
Computational Digital Inline Holography for In Situ
Particle Tracking and Characterization

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Kevin Mallery

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

PhD

Jiarong Hong

May, 2020



c© Kevin Mallery 2020

ALL RIGHTS RESERVED



Acknowledgements

There are many people to whom I am indebted for their help and support during my

time in graduate school. First, I would like to thank my advisor Professor Jiarong Hong

for his support of my academic interests. I am appreciative of both the freedom he gave

me to explore tangential methods and projects (some of which are now key elements of

this thesis) as well as the pressure he applied to actually accomplish our stated goals.

I have been lucky to participate in a great deal of highly collaborative research with

Prof. Nikolaos Papanikolopoulos, Prof. Miki Hondzo, and their students Dario Canelon

and Jiaqi You. It was only with their assistance and leadership that the applications in

the later half of this thesis were made possible.

Thank you to my lab mates, old and new. Mostafa and David, you helped me find

my legs in this lab and laid the groundwork for my research. Santosh and Siyao, you

were friends, collaborators, and sounding boards. Our frequent brainstorming sessions

proved invaluable.

Finally, I am deeply grateful for my non-work friends and family for keeping me

grounded throughout this. Katie and Dan, our game nights, even remotely, provided

welcome relief from the stress of thesis work. Jeanette, you’re the best. Thank you all.

i



Abstract

Digital inline holography (DIH) is a powerful single-camera 3D microscopic imaging

tool that is able to digitally refocus a recorded image to reconstruct the 3D field of

view. Compared to other single-camera techniques, DIH has a much larger depth of

field in which objects can be seen, leading to drastically increased sampling volumes.

Many particle features can be measured with DIH including size, shape, refractive index,

identity, and motion. However, DIH has traditionally been limited by challenges related

to the difficulty of accurately and quickly processing holographic images.

In this thesis, I present technical developments focused on the digital processing

of holographic images that are intended to alleviate these challenges and enable the

application of DIH to new measurements. Specifically, a new approach for hologram re-

construction – regularized holographic volume reconstruction (RIHVR) – is introduced.

This method is able to produce substantially noise-free reconstructions of particle fields.

A data-driven approach to predictive particle tracking is also introduced in order to

enable increased particle concentrations for particle tracking velocimetry applications.

Each of these developments is validated using synthetic data and experimental demon-

strations.

Three applications of holographic imaging are presented to demonstrate the broad

applicability of the method. The effect of temperature on the density of colonial

cyanobacteria is identified by measuring the buoyant velocity and size of individual

colonies. This could lead to better modelling of toxic algal blooms. Another type of al-

gae, Dunaliella primolecta, is useful and can be farmed for materials used in nutritional

supplements, pharmaceuticals, and biodiesel. DIH is used to identify behavior signa-

tures that could be used as indicators of optimal lipid production. This could enable

optimal harvest timing leading to improved biodiesel yield. Finally, a low-cost minia-

ture underwater holographic microscope was developed for in situ field applications.

This microscope is paired with a robotic platform to enable autonomous exploration

of lakes or other aquatic environments. Despite its handheld size, the sensor is able

to perform real-time particle concentration measurements using a deep neural network.
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The recorded images can also be used to identify the type of microorganisms found in

the water.
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Chapter 1

Introduction

1.1 Motivation and Objectives

1.1.1 Applications of Particle Measurements

Particles are ubiquitous in fields as diverse as physics, chemical engineering, and environ-

mental science where measurements may include particle tracking velocimetry (PTV),

sizing, concentration measurements, and identification. These particles may be arti-

ficial flow tracers, water droplets in clouds [9], algae that form harmful algal blooms

(HABs) or cause disease [10, 11], atmospheric particles like pollen and soot [12], bubbles,

oil droplets [13], snowflakes [14], sediments [15], or particles exhaled during breathing

[16], among many other applications. Often, the number density of these particles may

be very small. For example, the disease giardiasis can be caused by the ingestion of

as few as 10 cysts of the protozoan parasite Giardia intestinalis [17] while swimming,

an activity during which the average child ingests as much as 37 mL of water [18].

Similarly, virus-laden aerosols emitted during normal breathing and speaking may be

produced at concentrations less than 0.3 particles/mL [19], yet are still considered a vi-

able transmission pathway for many diseases including COVID-19 [20]. Conversely, 3D

PTV requires accurate localization and tracking of thousands of particles, with higher

seeding densities leading to higher resolution of the resulting fluid flow measurements.

2
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1.1.2 Thesis Objective and Overview

Digital inline holography (DIH) is a powerful 3D microscopic imaging tool capable of

performing measurements in each of these application domains. The objective of this

research is to develop and improve tools to computationally recover the 3D information

encoded in a hologram. These computational methods are accelerated through the use

of graphics processing hardware (GPUs) in order to enable DIH images to be processed

in a reasonable time frame. Finally, the aforementioned technological developments en-

able several applications for dense PTV, behavioral quantification of microbe swimming

patterns, and on-board in situ measurements using a robotic platform.

1.2 Existing Methods

Three-dimensional (3D) microscopy is a field dominated by complex, expensive solu-

tions such as tomography [21], scanning fluorescent microscopy [22], and other similar

methods [23]. For most applications, there are specialized techniques used to perform

the necessary measurements. DIH is unique in that it is can be generalized to multi-

ple applications while improving upon the limitations of even specialized devices. The

following sections summarize some common methods for three types of measurements.

1.2.1 Flow Measurements

Flow measurements are most often performed in laboratory settings but are also com-

monly used in situ. The scales of these measurements vary from many meters for

atmospheric flows [24] to microscopic scales for turbulence dissipation, swimming mi-

croorganisms, or microfluidics [25]. As such, a wide variety of techniques are used.

Point measurements often use hotwire anemometry due to its high temporal fre-

quency. However, the hotwire probe is invasive and risks flow disturbance – espe-

cially for near-wall flows. Laser Doppler velocimetry (LDV) is a non-invasive optical

method utilizing the Doppler effect to measure the velocity of particle-laden flows. Sonic

anemometers use variations in the time-of-flight for acoustic signals caused by bulk fluid

motion. While simple, cheap, and fast, each of these methods are fundamentally point

measurements while the true flow field is highly three-dimensional except in special
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cases. Physical scanning of the sensor is often needed to measure time-averaged flow

features needed for many engineering applications.

Particle image velocimetry (PIV) [26] is an extremely popular technique for measur-

ing 2D velocity fields. PIV uses a light sheet (usually generated by a high-power laser)

to illuminate particles in a single 2D plane of the flow. The displacement of a cluster

of particles is determined using cross-correlation. Usually, an interrogation window of

32× 32 pixels is used for this correlation with the inherent assumption that the window

includes several particles and that those particles have the same velocity. Because of

this, PIV smooths regions of high gradients. It also cannot be used in cases where

particle clusters exhibit coherent motion such as when the seeding density is low or the

particles behave independent of the flow. Nevertheless, PIV can be used at a broad

range of flow scales, from microns to over 100 meters.

Particle tracking velocimetry (PTV) is closely related to PIV but tracks individual

particles rather than clusters of particles, utilizing a Lagrangian viewpoint while PIV

uses an Eulerian viewpoint [27, 28]. Because PTV individually tracks multiple objects

within the PIV window size, it can achieve higher spatial resolution than PIV and

can be used to measure flows with high gradients. PTV processing is usually broken

into two steps: detecting the particles in the recorded images and linking the detected

positions in time. Because these two steps are independent, multiple different techniques

can be used to record the particle positions (including DIH). This flexibility allows the

application of PTV to disciplines other than fluid dynamics including animal studies

and microbiology where the objects will not exhibit coherent motion [29, 30]. PTV can

also be applied for volumetric measurements. Common approaches for 3D PTV are

tomography, defocusing PTV, V3V, and DIH-PTV. Tomography and V3V each require

multiple cameras while DIH-PTV and defocussing PTV only require one. A special

case of tomographic PTV is the shake-the-box (STB) algorithm [31] which combines

the particle detection and tracking steps to improve the accuracy of each.

1.2.2 particle sizing

Methods for particle sizing include interferometric Mie imaging (IMI) [32], laser diffrac-

tion (LD), phase Doppler particle analysis (PDPA) [33], and aerodynamic particle sizers

(APS) [34]. A fundamental challenge of these methods is that they assume the particles
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are spherical, which is only valid for small particles. APS in particular requires sampling

the particles and passing them through a nozzle in order to measure their aerodynamic

properties and infer their size. This process risks disturbing the particle distribution

and does not account for evaporation that may occur during the process.

1.2.3 In situ Measurements

Many of the above approaches can be applied to in situ measurements of fluid flows or

particle size. However, the use of these methods for in situ measurements is limited by

mechanical complexity and the need for multiple cameras. In situ applications often

also require the identification of the particles to detect harmful microbes or distinguish

oil droplets from air bubbles.

Specifically for lacustrine and marine particulates, current methods are unable to

measure across a wide range of length scales, are restricted to small regions of the

environment, often cannot differentiate between similar classes of particles, or may not

have the sensitivity required for early detection. There are often trade-offs requiring the

synthesis of data collected with multiple techniques in order to obtain conclusive results.

Remote sensing [35, 36] is suitable for large-scale mapping of dense concentrations but

has limited spatial and temporal resolution, poor sensitivity, and cannot penetrate deep

below the surface. Fluorometers are often used to measure chemical components such

as chlorophyll and phycocyanin which are used as proxies for biomass concentration

[37]. However, these measurements are insufficient for identifying individual species

and are highly dependent on the quality of their calibration. Physical sampling for

laboratory analysis is still the gold standard measurement technique but is expensive,

time consuming, and often infrequent.

1.3 Digital Inline Holography (DIH)

1.3.1 Fundamentals of operation

Digital inline holography (DIH) is a diffractive imaging method in which volumetric

information – such as particle location, morphology, and refractive index – is encoded

and subsequently extracted from a single 2D image [38]. The principle of DIH is that an
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object illuminated by a coherent monochromatic light source (the primary or reference

wave) emits a secondary spherical wave (the object wave) which interferes with the pri-

mary wave. Recording this interference pattern captures both the intensity and phase

of the secondary wave which implicitly stores the information needed to reconstruct

the 3D sampling volume through which the light propagated. This reconstruction can

be treated as a refocussing of the recorded image, although the in-focus image con-

tains information about the object refractive index and scattering properties that is not

available with conventional microscopic imaging. The ability to resolve the position of

objects in 3D naturally leads to tracking of the object over multiple video frames for

3D velocimetry [1, 39].

DIH has several advantages over the traditional approaches discussed in Section

1.2. The most significant characteristic of DIH is that it is a single-camera technique.

This is particularly useful for PTV (collectively, DIH-PTV) which is able to capture

time-resolved, volumetric three-dimensional three-component (3D-3C) velocities while

using a single camera. This is in direct contrast to other single-camera methods such

as microscopic particle image velocimetry (micro-PIV) which capture two velocity com-

ponents in a 2D slice of the volume and other 3D-3C methods such as tomographic

PTV which require at least three cameras. The use of a single camera and optical

path provides for easier imaging of small-scale flows, especially in cases where optical

access may be restricted. Additionally, the reported velocity resolution of DIH-PTV

is generally greater than other methods [40]. The use of a single camera makes DIH-

PTV substantially cheaper than tomography and other multi-camera methods which

require additional expensive cameras. The use of the efficient forward-scattered light

signal reduces requirements on laser power (and cost) compared to PIV which images

the much weaker side-scattered light. The low cost and hardware simplicity of DIH has

enabled multiple in situ applications [41, 42, 43]. DIH is also an imaging method with

an extremely large depth of focus. This enables direct morphological measurement or

species identification of sparse species. The non-invasive nature of DIH prevents flow

disturbance and ensures the validity of in situ measurements.
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1.3.2 Historical Background

Holography was first introduced in the Nobel prize-winning work of Dennis Gabor in

1948 [44]. The Gabor approach utilizes a coherent source that illuminates an object,

producing a secondary scattered wave. The unscattered primary wave interferes with the

secondary object on the sensor plane (traditionally a photographic plate). Interestingly,

this work predates the invention of the laser by over a decade and used a diverging

electron beam as the coherent source.

The Gabor method is now known as inline holography to distinguish it from off-

axis holography in which a separate reference wave, inclined at an angle relative to

the object wave, is used to produce the interference pattern (see Fig. 1.1 and Fig.

1.2). Compared to inline holograms, those taken with an off-axis system have a higher

signal to noise ratio, in part because the reference beam is not contaminated by the

sample and because the twin image (figure 1.4) is not formed. However, an off-axis

holographic system requires several additional components (beam splitters, mirrors)

that increase the cost and size of the sensor. Additionally, reconstructing an off-axis

hologram requires precise knowledge of the angle of the reference beam and precise

alignment of the system. In contrast, an inline holographic system requires relatively

few components and the angle of the reference wave is implicit.

Early methods such as the one used by Gabor captured the interference pattern

using photographic film and performed the reconstruction optically by illuminating the

recorded film with the reference beam to produce an image that appears to be three

dimensional when viewed by a human or conventional camera. The first applications of

holographic PTV were performed with these chemical plates and optical reconstruction

[45, 46, 47]. These systems required complex optical, mechanical, and chemical equip-

ment in order to record and reconstruct the holograms with a labor-intensive process.

Starting in 1994, digital cameras started replacing chemical film, with numerical pro-

cessing used for the reconstruction [48]. As digital sensors and processors have improved,

faster automated processing methods using computer vision and machine learning tech-

niques can be used to extract more of the information encoded in the recorded hologram.

However, the resolution of a digital hologram may be limited by the physical pixel size

of the camera sensor while film holograms are diffraction limited. The pixel size of

modern sensors is often smaller than the diffraction limit when magnification is used,
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Figure 1.1: Mechanism of formation for inline holograms. Image credit: Katz & Sheng
[1]

making this discretization error less important.

1.3.3 Applications

As previously discussed, DIH can and has been applied to each of the measurement

categories discussed in Section 1.2. A brief summary of some of these applications

follows in order to provide a better appreciation of DIH capabilities. A review of many

of these applications has been published by Yu et al. [39].

Applications within the field of fluid mechanics include measurements of 3D flow

fields [49], particle dynamics [50], microorganism swimming [51], and flow-structure

interaction [52, 53]. Recent years have seen the increased application of DIH-PTV for

various flow measurement applications where traditional methods are inadequate. Singh

and Panigrahi [54] performed whole-field measurement of the 3D-3C velocity field for

liquid slug Taylor flow, visualizing 3D recirculation bubbles. High-resolution velocimetry

of boundary layer flow over super hydrophilic surfaces was performed with DIH-PTV by

Ling and others [55]. Similarly, the boundary layer impact of roughness elements was

measured by Toloui et al. [40] over a large (5×5×5 cm3) field of view using whole-field
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Figure 1.2: Mechanism of formation for off-axis holograms. Image credit: Katz & Sheng
[1]

seeding. A full review of DIH applications to fluid mechanics is presented by Katz &

Sheng [1].

Holography has been applied to in situ measurements for a variety of research fields

including cloud formation [56], sediment physics [15], air quality monitoring [57], and

fruit fly behavior [58]. Beals et al [56] measured the size and spatial distributions of

water droplets in clouds, showing that the particle mixing is inhomogeneous. This

discovery can be applied to weather and climate models of clouds to improve prediction

accuracy. They used an inline system (Fig. 1.3a) with turning prisms to avoid flow

disturbance and a large lens assembly to get a large field of view, high-resolution image

[2]. Talapatra et al [3] measured the size and spatial distributions of microorganisms in a

15 m water column using a dual inline system (Fig. 1.3b) which simultaneously recorded

the same volume at two resolutions and frame rates. They documented the presence of

a thin layer of highly concentrated particles as well as preferential alignment of particles

which can be used to model the formation of harmful algal blooms that cause millions

of dollars in damage to the US economy each year. A deep sea holographic microscope

described by Rotermund et al [4] and sold commercially by 4Deep Inwater Imaging
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Figure 1.3: Examples of holographic systems. a) [2] b) [3] c) [4] d) [5] e) [6]

uses an inline system (Fig. 1.3c) with a spherical reference wave and is capable of

identifying microorganisms at depths of up to 6000 m. The spherical wave has less

background noise than a collimated wave but produces a reconstructed volume with

variable resolution due to the expansion of the beam. El Mallahi et al. [5] were able

to use holography to identify the parasite Giardia lamblia and differentiate it from

similar organisms in a laboratory setting with applications to monitoring municipal

water supplies. Their system (Fig. 1.3d) is designed for laboratory measurements and

uses an inline setup with a separated reference beam that is not contaminated by the

sample. Lindensmith et al. [6] built an off-axis holographic system (Fig. 1.3e) for

detecting life in sea ice with the target of a similar system being used on extraterrestrial

bodies such as Europa, Mars, and Ganymede. Atmospheric aerosols collected using a

miniature 3D-printed impactor nozzle were imaged using a lensless holographic system

by Wu et al. [57]. With the exception of the Rotermund and Wu systems, all of these use

a large number of optical components in order to improve some aspect of the quality of

the recorded holograms whether it be resolution (Beals and Talapatra) or background

noise suppression (Rotermund, El Mallahi, and Lindensmith). The use of so many

components for an in situ measurement device results in a large, expensive sensor.

In a laboratory setting, DIH has been used to examine microorganism behavior.
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Chengala et al. showed that the unicellular organism Dunaliella primolecta preferen-

tially aligns itself when in a flow with a high shear rate. [59] Molaei et al. found that

the tumbling behavior of Escherichia coli was suppressed near a surface [51]. The de-

tection and identification of potentially harmful aquatic microbes with a holographic

flow cytometer has been demonstrated by numerous authors [5, 60, 61, 62]. Medical

applications include red blood cell counting [63, 64, 65], sperm motility [66, 67], and

cancer detection [68, 69, 70]. It is worth noting that the cancer and other medical

imaging tasks are often not imaging particles, but rather thin slices of cells. In these

cases, the low-cost nature and phase imaging capabilities of lensless holography are the

primary benefits in comparison to traditional microscopy.

1.3.4 Detailed Operation

A comprehensive description of the mechanisms of digital hologram recording and re-

construction is necessary to understand the challenges facing holography and the com-

putational methods used to improve performance. Applications can generally be con-

ceptualized using the simplified refocusing description that has been used so far.

Any imaging sensor (digital or film) records the complex magnitude of the incident

light. That is, Irec = Ĩ Ĩ∗ where the tilde represents a complex value and the asterisk

is complex conjugation. For holography, the incident light is the summation of the

reference wave, R̃, and the object wave, Õ [1].

I = (R̃+ Õ)(R̃∗ + Õ∗) (1.1)

Optical reconstruction of traditional film holograms is performed by illuminating the

recorded image (I) with the reversed reference wave. Mathematically, this is equivalent

to multiplying by the conjugate reference, R̃∗. The image viewed a distance z from the

recording plane is the result of the product R̃∗I diffracting through space. For digital

holography, this is modeled as a convolution of the recorded hologram with an analytical

expression for the diffraction from a point source, namely the Rayleigh-Sommerfeld or

Kirchhoff-Fresnel kernels (equations 1.5 and 1.6 respectively). The convolution of two

signals is defined as the integral of the multiplication of one signal with a shifted version

of the other (equation 1.2).

g(x) = f(x)⊗ h(x) =

∫ ∞
−∞

f(x)h(x− ξ)dξ (1.2)
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An important property of convolution is that it is possible to eliminate the need to

evaluate the convolution interval through the use of the convolution theorem which

states that convolution in the spatial domain is equivalent to elementwise multiplication

in the frequency (Fourier) domain and vice versa (equation 1.3).

G(ξ) = FT (g(x)) = F (ξ)H(ξ) (1.3)

Therefore, hologram reconstruction can be performed in the Fourier space as follows for

a discrete two dimensional image

G(m,n) = F (m,n)H(m,n) (1.4)

Where H is either HRS , the Rayleigh-Sommerfeld kernel, or the Kirchoff-Fresnel kernel

HKF which is a special case of the Rayleigh-Sommerfeld kernel when the object is far

from the sensor (the paraxial approximation) [1, 38].

HRS(m,n) = exp

−j 2π

λ
z

√
1− λ2

( m

M∆x

)2
− λ2

(
n

N∆y

)2
 (1.5)

HKF (m,n) = jλ exp

(
jλπz

[( m

M∆x

)2
+

(
n

n∆y

)2
])

(1.6)

Here λ is the wavelength of the illumination source, m and n are the discrete coordinates

in the Fourier domain, M and N are the total number of elements, and s is the pixel

size. It is important to note that all reconstructed planes of G will have both a real and

imaginary component as it represents the object wave. The complex magnitude of G

will give the intensity of the image as it would be captured with a camera.

1.3.5 Traditional Challenges of DIH

There are several challenges for DIH that can be summarizes as a loss of 3D information

in the recorded hologram. As previously discussed, reconstruction of the recorded in-

tensity image (I) is performed through multiplication with the conjugate reference wave

(R̃∗). Expansion shows that the reconstructed wave is the sum of four components (Eq.

1.7).

Ũr = R̃∗I = R̃∗(R̃+ Õ)(R̃∗ + Õ∗) = |R|2R̃∗ + |R|2Õ∗ + R̃∗2Õ +R∗ÕÕ∗ (1.7)
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The first component is a form of the illuminating wave, the second is the real image, the

third the virtual or twin image, and the fourth is the cross-interference term. Critically,

it is not possible to extricate the object wave Õ from this expression, making a perfect

reconstruction of the sample producing the object wave impossible. Compounding this

problem, the true reference wave is often not known as it is contaminated by the optical

components it passes through prior to reaching the sample volume such as collimating

lenses, mirrors, and windows.

The loss of information can be generalized by stating that the signal to noise ra-

tio (SNR) for holography is low. This produces several features which are sometimes

described as separate problems afflicting DIH.

The Depth of Focus Problem

Since the inception of DIH-PTV, poor longitudinal (i.e., out of the plane of the image)

resolution has consistently been the greatest challenge [1, 40]. Known as the depth-

of-focus (DOF) problem, the apparent elongation of reconstructed particles is caused

by the finite sensor extent and the intensity integration effect of physical pixels [1, 38].

Additional imaging noise further reduces the ability to resolve the critical high frequency

fringes which are necessary for accurate depth reconstruction. Because of this limitation,

some applications of DIH-PTV (namely [55, 40]) have primarily focused on the analysis

of the much more accurate in-plane velocities.

The Twin Image Problem

Figure 1.4 illustrates the twin image problem where the reconstructed particle will

appear to be in focus at two locations on opposite sides of the imaging plane [1]. This can

cause ambiguity in reconstructing the object field unless the imaging plane is outside of

the sample volume. The twin image is formed because only the intensity of the incident

wave is recorded. The twin image is the third of the four terms in the expanded from

of Eq. 1.7.
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Figure 1.4: Demonstration of location of reconstructed virtual image. Image credit:
Katz & Sheng [1]

Cross-Interference

Cross-interference, the fourth term in Eq. 1.7, results in further lost information. For

single point-like particles or sparse concentrations this term can be ignored. However,

it will be non-trivial for large objects or extremely dense particle fields. Because the

emitted wave from a point-like particle is spherical, its signal is spread across the entire

imaging sensor. Signals from multiple particles overlap and the ratio of their contri-

butions is lost because only the intensity is recorded. Additionally, the light scattered

by one object can be rescattered by a nearby object. This phenomenon is difficult to

model but can be assumed to have very low intensity and can be treated as noise.

Particle Density Limitations

High particle density is critical for PTV applications. A high seeding density for PTV

results in a high-resolution velocity field. However, when high particle concentrations

are used, cross-interference and other noise sources (twin image, out-of-focus particles)

result in a low signal-to-noise ratio (SNR) [71]. Malek et al. showed that the recon-

struction quality depends on both the shadow density and the depth of the sample [71].

The shadow density is

sd = nsLd
2 (1.8)

where ns is particle number concentration, L is sample depth, and d is the particle

diameter. Improving the particle density limit and the accuracy of dense particle field
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measurements is one of the primary aims of this work.

Computational Cost

Another major challenge of holography is that the algorithms for reconstructing the 3D

sample volume are computationally intensive. This challenge and its solutions will be

discussed in more depth in Chapter 4.

Prior Solutions

Many approaches to overcoming the aforementioned drawbacks focus on hardware de-

sign to improve the recorded image quality or encode more information in the recording.

The most common is the use of multiple viewing angles (tomographic DIH), using the

lateral accuracy and some depth information from each view to more accurately local-

ize the particles [72, 73, 74, 75]. This method requires only two cameras (or one by

using mirrors [73]) compared to three or four required for conventional tomography.

Other approaches specific to DIH-PTV seek to reduce the effective shadow density by

illuminating only a limited volume of interest [76] or using localized particle seeding

[77]. Allano et al. used a fiber-coupled diode to illuminate a narrow region of near-wall

particles from within the flow in a wind tunnel [76]. Due to their mechanical and op-

tical complexity, these methods are non-trivial to implement and care must be taken

to avoid flow disturbance. Use of a hybrid side scatter inline approach enables directed

illumination of a select region of the sample volume, reducing the number of particles

which appear in the recorded image [78]. Off-axis holography is also commonly used

as it does not have the twin image problem and separates the reference beam from the

object (reducing contamination) [6, 79]. However, this requires precision alignment and

higher laser coherence. Collectively, these methods negate the principle advantages of

DIH-PTV – namely ease of use and hardware simplicity – by requiring multiple optical

paths, viewing angles, and calibration thereof.

Many authors have focused on improving the numerical processing of DIH-PTV

images. Much of this work has been focused on automatic detection of the object

focal plane to address the DOF problem [80, 81]. These methods usually use a focus

metric that is evaluated on each reconstructed plane and has an optimal value when

the object is in focus. These metrics are reasonable for objects with little depth where
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their position can be restricted to a plane However, these do not address the problem

of low SNR and usually assume that accurate 2D segmentation is trivial which is only

true when the particle concentration is very low. Focus metrics usually do not have

sufficient accuracy for velocimetry or other applications where location accuracy is very

important.

An inverse approach proposed by Soulez et al [82] avoids reconstructing the whole

volume by posing particle detection as an optimization problem solved using a non-linear

least squares fit to generate a synthetic hologram matching the signal of the recorded

hologram. In order to reduce the scope of the optimization, it is necessary to assume a

shape for the objects such as a small sphere. A similar iterative phase retrieval method

has been shown to solve the twin image problem and improve the reconstructed SNR

[83, 84], but has not been applied for PTV due to the dependence on a priori knowledge

of the object depth.

Holographic deconvolution [85, 86, 87, 40] borrows a method from optical microscopy

to treat the apparent blurring of point objects in the 3D reconstruction as convolution of

the true object with a blurring point spread function (PSF). However, the dependence

of deconvolution on a 3D Fourier transform makes this method memory intensive and

windowing may be needed to process large holograms (more than 108 voxels). The point

object assumption also limits the range of applications suitable for deconvolution.
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Chapter 2

Regularized Inverse Hologram

Volume Reconstruction (RIHVR)

The content of this chapter has been published by the author in Optics Express [88].

Content, including figures and text, has been duplicated with permission.

2.1 Introduction

A recent approach to holographic reconstruction is the inverse method [89, 90]. Inverse

methods, rather than reconstructing the object from the image, instead find the optimal

object that would produce the observed image while satisfying some physical constraints.

Many inverse methods for iterative phase retrieval or super-resolution require multiple

captured instances of the same object, often translated by a known amount [70]. These

show great promise for holographic microscopy but are unsuitable for PTV due to their

reliance on a static object. It is also worth noting that microscopic deconvolution can

often be viewed as a type of simple inverse problem solution. However, this is not the

case for holographic deconvolution which operates on the reconstructed volume rather

than the recorded image.

One of the first inverse problem formulations was proposed by Soulez et al. [89] who

performed a 4D parametric optimization to find the 3D location and radius of spherical

particles. They first use a standard method for coarse localization and then indepen-

dently optimize each particle parameter (e.g. location, size) to minimize the L2 error

18
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over a restricted region. This method has been extended to detect particles outside the

image field-of-view [82], utilize past locations to improve the initial parameter estima-

tion [50], and improve the size and position resolution [91]. A similar approach uses

a more complex Lorenz-Mie scattering model to localize colloidal particles as well as

identify their refractive index [92, 93]. Both of these methods have a stated linear time

dependence on the number of particles, making them unsuitable for fluid flow applica-

tions where thousands of particles must be tracked for hundreds of frames. Furthermore,

the assumption of spherical particles restricts the scope of potential applications.

The use of the term “compressive holography” (CH) to refer to the inverse problem

was introduced by Brady et al. in 2009 who borrowed concepts from the field of com-

pressive sensing for holographic processing [90]. They used a total variation regularized

approach to produce in-focus images of two dandelion seed parachutes recorded concur-

rently at two different focal planes. Denis et al. [94] used a similar approach with a

simpler sparsity-based regularization. Both approaches show a significant reduction in

the out-of-focus noise, twin images, and other noise. Recent work has used a set of phys-

ically meaningful constraints (including sparsity, smoothness, and non-amplification) in

a unified parametric and CH framework to achieve excellent reconstructions of absorp-

tion and phase of individual evaporating particles and their evaporation tails [95, 96].

However, these methods operate on a limited number of planes and cannot reconstruct

the 3D shape of complex objects.

Full inverse methods (without a spherical assumption) have only been used to recon-

struct objects for which the axial location is known either a priori or from a conventional

reconstruction method. There have been no prior applications of compressive hologra-

phy for DIH-PTV of flows containing thousands of tracer particles. The primary barrier

preventing such application is the high computational cost. A complete discussion of

the approaches used to reduce the computational cost can be found in Chapter 4.

In this chapter, a summary of the fundamentals of CH is presented. I then introduce

our recently published approach for Regularized Inverse Hologram Volume Reconcstruc-

tion (RIHVR, pronounced “river”) [88]. RIHVR uses fused lasso regularization and a

sparse storage structure to enable processing of very large images in a realistic time.

Several synthetic and experimental evaluation cases are presented to demonstrate the

quality and performance of RIHVR.
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2.2 Methodology

The 3D reconstruction of the object volume is formulated as an inverse optimization

problem, following the method of Brady, Endo, and others [90, 97]. The optimization

problem formulation, Eq. (2.1), seeks to find the object field (x) that minimizes the

difference between the observed hologram (b) and the estimated hologram produced by

propagating the object to the imaging plane (b̂ = Hx). A regularization term λR(x) =

g(x) is included in Eq. (2.1) to enforce physically realistic properties (principally sparsity

and smoothness) and avoid trivial solutions. The size of the regularization parameter λ

determines how strongly these properties are enforced. To ensure solution convergence,

we use a linearized form of the forward model for hologram formation, Eq. (2.2), which

implicitly treats any nonlinear terms (i.e., twin image and cross interference) as noise.

x̂ = arg min
x

{
‖Hx− b‖22 + λR(x) ≡ f(x) + g(x)

}
(2.1)

Hx = <

(
1

Nz

Nz∑
z=1

ejk0zxz ∗ h−z

)
(2.2)

Here k0 is the wavenumber, hz is the Rayleigh-Sommerfeld diffraction kernel, and convo-

lution is performed in the Fourier domain. The discrete Fourier domain representation

of hz is given by Eq. (2.3) [1] where m and n are the discrete coordinates, M and N

are the total number of elements, and s is the pixel size.

FT{hz(x, y)} = Hz(m,n) = exp

−jk0z
√

1−
(
k0m

2πMs

)2

−
(

k0n

2πNs

)2
 (2.3)

The only difference between forward propagation (hologram formation) and back-propagation

(reconstruction) is the sign of the depth, z. Note that Eq. (2.2) models the object field

as a series of discrete planes in z. The true object must fall on one or more of these

planes in order to be correctly modeled.

We solve the inverse problem using FISTA (Fast Iterative Shrinkage-Thresholding

Algorithm) [98] as implemented for FASTA [99]. This method is selected due to its high

convergence rate, relative simplicity, and similarity to prior work [90, 97]. FISTA has

two steps: a shrinkage step using the proximal operator (Eq. (2.4)) and an accelerated



21

update using the previous estimate (a simple element-wise operation not included here

for brevity).

xk = proxλL (xk−1 − L∇f(xk−1)) (2.4)

In the context of holography, the gradient term ∇f(xk−1) is the reconstructed volume

from the residual hologram (b̂ − b). The scalar factor L is determined automatically

using backtracking [98]. The proximal operator (Eq. (2.5)) can be interpreted as a

gradient descent step with step size L [100]. The reader is referred to the references for

further details on FISTA.

proxL(v) = arg min
x

(
g(x) +

1

2L
‖x− v‖22

)
≈ v − L∇g(x) (2.5)

The form of the regularization function R(x) determines which properties of the

solution will be enforced. The `1 norm (Eq. (2.6)) enforces a sparse solution (i.e., one

with few non-zero elements) which for DIH-PTV means that the object volume fraction

is low. This sparsity-based regularization has been demonstrated for holography by

Denis et al. [94] and Endo et al. [97].

R(x) = ‖x‖1 =
N∑
i=1

|xi| (2.6)

The Total Variation (TV) norm (Eq. (2.7)) is the sum of the first-order gradients

over the image (size Nx×Ny). These gradients are computed using a circular boundary

condition (i.e., x0,0 = xNx,Ny) which is valid when the image is zero-padded to ensure

no objects are near the borders. TV regularization enforces a smooth solution (small

gradients) and is naturally extensible to higher dimensions.

R(x) = ‖x‖TV =

Nx∑
i=1

Ny∑
j=1

√
(xi,j − xi−1,j)2 + (xi,j − xi,j−1)2 (2.7)

The TV approach has been used by Brady et al. [90] and Endo et al. [97] who demon-

strate that it is superior to the `1 regularization for sufficiently large objects. The reason

for this benefit is that the smooth solution enforced by the TV regularization results

in reconstructed objects that are not over-segmented. However, we will see that TV

regularization is substantially more computationally demanding that the `1 method.
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We propose using the Fused Lasso (FL) regularization method (Eq. (2.8)) which is

a combination of the TV and `1 norms (”fusion” and ”lasso” being alternative terms

for TV and `1 respectively) [101]. Solutions to the FL problem are both smooth and

sparse while having some characteristics that make it less computationally demanding

than TV.

g(x) = λR(x) = λ`1‖x‖1 + λTV ‖x‖TV (2.8)

The shrinkage step of FISTA (Eq. (2.4)) is by far the most computationally complex

and depends on the choice of R(x). As such, the computational cost of FISTA is closely

linked to that of evaluating the proximal operator. For the `1 regularizer, the proximal

operator has a simple closed-form solution as soft thresholding:

proxλL(v) =

(
1− λL

|v|

)
+

sign(v) (2.9)

However, the proximal for the TV function does not have a closed-form solution and

requires an iterative solution, for which we use the gradient projection method of Beck

& Teboulle [102]. This method requires storage of each directional derivative for the

duration of the iterations which may require a substantial amount of memory. The FL

regularization function has the useful property that it is separable and can be computed

by soft thresholding the solution to the TV problem (i.e., with λ`1 = 0). Because the

non-sparse TV solution must first be computed before soft thresholding to produce the

sparse FL solution, high memory requirements of the TV proximal still apply within

each FISTA step even though the result is sparse. We limit our TV regularization to

2D planes which can be computed independently, reducing the memory requirements to

those of a single plane. It is worth noting that prior compressive holography methods

using TV regularization have reported only the 2D variant.

Because FISTA is an iterative solution method, the computational time required to

process a single image may be relatively high. PTV requires processing thousands of

large, well-resolved volumes. Therefore, it is crucial to reduce the processing time to a

manageable level to enable application to real flow studies. A detailed discussion of the

CUDA/C++ GPU implementation of this algorithm is provided in Chapter 4.

The primary advantage of the compressive holography approach is that it produces

very high SNR reconstructions that are more easily segmented for particle localization.

In one sense, the sparsity regularization inherently separates objects (non-zero voxels)
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from the background (zero voxels), negating the need for complex volume normalization

and SNR enhancement such as that used by Toloui et al. [40]. While these directly

thresholded results are reasonable, we have found that two additional filters greatly

reduce the instances of over-segmentation. The first is a very low intensity threshold

on the order of 1/256th the maximum intensity of the image. This value is selected as

any values below it are indistinguishable from zero when using a min-max scaling and

8 bit discretization for visualization. The second filter is a minimum object volume.

This must be adjusted slightly depending on the size of the particles, noise level, and

apparent elongation length. At this time, it is not directly linked to the true particle

volume. Usually, objects of 5 voxels or fewer are treated as noise. While crucial for

counting the number of particles in a single hologram, these parameters have minimal

effect when applied to a sequence of images for which the particles are tracked because

over-segmentation noise rarely persists for multiple frames.

Because inverse approaches depend on matching the recorded image using a model,

any image features that are not modeled (e.g., background intensity variations, im-

perfections in the optical path) will reduce the quality of the fit. To rectify this, we

preprocess the recorded images by removing the constant background using the method

of [50] (subtraction followed by division by the square root). The background is com-

puted as the mean of a time sequence of holograms in which the objects of interest have

significant motion.

While compressive holography and inverse methods have existed for over a decade,

this is the first application to 3D PTV. Previous uses of a parametric inverse method

for particle tracking have tracked fewer than 10 particles concurrently [89, 103, 104, 91].

Furthermore, CH is usually used with a small number (∼ 10) of reconstruction planes

with a large spacing (∼ 1 mm) between planes. Here we demonstrate the ability to

reconstruct volumes with over 1000 planes with both cubic and elongated reconstructed

voxels. The largest volume reconstructed by Endo et al. [97] contained 107 voxels while

our sparse representation enables reconstruction of volumes containing more than 109

voxels on a desktop computer. The use of the fused lasso regularization to enforce

both smoothness and sparsity has not been previously demonstrated for compressive

holography. To emphasize these distinctions, we refer to our method as a Regularized

Inverse Holographic Volume Reconstruction (RIHVR, pronounced ”river”). RIHVR
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dramatically increases the SNR of the reconstructed volume. This enables processing

of high noise and high particle concentration holograms (both traits are common in

DIH-PTV applications) that could not be reliably processed using existing methods.

Because RIHVR does not assume a size or shape of the object, it can be used when the

imaged particles are polydisperse or non-spherical. We next present several practical

examples to demonstrate these capabilities.

2.3 Demonstration cases

To demonstrate that the proposed method is applicable to a variety of DIH-PTV cases,

we present the results for processing four classes of holograms: an isolated nanowire,

simulated tracer particles in isotropic turbulence, swimming microorganisms, and an

experimental T-junction flow seeded with microfibers. The first case, the isolated

nanowire, demonstrates improved 3D reconstruction of a continuous object with a sig-

nificant 3D shape. Simulated holograms then provide a realistic flow case for which

ground truth exists for the particle locations. The RIHVR method is evaluated against

deconvolution (with inverse iterative particle extraction where applicable) which has

been previously validated against conventional PIV and shown to provide substantial

improvement over other DIH-PTV approaches [40]. A simple reconstruction method

following the approach of Pan & Meng [105] (global thresholding followed by peak in-

tensity depth localization) is also shown for comparison. Experimental holograms of

swimming microorganisms and microfibers in a T-junction flow represent real measure-

ment domains for which some flow behaviors are known from prior studies. These later

cases demonstrate that RIHVR can be applied to broad measurement domains where

other DIH-PTV methods fail.

2.3.1 Isolated nanowire

A qualitative evaluation of the proposed inverse reconstruction method uses a silver

nanowire in suspension. This is an example of a continuous object with significant extent

in all three reconstruction dimensions. The length of the wire is not known a priori. As

such, a parametric inverse model such as the one used by Soulez et al. [82] is unsuitable.

The sample is a suspension of 90 nm diameter Ag nanowires in isopropyl alcohol. The
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Figure 2.1: (a) Recorded holographic image of a 90 nm Ag nanowire. (b) Hologram
after image enhancement. (c) Volumetric reconstruction of the sample using the decon-
volution method. (d) Reconstruction using RIHVR with sparsity (`1) regularization.
(e) Reconstruction using RIHVR with fused lasso (FL) regularization. For visualiza-
tion, (c) uses the intensity as the transparency alpha value while (d) and (e) show all
non-zero values at equal intensity.

illumination source is a 450 nm fiber-coupled laser diode (QPhotonics QFLD-450-10S),

collimated using a Nikon CFI Plan Fluor 10X objective lens. A Nikon CFI Apo TIRF

100X oil immersion microscopic objective and video camera (Andor Zyla 5.5 sCMOS)

are used to image the sample. The recorded pixel size is 70 nm. The recorded image

(2560×2160 pixels) is cropped to a 1024×1024 pixel region around a selected nanowire to

ensure that only a single object is in the image and to reduce unnecessary computational

cost. Reconstruction is performed at 70 nm intervals (equal to the lateral pixel pitch)

for a depth of 42 µm (600 planes). Measurement of similar samples using DIH has

been undertaken by Dixon et al. [85] who measured the diffusion of nanowires and

Kempkes et al. [106] who demonstrated a 2◦ accuracy for the orientation of microfibers.
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Unlike the prior methods, our approach does not assume a linear fiber and is suitable

for measuring non-rigid wires.

The raw and enhanced holograms are shown in Figs. 2.1(a) and 2.1(b) respec-

tively alongside renderings of the reconstructed volumes produced using deconvolution,

RIHVR with sparsity regularization (λ`1 = 0.27), and RIHVR with fused lasso regular-

ization (λ`1 = 0.15, λTV = 0.12). Figures 2.1(c)–2.1(e) show that both regularization

methods substantially reduce the DOF of the reconstruction. Measured as the width

at half the measured intensity averaged along the wire length, the DOF decreases from

1.97 µm using deconvolution to 0.63 µm and 0.89 µm using the sparsity and fused

lasso regularization methods respectively. Similarly, a 99% decrease in the segmented

volume and 90% decrease in the segmented cross-sectional area is observed between

deconvolution and RIHVR (with similar reduction for both RIHVR regularizers).

When comparing the results generated using the sparsity and fused lasso regular-

ization methods in Figs. 2.1(d) and 2.1(e), the smoothing effect of the fused lasso is

apparent. The fused lasso regularized results show fewer gaps in the wire profile and

an overall more contiguous object. However, this comes at the cost of some expansion

of the object and a slightly larger DOF. Interpolated cross-sections normal to the wire

axis (insets in Fig. 2.1) illustrate that both RIHVR approaches approximate the true

circular shape of the wire. Conversely, Fig. 2.1(c) shows that deconvolution produces

an X-shaped cross-section characteristic of simple holographic reconstructions. RIHVR

also demonstrates robustness to image noise. The raw image in Fig. 2.1(a) has a sub-

stantial amount of background noise and even enhancement via background removal

does not produce a noise free image. Additional fringe patterns – caused by vibrations,

fluctuations in illumination intensity, and out-of-view objects – are visible in Fig. 2.1(b)

(the enhanced image) but do not result in artifacts in the reconstructed volume when

using RIHVR.

2.3.2 Synthetic turbulent flow

Turbulent flows represent the most challenging case for 3D flow measurements as they

are highly three-dimensional and involve velocity fluctuations across a broad dynamic
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range of scales. Here we assess the accuracy and limitations of our method using simu-

lated holograms of a homogeneous isotropic turbulent flow. The simulated tracer parti-

cle trajectories are determined by querying the forced isotopic turbulence data from the

Johns Hopkins Turbulence Database with Lagrangian particle tracking [107, 108, 109].

The simulation domain is scaled to 5× 5× 5 mm3 and sampled with a nondimensional

time step of 0.012 (60 DNS time steps) to capture 100 instants (image frames). The

Reynolds number based on the domain size is 23,000 and the Kolmogorov length and

time scales (smallest scales of turbulent fluctuations) are 67 µm and 3.7 frames respec-

tively. The RMS velocity is 6.7 µm/frame. Maintaining the Reynolds number and using

a low viscosity fluid (ν = 10−7 m2/s), this corresponds to a frame rate of 75 kHz which is

achievable with modern cameras. One thousand particles with a diameter of 7.5 µm are

initially randomly spatially distributed throughout the 3D domain and their positions

at subsequent time steps are determined using a Lagrangian tracking method [109]. A

periodic boundary condition is applied to the particles to ensure that the number of

objects in the field of view is constant (this is ignored during processing). The simulated

holograms are 512× 512 pixel images with a 10 µm pixel size and 632 nm illumination

wavelength. A sample hologram is shown in Fig. 2.2.

1 mm

Figure 2.2: Sample simulated hologram containing 1000 particles

The reconstruction plane spacing is equal to the lateral pixel spacing (10 µm). The
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total size of the reconstructed volume is 512× 512× 700 voxels (1.8× 108). 100 FISTA

iterations are used with regularization parameters λ`1 = 0.5 and λTV = 0.2. For

segmentation, the minimum intensity threshold is set to 2/256th the maximum and the

minimum volume is 5 voxels. The particle positions are estimated using the weighted

centroid of each connected component and the particles are tracked using the method of

Crocker & Grier [110] with a maximum per frame displacement of 70 µm and a minimum

tracked duration of 10 frames. Two alternative hologram reconstruction methods are

presented for comparison. The first is a simple reconstruction method following the

approach of Pan & Meng [105]. The second is the deconvolution method of Toloui &

Hong [87] with two passes of the inverse iterative particle extraction step. The particle

trajectories for all methods are smoothed with a total variation filter. The tracked

results using RIHVR are shown in Fig. 2.3(a).

To evaluate the localization error, extracted particles are matched to their true

location using a nearest neighbor method [110]. The resulting error distributions in each

dimension are summarized in Fig. 2.3(b). For all three methods, the error in x and y is

very small (smaller than the pixel size). However, the error in z is substantially greater,

demonstrating the DOF problem. Comparing the three methods, the 75th percentile

decreases from 11.5 voxels using reconstruction to 6 voxels using deconvolution and 3.5

voxels with RIHVR. The same trends are seen at the other percentiles as well. Thus,

RIHVR produces a 40% improvement in longitudinal localization over the prior best

method and a 70% improvement over simple reconstruction. These trends also hold

when evaluating the mean error of the unfiltered instantaneous velocity measurements.

The error in the axial velocity, w, decreases from 13.4 voxels/frame with reconstruction

to 3.8 voxels/frame with deconvolution and 2.4 voxels/frame with RIHVR.

For turbulence measurements, it is common to measure Reynolds stresses, which

are velocity fluctuation statistics [49]. Here we present measurements of the root-mean-

square (RMS) velocity in Fig. 2.3(c). This is comparable to Reynolds stress when the

mean is zero (as it is for this flow) while maintaining intuitive meaning for applications

other than flow measurement. For this flow in the period during which particles are

simulated, the true RMS velocities averaged over the whole volume are (6.3, 7.6, 6.2)

voxels/frame in the u, v, and w directions respectively. The trajectory smoothing

produces a 3% error in the uRMS and vRMS measurements but significantly reduces
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Figure 2.3: (a) Smoothed 3D particle trajectories extracted from a synthetic hologram
using RIHVR. (b) Localization error of tracked particles relative to their true locations.
(c) Error in the RMS velocity components of the three test methods compared to ground
truth.

spurious fluctuations in z. Using reconstruction, the measured wRMS differs from the

true value by over 800%. This is reduced to 30% using deconvolution. However, this is

still unacceptably high for real measurements. The error using RIHVR is only 7% which

is substantially better and only 2× greater than the error in the u and v measurements.

As the velocity vector spacing in PTV is directly related to the particle spacing,

the maximum particle concentration is a critical concern for many PTV measurements.

The quality of recorded holograms depends on several factors including the particle

concentration, size, volume depth, wavelength, magnification, and numerical aperture.

Here we focus on only the particle concentration to compare the tested methods. Note

that the results may vary with changes to the other parameters but the relative com-

parisons between the methods should remain consistent. In general, the extraction rate
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Figure 2.4: (a) Extraction rate for each method for increasing particle concentrations.
(b) The number of particles which can be accurately extracted is higher for RIHVR
than the other methods. Solid line is 100% EP, dashed line is 50%.

(Ep, number of correctly extracted particles divided by true particle count) decreases

with increasing concentration. we use the number of particles per pixel to scale the

concentration because it allows for the most direct comparison with the literature. It

has previously been shown that the commonly used shadow density (Eq. (1.8)) does not

completely explain the extraction rate in all situations [71, 87]. For comparison, Toloui

et al. [40] performed measurements with a concentration of 0.0035 particles/pixel while

other sources used significantly lower concentrations. Figure 2.4(a) shows that con-

centrations of up to 0.035 particles/pixel can be processed using RIHVR while main-

taining Ep > 60%. The increased number of extractable particles enabled by RIHVR,

as shown in Fig. 2.4(b), enables increased resolution in velocimetry applications and

higher particle concentrations in other applications including studies of biological flows

and fluid-particle interaction where high concentration may be crucial for the sample

being studied. An example of such a case is given in section 2.3.3.
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2.3.3 Swimming algae

One practical application of DIH-PTV is the study of microorganism swimming be-

haviors. Previous studies have used small sample volumes ( ∼ 0.05µL) in order to

measure the large cell concentration present in cultures (∼ 106 cells/mL) [51, 79]. Here

we demonstrate that RIHVR is superior to prior DIH algorithms for these experiments.

We also demonstrate the ability to record and process much larger sample volumes

(∼ 1µL) which could enable new scientific studies.

The alga Dunaliella primolecta is a unicellular species which can be used for biofuel

production [111]. Cells have a length of 10 µm and swim using two flagella [112]. In

this study, D. primolecta is grown at 37◦C in a growth medium. Manual concentration

measurements using a microscope indicate that the sample has a concentration of 1.8×
106 cells/mL. The sample container is a 10 × 30 × 1 mm3 glass cuvette. Holograms

are recorded at 100 Hz using a 2048× 1088 pixel sensor (Flare 2M360-CL). The sensor

pixel size is 5 µm and the exposure time is 50 µs. A 5x microscopic objective is used,

resulting in a recorded sample volume of 2.05×1.09×1 mm3. For simplicity and speed,

the recorded image is cropped to a size of 1024×1024 pixels (1×1 mm2). The light source

is a 532 nm diode laser (Thorlabs CPS532) which is expanded and filtered with a spatial

filter, as shown in Fig. 2.5(a). While the number of particles per pixel is relatively low

for this sample (0.002), the particles are large enough that the shadow density (Eq.

(1.8)) becomes significant, sd = 18%. The maximum shadow density used by Toloui et

al. [40] was 10.5% using deconvolution, while Malek et al. [71] achieved an extraction

rate of only 20% for sd = 10%. Reducing the measurement depth can enable holograms

to be processed using conventional methods [112], but risks introducing wall effects that

influence the behavior. Similarly, we have found that dilution of the sample changes

the cell swimming behavior. Therefore, high concentration holograms – which can only

be processed using RIHVR – are important to these microbiological studies. Studies of

microorganism behavior using non-holographic methods are challenging because their

3D motion leads to low residence time in a microscopic depth of field and size constraints

make multi-camera imaging difficult.

The holographic volume is reconstructed with 270 planes, separated by 3 µm, with

the volume confirmed to include both walls of the cuvette. The regularization parame-

ters are λ`1 = 0.1 and λTV = 0.1 with 100 FISTA iterations and 5 gradient projection
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Figure 2.5: (a) DIH imaging system, recorded hologram, XY projection of processed
reconstruction. Scale bars are 100 µm. (b) Subset (25%) of tracked particles. (c) PDF
of velocity fluctuations in each direction. The w distribution has longer tails and a
sharper peak but is not substantially wider than the other two components.

steps to evaluate the TV proximal operator. A sequence of 2000 frames is analyzed.

A sliding window of 151 images (1.5 sec) is used to compute the mean background in

order to reduce the effect of cells starting or stopping their motion. Because RIHVR

uses a complex object model, it is equally suited to measuring amplitude objects (e.g.,

nanowire and synthetic objects) as well as phase objects such as the D. primolecta cells.

More complex regularization methods (with associated higher computation cost) could

be used to further enhance phase objects [95].

RIHVR detects and tracks an average of 294 objects per frame. This is dramatically

lower than the expected count of 2000 cells/frame from the concentration measurement.

However, a substantial number of particles are seen to remain stationary on the two

walls. These are treated as background noise and are removed during the image en-

hancement. A selection of 3D tracks is shown in Fig. 2.5(b). For clarity, only a subset

of 25% of the tracked data is shown in Fig. 2.5 while the full density is shown in Fig.

2.6. The cell trajectories have been smoothed using a Savitzky-Golay filter of 20 frames.

The frame rate is sufficiently high that this filter does not suppress any real motions.

Under the assumption that cell swimming motions are isotropic, the probability density

functions (PDF) of velocity fluctuations (normlized by the RMS velocity) are expected

to coincide for each component. Figure 2.5(c) shows that while the u and v velocities

are in good agreement, the same is not true for w, even after smoothing. This indicates
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that the DOF problem is not entirely eliminated for this extremely noisy case. However,

gross motions in the longitudinal direction are visible and fine scale complex behaviors

such has helical swimming can be seen from an enlarged view of the sample in Fig. 2.6.

Figure 2.6: 2D view of the reconstructed cell trajectories showing complex behaviors
Also illustrates the true cell concentration of processed volume. Scale bars are 100 µm.

2.3.4 Rotating rods in flow

In addition to improvements to the measurement accuracy and seeding density limits,

RIHVR enables the measurement of complex shapes as previously illustrated in Fig.

2.1. Here we present a flow case where the seeding particles are rods rather than the

usual spherical tracers. Using RIHVR, we are able to extract both the location and

orientation of each rod and track their evolution in the flow. This type of multimodal

measurement using a single camera has not been previously reported.

To demonstrate this measurement, we use the T-junction flow of the type studied by

[113] which occurs frequently in industrial and biological flows. The rotation and align-

ment of fibers in flow have been extensively studied for target applications including

paper manufacturing and microorganism alignment (see for example [114, 115, 116]).

The fibers used for the present study are marketed as an additive to strengthen com-

posite materials, where the alignment of the fibers may have an impact on the material

properties. Prior experimental work has either been restricted to 2D measurements

[115, 114] or multi-camera 3D measurements of individual fibers [116]. Holography is a

valuable alternative when the motion is three-dimensional, seeding density is high, or
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optical access is restricted.

The experimental channel has a square cross-section with a side length of 1 mm. The

junction is at a right angle and all three branches (inlet and two outlets) have the same

geometry. The inlet flow rate is 1000 mL/hr which corresponds to a Reynolds number

Re = 290. The seeding particles are 7 µm diameter SiC (ρ = 3 g/cm3) microfibers

(Haydale Technologies) with an aspect ratio of 10. The response time of the particle,

computed using the equivalent diameter, is τp = 14 µs. The characteristic time of the

flow is τf = 1.9 ms. The resultant Stokes number is Stk = 0.007 indicating that the

particles will trace the flow. A high speed video camera (NAC Memrecam HX-5) is

used to record the holograms at 6000 Hz with an exposure time of 50 µs. A microscopic

objective (Edmund Optics, 10x, NA=0.45) is used to image the sample, resulting in a

1024 × 1024 image with a pixel size of 0.91 µm. The light source is a spatially filtered

HeNe laser (λ = 632 nm). The FL regularization method is used with λ`1 = 0.1 and

λTV = 0.12. 110 reconstruction planes are used with a spacing of 9.1 µm (10× the

pixel pitch). An intensity-weighted principle component analysis is used to determine

the orientation of the fibers (similar to the method of [106]).

For validation of the flow field, the flow (absent any particles) is simulated using

ANSYS Fluent (ANSYS, Inc.), with the results found to be in agreement with the

simulations of [113] and the experimental particle pathlines. The fiber rotation rate is

modeled using the Jeffery equation in the limit where the particle aspect ratio is �1

[117]:

ṗi = Ωijpj + (Sijpj − pipjSjkpk) (2.10)

Here p is a unit vector aligned with the particle axis, Ω is the rotation tensor, and S is

the strain rate tensor. Because the particle rotation rate is coupled to the orientation,

the rotation rates for the simulation in Fig. 2.7(c) assume that the particles are initially

aligned with the inlet flow direction.

The experimental fiber orientations are shown in Fig. 2.7(a) along with vorticity

isosurfaces from the simulation which illustrate that the principle flow features predicted

by the simulation (two vortices aligned with x) are present in the experiment. A 2D

projection of the fibers is shown in Fig. 2.7(b). The optical reconstruction direction

corresponds to the crossflow (z) axis in Figs. 2.7(a)–2.7(d). The clear appearance of the

two counter-rotating vortices demonstrates that RIHVR sufficiently reduces the DOF
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Figure 2.7: (a) Visualization of the measured rod trajectories. Solid lines show the
measured 3D orientation of the rods. Colors indicate individual particles. Vorticity
isosurfaces (ω = 3000s−1) are from the CFD simulation. (b) View of the experimental
fiber orientations in the yz plane. (c) Contour map of the particle rotation rate (s−1)
expected from the simulation. (d) Measured 3D particle rotation rate.
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to enable the recovery of this 3D flow feature. Additionally, changes in the orientation

of the fibers can be seen. The measured rotation rate (|ṗ|) is higher near the centers

of the vortices in Fig. 2.7(d) which matches the expected behavior from the simulation

shown in Fig. 2.7(c). The peak rotations rates are accurate to 30% while the location

of the peaks are accurate within 0.1 mm. Some discrepancies between the measured

and predicted rotation rates can be attributed to misalignment between the two do-

mains. Because the rotation rate is dependent on the velocity gradients (which have

substantial variation) and on the particle location and orientation (which have some

measurement uncertainty), even small misalignment of the two domains would cause

deviations between the two results. Non-ideal flow conditions, including unsteadiness

and geometrical imperfections, could cause differences in the locations of the vortices

and the peak rotation magnitude. The accuracy of the machining process used to make

the channel is ±0.05 mm which is comparable to the peak location error. Since the

flow rate is constant, uncertainty in the channel geometry also produces uncertainty

in the inlet flow velocity. Finally, the Jeffery equation (Eq. (2.10)) used to predict

the particle rotation rate assumes non-inertial ellipsoidal particles in Stokes flow. The

true particle motion is expected to deviate slightly from this idealization. Given these

uncertainties, we conclude that the agreement between the simulation and experimental

results is adequate for demonstrating that RIHVR enables direct 3D particle rotation

rate measurements.

2.4 Discussion and conclusions

The processing speed of RIHVR is suitable for many applications. Further adjustments

by the user can enable even faster processing for specific cases. If axial uncertainty is

less important, the number of reconstruction planes can be reduced, provided the planes

are still sufficient to model the object field. The use of pure sparsity (`1) regularization

further improves speed at the cost of poorer SNR. Finally, the number of solution

iterations can be reduced at the cost of a less converged solution.

While RIHVR is broadly applicable, there remain some limitations. The enhance-

ment approach using a time-averaged background is only suitable for moving objects.

The solution to the minimization problem (Eq. (2.1)) depends on the choice of the



37

regularization parameters λ`1 and λTV which are user-specified. For most experimental

cases, parameter values near λ`1 = 0.1 and λTV = 0.1 are appropriate. These can each

be increased (or decreased) to reduce noise (λ`1) or increase the smoothness (λTV ) of

the result. Automatic selection of these parameters is an area of ongoing research. The

assumption of a sparse and smooth object field may not be true in all cases, for exam-

ple if the medium has fluctuations in the index of refraction. Finally, FISTA assumes

that the regularized minimization problem is convex. This assumption breaks down for

large objects when a large number of reconstruction planes are used. These restrictions

generally do not apply to PTV applications.

We have demonstrated the application of CH techniques to volumetric reconstruc-

tion, using the presented RIHVR approach for the reconstruction and tracking of 3D

particle fields.T he reconstructed volumes are both sparse and smooth, assumptions that

apply equally for most particle tracking applications. The use of GPU processing and

sparse storage enable the reconstruction of volumes containing over 109 voxels which

is orders of magnitude larger than previously reported for any CH method. RIHVR

provides a substantial improvement in the longitudinal position and displacement mea-

surement accuracy in addition to an increase in the particle concentration limit. These

improved capabilities have allowed the extension of DIH-PTV to the tracking of a dense

culture of microorganisms and measuring the orientation of microfibers in 3D flow. RI-

HVR is a broadly applicable approach capable of enabling low-cost 3D measurements

for wide-ranging applications.



Chapter 3

Dense Particle Tracking using a

Learned Predictive Model

The content of this chapter is under review for publication by the author in Experiments

in Fluids.

3.1 Introduction

The Lagrangian particle tracking paradigm used for particle tracking velocimetry (PTV)

enables high resolution 3D flow field measurements. However, a major limitation of

traditional PTV applications is that the particle displacement must be small relative

to the spacing between particles. Malik et al [28] defined the particle displacement

ratio p ≡ s/u∆t where s is the mean distance between neighboring particles, u is the

particle speed, and ∆t is the time between images. Malik states that PTV is only

possible when p � 1. However, practical considerations often lead to a smaller p. For

flow measurements, the particle spacing must be small in order to resolve small flow

features. For biological studies, a large sample size is desirable but also leads to a small

s if the field of view is fixed. Finally, the camera frame rate may be limited and is

inversely proportional to the field of view and recording duration. It is common in PTV

applications to describe the particle concentration in terms of the number of particles

per pixel (ppp) or particles per voxel. This value is closely related to the difficulty

of particle localization from the recorded images [31]. However, high ppp does not

38
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necessarily make the linking step challenging if p is large due to a high frame rate or

low velocity.

There are several approaches that can be used to enable tracking of particles with

large displacements. One such method uses PIV to approximate the velocity field [118,

119]. This velocity can then be used as an initial guess for particle motion, effectively

changing the particle displacement ratio to be p1 = s/(u′∆t) where u′ = u − û is

the deviation of the speed from the estimated value (û). This method is useful for

cases such as channel flow where û � u′. However, it is not suitable for cases without

a predominant mean motion such as homogeneous isotropic turbulence or swimming

microorganisms. For such cases, a linear or polynomial motion model can be used to

predict the future position of a particle given its history. This method is dependent on

the quality and applicability of the model being used and it will fail if unexpected motion

such as large acceleration or a sudden change in direction occurs. These events are rare

for flow measurements [120] but are common in biological samples [51, 58]. Furthermore,

this method relies on sufficient initialization of the particle tracks in order to fit the

model. Some particles must be tracked initially in order to make inferences. Finally, the

popular Shake-The-Box (STB) method [31] combines the localization and tracking steps,

reducing localization errors and false detections (which complicate tracking) by using

feedback from the tracking step. STB generally requires an initialization period of up to

40 frames, which is not achievable for high-speed flows where double-pulse measurements

are required. An iterative approach has been presented which enables STB for multi-

pulse measurements by using a time-averaged velocity field from tomographic PIV as a

velocity predictor [119]. Crucially, STB requires a calibrated optical transfer function

(OTF) to project the 3D particle positions to a 2D image. More generally, the OTF is

an image formation model which must account for complex object geometry (common

in biological applications) or non-linear image formation (coherent imaging such as

holography). This makes it difficult to implement STB for these cases.

Machine learning approaches have previously been demonstrated for PTV. Grant &

Pan [121] trained a neural network to identify the most likely candidate particle in a

double exposure image. This method is only suitable for 2D flows with sufficiently low

concentrations. It also only utilizes two frames while more complex motions may only

be apparent with many more frames. Labonté [122] trained a neural network to identify
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a continuous function for the fluid velocity with respect to position. This velocity is

then used as an estimate like the PIV approximation method previously discussed and

the method suffers from similar limitations: mainly that there must be a mean flow and

minimal unsteadiness. Beyond fluid measurements, learned tracking methods have been

used to aid in the multi-camera tracking of fish [123] and plasma science [124]. It is

also important to distinguish between the two elements of particle tracking: localization

and linking. Localization is the identification and quantification of particle locations in

an image (or set of images), usually producing an unordered set of position vectors.

Linking identifies which positions in the set belong to unique objects. In the machine

learning literature, it is common to refer to only the localization problem as tracking.

In this chapter, I focus exclusively on the linking problem, as the detection problem

has already been discussed in Chapter 2. I demonstrate that machine learning can be

used to drastically increase the particle density and velocity resolution limit for PTV

applications. Our data-driven approach learns particle motion patterns present in the

data and uses these to accurately predict future motion. This leads to a decrease in

the u′ component of p1, enabling higher particle concentrations. I present simulated

and experimental results for flow measurement applications to demonstrate that this

learned predictor is superior to other tracking methods. In particular, comparisons are

made to the open-source trackpy python library [7] which is an implementation of the

Crocker & Grier [110] method for particle linking. This library was selected considering

its popularity in the field (i.e. highly cited) and the fact that it has proven to be

applicable to a broad range of particle tracking applications [125, 126, 40, 127]. The

library includes several predictive tracking methods and allows the implementation of

custom predictors such as the proposed learned predictor.

3.2 Methods

The linking problem is re-posed as that of predicting the velocity of each particle as has

previously been suggested by Wang et al. [123]. Conceptually, if the velocity of each

particle can be predicted exactly, then u′ = 0 and the linking problem becomes trivial.

While such accurate prediction is not possible, any improvement compared to simpler

predictors will lead to increased tracking capability. Figure 1 shows three cases where
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some predictive linking methods could fail but a learned motion predictor would succeed.

Without prediction, even simple linear motion (Fig. 3.1a) would produce incorrect

tracks. A predictor modeling the flow field can perform well when the particle velocity

is closely related to position (Fig. 3.1b). However, turbulence or other uncertainties

may invalidate this assumption. For cases with highly complex motion (Fig. 3.1c),

highly specialized models are needed to predict the motion. One such motion is helical

motion which has been observed in swimming microorganisms [127]. The proposed

learned motion model is suitable for any of these situations. The motion prediction is

performed using a neural network which takes the (variable length) history of an object

as the input and predicts the future velocity. The model architecture is summarized in

Fig. 3.2.

Figure 3.1: Toy examples to illustrate the challenges associated with solving the linking
problem in different cases. Black lines indicate particle paths. Filled black circles indi-
cate historical linked positions. Gray circles indicate correct future links. White circles
are available positions in the future frame. Dashed lines show potential incorrect links.
(a) Linear motion. Simple nearest-neighbor or null predict pairing would incorrectly
choose the link d1 instead of d3 as d1 < d3. A simple motion model (such as linear) may
be suitable. (b) Shear or channel flow. There is a functional relationship between posi-
tion and velocity that can be used for prediction even when there is no history for the
trajectory (upper-most trajectory). (c) Complex helical motion. A linear or polynomial
model would choose an incorrect link. A complex motion model such as the proposed
learned predictor would be needed to correctly predict the particle location.

The predictive model uses the Long Short-Term Memory (LSTM) recurrent neural

network architecture as it is specialized for timeseries applications such as handwriting

and speech recognition and musical prediction [128, 129]. LSTM consists of a number

of memory blocks (units) that operate recurrently on a time-series of N-dimensional

data. The blocks take as input the data at a single timestep and the output of the
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previous timestep and transform that into a scalar output (for each block) using a set

of weights and gate functions. These gates allow LSTM to retain long-term memory

about a sequence while reacting appropriately to short-term changes. LSTM has been

applied to problems related to the present work. The future path of a single pedestrian

was predicted by Hug et al. [130] who focused on improving destination inference for

security applications. Tsaris et al. [131] used LSTM to identify particle trajectories

from streak images for high energy particle experiments. Wang et al. [123] used LSTM

to improve the cross-view association for multi-camera tracking of fish.

Figure 3.2: The learned predictor model architecture showing the LSTM and Dense
layers used to produce a predicted velocity vector from a sequence of positions.

The proposed learned predictor model uses 128 LSTM units which are fed the po-

sition history of a single trajectory. The LSTM outputs are then passed through a

densely connected layer (where each input-output pair are weighted and summed) to

produce the velocity predictions. A hyperbolic tangent activation function is used for

this final layer to produce outputs in the range û ∈ (−1, 1). The input to the model is

a T × D matrix where D is the dimensionality of the object position data (usually 3

or 2) and T is the number of timesteps used for prediction. The choice of T depends

on the complexity of the motion being observed. A small T (such as 2) will result

in a relatively simple model while a large value such as 20 will be able to learn more

complicated behaviors such as helical motion. An increased T comes with increased

computational cost to train the model and requires higher quality training data as the

training trajectories must have a longer duration over which they are reliable. Usually,

T = 5 is suitable for flow tracking applications and there is minimal sensitivity to the

precise value chosen provided it is not extremely long or short for the requirements of

the desired application. A good rule of thumb is that T should be chosen to be large
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enough that a human could manually predict the future location from the trajectory

history. The input positions are normalized using the min and max dimensions of the

measurement domain. This normalization ensures that û ∈ (−1, 1) which is the output

range of the hyperbolic tangent activation function on the output. Note that unlike

Wang et al. [123], we use the positions rather than the velocities as the model input.

This enables the model to implicitly learn the spatial velocity field of the flow if it is

useful to the case for which it is trained. While the proposed model architecture is ex-

tremely simple, it has proven capable of excellent performance on each of the test cases

to be subsequently discussed. The model simplicity means that it can be both trained

and evaluated quickly, with negligible increase in the cost of tracking when compared

to the other predictors in the trackpy library. For some situations (such as the highest

concentration synthetic test cases), the learned predictor actually increases the speed

of tracking.

Because the model learns to predict the expected motion of particles, it must be

separately trained for each application. It is unreasonable to expect a model trained

to predict the motion of swimming microorganisms to produce accurate predictions for

tracers in a turbulent channel. Therefore, we use a data-driven approach to train a

model specialized for each case. Model training requires collecting a set of training

data – accurate trajectories exhibiting the motion patterns expected in the target data.

We propose two methods for acquiring these data for experimental measurements. The

first is to use an existing tracking method with manual intervention to identify exem-

plary and representative trajectories (i.e., those that demonstrate all the motions seen

in the flow) to be used for training. The second method is to run a supplemental ex-

periment in which tracking is trivial (p � 1) but the experimental conditions remain

the same. This could include using a low tracer concentration or high frame rate even

when these are not suitable for the target experiment due to resolution or duration

requirements. This is preferable for cases when experimental replication is simple and

cheap (as with many fluids measurements). While collecting training data does require

additional experimental effort, the level of user expertise required is reduced compared

to conventional linking approaches which require the user to carefully select and tune a

model for complex cases.

The lengths of the trajectories used for training are generally greater than T . These
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trajectories are separated into segments of length T that are then used for training. This

ensures variety in the locations of the training points to enable the model to learn the

flow field if applicable. To allow the model to predict accurately even when complete

history is not available (e.g. for new particles entering the field of view), the T×D input

data matrix is randomly augmented through truncation to contain n < T timesteps and

padded with zeros to return to the necessary T ×D size.

The model is implemented using Keras [132] and trained using the Adam optimizer

[133] with the default learning rate. The batch size is 32 and the model is generally

trained for 400 epochs (i.e., 400 passes over the training data set). The batch size was

chosen in part because it is a commonly used value in the literature. The number of

epochs was chosen based on the loss curve. A loss curve that converges to an asymptotic

value indicates that the number of epochs is sufficient. It is worth noting that the number

of iterations (the number of epochs multiplied by the number of batches per epoch) is

more useful than the number of epochs when extending to a new dataset. If the dataset

is substantially smaller, more epochs would be needed to achieve the same number of

iterations. The total training time is approximately 20 minutes on a system with a

single Nvidia GTX 970 GPU.

Each of the experimental validation cases is acquired using digital inline holography

(DIH), a single-camera 3D particle measurement technique [1]. Except when noted, the

holographic images are processed using RIHVR (Chapter 2) to obtain the 3D object

positions.

3.3 Validation

Five validation cases are presented to demonstrate the efficacy of the proposed method.

The first is a synthetic channel flow to demonstrate accurate tracking even at extremely

high tracer concentrations. The second is a standard synthetic PTV dataset through

which the proposed approach can be readily compared to the literature. Third, an ex-

perimental turbulent channel flow is used to show that the learned predictor is suitable

for experimental flows even without supplemental experiments. The fourth case is an

experimental T-junction with high tracer concentration and a complex mean flow. Fi-

nally, a biological case of swimming algae is presented as an example where conventional
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flow-based assumptions cannot be applied. In each of these cases, the proposed learned

predictor method links more objects with fewer errors compared to baseline methods.

3.3.1 Synthetic Channel Flow

A synthetic flow case is used to evaluate the accuracy of the proposed approach and

assess how this accuracy changes with increasing tracer concentration. The flow used

is a direct numerical simulation (DNS) of a turbulent channel from the Johns Hopkins

Turbulence Database [134, 107, 108] with a friction Reynolds number of Reτ = uτh/ν =

1000 and a bulk Reynolds number of Reb = Ub2h/ν = 39998 where h is the half-

channel height and Ub is the bulk velocity. Ideal flow tracer trajectories are simulated

by randomly initializing the particles uniformly in the domain and incrementing their

position with the instantaneous velocity at that location. Particles leaving the volume

are reinitialized entering the opposite side. Only a 2× 2× 2 region of the full 8π × 2×
3π simulation domain is studied (dimensions are streamwise (x), wall-normal (y), and

spanwise (z), respectively). This does include the entire wall-normal domain meaning

that the streamwise velocity will depend on the wall-normal position. To prevent the

model from overfitting the data, a test dataset is created at different streamwise and

spanwise locations than the training data. The training data consist of 10 randomized

particle fields, each containing on average 3100 trajectories lasting 20 frames with a

timestep of 0.05. The model is trained for 100 epochs with a batch size of 32.

The test data is a sequence of 20 frames containing particles located in an unseen

upstream region of the simulated channel. The number of particles (Np) in the volume

is varied from Np = 320 to Np = 6.3×104 in order to evaluate the effect of concentration

on tracking accuracy. The mean displacement is 0.05 non-dimensional length units per

frame which leads to a displacement ratio between 0.38 and 3.5. Figure 3.3 shows a

comparison of the proposed learned predictor (Learned) to several baseline predictive

tracking methods found in the trackpy library [7]. Two metrics are used to evaluate the

performance of each linking method: extraction rate and spurious rate. The extraction

rate (Ep) is the fraction of true position links that are found by the linking method

while the spurious rate (Sp) is the fraction of identified links that are incorrect. A high

Ep enables high resolution on an extracted flow field while a low Sp ensures confidence

in the results The simplest baseline predictor (Null) uses a velocity of zero as the initial
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Figure 3.3: (a) The extraction rate for various linking methods is strongly dependent
on the displacement ratio (p). For traditional methods [7], the extraction rate begins
to decay when p < 2. The proposed learned predictor method has an extraction rate of
nearly 100% at low displacement ratios. (b) The rate of spurious links shows that the
learned predictor produces substantially fewer incorrect links.

guess and does not use any motion model. A slightly more advanced predictor (Drift)

assumes a uniform mean velocity in the flow. which is automatically computed during

tracking. For fluid flows, particles can be assumed to have a velocity similar to that

of their neighbors (NearestVelocity). Finally, a predictor specially designed for channel

flows (Channel) uses the modelled functional relationship between streamwise velocity

and wall-normal location for prediction. The execution time for each of these methods is

similar and strongly dependent on the particle density. For the case with p = 0.6, Null

takes 110 minutes, NearestVelocity takes 84 minutes, and Learned takes 80 minutes.

These times increase to over 7 hours for p = 0.38 but are only 2 minutes for p = 1.2.

For each of the baseline methods, Ep and Sp begin to worsen once the displacement

ratio is less than one and they become completely extremely poor below p = 0.5 with

Ep < 80% and Sp > 15%. The proposed method retains Ep > 0.9999 and Sp < 0.0001

even at extremely low displacement ratios below p = 0.38. An illustration of this case is

shown in Fig. 3.4. By comparison, the minimum displacement ratio at which Shake-the-

Box was tested is p = 2.3 [31] while further experiments with dense tracer concentrations
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have achieved p = 1.5 [135].

Figure 3.4: Illustration of the particle concentration for the p = 0.38 case. Displacement
vectors for a small region near the upper wall are shown in the inset.

The improved performance of the learned predictor can be attributed to several

factors. First, the predictor accounts for spatial dependencies of the velocity. The

Channel and NearestVelocity methods are the only baseline methods with this capa-

bility. However, the Channel method is only suitable for a specific class of flows and

NearestVelocity requires particle spacing to be small enough that spatial variations can

be locally ignored. Another factor affecting tracking capability is the dependence on ini-

tial tracks. With the exception of MeanVelocity, each of the baseline predictive methods

require some valid tracks to be present before predictions can be made. In the absence

of these tracks, a null velocity assumption must be used and the predictive method

reverts to the non-predictive Null method. If enough reliable tracks are identified with

the null prediction, they can be used to aid prediction in future steps. However, when

spurious links are identified with the null prediction (as is the case with increasingly

high concentrations) they will lead to poor predictions. This could explain why the

performance of the NearestVelocity, Channel, and Drift predictors is worse than Null

in Fig. 3.3. By contrast, the proposed learned predictor method can make spatially

dependent predictions even in the absence of history or neighboring particles. Because
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the training data contains artificially truncated trajectories, predictions can be made

with trajectory lengths nt < T . While accuracy may decrease in the absence of trajec-

tory history, an estimate can still be made using only nt = 1. For cases with spatially

dependent velocities, this estimate is equivalent to estimating the mean flow field. In

cases where particle position cannot be used to estimate velocity (such as swimming

microorganisms), the model will implicitly predict a null velocity in order to minimize

the error.

3.3.2 Standard Synthetic Shear Jet Flow

In order to facilitate comparisons of the performance of the proposed learned predic-

tor and other particle tracking algorithms, we present results on a standard and freely

available particle tracking dataset. The PIV standard images (PIV-STD) produced by

the Visualization Society of Japan (VSJ) include ground truth particle locations and

trajectories for a turbulent jet flow [136]. These data have been frequently used to eval-

uate the performance of particle tracking algorithms [27, 137, 138, 139]. The image set

#301 is used to evaluate the proposed learned predictor here. This case is a 2D projec-

tion of the 3D jet shear flow and includes 145 images with an average of approximately

4000 particles. The maximum displacement is 10 pixels/frame with an image domain of

256× 256 pixels leading to a displacement ratio of p = 0.4. Prior approaches have had

differing levels of success on these images. The relaxation approach of Ohmi & Li [137]

only tracks 20% of the particles in the first two frames, although this includes losses due

to both the localization and tracking steps. Of the extracted links, 98% were correct.

The variational approach of Ruhnau et al. [139] is able to extract 96% of the true links

but requires over 700 tracking iterations per frame which introduces a substantial com-

putational cost. The variational approach also assumes there is a global velocity field,

which would not apply to particles moving independent from the surrounding fluid such

as swimming algae. Unfortunately, open source implementations of these algorithms are

not available so they cannot be compared to the trackpy implementation of the learned

predictive tracker on other cases. However, it is worth noting that these tracking algo-

rithms can include a prediction step which could be replaced with a learned predictor

model to further improve their performance. The key contribution of this paper is the

predictor itself which could be utilized by several tracking algorithms.
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In addition to these literature comparisons, we compare the learned predictor to

the Null and NearestVelocity predictors in trackpy. Note that the other predictors

(Channel, MeanVelocity, Drift) are unsuitable for this case as the assumptions they rely

on are not valid. The learned predictor is trained using an 80:20 split of the PIV-STD

#301 dataset, with the first 29 frames used as the test set and the remaining 116 used

for training. The learned predictor was able to extract 87% of the correct links while

NearestVelocity was only able to extract 65% and the Null predictor extracted only

31%. This again demonstrates the improvement of the learned predictor over other

predictive methods.

3.3.3 Experimental Channel Flow

To show that the learned predictor method can be applied to experimental flows without

the need for additional experimentation, we present a reanalysis of data first presented

by Toloui et al. [40] examining flow in a smooth-wall turbulent channel with DIH and

validated with conventional PIV. The flow velocity is 0.6 m/s, the channel width is

50 cm. The centerline Reynolds number is Rec = 25000 and the measured friction

Reynolds number is Reτ = 1750. The recording rate is 3080 Hz (∆t = 0.32 ms)

with a pixel resolution of 10.2 µm. A total of 3000 frames were recorded in 20 frame

bursts. Further details on the experimental setup and hologram processing approach

can be found in the paper. Figure 3.5a shows the flow facility used for the experiments

while Fig. 3.5b shows a sample hologram illustrating the seeding density used for this

experiment.

For this case, the experimental data is historical and there is no supplemental exper-

iment available for training. To produce training data, we use the multi-pass tracking

method [40]. This tracking approach consists of multiple passes tracking the particles

and using a polynomial fit of the streamwise velocity with respect to the wall-normal po-

sition for prediction on the next pass. This tracking approach produced time-averaged

velocity and Reynolds stress profiles matching those of PIV measurements. However,

the mean trajectory length was only 5.3 frames compared to a video duration of 20

frames indicating that not all positions are linked. Manual evaluation also indicates

that there are a small number of spurious links present. Improving this tracking will

increase the resolution and accuracy of the velocity measurements. Additionally, the
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Figure 3.5: (a) The turbulent channel experimental flow facility. (b) A sample hologram
illustrating the experimental seeding density. (c) Positions of each particle tracked in
a single frame using the proposed learned predictor. Colors indicate the instantaneous
streamwise velocity. (d) Slices of the instantaneous velocity field interpolated to a grid.

iterative nature of the multi-pass tracking approach means it is computationally expen-

sive and the learned predictor should increase tracking speed. For training the learned

predictor, the highest quality trajectories were selected with duration used as a proxy

for quality. 10000 trajectories with a minimum duration of 15 frames were randomly

selected from the data and randomly partitioned into train and validation sets with a 9:1

split. These trajectories were manually examined to ensure they contained no obvious

linking errors and were representative of the spatial distribution of the particles.

The proposed method increased the total number of links by 31% compared to the

prior multi-pass tracking approach. This directly leads to an improvement in the velocity

vector spacing in the extracted flow field. The linking cost also improves; linking takes

approximately 7.5 seconds per frame with the learned predictor while the multi-pass

tracking requires 15 seconds per frame. An instantaneous flow field is presented in Figs.

3.5c and 3.5d after automatic outlier removal. The extracted particles are colored by

their streamwise velocity in order to illustrate the velocity profile.
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3.3.4 Experimental T-Junction Flow

When assumptions can be made about the flow (such as the channel flow assumption),

simple models can be used to give reasonable motion prediction. Conventional linking

methods are generally acceptable in these cases. However, more complex flows are

challenging to model and would depend on user expertise to design an accurate model.

On such flow is a T-junction where an inlet channel is split into two outlets (often with

the same cross-section as the inlet and perpendicular to the inlet). Such flows occur

often in nature and industry and have been studied experimentally and computationally

[140, 113]. A key feature of these flows is the formation of twin vortices in the outlets.

Thus, the flow is highly three-dimensional and difficult to model.

The T-junction used for this evaluation has a square cross-section with a 1 mm width

and height. The flow rate is 1000 mL/hr corresponding to a bulk Reynolds number of

Reb = Ub2h/ν = 290 (where Ub is the bulk velocity, h is the half-channel width, and

nu is the kinematic viscosity). Note that this is the same channel and flow channel and

conditions as used in [88]. The illumination source is a HeNe laser (λ=632 nm) and

a 5X microscopic objective (Mitutoyo, NA=0.14) was used to image the sample. The

camera (NAC Memrecam HX-5) frame rate is 3000 Hz (∆t = 0.33 ms) with an image

size of 1536×608 pixels and a calibrated magnified pixel size of 2.17 µm. The measured

volume of the imaged region is 2.6 mm3.

Training data for the learned predictor model is obtained using a supplemental

experiment with the same experimental conditions but a lower seeding density. The low

concentration data consists of 2000 frames with an average of 330 extracted particles

per frame while the high concentration test data consists of 1300 frames with an average

of 3600 extracted particles per frame. These correspond to displacement ratios p = 2

and p = 1, respectively. Thus, the simple Null predictor can be used to track the low

concentration results but is unsuitable for the high concentration, necessitating the use

of the learned predictor. Manually identified wall locations are used to normalize the

extracted positions, reducing the impact of minor movement of the channel between the

training and test experiments.

The learned predictor has superior performance on the high concentration test case

compared to the other predictors. Because some ghost particles are extracted near the

walls, a minimum trajectory length of five frames is used to remove spurious tracks.
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Figure 3.6: Visualization of the flow field and tracked particles in a T-junction. Black
markers show the instantaneous location of particles. Trajectories are shown for a period
of 10 frames and are interpolated. Colors of the trajectories and isosurfaces represent
the vertical (inlet) velocity. The velocity isosurfaces are drawn at ±50 mm/s to illustrate
the twin vortices which form in each outlet channel.

The learned predictor tracks an average of 600 particles per frame while the nearest

velocity predictor tracks 370 particles per frame and the null predictor tracks only 93.

Ghost particles near or outside the channel walls and trajectories lasting less than 5

frames account for the difference between the extracted and tracked particle counts. A

visualization of the tracked particles is shown in Fig. 3.6 and a comparison to other

predictors is given in Fig. 3.7. The instantaneous particle positions are shown as black

spheres with the trajectories in a 10 frame window which are colored by the vertical

velocity. For visualization, the trajectories were linearly interpolated. Note that some

trajectories that appear short may not last the full 10 frames or may extend past the

window limits. Isocontours of vertical velocity are computed using a 40 frame average

velocity field. The isocontours show the expected twin vortices in each outlet arm. The
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vertical position of the vortices changes with x; the vortex raises from the base of the

channel towards the center with increasing x. This feature can be seen in the simulations

of T-junction flow presented in [113].

Figure 3.7: Visualization of the trajectories extracted using (a) the proposed learned
predictor, (b) Null predictor, and (c) the Nearest Velocity predictor. The learned pre-
dictor clearly shows the most trajectories, especially near the higher-velocity inlet.
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3.3.5 Experimental Swimming Algae

Finally, we present an application of PTV that is not related to flow measurements –

that of quantifying the behavior of swimming microalgae. The green alga Dunaliella

primolecta is known to produce lipids which can be used for biofuel production and

recent work has shown that the lipid production can be correlated with changes in

swimming behavior [127]. These studies are complicated by the high concentration of

algal cells in the measured cultures which can exceed 4× 106 cells/mL. Dilution of the

sample risks altering the behavior of the organisms and decreasing the depth of the

sample volume can also restrict their motion. Because of the variability inherent to

biological studies, it is also desirable to have a large sample size (number of recorded

cells) and record over a sufficient duration to ensure that the sample is representative.

These factors lead to a large image size and moderate framerate such that increasing

the framerate to reduce p may not be possible or desirable. Common assumptions used

for flow tracking such as continuity, coherent motion of nearby particles, and a steady

mean flow do not apply to this situation as the particles move independently and do

not behave as flow tracers. Despite these difficulties, humans are able to identify the

motion of individual cells even at high concentration, suggesting that a machine learning

approach will be successful.

The data presented here are a subset of the data recorded by You et al. [127] who

evaluated the change in organism behavior as the population size increased. Holograms

were recorded at three different cell concentrations (approximately 9 × 104, 1 × 106,

and 3× 106 cells/mL). The mean swimming speed is 60 µm/s and the maximum is 120

µm/s – although the distribution is dependent on the concentration. The holograms

are recorded with a Flare (2M360-CL) CCD camera at a rate of 20 Hz (∆t = 50 ms)

and a 50 µs exposure. The image size is 1024× 1024 pixels with a pixel size of 1.1 µm.

The sample is illuminated with a spatially filtered and collimated 532 nm diode laser

(CPS532, ThorLabs) and imaged with a 5X microscopic objective (Mitutoyo, NA=0.14).

Samples of the cell culture are placed in a 1 mm thick glass cuvette for imaging and

are recorded for a duration of 20 s. Holograms are processed using the RIHVR method

[88].

For training, the null predictor is used, resulting in the trajectories used for the
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prior study [127]. Trajectory duration is used as a proxy to identify the 1000 best tra-

jectories which are randomly split with an 80:20 ratio into training and validation data

sets, respectively. These trajectories are selected from all experimental trials regardless

of sample concentration or other experimental factors. However, the tracks are biased

towards the lower concentrations due to the tracking difficulty associated with the high-

est concentration case. Because the complex motion of the cells is only apparent for

longer sequences, the history used for the model input (T ) is set to 20 frames. In order

to demonstrate the flexibility of the learned predictor to apply to 2D and 3D tracking,

only the in-plane position components are utilized for prediction while velocity in the

third dimension is assumed to be zero.

The learned predictor is evaluated on the highest recorded concentration of cells (3×
106 cells/mL). Figure 3.8 shows the trajectories of cells passing through a small region

of the full field of view with colors indicating unique trajectories. The full field of view is

a composite of 10 frames after processing with RIHVR. Even though the displacement

ratio in this case is not extremely low (p = 3 for 2D tracking), this case is difficult

to track with traditional methods. This is because the high particle concentration

makes the holographic particle extraction more challenging resulting in a higher rate

of ghost particles and particles that are undetected for one or more frames. In order

to obtain the long duration trajectories needed for behavior analysis (> 20 frames),

the tracking algorithm must allow missing frames which increases the complexity. For

further information on the behavior classification of individual trajectories, see Chapter

6 and the paper by You et al. [127].

Compared to the baseline assumption of zero velocity, the proposed method is able

link 110% more objects. A manual assessment has shown that only 1% of these links are

incorrect. The manual assessment examined 950 links in a region of interest (Fig. 3.8),

finding 10 spurious links for a 95% confidence interval of (0.5%, 1.7%). This represents

a drastic increase in the number of objects that are tracked, leading to increased sample

sizes for biological experiments. Additionally, the average length of trajectories increases

by 25% from 38 frames to 47 frames (excluding tracks with < 20 frames), further

improving the ability to classify the behavior of each cell.
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Figure 3.8: Plot of algal cell swimming trajectories. The full field of view (right) is
shown as a 2D projection for a 10 frame duration. The inset (left) shows the unique
trajectories (for the full 200 frame duration) passing through a small region of interest.
The colored trajectories are superimposed on a grayscale image that is a 2D projection
of a single frame from the sequence on the right. Colors indicate unique trajectories.
The large colored markers indicate the detected particle positions at the current frame
while small markers indicate positions at other frames. The grayscale (mostly white)
shapes are the results of hologram processing and illustrate the size and shape of the
tracked cells.

3.4 Conclusions

We have demonstrated a data-driven approach for learning a predictive model to aid

in the particle linking task in particle tracking velocimetry. The method uses a sim-

ple LSTM model that is capable of learning to predict using the position and history

of a particle. Simulations and experiments have demonstrated the capabilities of this

method. Multiple approaches can be used to collect training data including prior meth-

ods which produce only partially complete results and supplemental experiments for

which the linking problem is substantially simpler. In each of the validation cases, the

learned predictor demonstrates superior performance compared to baseline methods in

terms of the total number of linked objects and the accuracy of the links.

While not necessary for the cases presented here, performance could be improved
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by including additional inputs into the model. For periodic flows it may be useful

to include time or phase as an input. The motion of neighboring particles could also

be included by appending the histories of neighboring particles to the input matrix.

However, this would limit the extensibility of the model to different concentrations as

the distance between neighboring particles would need to be the same in the training

and target flows in order for the learned relationship to be valid. The learned predictor

is most powerful when sufficient history is available, as in time-resolved measurements.

However, it could be also applied to multi-pulse PTV which is often needed for high-

speed flows [141]. In this case, the predictive model would primarily serve to learn the

average flow field.

While we have presented applications utilizing digital inline holography, the proposed

method could be applied to any other PTV method. In cases with complex flow and high

tracer concentrations, the learned predictor can achieve superior performance without

the need for substantial user tuning or assumptions.



Chapter 4

Implementation and GPU

Programming

4.1 Introduction

Holographic processing is highly computationally intensive due to the large images and

volumes used (1024 × 1024 × 1024 voxel volumes are common). Reconstruction also

requires multiple Fourier transforms with a computational complexity of O (N log(N))

where N is the number of pixels in the hologram. For iterative methods such as RIHVR,

a MATLAB implementation could take more than one day to process a single hologram.

Particle tracking velocimetry requires the processing and analysis of thousands of im-

ages. Thus, it is necessary to develop efficient implementations of the methods discussed

in the preceding chapters.

Graphics processing units (GPUs) are a class of processor distinct from the more

common central processing unit (CPU) in that the architecture is optimized for low la-

tency, high throughput operations following a single instruction, multiple data (SIMD)

structure that can often be used in image processing tasks. Elementwise matrix opera-

tions are examples of this sort of operation. The number of compute cores on a GPU

is approximately two orders of magnitude higher than the number found in a typical

CPU. For example, an Nvidia GeForce GTX1080 GPU has over 2500 processing cores

compared to 4 cores in an Intel i7 CPU. This leads to speed increases of up to 100× for

some applications [8]. The CUDA parallel computing platform is an interface for the
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C programming language to utilize GPU processing with Nvidia hardware. Nvidia pro-

vides libraries with efficient GPU implementations of many algorithms and operations

including the three-dimensional fast Fourier transform (3D FFT).

Figure 4.1: Architectural differences between CPU (left) and GPU (right). Image credit:
Kirk & Hwu [8].

The GPU architecture (Fig. 4.1) is designed to optimize throughput of low latency

operations by increasing the number of processing units (shown in green) and decreasing

the space used for control and cache. Because of this, each gpu processor in a unit

(warp) must process the same instructions at the same time, the SIMD structure. Thus,

dynamic program flows (i.e. if statements, while loops) perform poorly on GPUs while

simple local operations (those that only reference a single voxel or small neighborhood)

perform well. The GPU (device) and CPU (host) do not share memory. As such,

any substantial computations require explicit copying of data from the host to the

device and vice versa. There is also an overhead associated with starting a GPU kernel

function. A good algorithm will be designed to limit the amount of memory transferred

between the host and device and reduce the number of kernel calls. However, even

the best algorithm cannot eliminate these costs entirely. The result is that not all

processes can be accelerated by a GPU and the load may dictate whether a GPU or

CPU implementation will execute faster. The location where this tradeoff occurs will

depend on the processing being performed and the hardware so it may be necessary to

dynamically determine whether to process on the GPU or CPU depending on the local

hardware and the size of the data being processed (e.g. size of a hologram or number

of objects).

The use of GPUs to accelerate scientific applications has become increasingly popular
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since the release of CUDA in 2007. However, most applications of GPU acceleration to

holography are currently restricted to numerical reconstruction [142, 143, 144] and the

creation of computer generated holograms [145, 146, 147]. Orzo et al did implement both

reconstruction and segmentation on a GPU [148, 149]. However, their object detection

and segmentation methods were primarily limited by the reconstruction step and little

discussion is given to the details of how segmentation was implemented on the GPU.

Memory concerns play a critical role in determining the efficiency of GPU opera-

tions. Desktop GPUs such as the RTX2080 commonly have only 8 GB or less available

device memory while the main RAM (host memory) can exceed 64 GB. Passing memory

between the host and device is relatively slow and transfer time can exceed computa-

tional time if sufficient care is not taken. This is especially true for iterative operations

where the same data may need to be accessed many times. When possible, it it best

to store frequently accessed data on the device and only transfer to the host at the

begining and end of processing.

4.2 Methods

4.2.1 RIHVR

Inverse methods similar to RIHVR (Chapter 2) have only been used to reconstruct

objects for which the axial location is known either a priori or from a conventional

reconstruction method. There have been no prior applications of compressive hologra-

phy for DIH-PTV of flows containing thousands of tracer particles. The primary barrier

preventing such application is the high computational cost. For illustration, we consider

a case with 1000 particles per image and 100 images each sized 1024× 1024 pixels with

1024 reconstruction planes (109 voxels). The best reported speeds for parametric inverse

methods is approximately 4 seconds per particle, which would lead to a processing time

of 4.6 days for our example [91]. A previous GPU-accelerated compressive holography

implementation can reconstruct a volume up to 1024× 1024× 10 voxels in 7.6 seconds

(22 hours assuming a linear scaling to the size of our example) [97]. Other methods

have much longer extrapolated times including 1000 days [95] and 400 days (on modern

hardware) [90]. In addition to the time required for processing, memory requirements

for CH place severe restrictions on the size of hologram that can be processed. Storage
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of the hypothetical test case hologram would require approximately 8 GB to store in

memory (complex floating-point values, 8 bytes each). Several additional variables of

this size are needed for CH algorithms. However, contemporary GPU memory is limited

to approximately 12 GB for consumer hardware and memory transfers from the GPU

to RAM are slow. Therefore, current applications of CH must either limit the volume

size to take advantage of the speed increase of GPU-acceleration or rely on the much

larger RAM available on most desktop computers but use much slower CPU processing.

Because the FISTA optimization algorithm used in RIHVR is an iterative solution

method, it requires a single hologram to be reconstructed hundreds or thousands of times

before converging to the optimal solution. Therefore the computational time required

to process a single image may be relatively high. PTV requires processing thousands of

large, well-resolved volumes. Therefore, it is crucial to reduce the processing time to a

manageable level to enable application to real flow studies.

A CUDA/C++ GPU implementation of the RIHVR algorithm is used to accelerate

the processing. Key components already have efficient GPU library implementations.

In particular, the fast Fourier transform (FFT) accounts for a substantial portion of the

processing load for a CPU implementation and has already been optimized to run much

faster on a GPU using the CUDA library. Most other RIHVR operations such as the

reconstruction kernel and proximal operator largely use pixel-wise operations which are

embarrassingly parallel and can readily be implemented using CUDA.

In order to circumvent the memory limitation, we exploit the sparsity of the `1

and FL regularized solutions to dramatically reduce the memory requirements. The

coordinate (commonly, COO) sparse matrix format is used to store all volume data

during iterations. The COO format stores the indices (row and column) and value for

only the non-zero elements in a plane. Because data is accessed per plane for both the

forward and reverse propagation as well as the 2D TV proximal operator, each plane

is independently indexed. The total storage for each non-zero element is thus 24 bytes

(8 bytes per index, 8 bytes for complex floating-point value) compared to 8 bytes per

element for a non-sparse structure. Thus, memory usage should be reduced as long as

the data sparsity (number of zero elements divided by total) exceeds 67%. Experience

suggests that most PTV holograms have sparsity exceeding 99% [87, 71].

Some operations are not performed on the GPU either because there is insufficient
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parallelization to make such an implementation efficient or because the CPU implemen-

tation does not account for a sufficient proportion of the execution time to justify the

effort needed to create a GPU implementation. One such operation is the connected

component labelling (CCL) step used to identify individual objects from a thresholded

volume. Normal CCL algorithms are heavily serialized and thus inefficient on a GPU.

Modifications can be made to allow for iterative parallel operation, although this may

require redundancy in some cases. For example, a small object will require fewer steps

to converge than a large one but efficient GPU utilization requires the same steps be

performed on each. Extra complexity is presented by the use of the COO sparse storage

format which means there are no library functions capable of performing this operation.

Ultimately, while these issues could be resolved, the CCL step accounts for < 5% of the

total execution time and improved efficiency in that operation alone will not produce

significant performance improvements overall.

4.2.2 Machine Learning

Over the past decade, machine learning has become an increasingly popular tool for data

analysis in applications as varied as predicting musical sequences [128] and medical

image analysis [150]. Due to this extreme popularity, there are many tools such as

Keras [132] and Tensorflow [151] that have been developed to facilitate the development

and operation of these algorithms, particularly dense neural networks (DNNs). These

libraries are highly optimized for high GPU performance. As such, minimal effort is

needed on the part of the user when implementing these algorithms.



Part III

Applications
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Chapter 5

Temperature Effects on the

Migration of Microcystis

aeuruginosa

The content of this chapter is the result of strong collaboration with Prof. Miki Hondzo

and Jiaqi You and has been published in the Journal of Plankton Research [152]. Some

aspects of this paper have been excluded from this chapter in order to avoid confusing

the work of collaborators with that of the author. The contributions of the author relate

to the construction, operation, and processing of the holographic microscope. The algae

cultures were grown and counted by Jiaqi You. Content, including figures and text, has

been duplicated with permission.

5.1 Introduction

Harmful algal blooms (HABs) have become significant worldwide problems in lakes

and reservoirs influencing municipal, agricultural, and industrial water sources. HABs

may result in damage to the ecological communities by causing deoxygenation leading

to mass mortalities of fish and producing toxins that can pose serious health threats

to animals and humans. Microcystis is a cosmopolitan genus of toxic cyanobacteria

often present in eutrophic lakes which frequently dominates HABs and toxin production
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within them [153, 154]. Water temperature is believed to play a roll in cyanobacteria

blooms. Cyanobacteria are able to proliferate at high temperatures, out competing other

species of algae during summer blooms [155]. Many prior studies have suggested that

warming temperatures as a result of climate change could lead to an increased prevalence

of cyanobacteria blooms [153, 156, 157]. Studies have indicated that Microcystis has a

greater growth rate at higher temperatures [158, 153, 159].

Some Microcystis strains contain gas vesicles, enabling them to change their cell

density and buoyancy to form blooms at different depths in the water column [160].

This helps Microcystis outcompete other algae by forming a thick layer on the surface,

increasing its access to light while shading other species [161, 153, 157]. Studies (of-

ten simulations) exploring the vertical distribution of Microcystis have investigated the

mechanisms used for buoyancy regulation [162, 163, 164, 165, 166, 167]. A few studies

have examined the effects of temperature on the distribution of Microcystis colonies

[164, 168]. However, these studies have not directly measured the buoyant velocities

of individual colonies or measured the associated change in density. This study seeks

to use a digital inline holographic microscope to directly measure the changes in buoy-

ant or settling velocities of Microcystis aeruginosa colonies in response to changes in

temperature.

5.2 Methods

5.2.1 Holographic Measurement

Holographic measurements were conducted at two different temperatures, 17.5± 1.0◦C

for the cold experiment and 28.0± 1.0◦C for the hot experiment. The only experimen-

tal variable was the water temperature and all other environmental variables including

the cell culture, light, and nutrient conditions were maintained constant. For the holo-

graphic measurements, water samples were collected in July 2016 from Powderhorn

lake (44◦56′29.6′′N, 93◦15′29.4′′W), an urban lake in Minneapolis, Minnesota. For each

experiment, a culture sample of Microcystis aeruginosa (M. aeruginosa) was isolated

manually from other organisms in the water and acclimated in an incubator at the test

temperature for 24 hours prior to the experiment. The digital inline holographic mi-

croscope (DIHM) (see Fig. 5.1) consists of a Thorlabs CPS532 laser (4.5 mW with 3.5
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mm beam diameter), an Azzota 1 mm Pathlength Optical Glass Cuvette with 0.35 ML

volume, an Edmund Optics 5X M plan objective with 34 mm working distance and 0.14

NA, and a Mitutoyo 1X MT-4 tube lens connected to a Flare 2M360-CL camera with

maximum image size of 2048×1088 pixels, 5.5 µm pixel size, 13 µs shutter, and a frame

rate up to 337 frames/s (fps) at full sensor size. The laser wavelength (532 nm, green)

was selected because the major pigments found in Microcystis have a low absorption

at this wavelength, reducing the influence of the laser on the behavior of the sample

[169, 170]. A T5 growth light system with two 24W bulbs (Milliard MIL-GLS24W2,

36 µmol/m2s) was placed over the sample cuvette simulating the 14/10 hr day/night

cycle. The culture sample was gently shaken for 30 seconds before a 0.3 mL sample

was transferred to the cuvette. Images were recorded by a 1 TB Digital Video Recorder

(DVR) Express Core (IO Industries Inc.) at a rate of 5 fps continuously for 10 minutes

every hour, with each experiment lasting for 28 hours. Similar holographic systems have

been utilized by Hong et al. [171] and Kumar et al. (2016)[58] to exam the behaviors

of copepods and fruit flies, respectively.

Figure 5.1: The digital inline holographic microscope setup
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The recorded holograms were enhanced by dividing by the time-averaged background

of each recording and normalizing such that the image contained 99.7% of the inten-

sity information. The enhanced holograms are digitally reconstructed by convolving

them with the Kirchoff-Fresnel diffraction kernel (Eq. 1.6). The projected images were

thresholded using a constant threshold calculated as 60% of the mean threshold calcu-

lated using Otsu’s method for a random subset of 100 images. Morphological filtering

consisting of opening with a circular structuring element of radius 2 pixels followed by

closing with an element of radius 5 pixels was performed to reduce noise. These sizes

were selected based on the observed sizes of the projected M. aeruginosa colonies. Fi-

nally, the area and centroid of each connected component were extracted. The colony

tracking was performed using the method of Crocker and Grier [110] to build trajecto-

ries from the centroids and find the average velocity for each colony. To further remove

noise particles, only trajectories lasting for 20 seconds (i.e. 100 frames) or longer were

included in the analysis.

5.2.2 Vertical Migration and Velocity-Density Model

The vertical migrations of M. aeruginosa colonies due to their buoyancy change during

photosynthesis and biosynthesis were measured using the holographic microscope. The

method used to model the vertical migration of the colonies was similar to that for

modeling the settling velocity of particles except that the positive velocity direction is

reversed. The use of this model and the analysis thereof was proposed by Jiaqi You. It

is included here to provide context for the DIH measurements which were the author’s

contribution.

Modelling a M. aeruginosa colony as a sphere, the equation of momentum of a

colony in quiescent fluid includes the gravity, buoyant force, drag force and an added

mass term, which can be expressed as

ρcolVcol
dWb

dt
= ρcolVcolg − ρwVcolg +

1

2
ρwCDApW

2
b − ρwCmVcol

dWb

dt
(5.1)

where ρcol is the colony density, ρw is the water density, Vcol is the volume of colony,

Wb is the buoyant colony velocity (upward vertical velocity), Ap is the projected area

of colony, CD is the drag coefficient, g is the gravitational acceleration, and Cm is the

added mass coefficient (Cm = 0.5). In a moving fluid, relative colony velocity is given
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by Wr = Wb −Wf where Wf is the fluid downward velocity. Our DIHM set up was

designed to minimize the Wf in the cuvette and therefore Wf ≈ 0, which implies that

Wr = Wb. Inspection of Wb over time revealed minimal change and therefore dWb
dt ≈ 0.

Thus, Eq. 5.1 simplifies as

(ρw − ρcol)Vcolg =
1

2
ρwCDApW

2
b (5.2)

The drag coefficient depends on the particle Reynolds number (Rep = WbD/ν, where

D is the diameter of M. aeruginosa colony and ν is the kinematic viscosity of water)

and is estimated in the results section after the velocity and sizes of the colonies are

measured.

5.3 Results

5.3.1 Trajectories and Velocities

The spatial position data of each colony were obtained from the holograms and moving

trajectories were tracked over time. Figure 5.2 shows the first 20 seconds of trajectories

for experiments at hot and cold temperature respectively. To avoid noise and ensure

accurate particle tracking, only the particles that have trajectories lasting for 20 seconds

(i.e. appearing in 100 frames) or longer were selected. In total, 6579 particles for the hot

experiment and 3453 particles for the cold experiment are plotted as trajectories. Since

each of these trajectories is of the same duration, the physical length of the trajectory is

a surrogate for the velocity. It is evident from Fig. 5.2 that the M. aeruginosa colonies

in the high temperature (hot) environment (28.0± 1.0◦C) exhibit higher velocities than

those in the cold environment (17.5±1.0◦C). Mean vertical velocities of all the particles

in each hour after the beginning of each holographic measurement were calculated and

are shown in Fig. 5.3. The mean vertical velocity of M. aeruginosa colonies at the hot

temperature is greater than colonies at the cold temperature all the time during the

28 hr measurement period, while the spread of velocities at the hot temperature is also

greater than that at the cold temperature.
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Figure 5.2: First 20 seconds of trajectories of M. Aeruginosa colonies at (A) hot tem-
perature and (B) cold temperature. Only the particles with trajectories lasting for 20
seconds or longer were selected. The trajectories were normalized to the origin, and
each trajectory represents a particles tracked in the holographic measurement.

5.3.2 Velocity-Density Model

The vertical velocities of M. aeruginosa colonies were averaged over all the data points in

each experiment, which provides an averaged velocity for the cold temperature and one

for the hot temperature. Projected areas for colonies estimated from the holographic

measurement were converted to equivalent spherical diameters and averaged over all

data points in each experiment. Using the averaged velocities and averaged areas, a typ-

ical Reynolds number of colonies was calculated to be Rep = WbD
ν ≈ 10×10−6×20×10−6

10−6 =

2× 10−4 � 1, indicating the particles are in the Stokes regime and the drag coefficient



70

Figure 5.3: Mean vertical velocity of M. aeruginosa colonies in each hour from the start
of holographic measurement for both hot and cold experiments.

in Eq. 5.2 can be substituted by CD = 24
Rep

. Eq. 5.2 then becomes

ρcol = ρw −
18Wbρwν

gD2
(5.3)

Averaged densities of each colony for hot and cold experiments were calculated

by substituting the averaged velocities and diameter into Eq. 5.3. The parameters and

calculation results are shown in Table 5.1 for the hot and cold experiments, respectively.

The density of colonies at high temperature is significantly smaller than that at low

temperature, thereby leading to greater density difference between colonies and water.

The colonies exhibit greater buoyancy due to density change in the hot environment

than in the cold environment.
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Table 5.1: Results of holographic measurements and conditions used for the velocity-
density model

T Wb Ap D ρw ν ρcol
(◦C) (µm/s) (µm2) (µm) (kg/m3) (m2/s) (kg/m3)

Hot 28 11.853 312.305 19.946 996.174 0.8E-6 950.824
Cold 17.5 2.309 398.099 22.520 998.501 1.1E-6 989.953

5.4 Discussion

5.4.1 Movement Trajectories and Buoyant Velocities

The major vertical direction of the trajectories shown in Fig. 5.2 displays a deviation

from the gravitational vertical direction, particularly in the measurements of the hot

experiment. The deviation is due to circulation inside the cuvette, proven with ad-

ditional measurements with a larger field of view using preserved M. aeruginosa cells

(approximately neutrally buoyant) as flow tracing particles. These additional measure-

ments also showed a very small speed (< 1 µm/s) of the tracing particles, indicating

that the circulation has a minimal impact on the magnitude of colony velocities. The

fan-like divergence of the trajectories is due to the geometry of M. aeruginosa colonies.

The colonies are assumed as spherical particles while they are, in fact, irregular shapes

ranging from flakes to ellipsoids. Each colony may have a trajectory departing from

the reference axis (major direction), due to the theory of Stokes flow over particles in

arbitrary shape [172].

In the hot experiment, 50642 out of 56179 colonies showed a positive buoyant veloc-

ity, while in the cold experiment, 44814 out of 56178 colonies showed a positive buoyant

velocity. In other words, 90% colonies were floating during the hot experiment while

only 80% colonies were floating during the cold experiment. This result agrees with the

buoyancy recovery test run by Thomas and Walsby [168], which shows 84% recovery of

non-buoyant colonies at 30◦C and only 10% recovery at 7◦C. The percentage difference

is smaller in this study due to the smaller temperature difference. This also illustrates

that the reason why Microcystis dominates summer blooming but starts sedimentation

when autumn comes is due to worse buoyancy recovery at low temperatures.

Diurnal changes in depths, velocities, or colonial densities have been reported in
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other studies [162, 163, 164], but are not shown in the results of this study. Mean

velocities in Fig. 5.3 show no periodic patterns but some fluctuations in velocities at

the hot temperature. One possible explanation is that the colonies were affected by

more than one mechanisms of buoyancy regulation and thus were experiencing longer

regulation periods. Since the experiments in this study lasted only for 28 hours, the

colonies remained at the buoyant phase for the entire duration.

5.4.2 Colony Sizes

The average sizes of the colonies in this study are shown in Table 5.1. Compared to

other studies, our measured colony sizes are relatively small. For example, Rowe et al.

[173] reported median colony diameters of 117 µm while ours are only 20 µm. Critically,

our samples are dominated by relatively small colonies, the presence of which could be

caused by the methods used to sample and isolate the culture.

5.4.3 Colony Densities

The connection between rising velocity and colony density identified by this work is

based on Stokes’ Law. Prior studies have modelled buoyant cyanobacteria using this

model [162, 163, 164, 165, 166]. Our results indicate that Microcystis colony density

is dependent on the surrounding temperature. The factors related to buoyant velocity

(Eq. 5.2) include colony size, fluid density, fluid viscosity, and colony density. In the

absence of changes to the colony density, variations in the fluid density, viscosity, and

the colony size could only lead to a ratio of hot to cold buoyant velocities of
Wb,hot

Wb,cold
≈ 1.3.

The measured ratio is 5.1, indicating that a change in the colony density must occur at

the different temperatures.

5.5 Conclusions

For the first time, we demonstrate that ambient temperature has strong effects on the

buoyant velocities of Microcystis. The observations were enabled by the implementation

of the digital inline holographic microscope which is low cost, highly compact, and

a promising laboratory and field technology. DIHM can be readily integrated with
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existing autonomous/robotic devices used in the field for long-term and large-scale in

situ quantification of plankton distribution and behavior (see Chapter 7).

In addition to the DIH measurements discussed here, the effects of ambient tempera-

ture on the specific growth rate of M. aeruginosa were also evaluated through laboratory

measurements. These measurements found that the specific growth rate increases with

temperature up to the optimal growth temperature of 28.1◦C. A cardinal temperature

model with inflection is able to describe 95% of the variability of the Microcystis growth

rate using temperature. Combined, the growth and density models will facilitate the

prediction of M. aeruginosa growth and buoyant velocities at a variety of ambient tem-

peratures in aquatic ecosystems.



Chapter 6

Swimming Signatures of D.

primolecta as Indicators of Lipid

Content

The content of this chapter is the result of strong collaboration with Prof. Miki Hondzo

and Jiaqi You and has been published in Biotechnology and Bioengineering [127] where

it was selected as the featured cover. Some aspects of this paper have been excluded

from this chapter in order to avoid confusing the work of collaborators with that of

the author. The contributions of the author relate to the construction, operation, and

processing of the holographic microscope. The algae cultures were grown, maintained,

and the chemical analysis performed by Jiaqi You. Content, including figures and text,

has been duplicated with permission.

6.1 Introduction

Microalgae are currently farmed to produce compounds used for human nutrition and

pharmaceutical products. They are also a promising potential source of biofuels due

to their high lipid content. However, such biofuel production is often cost prohibitive

in part due to the difficulty of identifying the optimal harvest timing for large-scale

cultures [174, 175, 176, 177, 178].
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Prior research has shown that lipid accumulation is tied to environmental stresses

such as nutrient limitation [179, 180, 181, 182, 183]. Similarly, environmental stresses

have also been shown to impact the motility of the algae. The green alga Dunaliella

has different behavior in stagnant and moving fluids. As the flow rate increases, the

swimming speed increases [184] and the cells align themselves preferentially with the flow

[112]. Hansen et al. [185] showed that the swimming velocity of the alga Chlamydomonas

increases under the effects of nitrogen starvation. Limited research has been done to

directly correlate the swimming behaviors of individual cells with their lipid content.

The life-cycle of an algal culture consists of four phases: 1) initial lag growth; 2)

exponential growth; 3) stationary growth as nutrients become depleted and the growth

rate is limited; and 4) decline as the culture begins to die and the concentration de-

creases. These stages are indicators of the level of environmental and nutrient stress

placed on the sample and are best identified by observing the change in cell concentra-

tion of the culture over time.

This work seeks to identify a correlation between the growth stage, lipid content,

and behavior of the algal cells. DIH-PTV is used to analyze cell behavior as it provides

a means to non-invasively record the 3D motion of the cells.

6.2 Methods

6.2.1 Strain Selection

The green alga Dunaliella primolecta (D. primolecta) was chosen for this study due to

its high lipid content, high salt tolerance, and the amount of prior work studying this

organism. D. primolecta is a bi-flagellated unicellular green algae with a lipid content

ranging from 15% to 40% [186, 187]. The cell size is approximately 5 µm.Cultures

were created with three different initial nitrogen contents: 30%, 70%, and 100% where

percentage is relative to the standard content of Erdschreiber’s medium. Cultures were

grown in an incubator at 20◦C with a 14/10 hour day/night cycle. Trial experiments

were performed to identify the timing of each growth stage.



76

6.2.2 Chemical Analysis

In addition to the DIH-PTV measurements of cell behavior, other measurements per-

formed by Jiaqi You were used to quantify the lipid content of the cultures. While these

measurements are not the subject of this thesis, they are important for interpreting the

DIH-PTV measurements. A more detailed description of the procedures can be found

in the paper by You et al. [127] and the associated supplemental material.

The dry cell weight and nitrate concentration were measured for samples collected

from replicate cultures at each of the initial nitrogen concentrations. The dry weight

was measured by filtering the samples and weighing the filtered solids after drying in

an oven. Nitrate was measured using a fluorometer and nitrate test kit.

Measurement of the intracellular neutral lipid content was performed by first staining

the cells with Nile red dye. The fluorescence of the stained samples was measured using

a multi-mode reader and normalized by the cell concentration. The gravimetric method

adapted from Bligh and Dyer [188] and Alonzo and Mayzaud [189] was used to calibrate

the Nile red fluorescence measurements.

6.2.3 Tracking of Swimming Trajectories

The swimming trajectories of D. primolecta were recorded using a DIH-PTV system

consisting of a 532 nm diode laser (Thorlabs CPS532), an optical spatial filter and

collimating lens assembly, 5X microscopic objective (Mitutoyo 10X/0.14 NA), and a

CCD camera (Flare 2M360-CL) (Fig. 6.1). The holograms were recorded at a framerate

of 100 Hz with an exposure time of 50 s and cropped to a 1024pixels × 1024 pixels

window for processing. Measurements of replicate 30%N cultures were performed at

the lag, exponential, and early stationary phases. Recordings of five samples were

made for each culture with recording volume of 1 µL. Each sample was recorded for 20

seconds (2000 frames) with the exception of the lag stage samples which were recorded

for 60 seconds in order to increase the total number of cells recorded at the lowest

concentration. Positions of each cell in the recorded hologram were extracted using the

Regularized Inverse Holographic Volume Reconstruction (RIHVR) method presented in

Chapter 2. The cell positions were tracked in time using the method of Crocker and

Grier [110] to produce trajectories illustrating the swimming mode of each cell.
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Figure 6.1: The DIH-PTV system used for analysis of D. primolecta swimming signa-
tures

The swimming trajectories were classified into five behavior modes: 1) circular which

rotate about a fixed point with minimal net motion; 2) helical which rotate about a

moving point, forming a helix; 3) random walk which do not rotate and have minimal

directionality; 4) linear which have no rotation and minimal deviation from a principle

direction of motion; 5) meandering which is similar to linear but with greater deviation

from the principle direction. The trajectories were automatically labeled using a binary

decision tree based on a set of measured trajectory features.

To determine the significance of differences in the swimming behavior among growth

phases (the lag, exponential and early stationary phases), one-way ANOVA tests were

conducted for the swimming speed and fine motion frequency from the DIH-PTV results

(df = 2, α = 0.05). Similar tests were conducted to determine the statistical significance

of differences in the neutral lipid content at different growth stages and with different

initial nitrogen content.

6.3 Results and Discussion

6.3.1 Intracellular Neutral Lipid Content Accumulation

The intracellular neutral lipid content of D. primolecta was observed to be correlated

with both the growth stage and the initial nitrogen content (Fig. 6.2b). For the 30%N

cultures, the lipid content increased drastically and peaked in the early stationary stage

(day 25), followed by a decline in the late stationary stage. By comparison, the 70%N

and 100%N cultures peaked at the end of the measurement in the late stationary stage
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and had a substantially lower peak lipid content than the 30%N cultures. This demon-

strates the need for precise harvest timing as a delay of only a few days could lead to a

50% reduction in the yield.

6.3.2 Microalgal Swimming Speed and Trajectories

Measurements of the swimming velocities of D. primolecta using DIH-PTV showed

that the lag phase has the lowest mean swimming speed, with increasing speeds seen

in both the exponential and early stationary stages. There was no significant difference

in speed among the three nitrogen levels for the lag or exponential phases. These

results are consistent with supplemental experiments performed using traditional micro-

PTV. Swimming trajectory measurements using DIH-PTV indicate a change in the

complex behavior modes of the swimming cells (Fig. 6.3a-c). We observed five swimming

modes including circular, helical, random walk, meandering, and linear. These can be

further grouped into fine motions (circular and helical) and gross motions (linear and

meandering) with random walk serving as an intermediate that is neither fine nor gross.

We trained a binary decision tree to autonomously classify the measured trajectories

into one of these classes and applied this classification to n = 421 trajectories from the

lag phase, n = 6306 from the exponential phase, and n = 7874 from the early stationary

phase. The most significant trend is the decrease in the frequency of fine motions from

exponential to early stationary phase (Fig. 6.3d-f). The helical and circular behaviors

are hardly seen in the early stationary stage. The fine motions account for 48% of tracks

in the lag phase, 16% in the exponential phase, and only 2% in the early stationary

phase.

6.3.3 Link Between Lipid Accumulation and Swimming Signatures

The changes of swimming modes identified from the D. primolecta swimming trajecto-

ries correspond to the intracellular neutral lipid content changes across growth phases.

The statistical one-way ANOVA results indicate that the percentage of cells exhibit-

ing fine motions are statistically different at each growth phase (α = 0.05, P < 0.01).

The variation of swimming behaviors across growth phases could be associated with

the nutrient availability and chemotaxis of microalgal cells. The nutrient distribution
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Figure 6.2: Growth curves and intracellular neutral lipid content of D. primolecta cul-
tures. (a) Cell concentrations of an entire growth cycle of the three groups of cultures
(b) Intracellular neutral lipid content as measured using Nile red fluorescence for the
growth cycle of each culture. Image credit: Jiaqi You
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Figure 6.3: Classified swimming trajectories of D. primolecta cells in 30%N cultures.
(a)-(c) Selection of n=400 random trajectories from each of the three stages measured
with DIH-PTV. Trajectories are colored according to their assigned behavior mode.
(d)-(f) The frequency of each behavior mode for each of the growth stages.

in the growth environment is hardly homogeneous – nutrient patchiness forms for many

reasons. Chemotactic response of Dunaliella cells to the ammonium and several amino

acids have been reported [190]. Akin to the run-tumble transitions of bacterial chemo-

taxis [191], the cells move towards a nutrient patch through the gross (linear and me-

andering) motions while remaining in the patch to utilize the nutrients through the

fine (helical and circular) motions. At early growth phases, the nutrients are sufficient,

so the frequency of fine motions is high since the shorter net displacement of helical

and circular motions allow the cells to maintain in a nutrient-rich region for a longer

time and maximize their nutrient uptake. When photosynthesis is limited by low local

nutrient availability, the algal cells tend to become positively chemotactic which makes

them travel faster in linear/meandering motions towards certain attractants [192]. At

the stationary growth phase, the fine motions are significantly reduced due to nutrient

scarcity and most of the cells exhibit larger net displacement with the gross motions to
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explore potential nutrient sources.

The reduction of the fine motions corresponds to the accumulation of intracellular

neutral lipid content as both are induced by the nutrient limitation. When the lipid

content peaked in the early stationary phase, the fine motions were hardly seen. There

were approximately 8-fold differences in both the fine motions and neutral lipid con-

tent between the exponential and early stationary phases for the 30%N cultures. The

strength of transition suggests that the relative frequency of behavior modes could be

a potential indicator for the growth phase, and by association the neutral lipid content.

6.4 Discussion and Conclusions

Our findings of the association between microalgal swimming signatures and intracel-

lular neutral lipid content inspire a low-cost scalable sensor system utilizing DIH-PTV

for high-throughput monitoring of the neutral lipid content in industrial-scale biofuel

production. Such a system would improve control of cultivation conditions and harvest

timing of microalgae, leading to a substantial biofuel yield and low-cost algae-based

biofuels. Conventional methods for intracellular neutral lipid determination, such as

lipid separation by column or thin-layer chromatography, fatty acid profiling by gas

chromatography, and fluorometric determination of neutral lipids by Nile red / BOD-

IPY [193, 194, 195, 196, 197], either require tedious extraction and/or transesterification

work and expensive equipment, or test only small volume samples which are less repre-

sentative for large-scale cultivations. In contrast to current lipid measurement methods,

DIH-PTV has much higher throughput and better scalability. DIH sensors are low cost,

small, and easily integrated with other instruments so that a network of DIH sensors

could monitor multiple sites efficiently in open ponds or closed photo-bioreactors for

industrial-scale biofuel production.

Exploiting microalgal swimming signatures as a possible indicator in microalgal

growth and intracellular neutral lipid accumulation monitoring will potentially influ-

ence the pipeline of microalgal biodiesel production by enabling more optimal harvest

timing and control of cultivation conditions.Our results showed a 3.6-fold increase in

the intracellular neutral lipid content within only three days. The neutral lipid content

at the early stationary phase is 20 folds higher than that at the exponential phase and
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4.7 folds higher than that at the late stationary phase. Since lipid production is very

sensitive to harvest timing, utilizing the drastic decrease of fine motions and increase

in swimming speed to predict the timing of maximum neutral lipid accumulation can

potentially enable more optimal harvest timing. This timing will also reduce the cost

of consumables (including water, nutrient supplies, and electricity), which are some

of the most substantial costs in biofuel production [198]. This can lower the net cost

per unit biodiesel production, which is a major bottleneck inhibiting commercialization

[199, 198].

These factors will together decrease the net energy ratio (NER, the energy input in

cultivation and refinement divided by the energy output from the biomass), which is an

indicator of environmental sustainability and the overall energetic effectiveness of the

biodiesel production [177]. Achieving a lower NER will make microalgal biodiesel pro-

duction more economically competitive. Besides reducing the net cost per unit biodiesel,

the higher biomass and lipid yield can also result in increased beneficial by-products

from the lipid extraction and transesterification processes. Appropriate use of the re-

maining biomass for animal feed, ethanol, or biogas, and glycerol for human nutrition,

pharmaceutical applications, or personal care will contribute to the commercial via-

bility of microalgal biofuel production [200, 201, 202]. Overall, exploiting swimming

signatures in a low-cost scalable sensor system for inline high-throughput monitoring of

microalgal growth and neutral lipid accumulation will potentially lead microalgae-based

biofuel production to a more cost-effective and energy-effective future.



Chapter 7

Robotics

The content of this chapter is the result of collaboration with Prof. Nikolaos Pa-

panikolopoulos and Dario Canelon. This work has been posted on arXiv [203] and

is under review for publication. The elements of this chapter relating to the DIHM

sensor are the contributions of the author while the development and operation of the

Aquapod robot was contributed by Dario Canelon.

7.1 Introduction

Aquatic environments are challenging to monitor. Large-scale disasters such as the

Deepwater Horizon oil spill or harmful algal blooms (HABs) [10] can cause millions

of dollars of damage annually. While these contaminants can spread for kilometers,

microscopic scales are also critically important. HABs often consist of algae such as

Microcystis aeruginosa which has a colony size on the order of 100 µm [173]. Oil slicks

can be broken into micro droplets by rain and diffused by turbulence [204]. For both

HABs and oil spills, detection of these microscopic particles could enable early detection

or improved mitigation of these disasters. However, the volume of water that must be

monitored is vast; an optimal system must be able to perform microscopic measurements

over many kilometers and thousands of liters. Furthermore, the timescales involved

are relatively short with HAB formation occurring on time scales of one week or less

[37, 35, 36]. Similar challenges arise when detecting waterborne parasites [5] or invasive

species [205]. Rare species detection could also be applied to extraterrestrial exploration

83



84

[6].

Current methods for measuring lacustrine and marine particulates are unable to

measure across a wide range of length scales, are restricted to small regions of the en-

vironment, often cannot differentiate between similar classes of particles, or may not

have the sensitivity required for early detection. There are often trade-offs requiring the

synthesis of data collected with multiple techniques in order to obtain conclusive results.

For example, Wilkinson et al. [37] monitored HAB formation using a long-term research

station augmented with more precise collection or physical samples for laboratory anal-

ysis. Remote sensing [35, 36] is suitable for large-scale mapping of dense concentrations

but has limited spatial and temporal resolution, poor sensitivity, and cannot penetrate

deep below the surface. Fluorometers are often used to measure chemical components

such as chlorophyll and phycocyanin which are used as proxies for biomass concentra-

tion [37]. However, these measurements are insufficient for identifying individual species

and are highly dependent on the quality of their calibration. Physical sampling for lab-

oratory analysis is still the gold standard measurement technique but is expensive, time

consuming, and often infrequent.

We present a novel system that allows the in situ measurement and quantification

of various environmental particulates at both the small scales required to measure or

identify individual particles (i.e. 1 µm) and also at the much larger scales of the body

of water (i.e. 1 km). The system (Fig. 7.1) consists of a digital in-line holographic

microscope (DIHM) integrated with an autonomous amphibious vehicle – the Aquapod

– in order to make high resolution measurements including particle size, concentration,

identification, and three-dimensional motion as the Aquapod moves throughout a large

environment of interest. We discuss the design of the DIHM in Section 7.3.1, placing

a particular emphasis on decreasing the cost of the system and addressing challenges

such as the vibrations to the sensors as the robot propels itself. In section 7.3.2 we

present a machine learning model that enables real-time on-board processing. Section

7.3.3 covers the Aquapod robotic platform as it pertains to this work. In Section 7.4

we describe and discuss two experiments that were carried out as laboratory validation

of our methods and in-field testing of our system. Finally, in Section 7.5 we conclude

possible avenues for future research using this system.
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Figure 7.1: DIHM mounted on the Aquapod prior to deployment.

7.2 Background and Related Work

Employing robotic platforms to move sensors into desirable measurement locations is

frequently being looked at as a way to gather data in a wider range of scenarios, bet-

ter understand and gain insight on the environment through distributed and scalable

deployments, and augment human capabilities by leveraging automation in tasks that

were not previously feasible. In events such as the Deepwater Horizon oil spill [206] and

the Fukushima nuclear disaster [207], robotic platforms have permitted environmental

monitoring and the completion of vital tasks while reducing the need to place human

resources in danger. In the case of environmental monitoring, the long-term objective

is to deploy a number of robots to carry out sensory tasks in an automated fashion,

sometimes spanning days or weeks, with occasional human interaction for maintenance

or supervision.

In some cases, researchers have turned to robotic systems to deploy highly specialized
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and specific sensors to strategic locations to optimally gather data of the underlying

physicochemical properties of the environment [208]. Utilizing small mobile platforms

that integrate proportionately smaller sensors allows the active collection of information

in a way that is not available by laboratory testing of samples or by stationary sensors.

Furthermore, active sensors that process data in situ permit a live data feedback loop

to more intelligently deploy resources and gather the needed data in a more efficient

and accurate manner [208].

Greenfield et al. have developed a robotic platform to perform laboratory-type mea-

surements of algae in the field [209]. This special machine, called the Environmental

Sampling Processor (ESP), is a marine surface vessel which concentrates and filters

physical samples, then utilizes DNA probing to perform tasks such as species identifi-

cation and particulate concentration.

Many robotic systems utilize sensors that are highly specialized to the particular

task such as DNA probing. Scattering-based particle sensors such as many turbidity

sensors and fluorometric cytometers utilize the spectra of light scattered from a single

point and thus lack the spatial information inherent to an imaging method. They mea-

sure quantities averaged over the sample volume and are unable to quantify microscopic

heterogeneity. The reduced sample volume necessary for these methods often requires

some microfluidic sampling which may bias the sample composition, size distribution,

or behavior in a way that ideal in situ methods should not. Furthermore, these meth-

ods require careful calibration to account for the variations in scattering properties of

different samples and often require high sample concentrations to achieve a measurable

signal. Optical microscopes are well suited for particle identification and counting as

a trained operator (or algorithm) can perform these tasks directly from the recorded

images without any need for calibration. However, the limited depth of focus of con-

ventional microscopes means that they are limited to 2D measurements, limiting the

measurement volume and requiring mechanical sampling. In cases of rarefied samples, a

very large sample volume may be necessary to detect the objects of interest. Such situ-

ations may occur in the deep ocean or in extraterrestrial environments. 3D microscopy

techniques such as scanning confocal microscopy require a complex mechanical scanning

mechanism and often require sample preparation via chemical staining. In addition to

the mechanical complexity, scanning methods are unsuitable for measuring dynamic
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samples that change faster than the scanning speed.

A promising sensor is the digital holographic microscope (DIHM) which uses an

imaging technique that records optical interference patterns which can be digitally re-

focused to produce a 3D image of microscopic objects from a single 2D recording. A

DIHM can be used for species identification [5], sizing [13], and particle tracking [1].

The biggest advantage of holography over other imaging techniques such as traditional

microscopy is that standard microscopes are limited to a narrow depth of focus (1 µm)

while holography is capable of refocusing over a much wider volume (1 cm). This sub-

stantially reduces the impact of the sensor on the fluid being measured and allows for

a larger sampling volume, ensuring representative samples even under low concentra-

tion conditions. DIHM requires no moving parts, can image at high speeds, and is

non-destructive and non-invasive making it a very powerful measurement technique for

in situ studies. Figure 7.2 shows a comparison between microscopic and holographic

imaging of colonies of M. aeruginossa. The reconstructed in-focus image (Fig. 7.2d)

generated from the recorded hologram (Fig. 7.2c) shows that the individual cells within

a colony can be detected.

There have been numerous previous applications of holography for underwater mea-

surements in the past two decades [210, 211, 212, 3, 4]. Talapatra et. al. [3] used a

free-drifting submersible holographic device to measure the size and spatial distribution

of particles in a 15 m water column. They also simultaneously measured the mean shear

strain and turbulence dissipation rate by tracking the imaged particles. However, while

the submersible was able to ascend, descend, or drift in a water column, it was designed

to be tethered to a boat, and required offline post hoc processing and analysis. De-

ployment of a DIHM from oceanographic vessels has been described by several authors

[213, 15, 211], though these experiments lacked substantial automation.

Deep sea holographic microscopes are sold commercially by 4Deep Inwater Imaging

and Sequoia Scientific. Both systems produce high quality holograms and are capable

of particle sizing, counting, and morphological species recognition at depths of over

100m. Despite their utility, the large size (over 70 cm long), weight (7-27 kg), and cost

(40,000 USD) of these systems limit potential applications. Both the size and cost are

driven by the need to be waterproof at great depths (>100 m) and acquire very high

SNR holograms. In most freshwater applications, it is not necessary to image at depths
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Figure 7.2: (a) Macroscopic image of HAB in Powderhorn Lake, Minneapolis, MN. (b)
M. aeruginosa colony sampled from (a) and imaged using 400x optical microscope. (c)
Recorded hologram of M. aeruginosa colony using a laboratory DIHM. (d) In-focus
image of (c) processed using the methods of this paper showing that the colony is
comprised of individual cells. Photo credit: Jiaqi You.

greater than 5 m as most microorganisms tend to live at shallower depths [37]. There

have been no demonstrations of a low-cost miniature DIHM for in situ measurements.

In addition to the in situ applications, laboratory studies have shown the power

of DIHM as a measurement technique. High speed DIHM can be used for particle

tracking velocimetry (PTV) [1] which has applications in both flow measurement and

behavior analysis. Holography has been used to examine the changes in the complex

swimming behaviors of dinoflagellates in response to the presence of prey [214]. Other

behavioral studies have examined the near-wall swimming behavior of bacteria [51] to

relate swimming patterns to the local fluid vorticity [184]. DIHM has also been applied

to automated detection and classification of organisms. El Mallahi et. al. [5] trained

a support vector machine (SVM) classifier to automatically identify Giardia labmlia, a
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waterborne parasite. Göröcs et al. [61] developed a low-cost microfluidic holographic cy-

tometer for automatic classification of plankton samples. However, their device requires

sampling from the environment. Sampling from frozen sea ice, Lindensmith et. al. [6]

used a holographic microscope to detect life in the samples with proposed applications

in extraterrestrial exploration.

To our knowledge, there has been no previous integration of a DIHM with a robotic

system. This represents a major opportunity to leverage the powerful 3D microscopic

imaging capabilities of DIHM with the mobility and autonomy of a robotic platform.

Compared to prior uses of DIHM, a miniature and cost-effective sensor is particularly

valuable as it would enable a fleet of small distributed robots to actively explore the en-

vironment in stark contrast with the large individual ships currently used for underwater

DIHM.

7.3 Equipment Design

The proposed solution unites the autonomy of a robotic platform with the microscopic

imaging capabilities of a DIHM in order to perform sensitive measurements of suspended

particles over a large region. Furthermore, the system is low-cost, potentially enabling

swarm measurements. The design of the system is described in two parts pertaining to

the DIHM (Section 7.3.1) and the Aquapod (Section 7.3.3).

7.3.1 Digital In-Line Holographic Microscope

Of the many variants of holographic imaging, digital in-line holography (sometimes

called Gabor holography [44]) is the simplest, only requiring a laser and a camera.

The fundamentals of holographic imaging have been discussed in Section 1.3. For this

application, it is necessary to reduce system complexity while maintaining sufficient

imaging quality to produce reliable results. The quality of the results that can be

extracted from a recorded hologram is strongly dependent on a number of features of

the imaging system. These include the presence of scratches or dust in the optical

path, vibrations of the sensor, the beam profile of the illuminating laser, and the use

of a microscopic objective or other lenses to adjust the region of interest. The spatial

resolution of the measurements is dependent on the pixel size of the camera (usually
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1-5 µm) and will be equal to that size in the special case when no objective lens is

used (lensless holography). The temporal resolution is determined by the camera frame

rate and shutter speed. In order to prevent motion blurring, the shutter speed must be

less than the time taken for an object to pass through one pixel. DIHM data becomes

increasingly noisy as the concentration increases. The non-dimensional shadow density

(sd = nxLd
2) generally should not exceed 0.1 where nx is the number density, L is the

sample thickness, and d is the particle diameter [71].

Figure 7.3: DIHM system with labeled components.

In contrast with other DIHM sensors which emphasize image quality, our sensor de-

sign emphasizes cost, size, and simplicity while recording holograms of sufficient quality

for several pertinent applications. We rely on our processing approach to compensate for

the higher noise resulting from the use of cheaper and smaller components. Figure 7.3

shows the complete sensor. The primary components are the laser, camera, acquisition

computer, and battery.
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The laser is a Quarton VLM650-11-LPA laser diode with a 650 nm wavelength and

3 mW power. The camera is a Raspberry Pi Camera Module NoIR V2 which has a

maximum resolution of 3296 × 2512 pixels, and a pixel size of 1.12 µm. Images are

captured and stored using a Raspberry Pi Zero W single-board computer which also

powers the camera and laser. All components are enclosed in an acrylic enclosure which

is waterproof at depths up to 5 m. In order to improve size and reliability, the enclosure

is permanently sealed and cannot be accessed by a user. Charging and data transfer

are performed using an Qi inductive charging pad and 802.11 wireless connection.

The frame rate and field of view are interconnected and limited by bandwidth con-

siderations when saving images. Increasing in the field of view requires decreasing in

the image capture rate. For the experiments in this paper, an image size of 2.3 × 2.3

mm (2048 × 2048 pixels) was recorded at 1 frame per second. The shutter speed was

1 µs. The depth of the sample volume (distance between imaging windows) is 10 mm,

corresponding to a sample volume of 53 µL.

The total material cost of the system is $200 which is an order of magnitude reduction

from previous systems and two orders less than commercial systems. The total size of

this sensor is 5×5×13 cm, with the majority allocated to the computer and battery. The

sensor can be operated remotely via a broadcast 802.11 network signal and has a battery

life of 3 hours. For underwater operation, recording is initiated via the 802.11 network

prior to submerging the sensor. Image recording proceeds independent of the network

connection while submerged until the trial is complete and the network connection is

reestablished.

The holograms are processed using the RIHVR approach (see Chapter 2) which

solves an inverse problem using an iterative algorithm to determine the 3D object that

best produces the recorded hologram. Fused lasso regularization is used to ensure the

result is both sparse and smooth. The GPU-accelerated algorithm takes 21 seconds

to process one 2048 × 2048 pixel hologram with 40 reconstruction planes. Prior to

reconstruction, the images are enhanced by removing a background produced by a

5 frame median. For particle counting, the 3D volume is projected to a 2D plane

using a maximum intensity projection. The result is then binarized using a threshold

equal to 25% of the maximum intensity. Morphological closing is then used to reduce

segmentation noise followed by connected component labelling. The processing steps
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are summarized in Fig. 7.4 and a MATLAB implementation of the processing code is

available at github.com/HongFFIL/rihvr-matlab.

Figure 7.4: Hologram processing steps. (a) Enhanced hologram of microbubbles. (b)
3D reconstruction. (c) Binarized 2D projection.

7.3.2 On-board Processing

The RIHVR method for hologram processing is computationally demanding and re-

quires the images be stored locally before being processed after the experiment on a

computer containing a powerful GPU. This prevents the use of feedback control or

intelligent path planning for the Aquapod motion. On-board processing is necessary

for the system to autonomously explore the concentration map and provide real-time

alerts if a hazard is encountered. Despite the increased availability of GPU processing

on single-board computers such as the NVIDIA Jetson series, full hologram processing

with RIHVR can still not be performed in near real-time with an on-board computer.

https://github.com/HongFFIL/rihvr-matlab
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We propose using machine learning to approximate the full holographic processing, en-

abling concentration measurements to be performed rapidly and communicated to the

Aquapod for navigation. The recorded holograms can be retained and processed offline

to confirm the results of the machine learning approximation.

We use a simple convolutional neural network (CNN) as the predictive model 7.1.

This architecture demonstrated better test performance than alternative models such as

MobileNetV3 [215] which was developed for classification of images from the ImageNet

database. The simple CNN ran faster and achieved a higher correlation between the

predicted values and RIHVR measurements.

Table 7.1: The CNN architecture used for prediction.

Input Operation Stride # Filters

1282 × 3 conv2d, 3× 3 2 16
642 × 16 conv2d, 3× 3 2 40
322 × 40 conv2d, 3× 3 2 40
162 × 40 conv2d, 3× 3 2 64
82 × 64 conv2d, 3× 3 2 64
42 × 64 conv2d, 3× 3 2 128
22 × 128 conv2d, 3× 3 2 128
12 × 128 avg pooling na na
12 × 128 dense na 1

The model is trained and evaluated using data from the laboratory experiment

(Section 7.4.1). Two of the experimental configurations are used as the training data

(2039 images) with the third case used as test data (649 images). The recorded images

(2048 × 2048 pixels) were enhanced by removing the 5 frame median background and

resized to 128× 128 in order to increase the computational speed. This size is too small

to perform conventional hologram reconstruction but most objects can still be detected

manually. The model was trained for 1000 epochs with a batch size of 32 and the Adam

optimizer with the default learning rate.

The average per-image prediction time on a Raspberry Pi Zero W is 240 ms. By

comparison, the execution time of MobileNetV3-Small is 2300 ms. This substantial

reduction in execution time means that results from the image can be produced within

the time required to capture and store an image (1000 ms).



94

The fidelity of the model could be improved by increasing the complexity of the

network. However, this will also lead to an increase in the computational time. This

is unavoidable for more complicated tasks such as species identification. For these

applications, a more powerful processor (such as the NVIDIA Jetson Nano) will be

needed which will also lead to a larger size and increased power consumption.

7.3.3 Aquapod

Figure 7.5: Aquapod and its buoyancy control unit (BCU). Image credit: Dario Canelon

The Aquapod [216] is an amphibious robotic platform developed by the lab of Niko-

laos Papanikolopoulos. It is designed to be submersible at depths of up to 10 m and
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utilizes multiple modes of locomotion including tumbling and screwdrive propulsion.

These unique features enable this platform to operate in environments that are difficult

for conventional robots, such as snow, sand, or muddy terrains and overcome unforeseen

obstacles.

The robot can be configured with a buoyancy control unit (BCU) and screwdrive

propulsion. The BCU (Fig. 7.5) uses a peristaltic pump to fill a small bladder with

fluid from the surrounding environment. This allows the robot to control its density to

ascend and descend in an aquatic environment. External and internal pressure sensors

are used to measure the depth of the system and the current volume of ingested fluid

[216].

The screwdrive propulsion system (Fig. 7.6) is used because it is able to traverse both

terrestrial and aquatic environments. The system consists of a pair of independently-

powered counter-rotating screws that act as propellers to drive the robot. Similar

propulsion mechanisms have been used for several military, scientific, and recreational

vehicles for propulsion in variable terrain including snow, sand, and water [217, 218, 219].

Unlike the more efficient BCU, the screwdrive is capable of lateral locomotion. In order

to reduce the effects of high-speed fluid entrainment into the DIHM sensor volume, the

screws are placed as far as possible from the sensor (see Fig. 7.1).

Figure 7.6: Aquapod equipped with the screwdrive propulsion system.

7.4 Experiments

Two experiments were designed to demonstrate the capabilities of the Aquapod-based

DIHM system. First, a laboratory validation experiment was used to demonstrate
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Figure 7.7: (a) The Aquapod with DIHM exploring the point source. (b) Mapped
concentration of a linear arrangement of sources. Red line indicates expected source
location. (c) Mapped concentration of bubbles near a point source. Red arrow indi-
cates expected source location. Insets are enhanced holograms recorded at the marked
positions. (d) Mapped concentration of sources arranged in the bent shape indicated
by the red line.

.

that the system is able to map a concentration field. Second, a field experiment was

performed demonstrating the ability of the combined system to measure in situ particle

concentrations and image aquatic microorganisms in a real-world scenario.

7.4.1 Experiment 1: Laboratory Validation

Applications of the autonomous DIHM measurement may include concentration map-

ping to identify the source of an oil leak or the extent of an HAB. To demonstrate the

ability of the robotic DIHM system to map spatial variations in particle concentration,

we measured the distribution of bubbles from several source arrangements in a pool.
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The test volume was a 3 m diameter, 3800 L pool with aerated water sources producing

microbubbles to serve as the measured particles (Fig. 7.7(a)). Because the flow rate

from the source was constant, the concentration of bubbles is assumed to be steady for

the duration of the experiment. The Aquapod was manually driven throughout the pool

in a manner which simulated some imprecise knowledge of the source location. The lo-

cation of the system was tracked using a Vicon Vantage Motion Capture system capable

of recording the full attitude of a rigid-object to within 0.1 mm at 100 Hz. Markers for

the Vicon can be seen in Figure 7.1. Three source configurations were measured. The

first was a point source near the center of the pool. The second was a series of five point

sources arranged in a line. Finally, six points were arranged in a bent elbow shape.

The 2D path of the Aquapod on the water’s surface is shown for each configuration

in Fig. 7.7 along with the mapped concentration. The colored circles identify the

locations where the holographic images were recorded and are colored according to the

measured particle concentration. A 2D map of the concentration is estimated using

a cubic interpolation from the measured points and spatially filtered with a Gaussian

filter with a standard deviation of 2. Also shown are several of the recorded holographic

images. These images showcase that differences in particulate concentration can be

clearly identified even from the unprocessed images. They also exemplify the range of

spatial scales which can be measured only using a mobile DIHM system as the holograms

show local spatial variations on the sub-millimeter scale while the macro variations are

mapped on the meter scale.

The measured concentrations from the three source configurations are used to val-

idate the onboard processing approach described in Section 7.3.2. The trials with the

linear and bent elbow sources were used as the training data while the point source case

was used as unseen test data. The predicted particle counts for the test set are plotted

in Fig. 7.8. The correlation coefficient between the prediction and the RIHVR results

is 0.95.

While the model does not perfectly reproduce the RIHVR results, it is suitable for

navigation feedback, given that the timescale of harmful algal blooms is hours or days

(much longer than the recording duration). Complete offline processing of the recorded

holograms to confirm the results of the machine learning model will still be necessary

in practical applications.
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Figure 7.8: The predicted and true particle count for each image in the test set. Black
line represents the optimal 1:1 match.

7.4.2 Experiment 2: In situ Measurement

In order to demonstrate the utility of the system in a real-world scenario, we conducted

an in situ measurement of particle concentrations in a lake. South Center Lake in Chis-

ago, Minnesota has been identified by the Minnesota Department of Natural Resources

as a target of long-term monitoring for trends in biological, chemical, and physical fea-

tures as a result of human development, climate change, and natural weather patterns.

An aquatic monitoring station operated by the Saint Anthony Falls Laboratory was

anchored in the lake to record the formation of algal blooms for a full growing season

[37]. The monitoring station utilizes a data sonde (OTT Hydromet, Hydrolab DS5X)

which measures water temperature, solar radiation, phycocyanin (a pigment found in

some HAB-forming algae), and other properties at 0.5 m depth intervals. Measure-

ments reported by the Sonde are 2 minute averages, recorded every 2 hours. Since the

monitoring station is fixed, it is unable to evaluate lateral heterogeneity in the lake.

A mobile robotic system capable of approximating some of the measurements of this

station would be a valuable addition to these field experiments.
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The Aquapod with DIHM was deployed near the monitoring station to profile the

particulate concentration. With the DIHM recording holograms, the Aquapod was

commanded to dive to a depth of 5.5 m, remain at that depth, and return to the

surface.

Figure 7.9: Depth profiles of algae concentration from the sonde and DIHM. Data is
normalized by the surface concentration.

The concentration profiles measured by both the DIHM and the sonde are shown

in Fig. 7.9. The concentration measurements of the DIHM are binned in 0.5 m in-

crements to match the locations of the sonde measurements. The mean and standard

deviation within each of the bins is plotted. The sonde profile is the 7-day average and

standard deviation at each depth. All data is normalized using the concentration at

the surface and the lake bed (assumed 0 for DIHM). The sonde shows a decrease in

algae concentration with depth corresponding to the thermocline – the region in lakes

and oceans characterized by a rapid drop in temperature with depth which also impacts

the distribution of microorganisms. The DIHM profile identifies the beginning of this

region. The sonde has smaller standard deviations than the DIHM due to the inher-

ent temporal resolution discrepancy between the methods (sonde is 2 minute average,



100

DIHM is instantaneous). The DIHM is sensitive to small scale spatial and temporal

fluctuations in the concentration which the sonde does not record.

Figure 7.10: Selection of microorganisms imaged during the depth profile.

A selection of some of the microorganisms seen during the profile are shown in

Fig. 7.10. Each object is shown at the manually identified in-focus plane. Note that

morphological features as well as size allow for differentiation between different species.

7.5 Discussion and Conclusions

We have demonstrated a robotic system for in situ particle measurements in large wa-

ter regions at various depths and scales. The DIHM is capable of imaging microscopic

particles while the Aquapod is able to traverse areas of interest. Compared to the ex-

isting state-of-the-art, our DIHM is substantially less expensive and smaller – enabling

a broad range of applications including those which utilize multiple DIHMs. Integrated

with the inexpensive Aquapod in a comprehensive design, the system is able to measure

at the full range of scales necessary for studies of microorganisms and particulate con-

taminants and do so inexpensively relative to other systems. System capabilities were
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demonstrated in a laboratory experiment mapping bubble concentrations in a pool and

in situ measurement of microorganisms in a lake.

While not demonstrated in this work, automatic classification of aquatic species us-

ing a DIHM has been successful both in the laboratory [5] and in the field using the

4Deep commercial DIHM. However, in situ species identification using a low-cost DIHM

has not been demonstrated. Developing this capability requires increasing the compu-

tational power of the presented DIHM and collecting a corpus of classified holograms.

The 3D nature of holographic reconstructions (see Fig. 7.4(b)) was not leveraged for the

concentration measurements discussed in this paper. Future studies can examine hetero-

geneous particle distributions on the micrometer scale as well as examining swimming

microorganisms using a faster image capture rate.

The full benefits of the low-cost system presented here can be best utilized by a

swarm of DIHM-equipped Aquapods linked to a central mothership. This would enable

rapid and autonomous reconnaissance of large bodies of water with the microscopic

precision required to detect rare and harmful species or particulates.
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Conclusion
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Chapter 8

Summary and Future Work

8.1 Summary

Digital inline holography (DIH) is a powerful tool for many types of particle measure-

ments. The single-camera 3D imaging provided by DIH is desirable for autonomous

underwater detection of microbes, long-term studies of algal motion, and 3D particle

tracking velocimetry (PTV) among many other applications. However, traditional DIH

has been limited by a number of challenges related to the processing of the recorded

holograms. These challenges include limited depth resolution, low signal-to-noise ratio,

and particle concentration limitations. Furthermore, computational approaches used to

solve the issues are often computationally demanding. In this thesis, I first presented

technical developments used to improve the accuracy of hologram reconstruction, track

dense particle fields over time, and ensure that said processing can operate efficiently

on large data sets. I then presented applications of DIH to measure the behavior of the

algae species Microcystis aeruginosa and Dunaliella primolecta as well as a method for

in situ aquatic measurements using a robotic platform.

The Regularized Inverse Holographic Volume Reconstruction (RIHVR) method was

presented in Chapter 2 as a means to improve the accuracy of holographic reconstruc-

tion. RIHVR uses an iterative inverse approach to solve for the complex optical field

that could produce the observed hologram. Physical knowledge and assumptions about

this solution are used to ensure that a unique and accurate optimum exists. In par-

ticular, fused lasso regularization was applied which ensures that the volume is both

103
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sparse (particle volume ratio is very low) and smooth (low noise in the reconstruction).

The performance of RIHVR was demonstrated with several test cases. A hologram of

a suspended nanowire was used to visualize the effects of both the sparse and smooth

regularization in comparison to traditional reconstruction. Synthetic holograms were

used to show that the extraction rate and accuracy of RIHVR exceed those of prior

approaches. The rotation rates of SiC rods in a T-junction flow was directly measured,

demonstrating that RIHVR enables a new type of particle-based flow measurements.

The increased particle concentrations enabled by RIHVR led to another challenge

– the particles must be accurately tracked over time. Traditional tracking algorithms

are limited by the particle displacement ratio. If the particle displacement exceeds the

the distance between particles, PTV becomes very challenging. This was addressed in

Chapter 3 by using machine learning to develop a model-based predictor that is able

to learn how to predict future motion from a particle’s location and history The pre-

dictor uses an LSTM which is trained using trajectories that demonstrate the range of

expected particle motion patterns. Two methods were proposed to train the LSTM.

The first method uses supplemental experiments with a low particle displacement ratio

(but the same fundamental motion) to collect reliable particle trajectories. The second

method uses traditional tracking methods with manual intervention to identify trajec-

tories suitable for training. Both methods were demonstrated on experimental data

including T-junction flow and swimming algae. The results illustrate that the learned

predictor is superior to other tracking approaches.

A simple application of DIH-PTV towards the measurement of the the buoyant ris-

ing velocities of Microcystis aeruginosa colonies was presented in Chapter 5. Microcystis

is a colonial alga that can form toxic harmful algal blooms (HABs). These HABs are

known to form predominantly in warm temperatures, although precise models for how

temperature affects the growth and buoyancy of the Microcystis colonies are unknown.

Using DIH-PTV, we measured the buoyant velocities of Microcystis colonies in a labo-

ratory setting. Using Stokes’ Law, we were able to determine that temperature drives

a significant change in the average colony density.

The swimming behaviors of the motile alga Dunaliella primolecta were studied in

Chapter 6. D. primolecta can be farmed to produce nutritional supplements and lipids

for biodiesel production. However, optimizing this production requires identifying the
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correct time to harvest the culture. Current methods for the analysis of lipid content

are complex and slow; DIH-PTV could provide a faster method for identifying the

optimal harvest time. Prior research has suggested that lipid production is linked to

the metabolic stress on the cells which may also may also be indicated by changes in

behavior. DIH-PTV was used to record and and track the motions of thousands of D.

primolecta cells at three different stages of culture growth. A decision tree was used

to identify each trajectory as belonging to one of five categories: linear, meandering,

random walk, helical, and circular. These were further described as representing either

gross or fine motions. We found that the ratio of gross to fine motions increased when

the cells were under stress caused by nutrient deficiency. The same stress was also seen

to coincide with the peak lipid content. This discovery could enable better optimization

of biodiesel production pipelines.

Finally, a miniature underwater DIHM for in situ measurements of HABs and other

aquatic particulates is described in Chapter 7. The extremely low-cost and compact

DIHM is paired with a robotic platform to enable autonomous measurements of micro-

scopic particles at the scale of a lake or other body of water. Despite the simplified

and low-cost components required to miniaturize the sensor, the results are suitable

for measuring particle concentration and identifying classes of organisms. A convolu-

tional neural network (CNN) was trained in order to process the recorded holograms

in real time on-board the low-power Raspberry Pi Zero used in the sensor. Laboratory

experiments with various configurations of bubble generators in a pool were used to

demonstrate the ability of the combined robotic platform to generate a spatial map of

the bubble concentration. An in situ deployment in a local lake demonstrated that the

DIHM can measure the vertical particle distribution while also capturing images that

can be used to identify the types of microorganisms that are present.

8.2 Future Work

The measurements of rod rotation in flow that were presented in Chapter 2 inspire a

new type of flow measurement: direct vorticimetry. While the rotation rate of rods is a

function of both flow vorticity and shear rate, a spherical particle will rotate at a rate

equal to the half the flow vorticity [115]. Preliminary work has sought to synthesize
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transparent particles that contain embedded opaque tracers. Particles with a diameter

of 120 µm containing 6 µm microbeads have been synthisized by Dang et al. [220].

However, reproduction of these particles with monodisperse size distribution and ex-

cellent optical clarity has proven difficult. Attempts at synthesizing such particles and

applying them to flow vorticimetry are ongoing.

While the RIHVR method presented in Chapter 2 is highly accurate, it still has its

limitations. For excessively noisy or dense holograms, accurate reconstruction may not

be feasible. Furthermore, while GPU acceleration does make RIHVR practical, it does

not come close to real-time processing. Achieving such extreme speeds may be possible

using CNNs which are often able to process images in less than a second.

Recent work not presented in this thesis has explored using machine learning to

completely replace physics-based hologram reconstruction [221]. This approach has

shown the ability to accurately extract particle positions from extremely dense holo-

grams for simulations and experimental cases where ground truth particle locations can

be identified for training. However, applying this approach to useful experimental cases

is challenging. Ongoing work seeks to use simulated images to train a CNN that can

accurately process real images.

A timely application that bears special mention is the application of DIH to measure

the particles produced by humans as they breath or speak. At the time of this writing,

the global COVID-19 outbreak has caused a near total shutdown of the global economy.

Recent research has suggested that the extreme transmissibility of the virus may be

due to airborne transmission [222, 20, 223]. Current methods for measuring exhaled

aerosols do not produce measurements suitable for estimating the spreading capability

of these particles; they often cannot measure at low concentrations and do not measure

in situ. Holographic imaging is well suited to these measurements as it is non-invasive

and capable of accurately measuring particles at low concentrations and across a broad

size range. Ongoing measurements using DIH may provide a clearer understanding of

COVID-19 transmission and lead to improved evidence-based social distancing policies.
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[94] Löıc Denis, Dirk Lorenz, Eric Thiébaut, Corinne Fournier, and Dennis Trede.

Inline hologram reconstruction with sparsity constraints. Optics letters,

34(22):3475–3477, 2009.
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M. Lance, and L. Méès. Testing an in-line digital holography ’inverse method’ for

the Lagrangian tracking of evaporating droplets in homogeneous nearly isotropic

turbulence. New Journal of Physics, 14:043039, 2012.
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