0	,
Prist	igasteridae	Pliosteostoma lutipinnis		М	25N-3N		0	
Prist	igasteridae	Pristigaster cayana		FW	1N-2S		0	
Prist	igasteridae	Pristigaster whiteheadi		FW			0	
Prist	igasteridae	Raconda russeliana		Μ	24N-9S		0	Froese and Pauly 2019

Table 3.3. Proportions of prey in the diets of ten clupeiform species expressed as percentfrequency, percent number, and percent volume.

Species	n	SL (mm)	n Prey		Algae		Ar	mphipo	da	Aı	thropo	da	Bival	va veliger		Brachyu	ira	Cen	tric dia	tom	Cha	aetogn:	tha	Cirr	ipedia	cypris	С	adocera
				% F	% N	% V	% F	% N	% V	% F	% N	% V	% F	%N %	V %F	% N	% V	% F	% N	% V	% F	% N	% V	% F	% N	% V	% F	%N %V
Anchoa colonensis	10	35.56-58.99	154	0.100	0.006	< 0.001				0.100	0.006	0.009	0.300	0.084 0.0	17									0.300	0.026	0.001		
Encrasicholina punctifer	10	68.18-77.47	339										0.100	0.006 <0.0	01						0.500	0.071	0.181	0.600	0.029	0.008		
Encrasicholina heteroloba	14	56.81-75.77	433	0.143	0.016	< 0.001							0.214 (0.007 0.0	5			0.071	0.002	<0.001				0.429	0.025	0.013	0.286	0.048 0.088
Herklotsichthys castelnaui	10	56.05-62.6	385	0.300	0.010	0.001							0.200	0.005 <0.0	01			1.000	0.161	0.039				0.900	0.055	0.009		
Stolephorus brachycephalus	10	63.04-81.23	67				0.100	0.015	0.001															0.300	0.060	< 0.001		
Stolephorus chinensis	9	59.69-70.46	257				0.111	0.004	0.138									0.556	0.195	0.003				0.222	0.016	0.007		
Thryssa chefuensis	10	83.17-96.7	25																									
Thryssa dussumieri	15	94.81-120.51	182				0.067	0.006	0.001						0.06	7 0.006	0.001							0.133	0.011	< 0.001		
Thryssa hamiltonii	12	98.71-188.16	98	1.000	0.020	< 0.001	0.250	0.041	0.029															0.083	0.010	0.001		
Thryssa spinidens	6	79.62-121.26	199																									
Species	n	SL (mm)	n Prey		Copepo	da	Crust	tacea na	uplii	0	umace	a	Cyan	obacteria		megalo	pa	Dec	apoda 2	oea	Din	oflage	lata		Egg			Fish
				% F	% N	% V	% F	% N	% V	% F	% N	% V	% F	%N %	V %F	% N	% V	% F	% N	% V	% F	% N	% V	% F	% N	% V	% F	%N %V
Anchoa colonensis	10	35.56-58.99	154	1.000	0.643	0.026	0.100	0.006	< 0.001									0.100	0.006	0.001							0.100	0.026 0.527
Encrasicholina punctifer	10	68.18-77.47	339	1.000	0.737	0.302	0.100	0.006	< 0.001						0.10	0.003	0.002	0.100	0.003	0.002				0.400	0.024	< 0.001	0.200	0.021 0.177
Encrasicholina heteroloba	14	56.81-75.77	433	1.000	0.850	0.791	0.357	0.022	0.015									0.071	0.005	0.048								
Herklotsichthys castelnaui	10	56.05-62.6	385	1.000	0.740	0.942	0.200	0.005	< 0.001												0.100	0.003	0.007					
Stolephorus brachycephalus	10	63.04-81.23	67	0.500	0.418	0.001																					0.100	0.015 0.043
Stolephorus chinensis	9	59.69-70.46	257	1.000	0.632	0.766	0.111	0.004	0.003	0.111	0.004	0.022			0.11	0.008	0.179	0.001	0.004	0.001								
Thryssa chefuensis	10	83.17-96.7	25																								0.400	0.240 0.301
Thryssa dussumieri	15	94.81-120.51	182	0.467	0.088	0.001																						
Thryssa hamiltonii	12	98.71-188.16	98	0.167	0.051	< 0.001				0.083	0.010	<0.001			0.08	3 0.051	0.023	0.167	0.041	0.001								
Thryssa spinidens	6	79.62-121.26	199	0.667	0.050	0.002												0.167	0.005	< 0.001								
Species	n	SL (mm)	n Prey	G	ammeri	idea	Gastro	opoda v	eliger	н	lydrozo	a	Is	opoda		Lucife	r	N	ematod	a	c	Ostacod	a	Pen	nate di	atom		Plant
				% F	% N	% V	% F	% N	% V	% F	% N	% V	% F	%N %	V %F	% N	% V	% F	% N	% V	% F	% N	% V	% F	% N	% V	% F	%N %V
Anahaa aalanamaia	10	35.56-58.99	154	0.100	0.006	0.001				0.100	0.006	<0.001	0.100 (0.013 0.0	8 0.10	0.104	0.366	0.200	0.019	0.001								
Anchou colonensis															0.50	0.032	0.024											
Encrasicholina punctifer	10	68.18-77.47	339																									
Encrasicholina punctifer Encrasicholina heteroloba	10 14	68.18-77.47 56.81-75.77	339 433				0.143	0.007	0.009									0.143	0.009	0.003				0.143	0.005	< 0.001		
Encrasicholina punctifer Encrasicholina heteroloba Herklotsichthys castelnaui	10 14 10	68.18-77.47 56.81-75.77 56.05-62.6	339 433 385				0.143 0.400	0.007 0.010	0.009 0.003									0.143 0.100	0.009 0.003	0.003 <0.001				0.143 0.200	0.005 0.005	<0.001 <0.001	0.100	0.003 <0.001
Encrasicholina punctifer Encrasicholina heteroloba Herklotsichthys castelnaui Stolephorus brachycephalus	10 14 10 10	68.18-77.47 56.81-75.77 56.05-62.6 63.04-81.23	339 433 385 67				0.143	0.007	0.009				0.200	0.030 <0.0	01			0.143 0.100 0.200	0.009 0.003 0.045	0.003 <0.001 <0.001				0.143 0.200	0.005	<0.001 <0.001	0.100	0.003 <0.001
Anchoù Colonensis Encrasicholina punctifer Encrasicholina heteroloba Herklotsichthys castelnaui Stolephorus brachycephalus Stolephorus chinensis	10 14 10 10 9	68.18-77.47 56.81-75.77 56.05-62.6 63.04-81.23 59.69-70.46	339 433 385 67 257				0.143 0.400 0.111	0.007 0.010 0.004	0.009 0.003 0.001				0.200	0.030 <0.0	01			0.143 0.100 0.200	0.009 0.003 0.045	0.003 <0.001 <0.001				0.143 0.200	0.005	<0.001 <0.001	0.100	0.003 <0.001
Ancroa coloneisis Encrasicholina punctifer Encrasicholina heteroloba Herklotsichthys castelnaui Stolephorus brachycephalus Stolephorus chinensis Thryssa chefuensis	10 14 10 10 9 10	68.18-77.47 56.81-75.77 56.05-62.6 63.04-81.23 59.69-70.46 83.17-96.7	339 433 385 67 257 25				0.143 0.400 0.111	0.007 0.010 0.004	0.009 0.003 0.001				0.200 (0.030 <0.0 0.040 0.0	01 4			0.143 0.100 0.200	0.009 0.003 0.045	0.003 <0.001 <0.001				0.143	0.005	<0.001 <0.001	0.100	0.003 <0.001
Ancnoi connessos Encrasicholina punctifer Encrasicholina heteroloba Herklotsicholins brachycephalus Stolephorus brachycephalus Stolephorus chinensis Thryssa chefuensis Thryssa dussumieri	10 14 10 10 9 10 15	68.18-77.47 56.81-75.77 56.05-62.6 63.04-81.23 59.69-70.46 83.17-96.7 94.81-120.51	339 433 385 67 257 25 182				0.143 0.400 0.111	0.007 0.010 0.004	0.009 0.003 0.001				0.200 (0.030 <0.0 0.040 0.0	01 4 0.60	0.392	0.017	0.143 0.100 0.200	0.009 0.003 0.045	0.003 <0.001 <0.001	0.133	0.011	<0.00	0.143	0.005	<0.001	0.100	0.003 <0.001
Antinoi coloninisto Encrasicholina heiteroloba Herklotsichihys castelnaui Stolephorus brachycephalus Stolephorus chinensis Thryssa duissumieri Thryssa duissumieri Thryssa hamiltonii	10 14 10 10 9 10 15 12	68.18-77.47 56.81-75.77 56.05-62.6 63.04-81.23 59.69-70.46 83.17-96.7 94.81-120.51 98.71-188.16	339 433 385 67 257 25 182 98				0.143 0.400 0.111	0.007 0.010 0.004	0.009 0.003 0.001				0.200 (0.100 (0.030 <0.0 0.040 0.0	01 4 0.600 0.332	0.392	0.017	0.143 0.100 0.200	0.009 0.003 0.045	0.003 <0.001 <0.001	0.133 0.083	0.011	<0.001	0.143	0.005	<0.001	0.100	0.003 <0.001 0.020 0.001
Anchou countesis Encrasicholina heteroloba Hercklotsichtlys castelnaui Stolephorus brachycephalus Stolephorus chinensis Thryssa chefuensis Thryssa dusumieri Thryssa supinidens <u>Store</u>	10 14 10 9 10 15 12 6	68.18-77.47 56.81-75.77 56.05-62.6 63.04-81.23 59.69-70.46 83.17-96.7 94.81-120.51 98.71-188.16 79.62-121.26	339 433 385 67 257 25 182 98 199	0.167	0.005	0.001	0.143 0.400 0.111	0.007 0.010 0.004	0.009 0.003 0.001				0.200 (0.100 (0.030 <0.0	01 4 0.600 0.333 0.666	0 0.392 3 0.092 7 0.201	0.017 0.004 0.022	0.143 0.100 0.200	0.009 0.003 0.045	0.003 <0.001 <0.001	0.133 0.083 1.000	0.011 0.092 0.151	<0.001 0.010 0.013	0.143	0.005	<0.001	0.100	0.003 <0.001 0.020 0.001
Antono connessos Encrassicholina punctifer Encrassicholina heteroloba Herklotsichthys castelnaui Stolephorus chinensis Thryssa chefuensis Thryssa chefuensis Thryssa dussumieri Thryssa aunitonii Thryssa spinidens Species	10 14 10 9 10 15 12 6 n	68.18-77.47 56.81-75.77 56.05-62.6 63.04-81.23 59.69-70.46 83.17-96.7 94.81-120.51 98.71-188.16 79.62-121.26 SL (mm)	339 433 385 67 257 25 182 98 199 n Prey	0.167 P	0.005 'olychae % N	0.001 eta	0.143 0.400 0.111	0.007 0.010 0.004 Shrimp	0.009 0.003 0.001	Th % F	rematoo % N	la % V	0.200 (0.030 <0.0 0.040 0.0	01 4 0.600 0.333 0.666	0 0.392 3 0.092 7 0.201	0.017 0.004 0.022	0.143 0.100 0.200	0.009 0.003 0.045	0.003 <0.001 <0.001	0.133 0.083 1.000	0.011 0.092 0.151	<0.001 0.010 0.013	0.143	0.005	<0.001	0.100	0.003 <0.001 0.020 0.001
Anchoa colonensis Encrasicholina punctifer Encrasicholina heteroloba Herklotsichthys castelnaui Stolephorus chinensis Thryssa chefuensis Thryssa chefuensis Thryssa chefuensis Thryssa automiteri Thryssa automiteri Thryssa spinidens Species	10 14 10 9 10 15 12 6 n	68.18-77.47 56.81-75.77 56.05-62.6 63.04-81.23 59.69-70.46 83.17-96.7 94.81-120.51 98.71-188.16 79.62-121.26 SL (mm)	339 433 385 67 257 25 182 98 199 n Prey	0.167 P % F	0.005 Polychae % N	0.001 eta % V	0.143 0.400 0.111 % F	0.007 0.010 0.004 Shrimp % N	0.009 0.003 0.001	Th % F 0.400	remator % N	la % V	0.200 (0.030 <0.0 0.040 0.0	01 4 0.600 0.333 0.666	0 0.392 3 0.092 7 0.201	0.017 0.004 0.022	0.143 0.100 0.200	0.009 0.003 0.045	0.003 <0.001 <0.001	0.133 0.083 1.000	0.011 0.092 0.151	<0.001 0.010 0.013	0.143	0.005	<0.001	0.100	0.003 <0.001
Anchoa colonensis Encrasicholina punctifer Encrasicholina heteroloba Herklotsichihys castelnaui Stolephorus brachycephalus Stolephorus chinensis Thryssa chefuensis Thryssa chefuensis Thryssa spinidens Species Anchoa colonensis Encrasicholina munctifer	10 14 10 9 10 15 12 6 n 10 10	68.18-77.47 56.81-75.77 56.05-62.6 63.04-81.23 59.69-70.46 83.17-96.7 94.81-120.51 98.71-188.16 79.62-121.26 SL (mm) 35.56-58.99 68.18-77.47	339 433 385 67 257 25 182 98 199 n Prey 154 339	0.167 P % F	0.005 'olychae % N	0.001 eta % V	0.143 0.400 0.111 % F 0.100 0.400	0.007 0.010 0.004 Shrimp % N 0.006 0.029	0.009 0.003 0.001 % V 0.012 0.165	Th % F 0.400	rematoo % N 0.039	la % V 0.001	0.200 (0.030 <0.0 0.040 0.0	01 4 0.600 0.33 0.66	0 0.392 3 0.092 7 0.201	0.017 0.004 0.022	0.143 0.100 0.200	0.009 0.003 0.045	0.003 <0.001 <0.001	0.133 0.083 1.000	0.011 0.092 0.151	<0.001 0.010 0.013	0.143	0.005	<0.001	0.100	0.003 <0.001
Anchou colonensis Encrasicholina heteroloba Herklotsichihys castelnaui Stolephorus brachycephalus Stolephorus chinensis Thryssa chliennis Thryssa dussumieri Thryssa dussumieri Thryssa dussumieri Thryssa spinidens Species Anchoa colonensis Encrasicholina punctifer Encrasicholina punctifer	10 14 10 9 10 15 12 6 n 10 10 10 14	68.18-77.47 56.81-57.77 56.05-62.6 63.04-81.23 59.69-70.46 83.17-96.7 94.81-120.51 98.71-188.16 79.62-121.26 SL (mm) 35.56-58.99 68.18-77.47 56.81.75 77.47	339 433 385 67 257 25 182 98 199 n Prey 154 339 433	0.167 P % F 0.100	0.005 olychao % N 0.003	0.001 eta % V 0.004	0.143 0.400 0.111 % F 0.100 0.400 0.071	0.007 0.010 0.004 Shrimp % N 0.006 0.029 0.002	0.009 0.003 0.001 % V 0.012 0.165 0.019	Th % F 0.400	rematoo % N 0.039	la % V 0.001	0.200 (0.030 <0.0	01 4 0.60 0.33 0.66	0 0.392 3 0.092 7 0.201	0.017 0.004 0.022	0.143 0.100 0.200	0.009 0.003 0.045	0.003 <0.001 <0.001	0.133 0.083 1.000	0.011 0.092 0.151	<0.001 0.010 0.013	0.143	0.005	<0.001	0.100	0.003 <0.001
Anchoa colonesis Encrasicholina punctifer Encrasicholina heteroloba Herklotsichthys castelnaui Stolephorus brachycephalus Stolephorus chinensis Thryssa chefuensis Thryssa dusumieri Thryssa dusumieri Thryssa spinidens Species Anchoa colonensis Encrasicholina punctifer Encrasicholina punctifer Encrasicholina heteroloba	10 14 10 9 10 15 12 6 n 10 10 10 14 10	68.18-77.47 56.81-75.77 56.05-62.6 63.04-81.23 59.69-70.46 83.17-96.7 94.81-120.51 98.71-188.16 79.62-121.26 SL (mm) 35.56-58.99 68.18-77.47 56.81-75.77	339 433 385 67 257 25 182 98 199 n Prey 154 339 433 385	0.167 P % F 0.100	0.005 Polychae % N 0.003	0.001 eta % V 0.004	0.143 0.400 0.111 % F 0.100 0.400 0.071	0.007 0.010 0.004 Shrimp % N 0.006 0.029 0.002	0.009 0.003 0.001 % V 0.012 0.012 0.015 0.019	Th % F 0.400	remator % N 0.039	la % V 0.001	0.200 (0.030 <0.0	01 .4 0.600 0.33 0.66	0 0.392 3 0.092 7 0.201	0.017 0.004 0.022	0.143 0.100 0.200	0.009 0.003 0.045	0.003	0.133 0.083 1.000	0.011 0.092 0.151	<0.001 0.010 0.013	0.143	0.005	<0.001	0.100	0.003 <0.001
Anchoa colonensis Encrasicholina punctifer Encrasicholina heteroloba Herklotsichthys castelnaui Stolephorus brachycephalus Stolephorus chinensis Thryssa dusumieri Thryssa dusumieri Thryssa dusumieri Thryssa spinidens Species Anchoa colonensis Encrasicholina punctifer Encrasicholina punctifer Encrasicholina heteroloba Herklotsichthys castelnaui	10 14 10 9 10 15 12 6 n 10 10 10 14 10	68.18-77.47 56.81-57.77 56.05-62.6 63.04-81.23 59.69-70.46 83.17-96.7 98.71-188.16 79.62-121.26 SL (mm) 35.56-58.99 68.18-77.47 56.81-75.77 56.61-62.6	339 433 385 67 257 182 98 199 n Prey 154 339 433 385 67	0.167 P % F 0.100	0.005 folychae % N 0.003	0.001 eta % V 0.004	0.143 0.400 0.111 % F 0.100 0.400 0.071	0.007 0.010 0.004 Shrimp % N 0.006 0.029 0.002 0.028	0.009 0.003 0.001 <u>% V</u> 0.012 0.165 0.019	Th % F 0.400	rematoo % N 0.039	la % V 0.001	0.200 (0.030 <0.0	01 4 0.60 0.33 0.66	0 0.392 3 0.092 7 0.201	0.017 0.004 0.022	0.143 0.100 0.200	0.009 0.003 0.045	0.003 <0.001 <0.001	0.133 0.083 1.000	0.011 0.092 0.151	<0.001 0.010 0.013	0.143	0.005	<0.001	0.100	0.003 <0.001
Anchoa colonensis Encrasicholina punctifer Encrasicholina heteroloba Herklotsichthys castelnaui Stolephorus brachycephalus Stolephorus chinensis Thryssa dussumieri Thryssa dussumieri Thryssa dussumieri Thryssa dussumieri Thryssa spinidens Species Anchoa colonensis Encrasicholina punctifer Encrasicholina heteroloba Herklotsichthys castelnaui Stolephorus chinensis	10 14 10 9 10 15 12 6 n 10 10 14 10 10 9	68.18-77.47 56.81-75.77 56.05-62.6 63.04-81.23 59.69-70.46 83.17-96.7 94.81-120.51 98.71-188.16 79.62-121.26 SL (mm) 35.56-58.99 68.18-77.47 56.81-75.77 56.05-62.6 63.04-81.23 59.697.046	339 433 385 67 257 182 98 199 n Prey 433 385 67 257	0.167 P % F 0.100	0.005 olychae % N 0.003	0.001 eta % V 0.004	0.143 0.400 0.111 <u>% F</u> 0.100 0.400 0.071 1.000	0.007 0.010 0.004 Shrimp % N 0.006 0.029 0.002 0.328	0.009 0.003 0.001 <u>% V</u> 0.012 0.165 0.019 0.955	Th % F 0.400	remator % N 0.039	la % V 0.001 <0.001	0.200 (0.030 <0.0	01 4 0.60 0.33 0.66) 0.392 3 0.092 7 0.201	0.017	0.143 0.100 0.200	0.009 0.003 0.045	0.003 <0.001 <0.001	0.133 0.083 1.000	0.011 0.092 0.151	<0.001 0.010 0.013	0.143	0.005	<0.001	0.100	0.003 <0.001
Anchoa colonensis Encrasicholina punctifer Encrasicholina heteroloba Herklotsichthys castelnaui Stolephorus chinensis Thryssa chefuensis Thryssa chefuensis Thryssa automicri Thryssa apinidens Species Anchoa colonensis Encrasicholina punctifer Encrasicholina heteroloba Herklotsichthys castelnaui Stolephorus chinensis	10 14 10 9 10 15 12 6 n 10 10 14 10 9 10	68.18-77.47 56.81-57.77 56.05-62.6 63.04-81.23 59.69-70.46 83.17-96.7 94.81-120.51 98.71-188.16 79.62-121.26 SL (mm) 35.56-58.99 68.18-77.47 56.81-75.77 56.05-62.6 63.04-81.23 59.69-70.46 83.179-67	339 433 385 67 257 25 182 98 199 n Prey 154 339 433 385 67 257 25	0.167 P % F 0.100	0.005 olychau % N 0.003	0.001 eta % V 0.004	0.143 0.400 0.111 <u>% F</u> 0.100 0.400 0.071 1.000 0.800	0.007 0.010 0.004 Shrimp % N 0.006 0.029 0.002 0.328 0.720	0.009 0.003 0.001 0.001 0.001 0.012 0.015 0.019 0.955	Th % F 0.400	remator % N 0.039 0.090	Ia % V 0.001 ≤0.001	0.200 (0.030 <0.0	01 4 0.60 0.33 0.66) 0.392 3 0.092 7 0.201	0.017	0.143 0.100 0.200	0.009 0.003 0.045	0.003 <0.001 <0.001	0.133 0.083 1.000	0.011 0.092 0.151	<0.00 0.010 0.013	0.143	0.005	<0.001	0.100	0.003 <0.001
Anchoa colonensis Encrasicholina punctifer Encrasicholina heteroloba Herklotsichthys castelnaui Stolephorus chinensis Thryssa chefuensis Thryssa chefuensis Thryssa chefuensis Thryssa spinidens Species Anchoa colonensis Encrasicholina punctifer Encrasicholina heteroloba Herklotsichthys castelnaui Stolephorus chinensis Thryssa chefuensis Thryssa chefuensis	10 14 10 9 10 15 12 6 n 10 10 14 10 10 9 10 15	68.18-77.47 56.05-62.6 63.04-81.23 59.697.0.46 83.17-96.7 94.81-120.51 98.71-188.16 79.62-121.26 St. (mm) 35.56-58.99 68.18-77.47 56.81-57.77 56.81-57.77 56.81-52.67 63.04-81.23 59.697.0.46 83.17-96.7 94.81-120.51	339 433 385 67 257 25 182 98 199 n Prey 154 339 433 385 67 257 25 182	0.167 P % F 0.100	0.005 tolychau % N 0.003	0.001 eta % V 0.004	0.143 0.400 0.111 % F 0.100 0.400 0.071 1.000 0.800 0.933	0.007 0.010 0.004 Shrimp % N 0.006 0.029 0.002 0.328 0.720 0.475	0.009 0.003 0.001 0.001 0.001 0.012 0.015 0.019 0.955 0.686 0.964	Th % F 0.400	rematod % N 0.039	la % V 0.001 <0.001	0.200 (0.030 <0.0	01 4 0.60 0.33 0.66) 0.392 3 0.092 7 0.201	0.017 0.004 0.022	0.143 0.100 0.200	0.009 0.003 0.045	0.003 <0.001 <0.001	0.133 0.083 1.000	0.011 0.092 0.151	<0.001 0.010 0.013	0.143	0.005	<0.001	0.100	0.003 <0.001
Antinoi colonensis Encrasicholina kneitfer Encrasicholina kneitfer Encrasicholina kneitfer Stolephorus brachycephalus Stolephorus chinensis Thryssa chefuensis Thryssa chefuensis Thryssa spinidens Species Anchoa colonensis Encrasicholina punctifer Encrasicholina punctifer Encrasicholina punctifer Encrasicholina punctifer Encrasicholina punctifer Stolephorus chinensis Stolephorus chinensis Thryssa chefuensis Thryssa chefuensis	10 14 10 9 10 15 12 6 n 10 10 10 10 10 10 9 10 15 12	68.18-77.47 56.05-62.6 63.04-81.23 59.697.046 83.17-96.7 94.81-120.51 98.71-188.16 79.62-121.26 SL (mm) 35.56-58.99 68.18-77.47 56.81-75.77 56.58-62.6 63.04-81.23 59.69-70.46 83.17-96.7 94.81-120.51 94.81-120.51	339 433 385 67 257 182 98 199 n Prey 154 339 433 385 67 257 25 182 98	0.167 P % F 0.100	0.005 lolychau % N 0.003	0.001 eta % V 0.004	0.143 0.400 0.111 0.111 % F 0.100 0.400 0.071 1.000 0.800 0.933 1.000	0.007 0.010 0.004 Shrimp % N 0.006 0.029 0.002 0.328 0.720 0.475 0.561	0.009 0.003 0.001 0.001 0.001 0.012 0.015 0.019 0.955 0.686 0.964 0.933	Tn % F 0.400	remato % N 0.039	la % V 0.001 <0.001	0.200 (0.030 <0.0	01 4 0.60 0.33 0.66	0.392	0.017	0.143	0.009 0.003 0.045	0.003 <0.001 <0.001	0.133 0.083 1.000	0.011 0.092 0.151	<0.001 0.010 0.013	0.143	0.005	<0.001	0.100	0.003 <0.001
Anchoa colonensis Encrasicholina heteroloba Herklotsichthys castelnaui Stolephorus brachycephalus Stolephorus chinensis Thryssa dussumieri Thryssa aksumieri Thryssa aksumieri Thryssa spinidens Species Anchoa colonensis Encrasicholina punctifer Encrasicholina punctifer Encrasicholina punctifer Encrasicholina heteroloba Herklotsichthys castelnaui Stolephorus chinensis Thryssa dussumieri Thryssa dussumieri Thryssa dussumieri Thryssa dusumieri	10 14 10 9 10 15 12 6 n 10 10 14 10 10 10 9 10 15 12 6	68.18-77.47 56.81-75.77 56.05-62.6 63.04-81.23 59.697.046 83.17-96.7 94.81-120.51 98.71-188.16 79.62-121.26 St. (mm) 35.56-58.99 68.18-77.47 56.81-75.77 56.81-75.77 56.81-75.77 56.81-75.77 56.81-26.6 63.04-81.23 59.69-70.46 83.17-96.7 94.81-120.51 98.71-188.16	339 433 385 67 257 182 98 199 n Prey 154 339 433 385 67 257 25 182 98 199	0.167 P % F	0.005 olychae % N 0.003	0.001 eta % V 0.004	0.143 0.400 0.111 <u>% F</u> 0.100 0.400 0.071 1.000 0.800 0.933 1.000	0.007 0.010 0.004 Shrimp % N 0.006 0.029 0.002 0.328 0.720 0.475 0.561 0.583	0.009 0.003 0.001 0.001 0.001 0.012 0.165 0.019 0.955 0.686 0.964 0.933 0.963	Th % F 0.400 0.300	remator % N 0.039 0.090	la % V 0.001	0.100 (0.030 <0.0	4 0.60 0.33 0.66	0.392	0.017 0.004 0.022	0.143 0.100 0.200	0.009 0.003 0.045	0.003 <0.001 <0.001	0.133 0.083 1.000	0.011 0.092 0.151	<0.001 0.010 0.013	0.143	0.005	<0.001	0.100	0.003 <0.001

Figure 3.1. Time-calibrated clupeoid phylogeny resulting from concatenated Bayesian analysis of the 6-gene dataset in BEAST v.2.4.5. Nodes are labeled with posterior Bayesian probabilities if support is <0.95. Time, in millions of years, is shown along the x-axis. Node bars show the 95% highest posterior density interval of divergence time estimates. Shaded clupeoid lineages: (1) Alosinae, (2) Dorosomatinae, (3) Ehiravinae, (4) Clupeinae, (5) Dussumieriinae, (6) Engraulidae, (7) Pristigasteridae, (8) Chirocentridae, and (9) Spratelloidinae.

Figure 3.2. Time-calibrated clupeoid phylogeny inferred by concatenated Bayesian analysis of my 4-gene dataset in BEAST 2.4.5. Time, in millions of years, is shown along the x-axis. Node bars show the 95% highest posterior density interval of divergence time estimates. Line drawings of representative clupeoids from top to bottom: *Alosa chrysochloris, Brevoortia tyrannus, Clupeichthys aesarnensis, Sundasalanx mekongensis,*

Herklotsicthys castelnaui, Escualosa thoracata, Sardinella albella, Ethmalosa fimbriata, Limnothrissa miodon, Chriocentrus dorab, Ilisha melastoma, Opisthopterus tardoore, Clupea harengus, Dussumieria elopsoides, Amazonsprattus scintilla, Lycengraulis batesii, Pterengraulis atherinoides, Anchoa mitchilli, Anchoa hepsetus, Cetengraulis edentulus, Engraulis japonicus, Encrasicholina punctifer, Stolephorus nelsoni, Coilia dussumieri, Thryssa setirostris, and Spratelloides gracilis.

Figure 3.3. Summary of diet (A) and habitat use (B) transition frequencies (average number of transitions) in Clupeoidei estimated using the 4-gene concatenated Bayesian phylogeny with taxa missing habitat and diet character data removed and 1000 stochastic

character mapping simulations. I only show transitions with average frequencies greater than 1.0. A representative clupeoid species is pictured with each character state. Detritivore, phytoplanktivore, and algivore are considered herbivorous trophic guilds.

Figure 3.4. Evolutionary history of diet (trophic guilds) in Clupeoidei estimated using the 4-gene concatenated Bayesian phylogeny with taxa trophic guild data removed and 1000 stochastic character mapping simulations. Detritivore, phytoplanktivore, and algivore trophic guilds are considered herbivorous.

Figure 3.5. Number of clupeoid species (y-axis) at 5⁰ latitudinal transects (absolute value of latitude; x-axis). The light gray portion of bars represents the number of herbivorous species and the light (herbivores) and dark (non-herbivores) portions of each bar are labeled with number of species.

Figure 3.6. Contmap ancestral state reconstructions of continuous characters estimated using my 4-gene concatenated Bayesian clupeoid phylogeny with taxa missing continuous character data removed. The left contmap shows the evolutionary history of the herbivory character (warm colors = highly herbivorous) and the right contmap shows the evolutionary history of the latitude character (cool colors = high latitudes).

CHAPTER 4

Niche breadth, diversification rates, and latitude are decoupled in clupeiform fishes (anchovies, sardines, allies): support for tropical conservatism in the origins of the latitudinal diversity gradient

1. Introduction

The increasing species richness from the poles to the equator, called the latitudinal diversity gradient, is one of the most striking and pervasive spatial patterns of biodiversity. The gradient is global in scale, observed in living and extinct lineages, and exhibited by nearly all groups of organisms regardless of their ecology (Otté & Bohn 1850; Hawkins 2001; O'Brien et al. 2000; Hillebrand 2004a,b; Fuhrman et al. 2008; Buckley et al. 2010; Stomp et al. 2011; Rabosky et al. 2018; Economo et al. 2019). The latitudinal diversity gradient has existed off and on for over 325 million years, seemingly diminishing during warm periods of earth's history and returning during cooler periods (Crame 2001; Leighton 2005; Powell et al. 2012; Mannion et al. 2014; Marcot et al. 2016; Shiono et al. 2018). Despite its pervasiveness, the origins of the latitudinal diversity gradient are poorly understood. This gap in scientific theory limits our understanding of spatial variation in species richness, undermines attempts to predict impacts of changing environments on biodiversity, and hinders sustainable management of natural resources (Brown 2014; Pontarp et al. 2019).

There are numerous hypotheses to explain the processes underlying the formation and maintenance of the latitudinal diversity gradient. These hypotheses can be grouped into three categories: (1) tropical conservatism/time for speciation, (2) species carrying capacity/ecological limits, and (3) diversification rate hypotheses (reviewed by Mittelbach et al. 2007; Pontarp et al. 2019). These three categories of hypotheses are not mutually exclusive and some share underlying processes (Pontarp et al. 2019). It is clear that climate is a key parameter in any mechanistic model of the latitudinal diversity gradient because climate predicts many of the deviations from this pattern (O'Brien et al. 2000; Morinière et al. 2016). For example, models that included climate variables such as rainfall and temperature better predicted geographic patterns of woody plant species richness than models only including a latitude and longitude variables (O'Brien et al. 2000). However, it remains uncertain which hypothesis or combination of hypotheses explains the latitudinal gradient and what processes interact with climate to shape species richness (Mittelbach et al. 2007). Uncertainty remains because rigorously testing competing latitudinal gradient hypotheses requires extensive data, including phylogenies for large groups of organisms (Mittelbach et al. 2007; Pontarp et al. 2019).

Tropical niche conservatism hypotheses for explaining the diversity gradient posit that the tropics are species rich because tropical climates have had more time to accumulate species than temperate climates, which have shrunk or disappeared entirely during warm periods of Earth's history (Zachos et al. 2001). They also propose that climate niche conservatism limited colonization of temperate environments by tropical lineages (Wiens & Donoghue 2004). Without climate niche conservatism, rapid colonization of temperate areas could rapidly eliminate the latitudinal gradient in scenarios that do not invoke different carrying capacities or diversification rates to explain the diversity gradient. Clades with temperate lineages younger than the re-emergence of temperate environments following Oligocene cooling (~34 Ma) and infrequent transitions to temperate environments are consistent with tropical conservatism hypotheses (Wiens & Donoghue 2004). Several, but not all, recent studies have found stronger support for niche conservatism hypotheses for the latitudinal diversity gradient than competing hypotheses (Miller et al. 2018; Rabosky et al. 2018; Shiono et al. 2018; Economo et al. 2019). There is also evidence that time for diversification and niche conservatism might play a role in generating the inverse latitudinal diversity gradients exhibited by some clades (Rivadeneira et al. 2010; Morinière et al. 2016).

Carrying capacity hypotheses for the diversity gradient propose that certain properties of tropical environments, such as constant, high primary productivity resulting from consistent, high inputs of solar radiation and water, more species to coexist than in temperate regions (Janzen 1967; Mittelbach *et al.* 2007; Hurlbert & Stegen 2014). These hypotheses predict that diversity is approximately at equilibrium across all latitudes and consequently regional net diversification rates are near zero over evolutionary timescales. In this scenario diversification rates might vary over shorter periods to maintain species diversity near carrying capacity. Carrying capacity hypotheses predict that lineages exhibited positive net diversification rates early in their history that subsequently decreased to approximately zero (Mittelbach *et al.* 2007; Hurlbert & Stegen 2014). Most recent studies have not found strong evidence for carrying capacity hypotheses (Marin et

al. 2018; Economo et al. 2019). However, there is evidence that carrying capacity might play a role in regulating regional species richness patterns (Coelho et al. 2018; Storch et al. 2018) and diversification rates in some lineages of organisms (Betancur-R et al. 2012; Bloom & Egan 2018).

Diversification rate hypotheses for explaining the latitudinal diversity gradient propose that rapid tropical speciation, low tropical extinction, or both, resulted in a negative correlation between net diversification rate and latitude, thus creating the latitudinal diversity gradient. Many mechanisms have been proposed to produce elevated tropical diversification rates. For example, Jocque et al. (2010) suggested ecological specialization is characteristic of tropical organisms, and this specialization limits dispersal across unfavorable environments, leading to high rates of allopatric speciation. Allen et al. (2006) proposed that high tropical temperatures result in high metabolism, which increases mutation rates. Janzen (1967) hypothesized that high net diversification rates at low latitudes might result from low extinction rates in temporally stable tropical climates. There is no consensus regarding the importance of diversification rates to the diversity gradient, with different studies reporting positive (Rabosky et al. 2018), negative (Pyron & Wiens 2013; Pyron 2014), or no correlation (Rabosky et al. 2015; Tedesco et al. 2017; Miller et al. 2018; Economo et al. 2019) between latitude and diversification rates.

There have been few tests of latitudinal diversity gradient hypotheses using teleost fishes as a study system and these focused on large clades and yielded conflicting results. Tedesco et al. (2017), using a dataset containing both freshwater and marine fishes, and Rabosky et al. (2018), using a marine fishes dataset, found support for tropical niche conservatism hypotheses. By contrast, Siqueira et al. (2016) reported higher net diversification rates in tropical marine reef fishes relative to extratropical regions, in support of diversification rate hypotheses. These studies tested diversification rate and niche conservatism hypotheses, but did not test the carrying capacity hypothesis. Additional studies that simultaneously test all three types of diversity gradient hypotheses are needed to reveal the forces that generated the latitudinal diversity gradient in fishes. Investigations of specific clades of fishes that incorporate detailed species range and ecology data can lead to a mechanistic understanding of the latitudinal diversity gradient and determine if processes governing species richness patterns vary among different clades of fishes.

I tested the predictions of tropical conservatism, species carrying capacity, and diversification rate hypotheses to gain insight into the origins of the latitudinal diversity gradient in a lineage of teleost fishes, the Clupeiformes (anchovies, herrings, sardines, and relatives). This group contains 394 recognized species, is globally distributed in freshwater and marine habitats, and exhibits a latitudinal diversity gradient (Whitehead et al. 1988; Lavoué et al. 2013; Bloom & Lovejoy 2014; Egan et al. 2018a, Ch3; Egan et al. 2018b, Ch2). This group of fishes originated approximately 150 Ma, which allowed me to examine the timing of transitions to temperate areas and temporal patterns of net diversification (Egan et al. 2018a, Ch3; Bloom & Egan 2018). Additionally, I tested the predictions of a specific diversification rates hypothesis for the latitudinal gradient: the

"climate-mediated dispersal-ecological specialization trade-off (CDES trade-off)" hypothesis (Jocque et al. 2010). This model proposes that elevated tropical speciation rates are responsible for the latitudinal diversity gradient. In this model, the seasonality of temperate climates promotes the evolution of generalist species and temporally stable tropical environments promote the evolution of specialists. Generalists are expected to maintain gene flow between populations under a wider range of environmental conditions than specialists, and gene flow between populations can be antagonistic the speciation process (Kisel & Barraclough 2010). Consequently, this model predicts that generalists exhibit slower speciation rates than specialists, resulting in high tropical and low temperate speciation rates, which results in a latitudinal diversity gradient. Although based on compelling arguments, the relationships between environmental variability, the evolution of generalists and specialists, and specialists, and specialists proposed by the CDES tradeoff model have yet to be rigously tested.

I used phylogenetic, dietary, and species geographic range data to investigate potential explanations for the origins of the latitudinal diversity gradient in Clupeiformes by testing the following hypotheses: (1) climate niche breadth is phylogenetically conserved, (2) speciation and net diversification rates are negatively correlated with latitude, (3) temperate clupeiform lineages originated after the onset of Oligocene cooling (~34 Ma), (4) niche breadth is positively correlated with latitude, and (5) niche breadth is negatively correlated with speciation and net diversification rates. I did not estimate extinction rates because extinction rate parameter estimates are often unreliable (Davis et al. 2013). As noted above, the three categories of latitudinal diversity gradient hypotheses are not

necessarily mutually exclusive and some latitudinal diversity gradient hypotheses share underlying processes (Pontarp et al. 2019). Consequently, the objective of this study was to identify mechanisms that were likely not involved in the origins of the clupeiform latitudinal diversity gradient and identify candidate latitudinal gradient hypotheses deserving additional investigation.

2. Materials and Methods

2.1 Phylogeny

For inferences of trait evolution, estimation of diversification rates, and phylogenetic comparative analyses, I used a time-calibrated clupeiform phylogeny estimated via concatenated Bayesian analyses of one mitochondrial gene (*cytb*) and three nuclear genes (*rag1*, *rag2*, and *slc*). The phylogeny contained 181 clupeiform species, included all major clupeiform lineages, and 67 of 82 genera (Egan et al. 2018a, Ch3; Table 4.1).

2.2 Diet data

I collected prey type and prey size consumption data from scientific articles and by quantifying the gut contents of fish specimens borrowed from museums or collected in Iran, Australia, Taiwan, and Thailand (Table 4.2). Many fishes exhibit ontogenetic shifts in prey type and size consumption (Scharf et al. 2000; Egan et al. 2018b, Ch2). Therefore, I only included diet data from individuals longer than 40% of the maximum reported length for each species in my dataset to standardize interspecific diet comparisons.

I conducted gut content analysis using methods compatible with previous studies measuring clupeiform prey sizes (Egan et al. 2017, Ch1; Egan et al. 2018a, Ch3; Egan et al. 2018b, Ch2) to ensure that published data could be integrated with the novel diet data reported here. I measured the standard length (SL) of each specimen using digital calipers before dissecting gut contents onto a microscope slide with a 1×1 mm grid. I only examined prey in the anterior portion of digestive tracts because some prey types digest faster than others, which can bias diet descriptions if heavily digested gut contents are considered (Gannon 1976; Buckland et al. 2017). I quantified prey in the first quarter of digestive tracts in species with no stomachs/gizzards and prey in the digestive tract up to the posterior end of the stomach/gizzard in species with stomachs/gizzards. I excluded individuals if the anterior regions of the digestive tracts were empty or primarily contained highly digested prey. I estimated total gut content volume using the geometric volume equation for a cuboid and measurements of the gut contents obtained by evenly spreading gut contents on a grid slide in a rectangular shape to a depth of 1 mm. I took a representative subsample of the gut contents and identified these prey items to the lowest practical taxonomic level and photographed individual prey items with a microscopemounted Spot Insight digital camera (Model 14.2 Color Mosaic). I estimated the volumes of individual prey by measuring their width, length, and area using the photographs, ImageJ software (http://www.imagej.nih.gov/ij), and cylinder and ellipsoid equations following Alcaraz et al. (2003), Espinoza and Bertrand (2008), and Egan et al. (2018b, Ch2). In instances when prey were degraded and only prey width was measurable, I

estimated prey volume by interpolation based on simple linear regression of prey width versus prey volume from high-quality prey of the same prey type. It was not practical to measure individual detrital particles; however, I observed that detrital particles were nearly always < 100 μ m wide. Therefore, when guts contained detritus, I assigned detritus to a 1 μ m < 100 μ m size bin for calculations and measured the proportions of detrital and non-detrital material in the gut. I expressed prey type consumption for each species as percent volume.

2.3 Prey type trophic guild analysis

To investigate evolutionary and geographic patterns of prey type consumption and facilitate interpolation of prey size niche breadths (see following section) I assigned clupeiform species to trophic guilds. Trophic guilds are groups of species eating similar prey (Root 1967; Garrison & Link 2000). I binned the prey types identified in the literature review and gut content analyses into 19 prey categories for statistical analysis (Table 4.3). These prey categories are similar to those used in previous fish diet studies and describe functional, rather than taxonomic similarity among prey (Nakamura et al. 2003; Hundt et al. 2014; Egan et al. 2017, Ch1; Egan et al. 2018b, Ch2). In this prey type dataset, I included diets expressed as percent number or volume. I excluded diets expressed as frequency of occurrence because this method does not report diets as percentages of prey types summing to 100%, which precluded me from combining these data with numerical and volumetric data to estimate diet dissimilarity. I did not include

prey types comprising < 0.001% of a species' diet in analyses. I calculated diet dissimilarity using Bray-Curtis dissimilarity indices (Bray and Curtis 1957; Somerfield 2008), then grouped clupeiforms based upon similarity in prey type consumption using unweighted average linkage hierarchical agglomerative cluster analysis (UPGMA) with the program *R* v3.5.3 (http://www.r-project.org) package *vegan* (Legendre & Legendre, 2012; Oksansen et al. 2016). I identified statistically significant clupeiform groupings (trophic guilds) using a bootstrap randomization approach and the RA4 algorithm (Lawlor 1980) following Jaksić and Medel (1990) and Buchheister and Latour (2015). In addition to a "full" trophic guild scheme that considered all statistically significant predator clusters as trophic guilds, I also used an arbitrary threshold of 75% dissimilarity to demarcate a "conservative" trophic guild scheme. I qualitatively assigned species to trophic guilds for which I was only able to obtain frequency of occurrence or qualitative diet data.

2.4 Niche concepts and quantification

I adhered to the resource-utilization conceptualization of the ecological niche, which defines the ecological niche as a multidimensional volume with axes that describe a species' use of different resources (Schoener 2009). Niche breadth describes the range of resource use along a single niche axis and specialization and generalization are processes describing the evolution of a smaller/narrower or larger/wider niche volume/breadth, respectively (MacArthur & Levins 1967; Schoener 2009; Devictor et al. 2010).

I estimated diet niche breadth in two ways to comprehensively characterize the relationship between diet niche breadth and latitude and diversification rates. First, I used the inverse of Simpson's (1949) diversity index (Pianka 1973) to represent the breadth of prey type consumption.

Prey-type niche breadth =
$$\frac{1}{\sum_{i=1}^{n} P_i^2}$$

P is the proportional use of each prey category *i*. Niche breadth values range from 1 (one prey category used) to *n* (consumption of every prey category). I also measured niche breadth as the range of prey sizes consumed. I did not include prey in prey-size niche breadth calculations that contributed minimally to the overall diet by assigning prey to size bins (<100 μ m, 100 μ m < 300 μ m, 300 μ m < 600 μ m, etc.) and then excluding prey in bins comprising less than one percent of the diet by volume.

I was unable to quantify prey-size niche breadth for all species in my analysis. Therefore, I interpolated prey-size niche breadths for species for which I was only able to obtain prey type data. I did this by calculating the mean prey-size niche breadths of each trophic guild. I tested for statistically significant differences in prey-size niche breadth between trophic guilds using analysis of variance (ANOVA). Then, I assigned mean prey-size niche breadth values to relevant clupeiform species according to their trophic guild using both the full and conservative trophic guild schemes, yielding two prey-size niche breadth datasets for analysis. I tested for correlation between prey-size and prey-type niche breadth using linear regression.

2.5 Species range data

I collected species range data from the literature (Borsa et al. 2004; Loeb & Alcântara 2013), FishNet2 (www.fishnet2.net) occurrence records, and compiled Ocean Biogeographic Information System (www.iobis.org; Grassle 2000) and Global Biodiversity Information Facility (www.gbif.org; GBIF, 2017) occurrence records accessed via AquaMaps (Kaschner et al. 2016). I used these data to code two characters characterizing the ranges of each species: (1) a continuous character describing the absolute value of the latitude of the furthest point of a species' range from the equator and (2) a discrete character describing the climate zone (tropical, subtropical, or temperate) inhabited by each species, which was determined using FishBase climate zone determinations (based on distributional data and sea surface temperatures) and latitudes encompassed by species' ranges (Table 4.1). Tropical, subtropical, and temperate latitudes were considered to fall approximately within the latitudes of $< 23.5^{0}$, 23.5^{0} to 35^{0} , and $> 35^{0}$, respectively.

2.6 Inferring trait evolution

I measured the phylogenetic signal λ (Pagel 1999), a measure of the phylogenetic correlation of species' trait values, of ecological traits (climate zone, prey-size niche breadth, and prey-type niche breadth) assuming a Brownian motion model of trait evolution using the *phylosig R* function in *phytools* (Revell 2012). Values near 1 indicate correlation between species that is close to the expectation under a Brownian model of trait evolution, while values close to 0 indicate little phylogenetic correlation among trait values relative to expectations of Brownian trait evolution.

I estimated the evolutionary history of each discrete ecological trait (climate zone and trophic guild) using Revell's (2012) modification of Bollback's (2006) Bayesian stochastic character mapping method using the *make.simmap phytools* function run for 1000 iterations. I estimated the evolutionary history of continuous characters (maximum latitude, prey-size niche breadth, and prey-type niche breadth) using the *contMap* phytools function. Where necessary, I trimmed trees to match character sampling using the *drop.tip R* function in package *ape* (Paradis & Schliep 2019).

2.7 Testing for correlation between niche breadth, range size, and latitude

I tested for correlation between niche breadth and latitude using phylogenetic ANOVA with the *phylANOVA phytools* function for discrete predictor variables and phylogenetic least squares regression (PGLS) with the *pgls R* function in the *caper* package (Orme et al. 2013) for continuous predictor. I trimmed taxa missing character data from the phylogeny for each analysis and tested for correlations between the following sets of characters: (1) climate zone versus prey-type niche breadth, (2) climate zone versus prey-size niche breadths estimated using the conservative trophic guild scheme, (3) climate zone versus prey-size niche breadths estimated using the full trophic guild scheme, (4) maximum latitude versus prey-type niche breadth, (5) maximum latitude versus prey-size

niche breadth estimated using the conservative trophic guild scheme, and (6) maximum latitude versus prey-size niche breadth estimated using the full trophic guild scheme.

2.8 Estimation of macroevolutionary rates

I estimated speciation, extinction, and net diversification rates in Clupeiformes using program BAMM v.2.5.0 (Rabosky 2014). I set priors for analyses using the setBAMMpriors R function in BAMMtools (Rabosky 2014). I set the prior expectation for shifts to 1, used default Markov Chain Monte Carlo (MCMC) operators, and ran MCMC for 2.10^5 generations. I accounted for incomplete taxon sampling by calculating the proportion of species sampled (sampling fraction) at the genus level if possible and at higher taxonomic levels when necessary (Table 4.3). I checked for convergence of MCMC runs using the log-likelihood trace of MCMC output. I ensured sufficient effective sample sizes of the log-likelihood and number of rate shifts using the effectiveSize R function in coda (Plummer et al. 2006). To determine which rate shift model was best supported by the data, I computed Bayes factors using *BAMMtools*, which allows for model comparison that is robust to prior selection (Rabosky 2014). I considered Bayes factors greater than 20 to be strong model support following Rabosky et al. (2017). I used the *BAMMtools plotRateThroughTime* function to visualize net diversification rate through time across the entire phylogeny and within three major clupeiform lineages and the BAMMtools plot.bammdata function to illustrate modelaveraged diversification rates on the phylogeny.

2.9 Testing for correlations between latitude, niche breadth, and speciation rates

I used *STRAPP* (Rabosky & Huang 2016) and *ES-sim* (Harvey & Rabosky 2018) to test for correlations between species traits and diversification rates. I used *STRAPP* for both continuous (maximum latitude, prey-type niche breadth, and prey-size niche breadth) and discrete characters (climate zone) and net diversification rate and speciation rate. I used *ES-sim* to test for correlations between continuous trait data and speciation rates; *ES-sim* does not calculate net diversification rates or accommodate discrete trait data. The *STRAPP* method generates a null distribution of associations between diversification rate and species traits by permuting trait values among *BAMM* speciation rate regimes. This method has a lower type I error rate, but also lower statistical power (limited by the number of rate regimes present in a phylogeny) than alternative methods for identifying correlations between traits and speciation rate, such as *QuaSSE* (FitzJohn 2010; Rabosky & Huang 2016). The *ES-sim* method has more power than *STRAPP* to detect correlations between traits and rates in small phylogenies and phylogenies containing a small number of rate regimes and also has a low type I error rate (Harvey & Rabosky 2018).

3. Results

3.1 Character data

Assembling character data for clupeiforms confirmed the previously reported latitudinal gradient in Clupeformes (Lavoué et al. 2013), with 22, 57, and 315 species occurring in

temperate, subtropical, and tropical areas, respectively (Table 4.1). I collected novel diet data for 24 species (Table 4.2).

3.2 Prey type trophic guild analysis

I included 104 species in the prey type cluster analysis. Using a bootstrap ransomization approach, I identified a Bray Curtis dissimilarity index of 0.601 as the threshold for statistically significant differences among clusters. Application of this criterion to cluster analysis results demarcated eight trophic guilds. I call these eight trophic guilds the "full" trophic guild scheme (Figure 4.1). Trophic guild names refer to dominant/distinct prey categories in each trophic guild, but are not indicative of exclusive consumption of a specific prey category and trophic guilds with similar or the same names in other studies (e.g. piscivore) are not necessarily equivalent. Tropical and subtropical areas each contained seven trophic guilds while temperate regions only contained four trophic guilds: tropical (crustacivore, detritivore, molluscivore, phytoplanktivore, piscivore, terrestrial invertivore, zooplanktivore), subtropical (crustacivore, detritivore, algivore, phytoplanktivore, piscivore, terrestrial invertivore, zooplanktivore), and temperate (crustacivore, detritivore, piscivore, zooplanktivore). The prey categories comprising the bulk of the diets in each trophic guild are summarized in Table 4.4.

Using the more conservative Bray Curtis dissimilarity threshold of 0.75, I identified four trophic guilds: omnivore, crustacivore, piscivore, and terrestrial invertivore. In this "conservative" trophic guild scheme the zooplanktivore and crustacivore guilds were

combined into a more inclusive crustacivore trophic guild, and detritivore and phytoplanktivore guilds were combined into a more inclusive detritivore trophic guild (Figure 4.1). I assigned 25 additional species to trophic guilds for which only frequency of occurrence or qualitative diet data were available using the results of the trophic guild analyses.

3.3 Niche breadth

I quantified size-based niche breadth for 23 species and interpolated size-based niche breadths for the remaining 98 species included in analyses. Most trophic guilds in the full scheme exhibited differences in prey-size niche breadths, but not all differences were statistically significant (Table 4.5). All trophic guilds in the conservative scheme exhibited statistically significant differences in prey-size niche breadth (Table 4.5). I estimated prey-type niche breadth for 87 species. Prey-type niche breadths were not significantly different between trophic guilds (Table 4.5). Linear regression found no correlation between prey-type and prey-size niche breadth (p = 0.810).

3.4 Trait evolution

All ecological traits, except for prey-type niche breadth, exhibited moderate to strong phylogenetic signal: prey-size niche breadth interpolated using full trophic guild scheme ($\lambda = 0.718$), prey-size niche breadth interpolated using conservative trophic guild scheme ($\lambda = 0.654$), prey-type niche breadth ($\lambda = 0.338$), and climate zone ($\lambda = 0.767$). There were 39 total evolutionary transitions in trophic guild. The most common transitions were zooplanktivore to piscivore (8 transitions), zooplanktivore to crustacivore (9 transitions), and zooplanktivore to phytoplanktivore (4 transitions; Figure 4.2). Thirteen of these changes represented trophic specialization and 26 changes represented trophic generalization along the prey size niche axis. The continuous character mapping of preytype niche breadth also revealed both instances of generalization and specialization (Figure 4.3). Stochastic character mapping analysis identified 14 transitions from tropical to subtropical, 4 transitions from tropical to temperate, 2 transitions from subtropical to tropical, 3 transitions from subtropical to temperate, 2 transitions from temperate to tropical, and 3 transitions from temperate to subtropical areas. These findings are mirrored by the maximum latitude continuous character mapping (Figure 4.4a). All transitions to temperate environments appeared to have occurred more recently than 34 Ma (Figure 4.4a; Figure 4.4b).

3.5 Testing for correlation between niche breadth and range and latitude

Using PGLS, I did not find significant correlations between prey-size or prey-type niche breadth and latitude in any analyses: prey-size niche breadth interpolated using full trophic guild scheme (eight guilds) versus latitude (p = 0.909), prey-size niche breadth interpolated using the conservative trophic guild scheme (four guilds) versus latitude (p = 0.766), and prey-type trophic guild versus latitude (p = 0.815).

3.6 Estimation of macroevolutionary rates
Bayes factors most strongly supported a speciation rate model with 5 regimes: Bayes factor of 120.89 versus 112.89 for a 6-rate regime model, 92.00 for a 4-rate regime model, and 70.56 for a 3-rate regime model. Net diversification rates were positive in Clupeiformes overall and in major clupeiform lineages (Figure 4.4a).

3.7 Latitude and niche breadth versus diversification rates

STRAPP analyses did not find significant correlations between maximum latitude and speciation rate (p = 0.586) or net diversification rate (p = 0.633), climate zone and speciation rate (p = 0.437) or net diversification rate (p = 0.499), prey-size niche breadth and speciation rate (p = 0.564) or net diversification rate (p = 0.580), or prey-type niche breadth and speciation rate (p = 0.531) or net diversification rate (p = 0.637). Similarly, *ES-sim* also did not find significant correlations between maximum latitude and speciation rate (p = 0.890), prey-size niche breadth and speciation rate (p = 0.539), or prey-type niche breadth and speciation rate (p = 0.890), prey-size niche breadth and speciation rate (p = 0.539), or prey type niche breadth and speciation rate (p = 0.539), or prey type niche breadth and speciation rate (p = 0.539), or prey type niche breadth and speciation rate (p = 0.721).

4. Discussion

I used phylogenetic, ecological niche breadth, and species geographic range data to test predictions of three types of latitudinal diversity gradient hypotheses: (1) niche conservatism/time for speciation, (2) diversification rates, and (3) ecological limits. I also tested for niche breadth evolution as a potential mechanism governing diversification rates within clupeiforms. I found no correlations between niche breadth and latitude, niche breadth and diversification rates, or latitude and diversification rates. Climate zone use exhibited strong phylogenetic signal and reconstructions of the evolutionary history of climate zone suggested that temperate clupeiform lineages primarily arose after the start of Oligocene cooling. Taken together, these results support a niche conservatism/time for speciation explanation of the clupeiform latitudinal diversity gradient.

My results identify tropical conservatism/time for speciation hypotheses as the most likely to explain the clupeiform latitudinal diversity gradient. Tropical conservatism hypotheses predict that climate niche is phylogenetically conserved (has strong phylogenetic signal), tropical origins for lineages originating prior to Oligocene cooling, and that temperate lineages arose via dispersal from the tropics after the Oligocene cooling. My findings were consistent with each of these predictions. First, I inferred tropical origins for clupeiforms in agreement with previous clupeiform research (Lavoué et al. 2013; Egan et al. 2018a, Ch3). Second, clupeiform climate use exhibited strong phylogenetic signal. Finally, I inferred seven invasions of temperate latitudes by clupeiforms, all of which appeared to have occurred since Oligocene cooling (Figure 4.4). These findings are congruent with several other recent studies concluding that niche conservatism hypotheses are most likely to explain the latitudinal diversity gradient (Belmaker & Jetz 2015; Marin et al. 2018; Miller et al. 2018; Rabosky et al. 2018; Shiono et al. 2018; Economo et al. 2019), as well as deviations from this pattern (Morinière et al. 2016). However, there is also some evidence suggesting that

diversification rate might play a secondary in the diversity gradient in some clades, such as tetrapods (Marin et al. 2018).

I did not find support for diversification rate latitudinal diversity gradient hypotheses. Speciation and net diversification rates were variable in clupeiforms, with *BAMM* identifying five diversification rate regimes. Subsequent statistical tests found no correlations between latitude and speciation or net diversification rate, rather than the negative correlations predicted by diversification rate hypotheses. These findings are consistent with several recent studies concluding that diversification rates were not the primary force generating the latitudinal diversity gradient in a variety of vertebrate and invertebrate taxa (Rabosky et al. 2015; Tedesco et al. 2017; Rabosky et al. 2018; Marin et al. 2018; Miller et al. 2018; Economo et al. 2019). Reports of clades with higher diversification rates in tropical relative to temperate areas are not uncommon, but these clades are often nested within larger clades that do not appear to exhibit the same pattern of a high tropical diversification rate (Pyron & Wiens 2013; Pyron 2014; Siqueira et al. 2016). For example, Pyron & Wiens (2013) and Pyron (2014) report a negative correlation between net diversification rates and latitude in the tetrapod clades Amphibia and Squamata, respectively, but Marin et al. (2018) found little evidence when the entire Tetrapoda lineage was examined. Rabosky et al. (2018) and Miller et al. (2018) reported higher fish diversification rates in species-poor temperate marine regions relative to tropical marine regions, a pattern that I did not observe in clupeiforms. Biased taxon sampling can impact the results of diversification rate analyses (FitzJohn et al. 2009). However, it is unlikely my findings were impacted by biased sampling because I

accounted for clade-specific sampling fraction and the phylogeny used in my study was based upon extensive sampling in Africa, the Indo-Pacific region, Europe, and North and South America (Wilson et al. 2008; Bloom & Lovejoy, 2012; Lavoué et al. 2013; Egan et al. 2018a, Ch3).

My findings are also incongruent with carrying capacity diversity gradient hypotheses. These hypotheses predict regional net diversification rates of approximately zero over macroevolutionary timescales and decreases in net diversification rates to near zero in old lineages of organisms, such as clupeiforms (Mittelbach et al. 2007; Hurlbert & Stegen 2014). Net diversification rate through time plots revealed that diversification rate has remained positive since the origin of crown clupeiforms approximately 150 Ma and may have even increased slightly during the past 75 to 50 million years (Figure 4.4b). This evidence concurs with recent latitudinal diversity gradient studies also identifying positive net diversification rates in large clades of organisms over evolutionary timescales (Pyron 2014; Belmaker & Jetz 2015; Economo et al. 2019). My findings do not contradict reports of potential ecological limits on species diversity at regional scales and or within small clades (Coelho et al. 2018; Storch et al. 2018). There is evidence that ecological limits have slowed diversification in some taxa (Betancur-R et al. 2012; Bloom & Egan 2018). For example, Bloom & Egan (2018) identified clupeiform lineages exhibiting slow-downs in net diversification rates, possibly resulting from interspecific competition.

I found substantial variation in prey-size and prey-type niche breadth among clupeiforms and demonstrated a lack of correlation between these two niche breadth estimates. There was substantial variation in prey-type and prey-size niche breadth within trophic guilds. Trophic guild was moderately predictive of prey-size niche breadth, but not predictive of prey-type niche breadth. Egan et al. (2018b, Ch2) also report variation in mean prey size consumption and prey-size niche breadth within trophic guilds. It is interesting that preytype niche breadth varies within and is not predicted by trophic guild because both measurements are based upon the same underlying prey type data. For example, my study quantitatively assigned both Etrumeus golanii and Sardinella albella to the zooplanktivore trophic guild and both species consumed zooplankton, small crustaceans, and eggs. However, these species exhibited meaningful differences in prey-type niche breadth. Sardinella albella consumed relatively similar amounts of each prey type and had a niche breadth of 3.131, while *E. golanii* consumed almost exclusively zooplankton and had a niche breadth of 1.041. These findings highlight the utility of measurements of species resource use that consider niche breadth, in accordance with resource-utilization ecological niche theory, for progress in several areas of biology (e.g. competition, coexistence, phenotypic evolution). These results also demonstrate the increased resolution offered by diet descriptions that measure both prey sizes and types.

I found no support for Jocque et al.'s (2010) hypothesized role of niche breadth evolution in the formation of the latitudinal diversity gradient. I did not identify any correlations between niche breadth and latitude or niche breadth and diversification rates. The small number of previous studies examining relationships between latitude, niche evolution,

diversification rates and corollary processes, such as dispersal, have reported mixed results (Dahirel et al. 2015; Gainsbury and Meiri 2017; Tedesco et al. 2017; Martin and Fahrig 2018; Saupe et al. 2019). The temporal variability of high latitudes, relative to low latitudes, is predicted to promote generalization, which allows species to cope with dynamic environmental conditions (Janzen 1967; Jocque et al. 2010). I may not have observed a relationship between niche breadth and latitude because there are alternative mechanisms by which species might cope with temporal environmental variation. For example, temperate fishes might cope with low winter prev availability via decreased winter metabolism and reliance on stored energy acquired during periods of high prey availability (Cunjak & Power 1987; Amundsen & Knudsen 2009). Additionally, niche breadth expansion (generalization) might be most likely in fishes feeding on variable, short-lived primary consumers such as zooplankton or terrestrial insects. There may be limited selective pressure for the evolution of trophic generalism in fishes feeding on larger, longer-lived prey that are at higher trophic levels and have less temporally variable population sizes. Thus, it is possible that the quantity of prey-type and prey-size niche breadth data and coarse resolution of prey-size niche breadth estimates I used in analyses, which resulted from interpolation of prey size niche breadth for some species, precluded me from observing correlations between niche breadth and latitude. Future studies could collect additional diet data, alleviating the need for interpolation, and specifically examine clupeiform species that feed on temporally variable prey, such as zooplankton. Additionally, I only investigated a single aspect of the ecological niche. It is possible that there are associations between high latitudes and generalism along other niche axes.

I inferred instances of both trophic generalization and trophic specialization along preytype and prey-size niche axes. There is debate regarding the prevalence and significance of the processes of specialization and generalization. For example, specialization has been proposed to be an evolutionary dead end that limits subsequent ecological diversification, and some have argued that generalization is rare in nature and has little relevance to other ecological and evolutionary processes (Futuyma & Moreno 1988; Loxdale et al. 2011; Dennis et al. 2011). I demonstrated that trophic specialization was not a universal dead-end in clupeiforms and that generalization was not particularly rare. In fact, generalization was more common than specialization along the prey-size niche axis (13 instances of specialization and 26 instances of generalization). Other recent studies have found limited evidence of specialization being a dead end and have documented instances of generalism (Kato et al. 2010; Day et al. 2016). Identifying factors that govern niche evolution and relationships between niche size and other ecological and evolutionary processes is challenging given the multidimensional nature of the ecological niche and the large amount of data required to measure niche breadth/size. However, more research investigating factors governing generalization and specialization and the consequences on other processes is warranted given the apparent prevalence of these processes and their hypothesized relevance to numerous biological patterns and processes (Futuyma & Moreno 1988).

The highest diversification rates in clupeiforms were in the temperate and subtropical Alosinae (shads and menhadens) and a largely tropical and almost exclusively South

American clade of anchovies, both lineages that also exhibited high rates of habitat transitions and life history evolution. These lineages contained many evolutionary transitions between freshwater and marine habitats and origins of migratory behavior (Bloom and Lovejoy 2014; Egan et al. 2018a, Ch3). These qualitative observations suggest that evolutionary habitat transitions, migratory behavior, utilization of freshwater habitats, or a combination of these factors may have promoted speciation. Evolutionary habitat transitions have been suggested to facilitate diversification in fishes by allowing lineages to circumvent ecological limits on clade growth, potentially imposed by competition (Betancur-R et al. 2012; Bloom & Egan 2018). Freshwater habitat use has been positively correlated with speciation rate in fishes (Tedesco et al. 2017; Bloom et al. 2013). The impacts of migration on diversification are poorly understood. Tedesco et al. (2017) reported that non-migratory fish lineages exhibited higher diversification rates than migratory lineages, but higher speciation rates and lower extinction rates have been reported in migratory birds (Rolland et al. 2014). Characterizing relationships between habitat transitions, migration, and diversification rates would be a fruitful avenue for additional research.

In this work, I identified tropical conservatism and time for speciation as the most likely explanation for the latitudinal diversity gradient in clupeiforms and found no support for carrying capacity or diversification rate hypotheses. This study adds to a growing body of evidence that tropical conservatism and time for speciation were involved in the formation of the latitudinal diversity gradient. I found no support for trophic niche breadth evolution playing a role in the latitudinal diversity gradient or governing

diversification rates. However, diversification rates were variable in clupeiforms and highest in lineages with high frequencies of habitat and life history evolution, suggesting a link between diversification rates and aspects of niche evolution not considered by this study. I found instances of specialization and generalization, highlighting the need for additional research on the causes and consequences of these processes. **Table 4.1.** Clupeiform character data. Guilds full = trophic guilds determined using a threashold of 0.601 dissimilarity, guilds cons. = trophic guilds determined using a threashold of 0.750, NB cons. guilds = prey-size niche breadth estimated using the conservative trophic guild scheme, NB full guilds = prey-size niche breadth estimated using the full trophic guild scheme, and Max Lat. = maximum latitude.

Family	Species	Guilds full	Guilds cons.	NB cons. guilds	NB full guilds	Prey- type breadth	Climate zone	Max Lat.	Diet Citations
Chirocentridae	Chirocentrus dorab	Pisc	Pisc	10690	10690	1.121	Tropical	35	Chacko 1949; Venkataraman 1960 Stone and Daborn, 1987;
Clupeidae	Alosa aestivalis	Zoop	Crus	1682	993	2.219			Winkelman and Van Den Avyle 2002; Bushkaister and
							Temperate	41	Latour 2015
Clupeidae	Alosa alabamae	Terr	Crus	1682		2.072	Tropical	44	2013
Clupeidae	Alosa algeriensis	Crus	Crus	1682	2607		Subtropical	41	
Clupeidae	Alosa alosa	Zoop	Crus	1682	993	0.972	Tropical	61	Correia et al. 2001; Maitland and Lyle 2005
Clupeidae	Alosa chrysochloris	Pisc	Pisc	10690	10690	1.051	Tropical	45	Whitehead et al. 1988
Clupeidae	Alosa fallax	Pisc	Pisc	10690	10690	2.047			Aprahaman 1989; Assis et al. 1992; Maitland and Lyle 2005; Skóra et al. 2012; Nachón et al.
Clunaidaa	Along madioavis	Disa	Disa	10600	10600	2 166	Tropical	66	2013 Buchheister and
Chupendae	Alosu mediocris	F ISC	F ISC	10090	10090	5.100	Tropical	46	Latour, 2015 Kohler and Ney, 1980; Stone and
Clupeidae	Alosa pseudoharengus	Zoop	Crus	1682	993	4.065			Daborn 1987; Buchheister and Latour 2015:
							Tropical	55	Malek et al. 2016 Buchheister and
Clupeidae	Alosa sapidissima	Crus	Crus	1682	2607	2.214	Tropical	61	Latour 2015; Malek et al. 2016
Clupeidae	Amblygaster sirm	Zoop	Crus	1682	993	1.619	Tropical	35	Whitehead et al. 1988 Chacko 1949 [.]
Clupeidae	Anodontostoma chacunda	Detr	Omni	209	143	1.024			Venkataraman 1960; Abrantes
Clupeidae	Brevoortia aurea	Phyt	Omni	209	275		Tropical	31 38	et al. 2009 Sanchez 1989; Froese and Pauly 2019
Clupeidae	Brevoortia patronus	Phyt	Omni	209	275	1.177			Castillo-Rivera et al. 1996; Winemiller et al.
Clupeidae	Brevoortia smithi	Phyt	Omni	209	275		Subtropical Subtropical	31 37	2007 Whitehead et al. 1988

Clupeidae	Brevoortia tyrannus	Detr	Omni	209	143	1.986	Tropical	46	Lewis and Peters 1994
Clupeidae	Clupea harengus	Zoop	Crus	1682	993	1.828	Tropical	80	2004; Malek et al. 2016
Clupeidae	Clupea pallasii	Zoop	Crus	1682	993	2.133	Tropical	77	Wailes et al. 1935; Barry et al. 1996 Sirimongkontha
Clupeidae	Clupeichthys aesarnensis	Zoop	Crus	1682	993	2.326			worn and Fernando 1994; Ariyaratne et al.
CI 1	Clupeichthys	-	G	1.00	0.02		Tropical	17	2008
Clupeidae	goniognathus Clum ai althua	Zoop	Crus	1682	993		Tropical	18	Lim et al. 1999
Clupeidae	perakensis	Zoop	Crus	1682	993		Tropical	6	2019
Clupeidae	Clupeoides borneensis	Zoop	Crus	1682	993		Tropical	14	Froese and Pauly 2019
Clupeidae	cultriventris	Zoop	Crus	1682	993		Tropical	60	Kiyashko et al. 2007
Clupeidae	Corica soborna						Tropical	24	
Clupeidae	Dorosoma cepedianum	Zoop	Omni	209	143	4.491	Subtropical	49	Kutkuhn 1958; Jude 1973; Mundahl and Wissing 1987 Haskell 1959; Winkelman and
Clupeidae	Dorosoma petenense	Detr	Omni	209	143	3.996	Subtropical	42	Van Den Avyle 2002
Clupeidae	Ehirava fluviatilis	Phyt	Crus	1682	993	2.192	Tropical	14	iya and Amarasinghe 2014 Hajisamae et al.
Clupeidae	Escualosa thoracata	Zoop	Crus	1682	993	1.460	Tropical	27	2004; Hajisamae and Ibrahim 2008
Clupeidae	Ethmalosa fimbriata	Phyt	Omni	209	275	3.562	-		Fagade and Olaniyan 1972; Blay and Eyeson
~	Ethmidium	_	~				Tropical	25	1982 Froese and Pauly
Clupeidae	maculatum	Zoop	Crus	1682	993		Subtropical	37	2019
Clupeidae	Gilchristella aestuaria	Zoop	Crus	1682	993	2.205	Tropical	36	Blaber 1979; Bennett and Branch 1990 Mondal and Kaviraj 2010;
Clupeidae	Guausia chapra	Algi					Tranical	20	Phukan et al.
Clupeidae	Harengula humeralis						Tropical	30 34	2012
Clupeidae	Harengula jaguana	Pisc	Pisc	10690	10690	2.972	Turnial	42	Vega-Cendejas et
Clupeidae	Herklotsichthys blackburni						Tropical	43 21	al. 1994
Clupeidae	<i>Herklotsichthys</i>	Zoop	Crus	1682	993	1.963	Subtranical	20	Abrantes et al.
Clupeidae	Herklotsichthys dispilonotus	Zoop	Crus	1682	993		Tropical	20	Hajisamae & Ibrahim 2008
Clupeidae	Herklotsichthys						Tropical	10	
Clupeidae	Herklotsichthys	Zoop	Crus	1682	993		Traci	17	Abrantes et al.
Cluneidae	koningsbergeri Herklotsichthys						Iropical	21	2009
	lippa Herklotsichthvs	7	C	1/00	002	0.000	Tropical	24	Milton et al.
Clupeidae	quadrimaculatus	Zoop	Crus	1682	993	2.230	Tropical	39	1994

Clupeidae	Hilsa kelee	Zoop	Crus	1682	993	1.000	Tropical	25	Blaber 1979
Clupeidae	Hyperlophus vittatus	Crus	Crus	1682	2607		Tropical	40	Hossain et al. 2017 Kanou et al
Clupeidae	Konosirus punctatus	Detr	Omni		143	2.448	Subtropical	42	2004; Inoue et al. 2005
Clupeidae	Lile stolifera	Zoop	Crus	1682	993		Tropical	33	Froese and Pauly 2019
Clupeidae	Limnothrissa miodon	Zoop	Crus	1682	993	4.375	Subtropical	18	De Longh et al. 1983 Kimbembi ma
Clupeidae	Microthrissa congica	Terr	Crus	1682		1.871	Tropical	10	Ibaka and Nzuki 2001
Clupeidae	Microthrissa royauxi						Tropical	8	
Clupeidae	Nematalosa come	Detr	Omni	209	143	1.034	Tropical	30	Nanjo et al. 2008; Abrantes et al. 2009 Pusey et al.
Clupeidae	Nematalosa erebi	Detr	Omni	209	143	1.109	Subtropical	37	1995; Medeiros and Arthington
Clupeidae	Nematalosa	Detr	Omni	209	143		Turningl	27	Froese and Pauly
Clupeidae	japonica Nematalosa nasus	Zoop	Crus	1682	993			37	Froese and Pauly
Cluneidae	Odaxothrissa	F					Tropical	38	2019
Clupeidae	ansorgii Odaxothrissa losera						Tropical	16 14	
Clupeidae	Opisthonema	Phyt	Omni	209	275			14	Froese and Pauly
Clupeidae	libertate Opisthonema oglinum	Crus	Crus	1682	2607	2.939	Tropical	28 41	Vega-Cendejas et al. 1994
Clupeidae	Pellonula leonensis	Terr	Crus	1682			Tropical	17	Ikusemiju et al. 1983
Clupeidae	Pellonula vorax	Pisc	Pisc	10690	10690	4.796	Tropical	13	Offem et al. 2009
Clupeidae	Potamalosa richmondia	Crus	Crus	1682	2607		Tropical	39	Froese and Pauly 2019
Clupeidae	Potamothrissa acutirostris						Tropical	7	
Clupeidae	Potamothrissa obtusirostris	Zoop	Crus	1682	993		Tropical	8	Froese and Pauly 2019
Clupeidae	Rhinosardinia amazonica	Zoop	Crus	1682	993		Tropical	10	Froese and Pauly 2019
Clupeidae	Rhinosardinia bahiensis					1.124	Tropical	20	
Clupeidae	Sardina pilchardus	Zoop	Crus	1682	993	2.916			Garrido et al. 2008; Morote et al. 2010; Nikolioudakis et al. 2012; Costalago et al. 2012; Costalago et al. 2014; Costalago et al.
							Subtropical	68	2015 Venkataraman
Clupeidae	Sardinella albella	Zoop	Crus	1682	993	3.131	Tropical	31	1960; Horinouchi et al. 2012 Tsikliras et al
Clupeidae	Sardinella aurita	Zoop	Crus	1682	993	2.650	Subtropical	47	2005; Lomiri et al., 2008 Chacko 1949; Nyunia et al
Clupeidae	Sardinella gibbosa	Zoop	Crus	1682	993	2.790			2002; Mavuti et al. 2004; Abrantes et al.
							Tropical	41	2009; Shahraki et

al. 2014

Clupeidae	Sardinella hualiensis						Tropical	29	Horinouchi et al
Clupeidae	Sardinella lemuru	Zoop	Crus	1682	993	1.000	Tropical	38	2012; Metillo et al. 2018
Clupeidae	Sardinella maderensis	Zoop	Crus	1682	993	1.610	Tropical	46	Fagade and Olaniyan 1972; Faye et al. 2012
Clupeidae	Sardinella melanura	Zoop	Crus	1682	993	2.329	Tropical	26	Kuthalingam 1961 Burchmore et al.
Clupeidae	Sardinops sagax	Zoop	Crus	1682	993	1.913			Lingen 2002; Mketsu 2008; Espinoza et al
	с и						Subtropical	61	2009
Clupeidae	Sauvagella madagascariensis						Tropical	26	
Clupeidae	Sauvagella robusta						Tropical	15	
Clupeidae	Sierrathrissa leonensis	Zoop	Crus	1682	993		Tropical	18	Whitehead et al. 1988 Milton et al.
Clupeidae	Spratelloides delicatulus	Zoop	Crus	1682	993	1.162			et al. 2003; Mavuti et al. 2004; Gajdzik et
	Spratelloides						Tropical	40	al. 2014 Nakane et al
Clupeidae	gracilis	Zoop	Crus	1682	993	1.000	Tropical	33	2011
Clupeidae	Sprattus antipodum						Tropical	48	
Clupeidae	Sprattus muelleri						Tropical	51	
Clupeidae	Sprattus sprattus	Zoop	Crus	1682	993	1.192			Moore and Moore 1976; Köster and Möllmann 2000; Gorokhova et al.
	Stalathuinga						Tropical	66	2004 Erecase and Pauly
Clupeidae	tanganicae Sundasalanx	Zoop	Crus	1682	993		Tropical	10	2019
Ciupeidae	mekongensis						Tropical	17	Do and Datta
Clupeidae	Tenualosa ilisha	Phyt	Omni	209	275	5.493	Tropical	34	1990; Dutta et al. 2014
Clupeidae	Tenualosa thibaudeaui Thuatti li an	Phyt	Omni	209	275		Tropical	20	Froese and Pauly 2019
Clupeidae	noctivagus	Terr	Crus	1682			Tropical	6	1988
Dussumieriidae	Dussumieria acuta						Tropical	31	
Dussumieriidae	Dussumieria elopsoides	Crus	Crus	1682	2607	1.897	Tropical	36	Chacko 1949; Venkataraman 1960
Dussumieriidae	Etrumeus golanii	Zoop	Crus	1682	993	1.041	Tropical	18	Tanaka et al. 2006
Dussumieriidae	Etrumeus micropus						Subtropical	35	
Dussumieriidae	Etrumeus whiteheadi	Zoop	Crus	1682	993		Subtropical	35	Froese and Pauly 2019
Engraulidae	Amazonsprattus scintilla	Terr	Crus	1682			Tropical	3	Whitehead et al. 1988
Engraulidae	Anchoa cayorum						Tropical	28	
Engraulidae	Anchoa chamensis						Tropical	10	
Engraulidae	Anchoa colonensis	Crus	Crus	1682	2607	2.378	Tropical	23	

Engraulidae	Anchoa cubana						Tropical	36	
Engraulidae	Anchoa delicatissima						Subtropical	34	
Engraulidae	Anchoa filifera						Tropical	27	
Engraulidae	Anchoa hepsetus	Zoop	Crus	1682	993	1.476	Subtropical	44	Carr and Adams 1973
Engraulidae	Anchoa Iamprotagnia						Tropical	28	
Engraulidae	Anchoa lvolepis						Tropical	20	
0	× 1						Tiopical	50	Carr and Adams
Engraulidae	Anchoa mitchilli	Zoop	Crus	1682	993	2.424	Subtropical	42	1973; Odum and Heald 1972; Livingston 1982
Engraulidae	Anchoa mundeoloides						Subtropical	32	Livingston 1982
Engraulidae	Anchoa nasus						Tropical	31	
Engraulidae	Anchoa panamensis						Tropical	10	
Engraulidae	Anchoa parva						Tropical	23	
Engraulidae	Anchoa scofieldi						Tropical	25	
Engraulidae	Anchoa spinifer						Tropical	26	
Engraulidae	Anchoa walkeri						Tropical	31	
Engraulidae	Anchovia clupeoides	Zoop	Crus	1682	993		Tropical	25	Whitehead et al. 1988
Engraulidae	Anchovia macrolepidota	Zoop	Crus	1682	993		Tropical	30	Whitehead et al. 1988
Engraulidae	Anchovia surinamensis	Zoop	Crus	1682	993	3.082	Tropical	11	Mérona et al. 2001; Mérona et al. 2008
Engraulidae	Anchoviella alleni						Tropical	8	
Engraulidae	Anchoviella balboae						Tropical	10	
Engraulidae	Anchoviella brevirostris	Zoop	Crus	1682	993		Tropical	27	Wakabara et al. 1996
Engraulidae	Anchoviella carrikeri						Tropical	15	
Engraulidae	Anchoviella elongata Anchoviella						Tropical	19	
Engraulidae	guianensis						Tropical	9	
Engraulidae	Anchoviella jamesi	Zoop	Crus	1682	993		Tropical	9	Röpke et al. 2013
Engraulidae	Anchoviella lepidentostole						Tropical	27	Froese and Pauly 2019
Engraulidae	Anchoviella manamensis						Tropical	10	Course of 2002.
Engraulidae	Cetengraulis edentulus	Phyt	Omni	209	275	2.087	Tropical	28	Krumme et al. 2008
Engraulidae	Cetengraulis mysticetus	Phyt	Omni	209	275	1.050	Tropical	32	Bayliff 1963
Engraulidae	Coilia brachygnathus	Crus	Crus	1682	2607		Subtropical	32	Zhang et al. 2013
Engraulidae	Coilia dussumieri	Zoop	Crus	1682	993	2.086	Tropical	24	Rao 1967
Engraulidae	Coilia lindmani						Tropical	14	
Engraulidae	Coilia mystus	Zoop	Crus	1682	993		Tropical	42	Cheng and Fang 1956
Engraulidae	Coilia nasus	Zoop	Crus	1682	993	1.000	Subtropical	42	Tanaka 2006
Engraulidae	Coilia reynaldi	Zoop	Crus	1682	993		Tropical	26	2019 Venkataraman
Engraulidae	Encrasicholina heteroloba	Zoop	Crus	1682	993	2.704			1960; Rao 1967; Milton et al. 1990; Nair 1998;
							Tropical	32	Abrantes et al.

Engraulidae	Encrasicholina punctifer	Zoop	Crus	1682	993	2.248	Tropical	42	Nair 1998; Salarpour et al. 2008
Engraulidae	Engraulis albidus						Subtropical	43	
Engraulidae	Engraulis anchoita	Zoop	Crus	1682	993	1.020	Tropical	50	Capitanio et al. 2005
Engraulidae	Engraulis australis						Subtropical	47	2003
Engraulidae	Engraulis encrasicolus	Zoop	Crus	1682	993	1.975	Subtranical	62	Plounevez and Champalbert 1999; Mketsu 2008; Morote et al. 2010; Borme et al. 2009; Costalago et al. 2012
Engraulidae	Engraulis eurystole	Zoop	Crus	1682	993		Subtropical	45	2012
Engraulidae	Engraulis japonicus	Zoop	Crus	1682	993	1.958	Subtropical	49	Inoue et al. 2005; Tanaka et al. 2006
Engraulidae	Engraulis mordax	Zoop	Crus	1682	993	1.478	Tropical	51	Koslow 1981; Whitehead et al. 1988; Barry et al. 1996
Engraulidae	Engraulis ringens	Crus	Crus	1682	2607	1.854	Ĩ		Arrizaga et al. 1993; Espinoza and Bertrand
	Iuronarculis						Subtropical	43	2008
Engraulidae	juruensis						Tropical	14	
Engraulidae	Lycengraulis batesii	Pisc	Pisc	10690	10690	2.017	Tranical	0	2001; Mérona et al. 2008; Röpke
Engraulidae	Lycengraulis	Pisc	Pisc	10690	10690			9	Froese and Pauly
Engraulidae	grossidens Lycengraulis limnichthys						Tropical	41 9	2019
Engraulidae	Lycengraulis poeyi	Pisc	Pisc	10690	10690		Tropical	14	Froese and Pauly 2019
Engraulidae	Pterengraulis atherinoides	Pisc	Pisc	10690	10690	2.058	Tropical	11	Mérona et al. 2001; Krumme et al. 2005
Engraulidae	Setipinna crocodilus	Pisc	Pisc	10690	10690		Tropical	17	Froese and Pauly 2019
Engraulidae	Setipinna melanochir	Pisc	Pisc	10690	10690		Tropical	19	Froese and Pauly 2019
Engraulidae	Setipinna taty	Crus	Crus	1682	2607	1.954	Tropical	24	1990; Chaudhuri et al. 2014
Engraulidae	Setipinna tenuifilis	Pisc	Pisc	10690	10690	1.084	Tropical	42	Froese and Pauly 2019
Engraulidae	Stolephorus brachycephalus	Crus	Crus	1682	2607	1.090	Tropical	15	2018a; Egan et al. 2018b
Engraulidae	Stolephorus carpentariae	Zoop	Crus	1682	993		Tropical	32	
Engraulidae	Stolephorus chinensis	Zoop	Crus	1682	993	1.723	Tropical	29	Vankataraman
Engraulidae	Stolephorus commersonnii	Zoop	Crus	1682	993	1.289	Tronical	27	1960; Blaber 1979; Hayase et al. 1999; Hajisamae and Ibrahim 2008

Tropical

Engraulidae	Stolephorus indicus	Zoop	Crus	1682	993	1.709	Tropical	37	Chacko 1949; De Troch et al. 1998; Hajisamae et al. 2003; Hajisamae and Ibrahim 2008; Horinouchi et al. 2012 Rao 1967;
Engraulidae	Stolephorus insularis	Zoop	Crus	1682	993	2.500	Tranical	20	Hayase et al. 1999; Egan et al. 2017
Engraulidae	Stolephorus waitei	Zoop	Crus	1682	993	2.414	Tropical	20	Nair 1998
Engraulidae	Thryssa baelama	Crus	Crus	1682	2607	1.000	Tropical	31	Marichamy 1972
Engraulidae	Thryssa brevicauda	Crus	Crus	1682	2607		Tropical	13	-
Engraulidae	Thryssa chefuensis	Crus	Crus	1682	2607	1.714	Tropical	30	Egan et al. 2018a; Egan et al. 2018b
Engraulidae	Thrvssa dussumieri	Crus	Crus	1682	2607	1.002	Tiopical	39	Chacko 1949;
Engraulidae	Thryssa dassumert	Pisc	Pisc	1062	10690	1.002	Tropical	27	Egan et al. 2018a Bapat and Bal 1950; Rao 1967; Brewer et al. 1995; Salini et al. 1998; Hajisamae et al. 2003; Baker and Sheaves 2005; Deshmukh 2007; Hajisamae and Ibrahim 2008; Taher 2010; Chew et al. 2012; Zagars et al. 2013; Egan et al.
Engraulidae Engraulidae	Thryssa kammalensis Thryssa mystax	Crus Crus	Crus Crus	1682 1682	2607 2607		Tropical Tropical	31 11	2017; Egan et al. 2018a; Egan et al. 2018b Hajisamae and Ibrahim 2008 Froese and Pauly
En annulida a	Thursday	Crew	Creat	1(92	2(07	1.072	Iropical	25	2019 Froese and Pauly
	The yssu settrostris	Cius	Clus	1082	2007	1.975	Tropical	40	2019
Engraulidae	Thryssa spinidens	Crus	Crus	1682	2607	1.053	Tropical	25	Fagade and
Pristigasteridae	Ilisha africana	Zoop	Crus	1682	993	2.672			Olaniyan 1973;
Pristigasteridae	Ilisha amazonica						Tropical	17	Marcus 1986
Pristigasteridae	Ilisha alongata	Disc	Disc	10690	10690	1 681	Topical	12	Rao 1967; Blaber
Thistigasteridae	Tilsha elongala	1 150	1 150	10070	10050	1.001	Tropical	39	et al. 1998 Blaber et al
Pristigasteridae	Ilisha megaloptera	Pisc	Pisc	10690	10690	1.472	Tropical	24	1998
Pristigasteridae	Ilisha melastoma	Moll				1.420	Tropical	29	Blaber et al. 1998; Shahraki et al. 2014
Pristigasteridae	Odontognathus mucronatus						Tropical	26	
Pristigasteridae	<i>Opisthopterus</i> <i>tardoore</i>	Zoop	Crus	1682	993	2.489	Tropical	29	Venkataraman 1960 Márona et al
Pristigasteridae	Pellona castelnaeana	Pisc	Pisc	10690	10690				2001; González and Vispo 2003; Pouilly et al.
		_				1.221	Tropical	13	2004 Mavuti et al
Pristigasteridae	Pellona ditchela	Crus	Crus	1682	993	2.230	Tropical	30	2004

Pristigasteridae	Pellona flavipinnis	Pisc	Pisc	10690	10690	2.648	Tropical	35	González and Vispo 2003; Pouilly et al. 2003; Moreira- Hara et al. 2009
Pristigastaridaa	Pallona harrowari								11414 01 41. 2009
Thistigasterituae	1 ellona narroweri						Tropical	30	
Pristigasteridae	Pristigaster cayana						Tropical	2	
Duistissetsuides	Pristigaster						· F		
Pristigasteridae	whiteheadi						Tropical	3	
	Jenkinsia			1602	002		*		Froese and Pauly
Clupeidae	lamprotaenia	Zoop	Crus	1082	995		Subtropical	34	2019
	Denticeps	-		1602	002		-		Froese and Pauly
Denticipitidae	clupeoides	Zoop	Crus	1082	993		Tropical	7	2019

Table 4.2. Diet data generated by this study reported as the proportional volume of each

prey type in the diet. N = number of fish specimens analyzed containing identifiable prey.

Species	n	Diet (% volume)
Alosa braschnikowi	15	Fish (100)
Alosa chrysochloris	11	Fish (97.5), Insecta terrestrial (0.2), Insecta aquatic (1.2)
Anodontostoma chacunda	3	Detritus (98.8), Foraminifera (0.2)
Cetengraulis edentulus	3	Detritus (99.9), phytoplankton (<0.1)
Cetengraulis mysticetus	2	Detritus (1.0), phytoplankton (99.0)
Chirocentrus dorab	93	Fish (94.3), zquid (5.5), Crustacea (0.2)
Encrasicholina heteroloba	7	Crustacea (36.2), zooplankton (63.6)
Nematalosa come	3	Detritus (98.4), zooplankton (1.2)
Nematalosa erebi	4	Detritus (94.9), zooplankton (4.6), algae (0.3), plant (0.3)
Papuengraulis micropinna	19	Crustacea (100.0)
Pellona ditchella	30	Cephlaopoda (39.2), Crustacea (53.9), fish (6.3), zooplankton (0.6)
Sardinella albella	24	Crustacea (32.3), egg (1.6), phytoplankton (26.9), zooplankton (37.7)
Sardinella brachysoma	17	Crustacea (34.1), phytoplankton (1.5), zooplankton (51.8)
Setipinna tenuifilis	30	Crustacea (96.0), fish (3.2), zooplankton (0.8)
Stolephorus andhraensis	12	Phytoplankton (2.9), zooplankton (97.1)
Stolephorus brachycephalus	7	Crustacea (97.5), fish (2.5)
Stolephorus carpentariae	34	Annelida (4.0), Crustacea (16.7), Nemertia (0.2), phytoplankton (0.3), terrestrial Invertebrata (0.2), zooplankton (77.0)
Stolephorus chinensis	5	Crustacea (71.0), fish (27.6), zooplankton (1.3)
Stolephorus commersonii	5	Crustacea (4.4), fish (0.3), Mollusca (4.4), zooplankton (87.9)
Thryssa aestuaria	5	Crustacea (71.0), zooplankton (27.6)
Thryssa brevicauda	3	Zooplankton (100)
Thryssa hamiltonii	58	Crustacea (100.0)
Thryssa setirostris	39	Crustacea (55.8), fish (44.2)

Prey category	Prey category composition
Algae (Alga)	Filamentous algae
Annelida (Anne)	Annelida, Nematoda, Polychaeta
Cephlapoda (Ceph)	Cephlapoda, squid
Crustacea (Crus)	Acetes, Alpheidae, Amphipoda, Anomura, Apseudidae, Arthropoda, Brachyura, Caprellidae, Caridea, Collembola, Crustacea, Cumacea, Decapoda, Decapoda megalopa, Entomostracans, Euphausidae, Gammeridea, Hyperiidae, Isopoda, Lucifer, Malacostraca, Meiofauna, Mysida, Paguridae, Pycnogonida, shrimp, Stomatopoda, Tanaidacea, Thalassinidae, unidentified crustacea nekton
Detritus (Detr)	Detritus
Egg	Invertebrate eggs, fish eggs
Enteropneusta (Ente)	Enteropneusta
Eugenophyta (Eugl)	Eugenophyta
Fish	Fish
Foraminifera (Fora)	Foraminifera
Mollucsa (Moll)	Benthic gastropoda, benthic mollusca
Nemertea (Neme) Phytoplankton (Phyt)	Nemertea Centric diatom, Dinoflagellata, pennate diatom, single-celled
Plant (Plan)	Aquatic and terrestrial macrophytes, pollen
Protozoa (Prot)	Protozoa
Rotifera (Roti)	Rotifera
Insecta terrestrial (Terr)	Terrestrial Insecta
Insecta aquatic (Insa)	Aquatic Insecta
Zooplankton (Zoop)	Bivalva veliger, Cheatognatha, Cirripedia cypris, Cladocera, Copepoda, Crustacea nauplii, Decapoda zoea, Gastropoda veliger, Larvacea, Ostracoda, Trematoda

 Table 4.3. Prey types comprising each prey category.

Table 4.4. Three most important categories comprising the majority of the diet in eachtrophic guild (proportion of diet). Prey category acronyms are defined in Table 4.3.

Trophic guild	Important prey categories
Algivore	Alga (0.556), Crus (0.126), Prot (0.074)
Crustacivore	Crus (0.8215), Zoop (0.130), Fish (0.033)
Detritivore	Detr (0.706), Zoop (0.1442), Algae (0.023)
Molluscivore	Moll (0.830), Fish (0.112), Crus (0.050)
Piscivore	Fish (0.664), Crus (0.196), Terr (0.058)
Phytoplanktivore	Phyt (0.607), Zoop (0.3416), Detr (0.1763)
Terrestrial invertivore	Terr (0.711), Detr (0.036), Fish (0.004)
Zooplanktivore	Zoop (0.653), Crus (0.151), Phyt (0.022)

Table 4.5. Ranges of prey-size and prey-type niche breadth estimates by trophic guild using the trophic guilds in the full scheme and conservative scheme. Results of ANOVAs testing for differences in prey-size and prey-type niche breadth between trophic guilds.

Trophic guild	Prey	-size niche oreadth	Prey-type	e niche bread	th Pairwise comparison of prey-size niche	1 p-
1 0	Mean	Range	Mean	Range	versus guild	value
			Full guild s	cheme		
Crustacivore	3066	894-7743	1.52946	1.0 to 2.939	Detritivore- Crustacivore	0.9207897
Detritivore	143	90-249	1.84714	1.034 to 3.996	Phytoplanktivore- Crustacivore	0.9357766
Phytoplanktivore	275	90-569	2.51457	5.493	Crustacivore	0.0005385
Piscivore	11300	5108-23260	2.05341	1.051 to 4.796	Zooplanktivore- Crustacivore	0.9559339
Zooplanktivore	1299	451-2808	1.9485	1.0 to 4.375	Phytoplanktivore- Detritivore	.99999994
<u>I</u>					Piscivore-Detritivore (0.0023154
					Zooplanktivore- Detritivore	.9919665
					Piscivore- Phytoplanktivore	0.0026223
					Zooplanktivore- Phytoplanktivore	0.9950148
					Zooplanktivore- Piscivore	0.0000559
		Cons	servative gu	ild scheme		
Crustacivore	2197	451-7743			Omnivore- Crustacivore	0.486
Omnivore	209	90-569			Piscivore-Crustacivor	e 0.004
Piscivore	11300	5108-23260			Piscivore-Omnivore	0.002

Table 4.6. Results (p-values) of phylogenetic ANOVAs testing for differences in preytype niche breadth (Prey-type), prey-size niche breadth estimated using the conservative trophic guild scheme (Prey-size cons.), and prey-size niche breadth estimated using the full trophic guild scheme (Prey-size full) between climate zones.

Climate comparison	Prey-type	Prey-size cons.	Prey-size full
Tropical/subtropical	0.750	0.228	0.231
Tropical/temperate	1.000	0.954	0.977
Subtropical/temperate	1.000	0.440	0.466

Bray-Curtis dissimilarity

Figure 4.1. Dendrogram resulting from hierarchical agglomerative cluster analysis based upon Bray-Curtis dissimilarity of clupeiform prey type consumption. The red line indicates the dissimilarity value (0.61) identified by bootstrapping as the threshold for statistically significant differences in diet used to designate the trophic guilds in the "full" guild scheme. The blue shows the arbitrary dissimilarity (0.75) used to designate the guilds included in the "conservative" scheme. Pisc = piscivore, Moll = molluscivore, Detr = detritivore, Phyt = phytoplanktivore, Zoop = zooplanktivore, Crus = crustacivore, Algi = algivore, and Terr = terrestrial invertivore.

Figure 4.2. Evolutionary history of diet (trophic guilds) in clupeiforms estimated with 1000 stochastic character mapping simulations.

Figure 4.3. (a) Continuous character map (contmap) illustrating the evolution of maximum latitude in clupeiforms and (b) scatterplot of the posterior probability of nodes in the clupeiform phylogeny having a temperate character state (y-axis) versus node age (x-axis).

Figure 4.4. (a) Mean net diversification rates in clupeiforms. (b) Net diversification rates through time in all clupeiforms (red) and selected clupeiform lineages (yellow, cyan, and black). Colored boxes following tip labels in figure 4a correspond to the colors illustrating net diversification rates in figure 4b.

Bibliography

- Abrantes, K., M. Sheaves. 2009. Food web structure in a near-pristine mangrove area of the Australian wet tropics. Estuarine, Coastal and Shelf Science 82: 597-607.
- Alcaraz, M., E. Saiz, A. Calbet, I. Trepat, E. Broglio. 2003. Estimating zooplankton biomass through image analysis. Marine Biology 143: 307-315.
- Allen, A.P., J.F. Gillooly, V.M. Savage, J.H. Brown. 2006. Kineticeffects of temperature on rates of genetic divergence and speciation. Proceedings of the National Academy of Sciences 103(24): 9130-9135.
- Amundsen, P.A., R. Knudsen. 2009. Winter ecology of Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) in a subarctic lake, Norway. Aquatic Ecology 43(3): 765-775.
- Aprahamian, M.W. 1989. The diet of juvenile and adult twaite shad *Alosa fallax fallax* (Lacépède) from the rivers of Severn and Wye (Britain). Hydrobiologia 179: 173-182.
- Ariyaratne, M.G., P.B. Amarasinghe, N.C. Lopez, M. Kakkaeo, J. Vijverberg. 2008.
 Selective feeding of small zooplanktivorous pelagic fish species in tropical Asian reservoirs (Sri Lanka, Thailand) and Lake Taal (Philippines). IN: Schiemer, F., Simon, D., Amarasinghe, U., Moreau, J., (Eds.) Aquatic Ecosystems and Development: Comparative Asian Perspectives. Backhuys Publishers, pp.: 235-248. Publication 4116 NIOO-KNAW.
- Arrizaga, A., M. Fuentealba, C. Espinoza, J. Chong, Y.C. Oyarzun. 1993. Trophic habits of two pelagic fish species *Strangomera bentinkcki* (Norman, 1936) and *Engraulis ringens* Jenyns 1842 in the littoral of the Biobío Region, Chile. Boletín de la Sociedad de Biologia de Concepción 64: 27-35.
- Assis, C.A., P.R. Almeida, F. Moreira, J.L. Costa, M.J. Costa. 1992. Diet of the twaite shad *Alosa fallax* (Lacépède) (Clupeidae) in the River Tagus Estuary, Portugal. Journal of Fish Biology 41: 1049-1050.
- Ayón, P., G. Swartzman, P. Espinoza, A. Bertrand. 2011. Long-term changes in zooplankton size distribution in the Peruvian Humboldt Current System: conditions favoring sardine or anchovy. Marine Ecoloy Progress Series 422: 211-222.
- Bachok, Z., M.I. Mansor, R.M. Noordin. 2004. Diet composition and food habits of demersal and pelagic marine fishes from Terengganu waters, east coast of peninsular Malaysia. NAGA Worldfish Center Quarterly 27: 41-47.
- Baker, R., M. Sheaves. 2005. Redefining the piscivore assemblage of shallow estuarine nursery habitats. Marine Ecology Progress Series 291: 197-213.
- Baker, R., A. Buckland, M. Sheaves. 2014. Fish gut content analysis: robust measures of diet composition. Fish and Fisheries 15: 170-177.
- Bapat, S.V., D.V. Bal. 1950. The food of some young clupeids. Proceedings of the Indian Academy of Sciences B 32: 39-58.
- Barry, J.P., M.M. Yoklavich, G.M. Cailliet, D.A. Ambrose, B.S. Antrim. 1996. Trophic ecology of the dominant fishes in Elkhorn Slough, California, 1974-1980. Estuaries 19(1): 115-138.

- Bayliff, W.H. 1963. The food and feeding habits of the Anchoveta, *Cetengraulis mysticetus*, in the Gulf of Panama. Inter-American Tropical Tuna Commission Bulletin 7(6): 397-459.
- Behrens, M.D., K.D. Lafferty. 2007. Temperature and diet effects on omnivorous fish performance: implications for the latitudinal diversity gradient in herbivorous fishes. Canadian Journal of Fisheries and Aquatic Sciences 64: 867-873.
- Belmaker, J., W. Jetz. 2015 Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients. Ecology Letters 18: 563-571.
- Bennett, B.A., G.M. Branch. 1990. Relationships between production and consumption of prey species by resident fish in the Bot, a cool temperate South African estuary. Estuarine, Coastal and Shelf Science 31: 139-155.
- Bergamino, L., D. Lercari, O. Defeo. 2011. Food web structure of sandy beaches: Temporal and spatial variation using stable isotope analysis. Estuarine, Coastal and Shelf Science 91: 536-543.
- Betancur-R R, G. Ortí, A.M. Stein, A.P. Marceniuk, A.R. Pyron. 2012. Apparent signal of competition limiting diversification after ecological transitions from marine to freshwater habitats. Ecology Letters 15(8): 822-830.
- Blaber, S.J.M., A.K. Whitfield. 1977. The feeding ecology of juvenile mullet (Mugilidae) in south-east African estuaries. Biological Journal of the Linnean Society 9: 277-284.
- Blaber, S.J.M. 1979. The biology of filter feeding teleosts in Lake St. Lucia, Zululand. Journal of Fish Biology 15: 37-59.
- Blaber, S.J.M., D.P. Cyrus. 1983. The biology of Carangidae (Teleostei) in Natal estuaries. Journal of Fish Biology 22: 173-188.
- Blaber, S.J.M., J. Staunton-Smith, D.A. Milton, G. Fry, T. Van der Velde, J. Pang, P. Wong, O. Boon-Teck. 1998. The biology and life-history strategies of *Ilisha* (Teleostei: Pristigasteridae) in the coastal waters and estuaries of Sarawak. Estuarine, Coastal and Shelf Science 47: 499-511.
- Blay, J., K.N. Eyeson. 1982. Feeding activity and food habits of the shad, *Ethmalosa fimbriata* (Bowditch), in the coastal waters of Cape Coast, Ghana. Journal of Fish Biology 21: 403-410.
- Bloom, D.D., N.R. Lovejoy. 2012. Molecular phylogenetics reveals a pattern of biome conservatism in New World anchovies (family Engraulidae). Journal of Evolutionary Biology 25: 701-715.
- Bloom, D.D., J.T. Weir, K.R. Piller, N.R. Lovejoy. 2013. Do freshwater fishes diversify faster than marine fishes? A test using state-dependent diversification analyses and molecular phylogenetics of New World silversides (Atherinopsidae). Evolution 67(7): 2040-2057.
- Bloom, D.D., N.R. Lovejoy. 2014. The evolutionary origins of diadromy inferred from a time-calibrated phylogeny for Clupeiformes (herring and allies). Proceedings of the Royal Society B. 281: 20132081.
- Bloom, D.D., J.P. Egan. 2018. Systematics of Clupeiformes and testing for ecological limits on species richness in a trans-marine/freshwater clade. Neotropical Ichthyology 16(3).

- Bollback, J.P. 2006. Stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics 7: 88.
- Borme, D., V. Tirelli, S.B. Brandt, S.F. Umani, E. Arneri. 2009. Diet of *Engraulis encrasicolus* in the northern Adriatic Sea (Mediterranean): ontogenetic changes and feeding selectivity. Marine Ecology Progress Series 392: 193-209.
- Borsa P., A. Collet, J.-D. Durand. 2004. Nuclear-DNA markers confirm the presence of two anchovy species in the Mediterranean. Biologie des populations 327: 1113-1123.
- Bouckaert, R., J. Heled, D. Kuhnert, T. Vaughan, C.H. Wu, D. Xie, M.A. Suchard, A. Rambaut, A.J. Drummond. 2014. BEAST 2: a software platform for bayesian evolutionary analysis. Plos Computational Biology e10.
- Bray, R.J., J.T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325-349.
- Brett, J.R., D.A. Higgs. 1970. Effect of temperature on the rate of gastric digestion in fingerling sockeye salmon, *Oncorhynchus nerka*. Journal of the Fisheries Board of Canada 27(10): 1767-1779.
- Brewer, D.T., S.J.M. Blaber, J.P. Salini, M.J. Farmer. 1995. Feeding ecology of predatory fishes from Groote Eylandt in the Gulf of Carpentaria, Australia, with special reference to predation on penaeid prawns. Estuarine, Coastal and Shelf Science 40: 577-600.
- Brown, J.H. 2014. Why are there so many species in the tropics? Journal of Biogeography 41: 8-22.
- Brosset, P., B. Le Bmyg, D. Costalago, D. Bănaru, E. Van Beveren, J.-H. Bmydeix, J.-M. Fromentin, F. Ménard, C. Saraux. 2016. Linking small pelagic dietary shifts and ecosystem changes in the Gulf of Lions. Marine Ecology Progress Series 554: 157-171.
- Buchheister, A., R.J. Latour. 2015. Diets and trophic-guild structure of a diverse fish assemblage in Chesapeake Bay, U.S.A. Journal of Fish Biology 86: 967-992.
- Buckland, A., R. Baker, N. Loneragan, M. Sheaves. 2017. Standardising fish stomach content analysis: the importance of prey condition. Fisheries Research 196: 126-140.
- Buckley, L.B., T.J. Davies, D.D. Ackerly, N.J. Kraft, S.P. Harrison, B.L. Anacker, H.V. Cornell, E.I. Damschen, J.A. Grytnes, B.A. Hawkins, C.M. McCain. 2010.
 Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals.
 Proceedings of the Royal Society B 277(1691): 2131-2138.
- Burchmore, J.J., D.A. Pollard, J.D. Bell. 1984. Community structure and trophic relationships of the fish fauna of an estuarine *Posidonia australis* Seagrass habitat in Port Hacking, New South Wales. Aquatic Botany 18: 71-87.
- Burin, G., W.D. Kissling, P.R. Guimarães Jr., Ç.H. Şekercioğlu, T.B. Quental. 2016. Omnivory in birds is a macroevolutionary sink. Nature Communications 7: 11250.
- Capitanio, F.L., M. Pájaro, G.B. Esnal. 2005. Appendicularians: an important food supply for the Argentine anchovy *Engraulis anchoita* in coastal waters. Journal of Applied Ichthyology 21: 414-419.
- Carpenter, K.E., V. Niem. eds. 2001. FAO species identification guide for fishery purposes. The living marine resmyces of the Istern Central Pacific. Rome: FAO.

- Carr, W.E.S., C.A. Adams. 1973. Food habits of juvenile marine fishes occupying seagrass beds in the estuarine zone near Crystal River, Florida. Transactions of the American Fisheries Society 102(3): 511-540.
- Case, T.J. 1983. Niche overlap and the assembly of island lizard communities. OIKOS 41: 427-433.
- Casini M., J. Hjelm, J.-C. Molinero, J. Lövgren, M. Cardinale, V. Bartolino, A. Belgrano, G. Kornilovs. 2009. Trophic cascades promote threshold-like shifts in pelagic marine ecosystems. PNAS 106(1): 197-202.
- Castillo-Rivera, M., A. Kobelkowsky, V. Zamayoa. 1996. Food resource partitioning and trophic morphology of *Brevoortia gunteri* and *B. patronus*. Journal of Fish Biology 49: 1102-1111.
- Chacko, P.I. 1949. Food and feeding habits of the fishes of the Gulf of Manaar. Proceedings: Plant Sciences 29(3): 83-97.
- Chakrabarty, P., J.S. Sparks, H.-C. Ho. 2010. Taxonomic review of the ponyfishes (Perciformes: Leiognathidae) of Taiwan. Marine Biodiversity 40: 107-121.
- Chaudhuri, A., S. Mukherjee, S. Sen, S. Chakrabarty, S. Homechaudhuri. 2012. A comparison of spatial and temporal pattern of fish diversity of Matla River and adjacent mudflats in Sunderban Bioshere Reserve, India. The Clarion 1(1): 46-55.
- Cheng, C., Z.C. Fang. 1956 Studies on the food of Coilia mystus (L.) Journal of Xiamen University (Natural Science) 1.
- Chew, L. L., V.C. Chong, K. Tanaka, A. Sasekumar. 2012. Phytoplankton fuel the energy flow from zooplankton to small nekton in turbid mangrove waters. Marine Ecology Progress Series 469: 7-24.
- Chubaty, A.M., B.O. Ma, R.W. Stein, D.R. Gillespie, L.M. Henry, C. Phelan, E. Palsson, F.W. Simon, B.D. Roitberg. 2014. On the evolution of omnivory in a community context. Ecology and Evolution 4: 251-265.
- Clarke, K.R., P.J. Somerfield, R.N. Gorley. 2008. Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. Journal of Experimental Marine Biology and Ecology 366: 56-69.
- Clements, K.D., D. Raubenheimer, J.H. Choat. 2009. Nutritional ecology of marine herbivorous fishes: ten years on. Functional Ecology 23: 79-92.
- Coates, D. 1993. Fish ecology and management of the Sepik-Ramu, New Guinea, a large contemporary tropical river basin. Environmental Biology of Fishes 38: 345-368.
- Coelho, M.T.P., C. Dambros, D.F. Rosauer, E.B. Pereira, T.F. Rangel. 2018. Effects of neutrality and productivity on mammal richness and evolutionary history in Australia. Ecography 42(3): 478-487.
- Colton, D.E., W.S. Alevizon. 1983. Feeding ecology of bonefish in Bahamian waters. Transactions of the American Fisheries Society 112: 178-184.
- Conway, D.V.P., S.H. Coombs, C. Smith. 1998. Feeding of anchovy *Engraulis encrasicolus* larvae in the northIstern Adriatic Sea in response to changing hydrobiological conditions Marine Ecology Progress Series 175: 35-49.
- Correia, M.J., J.L. Costa, C. Teixeira, P.R. Almeida, I. Domingos, M.J. Costa. 2001. Feeding habits and condition of two landlocked populations of allis shad (*Alosa alosa*) in Portugal. Bulletin Francais de la Pêche et de la Pisciculture 362/363: 823-835.

- Costalago, D., J. Navarro, I. Álvarez-Calleja, I. Palomera. 2012. Ontogenetic and seasonal changes in the feeding habits and trophic levels of two small pelagic fish species. Marine Ecology Progress Series 460: 169-181.
- Costalago, D., I. Palomera. 2014. Feeding of European pilchard (*Sardina pilchardus*) in the northIstern Mediterranean: from late larvae to adults. Scientia Marina 78(1): 41-54.
- Costalago, D., S. Garrido, I. Palomera. 2015. Comparison of the feeding apparatus and diet of European sardines *Sardina pilchardus* of Atlantic and Mediterranean waters: ecological implications. Journal of Fish Biology 86: 1348-1362.
- Crabtree, R.E., C. Stevens, D. Snodgrass, F.J. Stengard. 1998. Feeding habits of bonefish, *Albula vulpes*, from the waters of the Florida Keys. Fishery Bulletin, US 96: 754-766.
- Crame, J.A. 2001. Taxonomic diversity gradients through geological time. Diversity and Distributions 7: 175-189.
- Crowder, D.W., I. Snyder. 2010. Eating their way to the top? Mechanisms underlying the success of invasive insect generalist predators. Biological Invasions 12(9): 2857-2876.
- Cunjak, R.A., A. Curry, G. Power. 1987. Seasonal energy budget of brook trout in streams: implications of a possible deficit in early winter. Transactions of the American Fisheries Society 116(6): 817-828.
- Cury, P., A. Bakun, R.J.M Crawford, A. Jarre, R.A. Quiñones, L.J. Shannon, H.M. Verheye. 2000. Small pelagics in upIlling systems: patterns of interaction and structural changes in "wasp-waist" ecosystems. ICES Journal of Marine Science 57: 603-618.
- Czekanowski, J. 1909. Zur differential diagnose der neandertalgruppe. Korrespondenzblatt der deutschen Gesellschaft fur Anthropologie, Enthnologie und Urgeschichte 40: 44-47.
- Dahirel, M., E. Olivier, A. Guiller, M.C. Martin, L. Madec, A. Ansart. 2015. Movement propensity and ability correlate with ecological specialization in European land snails: comparative analysis of a dispersal syndrome. Journal of Animal Ecology, 84(1): 228-238.
- Daskalov G.M., A.N. Grishin, S. Rodionov, V. Mihneva. 2007. Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. PNAS 104(25): 10518-10523.
- Davis, A.M., P.J. Unmack, B.J. Pusey, J.B. Johnson, R.G. Pearson. 2012. Marinefreshwater transitions are associated with the evolution of dietary diversification in terapontid grunters (Teleostei: Terapontidae). Journal of Evolutionary Biology 25(6): 1163-1179.
- Davis, M.P., P.E. Midford, W. Maddison. 2013. Exploring power and parameter estimation of the BiSSE method for analyzing species diversification. BMC Evolutionary Biology 13: 38.
- Day, R.D., D.P. German, J.M. Manjakasy, I. Farr, M.J. Hansen, I.R. Tibbetts. 2011. Enzymatic digestion in stomachless fishes: how a simple gut accommodates both herbivory and carnivory. Journal of Comparative Physiology B. 181(5): 603-613.
- Day, E.H., X. Hua, L. Bromham. 2016. Is specialization an evolutionary dead end? Testing for differences in speciation, extinction and trait transition rates across

diverse phylogenies of specialists and generalists. Journal of Evolutionary Biology 29(6): 1257-1267.

- Deegan, L.A., R.H. Garritt. 1997. Evidence for spatial variability in estuarine food webs. Marine Ecology Progress Series 147: 31-47.
- De, D.K., N.C. Datta. 1990. Studies on certain aspects of the morpho-histology of Indian shad Hilsa, *Tenualosa ilisha* (Hamilton) in relation to food and feeding habits. Indian Journal of Fisheries 37(3): 189-198.
- De Longh, H.H., P.C. Spliethoff, V.G. Frank. 1983. Feeding habits of the clupeid *Limnothrissa miodon* (Boulenger), in Lake Kivu. Hydrobiologia 102: 113-122.
- De Troch, M., J. Mees, E. Wakwabi. 1998. Diets of abundant fishes from beach seine catches in seagrass beds of a tropical bay (Gazi Bay, Kenya). Belgian Journal of Zoology 128(2): 135-154.
- Dennis, R.L.H., L. Dapporto, S. Fattorini, L.M. Cook. 2001. The generalism-specialsim debate: the role of generalists in the life and death of species. Biological Journal of the Linnean Society 104: 725-737.
- Deshmukh, V. D. 2007. Predators of non-penaeid prawns of Mumbai coast. Journal of the Bombay Natural History Society 104: 266-274.
- Devictor, V., J. Clavel, R. Julliard, S. Lavergne, D. Mouillot, W. Thuiller, P. Venail, S. Villeger, N. Mouquet. 2010. Defining and measuring ecological specialization. Journal of Applied Ecology 47(1): 15-25.
- Di Dario, F. 2009. Chirocentrids as engrauloids: evidence from suspensorium, branchial arches, and infraorbital bones (Clupeomorpha, Teleostei). Zoological Journal of the Linnean Society 156(2): 363-383.
- Donoghue, M.J., E.J. Edwards. 2014. Biome shifts and niche evolution in plants. Annual Review of Ecology, Evolution, and Systematics 45: 547-572.
- Duda, T.F., S.R. Palumbi. 2004. Gene expression and feeding ecology: evolution of piscivory in the venomous gastropod genus *Conus*. Proceedings of the Royal Society of London. Series B: Biological Sciences 271(1544): 1165-1174.
- Dutta, S., S. Maity, S.B. Bhattacharyya, J.K. Sundaray, S. Hazra. 2014. Diet composition and intensity of feeding of *Tenualosa ilisha* (Hamilton, 1822) occurring in the northern Bay of Bengal, India. Proceedings of the Zoological Society 67(1): 33-37.
- Economo, E.P., J.-P. Huang, G. Fischer, E.M. Sarnat, N. Narula, M. Janda, B. Guénard, J.T. Longino, L.L. Knowles. 2019. Evolution of the latitudinal diversity gradient in the hyperdiverse and genus *Pheidole*. Global Ecology and Biogeography 28: 456-470.
- Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792-1797.
- Egan, J.P., U.-S. Chew, C.-H. Kuo, V. Villarroel-Diaz, P.J. Hundt, N.G. Iwinski, M.P. Hammer, A.M. Simons. 2017. Diets and trophic guilds of small fishes from coastal marine habitats in Istern Taiwan. Journal of Fish Biology 91(1): 331-345.
- Egan, J.P., D.D. Bloom, C.-H. Kuo, M.P. Hammer, P. Tongnunui, S.P. Iglésias, M. Sheaves, C. Grudpan, A.M. Simons. 2018a. Phylogenetic analysis of trophic niche evolution reveals a latitudinal herbivory gradient in Clupeoidei (herrings, anchovies, and allies). Molecular Phylogenetics and Evolution 124: 151-161.

- Egan, J.P., S. Gibbs, A.M. Simons. 2018. Trophic niches through ontogeny in 12 species of Indo-Pacific marine Clupeoidei (herrings, sardines, and anchovies) Marine Biology 165: 153.
- Elliott, M., A.K. Whitfield, I.C. Potter, S.J.M. Blaber, D.P. Cyrus, F.G. Nordlie, T.D. Harrison. 2007. The guild approach to categorizing estuarine fish assemblages: a global review. Fish and Fisheries 8: 241-268.
- Elliott, J.P., D.R. Bellwood. 2003. Alimentary tract morphology and diet in three coral reef fish families. Journal of Fish Biology 63: 1598-1609.
- Espinoza, P., A. Bertrand. 2008. Revisiting Peruvian anchovy (*Engraulis ringens*) trophodynamics provides a new vision of the Humboldt Current system. Progress in Oceanography 79: 215-227.
- Fagade, S.O., C.I.O. Olaniyan. 1972. The biology of the west African shad *Ethmalosa fimbriata* (Bowdich) in the Lagos Lagoon, Nigeria. Journal of Fish Biology 4: 519-533.
- Fatema, K., W.M.W. Omar, M.M. Isa. 2015. Variation of food items in the stomach contents of two mullets, *Chelon subviridis* and *Valamugil buchanani* from Merbok Estuary, Kedah, Malaysia. Bangladesh Journal of Zoology 43: 213-220.
- Faye, D., F.L. Loc'h, O.T. Thiaw, L.T. de Moraïs. 2012. Mechanisms of food partitioning and ecomorphological correlates in ten fish species from a tropical estuarine marine protected area (Bamboung, Senegal, West Africa). African Journal of Agricultural Research 7(3): 443-455.
- FitzJohn, R.G., W.P. Maddison, S.P. Otto. 2009. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Systematic Biology 58(6): 595-611.
- FitzJohn, R.G. 2010. Quantitative traits and diversification. Systematic Biology 59: 619-633.
- Floeter, S.R., C.E.L. Ferreira, A. Dominici-Arosemena, I.R. Zalmon. 2004. Latitudinal gradients in Atlantic reef fish communities: trophic struture and spatial use patterns. Journal of Fish Biolgy 64: 1680-1699.
- Floeter, S.R., M.D. Behrens, C.E.L. Ferreira, M.J. Paddack, M.H. Horn. 2005. Geographical gradients of marine herbivorous fishes: patterns and processes. Marine Biology 147: 1435-1447.
- Frederiksen, M., M. Edwards, A.J. Richardson, N.C. Halliday, S. Wanless. 2006. From plankton to top predators: bottom-up control of a marine food web across four trophic levels. Journal of Animal Ecology 75: 1259-1268.
- Friedman, S.T., S.A. Price, A.S. Hoey, P.C. Wainwright. 2016. Ecomorphological convergence in planktivorous surgeonfishes. Journal Evolutionary Biology 29: 965-978.
- Fuhrman, J.A., J.A. Steele, I. Hewson, M.S. Schwalbach, M.V. Brown, J.L. Green, J.H. Brown. 2008. A latitudinal diversity gradient in planktonic marine bacteria. PNAS 105(22): 7774-7778.
- Futuyma, D.J., G. Moreno. 1988. The evolution of ecological specialization. Annual Review of Ecology, Evolution, and Systematics. 19: 207-233.
- Froján, C.R.S.B., M.A. Kendall, G.L.J. Paterson, L.E. Hawkins, S. Nimsantijaroen, C. Aryuthaka. 2006. Patterns of polychaete diversity in selected tropical intertidal habitats. Scientia Marina 70: 239-248.

- Froese, R., D. Pauly. Editors. 2019. Fishbase. World Wide Web electronic publication. www.fishbase.org.
- Gaines, S.D., J. Lubchenco. 1982. A unified approach to marine plant-herbivore interactions. II. Biogeography. Annual Review of Ecology, Evolution, and Systematics 13: 111-138.
- Gainsbury, A., S. Meiri S. 2017. The latitudinal diversity gradient and interspecific competition: no global relationship between lizard dietary niche breadth and species richness. Global Ecology and Biogeography 26: 563-572.
- Gajdzik, L., A. Vanreusel, N. Koedam, J. Reubens, A.W.N. Muthumbi. 2014. The mangrove forests as nursery habitats for the ichthyofauna of Mida Creek (Kenya, East Africa). Journal of the Marine Biological Association of the United Kingdom 94(5): 865-877.
- Gannon, J.E. 1976. The effects of differential digestion rates of zooplankton by alewife, *Alosa pseudoharengus*, on determinations of selective feeding. Transactions of the American Fisheries Society 105: 89-95.
- Garrido, S., R. Ben-Hamadou, P.B. Oliveira, M.E. Cunha, M.A Chícharo, C.D. van der Lingen. 2008. Diet and feeding intensity of sardine *Sardina pilchardus*: correlation with satellite-derived chlorophyll data. Marine Ecology Progress Series 354: 245-256.
- Garrison, L.P., J.S. Link. 2000. Dietary guild structure of the fish community in the northeast United States continental shelf ecosystem. Marine Ecology Progress Series 202: 231-240.
- Gay, D., C. Bassani, S. Sergipense. 2002. Diel variation and selectivity in the diet of *Cetengraulis edentulus* (Cuvier 1828) (Engraulidae-Clupeiformes) in the Itaipu Lagoon, Niterói, Rio de Janeiro. Atlântica, Rio Grande 24(2): 59-68.
- GBIF.org, 2017. GBIF Home Page. Available from: <u>http://gbif.org.</u>
- Goldman-Huertas, B., R.F. Mitchell, R.T. Lapoint, C.P. Faucher, J.G. Hildebrand, N.K. Whiteman. 2015. Evolution of herbivory in Drosophilidae linked to loss of behaviors, antennal responses, odorant receptors, and ancestral diet. PNAS 112(10): 3026-3031.
- González, N., C. Vispo. 2003. Aspects of the diets and feeding ecologies of fish from nine floodplain lakes of the lower Caura, Venezuelan Guayana. Scientia Guaianae 12: 329-366.
- González-Bergonzoni, I., M. Meerhoff, T.A. Davidson, F. Teixeira-de Mello, A. Baattrup-Pedersen, E. Jeppesen. 2012. Meta-analysis shows a consistent and strong latitudinal pattern in fish omnivory across ecosystems. Ecosystems 15: 492-503.
- Gorokhova, E., T. Fagerberg, S. Hansson. 2004. Predation by herring (*Clupea harengus*) and sprat (*Sprattus sprattus*) on *Cercopgis pengoi* in a western Baltic Sea bay. ICES Journal of Marine Science 61: 959-965.
- Grassle, J.F. 2000. The Ocean Biogeographic Information System (OBIS): an on-line, worldwide atlas for accessing, modelling and mapping marine biological data in a multidimensional geographic context. Oceanography 13: 5-7.
- Gravel, D., T. Poisot, C. Albouy, L. Velez, D. Mouillot. 2013 Inferring food web structure from predator-prey body size relationships. Methods in Ecology and Evolution 4: 1083-1090.

- Hadfield, J.D. 2010. MCMC methods for multi-purpose generalized linear mixed models: the MCMCglmm R Package. Journal of Statistical Software 33(2): 1-22.
- Hajisamae, S., L.M. Chou, S. Ibrahim. 2003. Feeding habits and trophic organization of the fish community in shallow waters of an impacted tropical habitat. Estuarine, Coastal and Shelf Science 58: 89-98.
- Hajisamae, S., L.M. Chou, S. Ibrahim. 2004. Feeding habits and trophic relationships of fishes utilizing an impacted coastal habitat, Singapore. Hydrobiologia 520: 61-71.
- Hajisamae, S., S. Ibrahim. 2008. Seasonal and spatial variations of fish trophic guilds in a shallow, semi-enclosed tropical estuarine bay. Environmental Biology of Fishes 82: 251-264.
- Harvey, M.G., D.L. Rabosky. 2018. Continuous traits and speciation rates: alternatives to state-dependent diversification models. Methods in Ecology and Evolution 9: 984-993.
- Haskell, W.L. 1959. Diet of the Mississippi threadfin shad, *Dorosoma petenense*, in Arizona. Copeia 4: 298-302.
- Hata, H., H. Motomura. 2017. Validity of *Encrasicholina pseudoheteroloba* (Hardenberg 1933) and redescription of *Encrasicholina heteroloba* (Rüppell 1837), a senior synonym of *Encrasicholina devisi* (Whitly 1940) (Clupeiformes: Engraulidae). Ichthyological Research 64(1): 18-28.
- Hawkins, B.A. 2001 Ecology's oldest pattern? Trends in Ecology and Evolution 16(8): 470.
- Hayase, S., T. Ichikawa, K. Tanaka. 1999. Preliminary report on stable isotope ratio analysis for samples from Matang Mangrove brackish water ecosystems. Japan Agricultural Research Quarterly 33: 215-221.
- Heck, K.L. Jr., T.J.B. Carruthers, C.M. Duarte, A.R. Hughes, G. Kendrick, R.J. Orth, S.W. Williams. 2008. Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems 11(7): 1198-1210.
- Heithaus, E.R., P.A. Heithaus, M.R. Heithaus, D. Burkholder, C.A. Layman. 2011. Trophic dynamics in a relatively pristine subtropical fringing mangrove community. Marine Ecology Progress Series 428: 49-61.
- Henrique, P., C. Pereira, B. Barros, R. Zemoi, B.P. Ferreira. 2014. Ontogenetic diet changes and food partitioning of *Haemulon* spp. coral reef fishes, with a review of the genus diet. Reviews in Fish Biology and Fisheries 25(1): 245-260.
- Hillebrand, H. 2004a. Strength, slope and variability of marine latitudinal gradients. Marine Ecology Progress Series 273: 251-267.
- Hillebrand, H. 2004b. On the generality of the latitudinal diversity gradient. The American Naturalist 163: 192-211.
- Hong, G.U. 1990. Feeding habits and food composition of half-fin anchovy *Setipinna taty* (C et V) in the Bohai Sea. Chinese Journal of Oceanology and Limnology 8(3): 280-288.
- Horinouchi, M., P. Tongnunui, K. Furumitsu, Y. Nakamura, K. Kanou, A. Yamaguchi, K. Okamoto, M. Sano. 2012. Food habits of small fishes in seagrass habitats in Trang, southern Thailand. Fisheries Science 78(3): 577-587.
- Horn, M.H., R.N. Gibson. 1990. Effects of temperature on the food processing of three species of seaweed-eating fishes from European coastal waters. Journal of Fish Biology 37(2): 237-247.

- Hossain, M.A., D.A. Hemraj, Q. Ye, S.C. Leterme, J.G. Qin. 2017. Diet overlap and resource partitioning among three forage fish species in Coorong, the largest inverse estuary in Australia. Environmental Biology of Fishes 100: 639-654.
- Hothorn, T., A. Zeileis, R.W. Farebrother, C. Cummins, M. Giovanni, D. Mitchell. 2017. Package "Imtest". https://cran.r-project.org/package=Imtest
- Hubbs, C.L., K.F. Lagler. 1941. *Guide to the fishes of the great lakes and tributary waters*. Bloomfield Hills, MI: Cranbrook Press.
- Hundt, P.J., Y. Nakamura, K. Yamaoka. 2014. Diet of combtooth blennies (Blenniidae) in Kochi and Okinawa, Japan. Ichthyological Research 61: 76-82.
- Hurlbert, A.H., J.C. Stegen. 2014. When should species richness be energy limited, and how would we know? Ecology Letters 17(4): 401-413.
- Hyslop, E.J. 1980. Stomach contents analysis a review of methods and their application. Journal of Fish Biology 17: 411-429.
- Ibañez, C., J. Belliard, R.M. Hughes, P. Irz, A. Kamdem-Toham, N. Lammyoux, P.A. Tedesco, T. Oberdorff. 2009. Convergence of temperate and tropical stream fish assemblages. Ecography 32(4): 658-670.
- Ikusemiju, K., A.A. Oki, M. Graham-Douglas. 1983. On the biology of an estuarine population of the clupeid *Pellona afzeliusi* (Johnels) in Lagos Lagoon, Nigeria. Hydrobiologia 102: 55-59.
- Inoue, T., Y. Suda, M. Sano. 2005. Food habits of fishes in the surf zone of a sandy beach at Sanrimatsubara, Fukuoka Prefecture, Japan. Ichthyological Research 52: 9-14.
- Islam, S., M. Tanaka. 2006. Spatial variability in nursery functions along a temperate estuarine gradient: role of detrital versus algal trophic pathways. Canadian Journal of Fisheries and Aquatic Sciences 63: 1848-1864.
- Jaksić, F.M., R.G. Medel. 1990. Objective recognition of guilds: testing for statistically significant species clusters. Oecologia 82: 87-92.
- Janzen, D.H. 1967. Why mountain passes are higher in the tropics. The American Naturalist 101(919): 233-249.
- Jensen, H., K.K. Kahilainen, P.-A. Amundsen, K.Ø. Gjelland, A. Tuomaala, T. Malinen, T. Bøhn. 2008. Predation by brown trout (*Salmo trutta*) along a diversifying prey community gradient. Canadian Journal of Fisheries and Aquatic Sciences 65: 1831-1841.
- Jocque, M., R. Field, L. Brendonck, L.D. Meester. 2010. Climate control of dispersalecological specialization trade-offs: a metacommunity process at the heart of the latitudinal diversity gradient? Global Ecology and Biogeography 19(2): 244-252.
- Jude, D.J. 1973. Food and feeding habits of gizzard shad in Pool 19, Mississippi River. Transactions of the American Fisheries Society 102(2): 378-383.
- Kalko, E.K.V., H.-U. Schnitzler, I. Kaipf, A.D. Grinnell. 1998. Echolocation and foraging behavior of the lesser bulldog bat, *Noctilio albiventris*: Preadaptations for piscivory? Behavioral Ecology and Sociobiology. 42(5): 305-319.
- Kanou, K., M. Sano, H. Kohno. 2004. Food habits of fishes on unvegetated tidal mudflats in Tokyo Bay, central Japan. Fisheries Science 70: 978-987.
- Kaschner, K., K. Kesner-Reyes, C. Garilao, J. Rius-Barile, T. Rees, R. Froese. 2016. Aquamaps: predicted range maps for aquatic species. World wide web electronic publication, <u>www.aquamaps.org</u>, version 08/2016.
- Kato, T., A. Bonet, H. Yoshitake, J. Romero-Nápoles, U. Jinbo, M. Ito, M. Shimada.

2010. Evolution of host utilization patterns in the seed beetle genus Mimosestes Bridwell (Coleoptera: Chrysomelidae: Bruchinae). Molecular phylogenetics and Evolution 55(3): 816-32.

- Kimbembi-ma-ibaka, A., B. Nzuki. 2001. Régime alimentaire de *Microthrissa congica* Regan 1917 (Pisces, Clupeidae) du basin du Congo. Tropicultura 19(2): 53-55.
- Kisel, Y., T.G. Barraclough. 2010. Speciation has a spatial scale that depends on levels of gene flow. The American Naturalist 173(3): 316-334.
- Kitching, R.L. 1987. Spatial and temporal variation in food webs in water-filled treeholes. Oikos 48: 280-288.
- Kiyashko, V.I., N.A. Khalko, V.I. Lazareva 2007. On the diurnal rhythm and feeding electivity in kilka (*Clupeonella cultriventris*) in Rybinsk Reservoir. Journal of Ichthyology 47(4): 310-319.
- Koenker, R., P.T. Ng, A. Zeileis, P. Grosjean, B.D. Ripley. 2018. Package "quantreg"
- Kohler, C.C., J.J. Ney. 1980. Piscivority in a land-locked alewife (*Alosa pseudoharengus*) population. Canadian Journal of Fisheries and Aquatic Sciences 37: 1314-1317.
- Koslow, J.A. 1981. Feeding selectivity of schools of northern anchovy, *Engraulis mordax* in the southern California bight. Fishery Bulletin 79(1): 131-142.
- Köster, F.W., C. Möllmann. 2000. Egg cannibalism in Baltic spat *Sprattus sprattus*. Marine Ecology Progress Series 196: 269-277.
- Krebs, J.M., R.G. Turingan. 2003. Intraspecific variation in gape-prey size relationships and feeding success during early ontogeny in red drum, *Sciaenops ocellatus*. Environmental Biology of Fishes 66: 75-84.
- Krück, N.C., C.A. Chargulaf, U. Saint-Paul, I.R. Tibbetts. 2009. Early post-settlement habitat and diet shifts and the nursery function of tidepools during *Sillago* spp. Recruitment in Moreton Bay, Australia. Marine Ecology Progress Series 384: 207-219.
- Krumme, U., H. Keuthen, M. Barletta, W. Villwock, U. Saint-Paul. 2005. Contribution to the feeding ecology of the predatory wingfin anchovy *Pterengraulis atherinoides* (L.) in north Brazilian mangrove creeks. Journal of Applied Ichthyology 21: 469-477.
- Krumme, U., H. Keuthen, M. Barletta, U. Saint-Paul, W. Villwock. 2008. Resuspended intertidal microphytobenthos as major diet component of planktivorous Atlantic Anchoveta *Cetengraulis edentulus* (Engraulidae) from equatorial mangrove creeks. Ecotropica 14: 121-128.
- Kuthalingam, M.D.K. 1961. Observations on the feeding habits of some sardines together with the key to the identification of the young ones of the genus *Sardinella*. Records of the Indian Museum 59(4): 455-469.
- Kutkuhn, J.H. 1958. Utilization of plankton by juvenile gizzard shad in a shallow prairie lake. Transactions of the American Fisheries Society 87(1): 80-103.
- Lakshmi, S.A. 2010. Interrelationship between the alimentary tract, food and feeding habits of plueronectiform fishes of southeast coast of India. Journal of Experimental Sciences 1: 1-7.
- Lanfear, R., B. Calcott, S.Y.W. Ho, S. Guindon. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analysis. Molecular Biology and Evolution 41(6): 983-991.
- Lavoué, S., M. Miya, P. Musikasinthorn, W.-J. Chen, M. Nishida. 2013. Mitogenomic evidence for an indo-west pacific origin of the Clupeoidei (Teleostei: Clupeiformes). PLoS one 8(2): e56485.
- Lavoué, S., P. Konstantinidis, W.-J. Chen. 2014. Progress in Clupeiformes systematics. In: Ganias, K. editor. Biology and ecology of anchovies and sardines. Enfield, New Hampshire: Science Publishers pp. 3-42.
- Lavoué, S., M.E. Arnegard, D.L. Rabosky, P.B. McIntyre, D. Arcila, R.P. Vari, M. Nishida. 2017a. Trophic evolution in African citharinoid fishes (Teleostei: Characiformes) and the origin of infraordinal pterygophagy. Molecular Phylogenetics and Evolution 113: 23-32.
- Lavoué, S., J.A.M. Bertrand, H.-Y. Wang, W.-J. Chen, H.-C. Ho, H. Motomura, H. Hata, T. Sado, M. Miya. 2017b. Molecular systematics of the anchovy genus *Encrasicholina* in the Northwest Pacific. PLoS one. 12(7): e0181329.
- Lavoué, S., J.A.M. Bertrand, W.J. Chen, H.C. Ho, H. Motomura, T. Sado, M. Miya. 2017c. Phylogenetic position of the rainbow sardine Dussumieria (Dussumieriidae) and its bearing on the early evolution of the Clupeoidei. Gene 623: 41-47.
- Lavoué, S., H.-C. Ho. 2017. Pseudosetipinna Peng & Zhao is a junior synonym of Setipinna Swainson and Pseudosetipinna haizhouensis Peng & Zhao is a junior synonym of Setipinna tenuifilis (Valenciennes) (Teleostei: Clupeoidei: Engraulidae). Zootaxa 4294(3): 342-348.
- Lawlor, L.R. 1980. Structure and stability in natural and randomly constructed competitive communities. American Naturalist 116: 394-408.
- Legendre, P., L. Legendre. 2012. Numerical Ecology, 3rd English ed. Amsterdam: Elsevier Science BV.
- Leighton, L.R. 2005. The latitudinal diversity gradient through deep time: testing the "Age of the Tropics" hypothesis using Carboniferous productidine brachiopods. Evolutionary Ecology 19: 563-581.
- Lewis, V.P., D.S. Peters. 1994. Diet of juvenile and adult Atlantic menhaden in estuarine and coastal habitats. Transactions of the American Fisheries Society 123(5): 803-810.
- Li, C., G. Ortí, G. Zhang, G. Lu. 2007. A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evolutionary Biology 7.
- Li, C., G. Ortí, J. Zhao. 2010. The phylogenetic placement of sinipercid fishes ("Perciformes") revealed by 11 nuclear loci. Molecular Phylogenetics and Evolution 56: 1096-1104.
- Lim, P., S. Lek, S.T. Touch, S.-O. Mao, B. Chhouk. 1999. Diversity and spatial distribution of freshwater fish in Great Lake and Tonle Sap River (Cambodia, Southeast Asia). Aquatic Living Resources 12(6): 379-386.
- Lin, H.-J., W.-Y. Kao, Y.-T. Wang. 2007. Analyses of stomach contents and stable isotopes reveal food smyces of estuarine detritivorous fish in tropical/subtropical Taiwan. Estuarine, Coastal and Shelf Science 73: 527-537.
- Linzmaier, S.M., L.A. Twardochleb, J.D. Olden, T. Mehner, R. Arlinghaus. 2018. Sizedependent foraging niches of European Perch *Perca fluviatilis* (Linnaeus, 1758)

and North American Yellow Perch *Perca flavescens* (Mitchill, 1814). Environmental Biology of Fishes 101: 23-37.

- Livingston, R.J. 1982. Trophic organization of fishes in a coastal seagrass system. Marine Ecology Progress Series 7: 1-12.
- Lobato, F.L., D.R. Barneche, A.C. Siqueira, A.M.R. Liedke, A. Lindner, M.R. Pie, D.R. Bellwood, S.R. Floeter 2014. Diet and diversification in the evolution of coral reef fishes. PLoS one. 9(7): e102094.
- Loeb, M.V., A.V. Alcântara. 2013. A new species of *Lycengraulis* Günther, 1868 (Clupeiformes: Engraulinae) from the Amazon basin, Brazil, with comments on *Lycengraulis batesii* (Günther, 1868). Zootaxa 3693(2): 200-206.
- Lomiri, S., U. Scacco, E. Mostarda, F. Andaloro. 2008. Size-related and temporal variation in the diet of the round sardinella, *Sardinella aurita* (Valenciennes, 1847), in the central Mediterranean Sea. Journal of Applied Ichthyology 24: 539-545.
- López, J.A., W.-J. Chen, G. Ortí. 2004. Esociform phylogeny. Copeia 2004(3): 449-464.
- Loxdale, H.D., G. Lushai, J.A. Harvey. 2011. The evolutionary improbability of 'generalism' in nature, with special reference to insects. Biological Journal of the Linnean Society. 103(1): 1-8.
- MacArthur, R.H., R. Levins. 1967. The limiting similarity, convergence and divergence of coexisting species. The American Naturalist 101(921): 377-385.
- Macpherson, E. 1981. Resource partitioning in a Mediterranean demersal fish community. Marine Ecology Progress Series 4: 183-193.
- Maitland, P.S., A.A. Lyle. 2005. Ecology of Allis shad *Alosa alosa* and twaite shad *Alosa fallax* in the Solway Firth, Scotland. Hydrobiologia 534: 205-221.
- Majluf, P., S. De la Puente, V. Christensen. 2017. The little fish that can feed the world. Fish and Fisheries 18(4): 772-777.
- Major, P.F. 1973. Scale feeding behavior of the leatherjacket, *Scomberoides lysan* and two species of the genus *Oligoplites* (Pisces: Carangidae). *Copeia* 1973: 151-154.
- Malabarba, M.C., F.D. Dario. 2017. A new predatory herring-like fish (Teleostei: Clupeiformes) from the early Cretaceous of Brazil, and implications for relationships in the Clupeoidei. Zoological Journl of the Linnean Society 180(1): 175-194.
- Malek, A.J., J.S. Collie, D.L. Taylor. 2016. Trophic structure of a coastal fish community determined with diet and stable isotope analysis. Journal of Fish Biology 89: 1513-1536.
- Mannion, P.D., P. Upchurch, R.B.J. Benson, A. Goswami. 2014. The latitudinal biodiversity gradient through deep time. Trends in Ecology and Evolution 29(1): 42-50.
- Marcot, J.D., D.L. Fox, S.R. Niebuhr. 2016. Late Cenozoic onset of the latitudinal diversity gradient of North American mammals. PNAS 113(26): 7189-7194.
- Marcus, O. 1986. Food and feeding habits of *Ilisha africana* (Bloch) (Pisces: Clupeidae) off the Lagos coast, Nigeria. Journal of Fish Biology 29: 671-683.
- Marichamy, R. 1972. Food and feeding habits of the short-jaw anchovy, *Thrissina baelama* (Forskal), of the Andaman Sea. Indian Journal of Fisheries 19(1&2): 54-59.
- Marin, J., G. Rapacciuolo, G.C. Costa, C.H. Graham, T.M. Brooks, B.E. Young, V.C.

Radeloff, J.E. Behm, M.R. Helmus, S.B. Hedges. 2018. Evolutionary time drives global tetrapod diversity. Proceedings of the Royal Society B 285(172): 20172378.

- Marramà, G., G. Carnevale. 2016. An Eocene anchovy from Monte Bolca, Italy; The earliest known record for the family Engraulidae. Geological Magazine 153(1): 84-94.
- Martin, T.J., S.J.M. Blaber. 1983. The feeding ecology of Ambassidae (Osteichthyes: Perciformes) in Natal estuaries. South African Journal of Zoology 18: 353-362.
- Martin, A.E., L. Fahrig. 2018. Habitat specialist birds disperse farther and are more migratory than habitat generalist birds. Ecology 99(9): 2058-2066.
- Mavuti, K.M., J.A. Nyunja, E.O. Wakwabi. 2004. Trophic ecology of some common juvenile fish species in Mtwapa Creek, Kenya. Western Indian Ocean Journal of Marine Science 3(2): 179-187.
- Medeiros, E.S.F., A.H. Arthington. 2008. The importance of zooplankton in the diets of three native fish species in floodplain waterholes of a dryland river, the Macintyre River, Australia. Hydrobiologia 614: 19-31.
- Mérona, B. de, G.M. dos Santos, R.G. de Almeida. 2001. Short term effects of Tucuruí Dam (Amazonia, Brazil) on the trophic organization of fish communities. Environmental Biology of Fishes 60: 375-392.
- Mérona, B. de, B. Hugueny, F.L. Tejerina-Garro, E. Gautheret. 2008. Diet-morphology relationship in a fish assemblage from a medium-sized river of French Guiana: the effect of species taxonomic proximity. Aquatic Living Resources 21(2): 171-184.
- Metillo, E.B., W.L. Campos, C.L. Villanoy, K.-I. Hayashizaki, T. Tsunoda, S. Nishida. 2018. Ontogenetic feeding shift and size-based zooplanktivory in *Sardinella lemuru* (Pisces, Clupeidae) during an upwelling in southeastern Sulu Sea, The Philippines. Fisheries Management and Ecology 25: 441-445.
- Mickle, P.F., J.F. Schaefer, D.A. Yee, S.B. Adams. 2013. Diet of juvenile Alabama shad (*Alosa alabamae*) in two northern Gulf of Mexico drainages. Southeastern Naturalist 12(1): 233-237.
- Mihalitsis, M., D.R. Bellwood. 2017. A morphological and functional basis for maximum prey size in piscivorous fishes. PloS one 12(9): e0184679.
- Mihindukulasooriya, I.D., U.S. Amarasinghe. 2014. Food and feeding of *Ehirava fluviatilis* (Osteichthyes, Clupeidae) in Rajanganaya Reservoir, Sri Lanka. Sri Lanka Journal of Aquatic Science 19: 31-39.
- Milton, D.A., S.J.M. Blaber, N.J.F. Rawlinson. 1990. Diet and prey selection of six species of tuna baitfish in three coral reef lagoons in the Solomon Islands. Journal of Fish Biology 37: 205-224.
- Milton, D.A., S.J.M. Blaber, N.J.F. Rawlinson. 1994. Diet, prey selection and their energetic relationship to reproduction in the tropical herring *Herklotsichthys quadrimaculatus* in Kiribati, central Pacific. Marine Ecology Progress Series 103: 239-250.
- Miller, R.R. 1982. First fossil record (Plio-Pleistocene) of threadfin shad, *Dorosoma petenense*, from the Gatuna Formation of southeastern New Mexico. Journal of Paleontology 56(2): 423-425.
- Miller, M.A., W. Pfeiffer, T. Schwartz. 2010. Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing

Environments Workshop (GCE), 14 November 2010, New Orleans, LA, 1-8.

- Miller, C.M., J.T. Hayashi, D. Song, J.J. Wiens. 2018. Explaining the ocean's richest biodiversity hotspot and global patterns of fish diversity. Proceedings of the Royal Society B: Biological Sciences 285: 20181314.
- Milton, D.A., S.J.M. Blaber, N.J.F. Rawlinson. 1990. Diet and prey selection of six species of tuna baitfish in three coral reef lagoons in the Solomon Islands. Journal of Fish Biology 37: 205-224.
- Mittelbach, G.G., D.W. Schemske, H.V. Cornell, A.P. Allen, J.M. Brown, M.B. Bush, S.P. Harrison, A.H. Hurlbert, N. Knowlton, H.A. Lessios, C.M. McCain, A.R. McCune, L.A. McDade, M.A. McPeek, T.J. Near, T.D. Price, R.E. Ricklefs, K. Roy, D.F. Sax, D. Schluter, J.M. Sobel, M. Turelli. 2007. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters 10(4): 315-331.
- Mketsu, Q.K. 2008. Comparative dietary analysis of four small pelagic fish species from presumed mixed shoals off South Africa's east coast. Master's Thesis University of Cape Town.
- Mondal, D.K., A. Kaviraj. 2010. Feeding and reproductive biology and Indian shad *Gudusia chapra* in two floodplain lakes of India. Electronic Journal of Biology 6(4): 98-102.
- Montoya, J.M., R.V. Solé. 2003. Topological properties of food webs: from real data to community assembly models. Oikos 102: 614-622.
- Moore, J.W., I.A. Moore. 1976. The basis of food selection in some estuarine fishes. Eels, Anguilla Anguilla (L.), whiting, Merlangius merlangus (L.), spat, Sprattus sprattus (L.) and stickleback, Gasterosteus aculeatus L. Journal of Fish Biology 9: 375-390.
- Moreira-Hara, S.S., J.A.S. Zuanon, S.A. Amadio. 2009. Feeding of *Pellona flavipinnis* (Clupeiformes, Pristigasteridae) in a central Amazonian floodplain. Iheringia Série Zoologia 99(2): 153-157.
- Morinière, J., M.H. Van Dam, O. Hawlitschek, J. Bergsten, M.C. Michat, L. Hendrich, I. Ribera, E.F. Toussaint, M. Balke. 2016. Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods. Scientific reports 6: 26340.
- Morote, E., M.P. Olivar, F. Villate, I. Uriarte. 2010. A comparison of anchovy (*Engraulis encrasicolus*) and sardine (*Sardina pilchardus*) larvae feeding in the Northwest Mediterranean: influence of prey availability and ontogeny. ICES Journal of Marine Science 67(5): 897-908.
- Mundahl, N.D., T.E. Wissing. 1987. Nutritional importance of detritivory in the growth and condition of gizzard shad in an Ohio reservoir. Environmental Biology of Fishes 20(20): 129-142.
- Munk, P. 1997. Prey size spectra and prey availability of larval and small juvenile cod. Journal of Fish Biology 51: 340-351.
- Munroe, T.A., M. Nizinski. 1999. Engraulidae. Anchovies. In: Carpenter KE, Niem VH (eds.) FAO species identification guide for fishery purposes. The living marine resmyces of the WCP. Vol. 3. Batoid fishes, chimaeras and bony fishes part 1 (Elopidae to Linophrynidae). FAO, Rome pp 1698-1706.

- Munroe, T.A., T. Wongratana, M.S. Nizinski. 1999. Clupeidae. Herrings (also, sardines, shads, sprats, pilchards and menhadens). p. 1775-1784. In K.E. Carpenter and V.H. Niem (eds.) FAO species identification guide for fishery purposes. The living marine resmyces of the WCP. Vol. 3. Batoid fishes, chimaeras and bony fishes part 1 (Elopidae to Linophrynidae). FAO, Rome.
- Nachón, D.J., J. Sánchez-Hernández, R. Vieira-Lanero, F. Cobo. 2013. Feeding of twaite shad, *Alosa fallax* (Lacépède, 1803), during the upstream spawning migration in the River Ulla (NW Spain). Marine and Freshwater Research 64: 233-236.
- Nair, K.V. 1998. Studies on the fishery, biology and population dynamics of anchovies of the Kerala coast. Dissertation, Mahatma Gandhi University.
- Nakamura, Y., M. Horinouchi, T. Nakai, M. Sano. 2003. Food habits of fishes in a seagrass bed on a fringing coral reef at Iriomote Island, southern Japan. Ichthyological Research 50: 15-22.
- Nakane, Y., Y. Suda, M. Sano. 2011. Food habits of fishes on an exposed sandy beach at Fukiagehama, south-west Kyushu Island, Japan. Helgoland Marine Research 65: 123-131.
- Nanjo, K., H. Kohno, M. Sano. 2008. Food habits of fishes in the mangrove estuary of Urauchi River, Iriomote Island, southern Japan. Fisheries Science 74: 1024-1033.
- Near, T.J., R.I. Eytan, A. Dornburg, K.L. Kuhn, J.A. Moore, M.P. Davis, P.C. Wainwright, M. Friedman, W.L. Smith. 2012. Resolution of ray-finned fish phylogeny and timing of diversification. PNAS 109(34): 13698-13703.
- Nelson, J., C. Stallings, W. Landing, J. Chanton. 2013. Biomass transfer subsidizes nitrogen to offshore food webs. Ecosystems 16: 1130-1138.
- Nikolioudakis, N., S. Isari, P. Pitta, S. Somarakis. 2012. Diet of sardine *Sardina pilchardus*: an "end-to-end" field study. Marine Ecology Progress Series 453: 173-188.
- Nyunja, J.A., K.M. Mavuti, E.O. Wakwabi. 2002. Trophic ecology of Sardinella gibbosa (Pisces: Clupeidae) and Atherinomorous lacunosus (Pisces: Atherinidae) in Mtwapa Creek and Wasini Channel, Kenya. Western Indian Ocean Journal of Marine Science 1(2): 181-189.
- O'brien, E.M., R. Field, R.J. Whittaker. 2000. Climatic gradients in woody plant (tree and shrub) diversity: water-energy dynamics, residual variation, and topography. Oikos 89(3): 588-600.
- Odum, W.E., E.J. Heald. 1972. Trophic analyses of an estuarine mangrove community. Bulletin of Marine Science 22(3): 671-738.
- Offem, B.O., Y.A. Samsons, I.T. Omoniyi. 2009. Trophic ecology of commercially important fishes in the Cross River, Nigeria. The Journal of Animal and Plant Sciences 19(1): 37-44.
- Oksanen, J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R.B. O'Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs, H. Wagner. 2016. vegan: Community Ecology Package. *R package version 2.4-0*. Available at <u>https://CRAN.R-project.org/package=vegan</u>.
- Olden, J.D., N.L. Poff, K.R. Bestgen. 2006. Life-history strategies predict fish invasions and extirpations in the Colorado River Basin. Ecological Monographs 76(1): 25-40.

- Orme, D., R. Freckleon, G. Thomas, T. Petzoldt. 2013. The caper package: comparative analysis of phylogenetics and evolution in R. *R package version* 5.2: 1-36.
- Otté, E.C., H.B. Bohn translators (1850) Views of Nature: or contemplations on the sublime phenomena of creation; with Scientific Illustrations, 3rd edn (Alexander von Humboldt), Henry G. Bohn.
- Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877-884.
- Paradis, E., K. Schliep. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526-528.
- Paszkowski, C.A., W.M. Tonn, I.J. Holopainen. 1989. An experimental study of body size and food size relations in crucian carp, *Carassius carassius*. Experimental Biology of Fishes 24: 275-286.
- Pearre, S. 1986. Ratio-based trophic niche breadths of fish, the Sheldon spectrum, and the size-efficiency hypothesis. Marine Ecology Progress Series 27: 299-314.
- Pekár, S., J.A. Coddington, T.A. Blackledge. 2011. Evolution of stenophagy in spiders (Araneae): evidence based on the comparative analysis of spider diets. Evolution 63(3): 776-806.
- Pepin, P., R.W. Penney. 1997. Patterns of prey size and taxonomic composition in larval fish: are there general size-dependent models? Journal of Fish Biology 51(Supplement A): 84-100.
- Phukan, B., S. Baishya, P. Sharma, A. Rajbongshi, A. Rahman. 2012. Food and feeding habits of *Gudusia chapra* (Hamilton, 1822) from Silinga Beel of lower reaches of Subansiri River in Assam, N-E India. Environment and Ecology 30(3): 578-580.
- Pianka, E.R. 1973. The structure of lizard communities. Annual Review of Ecology and Systematics 4: 53-74.
- Plounevez, S., G. Champalbert. 1999. Feeding behavior and trophic environment of *Engraulis encrasicolus* (L.) in the Bay of Biscay. Estuarine, Coastal and Shelf Science 49: 177-191.
- Plummer, M., N. Best, K. Cowles, K. Vines. 2006. CODA: convergence diagnosis and output analysis for MCMC. R News 6(1): 7-11.
- Polis, G.A. 1984. Age structure component of niche width and intraspecific resmyce partitioning: can age groups function as ecological species? The American Naturalist 123(4): 541-564.
- Pontarp, M., L. Bunnefeld, J.S. Cabral, R.S. Etienne, S.A. Fritz, R. Gillespie, C.H. Graham, O. Hagen, F. Hartig, S. Huang, R. Jansson, O. Maliet, T. Münkemüller, L. Pellissier, T.F. Rangel, D. Storch, T. Wiegand, A.H. Hurlbert. 2019. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends in Ecology and Evolution 34(3): 211-223.
- Pouilly, M., F. Lino, J.-G. Bretenoux, C. Rosales. 2003. Dietary-morphological relationships in a fish assemblage of the Bolivian Amazonian floodplain. Journal of Fish Biology 62: 113-1158.
- Pouilly, M., T. Yunoki, C. Rosales, L. Torres. 2004. Trophic structure of fish assemblages from Mamoré River floodplain lakes (Bolivia). Ecology of Freshwater Fish 13: 245-257.

- Powell, M.G., V.P. Beresford, B.A. Colaianne. 2012. The latitudinal position of peak marine diversity in living and fossil biotas. Journal of Biogeography 39(9): 1687-1694.
- Price, S.A., S.S.B. Hopkins, K.K. Smith, V.L. Roth. 2012. Tempo of trophic evolution and its impact on mammalian diversification. PNAS 109(18): 7008-7012.
- Pusey, B.J., M.G. Read, A.H. Arthington. 1995. The feeding ecology of freshwater fishes in two rivers of the Australian wet tropics. Environmental Biology of Fishes 43: 85-103.
- Pyron, R.A., J.J. Weins. 2013. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proceedings of the Royal Society B: Biological Sciences 280(1770): 20131622.
- Pyron, R.A. 2014. Biogeographic analysis reveals ancint continental vicariance and recent oceanic dispersal in amphibians. Systematic Biology 63(5): 779-797.
- R Development Core Team (2016). R: A language and environment for statistical computing. Version 3.3.1, Vienna, Austria. Available at: <u>http://www.R-project.org</u>.
- Rabosky, D.L. 2014. Automatic detection of key innovations, rate shifts, and diversitydependence on phylogenetic trees. PloS ONE 9: e89543.
- Rabosky, D.L., P.O. Title, H. Huang. 2015. Minimal effects of latitude on present-day speciation rates in New World birds. Proceedings of the Royal Society B: Biological Sciences. 282(1809): 20142889.
- Rabosky, D.L., H. Huang. 2016. A robust semi-parametric test for detecting traitdependent diversification. Systematic Biology 65: 181-193.
- Rabosky, D.L., J.S. Mitchell, J. Chang. 2017. Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Systematic Biology 66(4): 477-498.
- Rabosky, D.L., J. Chang, P.O. Title, P.F. Cowman, L. Sallan, M. Friedman, K. Kaschner, C. Garilao, T.J. Near, M. Coll, M.E. Alfaro. 2018. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559(7714): 392.
- Rainboth, W.J. 1996. Fishes of the Cambodian Mekong. FAO species identification field guide for fishery purposes. Rome: FAO.
- Raje, S.G. 1993. Some aspects of biology of *Alepes djedaba* (Forskål) from Veraval, Gujarat. Indian Journal of Fisheries 40: 189-192.
- Ralston, S.L., M.H. Horn. 1986. High tide movements of the temperate-zone herbivorous fish *Cebidichthys violaceus* (Girard) as determined by ultrasonic telemetry. Journal or Experimental Marine Biology and Ecology 98: 35-50.
- Rambaut, A., M.A. Suchard, D. Xie, A.J. Drummond. 2014. Traver v1.6 http://tree.bio.ed.ac.uk/software/tracer/
- Rao, K.S. 1967. Food and feeding habits of fishes from trawl catches in the Bay of Bengal with observations on diurnal variation in the nature of the feed. Indian Journal of Fisheries 11(1): 277-314.
- Rao, Y.P., D.N.K. Veni, I.R. Sirisha. 2015. Biology of orange fin pony fish, *Photopectoralis bindus* (Valenciennes, 1935), off Visakhapatnam, east coast of India. International Journal of Environmental Sciences 5: 1159-1171.
- Revell, L.J. 2012. Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217-223.

- Rivadeneira, M.M., M. Thiel, E.R. González, P.A. Haye. 2011. An inverse latitudinal gradient of diversity of peracarid crustaceans along the Pacific Coast of South America: out of the deep south. Global Ecology and Biogeography 20(3): 437-448.
- Rolland, J., F. Jiguet, K.A. Jønsson, F.L. Condamine, H. Morlon. 2014. Settling down of seasonal migrants promotes bird diversification. Proceedings of the Royal Society B: Biological Sciences, 281(1784): p.20140473.
- Root, R.B. 1967. The niche exploitation pattern of the Blue-Gray Gnatcatcher. Ecological Monographs 37: 317-350.
- Röpke, C.P., E. Ferreira, J. Zuanon. 2013. Seasonal changes in the use of feeding resources by fish in stands of aquatic macrophytes in an Amazonian floodplain, Brazil. Environmental Biology of Fishes 97(4): 401-414.
- Sabatés, A., E. Saiz. 2000. Itra- and interspecific variability in prey size and niche breadth of myctophiform fish larvae. Marine Ecology Progress Series 201: 261-271.
- Salarpmy, A., D. Mohammad, S. Behzadi, F. Seraji. 2008. Reproduction and feeding of buccaneer anchovy (*Encrasicholina punctifer*) from coastal waters of Qeshm Island, the Persian Gulf. Iranian Scientific Fisheries Journal 17(1): 45-54.
- Salarpour, A., D. Mohammad, S. Behzadi, F. Seraji. 2008. Reproduction and feeding of buccaneer anchovy (*Encrasicholina punctifer*) from coastal waters of Qeshm Island, the Persian Gulf. Iranian Scientific Fisheries Journal 17(1): 45-54.
- Salini, J.P., D.T. Brewer, S.J.M. Blaber. 1998. Dietary studies on the predatory fishes of the Norman River Estuary, with particular reference to penaeid prawns. Estuarine, Costal and Shelf Science 46: 837-847.
- Sanchez, M.F. 1989. Morphological characteristics of digestive tract and trophic spectrum of saraca (*Breevoortia aurea*, Clupeiformes, Pisces). Physis-A 47(112): 21-33.
- Sanchez, J.L., J.C. Trexler. 2016. The adaptive evolution of herbivory in freshwater systems. Ecosphere 7: e01414.
- Santini, F., M.R. May, G. Carnevale, B.R. Moore. 2015. Bayesian inference of divergence times and feeding evolution in grey mullets (Mugilidae). bioRxiv: 019075.
- Sarkar, S.K., A. Bhattacharya, S. Giri, B. Bhattacharya, D. Sarkar, D.C. Nayak, A.K. Chattopadhaya. 2005. Spatiotemporal variation in benthic polychaetes (Annelida) and relationships with environmental variables in a tropical estuary. Wetlands Ecology and Management 13: 55-67.
- Saupe, E.E., C.E. Myers, A.T. Peterson, J. Soberón, J. Singarayer, P. Valdes, H. Qiao. 2019. Non-random latitudinal gradients in range size and niche breadth predicted by spatial patterns of climate. Global Ecology and Biogeography 28(7): 928-942.
- Scharf, F.S., F. Juanes, M. Sutherland. 1998. Inferring ecological relationships from the edges of scatter diagrams: comparison of regression techniques. Ecology 79(2): 448-460.
- Scharf, F.S., F. Juanes, R.A. Rountree. 2000. Predator size prey size relationships of marine fish predators: interspecific variation and the effects of ontogeny and body size on trophic niche breadth. Marine Ecology Progress Series 208: 229-248.

- Scharf, F.S., K.K. Schlight. 2000. Feeding habits of red drum (Scianops ocellatus) in Galveston Bay, Texas; seasonal diet variation and predator-prey size relationships. Estuaries 23(1): 128-139.
- Schmitz, E.H., C.D. Baker. 1969. Digestive anatomy of the gizzard shad, *Dorosoma cepedianum* and the threadfin shad *D. petenense*. Transactions of the American Microscopical Society 88(4): 525-546.
- Schneider, C.A., W.S. Rasband, K.W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671-675.
- Schoener, T.W. 2009. Ecological Niche. In: Levin SA (ed) The Princeton Guide to Ecology, Princeton University Press, New Jersey, pp 3-13.
- Seah, Y.G., S. Abdullah, C.C. Zaidi, A.G. Mazlan. 2009. Systematic accounts and some aspects of feeding and reproductive biology of ponyfishes (Perciformes: Leiognathidae). Sains Malaysiana 38: 47-56.
- Seah, Y.G., A.G. Mazlan, S. Abdullah, C.C. Zaidi, G. Usup, C.A.R. Mohamed. 2011. Feeding guild of the dominant trawl species in the southeastern waters of peninsular Malaysia. Journal of Biological Sciences 11: 221-225.
- Shahraki, M., B. Fry, U. Krumme, T. Rixen. 2014. Microphytobenthos sustain fish food webs in intertidal arid habitats: a comparison between mangrove-lined and unvegetated creeks in the Persian Gulf. Estuarine, Costal and Shelf Science 149: 203-212.
- Shakman, E., R. Kinzelbach. 2006. The halfbeak fish, *Hemiramphus far* (Forskal, 1775), in the coastal waters of Libya. Zoology in the Middle East 39: 111-112.
- Shannon, L.J., J.G. Field, C.L. Moloney. 2004. Simulating anchovy-sardine regime shifts in the southern Benguela ecosystem. Ecological Modeling 172: 269-281.
- Sheaves, M., R. Baker, K.G. Abrantes, R.M. Connolly. 2016. Fish biomass in tropical estuaries: substantial variation in food web structure, sources of nutrition and ecosystem-supporting processes. Estuaries and Coasts 40(2): 580-593.
- Shiono, T., B. Kusumoto, M. Yasuhara, Y. Kubota. 2018. Roles of clime niche conservatism and range dynamics in woody plant diversity patterns through the Cenozoic. Global Ecology and Biogeography 27(7): 865-874.
- Simberloff, D., T. Dayan. 1991. The guild concept and the structure of ecological communities. Annual Review of Ecology and Systematics 22: 115-143.
- Simon, T., J.-C. Joyeux, H.T. Pinheiro. 2013. Fish assemblages on shipwrecks and natural rocky reefs strongly differ in trophic structure. Marine Environmental Research 90: 55-65.
- Simpson, E.H. 1949. Measurement of diversity. Nature 163: 688.
- Siqueira, A.C., L.G.R. Oliveira-Santos, P.F. Cowman, S.R. Floeter, A. Algar. 2016. Evolutionary processes underlying latitudinal differences in reef fish diversity. Global Ecology and Biogeography 25: 1466-1476.
- Sirimongkonthaworn, R., C.H. Fernando. 1994. Biology of *Clupeichthys aesarnensis* (Clupeidae) in Ubolratana Reservoir, Thailand, with special reference to food and feeding habits. Internationale Revue der Gesamten Hydrobiologie und Hydrographie 79(1): 95-112.
- Sivakami, S. 1990. Observations on some aspects of biology of *Alepes djedaba* (Forskål) from Cochin. Journal of the Marine Biological Association of India 32: 107-118.

- Skóra, M.E., M.R. Sapota, K.E. Skóra, A. Pawelec. 2012. Diet of the twiate shad Alosa fallax (Lacépède, 1803) (Clupeidae) in the Gulf of Gdansk, the Baltic Sea. Oceanological and Hydrobiological Studies 41(3): 24-32.
- Slatyer, R.A., M. Hirst, J.R. Sexton. 2013. Niche breadth predicts geographical range size: a general ecological pattern. Ecology Letters 16(8): 1104-1114.
- Smoot, J.C., R.H. Findlay. 2010. Caloric needs of detritivorous gizzard shad *Dorosoma cepedianum* are met with sediment bacterial and algal biomass. Aquatic Biology 8(2): 105-114.
- Somerfield, P.J. 2008. Identification of the Bray-Curtis similarity index: comment on Yoshioka 2008. Marine Ecology Progress Series 372: 303-306.
- Specziár, A., E.T. Rezsu. 2009. Feeding guilds and food resource partitioning in a lake fish assemblage: an ontogenetic approach. Journal of Fish Biology 75: 247-267.
- Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies. Bioinformatics 30(9): 1312-1313.
- Stern, N., J. Douek, M. Goren, B. Rinkevich. 2017. With no gap in mind: a shallow genealogy within the world's most widespread small pelagic fish. Ecography 40: 1-13.
- Stomp, M., J. Huisman, G.G. Mittelbach, E. Litchman, C.A. Klausmeier. 2011. Largescale biodiversity patterns in freshwater phytoplankton. Ecology 92(11): 2096-2107.
- Stone, H.H., G.R. Daborn. 1987. Diet of alewives, *Alosa pseudoharengus* and blueback herring, *A. aestivalis* (Pisces: Clupeidae) in Minas Basin, Nova Scotia, a turbid, macrotidal estuary. Environmental Biology of Fishes 19(1): 55-67.
- Storch, D., E. Bohdalková, J. Okie. 2018. The more-individuals hypothesis revisited: the role of community abundance in species richness regulation and the productivity– diversity relationship. Ecology letters: 21(6): 920-937.
- Taher, M.M. 2010. Specialization, trophic breadth and diet overlap of thirteen small marine fish species from Shatt Al-Basrah Canal, Southern Iraq. Marsh Bulletin 5(2): 118-130.
- Tampi, P.R.S. 1958. On the food of *Chanos chanos* (Forskål). Indian Journal of Fisheries 5: 107-117.
- Tanaka, H., I. Aoki, S. Ohshimo. 2006. Feeding habits and gill raker morphology of three planktivorous pelagic fish species off the coast of northern and western Kyushu in summer. Journaal of Fish Biology 68: 1041-1061.
- Tedesco, P.A., E. Paradis, C. Lévêque, B. Hugueny. 2017. Explaining global-scale diversification patterns in actinopterygian fishes. Journal of Biogeography 44: 773-783.
- Tsikliras, A.C., M. Torre, K.I. Stergiou. 2005. Feeding habits and trophic level of round sardinella (*Sardinella aurita*) in the northeastern Mediterranean (Aegean Sea, Greece). Journal of Biological Research 3: 67-75.
- Van der Lingen, C.D. 2002. Diet of sardine *Sardinops sagax* in the southern Benguela upwelling ecosystem. South African Journal of Marine Science 24(1): 301-316.
- Vander Zanden, M.J., W.W. Fetzer. 2007. Global patterns of aquatic food chain length. Oikos 116: 1378-1388.

- Vega-Cendejas, M.E., M. Hernandez, F. Arreguin-Sanchez. 1994. Trophic interrelations in a beach seine fishery from the northwestern coast of the Yucatan Peninsula, Mexico. Journal of Fish Biology 44: 647-659.
- Venkataraman, G. 1960. Studies on the food and feeding relationships of the inshore fishes off Calicut on the Malabar coast. Indian Journal of Fisheries 7(2): 275-306.
- Wailes, G.H. 1935. Food of *Clupea pallasii* in Southern British Columbia waters. Journal of the Biological Board of Canada 1(6): 477-486.
- Wakabara, Y., M.N. Flynn, A.S. Tararam. 1996. Ingestion and selection of suprabenthic crustaceans by small-sized fishes in a lower saltmarsh system. Revista Brasileira de Oceanografia 44(2): 89-103.
- Weinberger, C.S., J.M. Posada. 2005. Analysis on the diet of bonefish, *Albula vulpes*, in Los Roques Archipelago National Park, Venezuela. Contributions in Maine Science 37: 30-45.
- Werle, E., C. Schneider, M. Renner, M. Völker, W. Fiehn. 1994. Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Research 22: 4354-4355.
- Werner, E.E. 1997. Species packing and niche complementarity in three sunfishes. The American Naturalist 111: 553-578.
- Whitaker, D., C. Christman. 2015. Clustsig: Significant cluster analysis. *R Package Version 1.1*. Available at <u>https://CRAN.R-project.org/package=clustsig</u>.
- Whitehead, P.J.P., G.J. Nelson, T. Wongratana. 1988. FAO Species Catalogue, Vol. 7. Clupeoid Fishes of the World (Suborder Clupeoidei). UNDP FAP, Rome.
- Wiens, J.J., M.J. Donoghue. 2004. Historical biogeography, ecology and species richness. TRENDS in Ecology and Evolution 19(12): 639-644.
- Wilson, J., M. Sheaves. 2001. Short-term temporal variations in taxonomic composition and trophic structure of a tropical estuarine fish assemblage. Marine Biology 139: 787-796.
- Wilson, S.K., D.R. Bellwood, J.H. Choat, M.J. Furnas. 2003. Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanography and Marine Biology: an Annual Review 41: 279-309.
- Wilson, A.B., G.G. Teugels, A. Meyer. 2008. Marine incursion: the freshwater herring of Lake Tanganyika are the product of a marine invasion into West Africa. PLoS One 3(4): e1979.
- Winemiller, K.O. 1990. Spatial and temporal variation in tropical fish trophic networks. Ecological Monographs 60: 331-367.
- Winemiller, K.O., S. Akin, S.C. Zeug. 2007. Production sources and food web structure of a temperate tidal estuary: integration of dietary and stable isotope data. Marine Ecology Progress Series 343: 63-76.
- Winkelman, D.L., M.J. Van Den Avyle. 2002. A comparison of diets of blueback herring (*Alosa aestivalis*) and threadfin shad (*Dorosoma petenense*) in a large southeastern U.S. reservoir. Journal of Freshwater Ecology 17(2): 209-221.
- Xia, X., Z. Xie, M. Salemi, L. Chen, Y. Wang. 2003. An index of substitution saturation and its application. Moleculary Phylogenetics and Evolution 26(1): 1-7.
- Xia, X. 2017. DAMBE6: New tools for microbial genomics, phylogenetics, and molecular evolution. Journal of Heredity 108(4): 431-437.

- Yang, Z., S. Kumar, M. Nei. 1995. A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141: 1641-1650.
- Yamahira, K., T. Kikuchi, S. Nojima. 1996. Age specific food utilization and spatial distribution of the puffer, *Takifugu niphobles*, over an intertidal sand flat. Environmental Biology of Fishes 45: 311-318.
- Yang, K.Y., S.Y. Lee, G.A. Williams. 2003. Selective feeding by the mudskipper (*Boleophthalmus pectinirostris*) on the microalgal assemblage of a tropical mudflat. Marine Biology 143: 245-256.
- Yang, Z. 2006. Computational Molecular Evolution. Oxford University Press, Oxford.
- Zachos, J., M. Pagani, L. Sloan, E. Thomas, K. Billups. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686-693.
- Zagars, M., K. Ikejima, A. Kasai, N. Arai, P. Tongnunui. 2013. Trophic characteristics of a mangrove fish community in southIst Thailand: Important mangrove contribution and intraspecies feeding variability. Estuarine, Coastal, and Shelf Science 119: 145-152.
- Zhang, H., G. Wu, H. Zhang, P. Xie, J. Xu, Q. Zhou. 2013. Role of body size and temporal hydrology in the dietary shifts of shortjaw tapertail anchovy *Coilia brachygnathus* (Actinopterygii, Engraulidae) in a large floodplain lake. Hydrobiologia 703: 247-256.