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Abstract

The subject of this dissertation is at the intersection of two major fields of condensed matter physics:

unconventional superconductivity (SC) and topological phases of matter. Both conventional and

unconventional superconductors exhibit similar qualitative behavior: they pass currents with zero

resistance and expel magnetic fields, both effects due to formation of a Cooper pair condensate.

Broadly, an unconventional superconductor is simply one that is not described by the textbook

Bardeen-Cooper-Schrieffer theory. There are at least three things that can make a superconductor

unconventional: the pairing mechanism, the symmetry of the Cooper pair, and topology. In many

unconventional superconductors the paring mechanism is thought to arise due to the 2D nature

of the material that can exhibit strong quantum fluctuations. Unconventional pairing can lead to

spin-triplet Cooper pairs with a non-zero orbital momentum, or even a non-zero total momentum, in

which case they can realize the so-called pair density wave (PDW). Since magnetic fields align spins

that can only form spin-triplet states, one possibility for realizing unconventional superconductors

is to look for superconductors that survive in large magnetic fields. This is well-known to occur in

systems with strong spin-orbit coupling (SOC) that is also well-known to lead to possible topological

phases and topological superconductors in particular, which exhibit Majorana edge modes that may

one day be useful for building a quantum computer.

All of these elements come together in a family of monolayer materials with strong SOC known

as the 1H transition metal dichalcogenides (TMDs) that have recently been found to be supercon-

ducting. The thesis of this dissertation is that they can indeed host interesting unconventional and

topological SC phases. To show this, in Chapter 2 we analyze the possible symmetry breaking

instabilities using the parquet renormalization group that has been successfully used in other uncon-

ventional superconductors. We find that Coulomb interactions can lead to unconventional SC and

PDW. In Chapter 3, we explain what makes phases in general topological, and how the topology is

restricted by their symmetry. In Chapter 4, we combine the results of the two previous chapter to

study 1H-TMDs in a mean-field theory, and find unconventional topological phases. In Chapter 5

we study the PDW phase in more detail, and in Chapter 6 we conclude by looking at recent exper-

imental data that indeed suggests that 1H-NbSe2 may be an unconventional superconductor, but

perhaps not the one we anticipated in theory.

iii



Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables vii

List of Figures ix

List of Symbols xviii

1 Introduction 1

1.1 Outline of this Dissertation and Methods Overview . . . . . . . . . . . . . . . . . . . 5

1.2 Non-Centrosymmetric 1H-TMDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Band Structure and k · p Model . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Symmetry Breaking Perturbations . . . . . . . . . . . . . . . . . . . . . . . . 14

2 The Renormalization Group 19

2.1 Renormalization Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Linear Response of a System: The Green’s Function . . . . . . . . . . . . . . 20

2.1.2 Effective Action and Renormalization . . . . . . . . . . . . . . . . . . . . . . 25

2.1.3 Gaussian and Fermi Liquid Fixed Points . . . . . . . . . . . . . . . . . . . . . 30

2.1.4 One-Loop RG Flow for Interactions . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.5 Adding Vertices: Hubbard-Stratonovich and a New Fixed Point . . . . . . . . 47

2.2 RG Analysis of 1H-TMDs and Related Systems . . . . . . . . . . . . . . . . . . . . . 51

2.2.1 The Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2.2 RG Flow for Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

iv



Contents

2.2.3 RG Flow for Vertices and the Order Parameters . . . . . . . . . . . . . . . . 61

3 Symmetry Protected Topological Phases 66

3.1 1D System with Mirror/Inversion Symmetry . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 2D (Crystalline) Nodal Topological Phases . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Fully Gapped 2D Topological Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Chern Number and Z2 Topological Invariant from Gauss’ Law . . . . . . . . . . . . . 79

3.4.1 Time Reversal Symmetry and the Kane-Mele Z2 Index . . . . . . . . . . . . . 82

4 Superconductivity in 1H-TMDs 88

4.1 Single-Body Model of 1H-TMDs with SOC . . . . . . . . . . . . . . . . . . . . . . . 88

4.1.1 Interactions Near the Fermi Surfaces . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Superconductivity in the presence of SOC and magnetic field . . . . . . . . . . . . . 92

4.2.1 Mean-Field Gap Equation in the Presence of SOC and Magnetic Field . . . . 93

4.2.2 Phase Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.3 Broken Momentum Inversion Symmetry: Bogolyubov Fermi Surfaces and

Finite-Momentum Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Ginzburg-Landau Free Energy and Time-Reversal Symmetry Breaking . . . . . . . . 105

4.3.1 Spontaneous Time-Reversal Symmetry Breaking . . . . . . . . . . . . . . . . 106

4.4 Topology of the Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4.1 Chiral SC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4.2 Crystalline Nodal Topological SC . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Pair Density Wave in 1H-TMDs 116

5.1 Ginzburg-Landau Theory of PDW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1.1 Induced Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1.2 Microscopic Derivation of GL Free Energy without a Γ Pocket . . . . . . . . 124

5.2 Mean Field PDW without SOC: Imperfect Nesting . . . . . . . . . . . . . . . . . . . 126

5.3 Effects of SOC on PDW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 Comparison with Experiment: Unexpected 2-fold Anisotropic Response 140

6.1 Necessary Conditions for Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Ginzburg-Landau Free Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3 Other Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.3.1 Microscopic Calculation with Strain Without Closely Competing Irreps . . . 151

v



Contents

6.3.2 Superconducting Fluctuations and Non-equilibrium . . . . . . . . . . . . . . . 152

7 Conclusions 155

7.1 What We Did . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.2 What We Did Not Do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A Tight Binding Model of TMDs 160

References 162

vi



List of Tables

1.1 Irreducible representations (irreps) of the D3h point group symmetry, functions of

Cartesian coordinates (including rotations Rj) and physical fields that transform ac-

cording to these irreps, and the reduced point groups in the presence of the fields

(groups in parentheses have non-canonical orientations). Ej and Bj are components

of electric and magnetic fields, Ej are components of the shear strain tensor (or elec-

tric field). Note that the E′ and E′′ irreps are 2D, and the irrep fields have two

components that we list in columns. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Leading terms Σ
(`µ)
ηζ (p) for singlet (µ = 0) and triplet (µ = j = x, y, z) interactions in

Eq. (2.112) for η = ζ and η 6= ζ, where εηζ is the Levi-Civita symbol. θp is the angle

made by the small momentum p measured from the K direction. Note that there are

no singlet interactions in the E′′ irrep in 2D. . . . . . . . . . . . . . . . . . . . . . . 56

2.2 Correspondence between coupling constants g
(`µ)
n and g

(`µ)
ηζ;η′ζ′ . η + ζ = η′ + ζ ′ = 0

(left side) correspond to interactions between pairs with total zero momentum that

lead to uniform SC, while η + ζ = η′ + ζ ′ = ±2 = ∓1 modulo 3 (right side) corre-

spond to interaction between pairs with total momentum ±2K = ∓K and lead to

PDW with that momentum. n = 1 corresponds to intrapocket interactions, n = 23

are interpocket interactions (including exchange interactions by antisymmetrization),

g
(`µ)
4 are pair hopping interactions, and h

(`µ)
4 is the Umklapp process. . . . . . . . . 56

2.3 Basis functions Σ
(`µ)
ηη transforming according to listed irreps of D3h. The basis func-

tions Σ
(`µ)
ηζ with η 6= ζ are the same except cos 3θ → εηζ , sin 6θ = 2 sin 3θεηζ , etc.,

where εηζ is the Levi-Civita anti-symmetric symbol. . . . . . . . . . . . . . . . . . . 62

5.1 SC and PDW gap functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 PDW ground states analogous to Table 1 in [8]. . . . . . . . . . . . . . . . . . . . . . 122

vii



List of Tables

5.3 Lattice harmonics/basis functions for the PDW− gap functions in the spin basis for

intrapocket pairing within the K pocket. Terms in the minimal model are marked

(*) and includes s-wave singlet and f -wave triplet terms. (†) marks the p-wave E′′

term for later reference. For pairing between Γ and −K, take cos 3θ → εηζ wherever

it appears (including sin 6θ), with εηζ being the Levi-Civita symbol. Note that the

f -wave terms then become momentum independent. PDW+ expressions are related

to these by TRS, obtained by taking K → −K and complex conjugating. C3h irreps

are obtained by dropping the 1, 2 subscripts on the 1D D3h irreps. Rightmost column

shows the gap projections into the SOC basis in the limit of strong Ising SOC that

we will use in Section 5.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.1 Lattice harmonics/basis functions for the gap function in the spin basis expanded

around the Γ pocket belonging to various irreps of D3h and C3v. For the ±K pockets,

take cos 3θ → ±1 wherever it appears (including sin 6θ). Note that in 2D, pz = 0.

We also list the external perturbing fields transforming according to each irrep. B =

(Bx, By, Bz) is the magnetic field, E = (Ex, Ey) is the shear strain field (electric field

E transforms in the same way). Note that Ez induces Rashba SOC as discussed in

Section 1.2, which is therefore in the same irrep. . . . . . . . . . . . . . . . . . . . . 145

viii



List of Figures

1.1 Lattice structure of 1H-TMDs MX2 where M is a metal and X is a chalcogen. Basis

lattice vectors a1 and a1 are also shown. The figure also illustrates how the absence

of inversion symmetry results in SOC: an electron in a Bloch plane-wave state with

momentum p going in the x̂ direction is in a superposition of states that pass on top

and bottom of a given nucleus (the paths are indicated with gray arrows), which sees

a different nuclear electric field (an equipotential of the field is shown). The Bloch

wave therefore sees an effective average electric field 〈E〉 pointing in the −ŷ direction.
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Chapter 1

Introduction

The leitmotif of this dissertation, as of much contemporary condensed matter physics, is the interplay

between symmetry and topology, in particular the symmetry and topology of ground states of many-

body systems that characterize phases of matter. Both notions of phases and topology are intimately

connected with the notion of adiabatic transformations of the system which allows us to say that two

states or two systems are in the same phase: what we mean is precisely that we can adiabatically

transform one system into the other by tuning some physical parameter (we say that the systems

are adiabatically connected). This is not just a theoretical consideration, but in fact a practical one.

When we change the parameter by an infinitesimal amount, the statement that the system responds

adiabatically means that the new state of the system is for all practical purposes indistinguishable

from the old state. In other words, no experiment could tell the new state from the old. It is a

matter of self-consistency to declare all states that we cannot distinguish to describe the same phase

of matter.

In reality we can of course experimentally distinguish many different phases of matter, which

means that if we try to adiabatically connect them we must fail: if we change the tuning parameter

by an infinitesimal amount, the system responds dramatically and something (any property of the

system that we can measure) changes by a finite amount, i.e. discontinuously. More precisely, there

is a non-analyticity in some measurable quantity. This necessarily happens if the measured quantity

is discrete and so cannot change continuously, and consequently such quantities allow us to classify

phases.

The paradigmatic example of a discrete quantity which we can use to classify phases is symmetry.

A state of a system will always either have a symmetry or not, with no possibility in between. This

is of course Landau’s classification of phases with spontaneously broken symmetries, and which

explains almost all familiar examples like water and ice. It should be emphasized that to some
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degree the possibility of spontaneous symmetry breaking is surprising: it means that the ground

state of the system has a different symmetry than the system itself, an example of emergent behavior

when many particles are put together to produce something that was not there before, in this case

an order that breaks a symmetry. The reason is that the symmetric state becomes unstable at

the phase transition, which as we will see can be understood as a consequence of renormalization

processes.

It is now well-known that other discrete quantities besides symmetry, generally referred to as

topological invariants, can be used to characterize phases of matter. The first and best known

example is the quantum Hall effect in which the topological invariant is the Chern number that

counts the number of occupied Landau levels (which are discrete and have the same symmetry) and

which changes discontinuously as the filling changes. The topology in this case is determined by

adiabatic transformations: a topologically trivial state is defined to be one that can be adiabatically

connected to a state that is a simple product state of single particle states (the atomic limit). It is

another example of emergent behavior when many particles are put together. Note that non-trivial

topology may, in principle, coincide with symmetry breaking when it develops, so the notion of

topological phases is complementary and not orthogonal to symmetry breaking phases.

Which phases of matter can occur in a system depends strongly on its dimensionality. Of course

most systems of interest are 3D, but some thin film systems can be effectively 2D, some like graphene

essentially truly 2D (interfaces in heterostructure can also sometimes effectively form their own

system, like the 2D electron gas), and wire systems can be essentially 1D. Dimensionality is well-

known to affect many system properties, including their topology: the QHE, for example, occurs

only in 2D systems. In general 2D systems are particularly interesting from a topological point of

view because in 2D one can count how many times a path of a particle winds around a fixed reference

point. This leads among other things to the possibility of non-fermionic nor bosonic statistics (i.e.

anyons), the lack of chaos in dynamical systems, and the Mermin-Wagner theorem that states that

no spontaneous breaking of continuous symmetries is possible in 2D at non-zero temperature, which

means that corresponding phase transitions are often topological (of BKT type, i.e. proceeding by

vortex proliferation).1

Symmetry and topology also generally interact with each other (as we will see in Chapter 3).

Symmetry can have two general effects on topology: it can force topology to be trivial, as in the case

of the QHE that requires time reversal symmetry (TRS) to be broken; or it may allow us to define new

1Other dimensions have similar interesting topologies, but not for particle like objects: in 3D for example particle
paths around fixed points are all equivalent (contractible), but loop-like objects do have a ‘winding’ number similar
to the one in 2D (related to the fact that the corresponding homotopy group of 2D spheres in 3D space is not trivial).
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topological phases that would be impossible without it. In the latter case, this is because symmetry

may restrict the adiabatic transformations we are allowed to make to the system while staying in the

same phase. The corresponding phases are called symmetry-protected topological (SPT) phases for

that reason, with the best known example possibly being the topological insulators or the quantum

spin Hall effect (QSHE) protected by TRS and spin-rotation symmetry respectively.

Since the QHE has been understood in terms of the Berry connection and the Chern number [14,

161, 170], the topological classification has been extended to include gaped phases with antiunitary

symmetry using the tenfold way [10, 132, 99], gapless (including nodal) phases with anti-unitary

symmetries in [105, 197], as can topological defects [169]. Antiunitary symmetries are not the only

possible symmetries, and more recently recently the classification has been extended to include

crystalline symmetries like mirror symmetries and rotations, both for fully gapped [29, 38] and

gapless phases [28, 158, 167]. Such phases are called crystalline topological phases to distinguish

them from other SPTs. A good review of all these classifications is in [30]. The experimental

hallmark of the topological phases are end/edge/surface modes (in 1/2/3D respectively) resulting

from the bulk-boundary correspondence.2 For example, 2D nodal phases protected by anti-unitary

symmetries exhibit flat band edge modes [144, 151, 145, 82]. The flatness is not in general guaranteed

for crystalline phases, as seen for example in 3D crystalline topological insulators, where they are

referred to as drumhead states [15, 23, 156].

The classifications naturally include topological superconductors such as chiral [130] and helical

[128] superconducting (SC) phases that exhibit Majorana edge modes (a pedagogical review of

TSC is [143]). As we will see in Chapter 2, SC phases, which break a U(1) symmetry3, are in

a sense another example of a symmetry protected phase.4 The SC instability in which a Cooper

condensate forms from electrons paired on opposite side of the Fermi surface (thereby destroying

it) is only guaranteed to exist when the spectrum of the system is symmetric under momentum

reversal p → −p, which can be a consequence of TRS or inversion symmetry of the system. If the

momentum-reversal symmetry is broken to a sufficient degree, the SC phase becomes unstable, but

it can survive if the symmetry is only weakly broken, a situation we will also be interested in below.

2Though we will not consider them, crystalline symmetries also naturally result in the recently introduced higher-
order topological invariants characterized by hinge states (corner states in 2D and 3D and edge states in 3D) [149,
172, 182, 79, 126].

3Note that it is not the gauge symmetry associated with charge conservation as sometimes stated [56].
4SC can be considered to be a topological phase [49], and it is well known to be characterized by off-diagonal long

range order (ODLRO), with off-diagonal meaning that it is non-local. Relatedly, regular metallic Fermi surfaces have
been understood as symmetry protected gapless topological phases [66, 177] protected by the U(1) symmetry broken
by SC. Luttinger’s theorem stating that the area/volume in momentum space enclosed by the Fermi surface (which
is the total electron density of the system) is fixed under renormalization can also be understood as a topological
statement.
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Often, new non-uniform phases can occur in proximity of the phase transition, in which the order

parameter acquires a small momentum (thus breaking translational symmetry). Non-uniform SC

phases of this kind are also known as Fulde-Ferrel-Larkin-Ovchinikov (FFLO) phases [53, 87], which

we will consider in Chapter 4 (see also [104] for an overview). Another interesting possibility is that

a non-uniform SC with large pairing momentum develops spontaneously, in which case it is referred

to as a pair-density wave (PDW), a possibility we will explore in Chapter 5.

Given the considerations above, what kind of system would we want to consider if we are inter-

ested in topological phases? There are many possibilities (some discussed in reviews cited above).

A 2D system might be interesting as we mentioned, especially if it is superconducting. Symmetry

is also important: we want the system to be symmetric (so it has interesting topology) but not too

symmetric (otherwise the topology is trivial). A hint as to what is not too symmetric is that spin-

orbit coupling (SOC) is now well-established to sometimes lead to topological phases. SOC is itself

a consequence of the absence of inversion symmetry, and systems that lack inversion are referred

to as non-centrosymmetric. Non-centrosymmetric systems in general have garnered some attention

in 3D materials like CePt3Si and other similar heavy fermion systems, and UTe2 and some other

uranium based superconductors. A good reference is [13], and a good review is in [163]. One of the

main interests is the search for topological phase, and there are for example recent claims of chiral

superconductivity in UTe2 [71]. Lack of inversion symmetry has been considered in 2D as well (and

much earlier), but until recently mostly in thin film systems with Rashba SOC induced by the sub-

strate (and not intrinsic to the system), which was one of the earliest studied non-centrosymmetric

systems [42, 54]. In that case FFLO is well-known to occur in presence of an in-plane magnetic field

[42, 41, 3, 85, 107].

A class of non-centrosymmetric 2D materials with strong intrinsic Dresselhaus type SOC has

more recently been produced using molecular beam epitaxy (MBE) and exfoliating bulk samples,

namely the 1H transition metal dichalcogenides (TMDs). We will describe them in more detail

inSection 1.2, and a general overview of TMDs is provided in [103]. Moreover, they have been

observed to be superconducting in large in-plane magnetic fields that indicates the presence of

strong SOC [22, 191, 168, 188, 98, 133, 187, 174, 157, 40, 122, 164], making them a good contender

for realizing interesting topological SC phases.

The thesis of this dissertation is that they can indeed realize several such phases, at least theoret-

ically. In particular, we will find that in additional to the nodal topological SC phase found by [62] in

1H-NbSe2 in high in-plane magnetic fields, a crystalline nodal topological SC phase exists protected

by a mirror symmetry when Rashba SOC is added to the system (as we generically expect due to
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substrate effects), provided the in-plane magnetic field is aligned along certain symmetry directions.

That phase can additionally host Bogolyubov Fermi surfaces. We also find a chiral SC phase in the

limit of strong Rashba SOC (which is known for the case without Dresselhaus SOC [85, 127]). We

also find that PDW phases are possible. As we will see in Chapter 6, the experimental reality is

more complicated than the theory, but it offers potentially even more interesting possibilities.

1.1 Outline of this Dissertation and Methods Overview

After discussing the band structure of 1H-TMDs in Section 1.2 that will be the model material

throughout the dissertation, the general outline of the thesis will roughly follow the logic outlined

above. We will first consider the spontaneous symmetry breaking classification of phases from the

more modern perspective of the renormalization group analysis (RG) in Chapter 2, with a focus on

superconductivity as an instability of the Fermi surface, and apply it to the specific case of 1H-TMDs

(in the absence of SOC) in Section 2.2. In Chapter 3 we then present more precisely the notion of

symmetry protected topological phases and derive some of the invariants that will be relevant later.

We also include a derivation of the Z2 invariant for time reversal invariant 2D topological insulators

both because it illustrates the interaction between symmetry and topology we are interested in, and

because I am not aware of this particular derivation appearing elsewhere in the literature (other

derivations, of course, are well-known [52, 113]).

We then study the effects of SOC on uniform SC in 1H-TMDs in Chapter 4 (presenting the results

of [153]) using a self-consistent mean field analysis. We identify several interesting topological phases

mentioned above and below. In Chapter 5 we study the PDW instability that also arises in the RG

analysis, which we do mostly neglecting SOC, though we consider its effect in Section 5.3. Those

two chapters, along with Section 2.2, contain the main theoretical contribution of this thesis. In

Chapter 6, we compare the theory with recent unanticipated experimental results and discuss a

possible explanation within a phenomenological framework.

Below we give a more detailed outline, including an overview of the methodology and previous

work, as well as our main results.

Methods and Results

Given a model of the normal state of 1H-TMDs (e.g. given in Section 1.2), how do we proceed

to identify its phases, in particular the SC phase? Several previous studies have taken different

approaches [195, 62, 199, 196, 165, 70, 67, 48, 179, 166, 123, 124, 110, 109, 115, 111]. The most
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common approach among these has been to simply assume the standard BCS form of the gap

function, i.e. an s-wave spin-singlet order parameter, as done for example in [62, 165, 70, 179, 166].

This is a bit dangerous given that 1H-TMDs have strong SOC and spin is not conserved, so spin-

singlet and spin-triplet SC phases always mix, but nevertheless valid conclusions can be drawn even

then: for example [62] found a nodal topological phase. Arguments from symmetry can then be used

to show that including other terms does not affect the topology of the phase, an approach taken by

[48] who also considered an additional f -wave triplet order.

A bit more generally, taking a phenomenological approach one could consider some or all possible

symmetry allowed gaps. This is for example the approach in [195], who obtain a phenomenological

form of the interactions and solve a self-consistent gap equation for 1H-MoS2 with Rashba SOC,

that has two K pockets in the hexagonal Brillouin zone. [123, 124, 110, 109, 115, 111] take a

similar approach to systems with an additional pocket at the Γ point, considering symmetry allowed

interactions and then numerically solving the gap equation.

A more rigorous approach is to use RG to identify the leading instabilities of the system, which

is the method that we start with in this dissertation. This allows us to rule out some phases allowed

phenomenologically, given some reasonable assumptions about the form of the bare interactions.

In 1H-TMDs, an RG analysis was performed by [67] for doped 1H-MoS2, but as we will outline

below the systems we consider are more general. In Section 2.1 of Chapter 2, we will first present

the general RG procedure for interacting fermionic systems, with the main goal of deriving the flow

equations that we will solve for 1H-TMDs in Section 2.2. RG allows us to perform a stability analysis

of the symmetric state of the system, which is the more modern approach to spontaneous symmetry

breaking is to perform. Experimentally, such a stability analysis amount to for example placing a

system in a small external magnetic field to see if it develops a magnetization that remains after the

external field is turned off. If it does, we conclude that the system is a ferromagnet. Essentially,

we ‘tap’ the system with the external field to see if it develops a symmetry breaking order (similar

to a pencil falling over in the direction it was tapped in). RG is allows us to perform a theoretical

analogue of this procedure using quantum field theory. In theory and experiment, the external field

induces a response of the system that either shrinks to zero or grows to infinity under RG. In the

former case we say the system is at a fixed point of RG, while in the latter we say that there is an

instability and a new fixed point corresponding to the ordered state is reached. All phases of matter

can be classified as fixed points of RG by this procedure.

The RG analysis is a standard technique and has been applied in many other condensed matter

systems, e.g.: high Tc systems like cuprates and pnictides [63, 80, 32, 33, 50, 65] (see [102, 45] for a
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review); FeSe [190]; Sr2RuO4 [173]; doped [120, 119, 121], bilayer [39] and twisted bilayer graphene

[26, 27, 34, 35, 78]; layered oxides [171, 147]; and many other systems. More recently RG has been

applied to TMD systems as well, specifically for doped MoS2 with spin polarized Fermi surfaces

located at K points of the hexagonal Brillouin zone [67], and for a system with a similar ‘fermiology’

to TMDs but with a Γ hole pocket and electron K pockets (which therefore exhibits particle-hole

instabilities including magnetism) in [192]. Our work presented in Section 2.2 is the first to apply

RG to generic 1H-TMD (and similar) systems that have only hole pockets at Γ and K points [153].

Note that several RG schemes exist, and in Section 2.1 I will be describe the momentum shell

(parquet) RG mostly following the standard reference [154]. There are many other good references

that go over the RG calculation, including several textbooks [9, 37, 49, 155, 1] and papers [102].

However, I will make several technical amendments to [154] that will be needed for our application.

First of all, I will use the coherent state path integral formulation at finite temperature since there

is little extra cost (and this allows us to compute Tc in RG), and use a slightly different Feynman

diagrams. I will also be more careful about the soft cutoff, following the method standard in non-

perturbative RG due to Polchinski [1], which will simplify the tree level analysis and works better for

lattice systems. On a lattice it is also more convenient to use a different interaction decomposition

(Chebyshev polynomials instead of Legendre polynomials). We will emphasize throughout that RG

is a stability analysis of the system.

The main technical difference from [154] is that I will include band and spin indices. This will

lead to the main technical result in Section 2.2: that a singlet SC instability is possible with purely

repulsive interactions due to pair hopping between the Γ and K pockets, similar to the s± state

considered in [171, 65]; as well as a triplet superconducting instability that is possible due to the

topology of the K pockets (a mechanism very different from one considered in [67]), promoted by

an exchange interaction.5 To the best of my knowledge, this is the first time a triplet SC phase was

found in RG in TMD-like systems, but a similar phase was found in some models in doped graphene

[57] and considered phenomenologically in doped MoS2 [131, 195]; more recently it was found in

bilayer TMDs in [75].

In addition, we find that singlet and triplet PDW instabilities are possible, in case of repulsive

interactions only if either an Umklapp process (taking a K,K pair to a Γ,−K pair) or a process

exchanging Γ and ±K is sufficiently strong, respectively realizing a singlet or a triplet PDW insta-

bility. Note that PDW has also already been considered in 1H-TMDs with repulsive interactions,

5Note that if we think of total momentum measured from the Γ point, the exchange process is in equivalent to
backscattering that underlies the Kohn-Luttinger mechanism.
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specifically in systems with the structure of doped 1H-MoS2 that do not have a Γ pocket [67, 176].

The latter refers to a PDW with a small pairing momentum that is more analogous to the standard

FFLO. [67] invoke the Kohn-Luttinger mechanism [83] (a two-loop RG calculation in 2D [102]),

which may be relevant at very low temperatures and which we do not consider. In our model no

PDW arises from repulsive interaction in the absence of the Γ pocket.

To include SOC in our analysis of uniform SC, we switch to a mean-field analysis, using interac-

tions we found in the RG analysis. In order to study their topology, we will first discuss symmetry

protected topological phases more broadly in Chapter 3, focusing on the topological invariants that

we will later use, which includes invariants for 2D crystalline nodal phases protected by a mirror

symmetry. In Chapter 3 we therefore begin with an overview of the 1D two-level system with mirror

symmetry that, when extended into 2D, will lead to the phase that we later find in Chapter 4.

Since we also find a chiral phase, we present a general procedure for computing the Berry curvature

in SC systems and discuss the Chern number. We also present a derivation of the Chern number

(following [161]) that we then extend to a derivation of the Fu-Kane [52] (or Kane-Mele [76, 77, 113])

Z2 invariant as a case study of the interplay between symmetry and topology. Though the result is

well-known, to the best of my knowledge the latter derivation has not been presented in the same

approach elsewhere in the literature.

In Chapter 4 we present a self-consistent mean field analysis of superconductivity in metallic

1H-TMD systems with strong SOC and/or magnetic field, focusing on systems with a Γ pocket like

1H-NbSe2. This is the main result reported in our work in [153]. Note that no previous studies cited

above simultaneously considered Ising and Rashba SOC with an in-plane magnetic field (as men-

tioned, Rashba SOC with and without in-plane magnetic fields has been considered previously), and

all express the gap function in terms of spin-singlet and spin-triplet components that are mixed due

to the SOC. We find it more convenient to work in a basis in which the Hamiltonian (and therefore

the Green’s function that enters the gap equation) is diagonal. We refer to the corresponding basis

the SOC basis, which is also known as the helical or band basis in non-centrosymmetric literature

([13, 163] provide good overviews). Working in the spin basis is of course equally valid (especially for

weak SOC), and has been used to study non-centrosymmetric systems besides TMDs for example

in [51, 55]. It is more common, however, to work in the SOC basis, as done already by Gor’kov

and Rashba in [54] who pointed out the possibility of spin-singlet and spin-triplet mixing, and more

recently in [138, 136, 135, 137, 141, 146, 85, 184]. In the limit of strong SOC or magnetic field, it

greatly simplifies the analysis as we can consider pairing between inner and outer Fermi surfaces

only.
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Using the SOC basis, in Chapter 4 we confirm the previous result of [62] who showed the existence

of a nodal topological phase in presence of a strong in-plane magnetic field protected by the TR-

like symmetry T̃ . However, we find that these nodes are generically lifted by Rashba SOC unless

the magnetic field is oriented along one of the Γ-K directions, in which case a crystalline nodal

topological phase is realized, protected by a vertical mirror symmetry. We show this first by simply

projecting the gap function into the SOC basis, which has a simple physical interpretation base on

symmetry properties of spin under reflection. We then go over the solutions of the linearized gap

equation in for various parameter values and present a phase diagram, confirming the existence of the

nodal phases. In the presence of both Rashba and magnetic field, the nodes in the crystalline phase

are shifted from zero energy, resulting in small Bogolyubov Fermi surfaces (which have recently

been considered in [7, 194, 20, 106, 167]). The nodes are likely brought back to zero energy in

the FFLO phase that is expected to be realized due to the asymmetry, but we do not study the

FFLO self-consistently. Finally, we find that in addition to the nodal phase, a chiral SC phase

that spontaneously breaks TRS is realized in the absence of a magnetic field and at large Rashba

SOC (relative to Ising SOC), assuming the triplet instability we found in Chapter 2 is the leading

instability in the absence of SOC. Similar phases of different physical origin have been found in

doped MoS2 [67] and doped graphene [200, 120]. We confirm the topological nature of both the

chiral and the nodal phases using an analysis following the general one presented in Chapter 3.

Next, in Chapter 5 we consider the PDW instability we also find in RG. The PDW phase is similar

to the FFLO [87, 53] phase and both are examples of inhomogeneous SC with an order parameter

∆ ∼ eir·Q, with Q being the total momentum of the Cooper pairs. Unlike FFLO, however, PDW

emerges spontaneously in a material with no external fields breaking time reversal symmetry (TRS).6

PDW has been invoked to explain some aspects the pseudogap regime in cuprates like the observed

charge density wave (CDW) order, which as we will see can be induced by the PDW (see [8] for a

review, which also covers PDW more generally in other systems). More recently it has also been

proposed to exist in halos of vortices of uniform superconductors [181] and in the vicinity of the

ν = 5/2 fractional quantum hall state [142]. Even more recently, there is a claim of observation of

PDW on the surface of bulk 2H-NbSe2 [97].

Unlike the uniform SC phases, the PDW is not guaranteed by any intrinsic symmetry of the

system, and in particular is suppressed by trigonal warping at K pockets (see Figure 1.2). Af-

ter a general phenomenological Ginzburg-Landau discussion, we therefore perform a self-consistent

stability analysis accounting for detuning from perfect nesting, including the trigonal warping and

6Some authors consider FFLO to be a special case of PDW.
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miss-match between the Γ and K pockets. This identifies the range of detuning parameters for which

PDW remains a viable instability. We further analyze whether the PDW is of FF or LO type is

realized, meaning one or both of K and −K pairing momentum PDWs are present respectively, the

former therefore spontaneously breaking TRS. Paring between Γ and K pockets (which we find is

needed for repulsive interactions to stabilize the PDW instability) turns out to favor FF-type PDW.

Finally, in Chapter 6, we look at a recent experiment on few-layer 1H-NbSe2 reported in [58],

who found a twofold anisotropic response to an in-plane magnetic field rotated around the sample (a

very similar experiment and result was also reported in [186]; one of the samples in their case was a

monolayer). This is not consistent with any of the solutions we find in Chapter 4 (which suggests the

anisotropy should be sixfold if Rashba SOC is present), which may be due to the presence of strain

that we have ignored in our analysis.By symmetry, we find that both the horizontal mirror symmetry

and the three-fold rotation symmetry must be broken to a two-fold symmetry by some fields other

than the magnetic field (possibly by Rashba SOC and strain respectively). Using a phenomenological

model (generalizing [160]), we argue that the most plausible explanation is a proximity and mixing

between the usual s-wave singlet SC instability and either a p-wave triplet or d-wave singlet SC

instability.7

1.2 Non-Centrosymmetric 1H-TMDs

In this section we will present the lattice and a model of the band structure of 1H-TMDs including

SOC, establishing the notation that we will refer to throughout the dissertation. We will also

include symmetry breaking terms like Rashba SOC and in-plane magnetic field that are of interest

both theoretically and experimentally.

Although TMDs have several possible lattice structures, we are mostly interested in the 1H

structure since it breaks inversion symmetry (see Figure 1.1). The H stands for hexagonal, while the

1 indicates the number of layers in a unit cell (one for a monolayer). The parent bulk compounds

are 2H-TMDs in which the inversion symmetry is restored and relates neighboring layers within a

single unit cell (in some references the monolayers are also referred to as ‘2H’ as a result). All of

the structures are made of a layer of transition metals (in a triangular lattice for the 1H structures)

sandwiched between two layers of chalcogen atoms, which are atoms in the oxygen family. Common

examples are MoS2 (which is an insulator but can become metallic when doped by electrostatic

gating), TaS2, and NbSe2. The latter are metals and will be the main examples we consider.

7More accurately, between A′1 irrep of D3h and one of the 2D irreps E′ or E′′.
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Figure 1.1: Lattice structure of 1H-TMDs MX2 where M is a metal and X is a chalcogen. Basis
lattice vectors a1 and a1 are also shown. The figure also illustrates how the absence of inversion
symmetry results in SOC: an electron in a Bloch plane-wave state with momentum p going in the
x̂ direction is in a superposition of states that pass on top and bottom of a given nucleus (the paths
are indicated with gray arrows), which sees a different nuclear electric field (an equipotential of the
field is shown). The Bloch wave therefore sees an effective average electric field 〈E〉 pointing in the
−ŷ direction. In the electron’s rest frame, it therefore sees a magnetic field B ∝ p× 〈E〉 that point
out of the page, which is the Ising SOC.

The main property of these materials that we are interested in is SOC. To see how it arises due to

the lack of inversion symmetry, recall that it is a relativistic effect due to the relative motion of the

electrons and the nuclei in the system. An electron moving with velocity v relative to a nucleus with

electric field E will in its own rest frame see a magnetic field B = −v×E ∝ p×E (in Gaussian units

with c = 1). The magnetic field couples to the electron’s spin through the usual Zeeman coupling,

HSOC = −µ ·B ∝ S · p × E where S is the spin of the electron. If the electric field of the nucleus

is taken to be E ∝ Zr
r

3
where Z is the atomic number, after averaging we get the standard SOC

term HSOC ∝ Z4

a3
0
L · S where a0 is the Bohr radius and L = r × p is the angular momentum (see,

e.g., [86]). This shows also why the presence of heavy transition metals is important, as it greatly

enhances the SOC. Note that the SOC can be thought of as an effective magnetic field g(p) that

is an odd function of momentum. This means it preserves time reversal symmetry (TRS), but it

breaks spin rotation symmetry (i.e. spin is not conserved, since electrons with different spins have

different energies).

In a crystal lattice, however, the electrons we are interested in are in fully delocalized Bloch

states and not bound to the nucleus. If the Bloch wave is propagating with momentum p, it is in an

equal superposition of states of electrons that pass a given nucleus on the left and on the right (in

2D). As a result, the SOC needs to be averaged over all the states (formally this can be done using

perturbation theory). In a centrosymmetric system, this average vanishes for all momenta due to
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1.2. Non-Centrosymmetric 1H-TMDs

the inversion symmetry: for any path the electron takes passing at r, there is a path where it passes

at −r though an equal nuclear electric field that contributes the exact opposite effect. In a non-

centrosymmetric system, the nuclear field is distorted (e.g. due to electron bonds with neighboring

nuclei), and so the SOC effect doest cancel between the two paths. We can also think of the net

SOC effect as being due to an average electric field (averaged over the direction perpendicular to

the motion of the Bloch wave), which we can see is non-zero from Figure 1.1.

Symmetry places additional constrains on the form of SOC in 1H-TMDs, which have D3h point

group symmetry. The Brillouin zone is hexagonal and we take one of the K points to lie along

the x axis. As we saw the field g(p) must be odd due to TRS. D3h contains a three-fold rotation

symmetry C3, which leads to g(p) ∝ cos 3θ with θ the angle of the momentum p measured from the

x axis. The h in D3h means that it also has a horizontal mirror symmetry Mz, with the reflection

plane being the xy plane. Note that under reflection, spin components parallel to the mirror flip,

while perpendicular components stay the same, a fact that will be important at several instances in

this thesis. In this case, the mirror symmetry means that spins have to point out of the plane, and

as a result

g(p) = λIpx(p2
x − 3p2

y)ẑ = λIp
3
F cos 3θẑ (1.1)

where λI is a constant and pF is the Fermi momentum (we will mostly be interested in Fermi surface

physics). Importantly, note that the SOC vanishes along the Γ-M lines by symmetry (not just for

the leading order term). This is a form of Dresselhaus SOC which is well known. All possible forms

of SOC have been tabulated for all non-centrosymmetric point groups, e.g. in [163].

1.2.1 Band Structure and k · p Model

Another important aspect of 1H-TMDs is their band structure. Technically, only a single energy band

(split into two by SOC) crosses the Fermi level (see Figure 1.2), and it is predominantly composed

of d-orbital electrons originating from the transition metal. Heuristically, we can therefore think of

1H-TMD monolayers as a metallic layer sandwiched between two insulators, with all the transport

happening in the metallic layer. Importantly, there are disconnected hole pockets centered at the

two non-identical K points (with K ′ = −K) in all metallic 1H-TMDs systems like doped MoS2, and

an additional hole pocket at the Γ point in intrinsically metallic monolayers like NbSe2 and TaS2 (see

Figure 4.1). Various first-principles studies like bulk (and more recently monolayer) DFT calculations

and monolayer tight-binding models suggest that the Γ pocket is composed predominantly from dz2
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Figure 1.2: Cartoon band structure (left) and Fermi surfaces (right) of metallic 1H-TMDs (doped
insulating 1H-TMDs are similar, but typically have no Γ pocket), with Fermi level at E = 0, obtained
using a tight-binding model with parameters summarized in Appendix A (no attempt at fitting the
real band structure has been made, and the Ising SOC is much larger than in real systems to illustrate
the splitting). Note the spin degeneracy along Γ-M lines.

orbitals (onsite to leading order in a tight-binding model), while ±K pockets are predominantly

dx2−y2 + dxy in character (mostly arising from nearest-neighbor hopping in a tight-binding) [73, 96,

123, 110, 184].

For systems with K pockets only, a valley index ε = ±1 corresponding to the εK point is often

introduced by analogy with graphene. To account for the Γ pocket, we introduce a generalized valley

index η = 0,±1 corresponding to ηK points, with 0K = Γ by convention (it will occasionally be

necessary to introduce a second valley index, for which we will useζ). For clarity, we will sometimes

interchangeably use η = Γ,±K. An important point is that 3K is equivalent to Γ (i.e. it is an

Umklapp momentum), which means that the η valley index is defined modulo 3. The form of SOC

we obtained above is an expansion about the Γ point,

gΓ(p) = λIp
3
F cos 3θẑ (1.2)

with pF and θ measured from the Γ point. To obtain the SOC at the K points, we restrict this form

to the K points (keeping only the leading order):

g±K(p) = ±βI ẑ (1.3)
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where the SOC is simply constant at the pocket and in that sense even more analogous to an out-of-

plane magnetic field. The authors who originally considered it in MoS2 were reminded of the Ising

model, and so SOC of this form has been dubbed Ising SOC [98] (which is what the I stands for in

the subscripts). We thus arrive at the effective (k · p) model of the normal state of 1H-TMDs:

H =
∑
pηαβ

d†pηα [εη(p) + gη(p) · σ]αβ dpηβ (1.4)

where dpηα are annihilation operators for electrons at the ηK pocket with momentum p measured

from the ηK point with spin α = ±1 for spin up and down respectively (quantized along the

out-of-plane z axis), and

εη(p) = − p2

2mη
− µη (1.5)

is the dispersion in the absence of SOC, with mη, µη being the corresponding effective mass and

chemical potentials that may not be equal between different pockets. σ = (σx, σy, σz) is a vector

of Pauli matrices. To give a sense of scale, the band width in metallic 1H TMDs is typically on

the order of 1 eV, while the Ising SOC is estimated to be around λIpF ∼35 meV at Γ and 75 meV

at K points in monolayer DFT calculation [184] (see also [189, 96, 84, 110]), with an average SOC

reported around 40 meV in 1H-NbSe2 [187, 40]. Taking µ = −0.4 eV gives m = p2
F /2µ ≈ m0

where m0 is the electron rest mass when the wavenumber corresponding to the Fermi momentum is

pF /~ = 0.45 Å−1 [18], which matches reasonably well the Fermi surfaces found in the first-principle

calculation (see Figure 4.1(a)). Note that because Ising SOC vanishes along the Γ-M lines where

spin is therefore degenerate, the Fermi surfaces at the Γ pocket intersect along those lines.

1.2.2 Symmetry Breaking Perturbations

In addition to the intrinsic SOC, we will consider symmetry breaking terms in the Hamiltonian.

These in general correspond to some symmetry breaking fields (e.g. electric, magnetic, or strain

fields), which are conveniently categorized using irreducible representations (irrep) of the D3h point

group (actually it will later be convenient to think of a system with D6h point group symmetry in

the absence of any SOC, with Ising SOC being a symmetry breaking field braking it down to D3h).

Recall that a representation is (from a mathematical point of view) a map ρ : G → GL(V ) from

the symmetry group G to the group of linear transformations (i.e. matrices) GL(V ) of a certain

vector space V ; physically, the vectors of that vector space are the symmetry breaking fields, and
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often the space itself is also referred to as the representation. The point is that the fields are acted

upon by the symmetry group and transform using matrices (that represent the group). In general

the symmetry can map some vector components into each other, but some components are never

mapped into each other. The vector space can thus be broken into irreducible pieces that do not

transform into each other and only stay within their irreducible subspace of smaller dimension (in

2D point groups, the dimension is always 1, 2 or 3). A representation restricted to these irreducible

N -dimensional subspaces is called an irrep of dimension N and the corresponding fields are said to

transform according to that irrep. Typically a field belonging to a single irrep will only break some

of the point group symmetries, reducing it to a point group that is a subgroup of the original one.

Table 1.1 lists all the irreps of D3h (that we label with ` by analogy with orbital angular momentum

that labels irreps of SO(2)) and the corresponding physical fields/functions of cartesian coordinates

belonging to those irreps, as well as the reduced point groups.

`(D3h) Cartesian Field Subgroup

A
′

1 1, cos 3θ NA NA

A
′

2 Rz, sin 3θ Bz C3h

A
′′

1 z sin 3θ Bz with Ez D3

A
′′

2 z Ez or Rashba SOC C3v

E
′

x, x2 − y2 Ex Cs (C2v)y, 2xy Ey
E
′′

Rx, xz By Cs (C2)
Ry, yz −Bx

Table 1.1: Irreducible representations (irreps) of the D3h point group symmetry, functions of Carte-
sian coordinates (including rotations Rj) and physical fields that transform according to these irreps,
and the reduced point groups in the presence of the fields (groups in parentheses have non-canonical
orientations). Ej and Bj are components of electric and magnetic fields, Ej are components of the
shear strain tensor (or electric field). Note that the E′ and E′′ irreps are 2D, and the irrep fields
have two components that we list in columns.

We will mostly consider magnetic fields and Rashba SOC as the symmetry breaking fields.

Rashba SOC [21] transforms according to the A′′2 irrep and breaks the horizontal mirror symmetry

(as well as two-fold rotations, so the reduced group is no longer dihedral). Physically, this is usually

due to the fact that 2D samples are on a substrate, but it can also be tuned by perpendicular electric

fields. In either case the SOC arises due to the same effective magnetic field seen in the rest frame

of the electron, but in this case due to (nuclear or external) electric fields that point (on average) in
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the z direction. Repeating the SOC calculation we did above with E = Eẑ, we find that

gR(p) = αR(pyx̂− pxŷ) (1.6)

with the Rashba SOC parameter αR (so the energy scale associated with Rashba is αRpF ). This

results in spins aligning in a circulating patter around the Fermi surface. Note that since Rashba

SOC does not vanish along Γ-M lines, the spin degeneracy at those points is lifted, and the Fermi

surfaces at the Γ pocket split and no longer intersect. For simplicity we assume the Rashba parameter

is equal on all pockets. As mentioned above, 2D non-centrosymmetric superconductors with Rashba

SOC have been well-studied, in part since it is expected to occur even in thin film systems without

any intrinsic SOC (e.g. [54, 127, 85, 140, 137, 148]).

It is also well-known that SOC in 2D materials makes the superconducting state particularly

robust agains in-plane magnetic fields (which belongs to the E′′ irrep) [51]. Indeed, the Pauli limit

has been seen to be exceeded in multiple experiments on superconducting 1H-TMDs [22, 191, 168,

188, 98, 133, 187, 174, 157, 40, 122, 164], with Ising SOC being invoked as the explanation in

[98, 133, 187, 40, 70, 51]. This is because the orbital limiting (i.e. vortex proliferation) is absent for

an in-plane field, while the paramagnetic Pauli (or Chandrasekhar-Clogston [24, 36]) limiting that

typically results from Cooper pair breaking in conventional s-wave spin-singlet BCS superconductors

due to spin alignment with the external field is absent due to SOC (in simple terms because spin is

not conserved, and Cooper pairs always have singlet components). The external field adds a Zeeman

term to the Hamiltonian

HZ =
∑
pηαβ

d†pηα [b · σ]αβ dpηβ (1.7)

where b = 1
2gLµBB is the magnetic field in units of the Bohr magneton µB times the Landé g-factor

gL. As we will see in Chapter 4, the fact that the Pauli limit is exceeded is best understood in terms

of electrons with a given momentum p seeing an effective magnetic field that is a combination of

both the external magnetic field and the effective magnetic field due to SOC with the total normal

state Hamiltonian given by

H =
∑
pηαβ

d†pηα
[
εη(p) + βη(p) · σ

]
αβ
dpηβ (1.8)
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where

βη(p) = gη(p) + gR(p) + b (1.9)

As a result, when the magnetic field is applied the spins tilt in its direction but do not fully align

with it, and some spin-singlet pairing remains possible. Note that the spin degeneracy is again lifted

along the Γ-M lines (even without Rashba SOC) and the Γ Fermi surfaces split. An alternative

(though less likely) explanation would invoke spin-triplet interactions, which as we will see may be

possible in these systems (in that case the Pauli limit does not apply even in the absence of SOC).

Again for a sense of magnitude of the parameters, αRpF was estimated to be about 0.8 meV in

gated MoS2 in [98], while a magnetic field b = 0.5 meV corresponds to about 8.3 T. In other words,

we expect these to be much smaller than the Ising SOC, but possible comparable or larger than the

size of the SC gap (which vanishes at the phase transition and estimated to be about 2 meV at zero

temperature in [58]).

That superconductivity remains possible in large magnetic fields in itself offers interesting pos-

sibilities for unconventional SC phases. Besides breaking the point group symmetries (including

importantly the vertical mirror symmetry), the in-plane magnetic field breaks TRS. In the absence

of Rashba SOC, however, it does not break the product of TRS and the vertical mirror symmetry

T̃ = TMz (where T = iσyK is TRS and K is complex conjugation), which acts as a TR-like symme-

try (we will define what that means more precisely in Chapter 3). This is another important reason

why SC can be seen above the Pauli limit: as a result of this symmetry, the Fermi surfaces remain

symmetry under momentum reversal p → −p (as has also been pointed out in [48]). As we will

emphasize in Chapter 2, the momentum reversal symmetry of the Fermi surfaces (more precisely

the whole band structure) is a fundamental reason why SC is possible. As we will see in Chapter 4,

the TR-like symmetry also protects nodes in a nodal topological superconducting phase that was

first noted in [62], who were motivated by the experiments cited above.

When both Rashba SOC and in-plane magnetic field are present together, no TR-like symmetry

exists, which means that in general both the nodes and the superconductivity lose their protection.

It will turn out that the nodes disappear immediately except for one case: we will show in Chapter 4

that if the the magnetic field oriented along one of the Γ-K directions two pairs of the original six

pairs of nodes remain and are protected by a horizontal mirror symmetry Mx = iσx that alone is

not broken. The SC phase itself is more robust than the nodes and remains stable as long as the

symmetry breaking is not too strong. Note that the shifting of the Fermi surfaces is well-known to
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occur in the same situation with no Ising SOC [42, 41, 3, 85, 107], resulting in FFLO phases (the

effect is not unique to SC phases [178]). The question of when a phase ‘protected’ by a symmetry

can survive when that symmetry is broken will arise also when we study pairing instabilities within

the K pocket in Chapter 5 (another reason the pocket structure is interesting in TMDs), which

results in a pair density wave (PDW) phase with Cooper pairs with a large total momentum.

The SOC Basis

For later reference throughout this dissertation, note that the total Hamiltonian is diagonalized by

operators

cpητ = Uαητ (p)dpητ (1.10)

where the index τ = ± labels inner and outer Fermi surfaces respectively. The unitary transformation

is

Uαητ (p) =
1√
2

√
1 +

ταβηz(p)

βη(p)

(
τe−iφη

) 1+α
2 (1.11)

where

eiφη(p) =
βηx + iβηy
|βηx + iβηy|

=
αRpy + bx + i(−αRpx + by)√
(αRpy + bx)2 + (αRpx − by)2

, (1.12)

with βη = |βη(p)| (which plays the role of a magnetic field). We will refer to this as the SOC basis

(also referred to as band or helical basis in non-centrosymmetric literature), though note that we also

include the magnetic field in it. The normal state dispersions (i.e.eigenvalues of the Hamiltonian)

are

ξητ (p) = εη(p) + τ
∣∣βη(p)

∣∣ ≡ εη(p) + τβη(p) (1.13)

with the Fermi surfaces determined by ξητ (p) = 0.
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Chapter 2

The Renormalization Group

In this chapter we review the renormalization group (RG) technique for fermionic many-body systems

in Section 2.1. RG allows us to obtain an effective action for low-energy modes of the system by

successively integrating out high-energy modes, and to identify any instabilities of the system that

correspond to symmetry breaking phases, in particular superconducting phases that we are most

interested in. We then apply RG to transition metal dichalcogenides in Section 2.2. As explained

in the introduction, we generally follow the standard reference [154], amending where necessary for

our purposes. The analysis in Section 2.2 is the first theoretical contribution of this dissertation,

part of which appeared in [153].

2.1 Renormalization Group

RG is essentially a stability analysis of many body systems that allows us to understand symmetry

breaking phases of matter as instabilities of symmetric but unstable states. This is closely related

to the way we test phases in experiment in which symmetry breaking perturbations are introduced

to probe the system. For example, we can send a particle (or beam) into the system and see

what comes out, or apply an external field to see if the system will order. The path integral

formalism using coherent states was in part developed to theoretically study precisely this situation

and allows us to add symmetry breaking terms to the path integral [37], and which we therefore

use in RG. To emphasize this connection with experiment, we recall the linear response theory

in Section 2.1.1, which naturally leads to the concept of an effective action and renormalization

(including in particular RG) that we introduce in Section 2.1.2. From there the analysis follows

the standard path: we consider the Gaussian (and Fermi liquid) fixed points (which represent the

symmetric state) in Section 2.1.3, including corrections to interactions at leading order (tree level).
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Going to next order in Section 2.1.4 we find that the symmetric fixed points are unstable to various

interaction channels, in particular the pairing channel we are most interested in. We derive the RG

flow for the interactions in that subsection. Finally, in Section 2.1.5 we will see that the instability

indicates formation of bound states that become the relevant degrees of freedom at a new fixed

point. We show that an equivalent approach is to introduce an external bound state (as a symmetry

breaking perturbation or vertex) and see if the system orders in response by computing the RG

vertex flow. The external vertex and internal interaction RG flows give equivalent results, and we

use both in the next section Section 2.2.

2.1.1 Linear Response of a System: The Green’s Function

There are many references that cover the formalism that we present here, including the diagrammatic

technique that we will be using [9, 37, 74, 49, 100, 46, 92, 2]. In this formalism, as in usual statistical

mechanics, the system is described by the partition function

Z =

∫
e−S[d,d̄]Dd̄Dd (2.1)

S is the action of the system that is a functional of the fields (which are themselves functions) and

where d is a fermionic field expressed in terms of Grassmann variables. We will work in momentum

space and take dpηα as in Section 1.2 with η a pocket/band index and α =↑, ↓= ±1 the spin index,

and the momentum p is measured from the pocket center. The action for such systems can quite

generally be written as (in imaginary time formalism accounting for finite temperature)

S[dpηα, d̄pηα] ≡ S[d, d̄] =

∫ β

0

L[dpηα, d̄pηα]dτ (2.2)

with imaginary time τ integrated up to β = 1/T (taking the Boltzmann constant to be 1), where

the Lagrangian is

L[dpηα, d̄pηα] =
∑
pηα

d̄pηα∂τdpηα +H[dpηα, d̄pηα] (2.3)
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2.1. Renormalization Group

with Hamiltonian

H[dpηα, d̄pηα] =
∑
pηαβ

d̄pηα [Hη(p)]αβ dpηβ + (2.4)

+
∑
p,k,q

ηη′ζζ′αβα′β′

V η
′ζ′;α′β′

ηζ;αβ (p,k,q)d̄p+q,η′α′ d̄k−q,ζ′β′dpηβdkηβ

where α′, β, β′ are additional spin indices and η′, ζ, ζ ′ are additional pocket indices, and V are the

interactions. Again quite generally,

Hη(p) = εη(p) + βη(p) · σ (2.5)

that can include spin orbit coupling and magnetic field. We can Fourier transform the fields

dpηα(τ)→ dpηα(ω) which amounts to replacing ∂τ → iω in the Berry phase part of the Lagrangian.

Since at finite temperature the Lagrangian is periodic with period β, the frequencies are restricted to

be fermionic Matsubara frequencies, ωn = (2n+1)πT for integer n, and the integral is replaced with

a sum
∫
dτ → T

∑
n. For simplicity, we will assume that the interactions are frequency independent,

so the action is

S[d, d̄] = T
∑
npηα

d̄pηα [−iω +Hη(p)]αβ dpηβ + SI [d, d̄] (2.6)

where

SI [d, d̄] = T 3
∑

n1,n2,n3,p,k,q
ηη′ζζ′αβα′β′

V η
′ζ′;α′β′

ηζ;αβ (p,k,q)d̄p+q,η′α′ d̄k−q,ζ′β′dpηβdkηα (2.7)

We will generally assume that the interactions conserve energy, momentum and spin. Note the factor

of T 3 in the interactions is because as a result there are only three Matsubara sums involved (which

will be important for scaling later).

We now introduce an auxiliary source term of the form (we will consider other forms, but this

one will turn out to be the most important)

Sj [d, d̄, j, j̄] =
∑
I

(
j̄IdI + d̄IjI

)
(2.8)

where j is the ‘generalized force’ or current source Grassmann variable that is fixed and I, J are
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multi-indices including p, η, α. The total partition function is then

Z[j, j̄] =
〈
e
∑
I(j̄IdI+d̄IjI)

〉
= Z−1

0

∫
e−S[d,d̄]e

∑
I(j̄IdI+d̄IjI)DdDd̄ (2.9)

The linear response of the system here is the expectation value of d, which is

〈dI〉 = Z−1[j, j̄]

∫
dIe
−S[d,d̄]e

∑
I(j̄IdI+d̄IjI)DdDd̄ =

δ logZ[j, j̄]

δj̄I
(2.10)

Recall that this is how all thermodynamic quantities are computed in ordinary statistical mechanics.

Here the ‘force’ jI creates an expectation value for a single particle state, so we can think of Sj as

adding a particle to the system. In general, for a small force j we expect the response to be linear,

i.e. 〈dI〉 ∝ jI , and we therefore define the susceptibility as 〈dI〉 = χIJjJ , where

χIJ = − δ2 logZ[j̄, j]

δjJδj̄I

∣∣∣∣
j=0

(2.11)

where j = 0 means all of jI and j̄I are set to zero. But this is nothing but

−δ
2 logZ[j̄, j]

δjJδj̄I
= Z−1

0

∫
dIe
−S[d,d̄]e

∑
I(j̄IdI d̄J+d̄IjI)DdDd̄ =

〈
dI d̄J

〉
= GIJ (2.12)

which is the definition of the Green’s function of the system. This is the central object of the

diagrammatic theory where it is represented as a line with an arrow, Figure 2.1:

GIJ = −
〈
dI d̄J

〉
(2.13)

or more explicitly

Gηζ;αβ(iωn,p; iω′n′ ,k) = −
〈
d̄pηα(ωn)dkζβ(ω′n′)

〉
(2.14)

It is therefore the (linear response) susceptibility to introducing a single particle into the system,

which can be considered an instance of the fluctuation-dissipation theorem. Note that being an

expectation value of the ground state wave function, it contains a very small fraction of the informa-

tion about the whole wave function, but generally we can deduce the symmetry of the phase from

the symmetry of the Green’s function.

In the context of the stability analysis what we are after is to see whether an infinitesimal j results

in a finite response, which corresponds to an infinite value of the Green’s function, i.e. its poles. The
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Figure 2.1: Diagrammatic representation of the Green’s function, also called a propagator or two-
point correlation function.

poles of the Green’s functions are dispersions of the resonant modes of the system. In general poles

can appear in higher-order correlation functions as well, e.g. if we introduced a vertex representing

a bosonic field that couples quadratically to the fermions that we will study below. It turns out,

however, that we do not need to add more fields to compute higher order correlation functions,

because Z[j, j̄] (or rather its logarithm) in fact contains all of them: it is the moment-generating

function (MFG) from which all correlations can be obtained by differentiation as

δ2N logZ[j̄, j]

δjI1 . . . δjIM δj̄J1 . . . δj̄JN

∣∣∣∣
j=0

=
〈
dJN . . . dJ1

d̄I1 . . . d̄IM
〉

(2.15)

Note that terms with odd numbers of fields typically vanish so M+N should be even, but in general

the expectation value may not vanish even when M 6= N .

The main problem is that for a general form of the action, we do not know how to compute the

average. We only really know how to do Gaussian integrals, i.e. for the non-interacting part of the

action quadratic in the fields:

S0[d, d̄] = T
∑
npηα

d̄pηα [−iωn +Hη(p)]αβ dpηβ (2.16)

In principle we may need to further diagonalize the single-particle Hη(p). We will call its eigenvalues

ξητ (p) with τ labeling the energy bands. A bit more generally, and for later use, we can also include

additional order parameters like the superconducting gap function in the quadratic part of the action,

which we can write as

S0[d, d̄] =
∑
IJ

d̄IG−1
IJ dJ (2.17)

where we allow dI = d̄pηα, for which we can evaluate the partition function by doing the (Berezin)
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integral

Z[j̄, j] = Z−1
0

∫
e−

∑
IJ d̄IG

−1
IJ dJ e

∑
I(j̄IdI+d̄IjI)DdDd̄

= Z−1
0 det

[
G−1

]
e−

∑
IJ j̄IGIJjJ (2.18)

In particular,

〈dIdJ〉 =
δ2 logZ[j̄, j]

δjJδj̄I
= −GIJ (2.19)

where we include the possibility that the Green’s function

GIJ =

 GIJ FIJ

F †IJ −GJI

 (2.20)

includes anomalous components

Fηζ;αβ(iωn,p; iω′n′ ,k) = −〈dpηα(ωn)dkζβ(ω′n′)〉 (2.21)

Comparing (2.17) with (2.16), we have

Gηζ;αβ(iωn,p; iω′n′ ,k) ≡ [Gη(iωn,p)]αβ δnn′δpkδηζ =

[
δωω′δpkδηζ
iω −Hη(p)

]
αβ

(2.22)

with poles iωn equal to the eigenvalues of the Hamiltonian (the anomalous Green’s function vanishes

in this case).

Although this is the only case we can do, note that since we know the generating function, we

can obtain all correlation functions by simple differentiation combined with induction, which yields

Wick’s theorem:

Theorem 2.1 (Wick’s Theorem for Fermions)

For Gaussian distributions (i.e. S0 quadratic in the fields),

〈d1 . . . dN 〉 =
∑
p∈P 2

N

sgn p
∏

{I,J}∈p

〈dIdJ〉 = −
∑
p∈P 2

N

sgn p
∏

{I,J}∈p

GIJ (2.23)

where fermionic1 fields dI with multi-index I can be either dpηα or d̄pηα, P 2
N are all possible pairings

1For bosons, the same theorem applies but with sgn p replaced by 1.
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p of {1, . . . N}, i.e. distinct partitions of {1, . . . N} into pairs, and sgn p is the sign of the pairing

(i.e. the parity of the number of pair-wise permutations required to obtain the order of pairs in p).

Note that the result is zero if N is odd. �

For a proof of this theorem see [37, 74, 46].

The importance of the theorem lies in the following observation. The total action is

Z =

∫
e−S0[d,d̄]e−SI [d,d̄]Dd Dd̄ = Z0

〈
e−SI [d,d̄]

〉
0

(2.24)

where Z0 is the partition function without interactions. But we can always expand the exponential

e−SI [d,d̄] using Taylor series, and then use the cumulant expansion

〈
eX
〉

= e
∑∞
n=1 κn[X] = e〈X〉+Var[X]/2+... (2.25)

which implicitly defines the cumulants κn[X], with κ1[X] = 〈X〉, 〈X〉 = Var[X] the variance of

X, etc. Since the cumulants are in this case linear combinations of correlation functions, we can

compute the partition function with a general action using Wick’s theorem. Diagrammatically, the

cumulant expansion is just the linked-cluster theorem that states that corrections to the action can

be computed in terms of connected Feynman diagrams only that represent the correlation functions

[155, 37]. To get the response of the system we can similarly compute the total Green’s function as〈
dI d̄Je

−SI [d,d̄]
〉

0
in a similar fashion, which yields the diagrammatic expansion of the total Green’s

function in terms of the ‘bare’ Green’s function G(0) for the system in the absence of interactions.

2.1.2 Effective Action and Renormalization

For a many body system there is generally going to be an energy scale above which no new response

is going to be generated, which we will call Λ. The standard approach is to restrict the integration

inside the action to ξ < Λ. This is the hard cutoff often used in RG. Looking ahead, however, and

as discussed in [155], at some point in RG with Fermi surfaces the hard cutoff becomes inconvenient

because the momentum cutoff pΛ(θ) (which can depend on the angle) defines an annular region that

does not map into the same region in the rescaling step in RG which we will discuss presently. To

circumvent this issue, a soft cutoff θΛ(ξ) needs to be introduced as

S0[d, d̄; θΛ] = T
∑
npηα

θ−1
Λ (p)d̄pηα [−iωn +Hη(p)]αβ dpηβ (2.26)
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This is a common way the cutoff is implemented in non-perturbative or functional RG [1]. The exact

form of θΛ does not matter, but it is roughly 1 for ξ < Λ, and vanishes smoothly for ξ > Λ. Note

that we do not introduce a cutoff in SI . Also note that it is the inverse of θΛ that enters in S0; as

a result, when θΛ is small, S0 is large, and e−S0 is very small and does not contribute to the path

integral.

The soft cutoff has a more physical interpretation. Note that the bare Green’s function corre-

sponding to (2.26) is

Gηζ;αβ(iωn,p; iω′n′ ,k) ≡ [Gη(iωn,p)]αβ δnn′δpkδηζ =

[
δnn′δpkδηζθΛ

iωn −Hη(p)

]
αβ

(2.27)

so the soft cutoff plays the role of the renormalization factor or quasiparticle weight Z from Landau’s

Fermi liquid theory (which we are partially building towards). In fact, the linear response approach

outlined here parallels closely the original formulation by Landau, who considered the change of the

system’s energy as a single particle was added to it, which can be interpreted as the energy of a

different object called the quasiparticle.

More generally, the probing particle will interact with some but not all of the system. In a

fermionic system, these are typically states close to the Fermi level. In order to take this into

account, we want to split the system into the low energy part (close to the Fermi level) that we care

about, and the high energy part that we do not care about. To do this we want to split the modes

into low and high energy modes with the cutoff splitting into

θΛ = θ>Λ + θ<Λ (2.28)

where θ<Λ = θΛ−δΛ has the same form as the original cutoff. Note, however, that there is no

sharp distinction between low and high energy modes when using a soft cutoff (which requires a

modification to the RG procedure as it is described in [155]). The trick is to define d = d< + d>

using the Gaussian identity (omitting an irrelevant constant Jacobian; see section 2.2 in [1, Chapter

2] for a proof)

Dd Dd̄ e−S0[d,d̄;θΛ] ∝ Dd<Dd̄<Dd>Dd̄>e−S0[d<,d̄<;θ<Λ ]e−S0[d>,d̄>;θ>Λ ] (2.29)

which implicitly defines the low and high energy modes. We can then define the effective low energy
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action via (omitting d̄ in the argument of the action for clarity)

Z =

∫
e−S[d<,d>]Dd̄<Dd<Dd̄>Dd> =

∫
e−Seff [d<]Dd̄<Dd< (2.30)

i.e.

e−Seff [d<] =

∫
e−S[d<,d>]Dd̄>Dd> (2.31)

In other words, the effective action is obtained from the microscopic action by integrating out the

high energy modes. As in (2.24), we make use of the fact that (2.26) is quadratic in the fields, which

allows us to use the same Feynman rules to compute the integral. Explicitly, we have

S[d<, d>] = S0[d<; θ<Λ ] + S0[d>; θ>Λ ] + SI [d<, d>] (2.32)

and we have

e−Seff [d<] = e−S0[d<;θ<Λ ]
〈
e−SI [d<,d>]

〉
>
Z0> (2.33)

where

Z0> =

∫
e−S0[d>;θ>Λ ]Dd̄>Dd> (2.34)

and the average over high energy modes is defined as

〈
e−SI [d<,d>]

〉
>

=
1

Z0>

∫
e−S0[d>;θ>Λ ]e−SI [d<,d>]Dd̄>Dd> (2.35)

We thus have

Seff = S0 + δS (2.36)

where we again can use the cumulant expansion

δS = −
∞∑
n=1

κn [−SI [d<, d>]] (2.37)
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Since the low energy fields are not integrated out, this has the symbolic form

Seff = s0 + s2d̄<d< + s4d̄<d̄<d<d< + · · · =
∑
j

sjOj [d<(p)] (2.38)

The operator expansion holds more generally for any form of the action.

The idea of the renormalization group is that the renormalization can be done in multiple steps.

i.e. high energy modes do not have to be integrated out all at once, but rather removed systematically

starting at the highest energy Λ, first integrating out modes within a narrow energy shell of thickness

dΛ = Λ
(

1− 1
%

)
for some rescaling factor % ' 1.2 The new effective action thus runs up to energy

Λ/%. This is the first step of RG. The second step is to realize that if we redefine the units by

rescaling all lengths x′ = x/% (equivalently all momenta as p′ = %p), we end up with an effective

action that again runs up to energy Λ, i.e. has the same form as the original action. Quite generally,

if the original action has the general form (2.38), after the two RG steps it becomes

S′[d<] =
∑
j

s′jOj [d<(p′/%)] (2.39)

Note that some sj may have started as zero and new terms in the action can be introduced. The

third and final step of RG is to redefine the field as d′(p′) = d<(p)/ζ, with ζ, which amounts to

a new choice of units for the field, typically chosen such that the leading sj is constant. In the

absence of a Fermi surface, this is typically the quadratic kinetic energy term. In the presence of a

Fermi surface, the correct choice amounts to keeping the volume (or area in 2D) inside the Fermi

surface fixed, in accordance with Luttinger’s theorem (assuming the shape of the Fermi surface is

not deformed under RG to the point where its topology changes). For a circular Fermi surface, this

means simply keeping the Fermi momentum fixed.

After these three steps,3 we finally obtain a new action (redefining s′j)

S′[d′] =
∑
j

s′jOj [d′<(p′)] (2.40)

At this point we can change the perspective on the renormalization process. Instead of thinking of

eliminating the high energy modes, we instead simply think of their cumulative effect on the action

of the low energy modes. The cutoff in that perspective is a fixed element of the system that does

2In most references, s is used instead of %. We use % to avoid confusion with action parameters.
3The group in RG refers to the three steps acting in a similar way a group element acts on the action. This is a

bit of a misnomer since the steps in RG do not necessarily have an inverse, and so form a semigroup rather than a
group.
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not flow under RG, and instead the parameters sj are renormalized by the high energy modes and

are said to flow under RG. Defining the RG ‘time’ as dt = dΛ
Λ = %−1

% (i.e. t = log Λ/E with Λ− E

essentially the energy window within which the high energy modes have been eliminated), we can

consider sj(t) as functions of t. A single iteration of the RG procedure gives

s′j = sj(t) + dsj = sj(t) + βj(sj)dt (2.41)

where we introduce the beta functions

βj(sj) =
dsj
dt

(2.42)

which define the RG flow equations. As a result, it is not necessary to actually repeat the RG

procedure, and instead we can solve a set of differential equations in the limit t → ∞. There are

two possible outcomes: some sj blow up under the flow, in which case the corresponding terms Oj
are called relevant in the RG sense; or they do not, in which case they either go to zero and the

corresponding Oj are called irrelevant, or approach a constant, with Oj called marginal in that case.

If there are no relevant terms in the action, it approaches a fixed point at which all the beta

functions vanish. This corresponds to a stable phase of matter (and a saddle point of the action in

the sense that under RG the action remains unchanged, δS = 0). Not all fixed points are stable,

however. As a typical example, it is possible that if sj = 0, it remains zero under the RG flow, but

blows up when it is positive, so introducing a small δsj as a perturbation moves the action away

from the fixed point, at which point it usually flows to a different, stable, fixed point (in our case

there will be a finite number of relevant terms). The RG analysis therefore reduces to identifying

the fixed points of the RG flow, and then analyzing their stability for small deviations from the fixed

point.

With this conceptual reframing we can thus return to the original motivation for RG, namely the

search for the ground state of a many-body system. As discussed in the beginning of the chapter, a

natural choice is a state that respects all the symmetries of the system, so we choose an action that

is a fixed point of RG that respects all these symmetries. This amounts to some choice of marginal

operators Oj . We then ask if this fixed point is stable if small additional operators are added as a

perturbation. Note that in general we do not know all possible operators, but typically we consider

interaction terms or symmetry breaking terms. If the perturbing term turns out to be relevant, it

corresponds to an instability of the state, and the action flows to a different fixed point. The most

useful aspect of the RG analysis is that the relevant perturbations provide a hint to what symmetry
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is broken, as we will see in the next section.

2.1.3 Gaussian and Fermi Liquid Fixed Points

For the RG analysis of S0 alone, either a soft or a hard cutoff produce the same result, since the

mode elimination step is in either case trivial (see [154] for details). More important is the rescaling

step. To see this, we Taylor expand the dispersion

ξητ (p) ≈ µητ + vFητ (p− pFητ (θ)) + . . . (2.43)

where µητ is the chemical potential, pFητ (θ) is the Fermi momentum (that can be a function of the

angle of p in 2D), and vFητ is the Fermi velocity. Because in this case we know the ground state

(determined by the Fermi distribution), we know that the p linear term needs to be marginal in RG,

which is ensured by rescaling the fields c (or d) by ζ = %
3
2 .4 The chemical potential is then relevant,

while all higher powers of p are irrelevant because nth powers are rescaled by s−n (s = 1
1−dt = 1+dt),

so at the fixed point we roughly have µητ = vFητpFητ (exact for a circular Fermi surface).

The Gaussian fixed point of RG is therefore S0 with linearized dispersions ξητ (p), all higher order

terms being irrelevant and so not part of the fixed point. The fixed point is thus characterized by a

small set of parameters: pF , µ and vF . In general, the chemical potential µ and the Fermi velocity

(or equivalently the effective mass) can flow, but the Fermi momentum must be held constant in

accord with Luttinger’s theorem.

We next consider if the Gaussian fixed point is stable against interactions. For this we compute〈
e−SI [d<,d>]

〉
>

, or rather what we are more interested in, its logarithm

−δS[d<, d̄<] = log
〈
e−SI [d<,d>]

〉
>
, (2.44)

using (2.37). Here we need to assume that the interactions are weak in the sense that the cumulant

expansion is an asymptotic series. This is justified from the stability analysis point of view since what

we are asking is whether the RG fixed point is stable against small perturbations; the microscopic

interactions in the system need not be small as we will discuss later. The leading approximation is

4For any dimension. Note that we only rescale the radial component of momentum and we also rescale T → T ′ = sT
(which is the same as rescaling the frequency ω) to account for a change in energy units.
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therefore

δS ≈ 〈SI [d<, d>]〉> =

=
〈∑

VIJKL(d̄I< + d̄I>)(d̄J< + d̄J>)(dK< + dK>)(dL< + dL>)
〉
>

(2.45)

Note again that there is no cutoff in the summation/integration in SI , only in S0. This is particularly

convenient in a lattice system, since we do not need to worry about periodicity and boundary

conditions.

Since we are averaging over the fast modes only, only terms with even number of high energy

modes are non-zero, so symbolically we can write without indices

δS ≈ δs1
0 + δs1

2d̄<d< + δs1
4d̄<d̄<d<d< (2.46)

The first term, δs1
0, arises when all fields in (2.45) are high energy modes and is just a constant that

is absorbed into the normalization of the probability distribution and is of no interest to us. The

second term, δs1
2, is more interesting and comes about when two of the fields are high energy modes

(one incoming and one outgoing, i.e. one with a bar and one without). This is the so-called one loop

(1L) correction to the single-body Hamiltonian Hη(p) and can for example change the chemical

potential and the (effective) mass (the number of loops is essentially the number of interactions

involving high energy modes). These are of central interest in the Fermi liquid theory, which aims

to relate the relationship between these quantities and interactions, but here we are more interested

in whether the interactions themselves are relevant or not. The first correction to the interactions

in RG is the δs1
4 term, which simply amounts to setting all modes in (2.45) to be low energy. This

is a zero loop or tree level correction to the interactions.

We can verify moreover that if we expand the interactions in a Taylor series in the radial com-

ponent of momentum, symbolically

V (P ) = V0 + V1P + V2P
2 + . . . (2.47)

then after rescaling the momenta we have in any dimension

V ′n = s−nVn = (1− ndt)Vn (2.48)
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so that the beta function is

dVn
dt

= −nVn (2.49)

which is marginal for n = 0 and irrelevant (exponentially suppressed) otherwise. So only interactions

independent of the radial components of momentum and on the Fermi surface are marginal, and the

rest are irrelevant. It should be emphasized that already at the tree level analysis of the interactions

we find that the Gaussian fixed point we started with is not a unique fixed point. Rather, there are

infinitely many fixed points for any value of the (in principle infinitely many) marginal coupling con-

stants. This ‘fixed manifold’ corresponds to the Fermi liquid phase, and as Landau already realized

it is completely characterized by the coupling constants, effective mass and the Fermi momentum.

Much of Fermi liquid theory analyses the relationships between the coupling constants, the effective

mass, and other observables like zero sound and compressibility. Details can be found in [92, 2, 102]

and in [154, 1] from the RG point of view. Here, we are not as interested in the Fermi liquid phase

itself, but rather want to consider it as the symmetric fixed point we discussed above and look for

its instabilities.

2.1.4 One-Loop RG Flow for Interactions

Above we found that the interactions at the Fermi liquid fixed point are marginal at tree level.

This does not guarantee that the fixed point is stable, since there are infinitely many terms in the

cumulant expansion and it is not guaranteed to not diverge once all terms are summed up. We

will see that some interactions can become relevant already at one loop order, i.e. the next order

approximation:

δS ≈ 〈SI [d<, d>]〉> −
1

2
Var> [−SI [d<, d>]] =

= 〈SI [d<, d>]〉> −
1

2

(〈
S2
I [d<, d>]

〉
>
− 〈SI [d<, d>]〉2>

)
(2.50)

The new term contains combinations of eight fields and we get all possible contractions of pairs of

high energy modes:

δS ≈ δs1
0 + δs2

0 + (δs1
2 + δs2

2)d̄<d< + (δs1
4 + δs2

4)d̄<d̄<d<d< + . . . (2.51)
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where I am omitting the terms with six and eight fields (which are irrelevant due to the rescaling of

the fields), and δs2
j correspond to the corrections from the new term. Again, we are not as interested

in the δs2
0 and δs2

2 terms as the first can be absorbed into the normalization of the path integral and

the latter will renormalize the mass. Computing the δs2
4 term can be done directly using Wick’s

theorem, keeping four of the fields at high energy. The generic term will be of the form

(
δs2

4

)
I′J′K′L′

=
〈
VI′J′KLVIJK′L′ d̄I>d̄J>dK>dL>

〉
+ . . . (2.52)

Note that the interaction V has two low energy indices (primed) and two high energy indices (un-

primed) that are kept inside the average since they are functions of momentum of the high energy

modes. Wick’s theorem turns the expectation values into pairs of Green’s functions:

(
δs2

4

)
I′J′K′L′

=
∑
IJKL

VI′J′KLG
>
JKVIJK′L′G

>
IL + . . . (2.53)

where the summation includes integration over all momenta corresponding to the I, J,K,L indices

(constrained by momentum conservation) and the > superscript on the Green’s functions indicates

that these are propagators for the high energy modes and therefore carry factors of the soft cutoffs θ>Λ .

In the approach we adopted, this sets the boundaries of integration, which means only the momenta

of the Green’s functions that lie within a thin momentum shell between pΛ and pΛ−dΛ contribute

significantly to the integral. We will find that generically, the arguments of the two Green’s functions

are G>JK(q)G>IL(±q + K) for some K determined by the external momenta of the low energy modes,

and q being integrated over all momenta. If K is not equal to zero,
∫
θ>Λ (q)θ>Λ (q+K)[. . . ]dq ∝ dΛ2,

as can be concluded from Figure 2.2. When we look at the beta function for the coupling constants,

we divide by dΛ and take it to zero (i.e. compute the derivative), so all terms with K 6= 0 will

vanish to this order. Thus only terms with K = 0 may contribute to the flow, which will be the key

observation. Keeping only such terms is the essence of parquet RG (pRG).

So far we considered a generic form of the contraction, but in general it is complicated to

keep track of all possible contractions already at one loop. A bookkeeping device is needed, and

fortunately, this is precisely what Feynman diagrams are.5 As an instance of the linked-cluster

theorem, the subtraction of 〈SI〉2> in (2.50) amounts precisely to the statement that we only need

to compute the connected Feynman diagrams. There are four topologies of one loop diagrams,

shown in Figure 2.3 (five if we count the last diagram with p and k exchanged). The external

5See Table 8.3 in [37] for a list of the Feynman rules; a slight difference is that I do not assume spin degeneracy
here.
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Figure 2.2: Fundamental reason the Fermi liquid is unstable towards pairing instabilities, but mostly
stable otherwise: the phase space available for high energy modes in a thin shell defined by dΛ has
an area dΛ2 for Q 6= 0, the intersection of two shifted shells. Only Q = 0, when the shells are
perfectly nested, contributes significantly to the RG flow.

lines correspond in this case to the low energy modes, and are to be ‘amputated.’ Internal lines

with arrows correspond to the Green’s functions, and the wavy lines to interactions, so indeed each

diagram corresponds to a term of the form (2.53). The figure shows the four-momenta p = (iωn,p)

etc., from which we can identify the diagrams for which K = 0.

Particle-Hole Instabilities

At tree level, there was nothing to distinguish any particular interactions, but at one loop we find that

they decouple into three channels. The first case corresponds to Q = 0 (and by antisymmetrization

Q = k − p), in Figure 2.3, which correspond to interactions that do not change the direction of

incoming fermions (or exchange them). See top of Figure 2.4. For lack of a better term I refer to

them as U type, with action given by

SU [d, d̄] = T 3
∑

nn′,p,k
ηζαβα′β′

[Uηζ(p,k)]
α′β′

αβ d̄pηα′ d̄kζβ′dkζβdpηα (2.54)

where we can drop some of the indices, as well as one momentum and one Matsubara sum. Here

we assume no additional nesting, i.e. that no two pockets are identical, and that there are no large

segments of the Fermi surfaces separated by the same transfer momentum; otherwise additional

instabilities are possible. We only keep the Q = 0 terms: note that in the diagrammatic technique,

the correct procedure is to first renormalize the Q = 0 diagrams, and only then obtain the Q = k−p
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Figure 2.3: The four types of one-loop corrections to interactions (five if we count the last diagram
with p and k exchanged and Q→ −Q).

by anti-symmetrizing. Checking the phase space condition, we find that the condition that K = 0

in G>IL(±q + K) (one of the internal Green’s function inside the integral) holds only for the last two

diagrams in Figure 2.3. The structure of the diagrams means that in the rotation invariant, spin

conserving case these interactions decouple according to harmonics (in 2D)

[Uηζ(p,k)]
α′β′

αβ = [Uηζ(θ, θ
′)]
α′β′

αβ =
∑
`µν

u
(`µν)
ηζ Θ(`µ)

η (θ)Θ
(`ν)
ζ (θ′)σµαα′σ

ν
ββ′ (2.55)

where θ and θ′ are angles corresponding to p and k respectively, ` = 0, 1, 2, . . . labels the harmonics

and the µ, ν = 0, x, y, z labels the Pauli matrices, including σ0
αβ = δαβ (note that the µ = 0 for

all even `, and µ 6= 0 for odd `). In Fermi liquid theory, it is conventional to label the µ = ν =

0 interactions F and the µ = ν 6= 0 interactions G, also respectively referred to as charge and

spin components of the interactions, as well as density-density and exchange or spin fluctuations

interactions as they can be expressed as products of charge and spin density operators [102, 92].

From the latter observation it is cleat that F and G are the only terms that conserve the spin

operators d̄αSαβdβ . If spin is not conserved, there can be additional Dzhyaloshinkii-Moriya (DM

or anti-symmetric exchange) interactions of the form D · σαα′ × σββ′ , e.g. due to SOC (we will in

general assume no DM interactions for simplicity). There can then also be spin direction anisotropy

in G.
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The U interactions are thus characterized by the coupling constants u
(`µ)
ηζ , which we will label u`

for simplicity when omitting indices. If the system is rotationally invariant, note that Uηζ(θ, θ
′) =

Uηζ(θ− θ′) and the harmonics can be expressed in terms of Legendre polynomials P`(θ− θ′), but on

a lattice the interactions can depend on both angles separately. It is then more sensible to expand in

‘Chebyshev polynomials’ Θ(`1)(θ)Θ(`2)(θ′) with Θ(`)(θ) = cos `θ and Θ(`′)(θ) = sin `θ. On a lattice

the ` index should be instead considered as an irreducible representation (irrep) label of the point

(or space) group of the lattice symmetries.

Figure 2.4: U and V type interactions marginal in RG at tree level. U corresponds to processes
that do not change the momenta of the interacting particles, at most exchanging them (when renor-
malization we do not include the exchange process, which is fixed by anti-symmetrization). The V
process involves pairs with zero total momentum that can therefore scatter into any other such pair.

We will be mostly interested in a different type of interactions below, but here we briefly outline

the one loop correction in RG to the U type interactions. The generic form of the correction is

(δs2
4)I′J′K′L′ =

∑
UI′J′KLG

>
IK(q)UIJK′L′G

>
LJ(q) (2.56)

Diagrams where the two Green’s functions are integrated over q with the same sign of q in the

argument are called particle-hole diagrams, since in the diagram this means that the fermions are

propagating in opposite directions in time. This may be the most clear in the third (‘bubble’) type of

diagrams, but all except for the first (ladder) diagram in Figure 2.3 are particle-hole diagrams. The
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ladder diagram is a particle-particle diagram. Since the interactions are independent of frequency

and momentum magnitude, the only dependence on these is in the Green’s functions. We therefore

define the (infinitesimal, angle resolved) particle-hole bubble or susceptibility as

dΠph
ηζ (θ) = T

∑
|q|,ω

G>η (iω,q)G>ζ (iω,q) (2.57)

Note that the Green’s functions are in general matrices in spin indices, not diagonal if SOC is

present, and therefore so is the bubble. Since we are considering the possibility of SOC, the two

Green’s functions may not be simultaneously diagonalizable for unequal pocket indices, but the

matrix elements of dΠph
ηζ (θ) are related by a spin rotation transformation to

dΠph
ητ ;ζυ(θ) = T

∑
n,|q|

G>ητ (iωn,q)G>ζυ(iωn,q) = T
∑
n,|q|

θ>Λ (ξητ (q))θ>Λ (ξζυ(q))

(iωn − ξητ (q))(iωn − ξζυ(q))
=

=
∑
|q|

nF (ξητ (q))− nF (ξζυ(q))

ξητ (q)− ξζυ(q)
θ>Λ (ξητ (q))θ>Λ (ξζυ(q)) =

= −1

2

∑
|q|

tanh
βξητ (q)

2 − tanh
βξζυ(q)

2

ξητ (q)− ξζυ(q)
θ>Λ (ξητ (q))θ>Λ (ξζυ(q)) (2.58)

where τ, υ = ± are the ‘pseudospin’/SOC basis indices (see (1.10)), nF is the Fermi distribution

function, and we have evaluated the Matsubara sum. Again because of the cutoff overlaps, the only

relevant contribution is from ξητ (q) ≈ ξζυ(q) ≈ ±Λ if η and ζ are both electron or both hole pockets.

Assuming Λ � T (valid in particular for T = 0), the two hyperbolic tangents have the same sign

and tend to cancel:

dΠph
ητ ;ζυ(θ) ≈ −

∑
|q|

e−2βΛ
(
1− eβ|ξητ (q)−ξζυ(q)|)
|ξητ (q)− ξζυ(q)|

θ>Λ (ξητ (q))θ>Λ (ξζυ(q)) ≈

≈ e−2βΛ
∑
|q|

θ>Λ (ξητ (q))θ>Λ (ξζυ(q)) ≈ e−2βΛN dΛ (2.59)

where N is the average density of states (DOS) of the two pockets involved. In particular at T = 0

the bubble vanishes, which can be deduced analytically by replacing the Matsubara sum with an

integral and noting there are two poles in the integrand that lie on the same side of the complex

plane. At small temperatures, the bubble does not vanish but it is exponentially suppressed, and

only sufficiently strong attractive interactions can result in a relevant flow.

This is markedly different if we instead consider the possibility that one pocket is a hole pocket
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and the other is an electron pocket. In that case the main contribution comes from ξητ (q) ≈

−ξζυ(q) ≈ ±Λ for η 6= ζ. Since this does not happen for concentric pockets, the interactions involve

a momentum transfer, an example of nesting (the momentum q is measured from the pocket centers).

In that case we find instead that the hyperbolic tangents now add together rather than cancel, so

dΠph
ητ ;ζυ(θ) ≈ −N dΛ

Λ
= −N dt (2.60)

Integrating this over the RG time we therefore find that Πph ∝ −Nt = −N log Λ
E . Note that it

diverges as E → 0, which means that the divergence is due to the low energy modes, i.e. this is an

infrared divergence in high-energy terminology (or IR instability).

As we will see below for the pairing interactions, the logarithmic divergence of the bubble is

indicative of a relevant flow in RG, depending on the sign of the interactions. Here I neglected

the spin structure of the interactions, but if we restore it we find that the spin traces involved in

the particle-hole diagrams decouple the spin and charge interactions, i.e. they flow independent of

each other as claimed. As a result, the U interactions split into two charge and spin channels that

correspond to so-called spin and charge density wave (SDW and CDW) instabilities. These typically

break translational invariance, as well as spin rotation invariance and time reversal symmetry for

SDW. These are therefore some of the phases discussed in the introduction of this chapter that can

be understood as symmetry breaking instabilities of the Fermi liquid. The particle-hole instabilities

require nesting of a particle and a hole pocket, a situation considered for example in [192] for a

system very similar to metallic 2H-TMD’s, but which is not the case in TMDs that we will consider

below. I will therefore assume that no such nesting occurs and the particle-hole channels remain

marginal.

Particle-Particle Instability

The second type of marginal interactions (at tree level) corresponds to interactions between fermions

with opposite momenta that by momentum conservation scatter into each other (see bottom of

Figure 2.4). These are called BCS interactions in [154], but I will call them pairing interactions

here. In some situations we will be interested in, it can happen that p+p′ = Q for some fixed value

Q for infinitely many values of p and p′ on the Fermi surface, a condition called nesting for Q 6= 0.

The simplest example of nesting is if the entire Fermi surface is shifted by momentum Q, which of

course requires breaking time reversal symmetry. We are mostly interested in Q = 0 that can be
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considered as a special case, but for which the term nesting is not used. I use V to label them:

SV [d, d̄] =
T 3

2

∑
nn′,p,k
ηζαβα′β′

V η
′ζ′;α′β′

ηζ;αβ (p; k)d̄kη′α′ d̄−kζ′β′d−pζβdpηα (2.61)

where again there are only two momenta and frequencies to sum. With the relabeling, the incoming

pair has momenta ±p and the outgoing pair has momenta ±k. Note that the band/pocket indices

need to satisfy some conditions as a result of momentum conservation.

Figure 2.5: Same as Figure 2.3 but with momenta relabeled for pairing interactions.

For the pairing interactions, we relabel the diagram in Figure 2.3 k = −p and Q = k− p to get

Figure 2.5. Only the particle-particle ladder diagram satisfies the phase space condition that K = 0

in G>IL(±q + K) (one of the internal Green’s function inside the integral), and the correction to the

action is

(δs2
4)I′J′K′L′ =

∑
VI′J′IJG

>
IK(q)VKLK′L′G

>
JL(−q) (2.62)

As in the particle-hole channel, the interactions decompose into channels that we will see flow

independently:

V η
′ζ′;α′β′

ηζ;αβ (p,k) = V η
′ζ′;α′β′

ηζ;αβ (θ, θ′) =
∑
`µν

g
(`µν)
η′ζ′;ηζ

[
Σ

(`µ)
ηζ (θ)

]
αβ

[
Σ

(`ν)∗
η′ζ′ (θ′)

]
α′β′

(2.63)
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where

Σ
(`µ)
ηζ (θ) = Θ

(`µ)
ηζ (θ)iσyσµ (2.64)

` is an irrep label that can again be either the orbital angular momentum or label lattice harmonics.

Note that the spin index order on the Pauli matrices is different in this case (α′ and β are exchanged),

which is a choice that will be convenient later. This is the singlet/triplet pairing decomposition of

the interactions, as opposed to the charge/spin decomposition we used for U interactions. The iσy

is included in (2.64) so that µ = ν = 0 interactions correspond to interactions between singlet pairs

(i.e. total spin zero), while µ = ν 6= 0 correspond to interactions between triplet pairs (total spin

1), which we call the singlet and triplet interactions. These are all the terms if interactions conserve

spin, since no singlet pair can scatter into a triplet term (nor can components of the spin of the

triplet pairs be changed). In principle, µ 6= ν terms are also allowed if spin is not conserved by the

interactions, which is allowed if SOC is present. They do not lead to new kinds of instabilities, so

for simplicity we will only consider interactions with µ = ν.

In this case we will be more precise and plug in the interactions from Eq. (2.63) to calculate the

correction. We then want to see how the coupling constants g
(`µ)
ηζ;η′ζ′ flow (we assume spin conserving

interactions). The pocket indices fix inner and outer legs of the diagram and we sum over all possible

pockets for the internal legs that we label η′′ and ζ ′′ (see Figure 2.6). The correction will therefore

be proportional to squares of other coupling constants:

dg
(`µ)
ηζ;η′ζ′ ∝ g

(`µ)
ηζ;η′′ζ′′g

(`µ)
η′′ζ′′;η′ζ′ (2.65)

with implicit summation over indices on the RHS that are not on the LHS. The full correction

corresponding to the particular coupling constant is to the action is
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Figure 2.6: The ladder series of diagrams with band indices (only one loop order is shown). Thick
wavy line represents renormalized interactions. Iterating the equation allows summing all the ladder
diagrams and yields the Dyson equation, shown in the second line.

δS
(`µ)

ηζ;η′ζ′

αβα′β′

= d̄kη′α′<d̄−kζ′β′<d−pζβ<dpηα<T
∑

g
(`µ)
ηζ;η′′ζ′′

[
Σ

(`µ)
ηζ (θ)

]
αβ

[
Σ

(`µ)∗
η′′ζ′′ (θ

′′)
]
γδ

[
G>η′′(q)

]
γγ′

×g(`µ)
η′′ζ′′;η′ζ′

[
Σ

(`µ)
η′′ζ′′(θ

′′)
]
γ′δ′

[
Σ

(`µ)∗
η′ζ′ (θ′)

]
α′β′

[
G>ζ′′(−q)

]
δδ′

=

=
[
Σ

(`µ)
ηζ (θ)

]
αβ

[
Σ

(`µ)∗
η′ζ′ (θ′)

]
α′β′

d̄kη′α′<d̄−kζ′β′<d−pζβ<dpηα< ×

×T
∑

g
(`µ)
ηζ;η′′ζ′′g

(`µ)
η′′ζ′′;η′ζ′

[
Σ

(`µ)∗
η′′ζ′′ (θ

′′)
]
γδ

[
G>η′′(q)

]
γγ′

[
Σ

(`µ)
η′′ζ′′(θ

′′)
]
γ′δ′

[
G>ζ′′(−q)

]
δδ′

=

=
[
Σ

(`µ)∗
ηζ (θ)

]
αβ

[
Σ

(`µ)
η′ζ′ (θ

′)
]
α′β′

d̄kη′α′<d̄−kζ′β′<d−pζβ<dpηα< ×

×T
∑

g
(`µ)
ηζ;η′′ζ′′g

(`µ)
η′′ζ′′;η′ζ′Tr

[
Σ

(`µ)†
η′′ζ′′(θ

′′)G>η′′(q)Σ
(`µ)
η′′ζ′′(θ

′′)G>Tζ′′ (−q)
]

(2.66)

where the sum is over indices absent on the LHS as well as q that includes the frequency and

the associated angle θ′′; in particular, γ, γ′, δ, and δ′ are internal spin indices. The trace is over

the spin indices. The complexity of the expressions illustrates the advantage of the diagrammatic

technique for keeping track of indices, e.g. the spin indices are summarized in Figure 2.7. Writing

out the full term is however helpful to justify why we chose the singlet/triplet decomposition of

interactions in (2.63), which is forced upon us by the RG: this is the only way we can factor out
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Figure 2.7: The one-loop ladder diagram with spin indices written out corresponding to Eq. (2.66).

[
Σ

(`µ)†
ηζ (θ)

]
αβ

[
Σ

(`µ)
η′ζ′ (θ

′)
]
α′β′

from the sum and obtain interaction with the same spin structure.

Matching the coupling constants, we thus find that

dg
(`µ)
ηζ;η′ζ′ = g

(`µ)
ηζ;η′′ζ′′g

(`µ)
η′′ζ′′;η′ζ′dΠ̄

(`µ)pp
η′′ζ′′ (2.67)

from which we get the beta function

ġ
(`µ)
ηζ;η′ζ′ =

dg
(`µ)
ηζ;η′ζ′

dt
= g

(`µ)
ηζ;η′′ζ′′g

(`µ)
η′′ζ′′;η′ζ′

dΠ̄
(`µ)pp
η′′ζ′′

dt
(2.68)

where we defined the dot to indicate differentiation with respect to the RG time t, and introduced

the (infinitesimal, angle averaged) particle-particle bubble or pairing susceptibility

dΠ̄
(`µ)pp
η′′ζ′′ = T

∑
Tr
[
Σ

(`µ)†
η′′ζ′′(θ

′′)G>η′′(q)Σ
(`µ)
η′′ζ′′(θ

′′)G>Tζ′′ (−q)
]

(2.69)

The structure of the bubble explains why we do not need to consider interactions with multiple irrep

or orbital indices `: assuming the band structure itself respects the symmetry of the system, the

Green’s functions always belong to the trivial representation. For example in a rotationally invariant

system, the Green’s function is independent of the angle θ′′. As a result, the sums

T
∑

Tr
[
Σ

(`µ)†
η′′ζ′′(θ

′′)G>η′′(q)Σ
(`′µ)
η′′ζ′′(θ

′′)G>Tζ′′ (−q)
]

= 0 (2.70)

if ` 6= `′ by the choice of Σ(`µ). Similarly, if we assume the system has spin-rotation symmetry, the
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Green’s functions are proportional to the identity matrix in spin indices, and we end up with

Tr
[
Σ

(`µ)†
η′′ζ′′(θ

′′)Σ
(`ν)
η′′ζ′′(θ

′′)
]
∝ Tr [σµσν ] = 2δµν (2.71)

Note that in this case the singlet and each of the three triplets interactions decouple in the flow

equation. Spin rotation moreover forces each of the triplets to be degenerate, i.e. g
(`x)
ηζ;η′ζ′ = g

(`y)
ηζ;η′ζ′ =

g
(`z)
ηζ;η′ζ′ . The three triplets therefore constitute a single triplet channel. If spin is not conserved, the

Green’s functions are not proportional to the identity, which both lifts the degeneracy of the triplets

and can mix them with the singlet channel.

In principle we can add SOC in the RG analysis, but here we will only consider the case where

the Green’s functions are proportional to the identity in spin indices. In this case,

dΠ̄
(`µ)pp
ηζ = 2

∫ 2π

0

∣∣∣Θ(`µ)
ηζ (θ)

∣∣∣2 dΠpp
ηζ(θ)

dθ

2π
(2.72)

where

dΠpp
ηζ(θ) = T

∑
ω,|q|

G>η (q)G>ζ (−q) (2.73)

is the angle resolved (infinitesimal) particle-particle bubble (note the factor of two due to the trace).

The Green’s functions are simply

G>η (q) =
θ>Λ (εη(q))

iωn − εη(q)
(2.74)

so that

dΠpp
ηζ(θ) = T

∑
n,|q|

θ>Λ (εη(q))θ>Λ (εζ(−q))

(iωn − εη(q))(−iωn − εζ(−q))
=

= −
∑
|q|

nF (εη(q))− nF (−εζ(−q))

εη(q) + εζ(−q)
θ>Λ (εη(q))θ>Λ (εζ(q)) =

= −1

2

∑
|q|

tanh
βεη(q)

2 + tanh
βεζ(q)

2

εη(q) + εζ(q)
θ>Λ (εη(q))θ>Λ (εζ(q)) (2.75)

There are two cases: either εη(q) = εζ(q) = Λ at the same q, or they do not. In the latter case, the
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particle-particle bubble vanishes. In the former, we have

dΠpp
ηζ(θ) = −

tanh βΛ
2

2Λ

∑
|q|

θ>Λ (εη(q))θ>Λ (εζ(q)) (2.76)

To account for a possible difference in DOS’s on the η and ζ pockets, note that

εη(q) + εζ(q) =
|q|2

2mη
+
|q|2

2mζ
− µη − µζ =

|q|2

Mηζ
− µη − µζ (2.77)

with the reduced mass Mηζ =
2mηmζ
mη+mζ

, so that the effective DOS is
Mηζ

π =
2NηNζ
Nη+Nζ

where Nη is the

DOS of the η pocket. We finally have

dΠpp
ηζ(θ) ≈ −

2NηNζ
Nη +Nζ

tanh βΛ
2

2Λ
dΛ = − NηNζ

Nη +Nζ
tanh

βΛ

2
dt (2.78)

Assuming the DOS are isotropic, we have

dΠ̄
(`µ)pp
ηζ = dΠ̄pp

ηζ = − 2NηNζ
Nη +Nζ

tanh
βΛ

2
dt (2.79)

(if DOS’s are not isotropic, the expression is roughly correct for an average DOS, but note that we

cannot in general drop the ` and µ indices). Finally, we define

g̃
(`µ)
ηζ;η′ζ′ =

√
2NηNζ
Nη +Nζ

√
2Nη′Nζ′

Nη′ +Nζ′
g

(`µ)
ηζ;η′ζ′ (2.80)

to obtain the one loop RG flow equation for the pairing interactions:

˙̃g
(`µ)
ηζ;η′ζ′ = − tanh

βΛ

2
g̃

(`µ)
ηζ;η′′ζ′′ g̃

(`µ)
η′′ζ′′;η′ζ′ (2.81)

Example 2.1 (Single Band Case: the BCS Instability and Tc)

In general, (2.81) is a matrix equation that for multiple band systems requires ‘diagonalizing’ in the

pocket indices. It is instructive to consider the single band case, for which the RG flow equation

(2.81) is particularly simple:

˙̃g(`µ) = − tanh
Λ

2T

(
g̃(`µ)

)2

(2.82)

Note that we are also rescaling the temperature T → %T = (1 + dt)T at each RG step, so it is also
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flowing as

Ṫ = T (2.83)

so in terms of the ‘lab’ units T = T0e
t, so the flow equation for g̃(`µ) becomes6

˙̃g(`µ) = − tanh

[
Λ

2T0
e−t
](
g̃(`µ)

)2

(2.84)

The flow equation has a formal solution

g̃(`µ)(t) =
g̃

(`µ)
0

1 + g̃
(`µ)
0

∫ t
0

tanh
[

Λ
2T0

e−t′
]
dt′

(2.85)

Considering first the T = 0 limit, the flow is simply

˙̃g(`µ) = −
(
g̃(`µ)

)2

(2.86)

If g̃(`µ) ≥ 0 (repulsive), then it will be exponentially suppressed, i.e. it is irrelevant in the RG sense(a

result due to [114]). If g̃(`µ) < 0, however, the coupling constant grows and eventually diverges, i.e.

it is relevant in the RG sense. The solution is in general

g̃(`µ)(t) =
g̃

(`µ)
0

1 + g̃
(`µ)
0 t

(2.87)

which for a negative g̃
(`µ)
0 diverges at a finite value of tc = − 1

g̃
(`µ)
0

with corresponding energy scale

Ec = Λe
− 1

g̃
(`µ)
0 . Note that the instability happens first for the strongest coupling g(`µ), and we can

ignore the rest since they are finite at tc. As long as at least one g̃
(`µ)
0 is attractive, we thus find

that the RG fixed point we considered above is unstable. This is the BCS instability of the Fermi

liquid phase. Notice that unlike the particle-hole instability, all that is required is that the Fermi

surface is symmetric under momentum inversion p→ −p.

At finite T , changing the variable to x = Λ
T0
e−t, we find that the equation for Tc is [162]:

∫ Λ
2Tc

0

tanhx

x
dx = − 1

g̃
(`µ)
0

(2.88)

6Note that we could have adapted a scheme in which we do not rescale the cutoff at each stage of RG and keep
the energy units fixed, in which case the cutoff would flow as Λ = Λ0e−t. This results in the same flow.
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which is the standard BCS equation for Tc. For Tc � Λ,

Tc =
2eγ

π
Λe1/g̃

(`µ)
0 ≈ 1.13Λe1/g̃

(`µ)
0 (2.89)

�

which is therefore a valid solution in the weak coupling limit (γ ≈ 0.577 is the Euler-Mascheroni

constant).

Observe that since we can integrate the flow equation, we effectively performed a full renormal-

ization, within logarithmic accuracy. This is in part because the diagrams involved are particularly

simple, as we have only ladder diagrams. This allows us to compute the correction in RG to all

loops iteratively, but note that higher loops add powers of dΛ to each diagram, and as a result only

the one loop diagram contributes to the beta function within logarithmic accuracy. In the full renor-

malization calculation, the diagrams being summed are the same but the sums are not restricted to

be in a thin shell, i.e. we sum down to zero energy. We can sum all the diagrams using the Dyson

equation (see Figure 2.6), and not surprisingly we get exactly

g(`µ) =
g

(`µ)
0

1− g(`µ)
0 Πpp

(2.90)

with

Πpp = −N
∫ Λ

2T

0

tanhx

x
dx ≈ −N log

1.13Λ

T
(2.91)

being the full particle-particle bubble that we can obtain from Eq. (2.75) by replacing θ>Λ with

θ<Λ . In regular field theory, what we are computing is in fact the four-point or two particle Green’s

function and what we find is that after renormalizing, it has a pole at which is diverges. Notice the

importance of the logarithmic divergence of the susceptibility as T → 0, as it means that there is

a pole for an arbitrarily small bare effective attraction. Note that a pole of the four point Green’s

function determines a dispersion of a two-particle excitation. This means that the instability of the

fixed point of RG against pairing interactions is indicating that two-particle excitations are going to

appear. This suggest that similarly to adding the j̄d term to study single particle excitations with

an auxiliary fermionic field j, we should now add something like ∆̄dd with an auxiliary bosonic field

∆.
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2.1.5 Adding Vertices: Hubbard-Stratonovich and a New Fixed Point

Having found that the Fermi liquid fixed point is unstable towards pairing interactions, let us see

what symmetry breaking phase (new fixed point) this instability is pointing to. As we saw, the 1L

RG essentially forces us to consider interactions of the form

SV [d, d̄] = T 3
∑

`,µ,n,n′,p,k
ηζη′ζ′αβα′β′

g
(`µ)
η′ζ′;ηζ

[
d̄kη′α′

[
Σ

(`µ)∗
η′ζ′ (θ′)

]
α′β′

d̄−kζ′β′

] [
d−pζβ

[
Σ

(`µ)
ηζ (θ)

]
αβ
dpηα

]

= T
∑

`,µ,p,k
ηζη′ζ′

g
(`µ)
η′ζ′;ηζΦ̄

(`µ)
η′ζ′ (k)Φ

(`µ)
ηζ (p), (2.92)

combining Eq.’s (2.61) and (2.63). The main thing to note is that the interactions split into ‘fields’

Φ
(`µ)
ηζ (p) that only carry incoming or only outgoing indices, in terms of which it is just a quadratic

form. Physically, since these are attractive interactions, we expect bound state (i.e. the Cooper

pairs) to appear when they diverge, and we expect the many body state of the system to be properly

described in terms of these bound states rather than the original single particle states.

We thus want to think of the interaction term as a propagator for these bound states that

mediate the interactions. This can be achieved by using the bosonic version of the generating

functional identity (2.18) that we used when studying the linear response:

∫
e−

∑
IJ āIV

−1
IJ aJ e

∑
I(Φ̄IaI+āIΦI)DaDā

2πi
=
e−

∑
IJ Φ̄IVIJΦJ

det [V −1]
(2.93)

with auxiliary complex fields a. The only difference is that the fields are now complex rather than

Grassmann numbers, and the determinant is divided by rather than multiplied by on the RHS as a

result. Using it in reverse, we can replace SV [d, d̄] with

SV [d, d̄, a, ā] =
β

2

∑
`,µ,p,k
ηζη′ζ′

[
∆̄

(`µ)
η′ζ′ (k)

]
α′β′

[
V −1(p; k)

]η′ζ′;α′β′
ηζ;αβ

[
∆

(`µ)
ηζ (p)

]
αβ

+

+
T

2

∑
`,µ,p
ηζαβ

([
∆

(`µ)
ηζ (p)

]
αβ
d̄pηαd̄−pζβ + c.c.

)
(2.94)

where we introduce the gap functions for the (`µ) channels

∆
(`µ)
ηζ (p) = Σ

(`µ)∗
ηζ (θ)D

(`µ)
ηζ (2.95)
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Figure 2.8: Diagrammatic representation of the Hubbard-Stratonovich transformation, in which
interactions between fermions are replaced by a bosonic field ∆ with a propagator V equal to the
original coupling.

with momentum independent coefficients D
(`µ)
ηζ (the 1/2 is convenient for the BdG formalism, see

below). Here β = 1/T and the definition of the inverse is

∑[
V −1(p; q)

]η′ζ′;α′β′
η′′ζ′′;α′′β′′

V η
′′ζ′′;α′′β′′

ηζ;αβ (q; k) = δηη′δζζ′δkp, (2.96)

The Hubbard-Stratonovich transformation of SV thus re-expresses the interactions in terms of boson

∆ with propagator V (see Figure 2.8). Notice that it is now quadratic in the fermionic operators,

and we can therefore carry out the Gaussian integral to obtain an action just for the new bosonic

fields D (or ∆).7

Before integrating out the fermions, note that we effectively modified the quadratic part of the

fermionic action, which now reads

S0[d, d̄] + S∆[d, d̄,∆, ∆̄] =
T

2

∑
npηαζβ

θ−1
Λ (p)Ψ̄pηα

[
−iωn +H(BdG)

ηζ (p)
]
αβ

Ψpζβ (2.97)

where we introduce the Nambu spinors Ψpηα = (dpηα, d̄−pηα)T and the Bogolyubov-de Gennes

(BdG) Hamiltonian

H(BdG)
ηζ (p) =

 Hη(p)δηζ ∆ηζ(p)

∆†ηζ(p) −HTζ (−p)δηζ

 (2.98)

with ∆ηζ(p) =
∑
`µ ∆

(`µ)
ηζ (p). This means that the Green’s function now has an anomalous compo-

7RG flow of the interactions can actually be analyzed after the Hubbard-Stratonovich transformation, see for
example [17].
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nent

Gηζ(iωn,p) =
(
iωn −H(BdG)(p)

)−1

ηζ
=

 Gηζ(iωn,p) Fηζ(iωn,p)

F †ηζ(iωn,p) −GTηζ(−iωn,−p)

 (2.99)

Using the special case of the Woodberry matrix identity, (A+B)−1 = A−1 −A−1B(A+B)−1 with

A = H(BdG)
∣∣
∆=0

, we find

Fηζ(iωn,p) = G(0)
η (iωn,p)∆ηζ′(p)GTζ′ζ(−iωn,−p) (2.100)

where G
(0)
η (iωn,p) is the Green’s function with ∆ηζ(p) = 0.8 Recall that (Eq. (2.21))

Fηζ;αβ(iωn,p) = −〈dpηαd−pζβ〉 ≈ G(0)
η (iωn,p)∆ηζ(p)G

(0)T
ζ (−iωn,−p) ∼ [∆ηζ(p)]αβ (2.101)

with ∼ indicating that LHS vanishes if the RHS does.

We arrive at an important conclusion that a non-zero value of the bosonic fields ∆, which is

called the gap functions, signals a non-zero expectation value of a pair of single particle fields in the

ground state. The anomalous Green’s function F = −〈dpηαd−pζβ〉 is therefore an order parameter

of the superconducting phase that is non-zero inside the phase and zero outside. In this case the

type of order is sometimes called the off-diagonal long-range order (ODLRO) (in 2D it is strictly

speaking long range only at zero temperature due to the Mermin-Wagner theorem). Note that F is

complex, but its overall phase is arbitrary. The fact that the phase is the same for all Cooper pairs

indicates that a U(1) symmetry is broken.

Returning now to integrating out the fermions, instead of integrating them all at once, we can

again treat (2.97) using RG. An alternative point of view, which gives the same answer, is that we

start with the action before the Hubbard-Stratonovich, but introduce an external vertex ∆d̄d̄ and

compute its RG flow This means adding a new object to the diagrammatics corresponding to the

vertex, shown in Figure 2.9. Fortunately, we do not need to do many new calculations. The one

loop correction is already in 〈SI〉> and writing out the diagrams we note that they are the same as

for the pairing interactions with one interaction line replaced with the anomalous Green’s function

F (see Figure 2.9). Very generally, we find that the one loop correction is

8When only SC or only PDW is present, the BdG Hamiltonian is block diagonal, and the same follows from the
2× 2 block matrix inverse formula. One version of that formula is(

A B
C D

)−1

=

(
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
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Figure 2.9: The vertex renormalization to one loop. Note that they can be obtained from the
renormalization for the interactions by ‘collapsing’ the left part of the interactions into the vertex.

[δ∆ηζ(p)]αβ = T
∑

V η
′ζ′;α′β′

ηζ;αβ (p; k) [Fη′ζ′(k)]α′β′ (2.102)

= T
∑

V η
′ζ′;α′β′

ηζ;αβ (p; k)
[
G

(0)
η′ (iω,k)∆η′ζ′(k)GTζ′(−iω,−k)

]
α′β′

Considering the case when spin is conserved, we immediately conclude by plugging in (2.63) or

simply by comparison with (2.81) that

∆ηζ(p) =
∑
`µ

∆
(`µ)
ηζ (p) = Σ

(`µ)
ηζ (θ)D

(`µ)
ηζ (2.103)

where D
(`µ)
ηζ are complex numbers independent of momentum that flow under RG as

˙̃D
(`µ)
ηζ = − tanh

[
βΛ

2

]
g̃

(`µ)
ηζ;η′ζ′D̃

(`µ)
η′ζ′ (2.104)

where

D̃
(`µ)
ηζ =

√
2NηNζ
Nη +Nζ

D
(`µ)
ηζ (2.105)

and recall that temperature is flowing as T = T0e
t. This is a matrix equation in pocket indices,
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and as long as it has a positive eigenvalue, D
(`µ)
η′ζ′ is relevant in RG. It can be seen that the same

`µ channel is selected by both the interactions and the vertex flow, which determines the functional

form of the gap function ∆. Thus we conclude the Fermi liquid is unstable to a small perturbation

introducing a small Cooper pair condensate. In this case, however, we can completely integrate

out the fermions from low energy sector. The new fixed point is obtained by solving the full gap

equation, which is just the mean field equation that we will use in Chapter 4.

2.2 RG Analysis of 1H-TMDs and Related Systems

Having developed the RG formalism, we want to apply it to the specific system of interest, the metal-

lic 1H transition metal dichalcogenides (TMDs) like NbSe2. As discussed in Chapter 1, 1H-NbSe2

has three hole pockets centered at η, ζ = Γ,±K. We interchangeably use η = 0,±1 corresponding

to the ηK point, with 0K = Γ. Note that 3K = Γ. By p and k we will mean the small momenta

measured relative to the pocket centers (so the total momentum is P = p + ηK). Note that the RG

analysis depends only on the ‘fermiology,’ i.e. the Fermi surface structure, and so it applies to any

system with a similar Fermi surface structure.

The 1H TMDs have strong SOC as discussed above, but we will not include it in our RG. This

can be justified if, as we found above, the RG instability happens at a finite RG ‘time’ tc at which

the cutoff has been rescaled down to Λ = Λ0e
−tc in lab units. If the rescaled Λ is much larger

than the energy scale βSOC associated with the SOC, then the SOC can be safely neglected. If

it is not, then in the spirit of the two-step RG approach we can simply keep the channel that

grows fastest while neglecting the SOC, and then include SOC in the mean field approximation in

Chapter 4 and Chapter 5, for which the rescaled Λ sets the new cutoff. In principle the RG with

SOC included is not much more difficult numerically, but since the number of Fermi surfaces then

doubles it becomes less tractable analytically. The mean field approach is also more accommodating

to studying the suppression of the logarithm in the susceptibility due to symmetry breaking terms,

and it is equivalent to the RG calculation when only one instability is present.

The fact that all pockets are hole pockets in TMDs implies that only pairing or particle-particle

instabilities of the Fermi surface are possible within logarithmic accuracy (unlike the case considered

in [192]). Interestingly, a CDW is nevertheless observed in, e.g. 1H-NbSe2 [117], which is therefore

likely to be a high energy phenomenon, i.e. not a Fermi surface instability [11, 73, 72]. It has been

argued that the CDW is a result of a structural change (which involves lattice degrees of freedom

that we have ignored) [72]. We note that RG has also been done in TMDs with no Γ pocket, e.g.
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for doped MoS2 [67], but the authors had to go to two loops to find an attractive channel (i.e. they

considered the Kohn-Luttinger mechanism) which usually gives a low Tc. Here we will show that

attraction is possible with entirely repulsive interactions already at one loop even in that system.

The analysis is based on [153].

2.2.1 The Interactions

We will carry out the analysis for the general form of the pairing interactions (2.61)-(2.63), but it is

instructive to first consider a more physically motivated model of interactions. As we saw in the RG

calculation, interactions that depend on the radial component of the momentum are irrelevant in the

RG sense. The most local interactions are the on-site density-density interactions Unj↑ni↓ where i

is the lattice site index and niα = d̄iαdiα; i.e. this is the Hubbard model. In an extended Hubbard

model we may in addition consider interactions between nearest neighbors, V niαnjβ (where now

all spin combinations are allowed). Recently, it has been proposed that spin fluctuations of the

form JSi · Si with Sji = d̄iασ
j
αβdjα can also be significant [184]. The corresponding interactions

in momentum space are nearly isotropic in the small momenta (i.e. expanded around the pocket

centers), and higher order harmonics generally carry powers of momentum and are thus expected to

be irrelevant in the RG sense. In other words, we expect that the leading interactions are constant

in the small momenta.

There are as a result only eight interaction processes allowed by momentum conservation, shown

in Figure 2.10. Four of these correspond to interactions between pairs of electrons with zero total

momentum and that lead to the superconducting instability: intrapocket density-density g1 at Γ,

interpocket density-density g2 at ±K, exchange g3 between ±K, and pair-hopping g4 between Γ

and ±K. The other four are interactions between electrons with a total momentum ±2K = ∓K:

intrapocket h1 at ±K, interpocket h2 between Γ and ±K, exchange h3 between Γ and ±K, and h4

scattering a pair at Γ and ±K to a pair at ∓K (the latter is allowed by Umklapp because 3K = 0).

We also represent the eight processes using Feynman diagrams in Figure 2.11.

Since we already concluded above that only pairing instabilities are possible, we write out the

interactions in terms of pair operators:

HSC =
∑
αβ

(g1d̄kΓαd̄−kΓβdpΓβd−pΓα + g2d̄kKαd̄−k−Kβdp−Kβd−pKα

+ g3d̄kKαd̄−k−KβdpKβd−p−Kα + g4d̄kΓαd̄−kΓβdpKβd−p−Kα) + h.c. (2.106)
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Figure 2.10: Interaction channels gn and hn shown in the Brillouin zone. Arrows indicate which
pocket the fermions start and end on before and after interacting, with the arrow’s head representing
an electron creation operator at a momentum k (relative to the pocket center), and the arrow’s end
representing an electron annihilation operator at a different momentum p (relative to the pocket
center).

Figure 2.11: Feynman diagrams corresponding to the eight interaction processes in Figure 2.10.
Green, blue and red colors correspond to Γ, K and −K pockets respectively.
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and

HPDW =
∑
αβ

(h1d̄kKαd̄−kKβdpKβd−pKα + h2d̄kΓαd̄−k−Kβdp−Kβd−pΓα

+ h3d̄kΓαd̄−k−KβdpΓβd−pΓα + h4d̄kKαd̄−kKβdpΓβd−p−Kα) + h.c.+K ↔ −K

(2.107)

Note that because HPDW only involves interactions between pairs with a total momentum ±2K, the

corresponding instability they lead to is a pair density wave (PDW), a pairing instability in which

the Cooper pairs have a total momentum ±2K. Similarly, HSC can only lead to uniform SC.

We assumed furthermore that the interactions originate in the charge channel, i.e. they are all

of the form

H ∼ δαα′δββ′ d̄kη′α′ d̄−kζ′β′d−pζβdpηα (2.108)

Here we expect only pairing instabilities, based on the general RG analysis, and we therefore need

to switch to the singlet/triplet decomposition. To do this we use the completeness relation

2δαα′δββ′ =
∑
µ

[iσyσµ]αβ
[
(iσyσµ)†

]
α′β′

(2.109)

Now, for j = x, y, z

∑
pαβ

[
iσyσj

]
αβ
d−pΓβdpΓα = −

∑
pαβ

[
iσyσj

]
αβ
dpΓαd−pΓβ =

= −
∑
pαβ

[
iσyσj

]
βα
d−pΓβdpΓα = −

∑
pαβ

[
iσyσj

]
αβ
d−pΓβdpΓα → 0 (2.110)

where we relabeled p → −p and α ↔ β going from the first to second line and then used iσyσj =

(iσyσj)T . The arrow indicates that we can take the term to zero after anti-symmetrizing. So the

g1, g4, h1 and h4 interactions are all singlet interactions. In particular this would be the case for a

single band system with only the Γ pocket. But we cannot conclude this for g2 and g3 (or h2 and

h3), because under anti-symmetrization they are mapped into each other rather than themselves.
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In particular, anti-commutation implies

δαα′δββ′
(
g2d̄kKα′ d̄−k−Kβ′dp−Kβd−pKα + g3d̄kKα′ d̄−k−Kβ′dpKβd−p−Kα

)
=

=
g2 + g3

4
(iσy)αβ(iσy)α′β′ d̄−k−Kβdp−Kβd−pKα +

+
g2 − g3

4

∑
j=x,y,z

(σjiσy)αβ(σjiσy)∗α′β′ d̄kKαd̄−k−Kβdp−Kβd−pKα

with the rest of the pocket index combinations then obtained by anti-symmetrizing, and the same for

h2 and h3. The lesson is that uniform interactions on a triangular lattice with disconnected Fermi

surfaces related by momentum inversion lead to triplet interactions. Physically, this is because there

is an extra index we can anti-symmetrize in instead of spin (either lattice site or pockets index).

Triplet interactions are present already in the extended Hubbard model in the nearest-neighbor

density-density interactions, and they were shown to be enhanced by spin fluctuations [184]. In the

absence of SOC, triplet interactions could lead to a spin-triplet SC phase, similar to that previously

found theoretically in graphene in [57, 200]; more recently it was found in bilayer TMDs in [75]

(where again spin fluctuations were argued to stabilize the phase).

Since there are triplet interactions in the system, we need to include such interactions also in

the g1 . . . terms in order to avoid an artificial vanishing of the order parameters. At that stage we

may as well consider all possible lattice harmonics of the D3h point group with an arbitrary angular

dependance, i.e. take the Hamiltonian in the (2.63) form:

HV =
1

2

∑
p,k

ηζαβα′β′

V η
′ζ′;α′β′

ηζ;αβ (p; k)d̄kη′α′ d̄−kζ′β′d−pζβdpηα (2.111)

with (reproducing Eq. (2.63))

V η
′ζ′;α′β′

ηζ;αβ (p,k) = V η
′ζ′;α′β′

ηζ;αβ (θ, θ′) =
∑
`µν

g
(`µ)
η′ζ′;ηζ

[
Σ

(`µ)
ηζ (θ)

]
αβ

[
Σ

(`µ)∗
η′ζ′ (θ′)

]
α′β′

(2.112)

where

Σ
(`µ)
ηζ (θ) = Θ

(`µ)
ηζ (θ)iσyσµ (2.113)

are now lattice harmonics for theD3h point group of the 1H-TMDs. The leading harmonics belonging

to irreducible representations that correspond to the momentum independent interactions are listed

in Table 2.1. These happen to be in the trivial A′1 and the two dimensional E′′ irreps. Note that
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singlet and triplet terms can belong to the same irreps since D3h is non-centrosymmetric. Since we

are ignoring SOC here, however, the point group is effectively D6h and the µ channels will decouple,

so we keep that label separately, while ` still labels the D3h irrep (note that for 2D irreps, there are

two components with an additional label m = x, y).

`(D3h) Σ
(`0)
ηη Σ

(`j)
ηη

A′1 iσy
√

2 cos 3θpσ
ziσy

E′′(m = x)
√

2 cos 3θpσ
xiσy

E′′(m = y)
√

2 cos 3θpσ
yiσy

`(D3h) Σ
(`0)
ηζ 6=η Σ

(`j)
ηζ 6=η

A′1 iσy εηζσ
ziσy

E′′(m = x) εηζσ
xiσy

E′′(m = y) εηζσ
yiσy

Table 2.1: Leading terms Σ
(`µ)
ηζ (p) for singlet (µ = 0) and triplet (µ = j = x, y, z) interactions in

Eq. (2.112) for η = ζ and η 6= ζ, where εηζ is the Levi-Civita symbol. θp is the angle made by the
small momentum p measured from the K direction. Note that there are no singlet interactions in
the E′′ irrep in 2D.

As written, the coupling constants g
(`µ)
ηζ;η′ζ′ are somewhat redundant and not very transparent, and

it still helps to think in terms of g1, g2, g3, g4 and h1, h2, h3, h4 processes. Note also that momentum

conservation also implies that η + ζ = η′ + ζ ′ (modulo 3), for example a KΓ→ ΓΓ process is ruled

out and some of the g
(`µ)
ηζ;η′ζ′ vanish. We define the η = ζ processes as g

(`µ)
n and the η = ζ ± 1

processes as h
(`µ)
n with n = 1, 4, and 23 as summarized in Table 2.2. In that convention, we then

have g
(A′1,0)
n = gn and h

(A′1,0)
n = hn for n = 1, 4 but

g
(A′1,0)
23 =

g2 + g3

2
h

(A′1,0)
23 =

h2 + h3

2

g
(A′1,j)
23 = g

(E′′,j)
23 =

g2 − g3

2
h

(A′1,j)
23 = h

(E′′,j)
23 =

h2 − h3

2
(2.114)

with j = x, y, z. Note that the general model we consider includes not just these but all possible

pairing terms that can come from other contributions.

g
(`µ)
η,−η;ζ,−ζ η = 0 η = ±1

ζ = 0 g
(`µ)
1 g

(`µ)
4

ζ = ±1 g
(`µ)
4 g

(`µ)
23

g
(`µ)
±1+η,±1−η;±1+ζ,±1−ζ η = 0 η = ±1

ζ = 0 h
(`µ)
1 h

(`µ)
4

ζ = ±1 h
(`µ)
4 h

(`µ)
23

Table 2.2: Correspondence between coupling constants g
(`µ)
n and g

(`µ)
ηζ;η′ζ′ . η + ζ = η′ + ζ ′ = 0 (left

side) correspond to interactions between pairs with total zero momentum that lead to uniform SC,
while η + ζ = η′ + ζ ′ = ±2 = ∓1 modulo 3 (right side) correspond to interaction between pairs
with total momentum ±2K = ∓K and lead to PDW with that momentum. n = 1 corresponds
to intrapocket interactions, n = 23 are interpocket interactions (including exchange interactions by

antisymmetrization), g
(`µ)
4 are pair hopping interactions, and h

(`µ)
4 is the Umklapp process.
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For the RG flow, recall that it is convenient to use the dimensionless coupling constants scaled

by the DOS Nη =
mη
4π as follows:

g̃
(`µ)
1 = NΓg

(`µ)
1 , g̃

(`µ)
4 =

√
NΓNKg

(`µ)
4 , g̃

(`µ)
23 = NKg

(`µ)
23

h̃
(`µ)
1 = NKh

(`µ)
1 , h̃

(`µ)
4 =

√
2NΓN2

K

NΓ+NK
h

(`µ)
4 , h̃

(`µ)
23 = 2NΓNK

NΓ+NK
h

(`µ)
23

On physical grounds, we still expect interactions to decrease in strength with higher harmonics and

the corresponding coupling constants to be small.

2.2.2 RG Flow for Interactions

With the interactions in place, we can write out the RG flow for the interactions as given in Eq.

(2.81):

˙̃g
(`µ)
ηζ;η′ζ′ = − tanh

βΛ

2
g̃

(`µ)
ηζ;η′′ζ′′ g̃

(`µ)
η′′ζ′′;η′ζ′ (2.115)

Note that momentum conservation implies that η + ζ = η′ + ζ ′ = η′′ + ζ ′′, which means that the

g
(`µ)
n and h

(`µ)
n decouple into the SC and two PDW channels as expected. Due to the absence of

particle-hole logarithm, only ladder diagrams contribute (the pRG is in this case equivalent to RPA).

Their flows are thus

Figure 2.12: The diagrams for one loop corrections to SC interactions in RG. PDW flow is the same
with g → h and momenta on each leg shifted by K or −K. Green, blue and red colors correspond
to Γ, K and −K pockets respectively.
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˙̃g
(`µ)
1 = − tanh

βΛ

2

[(
g̃

(`µ)
1

)2

+ 2
(
g̃

(`µ)
4

)2
]

˙̃g
(`µ)
23 = − tanh

βΛ

2

[
2
(
g̃

(`µ)
23

)2

+
(
g̃

(`µ)
4

)2
]

˙̃g
(`µ)
4 = − tanh

βΛ

2
(g̃

(`µ)
1 + 2g̃

(`µ)
23 )g̃

(`µ)
4 (2.116)

and

˙̃
h

(`µ)
1 = − tanh

βΛ

2

[(
h̃

(`µ)
1

)2

+ 2
(
h̃

(`µ)
4

)2
]

˙̃
h

(`µ)
23 = − tanh

βΛ

2

[
2
(
h̃

(`µ)
23

)2

+
(
h̃

(`µ)
4

)2
]

˙̃
h

(`µ)
4 = − tanh

βΛ

2
(h̃

(`µ)
1 + 2h̃

(`µ)
23 )h̃

(`µ)
4 (2.117)

The corresponding diagrams are shown in Figure 2.12. Notice that the SC and the PDW channels

are mathematically the same and related by a total momentum shift of K, as are each of the (`µ)

channels. It therefore suffices to solve the generic equation

ḟ1 = −f2
1 − 2f2

4

ḟ23 = −2f2
23 − f2

4

ḟ4 = − (f1 + 2f23) f4 (2.118)

Eq. (2.118) has a simple analytical solution, which we can obtain by switching to “cylindrical

coordinates”

z = 2f23 + f1 r cos θ = f4 r sin θ = 2f23 − f1 (2.119)

The flow equation then becomes

ż = −z
2

2
− r2

2
(1 + 7 cos2 θ) (2.120)

ṙ = −rz (2.121)

θ̇ = 0 (2.122)

We see that one channel, parametrized by θ, is not renormalized. The reason for this will be more

clear once we write down the vertex flow equation: there are only two independent order parameters
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rather than three, but there is redundancy due to particle-hole symmetry (PHS). The other two

channels are easy to decouple into

γ̇± = γ2
± (2.123)

where

γ± = −1

2

(
z ∓ r

√
1 + 7 cos2 θ

)
=
−f1 − 2f23 ±

√
(f1 − 2f23)

2
+ 8f2

4

2
(2.124)

Restoring the indices we thus conclude that the RG channels are

γ(`µ±) = −
tanh βΛ

2

2

(
g̃

(`µ)
1 + 2g̃

(`µ)
23 ∓

√(
g̃

(`µ)
1 − 2g̃

(`µ)
23

)2

+ 8
(
g̃

(`µ)
4

)2
)

(2.125)

for SC and

κ(`µ±) = −
tanh βΛ

2

2

(
h̃

(`µ)
1 + 2h̃

(`µ)
23 ∓

√(
h̃

(`µ)
1 − 2h̃

(`µ)
23

)2

+ 8
(
h̃

(`µ)
4

)2
)

(2.126)

for PDW. Note that γ+ > γ−, which means that γ(`µ+) and κ(`µ+) are always more relevant in the

RG sense than γ(`µ−) and κ(`µ−) respectively, and we can therefore drop the latter. We then can

drop the ± index and simply take γ(`µ+) = γ(`µ) and κ(`µ+) = γ(`µ). Since we did the calculation at

finite temperature, we can also find the critical temperatures of the instabilities from Eq. (2.89):

T (`µ;0)
c ≈ 1.13Λe−1/γ

(`µ)
0 (2.127)

for SC and

T (`µ;±1)
c ≈ 1.13Λe−1/κ

(`µ)
0 (2.128)

for PDW. The (`µ; η) indexing indicates the total pairing momentum is ηK; γ
(`µ)
0 and κ

(`µ)
0 are

respectively the bare value of γ(`µ) and κ(`µ). Note that the same Tc is found in the mean-field

analysis.

Having found the RG channels, we still want to know when they are relevant, i.e. when are

γ(`µ±) > 0 (κ(`µ±) > 0) given the bare values of g̃(`µ) (h̃(`µ)). For this purpose, it is helpful to

interpret the equations for γ(`µ±) (2.125) geometrically in the parameter space of g̃
(`µ)
1 , g̃

(`µ)
23 and
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g̃
(`µ)
4 that defines the RG phase diagram shown in Figure 2.13. The yellow half-cone corresponds to

γ(µ+) = 0: all parameter values inside it are RG irrelevant, while values outside it (e.g. on the cyan

cone) are RG relevant (i.e. it is the separatrix). The arrows indicate the flow of the channels under

RG; along the yellow cone they flow along straight lines towards the fixed point at the origin. The

region outside the yellow cone thus represents the space of coupling constants leading to a Cooper

pairing instability. Surfaces of constant γ(`µ+) in this phase space correspond to cones like the cyan

cone that share the symmetry axis of the yellow cone, shifted along that axis by γ(`µ+) (which is

thus the distance from the tip of the cone to the origin). The non-renormalized channel corresponds

to the azimuthal angle about the symmetry axis of the cones. κ(`µ+) has the same phase diagram

in the space of h̃
(`µ)
1 , h̃

(`µ)
23 , and h̃

(`µ)
4 . To find which instability wins for a given set of bare coupling

constants, we can plot the corresponding cones in the same figure, with the outermost cone thus

corresponding to the leading instability.

Figure 2.13: SC phase diagram in the parameter space of g̃
(`µ)
1 , g̃

(`µ)
23 and g̃

(`µ)
4 showing surfaces

γ(`µ+) = 0 (yellow) and γ(`µ+) > 0 (cyan). The surfaces are half-cones with a common axis g̃
(`µ)
1 =

g̃
(`µ)
23 , g̃

(`µ)
4 = 0 with the distance between the apex and the origin given by γ(`µ+). The yellow cone

therefore separates superconducting and normal phases. The arrows show the direction of the vector(
˙̃g
(`µ)
1 , ˙̃g

(`µ)
23 , ˙̃g

(`µ)
4

)
in (2.116) that show where the coupling constants flow under RG. PDW phase

diagram is the same with g → h, γ → κ. Plotting all the cones for each (`µ) in the same figure, the
outermost cone corresponds to the leading instability.
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The condition for a given γ(`µ+) to be positive is g̃
(`µ)
1 < 0 or g̃

(`µ)
23 < 0 or

(
g̃

(`µ)
4

)2

> g̃
(`µ)
1 g̃

(`µ)
23

(similarly for PDW). It is instructive to consider what this means for the SC instability with dominant

momentum independent interactions. For the singlet µ = 0, the first two conditions simply mean

that the interactions are attractive either at the Γ pocket or between the ±K pockets, as could

be the case with electron-phonon interactions. More interestingly, even if these interactions are

repulsive, an instability remains possible if the pair hopping (of either sign) is sufficiently strong.

This offers a possibility of an effective attraction from purely repulsive interactions, e.g. density-

density interactions, similar to the s± scenario considered in [171, 65]. Importantly, this is a multi-

band effect: a singlet instability from repulsive interactions is impossible in systems without a Γ

pocket, for example (except via the Kohn-Luttinger mechanism, as considered in [67]).

For the triplet channels µ = j = x, y, z with momentum independent interactions at T = 0

γ(`j+) =
NK
2

(−(g2 − g3) + |g2 − g3|) (2.129)

for ` = A′1 or E′′. This is positive as long as g2 < g3. In particular, this can hold for purely repulsive

interactions if the exchange interaction g3 is stronger than g2. In 2D g3 (backscattering) is normally

a two-loop effect, but in our case because of the structure of the Fermi surface (being disconnected

between K and −K) backscattering can already be relevant at one-loop and result in a (f -wave)

triplet instability. The same conclusion holds for systems without Γ pockets.

The same discussion holds for the PDW instabilities with g → h, Γ → K → −K → Γ. In

particular, note that no SC instability can occur from repulsions in the absence of the K pockets.

For PDW, we therefore conclude from the same reasoning that no instability from repulsion can

occur without the Γ pocket. With the Γ pocket, the singlet instability is promoted by the Umklapp

process h4, while the interpocket exchange h3 (which is also effectively a backscattering process)

promotes the triplet instability.

2.2.3 RG Flow for Vertices and the Order Parameters

As discussed in the general presentation of the RG analysis, an instability in the interaction channels

indicates a formation of bound states, in this case the SC or PDW condensate. A differnet approach

to testing symmetry breaking phases in RG is to add vertices of the form

H∆ =
1

2

∑
pαβηζ

[∆ηζ(p)]αβ d̄pηαd̄−pζβ + h.c. (2.130)
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The same kind of anti-commutation analysis we did for interactions shows that after anti-symmetrizing,

the gap functions satisfy

∆ηζ(p) = −∆T
ζη(−p) (2.131)

with the transpose in the spin indices. This is referred to as the particle hole symmetry (PHS) that

encodes the redundancy due to the anti-commutation relations. We found in Eq. (2.103) that

∆ηζ(p) =
∑
`µ

∆
(`µ)
ηζ (p) =

∑
`µ

Σ
(`µ)
ηζ (θ)D

(`µ)
ηζ (2.132)

where D
(`µ)
ηζ are complex numbers that flow under RG according to Eq. (2.104):

˙̃D
(`µ)
ηζ = − tanh

[
βΛ

2

]
g̃

(`µ)
ηζ;η′ζ′D̃

(`µ)
η′ζ′ (2.133)

The basis functions Σ
(`µ)
ηζ (θ) determine the form of the gap function in the corresponding channel.

The µ = 0 terms are the singlet gap function components, while µ = j = x, y, z terms are the triplet

components. The leading basis functions corresponding to momentum independent interactions and

therefore momentum independent gap functions are given in Table 2.1. For completeness, Table 2.3

lists the leading form of the gap functions point in all irreps of D3h. Note that PHS implies that

D
(`µ)
ηζ = D

(`µ)
ζη .

`(D3h) Σ
(`0)
ηη = Θ

(`0)
ηη (θ)iσy Σ

(`j)
ηη = Θ

(`j)
ηη (θ)σjiσy

A
′

1 iσy cos 3θ σziσy

A
′

2 sin 6θ iσy sin 3θ σziσy

A
′′

1 pz cos 3θ iσy pzσ
ziσy, (cos θ σx + sin θ σy) iσy

A
′′

2 pz sin 3θ iσy (sin θ σx − cos θ σy) iσy

E
′

cos 2θiσy, cos θ cos 3θ iσy cos θσziσy

sin 2θiσy, sin θ cos 3θ iσy sin θσziσy

E
′′

pz cos θiσy cos 3θσxiσy, (cos θσx − sin θσy) iσy

pz sin θiσy cos 3θσyiσy, (sin θσx + cos θσy) iσy

Table 2.3: Basis functions Σ
(`µ)
ηη transforming according to listed irreps of D3h. The basis functions

Σ
(`µ)
ηζ with η 6= ζ are the same except cos 3θ → εηζ , sin 6θ = 2 sin 3θεηζ , etc., where εηζ is the

Levi-Civita anti-symmetric symbol.

The gap functions are often themselves referred to as order parameters. Note that ζ = −η

corresponds to pairs with zero total momentum, i.e. the SC state, while ±K + ζ = ±K − η
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corresponds to pairs with a total momentum ±2K = ∓K, i.e. the PDW state. We therefore define

∆(`µ;ζ)
η (p) = ∆

(`µ)
η,−η+2ζ(p) (2.134)

with (`µ; ζ) indicating pairing with total momentum 2ζK, i.e. SC for ζ = 0 and PDW for ζ = ±1.

Correspondingly, we define the D
(`µ;ζ)
η order parameters. Due to momentum conservation, the

(`µ; ζ) channels decouple in the vertex flow equation for different ζ, as they did in the interaction

flow. We can then express the flow equation as a matrix equation for the vector order parameter

D(`µ;ζ) = (D
(`µ;ζ)
K , D

(`µ;ζ)
Γ , D

(`µ;ζ)
−K )T . For the SC channel,

˙̃D(`µ;0) =
d

dt


D̃

(`µ;0)
K

D̃
(`µ;0)
Γ

D̃
(`µ;0)
−K

 = − tanh

[
βΛ

2

]
g̃

(`µ)
23 g̃

(`µ)
4 g̃

(`µ)
23

g̃
(`µ)
4 g̃

(`µ)
1 g̃

(`µ)
4

g̃
(`µ)
23 g̃

(`µ)
4 g̃

(`µ)
23




D̃
(`µ;0)
K

D̃
(`µ;0)
Γ

D̃
(`µ;0)
−K

 (2.135)

To find the RG channels in the vertex flow calculation we thus need to diagonalize the matrix in

(2.135). One advantage over the interaction flow calculation is that matrix diagonalization is a linear

problem and it is easier than solving a non-linear differential equation. In this case it is particularly

simple because the matrix is clearly singular since the top and bottom rows are the same (as are left

and right columns). We can easily see that this corresponds to a zero eigenvalue with eigenvector

(1, 0,−1), i.e. D
(`µ;0)
Γ = 0 and D

(`µ;0)
K = −D(`µ;0)

−K . But this is precisely ruled out by the PHS

condition, i.e. this ‘marginal’ channel is just a result of a redundancy due to anti-commutation

relations. This is precisely the marginal θ channel in (2.120), which we can now conclude must be

marginal to all loops.

We can thus restrict our attention to D
(`µ;0)
K = D

(`µ;0)
−K , which reduces the RG flow to a system

of two equations:

d

dt

 D̃
(`µ;0)
Γ

D̃
(`µ;0)
K

 = − tanh

[
βΛ

2

] g̃
(`µ)
1 2g̃

(`µ)
4

g̃
(`µ)
4 2g̃

(`µ)
23

 D̃
(`µ;0)
Γ

D̃
(`µ;0)
K

 (2.136)

The eigenvalues are

γ(`µ±) = −
tanh βΛ

2

2

(
g̃

(`µ)
1 + 2g̃

(`µ)
23 ∓

√(
g̃

(`µ)
1 − 2g̃

(`µ)
23

)2

+ 8
(
g̃

(`µ)
4

)2
)

(2.137)

i.e. precisely the other two SC channels (2.125), of which γ(`µ+) is the largest. Similarly, we find
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the PDW order parameter flows by taking g → h and Γ→ K:

d

dt

 D̃
(`µ;±1)
K

D̃
(`µ;±1)
Γ

 = − tanh

[
βΛ

2

] h̃
(`µ)
1 2h̃

(`µ)
4

h̃
(`µ)
4 2h̃

(`µ)
23

 D̃
(`µ;±1)
K

D̃
(`µ;±1)
Γ

 (2.138)

with eigenvalues

κ(`µ±) = −
tanh βΛ

2

2

(
h̃

(`µ)
1 + 2h̃

(`µ)
23 ∓

√(
h̃

(`µ)
1 − 2h̃

(`µ)
23

)2

+ 8
(
h̃

(`µ)
4

)2
)
, (2.139)

again precisely the PDW channels (2.126). As before, we keep only the dominant solution and drop

the ± index (so γ(`µ) is understood to be γ(`µ+)).

The chief advantage of looking at the vertex flow is that we also get the form of the gap function

and the order parameters. In particular, we also have the eigenvectors (removing the DOS rescaling)

 D
(`µ;0)
Γ

D
(`µ;0)
K

 ∝
 γ(`µ) + 2g̃

(`µ)
23

−g̃(`µ)
4

√
NΓ

NK

 =

 γ(`µ) + 2NKg
(`µ)
23

−NΓg
(`µ)
4

 (2.140)

For example, we learn immediately how the singlet instability can occur from repulsive interactions

when all coupling constants are positive: in that case the order parameter changes sign between

D
(`µ;0)
Γ and D

(`µ;0)
K . This confirms that the singlet state realized by momentum independent inter-

actions is essentially the s± state [171, 65]. Similarly, for the PDW channels we have

 D
(`µ;±1)
K

D
(`µ;±1)
Γ

 ∝
 κ(`µ) + 2h̃

(`µ)
23

−h̃(`µ)
4

√
NΓ+NK

2NΓ

 (2.141)

and we can make similar conclusions. Note that at this level of analysis, the two PDW are degenerate,

i.e. both instabilities happen simultaneously. In general this will not be the case if we include

subleading (non-logarithmic) corrections, which leads to possible further symmetry breaking. We

analyze this in more detail in Chapter 5.

The actual form of the gap functions is determined by the basis functions Σ
(`µ)
ηζ (θ), and in

particular we find that the momentum-independent pairing interactions lead to either the usual

momentum-independent s-wave singlet type of superconductivity or an A′1 or E′′ f -wave triplets.

For the latter, we can gain some insight into why it is possible by considering the form of the leading

order parameter in the SC case (the PDW case is similar). In particular, consulting with Table 2.1,
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the gap function is

∆η,−η = εη,−ησ
jiσy (2.142)

where ε is the Levi-Civita symbol. The gap is thus non-vanishing only for η = ±K. Note that it is

important that there are two gaps forming the order parameter: ∆K,−K and ∆−K,K . The triplet is

possible because they can have a relative sign between them. Although this is different from the s±

phase, the principle is similar: to make the wave function anti-symmetric, a sign needs to change

somewhere, and here we have an extra degree of freedom to anti-symmetrize in the ‘valley’ index

η. Recently it was suggested that spin fluctuation may be strong in 1H-NbSe2 and that they can

promote triplet pairing [184].

If we try to expand the gap function at the K pockets in the triplet phase to the whole Brillouin

zone,

[∆η,−η(p)]αβ d̄pηαd̄−p−ηβ → ∆αβ(P)d̄Pαd̄−Pβ (2.143)

with P = p + ηK, we would conclude that ∆αβ(P) ∝ cos 3θ with θ measured from the Γ point. The

corresponding subleading gap function in the triplet phase is thus f -wave, at least for the A′1; for E′′,

p-wave components are also possible. Note that since orbital angular momentum is not conserved,

different (same) l’s can belong to the same (different) irreps of D6h (or D3h). In particular, both p-

and f -wave E′′ gaps belong to the E2u irrep of D6h.

This concludes our (parquet) RG analysis of 1H-TMDs. We could of course go on to include

SOC in the analysis, which induces mixing between singlet and triplet gaps that do not belong to

the same irreps, but as mentioned above we will use a mean-field approach to study such mixing in

Chapter 4. The fact that singlet and triplet states can mix and that we found in the RG analysis

that the triplet gap components can be large means that the resulting superconducting state can be

robust against strong in-plane magnetic fields due to the absence of Pauli limiting in that case. It

then becomes interesting to study the superconducting phase in the presence of the magnetic field.

Finally, the fact that the E′′ irrep can be relevant in RG means there is a possibility of additional

symmetry breaking, as we will see.
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Chapter 3

Symmetry Protected Topological
Phases

In this chapter we will consider several examples of topological phases and their topological invariants

that will be relevant to the uniform and non-uniform superconducting (SC) phases we will find

in 1H-TMDs. We will only consider single body Hamiltonians for which topological invariants

are easy to compute and have been classified in various situation (see [30] for a good review).1

The fundamental object of our study will therefore be the two-level spin-1/2 single-body (‘second-

quantized’) Hamiltonian (in momentum space, with periodic boundary conditions assumed most of

the time):

H = Hαβ(p)d̄pαdpβ ≡ ψ†pH(p)ψp (3.1)

with α, β = ±1 for spin up and down respectively and with spinor ψp = (dp↑, dp↓)
T . We will also

refer to the 2 × 2 matrix H as the Hamiltonian, or the (first-quantized) Hamiltonian matrix when

the distinction is important. It can be written very generally as

H(p) = βµ(p)σµ = β0 + β · σ (3.2)

(to conform with the notation in the rest of the thesis). It turns out that topological invariants for

systems with more than two bands (labeled α = 1, 2, 3, . . .) can be computed by considering pairs of

bands at a time, so the results we obtain for the two-level system generalize straightforwardly.

1Note that the two-point Green’s function contains the same information as the single body Hamiltonian, and there
are formulas for the invariants in terms of Green’s functions that we do not present here. In principle higher-order
correlation functions can also have non-trivial topology, and more generally topological invariants can be defined using
the many-body wave-function directly, which requires a new classification [159].
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Chapter 3. Symmetry Protected Topological Phases

As both a warm-up and a way to introduce the notion of topology of a wave-function, we will

first consider a 1D two-level system with mirror symmetry in Section 3.1. The key concept will turn

out to be the Berry connection that encodes the topology of the eigenstates of the Hamiltonian in

a given energy band and which we can use to compute all topological invariants as integrals of the

Berry connection over loops (the Berry phases) and surfaces (the Berry curvature flux). In 2D, the

former yield winding numbers that characterize nodal phases that we discuss in Section 3.2, while

the latter yield Chern numbers that characterize fully gapped phases, discussed in Section 3.3. The

latter is the topological invariant that leads to the quantum hall effect (QHE), which is the only

topological phase that is defined in 2D in the absence of symmetry.

The presence of symmetry can both trivialize topological invariants and lead to new ones. This

is exemplified by the quantum spin hall effect and topological insulators, where the symmetries

are spin rotation (about the out-of-plane axis) and time reversal (TRS), respectively. Both of these

symmetry imply that the total Chern number vanishes (as we will confirm for TRS below). However,

they also partition the Hilbert space into two parts (in spin or momentum respectively), that allow

us to compute an invariant for that subset, resulting in a Z2 valued index. In Section 3.4 we present

a derivation of this index that elucidates its meaning extending a derivation of the Chern number

due to Simon [161]. Though the final formula is well-known, I include this derivation as I am not

aware of it appearing elsewhere.

The Z2 index is an example of a topological invariant that is quantized due to a symmetry,

and phases characterized by such invariants are known as symmetry protected topological phases

(SPTs). The best known class of such phases are those protected by combinations of TRS T ,

particle-hole symmetry (PHS) C, and their product, the chiral symmetry S = TC (sometimes also

called sub-lattice symmetry or SLS). The QHE can be considered as a special case when none of

T,C, or S symmetries hold. The first two symmetries are anti-unitary, e.g. TiT−1 = −i, so the

chiral symmetry is unitary, and all act on the (second-quantized) Hamiltonian H by conjugation,

e.g. THT−1, as they do on all operators including creation and annihilation operators.

For the creation/annihilation operators, it is more convenient (and conventional) to write the

action of the symmetries on the spinors as (mimicking the action of the symmetries on the state

vectors)

TψpT
−1 = T ψ−p

CψpC
−1 = Cψ−p

SψpS
−1 = Sψp (3.3)
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Chapter 3. Symmetry Protected Topological Phases

where T , C,S are matrices in the spinor indices; note that they do not include momentum reversal.

When the symmetries are satisfied by the total second-quantized Hamiltonian, the first-quantized

Hamiltonian matrix then satisfies

T H(p)T −1 = H(−p)

CH(p)C−1 = −H(−p)

SH(p)S−1 = −H(p) (3.4)

Typically for spin 1/2, T = iσyK where K is complex conjugation. More generally, any symmetry

under which the Hamiltonian satisfies the first or second of these relations is called TR-like or PH-

like respectively. From these relations it follows that in general T 2 = ±1 and C2 = ±1 while S2 = 1

(when the symmetries hold), which results in ten possible cases (nine for all possible combinations

of TRS and PHS cases, plus one case when chiral symmetry alone holds). The topological invariants

for fully gapped phases in all ten cases in any dimension have been classified under the so-called

10-fold way classification [10, 132, 99]. In addition, gapless (including nodal) phases can be classified

under the same framework, as done in [105, 197].

There are of course other symmetries that a system may have, such as crystalline symmetries like

mirror symmetries and rotations. The classification has recently been extended to include some of

these for both fully gapped [29, 38] and gapless phases [28, 158, 167]. The resulting phases are called

crystalline SPTs, to distinguish them from non-crystalline phases. As we will see in Chapter 4 and

Chapter 5, some of the topological phases of 1H-TMDs are protected by mirror symmetries, which

is thus of main interest to us. Here we will take the mirror plane to be in the xy plane, and denote

the symmetry as Mz (acting in 2D and 1D by restricting dimensions; in 1D it acts in the same way

as inversion, i.e. p→ −p). This acts on the spinors as

MzψpM
−1
z =Mzψp̄ (3.5)

where p̄ = (px, py,−pz) is the reflection of p = (px, py, pz). For spin, we have Mz = iσz (the factor

of i is conventional): in general the spin components perpendicular to the mirror plane remain fixed

while the parallel components are inverted under reflection (see Figure 3.1). If mirror symmetry

holds, then the first-quantized Hamiltonian satisfies

MzH(p)M−1
z = H(p̄) (3.6)
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3.1. 1D System with Mirror/Inversion Symmetry

We will now consider the consequences of this symmetry (as well as the anti-unitary ones) on the

topology of a two-state system, and see how some of the topological invariants come about.

Figure 3.1: Action of mirror symmetry on spin (illustrated as rotating spheres) oriented perpendic-
ular (a) and parallel (b) to the reflection plane, shown in gray.

3.1 1D System with Mirror/Inversion Symmetry

Topological properties of the Hamiltonian (3.2) are perhaps most clearly seen in 1D for a system

with mirror symmetry taking p→ −p. This case is mathematically equivalent to inversion, with spin

up/down corresponding to states even and odd under inversion respectively (we will takeMz = iσz

when acting on spin), which was studied in detail in [89, 12] and as a special case in [69]. In

particular, Eq. (3.6) becomes simply

MzH(−p)M−1
z = H(p) = β0(p) + β(p) · σ (3.7)

which means that βx/y(p) are odd functions and β0/z(p) are even functions in (3.2). Importantly,

(3.7) means that the mirror symmetry commutes with H(p) when p = −p, i.e. if p = 0 or π = −π

(for periodic boundary conditions). This means that we can simultaneously diagonalize H and Mz

at those points and characterize the eigenstates of the Hamiltonian as either mirror even or mirror

odd, i.e. withMz acting as ±i on the state (again, only at those points). This means the spins point

up or down at these momenta. This allows us to define integers n±0 and n±π which count the number

of occupied mirror even/odd states (spins up/down) at p = 0 and π respectively, respectively. The
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3.1. 1D System with Mirror/Inversion Symmetry

topological invariant in this case is then defined as NMZ = |n+
0 − n+

π | = |n−0 − n−π | (equal since we

assume the total number of occupied states is equal at all momenta), i.e. the difference between the

number of mirror even and mirror odd states between p = 0 and p = π.

We want to verify both claims, i.e. that this is an invariant, and that it is topological. The

invariance follows from the fact that we cannot continuously change the number of occupied mirror

even/odd states without closing the gap: in order to change the parity under reflection of a state

at p = 0, for example, we need to flip the spin from down to up or vice-versa; but since the spin at

p = 0 is fixed by the mirror symmetry, the only way to do that continuously is to bring down another

state with the opposite spin, make the two states degenerate, and ‘exchange’ the spins between the

two states (see Figure 3.2). A topological phase transition thus occurs when the two states become

degenerate.

Figure 3.2: Spectrum of two topologically distinct mirror symmetric two-state Hamiltonians H1

(left) and H2 (right) with identical spectrum, and a homotopy between them at the critical point
corresponding to a topological phase transition at which the bands cross. Spin texture of the
eigenstate is indicated in color (blue for up and yellow for down). Note that the spins at p = 0 and
π = −π have to point up or down due to the mirror symmetry.

To see why the phase transition is topological, let us consider two concrete examples of H,

H1(p) = σz cos p+ σx sin p =

 cos p sin p

sin p − cos p

 (3.8)

and

H2(p) = −σz (3.9)

(note that H1 happens to correspond to the Kitaev chain in momentum space [81], which is because

it also satisfies PHS with C = σxK). Note that the two Hamiltonians have the same spectra, ±1,
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3.1. 1D System with Mirror/Inversion Symmetry

but the eigenspinors are different. In particular, H2 has eigenspinors |u2
±〉 = (1, 0)T and (0, 1)T ,

while the eigenspinors for H1 are

|u1
+〉 =

 cos p2

sin p
2

 |u1
−〉 =

 sin p
2

− cos p2

 (3.10)

The spectra and the corresponding spin texture indicated in colors are shown in Figure 3.2. The

main thing to notice about |u1
±〉 is that they are discontinuous at the edge of the Brillouin zone

p = ±π: going along p, the spin rotates by 2π and therefore picks up a phase of −1. To see this

more clearly we can plot |u1
−〉 and |u2

−〉 in the spinor Hilbert spaces {| ↑〉, | ↓〉} as a function of p (we

can do this here since the eigenvectors are real), as shown in Figure 3.3. Note that the horizontal and

vertical axes correspond to spin up and down states respectively, and the arrows represent the spinor

orientation in Hilbert space and not the spin orientation in real space. From Figure 3.3, we see that

|u1
−〉 thus parametrizes a Möbius strip in the Hilbert space, whose defining property is precisely that

a vector pointing from ‘one’ edge to the ‘other’ flips when parallel transported around the middle

circle. The fact that H1 and H2 cannot be continuously mapped into each other is a consequence of

the fact that |u1
−〉 is twisted, and for the same reason a Möbius strip cannot be continuously mapped

to a cylinder without being cut. Note the role of symmetry: if it were not there, we could ‘untwist’

the Möbius strip by rotating the spin at p = π, but we are forbidden to do so when it is present.

Figure 3.3: Lowest energy eigenstates |u1
−〉 (left) and |u2

−〉 (right) shown in spinor Hilbert spaces.
|u1
−〉 can be seen to parametrize a Möbius strip, which is characterized by vectors changing sign

when parallel transported around the strip once (i.e. the strip is non-orientable). |u2
−〉, on the other

hand, parametrizes a cylinder. Note again that the arrows have to align with the axes at p = 0,±π
due to the mirror symmetry.

The topology is thus encoded in the fact that for the twisted eigenstate 〈u−(−π)|u−(π)〉 = −1,

where |u−(π)〉 is the parallel transport of |u−(−π)〉 (i.e. this is the Wilson loop around the 1D

Brillouin zone). We can in fact always make the eigenstates of H1 continuous by performing a
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3.1. 1D System with Mirror/Inversion Symmetry

(momentum-independent) unitary transformation:

|ũ1
±〉 = U |u1

±〉 =
1√
2

 1 i

1 −i

 |u1
±〉 →

1√
2

 e±ip

±1

 (3.11)

The fact that the eigenstate is twisted is now encoded in the phase winding of the relative phase

between the spin up and down components. This winding can be computed as a Berry phase, i.e.

an integral of the Berry ‘connection’ [14]:

A(±)(p) = i 〈ũ±(p)| ∇p |ũ±(p)〉 (3.12)

where note that the factor of i makes it real, since we are assuming normalized eigenstates.2 We

then have

∫ π

−π
A(−)(p)dp = −i log 〈ũ−(−π)|ũ−(π)〉 (3.13)

For |ũ1
−〉, we have A(−)(p) = 1

2 , so the integral is simply π, and under the parallel transport we have

〈ũ−(−π)|ũ−(π)〉 = eiπ = −1. Note that the Berry phase for |ũ1
+〉 is opposite, reflecting the fact that

the sum of Berry phases over all bands always vanishes, so a two-level system can only be topological

at half-filling. In a system with more than two bands the topological invariant is similarly defined

as a sum of the Berry phases over all occupied bands. Note that the continuity of the eigenstate is

necessary when using (3.13).

We mentioned above that the only way to map continuously from H1 to H2 is to close the gap

at some point. The simplest such map is

H(z, p) = (1− z)H1(p) + zH2(p) (3.14)

with some arbitrary parameter z ∈ [0, 1], which we show in Figure 3.4. As shown in the middle panel

in Figure 3.2, the gap closes at z = 1/2, at which point the Berry phases changes discontinuously. In

general, two Hamiltonians are topologically equivalent only if they can be adiabatically transformed

into each other, i.e. if the map (3.14) has a continuous Berry connection for each band (the technical

mathematical term for such a map is a homotopy, and it defines an equivalence between functions, in

this case functions of p). Note that we have to make sure that H(z, p) respects the mirror symmetry

2More generally in any dimension, ∇〈ũ±(p)|ũ±(p)〉 = ∇(1) = 0 = 〈∇ũ±(p)|ũ±(p)〉 + 〈ũ±(p)|∇ũ±(p)〉 =
〈ũ±(p)|∇ũ±(p)〉∗ + 〈ũ±(p)|∇ũ±(p)〉 = 2 Re[〈ũ±(p)|∇|ũ±(p)〉] = −2 Im[A(±)].
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3.1. 1D System with Mirror/Inversion Symmetry

for any fixed value of z: otherwise the Berry phase is not quantized since we can then rotate the

spin at p = 0 or ±π off of the z axis.

Figure 3.4: Energy spectrum of the homotopy H(z, p) for all values of z with spin texture shown
in color (blue for up, yellow for down), which can be thought of as a Hamiltonian of a nodal
topological phase in 2D (shown on right). Red lines indicate contours along which the Berry phases
are computed: on the left, the left contour has a Berry phase of π, while the right contour has
a trivial Berry phase. The two contours can be connected as shown in the right figure since the
additional contours have canceling phases, and then deformed into a small loop around the node
that therefore carries a Berry phase of π.

Importantly, from a mathematical point of view it does not matter what the parameter z is

physically. Typically it is an external parameter like pressure or temperature. Intuitively, one can

also consider z as parametrizing a family of Hamiltonians that change in space, describgin a system

with an edge between two topologically distinct phases, with an ‘end mode’ at z = 1/2 at which the

system becomes gapless. Since p and z are not commuting variable in quantum mechanics,3 this is

only a loose analogy, but the conclusion happens to be correct quite generally: topological systems

are generally characterized by end modes, which is known as the bulk-boundary correspondence.

Note thatH1 also happens to be an example of a Kitaev chain Hamiltonian, as we noted above. As

shown in [81], the Kitaev chain explicitly harbors Majorana zero modes at its end-points, protected

by PHS. We therefore know that H1 exhibits the same kind of end modes. Unlike in the Kitaev

3Here this is a problem because momentum is not conserved due to the edge breaking translational invariance. If
the Hamiltonian varies slowly, however, it is approximately conserved over short distances, and the quasiclassical (aka
the Wentzel-Kramers-Brillouin) approximation can be used.
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3.2. 2D (Crystalline) Nodal Topological Phases

chain case, however, mirror symmetry (unlike PHS) allows a constant term in the Hamiltonian,

which means that the energy can always be shifted by any value. The mirror protected topological

phase thus does not have zero energy modes in general, though it does have end modes. These

modes are therefore fragile in the sense that they can be moved out of the gap and into the bulk

spectrum, but as noted in [69] it will leave a signature in the entanglement spectrum.

3.2 2D (Crystalline) Nodal Topological Phases

We can use H(z, p) in (3.14) to now make the jump from 1D to 2D: mathematically, the arbitrary

parameter z can also be a second momentum perpendicular to p. We can then relabel p → px and

z → py. The topological phase transition then corresponds to a node in the spectrum of the 2D

Hamiltonian H(z, p) → H(px, py). See Figure 3.4; note that the Berry phases evaluated along the

two lines in the left panel differ by π, but the sum of the phases is equal to the Berry phase evaluated

along the square loop in the right subfigures since the phases along additional paths cancel due to

periodic boundary conditions. That loop can then be deformed to the smaller one encircling the

loop with the Berry phase being unchanged (because the Berry phase vanishes for any loop not

encircling the node). This is a characteristic of 2D nodal phases: the Berry phase going around a

node is quantized, with the node acting as a source of the phase. This translates to the statement

that the node cannot be gapped out by any symmetry allowed terms. The reverse is also true: if a

node is symmetry protected, the Berry phase is quantized. One possible approach to proving that a

given nodal phase is topological is therefore to prove that no symmetry allowed terms can gap out

a node, which is the approach we adopt in Section 4.4.2. This is also the approach used to classify

gapless phases, as done for example in [28] for crystalline phases. A more formal approach that can

be shown to give equivalent results is to use K theory, as done for example in [158].

Doing the inverse Fourier transform for px, we obtain a family of 1D systems Hpy (x), which as

we saw are topologically distinct for py < 1/2 and py > 1/2. This means that Hpy (x) will have end

modes are is boundaries for py < 1/2. The union of these end modes taken together thus forms

an edge mode of the 2D system, terminating at the node at py = 1/2. This can also be seen by a

direct computation in an effective k · p model in the continuum limit [185, 60]. For the anti-unitary

symmetries, the resulting modes are moreover flat since the 1D edge modes are zero energy modes,

and the edge modes are referred to as flat bands [151, 145, 19, 152, 150]; for a crystalline symmetry,

as we saw, the energy is not pinned to zero, so the edge modes are not flat in general (as seen in

3D ‘drumhead’ surface states [23, 15], and in some 2D examples in [28]). The nodes themselves are
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3.3. Fully Gapped 2D Topological Phases

moreover not fixed to zero energy, and as a result can be ‘inflated’ into Fermi surfaces: importantly,

it is only the minimal dimension of the gapless manifold (i.e. the co-dimension of the manifold that

cuts it out of the Brillouin zone) that enters the classification in [28, 158].

3.3 Fully Gapped 2D Topological Phases

When the spectrum in 2D is fully gapped, we can introduce another quantity using the Berry

connection, namely the Chern number. The Berry vector potential extends to higher dimensions

(and for an arbitrary number of bands labeled with α = 1, 2, . . .) as

A(α)(p) = i〈uα(p)|∇|uα(p)〉 (3.15)

where differentiation is with respect to momentum (for which we can pick a basis {ej}, denoting

the corresponding directional derivative ∇j). In two and higher dimensions we can then define the

Berry curvature as

F
(α)
jk (p) = ∇jA(α)

k −∇kA(α)
j (3.16)

which can be arranged into a curvature vector:

F(α)(p) = ∇×A(α)(p) (3.17)

in analogy with the magnetic field. Note that when restricted to 2D, this only has a z component,

which we call F (α) (not to be confused with the magnitude of the vector). The Chern number for

band α is then defined as the flux of the corresponding Berry curvature through the entire BZ which

is topologically a torus (see Figure 3.5):

Ch(α) =
1

2π

∫
BZ

F (α)d2p (3.18)

We will show in the next section that the Chern number is an integer in the absence of any

symmetry (unlike the Berry phase in the 1D case that is only quantized in presence of a symmetry),

and that the sum of Chern numbers over all bands α always vanishes. To obtain a non-trivial

topological invariant, we need to restrict the number of bands under consideration, which is usually

done by restricting the sum to occupied bands only. In that case it is also known as the TKNN
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3.3. Fully Gapped 2D Topological Phases

Figure 3.5: The Brillouin zone (BZ) is topologically a torus. The arrows indicate periodic boundary
conditions, which tell us how to glue the edges of the square together; the dots are time reversal
invariant momenta (TRIM), which will be relevant in the following section.

invariant [170].

Anti-unitary symmetries can have two effects on the Chern number. Such a symmetry in general

either splits bands into pairs, or splits each band into two parts related by the symmetry. In either

case, the Berry curvature may be either even or odd under the symmetry, so the Chern numbers

either cancel or double (between bands or for each band respectively). In the latter case (which

in the tenfold way only happens for Cartan class C in which C2 = −1 and there is no TRS) the

topological invariant becomes 2Z, i.e. it is an even integer. In the latter case, the topology may

simply be trivial, but sometimes the Chern number either on half the bands or computed on half

the BZ may be an integer. Only the parity of this integer turns out to be invariant (as we show

in detail Section 3.4 for class AII with T 2 = −1, to which 2D topological insulator in particular

belong), so the topological invariant is a Z2 = {1,−1} index.

Topological Invariants for Superconductors

All the classifications mentioned above include topological (fermionic) superconductors that we are

mostly interested in, for which PHS acts as C2 = 1. In this case the Berry curvature is neither even

nor odd under PHS, and the topological invariants are computed in the same way as in the absence

of PHS. In particular, in the absence of TRS (class D) the invariant is just the Chern number, while

with TRS T 2 = −1 (class DIII) the invariant is the Z2 index from class AII. The only caveat is that
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3.3. Fully Gapped 2D Topological Phases

the invariants are computed for BdG Hamiltonians:

H(BdG)(p) =

 H(p) ∆(p)

∆†(p) −HT (−p)

 (3.19)

on which PHS acts as ςxK (ςµ being Pauli matrices in the Nambu particle/hole indices) due to the

requirement that ∆(p) = −∆T (−p). The only technical difficulty is that usually the gap function is

only determined close to the Fermi surface and not known in the whole BZ, so a natural question is

whether the topology of the SC phase is determined solely by the gap function in the vicinity of the

Fermi surface. The answer is yes in the weak coupling limit: in order to change the topology of the

phase, the gap in the spectrum must close; if the BdG Hamiltonian is symmetric under momentum

reversal p→ −p (which can be due to inversion or TRS symmetry), the gap can close only when the

superconducting gap function vanishes somewhere along the Fermi surface, where a band crossing

occurs at zero energy. Therefore the topology of the SC phase is determined only by the form of the

gap function on the Fermi surface.

More generally, if there is no momentum-reversal symmetry (as is the case for non-centrosymmetric

systems in a magnetic field), the band crossing may occur away from the Fermi surface and not at

zero energy. More precisely, if ξα(p) are the eigenvalues of H(p), the band crossing can occur at

momenta defined by ξα(p) = −ξα(−p) instead. We will be interested in cases when ξα(−p) 6= ξα(p),

so we prove the following simple theorem with those cases included.

Theorem 3.1

Suppose the gap function ∆(p) is specified in the vicinity of the surface defined by ξSα(p) =

ξα(p)+ξα(−p)
2 = 0, and we have two extension ∆̃1(p) and ∆̃2(p) defined on the whole BZ such that

|∆̃1(p) + ∆̃2(p)| � |ξα(p) − ξβ(p)| for all bands α and β 6= α and ∆̃1(p) = ∆̃2(p) = ∆(p) where

∆(p) is defined. Then BdG Hamiltonians H(BdG)
1 (p) with gap function ∆̃1(p) and H(BdG)

2 (p) with

gap function ∆̃2(p) are topologically equivalent. �

Proof 3.1

Take ∆̃(p, t) = (1−t)∆̃1(p)+t∆̃2(p) as the gap inH(BdG)(p, t), which gives a family of Hamiltonians

that smoothly extrapolate betweenH(BdG)
1 (p) andH(BdG)

2 (p). By assumption, no gap closing occurs

in the vicinity of the surface defined ξSα(p) = 0, while away from it no gap closing occurs because

the difference and sum of the two gap extensions are assumed to be smaller than the band splitting.

Therefore the two BdG Hamiltonians can be adiabatically connected without the gap closing and
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3.3. Fully Gapped 2D Topological Phases

so are topologically equivalent.

We can therefore always compute topological invariants by taking the gap function to vanish fast

but smoothly away from the ξSα(p) = 0 surfaces. In the vicinity of the surfaces, we then have

H(BdG)
α (p) =

 ξα(p) ∆α(p)

∆∗α(p) −ξα(−p)

 (3.20)

which has Nambu eigenspinors

|Υα〉 =

 uα(p)

vα(p)

 =
1√

(ξα(p)− Eα(p))2 + |∆α(p)|2

 ξα(p)− Eα(p)

∆∗α(p)

 (3.21)

with the BdG spectrum

Eα(p) = ξAα(p) +
√
ξ2
Sα(p) + |∆α(p)|2 (3.22)

where ξAα(p) = ξα(p)−ξα(−p)
2 (the second branch is given by −Eα(−p) by PHS). Taking ∆α =

|∆α|eiΦα , a simple calculation then shows that the Berry connection is

A(α)(p) = i〈Υα|∇|Υα〉 = −|vα(p)|2∇Φα(p) (3.23)

To get the Chern number for the α band we extend the gap function as mentioned above, and get

Chα =
1

2π

∫ (
F (α)(p)

)
pθ
dp dθ =

1

2π

∫
∂p

(
A(α)(p)

)
θ
dp dθ

=
1

2π

[∫
(Aητ (p))θ dθ

]p=∞
p=0

= − 1

2π
[Φητ (p)]

2π
0 (3.24)

where we used the fact that |vα(p)|2 goes between 0 and 1 as ∆α → 0 for ξSα > 0 and ξSα < 0

respectively, which is true independently of the details of the extension. In other words, the Chern

number is simply the phase winding of the gap function around the Fermi surface. This is the

case for example for a fully gapped superconductor with a single spin-polarized band (therefore

necessarily triplet). Since the gap function must be odd in momentum, a phase winding is necessary

for the spectrum to be fully gapped, resulting in the chiral SC phase, as shown in [130]. A similar

topological invariant can be defined when TRS is present, resulting in a helical SC [128]. This is a

Z2 invariant which is computed in the same way as for a system without PHS and which we derive
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3.4. Chern Number and Z2 Topological Invariant from Gauss’ Law

in the following section.

When considering crystalline symmetries in superconductors, another technical difficulty we will

encounter is that in the BdG formalism there is inherently an ambiguity in their definition, because

the action of the symmetry on the particle and hole sectors may differ by a U(1) phase factor (as

discussed in, e.g., [79, 126]). Given a unitary symmetry U(p) (possibly a function of momentum)

acting on the normal state Hamiltonian H, the action on the BdG Hamiltonian is given by

Ũ =

 U(p) 0

0 eiφUU∗(−p)

 (3.25)

where in principle eiφU can be any phase. This is the case for, e.g., TRS, where the phase eiφT

corresponds to the phase of the gap function which is arbitrary. The correct view is that a symmetry

holds for the BdG Hamiltonian as long as there is a choice of the phase for which the symmetry

holds. In particular, this is always the case if the gap transforms according to a 1D irreducible

representation (irrep) of the relevant point group (higher dimensional irreps can lead to spontaneous

symmetry breaking). For gaps that are even or odd under reflection symmetries, for example,

eiφU = ±1 respectively. See also [143], which includes a more general review of topological SC,

as well as topological invariants in general. The topological invariants for fully gapped crystalline

topological SC phases are given in [29].

3.4 Chern Number and Z2 Topological Invariant from Gauss’

Law

The purpose of this section is to introduce the 2D topological invariants for fully gapped systems in

a more didactic manner. As we will see, we will in particular derive the Kane-Mele (or Fu-Kane) Z2

index in a novel way (I am not aware of this exact derivation appearing elsewhere). The main idea

is to note the analogy between the Berry vector potential A(α)(p) = i〈uα(p)|∇|uα(p)〉 (defined in

any dimension) and the usual magnetic vector potential, and to use Stokes’ theorem, with the Berry

curvature field F(α)(p) = ∇×A(α)(p) being analogous to the magnetic field.

To begin, we return to the mirror-symmetric 2D nodal system H(px, py) discussed in Section 3.2

as defined in (3.14) and shown in Figure 3.4. We expand it around the node as

H(px, py) = pxσ
x + pyσ

z (3.26)
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In the same way we extended from 1D to 2D, we can now extend to 3D, which allows a new term

to appear:

H(px, py, pz) = pxσ
x + pyσ

z + pzσ
y (3.27)

such that at pz = ±m 6= 0, the spectrum is fully gapped. H(px, py, pz) can now be thought of as

an adiabatic transformation between H(px, py,m) and H(px, py,−m), with a phase transition (gap

closing) occurring at pz = 0. We will see momentarily that the topological invariant that changes

across the transition is the Chern number.4

Figure 3.6: Applying Stoke’s theorem to relate the Berry phase evaluated around a loop encircling a
node to the Berry curvature flux through surfaces bounded by the loop; the flux through the sphere
on the right is therefore twice the Berry phase along its equator.

To see this, we apply Stoke’s theorem which says that the Berry phase calculated around the

loop in Figure 3.4 and in Figure 3.6 is equal to the flux of the Berry curvature vector through an

oriented surface whose boundary is the loop, two of which are shown in Figure 3.6. Gluing the two

such surfaces together, we conclude that the Berry flux through a sphere enclosing the node is equal

to twice the Berry phase of the loop, i.e. ±2π. Note that we need to pick which band we compute

the flux for, and they are opposite for the two bands intersecting at the node. We conclude that

nodes act as sources of Berry flux. This will be the key observation. Next, we use the same trick as

we did with the Berry phase: deform the sphere into two surfaces at fixed pz = m and −m, with

the surfaces along the BZ boundary vanishing due to periodic boundary conditions. We conclude

that the Chern numbers for H(px, py,m) and H(px, py,−m) differ by one.

Consider now an arbitrary fully gapped 2D Hamiltonian H(p) with p = (px, py) and periodic

boundary conditions, i.e. defined on BZ ∼= T2, where T2 is the 2D torus, Figure 3.5. We will first

4Note that we can extend the logic chain 1D (gapped)→2D (nodal)→3D (nodal)→2D (gapped) to 3D (nodal)→4D
(nodal) → 3D (gapped), which is related to the Bott periodicity used to construct classification tables [30].
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ignore any symmetries it may have (i.e. consider it to be in class A). To test if it is topologically

equivalent to a trivial insulator (meaning one adiabatically connected to a product state of atomic

limit wave functions), we can define H(p, pz) as an arbitrary extension of H(p) = H(p, 1) to the

trivial Hamiltonian H(p, 1/2), which is defined on the solid torus that I will denote T whose surface

is the BZ (see Figure 3.7; we can ‘fill-in’ the torus by taking the Hamiltonian to be constant on

the inner solid torus shown in Figure 3.8). From the observation above, we expect that if H(p) is

topologically non-trivial, H(p, pz) will have band crossings acting as sources of Berry curvature flux.

This is essentially the idea behind the proof of quantization and invariance of the Chern number

due to [161].

Figure 3.7: Visual representation of the extension Hamiltonian H̃(p). The BZ torus is filled in,
making a solid torus T. A given band may intersect at several isolated points. We remove little
solid spheres Sj around these points. As indicated in the figure, the extended Hamiltonian H̃(p)
may be approximated as a Weyl cone on those spheres (the arrow indicates whether the band under
consideration crosses from above or from below, giving a sense of chirality).

For a general fully gapped Hamiltonian, the existence of such an extension is not completely

trivial, but in fact by the Wigner-von Neumann avoided crossing theorem we can make an even

stronger assumption about H(p, pz), namely that it is degenerate only at isolated points {pj} ⊂

T, and that the degeneracy only involved pairs of bands (intuitively it is clear that any higher

degeneracies can be ‘moved apart’ by making smooth deformations). To compute the Berry flux

through the original BZ, we can thus take the Berry curvature in 3D, which is defined everywhere

except the degeneracy points. We then consider the solid torus with little solid spheres Sj removed
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3.4. Chern Number and Z2 Topological Invariant from Gauss’ Law

around the degenerate points. The Wigner-von Neumann theorem additionally tells us that in

sufficiently small solid spheres, we can take the effective Hamiltonian to be Hk(k) = ±σ · k (i.e. we

can ignore all bands but two). We now again use Stoke’s theorem but in the Gauss’ law form: since

we want the integral of F (α) on the surface of the solid torus, we should integrate the divergence

∇ · F(α) over the bulk of the solid torus with the bad points removed. But ∇ · ∇× = 0, so Gauss’s

law gives:

0 =

∫
T

∇ · F(α)d3p =

∫
T2=BZ

F(α) · d2p +
∑
j

∫
S2
j

F(α) · d2p (3.28)

where in the sum the integrals are over the surfaces of spheres removed. We conclude, since F(α) is

perpendicular to the surfaces, that

∫
BZ

F(α) · d2p =

∫
BZ

F (α)d2p = −
∑
j

∫
S2
j

F (α)d2p (3.29)

As we saw above (or as can easily be computed directly), we have

∫
S2
j

F (α)d2p = ±2π (3.30)

The plus minus depends on whether the α band crosses with the α+ 1 band from below or with the

α − 1 band from above, reflected in the sign in Hk(p) = ±σ · p. The conclusion is that the Berry

curvature flux through the BZ is quantized:

∫
BZ

F (α)d2p = 2π Ch(α) (3.31)

where Ch(α) is the Chern number of the α band, which we now know is an integer. Since each band

crossing contributes +1 to one Chern number and -1 to another, we have the further conclusion that

the sum of Chern numbers over all bands is always zero. Thus to get a topologically non-trivial

system, the sum has to be restricted to a subset of (filled) bands.

3.4.1 Time Reversal Symmetry and the Kane-Mele Z2 Index

We can use Simon’s construction to also derive the topological Z2 index characterizing the QSHE

discussed by Kane and Mele [76, 77] and topological insulators (TIs). Both cases involve additional

symmetries (spin rotation symmetry and TRS respectively) that render the total Chern number zero.
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Figure 3.8: Hamiltonian on the solid torus as a family of Hamiltonians on 2D tori transforming
into the vacuum Hamiltonian as a parameter t is varied, possibly undergoing a topological phase
transition. The blue region in the middle of the solid torus represents the trivial extension of the
vacuum Hamiltonian to a solid torus.

Here I will consider TRS, but the idea is similar for both: as in the case with mirror symmetry,

we need to consider families of Hamiltonians H(p, pz) with the restriction that they satisfy the

symmetry at each value of pz.

The Chern numbers vanish for each band α in presence of TRS because the Berry curvature

then satisfies F (α)(p) = −F (α)(−p), and the integral over the whole BZ vanishes. The idea is

that since TRS identifies states with p and −p, the real invariant would correspond to the Berry

curvature integrated over half the Brillouin zone with only unidentified momenta (therefore mapped

to the other half by TRS), which we call the effective BZ or EBZ and which we can take to be

a cylinder. Note that the boundary of the EBZ necessarily contains the time reversal invariant

momenta p = −p, or TRIM (see Figure 3.5). This is almost correct. The problem is that when the

momenta p and −p are identified, the BZ is mapped to a sphere (see Figure 3.9; this is a well-known

so-called doubled cover of the sphere by a torus). However, if the eigenstates are continuous on the

torus, they may not be on the sphere. As we saw, such discontinuities indicate non-trivial topology.

The discontinuity is due to the existence of Kramers pairs, which follows from the fact that TRS

is antiunitary and T 2 = −1. The former means that 〈T uα(p)|T uβ(p)〉 = 〈uβ(p)|uα(p)〉. But then

the latter implies 〈T 2uα(p)|T uα(p)〉 = −〈uα(p)|T uα(p)〉 = 〈uα(p)|T uα(p)〉 = 0, so the eigenstates

|uα(p)〉 and T |uα(p)〉 are orthogonal. In particular, at TRIM points p = −p the states are doubly
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3.4. Chern Number and Z2 Topological Invariant from Gauss’ Law

degenerate since T commutes with the first-quantized Hamiltonian and so T |uα(p)〉 is an eigenstate

of T H(p)T −1 = H(−p), in addition to |uα(−p)〉 = |uα(p)〉. The obstruction to passing to the

sphere is that T |uα(p)〉 6= |uα(p)〉 in general, which results in discontinuous eigenstates when the

two are identified on the sphere.

Figure 3.9: The map taking a the BZ torus to a sphere by identifying TR pairs. The grey region
amounts to a choice of between TR pairs. For this choice, we first fold the BZ in half, then identify
top and bottom edges to obtain the EBZ. The remaining arrows indicate the identification made
by TR symmetry on the EBZ, and gluing them together produces a sphere.

The reason for this obstruction can be seen more clearly using the same extension construction

to the solid torus T we used above for proof of Chern number quantization, with the additional

restriction that H(p, pz) respects TRS for each fixed pz. This means that any band crossing at

pj is necessarily accompanied by an anti-crossing (because T H(p)T −1 = H(−p)) at −pj . This

proves the total Chern number is zero. We can alse see why the Berry flux through the EBZ is

not an invariant: if we cut the solid torus into a solid cylinder with the surface being the EBZ,

there is flux escaping through the ‘caps’ of the solid cylinder that are not part of the EBZ itself

(see Figure 3.10). Moving ‘charges’ inside the solid torus around will change the flux through the

EBZ, which is therefore not well-defined.

The invariant, which we call the half Chern number Ch
(α)
1/2, is rather the flux through the surfaces

of the half of the solid torus including the caps, which we can see is quantized as before. Note that

again by Stokes’ theorem, the Berry curvature flux through the caps can be computed as a Berry

phase along the loops forming their boundaries that connect TRIM points in the original BZ. The

half Chern number expressed in terms of the Berry vector potential on the EBZ only is thus

2π Ch
(α)
1/2 =

∫
EBZ

F (α)d2p+

∮
∂EBZ

A(α) · dp = −
∑
j

∫
S2
j⊂T/T

F (α)d2p (3.32)

which is the formula obtained by different means in [113, 52].

The advantage of the extension construction is that there are now multiple ways to see why the
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Figure 3.10: The extended EBZ. Note that on the full torus, crossings/anti-crossings appear in

pairs, so the total Chern number is zero, but the half Chern number may not be. To compute Ch
(α)
1/2,

we only count the spheres in the indicated half. Note that part of the Berry flux goes through the
‘caps’ that are not part of the original Hamiltonian, but their contribution can be computed as the
Berry phase around the bounding loops using the Berry connection on the original EBZ only.

half Chern number is only well-define mod 2, so that the Z2 topological invariant is its parity. First

of all, there is an ambiguity in the smooth extension. It is possible to move the band crossings

around, provided we move the corresponding anti-crossings so as to preserve TR symmetry. In

particular, one can remove a band crossing from the half solid torus, at the cost of moving in an

anti-crossing (see Figure Figure 3.11). In that process, the half Chern number changes precisely by

2, so it is always possible to make it 0 or 1 by moving around some of the crossings (we can think

of this as moving charges around, and note that the total charge is conserved since the flux through

the BZ is fixed).

Figure 3.11: Moving a band crossing from one half of the torus to the other half. In this process,
we have to move the corresponding anti-crossing in the opposite direction, so the Chern number
changes by two.

Alternatively, it is possible to annihilate a crossing with an anti-crossing (if this is done at p,
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one simultaneously annihilates an anti-crossing with a crossing at −p). Doing this in reverse, we

can create a crossing/anti-crossing pair at p, while simultaneously creating an anti-crossing/crossing

pair at −p (see Figure 3.12). Moving the band crossings around as in the previous case, we again can

change the half Chern number by two, which shows that all half Chern numbers of the same parity

can be obtained. Thus Hamiltonians with the same parity (−1)
Ch

(α)

1/2 are topologically equivalent,

but not if they have opposite parity.

Figure 3.12: Creating a crossing/anti-crossing pair (which requires simultaneously creating an anti-
crossing/crossing pair in the opposite half), and the moving the crossing to the other half as in the
previous process. This again changes the Chern number by two.

A third way to see this is to note that there are multiple ways to form an EBZ, either cutting

along different lines, or even cutting in multiple places in which case the EBZ may have several

disconnected pieces. For example, one can take two disconnected quarters instead of a halves, as

shown in the Figure 3.13. This effectively changes crossings to anti-crossings in the exchanged

quarter. Instead of quarters, any fraction of the half torus can be exchanged for its time reversal

partner, which again changes the half Chern number by ±2.

Finally, a fourth way is to pick different partitions on each of the 2D tori making up the solid torus

(the choice has to be smooth as a function of the minor radius of the tori). Visually, this amounts

to deforming the ‘caps’ of the solid half-torus, which has to be done such that TR symmetry is

respected. As one cap moves past a band crossing, the opposite cap thus has to move past an

anti-crossing in the opposite sense, again changing the half Chern number by two. This is effectively

the way the Z2 invariant was originally derived (without an explicit solid extension) in [113]. Note

that other invariants from other classes can similarly be derived using the Berry connection.
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Figure 3.13: Choosing a different partition of the BZ can change the half Chern number. There is
a crossing/anti-crossing pair in the solid torus, we can pick a partition that includes either one or
the other (and never both).
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Chapter 4

Superconductivity in 1H-TMDs

Material in this chapter first appeared in [153].

In this chapter we carry out a self-consistent mean field analysis of superconductivity in 1H

transition metal dichalcogenides (TMDs) and other similar systems that we studied in Section 2.2

using RG, but now including spin-orbit coupling (SOC). Recall that in the absence of SOC we found

uniform SC and PDW channels. Here we will consider only the uniform SC channel and look at

the PDW channel in Chapter 5. The 1H-TMDs have a strong Ising-type SOC at the K pockets

and possibly also at the Γ pocket. We will therefore consider the limit of strong SOC in which

we only keep the pairing within inner and outer Fermi surfaces split by the SOC in Section 4.2,

and study spontaneous time-reversal symmetry breaking in Section 4.3. We discuss the topology

of the non-trivial phases we find in Section 4.4. For reference, we summarize the k · p model from

Section 1.2 in Section 4.1 that we will be using in this chapter.

4.1 Single-Body Model of 1H-TMDs with SOC

Recall that the normal state of 1H-TMDs is described by the Hamiltonian that we discussed in

Section 1.2:

H =
∑
pηαβ

d̄pηα [Hη(p)]αβ dpηβ (4.1)

with

Hη(p) = εη(p) + βη(p) · σ (4.2)
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with valley index η = 0,±1 corresponding to ηK pockets (we also interchangeably use η = Γ,±K

when it is more clear), in the hexagonal Brillouin zone with p measured from the pocket centers,

εη(p) = − p2

2mη
− µη (4.3)

with

βη = βηz(p)ẑ + αR (pyx̂− pxŷ) + b (4.4)

where βηj are j = x, y, z components of βη which include βηzbeing the Ising SOC, αR terms are the

Rashba SOC, and the magnetic field b = 1
2gLµBB is in units of the Bohr magneton µB with Landé

g-factor gL. We pick K to lie along the x̂ direction, from which we measure all angles.

The Hamiltonian is diagonalized by operators

cpητ = Uαητ (p)dpητ (4.5)

where

Uαητ (p) =
1√
2

√
1 +

ταβηz(p)

βη(p)

(
τe−iφη

) 1+α
2 (4.6)

with

eiφη(p) =
βηx + iβηy
|βηx + iβηy|

=
αRpy + bx + i(−αRpx + by)√
(αRpy + bx)2 + (αRpx − by)2

, (4.7)

and where βη = |βη(p)|. This is the SOC (also band or helical) basis. The normal state dispersions

are

ξητ (p) = εη(p) + τ
∣∣βη(p)

∣∣ ≡ εη(p) + τβη(p) (4.8)

which determines the Fermi surfaces that are shown in Figure 4.1 with and without Rashba SOC/in-

plane magnetic field.
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Figure 4.1: Fermi surfaces for Hamiltonian (4.2) with Ising SOC and (a) no Rashba SOC or magnetic
field; (b) Rashba SOC and no magnetic field; (c) in-plane magnetic field and no Rashba (note that
Fermi surfaces remain symmetric under momentum reversal even though TRS is broken); and (d)
with both Rashba SOC and in-plane magnetic field. Note that in the latter case the Fermi surfaces
are shifted. Yellow/blue colors indicate spin up/down polarization respectively, while red arrow
indicate the in-plane spin components. The pairing interactions g1,...,4 relevant to the SC instability
are also shown.
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4.1.1 Interactions Near the Fermi Surfaces

Symmetry constrains the possible spin-conserving, momentum-direction-independent electronic in-

teractions between the low-energy fermionic operators to eight. Of these, the four interactions that

contribute to superconductivity are (see Figure 4.1): intra-pocket density-density interactions in-

volving the Γ (g1) and the ±K (g2) pockets; and inter-pocket pair-hopping interactions between K

and −K (g3) and between Γ and ±K (g4). Thus we consider the following interacting Hamiltonian:

HInt =V α
′β′;αβ

Γ;Γ (p; k) d†Γ,pαd
†
Γ,−pβ′dΓ,kα′dΓ,−kβ′+

V α
′β′;αβ
±K;±K (p; k) d†±K,pαd

†
∓K,−pβd±K,kα′d∓K,−kβ′+

V α
′β′;αβ
±K;∓K (p; k) d†±K,pαd

†
∓K,−pβd∓K,kα′d±K,−kβ′+

V α
′β′;αβ

Γ;±K (p; k) d†±K,pαd
†
∓K,−pβdΓ,kα′dΓ,−kβ′ + h.c. (4.9)

Accounting for the anti-symmetric nature of the fermion operators (and including all Hermitian

conjugates), the uniform part of the interactions can be separated into singlet and triplet interaction

channels, as follows:

[V s]
α′β′;αβ
Γ;Γ =

g1

2
(iσy)αβ(iσy)α

′β′ (4.10)

[V s]
α′β′;αβ
Γ;±K = ±g4

2
(iσy)αβ(iσy)α

′β′

[V s]
α′β′;αβ
±K;±K =

1

4
(g2 + g3)(iσy)αβ(iσy)α

′β′

[
V t
]α′β′;αβ
±K;±K =

1

4
(g2 − g3)

∑
j=x,y,z

(σjiσy)∗αβ(σjiσy)α
′β′

Since VK,K and VK,−K are related by interchanging the spin indices α′, β′, combined with an overall

minus sign for interchanging two fermion operators, in this representation we have

[V s]
α′β′;αβ
±K;∓K = [V s]

α′β′;αβ
±K;±K[

V t
]α′β′;αβ
±K;∓K = −

[
V t
]α′β′;αβ
±K;±K (4.11)

From Eq. (4.10), we see that V±K,±K (and thus V±K,∓K) have contributions in both the singlet

channel (labeled s) and the triplet channel (labeled t), while for momentum-direction-independent

interactions, VΓ,Γ and VΓ,K have contributions only in the singlet channel. In addition to these

interactions, in order to ensure that the gap on the Γ pocket does not artificially vanish in the triplet
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regime, we also include weak (but symmetry-allowed) momentum-direction dependent interactions:

[
V t(p; k)

]α′β′;αβ
Γ;Γ

=
gt1
2

cos 3θk cos 3θp(σiσy)∗αβ · (σiσy)α
′β′

[
V t(p; k)

]α′β′;αβ
Γ;±K = ± gt4√

2
cos 3θk(σiσy)∗αβ · (σiσy)α

′β′

(4.12)

where θk refers to the angle of the momentum on the Γ pocket. Note that all higher harmonics

can be included in a similar fashion, but they do not qualitatively affect our conclusions. We take

|gti | � |gi|, so these interactions have a negligible effect on whether the system enters the singlet or

triplet regime.

Note that there are four other possible interactions, which we do not include in our analysis here,

HInt =
g5

2
d†Kαd

†
KβdKβdKα +

g6

2
d†−Kαd

†
ΓβdΓβd−Kα+

+
g7

2
d†−Kαd

†
Γβd−KβdΓα +

g8

2
d†−Kαd

†
ΓβdKβdKα + h.c. (4.13)

where we omitted momentum indices and symmetry related terms for simplicity. These interactions

decouple from g1, ...g4, and hence need not be included when analyzing the possible superconducting

instabilities. They can in principle give rise to a pair density wave (PDW) which may compete with

superconductivity, depending on the microscopic values of g5, ...g8. We defer analysis to the next

chapter.

4.2 Superconductivity in the presence of SOC and magnetic

field

The parquet RG treatment of Chapter 2 shows that superconductivity is the only instability gen-

erated by the interactions in Eq. (4.9) within weak-coupling. If the superconducting transition

temperature was larger than the Fermi energy, then the superconducting problem would have been

essentially solved. However, since Tc � EF in NbSe2, one needs to proceed to energy scales be-

low the Fermi energy, where Ising and Rashba SOC and the magnetic field become relevant. Since

superconductivity is the leading instability and decouples from other channels below the Fermi en-

ergy, it is sufficient to consider a simpler mean-field approach to include the additional terms in the

Hamiltonian that were neglected in analysis above.
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4.2. Superconductivity in the presence of SOC and magnetic field

4.2.1 Mean-Field Gap Equation in the Presence of SOC and Magnetic

Field

In order to determine the appropriate BCS gap equation, we first project the interactions onto

the spin-split Fermi surfaces, by using the transformation (4.6) between eigenstates of spin and

eigenstates of the non-interacting Hamiltonian and restricting the gap functions to involve pairs

on the same Fermi surface only. Throughout the phase diagrams shown in Figure 4.2, the Fermi

surfaces are qualitatively similar to those shown in Figure 4.1, with the important caveat that in

the presence of both Rashba SOC and magnetic field inversion symmetry is broken, as we discuss

in more detail below. Our analysis assumes that the minimum splitting between Fermi surfaces

(with an associated energy scale on the order of the magnetic field b and/or Rashba SOC αRpF ) is

large compared to the superconducting pairing strength, whose energy scale is on the order of the

superconducting gap function. In particular, close to the phase transition at which the gap function

vanishes this is valid almost everywhere in our phase diagram. Note, however, that for αR = b = 0,

or for αR = b with B along a Γ−K line, the inner and outer Fermi surfaces at the Γ pocket touch

along the Γ−M lines, and our approach is insufficient to resolve the gap in the immediate vicinity

of these loci even very close to Tc.

After the projection, the interactions generally acquire a dependence on the momentum direction.

Explicitly, this gives:

HInt =Ṽ τ,τ
′

Γ,Γ c†Γτ c
†
Γτ cΓτ ′cΓτ ′+

Ṽ τ,τ
′

±K,±Kc
†
±Kτ c

†
∓Kτ c±Kτ ′c∓Kτ ′+

Ṽ τ,τ
′

±K,∓Kc
†
±Kτ c

†
∓Kτ c∓Kτ ′c±Kτ ′+

Ṽ τ,τ
′

Γ±Kc
†
±Kτ c

†
∓Kτ cΓτ ′cΓτ ′ (4.14)

with

Ṽ τ,τ
′

η,η′ (p,k) =
1

2

∑
µ=0,x,y,z

g
(µ)
η,η′Q

(µ)
ητ (p)Q

(µ)∗
η′τ ′ (k) (4.15)

(η, η′ = Γ,±K). Here terms on the right-hand side with µ = 0 are projections of singlet interactions

in (4.10), while those with µ = j ≡ x, y, z are projections of the three triplet interactions respectively,

into the relevant Fermi surface. Since spin is not conserved in the presence of SOC and/or magnetic
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field, these three spin polarizations are no longer equivalent. Explicitly,

Q(0)
ητ (p) =

∑
αβ

(iσy)αβU
α
ητ (p)Uβ−ητ (−p) (4.16)

Q
(j)
±Kτ (p) = ±

∑
αβ

(iσjiσy)αβU
α
Kτ (p)Uβ−Kτ (−p)

Q
(j)
Γτ (p) =

√
2 cos(3θp)

∑
αβ

(iσjiσy)αβU
α
Γτ (p)UβΓτ (−p) .

There is a phase ambiguity in the definitions of Q
(µ)
ητ (p); the additional factors of i in the last two

expressions are chosen to simplify the gap equation below. Here g
(µ)
η,η′ are constants independent of

p and k (with j = x, y, z):

g
(0)
Γ,Γ = g1 g

(j)
Γ,Γ = gt1

g
(0)
Γ,±K = g

(0)
±K,Γ = g4

g
(j)
Γ,±K = g

(j)
±K,Γ = gt4

g
(0)
±K,±K = g

(0)
±K,∓K =

g2 + g3

2

g
(j)
±K,±K = g

(j)
±K,∓K =

g2 − g3

2
(4.17)

where g1, ...g4 are the values of the couplings at the end of the RG procedure described above.

For uniform SC (i.e. with zero center-of-mass momentum), the paired electrons are either both

from inner pockets or both from outer pockets, with corresponding gap functions

∆Γτ (p) ∝ 〈cΓ,pτ cΓ,−pτ 〉

∆±Kτ (p) ∝ 〈c±K,pτ c∓K,−pτ 〉 (4.18)

where the momentum p is measured with respect to the center of the relevant Fermi pocket. The

gaps are diagonal in the index τ , as we assume there is no pairing between inner and outer Fermi

surfaces. Note that particle-hole symmetry imposes ∆−Kτ (p) = −∆Kτ (−p), so these are not two

separate order parameters. The new self-consistent gap equation is (see Section 4.3):

∆ητ (p) =
∑
η′,τ ′

∮
Πη′τ ′(θη′,k)Ṽ τ,τ

′

η,η′ (p; k)∆η′τ ′(k)
dθη′,k

2π
(4.19)

After integrating over momenta, the (angle resolved) particle-particle pairing susceptibility Πητ (θη,p)
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becomes:

Πητ (θη,p) = −
∑
p

tanh
(
βξητ (p)

2

)
+ tanh

(
βξ−ητ (−p)

2

)
ξητ (p) + ξ−ητ (−p)

(4.20)

where θη,p is the angle along the τ Fermi surface relative to the center of the pocket η (below

we simply use θ when this is clear from context). Assuming that the Fermi surface is inversion

symmetric, we find

Πητ (θη,p) = −Nητ ln
1.13Λ

Tc
(4.21)

with Nητ the density of states at the inner or outer Fermi surface at the η pocket and Λ is the

cut-off energy. Although the Fermi surface is only inversion symmetric when αR = 0 or b = 0,

the expression (4.21) is approximately correct when either is sufficiently small; this issue will be

discussed in more detail in Sec. Section 4.2.3.

Plugging Eq. (4.15) into Eq. (4.19), we find

∆ητ (k) =
∑
µ

D(µ)
ητ Q

(µ)
ητ (p) (4.22)

where Dητ = (D
(0)
ητ , D

(x)
ητ , D

(y)
ητ , D

(z)
ητ ) are momentum independent gap coefficients. The structure

of Eq. (4.19) implies that we can take D
(µ)
ητ = D

(µ)
η−τ ≡ D

(µ)
η , and we thus drop the τ index on D

hereafter. Moreover, particle-hole symmetry enforces D
(µ)
K = D

(µ)
−K , consistent with the fact that

∆−Kτ (p) = −∆Kτ (−p). Plugging the form (4.22) back into the gap equation (4.19) yields the

reduced gap equations

D
(0)
Γ =

∑
µ

(
g1f

(0)Γ
(µ) D

(µ)
Γ + 2g4f

(0)K
(µ) D

(µ)
K

)
(4.23)

D
(0)
K =

∑
µ

(
g4f

(0)Γ
(µ) D

(µ)
Γ + (g2 + g3)f

(0)K
(µ) D

(µ)
K

)
D

(j)
Γ =

∑
µ

(
gt1f

(j)Γ
(µ) D

(µ)
Γ + 2gt4f

(j)K
(µ) D

(µ)
K

)
D

(j)
K =

∑
µ

(
gt4f

(j)Γ
(µ) D

(µ)
Γ + (g2 − g3)f

(j)K
(µ) D

(µ)
K

)
where j = x, y, z and the form factors f

(µ′)η
(µ) are given by

f
(µ′)η
(µ) =

1

2

∮ ∑
τ

ΠητQ
(µ)∗
ητ Q(µ′)

ητ

dθη,k
2π

(4.24)
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In the presence of SOC and magnetic field none of the channels (µ = 0, x, y, z) decouple in general.

Eqs. (4.23) thus can be viewed as an 8× 8 matrix equation, leading to 8 possible superconducting

solutions, of which we choose the one with the highest Tc. The choice of phases in Eq. (4.16) was

made to make the form factors f
(µ′)η
(µ) real when the densities of state on inner and outer Fermi

surfaces are equal in which case the coefficients D
(µ)
η can also be taken to be real.

4.2.2 Phase Diagrams

Figure 4.2: Phase diagram for NbSe2 as a function of the Rashba SOC (αR) and in-plane magnetic
field B oriented along the Γ-K direction, in units of the Ising SOC βI . The leading SC instability at
αR = B = 0 is a singlet extended s-wave state or triplet f -wave state in panel (a) and (b) respectively.
Solid (dashed) lines indicate exact (approximate) phase boundaries. Uniform SC becomes unstable
in the light-shaded regions, but finite-momentum pairing remains possible. We discuss the phases

in more detail in Section 4.2.2. For parameter values we used m = 1.5
p2
F

βI
, µ = −5βI , λ = 0.5βI and

values listed in (4.26).

To study the possible superconducting phases, it is useful to define singlet and triplet instability

regimes by considering the limit of no SOC and magnetic field. We define a dominant singlet

(dominant triplet) instability to occur when the largest eigenvalue of the gap equation is for the

spin singlet (spin triplet) gap with SOC and magnetic field set to 0. The transition temperature for

each channel (when the corresponding eigenvalue of the gap equation equals 1) is determined by the
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couplings g1, ...g4 via

T (a)
c = 1.13Λe−1/γ(a+)

, (4.25)

where Λ is the upper energy cutoff, and γ(a+) are identical to the couplings obtained in the RG

analysis in Eq. (2.125) (a = s, t for singlet and triplet respectively). Figure 4.2 shows the phase

diagrams corresponding to singlet (a) and triplet (b) instability regimes as a function of Rashba

SOC and in-plane magnetic field. We emphasize that the resulting SC states themselves are always

a mixture of singlet and triplet Cooper pairs.

With equal DOS in all bands, for repulsive interactions the singlet instability dominates for large

g4, while the triplet instability dominates for large g3. For concreteness, in this section we take

g2 = 1.2g1, g4 = 2g1, gt1 = 0.2g1, gt4 = 0.1g1 (4.26)

with g3 = 1.05g1 (4.2g1) to produce a singlet (triplet) instability.

To describe the phase diagrams in Figure 4.2, it is useful to classify the solutions to the gap

equations (4.22) by the irreducible representations (irreps) of the relevant point group. In the

absence of Rashba SOC and magnetic field, the point group of 1H-NbSe2 is D3h
1. We find that the

µ = 0, z terms on the right-hand side of Eq. (4.22) both belong to the A′1 irrep of D3h, indicating

that the singlet and z-polarized spin-triplet gaps are mixed in the presence of Ising SOC. In our

model, this mixing is proportional to the difference between the densities of states Nητ on the inner

(τ = −1) and outer (τ = 1) Fermi surfaces. Since these densities of states are not expected to

differ significantly in two dimensions, this mixing is weak in our model. The remaining components

µ = x, y of the triplet gap transform as the two dimensional E′′ irrep of D3h. We find that, in the

absence of both Rashba SOC and magnetic field, the highest Tc corresponds to the A′1 irrep in our

model.

Rashba SOC transforms as the A′′2 irrep of D3h. This lowers the point group to C3v, but does

not mix the A′1 and E′′ gaps. In contrast, the in-plane magnetic field b transforms according to the

E′′ irrep of D3h. As a result, it mixes the E′′ gap with the A′1 one [109]. Thus, in the presence of

an in-plane magnetic field, all µ terms in Eq. (4.22) are mixed.

The electronic spectrum in the superconducting phase is obtained by diagonalizing the Bogolyubov-

1The relevant functional forms for the gap in each irrep can be found in the spin basis in Ref. [109]; these are
related to our gaps by the basis transformation (4.6).
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de Gennes (BdG) Hamiltonian:

H =
1

2

∑
pητ

Ψ†pητHητ (p)Ψpητ (4.27)

where Ψητ (p) = (cη,pτ , c
†
−η,−pτ )T and

Hητ (p) =

 ξητ (p) ∆ητ (p)

∆∗ητ (p) −ξ−ητ (−p)

 (4.28)

with ξητ (p) given in Eq. (4.8). Note that when time reversal symmetry (TRS) is broken, ξ−ητ (−p) 6=

ξητ (p) in general. The BdG spectra are given by Eητ (p),−E−ητ (−p), with:

Eητ (p) = ξAητ (p) +
√
ξSητ (p)2 + |∆ητ (p)|2 (4.29)

where

ξSητ (p) =
ξητ (p) + ξ−ητ (−p)

2
(4.30)

ξAητ (p) =
ξητ (p)− ξ−ητ (−p)

2
(4.31)

Clearly, nodes only occur if both ξSητ and ∆ητ vanish simultaneously. Note that, in our case, the

Fermi surface is symmetric under momentum inversion, p→ −p, only when either αR or b vanish.

In this case, ξAητ = 0 and ξSητ = ξητ .

We are now in position to describe the SC phase diagrams of Figure 4.2, obtained for a fixed

value of the Ising SOC and varying the magnitude of the magnetic field b and Rashba SOC αR.

In all cases, the gap at the ±K pockets is nearly isotropic, so we focus on the Γ pocket. We first

analyze the phase diagram of Figure 4.2(a), where the dominant g4 interaction gives the singlet

extended s-wave state in the limit of vanishing SOC and magnetic field. Along the b = 0 axis,

the main effect of increasing the Rashba SOC αR is to change the anisotropy of ∆Γτ (p), due to

the small admixture with the µ = z nodal triplet gap. Importantly, no phase transition happens

along this axis, as the dominant instability is always in the A′1 irrep of the original D3h point group.

In contrast, along the αR = 0 axis, a phase transition takes place to a nodal topological SC state

for b = bP , where bP ≈ ∆Γ1 corresponds roughly to the Pauli-limiting field [24, 36]. Because our

assumption of well-separated Fermi surfaces is not valid for fields smaller than bP , our analysis

is not sufficient to determine the phase boundary quantitatively, but we show it qualitatively in
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Figure 4.3: Superconducting excitation spectrum, Eq. (4.29), for the inner Fermi surface at Γ in the
presence of an in-plane magnetic field and without (panel a) or with (panels b, c, d) Rashba SOC.
In panel b (panels c and d), B is aligned along ϑ = π/7 (ϑ = 0) from the Γ-K lines; panel a is the
same for any field direction. In panel c (panel d), the Cooper pair has zero (non-zero) center-of-
mass momentum. Insets show the resulting spin textures along the normal-state Fermi surfaces for
the corresponding field directions, with colors as in Figure 4.1 and arrows indicating in-plane spin
components. We used the normal state dispersion from Eq. (4.2) with the same parameter values

given in Figure 4.2, and took b = 5βI , as well as αR = 2βI in panels b-d. We set D
(0)
Γ,−1 = 20βI and

D
(z)
Γ,−1 = 20βI in Eq. (4.22), and pshift = −0.3pF in panel d.
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Figure 4.2(a). This phase transition, and the topological character of the resulting nodal SC state,

were previously predicted in Ref. [62] and can be understood as a consequence of the vanishing of

the Ising SOC along the six Γ-M directions, where the SC gap vanishes and 12 nodes (6 for each Γ

Fermi surface) appear due to spins aligning with the magnetic field. This gap structure is shown in

the BdG spectrum of the inner Γ Fermi surface, displayed in Figure 4.3(a) together with the spin

texture of the normal-state Fermi surface.

Turning on the Rashba SOC introduces a second spin-orbit energy scale that does not vanish

along the Γ-M directions. As a result, generally even an infinitesimal Rashba SOC lifts the nodes

and destroys the topological character of this state, as shown by the fully gapped BdG spectrum

in Figure 4.3(b). The only exception is when b is aligned along one of the Γ-K directions: in this

case, as we discuss in detail in Section 4.4.2, the system has a mirror symmetry. For αRpF < b, this

symmetry forces spins along the Γ-M line perpendicular to b to align (anti-align) with the magnetic

field on the inner (outer) Γ pocket, as shown in the inset of Figure 4.3(c). As a consequence, the

gap vanishes along the line perpendicular to b, as displayed by the BdG spectrum of Figure 4.3(c).

Therefore, two pairs of nodes originally present on this line are protected, whereas the remaining

eight nodes are gapped, resulting in a crystalline gapless topological SC state. Because the Fermi

surfaces are no longer symmetric under momentum inversion (i.e. ξAητ 6= 0), these protected nodes

are generally shifted away from the Fermi level, resulting in the Bogolyubov Fermi surfaces shown

in Figure 4.3(c). As we discuss in the next section, however, the nodes can move back to the Fermi

level if the Cooper pair acquires a finite center-of-mass momentum, which is expected to happen for

large enough b and αR (Figure 4.3(d)). For αRpF > b, however, the pair of nodes on the inner and

outer Fermi surfaces merge and the superconducting state becomes fully gapped. While we could

not precisely locate this phase boundary, it is expected to interpolate between b = αRpF for large

values of αR to b = bP for αR = 0, as shown by the dashed line in Figure 4.2(a). The evolution of the

gap at the outer Γ Fermi surface across this transition is shown in Figure 4.4(a) and (b). In panel

(a), the magnetic field is applied along a direction that does not coincide with the Γ−K direction.

As a result, the nodal superconducting state only exists for αR = 0 (red curve). In contrast, when

the magnetic field is applied along the Γ − K direction (panel (b)), two nodes persist even when

αR 6= 0 (dark orange curve).

We now turn to the case of dominant triplet instability shown in Figure 4.2(b), obtained for a

dominant g3 interaction. As in the singlet regime, we observe a nodal topological superconductor

for αR = 0. In the triplet regime, however, the superconducting gap on the Γ pocket is nodal along

the entire αR = 0 line (except for very small magnetic fields, where the small difference in density of
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states on the inner and outer Fermi surfaces can open a gap); hence the nodal topological SC state

occurs for all values of b, as there is no Pauli limit in this case [24, 36]. Similarly, the transition into

the crystalline nodal topological phase happens close to the αRpF = b line.

Along the b = 0 line, the nodes on the Γ pocket in the µ = z triplet state are lifted due to

the admixture with the sub-leading s-wave µ = 0 state generated by Ising SOC, resulting in an

anisotropic gap. This is shown in Figure 4.4(c), which presents the evolution of ∆Γ1 (p) along the

b = 0 axis for increasing αR. Note that to generate singlet-triplet mixing, we must include a small

difference between the inner and outer DOS in the plots of Figure 4.4; the magnitude of this mixing

increases with αR. Thus, although the superconducting gap on Γ in the triplet regime remains

strongly modulated as a function of angle for modest αR (see Figure 4.4(c)), the superconducting

phase in this region is nonetheless fully gapped.

For large values of αR (of the order of the Ising SOC), the dominant instability shifts from being

in the A1 irrep of C3v (previously the A′1 irrep of the original D3h group) to the 2-dimensional E irrep

(previously the E′′ irrep of the original D3h group). As a result, a new chiral p± ip superconducting

state emerges in the triplet regime at b = 0. The chiral phase, shown in Figure 4.4(d), occurs because

in this 2-dimensional irrep the free energy is minimized by a spontaneous breaking of time reversal

symmetry, as we discuss in Section 4.3.1. This is in agreement with the general result in [137, 148].

As we show in Section 4.3.1, this results in a gapped chiral topological SC with gapless chiral edge

modes resulting in a thermal Hall conductance κxy = ±6
(
π2k2

B/3h
)
T [130]. This topological SC

phase survives for sufficiently small in-plane magnetic fields, but our approach is insufficient to

quantitatively obtain the phase boundary (see blue dashed line in Figure 4.2(b)).

4.2.3 Broken Momentum Inversion Symmetry: Bogolyubov Fermi Sur-

faces and Finite-Momentum Pairing

In the presence of both αR and b, the Fermi surfaces are no longer inversion-symmetric under

p→ −p. The key quantity that measures the degree of symmetry breaking is

ξAητ (p) =
ξητ (p)− ξ−ητ (−p)

2
(4.32)

previously defined in Eq. (4.31). Here we discuss two important consequences of this inversion

symmetry breaking for the crystalline topological SC state. First, within the crystalline topological

SC state, breaking inversion symmetry moves the two nodes on the same Fermi surface at Γ in

opposite directions away from the Fermi level. This follows directly from Eq. (4.29) as the nodes
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Figure 4.4: Superconducting gap ∆Γ1 in Eq. (4.22) at the outer Γ pocket, as a function of the angle
θ along the Fermi surface with respect to the Γ-K direction, in various regions of the phase diagrams
of Figure 4.2. Panels (a) and (b) correspond to the cuts across the phase diagram of Figure 4.2(a)
shown in the insets, with a magnetic field away from the Γ-K direction by an angle ϑ = 2π/25 (panel
(a)) and along the Γ-K direction (panel (b)). Panels (c) and (d) correspond to cuts along the b = 0
axis of the phase diagram of Figure 4.2(b), outside and inside the chiral SC phase, respectively (see
insets). Note that the gap amplitudes have been rescaled for clarity, since they are not fixed by the
linearized gap equations. We used coupling constants given in Eq. (4.26) and parameters for the
non-interacting Hamiltonian as in Figure 4.2. We also took the inner and outer densities of states
to differ by ten percent to ensure that the symmetry allowed mixings between the singlet and triplet
channels are present in our solutions.

102



4.2. Superconductivity in the presence of SOC and magnetic field

move by an energy ξAΓτ (pnode). As we showed in Figure 4.3(c), this results in the nodes ‘inflating’

into Bogolyubov Fermi surfaces (cf. [7, 20, 194, 167]). These Fermi surfaces are protected by mirror

symmetry, due to the topological stability of the band crossings in the BdG spectrum, as we show

in the next section.

Second, breaking momentum inversion symmetry cuts off the Cooper logarithm in the particle-

particle bubble in Eq. (4.21). As a result, the pairing interaction must be larger than a certain

threshold, proportional to how much inversion symmetry is broken, for a uniform SC state to onset.

To show this explicitly, we evaluate the particle-particle bubble in Eq. (4.20) in the absence of

inversion symmetry. Assuming that ξAητ is a function only of the direction θ around the Fermi

surface, in the limit of Λ� ξAητ we find

Πητ (θ)

Nητ
= − ln

1.13Λ

Tc
+ Re

[
ψ

(
1

2
+
iξAητ (θ)

2πTc

)
− ψ

(
1

2

)]
(4.33)

where ψ is the digamma function. As a result, at zero temperature

Πητ (θ) = −Nητ ln
Λ

|ξAητ (θ)|
(4.34)

i.e. the infrared logarithmic divergence originally present is cutoff by |ξAητ (θ)|. This means that

there is a critical value of the parameter ξcAητ beyond which uniform SC is no longer stable. The

resulting critical lines are shown in Figure 4.2 and for a larger range in Figure 4.5 for both singlet

and triplet instabilities. Note that because this is a multi-band superconductor, the critical line has

a (weak) dependence on the cutoff Λ.

The general shape of the critical lines can be understood from a simple approximation, noting

that

ξAητ (p) =
τ

2
(βη(p)− β−η(−p)) , (4.35)

where βη are functions of αRpF and b as given in (4.4). For αRpF , b� βI ,

ξAητ (p) ≈ τ αRpF b
βI

sin(θ − ϑ) (4.36)

where βI is the Ising SOC on the relevant pocket and ϑ is the direction of the magnetic field. From

(4.34), we can estimate that the characteristic scale of ξcAητ , properly averaged, is of the order

Tc0/1.13, where Tc0 is the solution of the gap equation when ξcaητ = 0, see Eq. (4.21). The critical
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Figure 4.5: Critical lines above which uniform SC becomes unstable for the singlet (left) and triplet
(right) phase diagrams shown in Figure 4.2. Blue line is the numerical solution from the full gap
equation, while the red dashed line is given by the approximation αRpF b = βITc0

1.13 . In addition to
the parameters used in Figure 4.4, we took Tc = 0.01βI and Λ = 25βI , roughly corresponding to the
observed values [187, 40, 110].

curve is thus roughly given by

αRpF b ∼
βITc0
1.13

(4.37)

As shown in Figure 4.5, this approximation reasonably captures the exact result for the critical line.

For inversion symmetry breaking exceeding the critical value, where the uniform SC state is no

longer stable, superconductivity with finite center-of-mass momentum pshift 6= 0, i.e. a so-called

FFLO phase [3, 85, 94], is still possible. Note that the momentum shift is not necessarily equal for

each Fermi surface, so more generally there are four parameters pshift,ητ . Depending on whether

pshift,ητ = pshift,η−τ or pshift,ητ = −pshift,η−τ , the FFLO phase is classified as helical and stripe,

respectively, and may even compete with the uniform SC phase below the threshold curve in the

(αRpF , b) plane [3]. Ultimately, the four parameters pshift,ητ must be obtained by minimization of the

free energy, which is a computationally involved task beyond the scope of our work. It is interesting

to note, however, that by matching pshift with the geometric shift of the center of the corresponding

Fermi surface, the nodes of the superconducting ground state move back to the Fermi level since

the shift compensates for the finite ξAητ , as shown in Figure 4.3(d). Because this configuration

maximizes the gap around the Fermi surface, it is expected to maximize the condensation energy. In

any case, as we show in the next section, the finite momentum pairing does not affect the topological
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properties of the SC phase.

4.3 Ginzburg-Landau Free Energy and Time-Reversal Sym-

metry Breaking

Here we write down the Ginzburg-Landau free energy in the presence of SOC and magnetic field to

analyze spontaneous TRS breaking. We start with the Bogolyubov-Gor’kov Hamiltonian obtained

after doing a Hubbard-Stratonovich transformation:

H =
1

2

∑
pητ

Ψ†pητHητ (p)Ψpητ +
1

2

∑
pητ

ξητ (p) +H0

(
∆2
)

(4.38)

where

H0

(
∆2
)

= −1

4

∑
pητ
kη′τ ′

∆∗ητ (p)
(
Ṽ −1(p; k)

)η′τ ′
ητ

∆η′τ ′(k) (4.39)

and where we use the Nambu-Gor’kov representation Ψητ (p) = (cη,pτ , c
†
−η,−pτ )T and the BdG

Hamiltonian Eq. (4.28). Recall that the BdG spectrum has two branches, Eητ (p) and, by particle-

hole symmetry, −E−ητ (−p). Using the fact that

det [−iω +Hητ (p)] = (−iω + Eητ (p)) (−iω − E−ητ (−p)) (4.40)

we obtain the Ginzburg-Landau free energy:

F = −T
2

∑
pητ

ln

[
2 cosh

(
βEητ (p)

2

)]
− T

2

∑
pητ

ln

[
2 cosh

(
βE−ητ (−p)

2

)]
+H0

(
∆2
)

(4.41)

To obtain the linearized gap equation we expand F to first order in |∆ητ |2, which yields

F (2) = −
∑
pητ

tanh
(
βξητ (p)

2

)
+ tanh

(
βξ−ητ (−p)

2

)
4ξSητ (p)

|∆ητ (p)|2 +H0

(
∆2
)

(4.42)

Minimizing the free energy Eq. (4.42) with respect to ∆∗ητ (p), we obtain the gap equation (4.19).
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4.3.1 Spontaneous Time-Reversal Symmetry Breaking

As we discussed above, at zero magnetic field and in the dominant triplet instability regime, at

large αRpF the leading superconducting instability is in the two-dimensional E irrep of the point

group C3v. Here we show that this state spontaneously breaks time-reversal symmetry (TRS) and

compute its Chern number to show that it is a chiral topological state.

We begin by observing that for b = 0, and assuming equal densities of states on inner and outer

Fermi surfaces, the reduced gap equation (4.23) can be solved analytically, giving:

∆
(0)
Γτ (p) = τie−iθD

(0)
Γ (4.43)

∆
(0)
±Kτ (p) = τie−iθD

(0)
K

∆
(z)
Γτ (p) =

√
2ie−iθ cos2 3θ

λp3
F

βη(p)
D

(z)
Γ

∆
(z)
±Kτ (p) = ±ie−iθ βI

βη(p)
D

(z)
K

∆
(x)
Γτ (p) =

√
2ie−iθ sin θ cos 3θ

αRpF
βη(p)

D
(x)
Γ

∆
(x)
±Kτ (p) = ±ie−iθ sin θ

αRpF
βη(p)

D
(x)
K

∆
(y)
Γτ (p) =

√
2ie−iθ cos θ cos 3θ

αRpF
βη(p)

D
(y)
Γ

∆
(y)
±Kτ (p) = ±ie−iθ cos θ

αRpF
βη(p)

D
(y)
K

At large αR, there is a transition from a mixed D(0), D(z) solution to a solution with D(0) = D(z) = 0,

D(x,y) 6= 0. This solution belongs to the 2D E irrep of C3v, the relevant point group in this regime.

In other words, the (x) and (y) solutions are degenerate, i.e. have the same Tc.

This degeneracy opens the possibility of spontaneous time-reversal symmetry breaking at b = 0.

In the SOC basis (4.6), TRS acts as

cη,pτ
T→ iτeiθc−η,−pτ (4.44)

∆ητ (p)c†η,pτ c
†
−η,−pτ

T→ −e−2iθ∆∗ητ (p)c†η,pτ c
†
−η,−pτ .

Taking ∆ητ (p) = eiΦητ (p)|∆ητ (p)|, TRS is therefore satisfied when eiΦητ (p) = ±ie−iθ.

In the linearized gap equation (4.19), since the µ = x and µ = y channels are degenerate (i.e.

they have equal critical temperatures), in principle the relative amplitudes and phases of D
(x)
η and

D
(y)
η are not fixed (i.e. any linear combination of the two solutions is allowed). This is no longer the
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4.3. Ginzburg-Landau Free Energy and Time-Reversal Symmetry Breaking

case if we consider the non-linear gap equations. Alternatively, in terms of the Ginzburg-Landau

free energy (4.41), the relative amplitudes and phases are fixed by the quartic terms in the gap

functions. Since b = 0, ξητ (−p) = ξητ (p), the free energy simplifies to

F = −T
∑
pητ

ln

[
2 cosh

(
βEητ (p)

2

)]
+H0

(
∆2
)

(4.45)

Expanding in powers of the gap function, we obtain the fourth order correction (in addition to

(4.42)):

F (4) =
7ζ (3)

64π2T 2

∑
ητ

∫
Nητ |∆ητ (p)|4 dθp

2π
(4.46)

where ζ(x) is the Riemann zeta function. Substituting the general form of the gap function in the

(x),(y) channel:

∆Γτ (p) =
√

2ie−iθ cos 3θ
αRpF
δη(p)

(
D

(x)
Γ cos θ +D

(y)
Γ sin θ

)
∆±Kτ (p) = ±ie−iθαRpF

δη(p)

(
D

(x)
K cos θ +D

(y)
K sin θ

)
and approximating αRpF

δη(p) ≈ 1 (which is valid as long as αRpF � λp3
F ), we obtain:

F (4) =
7ζ (3)

2048π2T 2

∑
ητ

Nητ

[
3

(∣∣∣D(x)
η

∣∣∣2 +
∣∣∣D(y)

η

∣∣∣2)2

(4.47)

−4
∣∣∣D(x)

η

∣∣∣2 ∣∣∣D(y)
η

∣∣∣2 sin2 φxy

]

where φxy is the relative phase between D
(x)
η and D

(y)
η . Minimization gives φxy = ±π2 , which implies

that the superconducting gap has the form

∆Γτ (p) ∝
√

2i cos 3θ
αRpF
δη(p)

e−i(θ∓θ)

∆±Kτ (p) ∝ ±iαRpF
δη(p)

e−i(θ∓θ) (4.48)

which is not invariant under the time-reversal symmetry transformation (4.44). We thus find that

time reversal is spontaneously broken, in agreement with the general result in [137, 148] (a similar

TRS-breaking from higher order terms in the free energy has also been found in [101, 64]). Note
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that while ∆Γτ (p) obtained from our calculation is nodal, there is an additional symmetry allowed

term ∆(3) = e3iθ that belongs to the same E irreducible representation. Adding this term lifts the

nodes and results in a fully gapped, time-reversal symmetry broken phase.

4.4 Topology of the Phases

Above we found three kinds of topological phases: a chiral SC phase in presence of Rashba SOC,

a nodal topological phase protected by a time-reversal like symmetry T̃ in presence of an in-plane

magnetic field, and a crystalline nodal topological phase protected by a vertical mirror symmetry

Mx in presence of both.We now discuss their topological properties using some of what we learned

in Chapter 3.

4.4.1 Chiral SC

Above we found that at large Rashba SOC and with dominant triplet interactions the SC phase

breaks TRS. To show that it is a topological chiral phase, we need to compute its Chern number,

which as we saw in Section 3.4 relates to the winding of its phase around the Fermi surface. Recall

that the Chern number is given by

Ch =
1

2π

∑
ητ

∫
BZ

Fητ (p) · d2p (4.49)

where the Berry curvature vector is given by

Fητ (p) = ∇×Aητ (p) (4.50)

with Aητ (p) the Berry vector potential or connection associated with the occupied (i.e. parti-

cle) band only. For a superconductor, the Berry connection is defined in terms of the normalized

eigenvectors of the BdG Hamiltonian (4.28): Υητ (p) = uητ (p)cη,pτ + vητ (p)c†−η,−pτ , via

Aητ (p) = i〈Υητ (p)|∇p|Υητ (p)〉. (4.51)

It is important to note that in our case the cη,pτ operators themselves carry a nontrivial Berry phase

due to the momentum-dependent change of basis (this is analogous to using a non-inertial frame

of reference). One should therefore consider |Υητ (p)〉 as a four component eigenvector in a basis

of Nambu-Gor’kov 4-spinors Ψ
(4)
ητ (p) = (dη,p↑, dη,p↓, d

†
−η,−p↑, d

†
−η,−p↓)

T . Using the change of basis
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(4.6), we find

|Υητ 〉 =


U1
ητ (p)uητ (p)

U−1
ητ (p)uητ (p)

U1∗
−ητ (−p)vητ (p)

U−1∗
−ητ (−p)vητ (p)

 . (4.52)

where uητ and vητ are found to be

uητ (p) =
ξητ − Eητ (p)√

(ξητ − Eητ (p))
2

+ |∆ητ (p)|2
(4.53)

vητ (p) =
∆ητ (p)√

(ξητ − Eητ (p))
2

+ |∆ητ (p)|2
(4.54)

where we use the notation of Eq. (4.31). Defining ∆ητ (p) = |∆ητ (p)| eiΦητ (p) and noting that

U1
ητ (p) =

∣∣U1
ητ (p)

∣∣ e−iφη(p), the Berry connection turns out to be

Aητ (p) =
∣∣U1
ητ (p)

∣∣2 u2
ητ (p)∇φη(p)−

∣∣U1
−ητ (−p)

∣∣2 |vητ (p)|2∇ (φη(−p))−|vητ (p)|2∇Φητ (p) (4.55)

Below we calculate the Chern number for b = 0 and non-zero αR only, in which case U1
ητ (p) =

−i
∣∣U1
ητ (p)

∣∣ e−iθ where θ is the angle of the momentum p measured relative to the center of the

Fermi pocket. The Berry vector potential simplifies to

Aητ (p) =
∣∣U1
ητ (p)

∣∣2∇θ − |vητ (p)|2 (∇Φητ (p) +∇θ) (4.56)

Note that for the two TRS-breaking solutions belonging to the E irrep we have Φητ = 0 or Φητ =

−2θ. Following the same steps as in Section 3.4, we thus find

Chη =
1

2π

∫
(Fητ (p))pθ dp dθ =

1

2π

∫
∂p (Aητ (p))θ dp dθ (4.57)

=
1

2π

[∫
(Aητ (p))θ dθ

]p=∞
p=0

= − 1

2π
[Φητ (p) + θη,p]

2π
0 (4.58)

where the integrals over θ and p are understood to be over the tangential and normal directions in a

disk including the Fermi surface of the η pocket. This gives a net Chern number of ±6, with a total
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contribution of ±4 from the ±K pockets, and of ±2 from the Γ pocket. As noted in Section 3.4,

this result is independent of the choice of ∆ητ away from the Fermi surface.

4.4.2 Crystalline Nodal Topological SC

We now discuss the nodal and crystalline nodal phases that we found and show that they are indeed

symmetry protected by the TR-like symmetry T̃ = iσxK and mirror symmetry Mx respectively.

The former has been proposed and discussed before in [62], so we mostly focus on the latter.

As we discussed in Chapter 3, symmetry protected topological phases with anti-unitary symme-

tries can be classified according to the ten-fold way that can be extended to include nodal phase as

well as crystalline phases [144, 151, 145, 105, 28, 158, 30]. Here, T̃ 2 = 1, and since the system has

PHS C = ςxK being a superconductor (ςµ acting on the Nambu spinor indices), this puts the system

with an in-plane magnetic field but no Rashba into topological (Cartan or AZ for Altland-Zirnbauer

[10, 132, 99]) class BDI. Consulting the classification table [105], we see that it can indeed host

nodes that are topologically protected by a Z topological invariant, which means in particular that

once there are nodes (as we have) they are topologically protected. The invariant is the Wilson

loop going around individual nodes and summed over the nodes. As we saw in Chapter 3 it can be

evaluated as the Berry phase once the wave-function is made continuous; note that the Berry phase

is only quantized in the presence of the symmetry. Nodal phases are weak topological phases in the

sense that nodes can be removed by pair-wise annihilation.

When Rashba SOC is introduced, the TR-like symmetry is broken and the system is in class

D, which also has a topological invariant (Z2) but that can only protect nodes at high symmetry

points [28, 30], which the nodes in our case are not. As we saw the nodes are lifted in that case.

When the magnetic field is applied along a Γ-K direction, however, the system has an additional

mirror symmetry. In that case the topological invariant depends on whether the mirror symmetry

commutes or anti-commutes (or more precisely can be made so by a unitary transformation) with the

anti-unitary symmetries, with all cases classified in [28]. For superconductors, whether the mirror

symmetry commutes or anti-commutes with PHS depends on the form of the gap, in particular

whether it is even or odd under reflection (as discussed in [143]). Consulting the classification

table in [28], we find that if the mirror symmetry anti-commutes with PHS, which we will see

corresponds to a gap function that is odd under reflection, there is an integer valued topological

invariant MZ that can again protect the nodes, with the invariant again being given by the Wilson

loop (when the mirror symmetry commutes with PHS, only nodes at high symmetry points are

protected). The nodes we found for b > αRpF are therefore topologically protected by the mirror
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symmetry. Importantly, the classification only determines the minimal dimension of the protected

‘Fermi surface’ [158, 30], and in particular the nodes can be ‘inflated’ into small Bogolyubov Fermi

surfaces as we saw (when present, the invariant can be computed as the Berry phase accumulated

going around the Bogolyubov Fermi surface). Importantly, although the two pairs of nodes coincide

with the nodes in the absence of Rashba SOC, the classification is different and this is a distinct

crystalline nodal topological phase.

To show that the nodes are indeed protected in the crystalline nodal phase, we will follow the

approach of [28] and write down the general effective low energy Hamiltonian for the nodes and

consider all possible symmetry allowed mass terms that can gap them out (this approach can be

shown to be equivalent to the more rigorous K theory approach of [158]). For this purpose we

will need to establish the action of the symmetries. Recall that Mx acts on the non-interacting

Hamiltonian as

MxH(p)M−1
x = H(p̄) (4.59)

where p̄ = (−px, py). Since this reflection also reverses the y and z components of the spin, in

the spin basis Mx acts as iσx, but in the SOC basis (4.6) it is momentum dependent, Mx(p) =

Uαητ (p)iσxαβU
β∗
ητ ′(p̄) = iτe−iφ(p)δττ ′ (note the p̄).2 To get the last expression we make use of the fact

that in the presence of the mirror symmetry,

β−ηz(p̄) = −βηz(p)

β−η(p̄) = βη(p)

eiφ(p̄) = e−iφ(p) (4.60)

the last of which follows from the fact that in this case

eiφ(p) =
αRpy + bx − iαRpx√

(αRpy + bx)2 + (αRpx)2
(4.61)

2Note that in the absence of Rashba SOC, T̃ has almost the same form as Mx in the spin basis except for the
complex conjugation. As a result, when it holds, in the SOC basis the TR-like symmetry becomes T̃ = τeiϑδττ ′
where ϑ is the angle of the magnetic field.
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The action of mirror symmetry needs to be extended to the BdG spinors as

M̃x(p) =

 Mx(p) 0

0 ±M†x(−p)


=

 eiφ(p) 0

0 ±e−iφ(−p)

 (4.62)

where the ± depends on whether the gap function is odd or even under p → p̄ (see Section 3.4).

The leading solution for b > αRpF is odd (which can be shown using (4.60)), and the correct choice

is −. This ensures that the mirror symmetry thus acts on the BdG Hamiltonian Eq. (4.28) as

M̃xHητ (p)M̃−1
x = Hητ (p̄) . (4.63)

Note that the classification in [28] assumes that M̃x either commutes of anti-commutes with PHS

C = ςxK, which is not the case for (4.62). It can be made to commute or anti-commute with PHS

by a unitary transformation, in this case cpητ → Uη(p)cpητ = eiφη(p)/2cpητ , under which M̃x → ςz

or ς0 depending on which sign of the square root we choose. The ambiguity is due to the branch

cut of the square root, but the correct sign is fixed by ensuring the continuity of the wave function

(meaning the branch cut needs to be avoided). This reveals that there is an obstruction determined

by the phase winding ∆φη of eiφη(p) around the Fermi surface, which can be easily evaluated using

(4.61) to be ∆φη = π (1 + sgn[αRpF − b]): we thus find that M̃x → ς0 for b < αRpF and M̃x → ςz

for b > αRpF . According to the classification, the nodes are therefore only topologically protected

for b > αRpF .

There is, however, a simpler way to determine which choice correct by noting that M̃x does

commute or anti-commute with PHS on the mirror plane px = 0, on which it is given by

Mx(p) =

 sgn[αRpy + b] 0

0 sgn[αRpy − b]

 (4.64)

so in the mirror plane M̃x = sgn pyς
0 for b < αRpF and M̃x = ςz for b > αRpF . This gives

a simpler criterion for the classification [28], namely whether the mirror symmetry commutes or

anti-commutes with PHS (and/or TRS) in the mirror plane.

Having established the action of the mirror symmetry, we can now see what happens to the

nodes in the mirror plane. As they are related by PHS, we have to consider a pair of nodes that
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we label L and R. τµ to Pauli matrices acting on the L,R indices. In this basis the particle-hole

symmetry, which interchanges the two nodes, acts via C = ςx ⊗ τxK. The mirror symmetry acts

within the mirror plane differently depending on whether b > αRpF or not: in the former case it

acts as M̃x = ςz ⊗ τ0, while for b < αRpy one gets M̃x = ς0 ⊗ τz (note the factor of sgn py).

We now consider all leading terms of the generic form h(δpy, px)ςµ ⊗ τν allowed by symmetry,

with δpy = py − p(node)
y . Terms that couple the two nodes break translational symmetry, which is

assumed in the topological classification. We thus require ν = 0 or z. With these coordinates, the

symmetries act as

C−1H(δpy, px)C = −H(−δpy,−px)

M̃−1
x H(δpy, px)M̃x = H(δpy,−px) . (4.65)

Thus h(−δpy,−px) = ±h(δpy, px) when C−1ςµ ⊗ τνC = ∓ςµ ⊗ τν . Similarly h(δpy,−px) =

±h(δpy, px) when M̃−1
x ςµ⊗ τνM̃x = ±ςµ⊗ τν . To gap out the nodes we must have h(0, 0) 6= 0, and

so we only need to consider plus signs in both cases. Hence ςµ ⊗ τν anti-commutes with ςx ⊗ τxK

and commutes with M̃x. If b < αRpF , mςy⊗τz with constant m is the only symmetry allowed mass

term and one can check that this indeed gaps out the nodes, in agreement with the classification

according to which they are not protected in this case.

We are thus more interested in the case b > αRpF , for which the linearized Hamiltonian is to

leading order

H = δpyς
z ⊗ τz + pxς

x ⊗ τ0 +mςz ⊗ τ0 + ξAς
0 ⊗ τz (4.66)

where m and ξA are constants (for simplicity, we take the Fermi velocity to be 1, so all parameters

have the same units). The m term, which plays the role of a chemical potential shift at each node,

does not lift the nodes; rather it shifts them in opposite directions along the py axis, from py = ±pF
to py = ±(pF +m).

The ξAς
0 ⊗ τz term, on the other hand, shifts the nodes in opposite directions in energy by an

amount ξA, inflating the nodes into small Bogolyubov Fermi surfaces (see also [7, 20, 194, 167]).

Comparing with the BdG spectrum Eq. (4.29), we find that ξA is precisely the value of ξAΓτ when

ξSΓτ (p) = 0 in Eq. (4.30). Since a constant shift in energy cannot change the Berry connection, the

winding numbers are unaffected in the presence of Bogolyubov Fermi and remain non-trivial [30, 158],

as can be verified by direct computation. The Bogolyubov Fermi surfaces are therefore topologically
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protected only in a fragile sense [38], as they can be removed by mixing with additional bands,

similar to what has been observed theoretically in 1D crystalline topological insulators [69, 89]. As

in those systems, we expect some experimental signatures to remain even when the Bogolyubov

Fermi surfaces are removed.3

Boundary modes

By the bulk-boundary correspondence [28, 158], there are edge bands terminating at the nodes.

However, unlike other nodal topological superconductors with Majorana flat band edge modes [62,

151, 145, 82], the edge modes in the crystalline topological phase under consideration are not in

general flat and not necessarily at zero energy. The edge bands can be studied following the methods

of [185, 60]; we find that for open boundary conditions in x and py close to the node, the edge mode

has energy ξA. When ξA vanishes at the node (e.g. if a stripe FFLO phase is realized in the bulk)

this means that the boundary modes cross zero energy– but they are not flat in general as ξA does

not have to vanish for all py. Similar edge states have been studied in 3D crystalline topological

insulators, where they are referred to as drumhead states [15, 23, 156].

An alternative way to understand the edge modes is to view them as topological boundary modes

of the family of 1D Hamiltonians Hpy (px) = H(px, py) at fixed py (see discussion in Section 3.2),

which are in topological class A and respect mirror symmetry. Since mirror symmetry is equivalent

to inversion in 1D, these are the same systems as studied in [69, 89] and that we analyzed in

Section 3.1. As py crosses the node, Hpy (px) undergoes a topological phase transition from trivial

to non-trivial. The 1D topological invariant is the mirror index NMZ = |n(0)
+ −n

(π)
+ | that we defined

in Section 3.1 (see [69, 29]). There are then 2NMZ edge states, with each state even under reflection

being degenerate with an edge state that is odd under reflection. Taken together these edge states

form the band of edge modes of the 2D system. At a node (which is at px = 0), H+
py (0) crosses with

a state in H−py (0), which changes the n
(0)
+ invariant by one and the number of edge states by two.

The edge mode thus splits into two bulk modes which cross at the node.

To study the boundary modes of our model in the uniform superconducting state, in Appendix A

we describe a tight-binding model that captures the key features of our gapless topological super-

conducting phase. The result is shown in Fig. Figure 4.6, which shows the Bogolyubov-de Gennes

spectrum on a 150 × ∞ unit cell strip with open zig-zag edges parallel to the ŷ direction (with

B = Bx̂) in the uniform superconducting state. Each state ψ(py) is colored according to the inverse

3The proof of topological protection of nodes for the non-crystalline phase is almost identical, but with T̃ → ςz⊗τx,
which rules out the ξA term.
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Figure 4.6: Excitation spectrum in the topological crystalline SC phase on a 150×∞ unit cell strip
with B = Bx̂. Blue indicates delocalized bulk eigenstates, red indicates eigenstates concentrated
near the boundaries, and yellow shows a cut of the bulk BdG spectrum at px = 0. The inset
illustrates the Bogolyubov Fermi surfaces and the original Fermi surfaces (dashed black lines) and
its inverse image under p→ −p (dashed gray lines). For detailed parameter values, see Appendix A.

participation ratio
∑
x |ψ(py, x)|4 with the boundary modes in red and bulk modes in blue. A cut

containing the nodes along px = 0 of the bulk BdG spectrum is shown in yellow.
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Chapter 5

Pair Density Wave in 1H-TMDs

In the RG analysis in Section 2.2 we found that there are two possible pairing channels in 1H-NbSe2

(and similar 1H-TMDs): a uniform superconducting (SC) channel and two pair-density wave (PDW)

channels that we will refer to as PDW± with pairing momentum ±2K = ∓K (3K is an Umklapp

momentum). In this chapter we consider the PDW channels in more detail, mostly neglecting SOC

and only comment on its effect in Section 5.3. Note that for repulsive interactions we saw that the

PDW instability is only possible in the presence of the Γ pocket mediated either by an Umklapp

process (an A′1 singlet instability) or exchange interactions between Γ and K (A′1 or E′′ triplet

instabilities). In systems without a Γ pocket like MoS2, some attraction is therefore necessary to

produce the PDW instability, which is an unlikely scenario but to which our analysis applies as

well. As always, we will use pocket indices η, ζ = 0,±1 interchangeably with Γ, ±K (i.e. ηK with

0K = Γ).

The relevant order parameters enter the Hamiltonian in momentum space as

H =
T

2

∑
pηζαβ

Ψ̄pηα

[
H(BdG)
ηζ (p)

]
αβ

Ψpζβ (5.1)

where we defined the Nambu spinors Ψpηα = (dpηα, d̄−pηα)T and the Bogolyubov-de Gennes (BdG)

Hamiltonian

H(BdG)
ηζ (p) =

 εη(p)δηζ ∆ηζ(p)

∆†ζη(p) −εζ(p)δηζ

 (5.2)
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with
[
∆†ζη

]
αβ

=
[
∆̄ζη

]
βα

, and where

εη(p) = − p2

2mη
− µη (5.3)

is the normal state dispersion without SOC. Due to anti-commutation relations, the gaps satisfy

particle-hole symmetry (PHS)

∆ηζ(p) = −∆T
ζη(−p) (5.4)

This implies in particular that ∆ηζ and ∆ζη are not independent and should be considered as two

components of a single field. A non-vanishing ∆ηζ indicates a formation of a condensate of a pair

with total momentum (η+ ζ)K. In particular ∆ΓΓ, ∆K,−K and ∆−K,K are uniform SC gaps, while

∆±K,±K , ∆Γ,∓K and ∆∓K,Γ are PDW gaps with pair momentum ±2K = ∓K respectively. See

Table 5.1 and Figure 5.1.

SC ∆ΓΓ ∆K,−K ,∆−KK
PDW+ ∆−K−K ∆ΓK ,∆KΓ

PDW− ∆KK ∆Γ,−K ,∆−KΓ

Table 5.1: SC and PDW gap functions

Symmetry-wise, either of the PDW± phases is similar to the FFLO [87, 53] phase as both are

inhomogeneous superconducting phases with a real space order parameter ∆ ∼ eir·Q, with Q = ∓K

being the total momentum of the Cooper pairs. Unlike FFLO, however, PDW emerges spontaneously

in a material with no external fields breaking time reversal symmetry (TRS). Note that if only one

of PDW± is present, it spontaneously breaks TRS as well as translation symmetry (and can also

break point group symmetries), in which case it can also induce a loop current order. This has been,

for example, invoked to explain possible TRS breaking in the pseudogap regime in cuprates [90].1

If both PDW’s are present, TRS is not broken.

The TRS breaking and preserving cases are referred to as FF- and LO-type PDW’s respectively,

since [53] considered an order parameter of the form ∆ ∼ eir·Q and [87] instead proposed ∆ ∼

cos r ·Q that by itself does not break TRS. In order to see which case happens in 1H-TMDs, in

Section 5.1 we consider a phenomenological Ginzburg-Landau (GL) description of the PDW phases.

1In that case it has also been suggested that the loop current order may be vestigial, with the PDW order itself
destroyed due to fluctuations [6]. Other orders induced by PDW may similarly remain in the absence of PDW order
itself, and can be viewed as vestigial or driven by PDW fluctuations, which in themselves may be interesting [4].
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5.1. Ginzburg-Landau Theory of PDW

Figure 5.1: SC and PDW order parameters shown in the Brillouin zone (green and blue are uniform
SC, red is PDW−, orange is PDW+). The Fermi surfaces were obtained from the tight-binding
model summarized in Appendix A. Note the trigonal warping at K points.

We also consider which orders can be induced in the same framework. The GL free energy can be

derived from a microscopic theory, which for simplicity we do only for a system without a Γ pocket,

in which case the PDW turns out to always be LO-type.

Only uniform SC has been seen in experiment, which is why we had focused on the SC channel

in Chapter 4. The PDW is likely suppressed relative to SC in 1H-NbSe2 due to trigonal warping

at the K pockets and Fermi momentum mismatch between the Γ and K pockets. Under different

conditions (gating, applying magnetic fields, etc.) or in other materials with similar Fermi surfaces

but where these effects are smaller a PDW instability may, however, be possible. We quantify this

statement in Section 5.2 using a mean field analysis. Finally, we will discuss effects of Ising SOC in

Section 5.3.

5.1 Ginzburg-Landau Theory of PDW

To gain a better understanding of the PDW states, below we consider a general Ginzburg-Landau

(GL) free energy for PDW± order parameters ∆±K ∼ e±iK·r on a triangular lattice with a D3h

point group. This is somewhat similar to the analysis of PDW on a hexagonal lattice [5], the main
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5.1. Ginzburg-Landau Theory of PDW

difference is that here we have an Umklapp momentum 3K and the three values of K are equivalent.

The order parameters ∆±K are the order parameters in real space, and are related to the gap

functions ∆Γ,±K and ∆∓K,∓K defined above by a Fourier transform. In principle there can be

different order parameters ∆±K ∼ σµiσy corresponding to spin-singlet for µ = 0 and spin-triplet

paring for µ = x, y, z. The spin spin-singlet (onsite) PDW− enters the Hamiltonian in real space on

a lattice as (that can be obtained by Fourier transforming (5.1)):

HPDW− =
∑
jαβ

e−iK·Rj∆
(0)
−Kiσ

y
αβd
†
Rjα

d†Rjβ
+ h.c. (5.5)

The spin-triplet PDW−, to leading order in lattice harmonics, enters as

HPDW− =
∑
〈ij〉αβ

e−iK·Rjνij∆
(µ)
−K(σµiσy)αβd

†
Riα

d†Rjβ
+ h.c. (5.6)

The triplet order involves nearest neighbor terms with νij = ±1 if Rj −Ri points along ±K (see

Figure 5.2). We will assume that the order parameter is some linear combination of singlet and

triplet parameters (that can mix if we add SOC), and drop the (µ) superscript below. Note that

for nearest neighbors, e−iK·(Rj−Ri) = e±2πi/3 for Rj − Ri pointing along ±K, for any choice of

the three equivalent K. The three-fold rotational symmetry therefore remains unbroken. Note that

comparing phases of the order parameter going around a triangular loop, a total phase of ±2π is

accumulated, which indicates a loop supercurrent (see Figure 5.3). Equivalently, we can think of

three currents propagating along the three equivalent −K directions, as one would expect since

the Cooper pairs have a total momentum of −K. If PDW+ is also present, the currents cancel by

superposition.

Before writing down the GL free energy, we discuss the relevant symmetries. In addition to

breaking TRS and translational symmetry, a single PDW (+ or -) also breaks the out-of-plane mirror

symmetries σh of the D3h point group that takes K to −K, and so the PDW states are classified

according to irreps of C3h, all of which are 1D (note that no rotational symmetry is broken). When

both PDW± are present with equal magnitudes (LO-type PDW), all the symmetries except for

translational symmetry are restored. Both LO- and FF-type PDW’s break translational symmetry,

expanding the unit cell by a factor of three in real space (since 3K = 0). Note that under TRS

T = eiφiσyK (where K is complex conjugation and we include an arbitrary constant phase φ) we
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5.1. Ginzburg-Landau Theory of PDW

Figure 5.2: νij and relative phases of nearest neighbors in FF PDW+ with total momentum K in
real space (opposite phases for PDW−).

have in momentum space

∆ηζ(p)→ e2iφσy∆∗−η−ζ(−p)σy (5.7)

where η, ζ = 0,±1 being pocket indices corresponding to Γ,±K (the formula applies to uniform

SC as well). TRS thus associates a PDW with pair momentum (η + ζ)K = ±K with a PDW

with opposite pair momentum ∓K. The phase φ is included in order to make the U(1) symmetries

explicit. If we fix φ = 0, ∆K and ∆−K must be equal and real for TRS to hold, but for arbitrary φ

TRS holds as long as |∆K | = |∆−K |. The correct statement is that TRS holds as long as there is a

value of φ for which (5.7) holds. There are therefore two U(1) symmetries broken in the LO PDW:

one by the global phase, and one by the relative phase between ∆K and ∆−K .

The leading PDW instabilities we found in RG are either in A′ or in E′′ irreps of C3h, with both

singlet and triplet orders in A′ but only triplet in E′′. In the LO-type PDW these are lifted to A′1

and E′′ irreps, but note that the E′′ irrep is actually two 1D irreps in C3h with complex-valued

characters. A 2D irrep has two degenerate solutions at second order in the free energy. As we saw,

the degeneracy is typically lifted at fourth order and can spontaneously break TRS. Because E′′

is 1D in C3h, however, there is no degeneracy already at second order in general, and it does not

break TRS in the LO-type PDW. We will also include the uniform SC order ∆0, which as we saw

in Chapter 2 can belong to a 1D or a 2D irrep of D3h; in the latter case, the phase between the

components of the 2D irrep is generally fixed at the fourth order of the free energy (as we saw in
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5.1. Ginzburg-Landau Theory of PDW

Figure 5.3: Cartoon picture of PDW+ with total momentum K illustrated in real space where each
arrow represents a jump in the complex phase of the order parameter by 2π/3. Loosely we can think
of the arrows as induced currents along the three equivalent directions, equivalent to loop currents
shown in red and green that break both translation and mirror symmetries. All arrows are reversed
for PDW−.
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5.1. Ginzburg-Landau Theory of PDW

Section 4.4), after which it can be characterized by a single order parameter (after breaking a Zn
symmetry that we will not be interested in here). With that in mind, we drop the irrep indices in

the free energy.

We now write down the GL free energy for the real space order parameters and see if any of

the symmetries are broken. We assume that the order parameters belong to a single irrep, and as

discussed above the GL free energy to fourth order has the same form regardless of the choice (i.e.,

we neglect mixing between different irreps and components of the same irrep):

F = a0|∆0|2 + aK
(
|∆K |2 + |∆−K |2

)
+ F (4) + . . . (5.8)

where

F (4) = β0|∆0|4 + β1

(
|∆K |4 + |∆−K |4

)
+ β2|∆0|2

(
|∆K |2 + |∆−K |2

)
+ β3|∆K |2|∆−K |2 +

+ β4

(
∆2

0∆∗K∆∗−K + c.c.
)

+ β5

(
∆2
K∆∗0∆∗−K + ∆2

−K∆∗0∆∗K + c.c.
)

(5.9)

For PDW only, this becomes

F (4)
PDW = β1

(
|∆K |4 + |∆−K |4

)
+ β3|∆K |2|∆−K |2 (5.10)

There are two cases: if β3 > 2β1, the ground state is an FF-type PDW (∆−K = 0 or ∆K = 0); for

β3 < 2β1, the ground state is an LO-type PDW (|∆−K | = |∆K |). The relative phase is not fixed in

the latter case, so the ground state degeneracy is U(1)×U(1). This degeneracy is lifted at the sixth

order in the free energy:

F (6)
PDW = Γ1

(
|∆K |6 + |∆−K |6

)
+Γ2

(
|∆K |4|∆−K |2 + |∆K |2|∆−K |4

)
+Γ3

(
∆3
K(∆∗−K)3 + c.c.

)
(5.11)

where the Γ3 term is minimized when the relative phase satisfies cos 3(φK −φ−K) = 1 (-1) if Γ3 < 0

(> 0), corresponding to φK−φ−K = nπ
3 for even (odd) integers n; the U(1) symmetry corresponding

to the relative phase is thus broken down to Z3. We summarize the results in Table 5.2.

Type (∆K ,∆−K) Induced Orders Degeneracy
FF (eiφK , 0) `,∆6e U(1)
FF (0, eiφ−K ) −`,∆6e U(1)
LO (eiφK , eiφ−K ) ρ±K ,∆4e,∆6e U(1)× Z3

Table 5.2: PDW ground states analogous to Table 1 in [8].

122



5.1. Ginzburg-Landau Theory of PDW

5.1.1 Induced Orders

As we mentioned, PDW has often been associated with other observed orders that it can in principle

induce [8]. We list the possible induced orders corresponding to the FF- and LO-PDW in Table 5.2.

We already mentioned when discussing the order parameter on a lattice in (5.5) that the relative

phases between neighboring sites in the FF-PDW indicate supercurrent in the system (since the

Cooper pairs carry a total momentum). This results in a loop current order ` ∝ |∆K |2 − |∆−K |2

that preserves translational symmetry unlike the FF-PDW itself [90, 6]. Physically, it corresponds

to a non-zero expectation value of the current operator along loops connecting nearest neighbor cites

(see Figure 5.3), which in this case is equivalent to a superposition of three currents along the three

equivalent K directions.

Figure 5.4: CDW induced by LO-type PDW in real space for φK − φ−K = 0 and π/3 respectively.
Note that only the value at the metallic sites shown in blue are physical in the lattice model.

In the LO-PDW phase, a mixing term with CDW is allowed of the form

F (3)
1 = Λ1ρK∆−K∆∗K + c.c. (5.12)

note that by hermiticity, ρK = ρ∗−K , so ρ−K is part of the same order parameter. If uniform SC is

present, mixing terms like

F (3)
2 = Λ2ρK∆K∆∗0 + c.c. (5.13)

are also allowed. Adding quadratic terms Fρ ∝ ρKρ∗−K and minimizing with respect to ρ∗−K , we find
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5.1. Ginzburg-Landau Theory of PDW

that ρK ∝ ∆K∆∗−K is induced at the minimum of the free energy for the LO PDW term (similarly

for the second term with uniform SC). The relative phases of the two PDW’s thus enter into the

CDW order parameter (and thus can be measured). See Figure 5.4 for an illustration.

Finally, higher order uniform superconductivity involving bound states of four or six fermions

can be induced in LO-type PDW as ∆4e ∝ ∆K∆−K and ∆6e ∝ ∆3
K + ∆3

−K ; the latter arises due to

Umklapp since 3K = 0. In FF-type PDW, only ∆6e ∝ ∆3
K can arise. Note that non-uniform charge

4e and 6e (as well as bound states with even more fermions) are in principle possible. We will not

consider these higher order SC orders in detail.

5.1.2 Microscopic Derivation of GL Free Energy without a Γ Pocket

The GL free energy can be derived microscopically, with the result (assuming that all Fermi surfaces

are circular and of the same radius)

F (4) = Γ(0)

∫
Tr
[
∆†∆∆†∆

] dθ
2π

(5.14)

where

Γ(0) =
7ζ(3)N

32π2T 2
(5.15)

with ζ(3) ≈ 1.202 is the Riemann zeta function. The trace is over both spin and pocket indices,

with ∆ considered as a matrix in both with elements [∆ηζ ]αβ .

The general expression is somewhat involved due to the number of order parameters (even ig-

noring spin degrees of freedom), so here we just consider the case with no Γ pocket, applicable to,

e.g., doped MoS2 (or if ∆Γ±K ≈ 0, e.g. due to Fermi momentum mismatch). The microscopic free

energy is then

F (4) = Γ(0)
(
2|∆0|4 + |∆K |4 + |∆−K |4

)
+

+ 4Γ(0)
(
|∆0|2|∆K |2 + |∆0|2|∆−K |2

)
±

± 4Γ(0)|∆0|2|∆K ||∆−K | cosφ (5.16)

where φ = 2φ0 − φK − φ−K with φη being the phase of SC and PDW± order parameters for η = 0

and ±K respectively. Note that some terms are zero due to the absence of the Γ pocket, in particular

|∆−K |2|∆K |2 and |∆±K |2|∆0||∆∓K | terms are not allowed in the microscopic theory though they
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are present in (5.9). The only mixing between the PDWs is therefore via uniform SC. The mixing is

never energetically favored (except at the degeneracy point of SC and PDW), however, which means

that the two PDWs decouple in the free energy. This in turn means that both appear with equal

magnitudes (as both satisfy the same saddle point equations), and the ground state is an LO-type

PDW. The relative phases are then fixed at the sixth order as we saw.

Although there is no direct coupling between the two PDWs at fourth order, we note that such

a coupling can be mediated by SC fluctuations assuming we are above the superconducting Tc. We

then have the partition function

ZPDW =

∫
e−βFD[∆0] (5.17)

with

F = −a0|∆0|2 − a1|∆1|2 − a1|∆−K |2 + Γ(0)
(
|∆K |4 + |∆−K |4

)
+

+ 4Γ(0)|∆0|2
(
|∆1|2 + |∆−K |2 ± |∆K ||∆−K | cosφΓ

)
(5.18)

We can re-write this in term of real and imaginary parts ∆0 = ∆′0 + i∆′′0 :

F = −a1|∆K |2 − a1|∆−K |2 + Γ(0)
(
|∆K |4 + |∆−K |4

)
+

 ∆′0

∆′′0

 ·A
 ∆′0

∆′′0

 (5.19)

where

A = (−a0 + 4Γ(0)
(
|∆K |2 + |∆−K |2

)
)σ0 ± 4Γ(0)Re[∆K∆−K ]σz ± 4Γ(0)Im[∆K∆−K ]σx (5.20)

is a real symmetric matrix with determinant

det[A] = (−a0 + 4Γ(0)
(
|∆K |2 + |∆−K |2

)
)2 − (4Γ(0))2|∆K∆−K |2 (5.21)

We then perform the Gaussian integral to get

ZPDW = e−βF̃ (5.22)
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working to quadratic order in ∆0 and quartic in ∆±K . Explicitly, we have

∫
exp

−β
 ∆′0

∆′′0

 ·A
 ∆′0

∆′′0

 d∆′0d∆′′0 =

√
π2

β2 det[A]
= πe−

1
2 ln β2 det[A] (5.23)

Expanding to fourth order in ∆±K , we have (dropping irrelevant overall constant factors)

F̃ = −
(
a1 +

4Γ(0)

βa0

)(
|∆K |2 + |∆−K |2

)
+

(
Γ(0) − 1

2β

(
4Γ(0)

a0

)2
)(
|∆K |4 + |∆−K |4

)
−

− 3

2β

(
4Γ(0)

a0

)2

|∆1|2|∆−1|2 (5.24)

Note the last term now couples the two PDWs, corresponding to the β3 term in (5.9). The free

energy is easily minimized, but the conclusion remains the same as before: both PDWs coexist with

equal magnitudes and LO-type PDW is established in the ground state.

5.2 Mean Field PDW without SOC: Imperfect Nesting

As alluded to earlier, PDW is generally suppressed due to the fact that in general symmetry allows

for εK(p) 6= εK(−p) 6= εΓ(p). We refer to the conditions εK(p) = εK(−p) and εK(p) = εΓ(−p)

as (perfect) nesting conditions, and say that there is imperfect nesting if they hold approximately.

In particular, the nesting is not perfect because the Fermi surfaces are not perfectly circular at K

points due to trigonal warping and Fermi surfaces do not necessarily have the same radius (or shape)

at Γ and K points. In order to study when the PDW phase is nevertheless viable, we perform a

mean field analysis using the linearized gap equation:

[∆ηζ(p)]αβ = −T
∑
ωkη′ζ′

α′β′

V η
′ζ′;α′β′

ηζ;αβ (p; k)
[
G

(0)
η′ (iω,k)∆η′ζ′(k)G

(0)T
−ζ′ (−iω,−k)

]
α′β′

=

= −T
∑
kη′ζ′

α′β′

V η
′ζ′;α′β′

ηζ;αβ (p; k) [Πη′ζ′(k)∆η′ζ′(k)]α′β′ (5.25)

where V η
′ζ′;α′β′

ηζ;αβ are the same interactions as in Section 2.2 in Eq. (2.112):

V η
′ζ′;α′β′

ηζ;αβ (p,k) = V η
′ζ′;α′β′

ηζ;αβ (θ, θ′) =
∑
`µν

g
(`µ)
η′ζ′;ηζ

[
Σ

(`µ)
ηζ (θ)

]
αβ

[
Σ

(`µ)∗
η′ζ′ (θ′)

]
α′β′

(5.26)
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where

Σ
(`µ)
ηζ (θ) = Θ

(`µ)
ηζ (θ)σµiσy (5.27)

are basis function with Θ
(`µ)
ηζ (θ) being ±1,

√
2 cosnθ,

√
2 sinnθ, listed in Table 5.3. By momentum

conservation, the interactions vanish unless η+ η′ = ζ + ζ ′ mod three; this means in particular that

the uniform SC and each of the ±K PDW’s decouple in the gap equation. As usual the momenta p,

k are measured from the center of the Fermi pocket, and we assume that the gaps and interactions

are independent of the radial component of the momentum k , and drop sharply to zero at the cutoff

Λ. In Eq. (5.25) we also used the fact that the Green’s functions are proportional to the identity in

spin indices in the absence of SOC to get the angle resolved particle-particle susceptibility

Πηζ(θ) = − 1

8π2

∫
Λ

tanh
(
εη(Q)

2T

)
+ tanh

(
εζ(−Q)

2T

)
εη(Q) + εζ(−Q)

QdQ ≈

≈ NηNζ
Nη +Nζ

$ (εη(k)− εζ(−k)) (5.28)

where

$ (x) = − log
1.13Λ

T
+ Re

[
ψ

(
1

2
+

ix

4πT

)
− ψ

(
1

2

)]
(5.29)

and ψ is the digamma function. At perfect nesting, $ (0) = − log 1.13Λ
T .

Before we proceed to solve the gap equation, we make several important comments about the

interactions. From a microscopic point of view, an effective attraction in the SC channel is known to

arise from onsite interactions via electron-phonon coupling (as in the BCS or Eliashberg theory), or as

we saw in Section 2.2 from purely repulsive multi-band interactions. However, we do not know of any

situation in which onsite interactions can give rise to a PDW instability. For repulsive interactions,

we saw that a Γ pocket is necessary to produce an effective attraction in the PDW channel in one

loop RG. We also generally expect that only interactions that are mostly independent of momentum

can drive any instability, with possibly small admixtures of higher order harmonics.

Keeping only such terms as well as the leading f -wave triplet terms (to avoid ∆KK vanishing in

the triplet channels) gives what we will call the minimal model (first given in Table 2.1). We mark

these terms with (*) in Table 5.3 and label the corresponding coupling constants are g
(`µ)
1 , g

(`µ)
23 , g

(`µ)
4

in the uniform SC channels and h
(`µ)
1 , h

(`µ)
23 , h

(`µ)
4 in the PDW channel, as given in Table 2.2. As

we saw in Section 2.2, these arise from eight momentum-conserving processes: intrapocket g1 at Γ,
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`(D3h) Σ
(`0)
KK = Θ

(`0)
KK(θ)iσy Σ

(`j)
KK = Θ

(`j)
KK(θ)σjiσy Θ

(`µ)
KK(θ)W

(0)
KK;τ

A
′

1 iσy (*) cos 3θ σziσy (*) 0

A
′

2 sin 6θ iσy sin 3θ σziσy 0

A
′′

1 pz cos 3θ iσy pzσ
ziσy, (cos θ σx + sin θ σy) iσy iτe−iτθ

A
′′

2 pz sin 3θ iσy (sin θ σx − cos θ σy) iσy e−iτθ

E
′

cos 2θiσy, cos θ cos 3θ iσy cos θσziσy
0

sin 2θiσy, sin θ cos 3θ iσy sin θσziσy

E
′′

pz cos θiσy cos 3θσxiσy (*), (cos θσx − sin θσy) iσy (†) iτ cos 3θ, iτeiτθ

pz sin θiσy cos 3θσyiσy (*), (sin θσx + cos θσy) iσy (†) − cos 3θ, eiτθ

Table 5.3: Lattice harmonics/basis functions for the PDW− gap functions in the spin basis for
intrapocket pairing within the K pocket. Terms in the minimal model are marked (*) and includes
s-wave singlet and f -wave triplet terms. (†) marks the p-wave E′′ term for later reference. For
pairing between Γ and −K, take cos 3θ → εηζ wherever it appears (including sin 6θ), with εηζ being
the Levi-Civita symbol. Note that the f -wave terms then become momentum independent. PDW+

expressions are related to these by TRS, obtained by taking K → −K and complex conjugating.
C3h irreps are obtained by dropping the 1, 2 subscripts on the 1D D3h irreps. Rightmost column
shows the gap projections into the SOC basis in the limit of strong Ising SOC that we will use in
Section 5.3.

interpocket g2 at ±K, exchange g3 between ±K, pair-hopping g4 between Γ and ±K relevant to the

SC channel; and intrapocket h1 at ±K, interpocket h2 between Γ and ±K, exchange h3 between Γ

and ±K, h4 scattering a pair at Γ and ±K to a pair at ∓K relevant for the PDW channel. As we

are mostly interested in the latter, we show the PDW interaction processes in Figure 5.5.

More exotic source of effective attraction are in principle possible, of course, which would be

necessary to stabilize a PDW in systems like doped MoS2 that lack a Γ pocket. One possible

source of attraction in that case may be the Kohn-Luttinger mechanism, as pointed out in [67] who

considered a system with very strong Ising SOC and a single spin-polarized Fermi surface at each

K point. As they showed and as we also discuss in Section 5.3, in that case the PDW is necessarily

between equal spins and belongs to the E′′ irrep, which has no momentum-independent terms. The

Kohn-Luttinger mechanism favors the p-wave terms (marked with (†) in Table 5.3). Though this

is not our main goal here, the mean field analysis in the absence of detuning we present below is

sufficiently general to include the more exotic interactions as well, including the case without a K

pocket. We will, however, restrict the detuning analysis below to the minimal model.

Returning to the gap equation, we find that as before ((2.103))

∆ηζ(p) =
∑
`µ

∆
(`µ)
ηζ (p) =

∑
`µ

Σ
(`µ)
ηζ (θ)D

(`µ)
ηζ (5.30)
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Figure 5.5: PDW+ interactions in the Brillouin zone, with h
(A′10)
1 = h1, h

(A′10)
23 = h2+h3

2 , h
(A′10)
4 = h4,

and h
(`j)
23 = h2−h3

2 for (`µ) = (A′1z), (E′′x) and (E′′y). Note that h2 and h3 contribute to both
spin-singlet and spin-triplet channels, and therefore mix. For PDW−, exchange K with −K.

solves the gap equation when the momentum-independent coefficients D
(`µ)
ηζ satisfy

D
(`µ)
ηζ =

∑
η′ζ′

g
(`µ)
η′ζ′;ηζΠ̄

(`µ)
η′ζ′D

(`µ)
η′,−ζ′ (5.31)

where

Π̄
(`µ)
ηζ =

∫
Πηζ(θ)Tr

[
Σ

(`µ)
ηζ (θ)Σ

(`µ)∗
ηζ (θ)

] dθ
2π

(5.32)

are Fermi surface averages of Πηη′(θ) in Eq. (5.28) weighted by traces of the irrep basis functions.

Here it is convenient to absorb the particle-particle susceptibility into the coupling constants and

define

ĝ
(`µ)
1 = Π̄

(`µ)
ΓΓ g

(`µ)
1 , ĝ

(`µ)
4η = Π̄

(`µ)
η,−ηg

(`µ)
4 , ĝ

(`µ)
23 = Π̄

(`µ)
K,−Kg

(`µ)
23

ĥ
(`µ)
1 = Π̄

(`µ)
KKh

(`µ)
1 , ĥ

(`µ)
4η = Π̄

(`µ)
1+η,1−ηh

(`µ)
4 , ĥ

(`µ)
23 = Π̄

(`µ)
Γ,−Kh

(`µ)
23 (5.33)

The reduced gap equations then simply read D
(`µ)
±K±K

D
(`µ)
Γ,∓K

 =

 ĥ
(`µ)
4 2ĥ

(`µ)
4K

ĥ
(`µ)
4Γ 2ĥ

(`µ)
67

 D
(`µ)
±K±K

D
(`µ)
Γ,∓K

 (5.34)
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in the PDW channels. For completeness (since we have not written down the mean field SC equations

without SOC above), we also have

 D
(`µ)
ΓΓ

D
(`µ)
K,−K

 =

 ĝ
(`µ)
1 2ĝ

(`µ)
4K

ĝ
(`µ)
4Γ 2ĝ

(`µ)
23

 D
(`µ)
ΓΓ

∆
(`µ)
K,−K

 (5.35)

in the uniform SC channels. Note that all (`µ) channels decouple and the triplet channels and the

two PDW channels are degenerate.

As the matrices are 2× 2, the eigenvalues are easily found to be

κ(`µ±) =
1

2

(
ĥ

(`µ)
1 + 2ĥ

(`µ)
23 ±

√
(ĥ

(`µ)
1 − 2ĥ

(`µ)
23 )2 + 8ĥ

(`µ)
hΓ ĥ

(`µ)
4K

)
(5.36)

in the PDW channel and

γ(`µ±) =
1

2

(
ĝ

(`µ)
1 + 2ĝ

(`µ)
23 ±

√
(ĝ

(`µ)
1 − 2ĝ

(`µ)
23 )2 + 8ĝ

(`µ)
4Γ ĝ

(`µ)
4K

)
(5.37)

in the SC channel. The eigenvectors are D
(`µ+)
±K,±K

D
(`µ+)
Γ,∓K

 ∝
 κ(`µ+) − 2ĥ

(`µ)
23

ĥ
(µ)
4Γ

 (5.38)

for PDW and (again for completeness)

 D
(`µ+)
ΓΓ

D
(`µ+)
K−K

 ∝
 γ

(`µ)
+ − 2ĝ

(`µ)
23

ĝ
(`µ)
4Γ

 (5.39)

for SC. Note that these correspond precisely to the RG channels in Eqs. (2.125) and (2.126) for

perfect nesting (since mean field is then equivalent to the RG analysis). As in that case, the κ(`µ−)

solutions always yield lower Tc’s than κ(`µ+) and so can be ignored. Whether PDW occurs depends

on whether one of κ(`µ+) exceeds all of γ(`µ+), which is in principle possible depending on the values

of the bare coupling constants gj and hj .

However, unlike the SC channel, there is no symmetry that guarantees the logarithmic instability

in the PDW channel. As alluded to above, there are two sources of detuning from perfect nesting

in PDW that disfavor it relative to uniform SC. First, the pockets at Γ and K are not identical.

Second, the pockets centered at ±K are not perfectly circular, but instead have trigonal warping
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[84], such that the dispersion at the ±K pockets is instead

ε±K(p) = − p2

2mK
+ µK ± w cos 3θ (5.40)

where w parametrizes the magnitude of the warping. This affects both nesting between ±K and Γ

pockets, and nesting of PDW pairs within K and within −K pockets (see Figure 5.1). Note that

this decreases the susceptibility to PDW but not to uniform SC pairing.

If the deviation from perfect nesting is large, it can eliminate the instability to a PDW phase

entirely, since without nesting the PDW couplings will no longer grow logarithmically in the RG

flow. In this case, the only possible low-temperature perturbative instability is to uniform BCS

superconductivity. Although in general any deviation from perfect nesting disfavors PDW pairing

relative to uniform superconductivity when all coupling constant are of comparable magnitude, if

the shape of the Fermi surfaces deviates only slightly from perfect nesting, the PDW phase remains

viable.

Detuning by Trigonal Warping in the Absence of a Γ Pocket

Although as we argued no PDW channel arises from repulsive interactions without a Γ pocket, it

is nevertheless instructive to first consider the MoS2 scenario with only the K pocket present and

trigonal warping is the only relevant detuning parameter, and later include the Γ pocket. In either

case, attractive interactions are included in the model, including within K pockets (which amounts

to taking h1 < 0).

Without a Γ pocket the only PDW gap functions are ∆KK and ∆−K−K (and two SC gap

functions ∆K−K and ∆−KK , corresponding to a single order parameter by PHS). In this case the

reduced gap equations Eqs. (5.35) and (5.34) become simply

2ĝ
(`µ)
23 = −2(g2 ± g3)NK log

1.13Λ

T
(`µ)
c

= 1 (5.41)

for uniform SC and

ĥ
(`µ)
1 = Π̄

(`µ)
KKh

(`µ)
1 = 1 (5.42)

for PDW. Note that in the PDW triplet channels µ 6= 0, there are no uniform gap functions indepen-

dent of the small momentum, so we would expect those channels to be subleading with h
(`µ)
1 ≈ 0.
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Assuming the trigonal warping is much smaller than the cutoff Λ we have

ΠKK(θ) = −NK log
1.13Λ

T
(`µ)
c,PDW

+NKRe

[
ψ

(
1

2
+

iw cos 3θ

2πT
(`µ)
c,PDW

)
− ψ

(
1

2

)]
(5.43)

where T
(`µ)
c,PDW is the PDW critical temperature in the (`µ) channel. Taking T

(`µ)
c0,PDW to be the

critical temperature for PDW at perfect nesting w = 0, we thus have

log
T

(`µ)
c,PDW

T
(`µ)
c0,PDW

= −1

2

∫ (
ΠKK(θ)

NK
− log

1.13Λ

T
(`µ)
c,PDW

)
Tr
[
Σ

(`µ)
KK(θ)Σ

(`µ)∗
KK (θ)

] dθ
2π

= (5.44)

= −1

2

∫
Re

[
ψ

(
1

2
+

iw cos 3θ

2πT
(`µ)
c,PDW

)
− ψ

(
1

2

)]
Tr
[
Σ

(`µ)
KK(θ)Σ

(`µ)∗
KK (θ)

] dθ
2π

Thus T
(`µ)
c,PDW follows a universal curve independent of g5, NK and Λ once T

(`µ)
c0,PDW is set. These

are shown in Figure 5.6. At zero temperature

ΠKK(θ) = −NK log
Λ

2|w cos 3θ|
(5.45)

The integrals can be done analytically for the leading channels and we find

Π̄
(A′10)
KK = −NK log

Λ

|w|
(5.46)

and

Π̄
(`j)
KK = −NK log

Λ

e1/2|w|
(5.47)

for ` = A′1, E
′′ and j = x, y, z, so the curves approach upper critical values w

(`µ)
c as T → 0 that

differ by a factor of e1/2 ≈ 1.64:

w
(A′10)
c =

π

2eγ
T

(A′10)
c0,PDW ≈ 0.88 T

(A′10)
c0,PDW (5.48)

while for f -wave triplet PDW it is

w(`j)
c =

π

2eγ+1/2
T

(`j)
c0,PDW ≈ 0.54 T

(`j)
c0,PDW (5.49)

for ` = A′1, E
′′ and j = x, y, z. Unlike in the Pauli limit, the phase transition remains second

132



5.2. Mean Field PDW without SOC: Imperfect Nesting

order down to zero temperature in the singlet channel, which is thus in a sense more stable against

trigonal warping than triplet PDW. We note however that the particular factor is specific to the

model in which we took the irrep basis functions for triplet interactions to all be f -wave (proportional

to cos 3θ). There are however also p-wave triplet basis functions (proportional to cos θ and sin θ)

belonging to the E′′ irrep as shown in Table 5.3, and for those we get w
(`j)
c = w

(A′10)
c for j = x, y,

i.e. the same susceptibility as in the singlet channel. In particular, this means trigonal warping may

favor p-wave over f -wave triplet pairing (depending on the corresponding interaction strengths).

Figure 5.6: Critical temperature T
(`µ)
c,PDW for PDW as a function of trigonal warping w, both in units

of T
(`µ)
c0,PDW , for s-wave singlet (` = A′1, µ = 0 in blue) and f -wave triplet (` = A′1, E

′′, µ = x, y, z
in green) channels, determined by Eq. (5.44). The p-wave triplet curve coincides with the singlet
curve.

PDW Detuning in Presence of the Γ Pocket

In the presence of the Γ pocket, in addition to ∆±K,±K there are also interpocket PDW gap functions

∆Γ,∓K with additional susceptibility ΠΓK that has two sources of detuning: it is also affected by

the trigonal warping, but there is an additional detuning due to the mismatch of Fermi momentum

at Γ and K pockets. For a parabolic dispersion, the Fermi momentum mismatch can be due to a

difference in masses mη or chemical potentials µη. Assuming
√
mΓ/mK and

√
mK/mΓ are both

133



5.2. Mean Field PDW without SOC: Imperfect Nesting

small compared to Λ/Tc and

µ̂ =
|mΓµΓ −mKµK |

mΓ +mK
� Λ (5.50)

where µ̂ is roughly the energy difference between the two parabolic dispersions at equal small mo-

menta, we find

ΠΓK(θ) = − 2NΓNK
NΓ +NK

log
1.13Λ

T
(`µ)
c,PDW

+
2NΓNK
NΓ +NK

Re

[
ψ

(
1

2
+
i(µ̂+ w cos 3θ)

4πT
(`µ)
c,PDW

)
− ψ

(
1

2

)]
(5.51)

Note that the trigonal warping w also enters into this expression.

At zero temperature, the Fermi surface averaging can be done analytically:

Π̄
(`µ)
ΓK = − 2NΓNK

NΓ +NK
log

2Λ∣∣∣∣µ̂+
√
µ̂2 − w2

4

∣∣∣∣ (5.52)

Note that this happens to be constant as a function of µ̂ for µ̂ < w/2, i.e. when the at least

some Fermi momenta (relative to the pocket centers) are equal. This is a somewhat particular

feature of our simplified model, but similar non-analyticities are generically present in Π̄
(`µ)
ΓK for

other interaction and detuning parameterizations.

Plugging the expressions (5.43), (5.52) into Eq. (5.34), we obtain Tc as a function of the detuning

parameters w and µ̂. The results are shown in Figure 5.7 and Figure 5.8 for a singlet (µ = 0) and

triplet (µ = x, y, z) cases respectively. The plots on top right show the phase diagram in the (T,w, µ̂)

space, with PDW being stable inside the surface. Tc as a function of w (µ̂) for various fixed µ̂ (w) is

shown on top (bottom) left. Finally, the critical values of the detuning parameters at various fixed

temperatures are shown on bottom right; the values at T = 0 are obtained analytically. Note that

since this is now a multiband calculation, the curves are no longer universal and depend (weakly)

on the cutoff Λ.

Several observations can be made. For the singlet case, PDW is fairly stable against µ̂ at small

w, and T
(0)
c,PDW only goes to zero for µ̂ ∼ Λ (as can be shown analytically).This is because increasing

µ̂ only directly affects ∆ΓK , but condensation at the K pocket remains energetically favorable (note

that the effective attraction within the K pocket in this case still arises from pair hopping, and all

interactions here are repulsive). On the other hand, both singlet and triplet PDW’s are unstable

with respect to trigonal warping, as it reduces the paring susceptibilities for both ∆ΓK and ∆KK .

Because Π̄ΓK is constant for µ̂ < w/2 at zero temperature, the critical value of w is constant for
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Figure 5.7: Critical surface for an instability of the singlet (A′10) PDW channel (PDW± are degen-
erate) determined by (5.34) in the phase space of temperature T , trigonal warping w, and Fermi
surface mismatch between Γ and K pockets µ̂, top right. Cuts are shown at constant µ̂ (top left),
constant w (bottom left), and constant T (bottom right) in units of Tc0 (Tc at zero detuning).
Parameters used are the same as in Figure 4.2.
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Figure 5.8: Same as Figure 5.7, but for the triplet PDW instabilities (A′1z), (E′′x) and (E′′y) that
are degenerate in the absence of SOC. All parameters are in units of Tc0. The reentrant behavior in
the Tc vs w plot (top left) is in part due to the non-single-valuedness of Tc as a function of µ̂ that
can be seen in the Tc vs µ̂ plot (bottom left), which indicates that a first order rather than a second
order phase transition likely takes place for sufficiently large µ̂. See also discussion in the text.

Figure 5.9: Three types of behavior of stability regions in temperature T/trigonal warping w phase
space for the triplet PDW instabilities at fixed values of µ̂. For larger µ̂, the instability may vanish at
T = w = 0, but due to the spinodal curve having two branched in the T vs m̂u phase space (bottom
left panel in Figure 5.8), increasing the temperature can stabilize the phase. Similarly, increasing w
can also stabilize the phase, resulting in behavior in the middle panel. Ateven larger m̂u stability
of PDW is completely lost at w = 0, but not at T = 0, resulting in behavior in the right panel.
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µ̂ < w/2, resulting in straight lines in the corresponding plots in Figure 5.7 and Figure 5.8. This is

a particular feature of our model, as mentioned above, but in general there is an upper critical value

of w beyond which PDW is unstable for any µ̂ because it enters both Π̄ΓK and Π̄KK , while µ̂ does

not. As a result there may not be an upper critical value of µ̄ at w = 0, as in the case of singlet

PDW channel.

In the triplet case, we only include small subleading f -wave terms in the interactions, and ∆
(j)
KK

is therefore small for j = x, y, z, and the PDW is mostly stabilized by paring between Γ and K

fermions, i.e. by ∆ΓK . Consequently, the triplet channel is much more sensitive to the Fermi surface

mismatch due to µ̂, and T
(j)
c,PDW drops off sharply as µ̂ increases and there is now a critical value of

µ̂ at zero temperature, as shown in bottom left of Figure 5.8. Note that this critical value actually

increases with increasing trigonal warping, suggesting that trigonal warping actually stabilizes PDW

agains Fermi surface mismatch. As a result, there can be a reentrant phase transition into PDW as

either T or w increase. For the latter, this happens because Π̄ΓK actually increases with w when

µ̂ > w/2, which is when the Fermi surfaces at Γ and K (shifted to a common center) no longer

overlap. As w increases, some points on the Fermi surfaces come closer, which increases Π̄ΓK .

As a result, three types of stability regions in the T/w plane are possible, as shown in Figure 5.9:

PDW may be stable in a region under a single curve including the origin (left panel), between two

curves excluding the origin (middle panel), or under a single curve but excluding the origin (right

panel). In the latter case, PDW is not possible at w = 0 for any T , but it remains possible for T = 0

for sufficiently large w.

This reentrant behavior is a result of the fact that at w = 0, T
(j)
c,PDW is not a single-valued

function of µ̂ (purple curve in bottom right corner of Figure 5.8), indicative of a the phase transition

becoming first order beyond some value of µ̂. Obtaining the first order phase transition line requires

a further calculation beyond the scope of this thesis, but it has been shown in [178] that for a

mathematically similar problem for an SDW instability, instead of a first order phase transition a

different phase emerges with a shifted pairing momentum (similar to FFLO, in this case a PDW

with pairing momentum slightly different from ±K, i.e. slightly incommensurate), and the phase

transition remains second order at least up to an even larger detuning.

5.3 Effects of SOC on PDW

As pointed out by [67] for systems with no Γ pocket and Fermi surfaces at K points completely

polarized by Ising SOC, the PDW pairing is necessarily between equal spins. The same conclusion
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holds when the K Fermi surfaces are split by the Ising SOC but are not polarized (i.e. there is both

an inner and an outer Fermi surface). Since spins at the K points in both cases point in or out

of the plane due to Ising SOC, pairing within the Fermi surface with equal spins is favored, which

correspond to channels with µ = x, y, and the leading terms we find in RG correspond to the E′′

irrep in agreement with [67].

We can see this directly by projecting the PDW gap functions ∆±K,±K from the spin basis onto

the split Fermi surfaces, as we did for uniform SC in Chapter 4. The Pauli matrix projections in

the strong SOC limit analogous to (4.22) are

∆±K,±K;τ (p) =
∑
`µ

Θ
(`µ)
±K,±K(p)W

(µ)
±K,±K;τ (p)D

(`µ)
±K,±K (5.53)

where

W
(0)
±K,±K;τ (p) = Uα±Kτ (p)Uβ±Kτ (−p) [iσy]αβ

W
(j)
±K,±K;τ (p) = Uα±Kτ (p)Uβ±Kτ (−p)

[
iσjiσy

]
αβ

(5.54)

with j = x, y, z and the unitary transformation given in (4.6). A simple calculation then shows that

W
(0)
±K,±K;τ (p) = 0

W
(x)
±K,±K;τ (p) = ±iτ

W
(y)
±K,±K;τ (p) = −1

W
(z)
±K,±K;τ (p) = 0 (5.55)

Note that as expected, the µ = 0, z Pauli matrices corresponding to opposite spin pairing are thus

projected out. With Θ
(E′′x/y)
±K,±K =

√
2 cos 3θ, this means that the inner/outer gaps are

∆±K,±K;τ =
√

2
(
−D(E′′y)

±K,±K ± iτD
(E′′x)
±K,±K

)
cos 3θ (5.56)

Although this is nodal, since the E′′ irrep also contains p-wave terms listed in Table 5.3, there can

be additional terms of the form

∆±K,±K;τ =
√

2
(
D

(E′′y)
±K,±K ± iτD

(E′′x)
±K,±K

)
e±iτθ (5.57)

that lift the nodes and moreover add phase windings e±iτθ that are opposite on inner and outer
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Fermi surfaces, and also opposite on a given inner or outer band on opposite pockets (the nodal gap

is thus at a critical point of a topological phase transition). As mentioned in [67], if the inner Fermi

surfaces at each K point are removed, this leads to chiral or helical PDW in the FF- and LO-type

PDW respectively. With both inner and outer Fermi surfaces, the corresponding Chern numbers

and Z2 invariants vanish because the windings are opposite, but crystalline topological invariants

may remain non-trivial (a question we leave for future research).

The situation with the Γ pocket, which as we saw is necessary to produce a PDW from repulsive

interactions, is more complicated. Because the Ising SOC is momentum dependent on the Γ pocket,

in the projection of ∆ΓK neither singlet nor triplet components vanish, and which one is favored

depends on the model parameters. Though we do not solve the gap equation here, we can gain a bit

of insight by looking at the pairing susceptibility in the SOC basis, which for pairing between inner

and outer Fermi surfaces (labeled with τ, υ = ±1) at Γ and ±K pockets reads (cf. (5.28)-(5.29)):

ΠΓτ ;±Kυ(θ) =
NΓτNKυ
NΓτ +NKυ

$ (ξΓτ (k)− ξ±Kυ(−k)) (5.58)

where the detuning parameter is

ξΓτ (k)− ξ±Kυ(−k) = µ̂∓ υβI + (τλIp
3
F ± w) cos 3θ (5.59)

(the parameters ξητ , βI , λI are summarized in Section 4.1). In particular the best nesting may be

between inner Γ and outer K (or vice versa) which can favor opposite spin pairing including singlet

pairing, and the nesting can improve with non-zero µ̂, w.

For pairing within K points, the susceptibility is

Π±Kτ ;±Kυ(θ) =
NKτNKυ
NKτ +NKυ

$ ((τ − υ)βI ± 2w cos 3θ) (5.60)

so for w < βI , pairing within inner or outer Fermi surfaces is clearly preferred (note that this

susceptibility has the same functional form as (5.52), so for w > 2βI it is largely independent of

βI , i.e. nesting is equally bad for interband and intraband pairing). On the other hand, even if the

E′′ PDW instability is favored for Ising SOC much larger than w, the singlet PDW instability may

start to compete with it if βI . w. Solving the gap equation numerically is necessary to identify the

correct phase, which is a problem we leave for a future study.
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Chapter 6

Comparison with Experiment:
Unexpected 2-fold Anisotropic
Response

In the previous chapters we have identified several interesting superconducting phases that may

theoretically be realized in 1H-TMDs, including chiral SC, possibly topologically nontrivial FF-

and LO-type PDWs, and nodal topological SC phases. The real systems are of course much more

complicated than the simple model that was presented, and experiments are necessary to establish

if any one of those phases is in fact realized. Since 1H-NbSe2 is known to remain a (uniform) 2D

superconductor in large in-plane magnetic fields, the most likely phase to look for seems to be one of

the nodal topological SC phases driven by such fields that we discussed in Chapter 4. The crystalline

nodal phase in particular appears in a large portion of the phase diagram and is largely independent

of the details of the microscopic interactions. All that is required is a magnetic field exceeding the

Rashba SOC (expected to be small, especially in encapsulated samples) applied along a particular

direction that is relatively easy to tune in experiment. Since this phase depends sensitively on the

direction of the applied field, a natural experiment is to look for any anisotropy in the SC response of

1H-NbSe2. Since the system appears identical for fields directed along any one of the Γ-K directions,

we would expect a six-fold symmetric response in for example Hc measurements (we discuss this in

more detail below).

Precisely this kind of experiment has been carried out by [58] and independently by [186]. Both

performed transport experiments, and a tunneling experiment was also carried out by [58]. Surpris-

ingly, a two-fold anisotropy in the applied field direction is seen in both experiments, inconsistent

with the crystal symmetry (see Figure 6.1). In this chapter we discuss possible explanations for

these results. We will use a phenomenological approach following [160] and that appeared originally
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in [58].

Figure 6.1: Two-fold anisotropy observed in transport experiment, figure adapted with permision
from [58]. Plots show resistance R of the samples normalized by the resistance in the normal state
RN . Panels a-e show the resistance as a function of the direction of the magnetic field at various
magnetic field strengths (a-c) and various temperature (d-e), with the rest of the parameters being
fixed. c shows data obtained at high magnetic fields, with the green curve showing the extracted
Hc. Panel f shows the resistance as a function of temperature, with Tc around 4 K, as well as the
relative amplitude of the oscillations (red dots).

6.1 Necessary Conditions for Anisotropy

An unfortunate fact of life is that most things that are easy to measure experimentally are hard

to calculate theoretically, and vice-versa. What is more or less both calculable and measurable, on

the other hand, carries somewhat limited information about the phase and the order parameter. In

this case, the quantities that are both relatively easy (i.e. practical) to measure and calculate are

Tc, the superconducting critical temperature, and Hc, the critical magnetic field. Note that both do

not explicitly depend on the details of the form of the gap function. On the experimental side, the

difficulty is that while these are thermodynamic quantities, the easiest experiments are transport

experiments that generally require the system to be out of equilibrium. Disorder and quantum

fluctuations can also significantly affect the experiments, and the theoretical calculations including

those effects are quite involved and require a more detailed model of the band structure and order

parameters than we presented. This makes it more difficult to make a quantitive comparison with
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the data.

On the qualitative side, however, at a minimum we expect that the response of the system to

a symmetry breaking field like the magnetic field will have the same symmetry as the system. for

example, if the system has trigonal symmetry, we expect the conductivity (a response to a current

that breaks rotational symmetry as well as time reversal symmetry) to have at a minimum a three-

fold symmetry as a function of the direction of the applied current (actually six-fold by TRS; it may

even be isotropic). A constant magnetic field breaks two symmetries: TRS and mirror symmetries

with respect to reflection planes containing the magnetic field. Note that the latter includes spin-

rotation symmetry: the horizontal mirror symmetry acts on spin as Mz = iσz, while the spin

rotation by φ about the z axis acts as Rz(φ) = eiφσ
z/2. The orbital effects, i.e. vortices, break

the same mirror symmetry (spin and vortex currents are loosely analogous in classical physics, and

in particular have the same symmetry properties). Note that we do not expect the orbital effect

to be significant in very thin samples a few monolayers thick (we discuss this point below). An

anisotropic response to an in-plane magnetic field is therefore strongly suggestive of a broken spin

rotation symmetry. We can prove this explicitly as a theorem for all thermodynamic quantities,

assuming no orbital effect.

Theorem 6.1

The spectrum cannot depend on the direction of the in-plane magnetic field in a superconductor

with horizontal mirror symmetry (i.e. with the magnetic field in the mirror plane). �

Proof 6.1

Consider a single band superconductor (the multiband case is identical but with additional indices).

Very generally, in the spin basis we can take the gap function to be

∆ = (D(0) +D(x)σx +D(y)σy +D(z)σz)iσy (6.1)

(with D(µ) possibly functions of momentum and magnetic field). The BdG Hamiltonian for a system

with horizontal mirror symmetry (which forces any SOC to be of ‘Ising’ type) in an in-plane magnetic
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field then reads

HBdG(p,b) =


ε(p) + βI(p) beiϑ −D(x) + iD(y) D(0) +D(z)

be−iϑ ε(p)− βI(p) −D(0) +D(z) D(x) + iD(y)

−D(x)∗ − iD(y)∗ −D(0)∗ +D(z)∗ −ε(p) + βI(p) −be−iϑ

D(0)∗ +D(z)∗ D(x)∗ + iD(y)∗ −beiϑ −ε(p)− βI(p)

 (6.2)

where ε is the usual dispersion in the absence of the magnetic field or SOC (and momentum even),

and ϑ is the direction of the magnetic field. Now, the BdG spectrum is unchanged under a unitary

transformation. In particular, take

U =


e−iϑ

′
0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−iϑ
′

 (6.3)

(essentially just redefining the x, y spin quantization directions). Then

UHBdG(p,b)U† =


ε(p) + βI(p) bei(ϑ−ϑ

′) (−D(x) + iD(y))e−iϑ
′

D(0) +D(z)

be−i(ϑ−ϑ
′) ε(p)− βI(p) −D(0) +D(z) (D(x) + iD(y))eiϑ

′

−(D(x)∗ + iD(y)∗)eiϑ
′ −D(0)∗ +D(z)∗ −ε(p) + βI(p) −be−i(ϑ−ϑ′)

D(0)∗ +D(z)∗ (D(x)∗ + iD(y)∗)e−iϑ −bei(ϑ−ϑ′) −ε(p)− βI(p)

 (6.4)

i.e. the BdG Hamiltonian but for a magnetic field direction shifted from ϑ to ϑ− ϑ′. It follows that

if ∆ minimizes the free energy at angle ϑ, it also minimizes the free energy at ϑ − ϑ′ provided we

take

D(x) + iD(y) ∝ e−iϑ (6.5)

�

i.e. the vector D = (Dx, Dy) is perpendicular to the magnetic field. Note that at zero magnetic field

we must have D = 0, as this term by itself breaks mirror symmetry. This fixes the dependence of

the gap function on the direction of the magnetic field.

But note that this means that the BdG Hamiltonian for ϑ − ϑ′ can be obtained from the BdG

Hamiltonian for ϑ by a unitary transformation. Therefore, the spectrum of the BdG Hamiltonian is

independent of the direction of the magnetic field. Since many thermodynamic quantities are only

functions of the BdG spectrum, they are similarly independent of the direction of the magnetic field.
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For the orbital effects (which again we do not expect to be significant), the proof of the same

statement follows from the fact that with the canonical (Peierls, minimal coupling) substitution, p→

p− eA, for an in-plane magnetic field directed along ϑ we can take A = Az ẑ = (x sinϑ− y cosϑ)ẑ,

which does not enter the BdG Hamiltonian and only couples to D for a 2D system; again with

D ⊥ B this implies the free energy (or action) are invariant under rotations of the magnetic field up

to a unitary transformation. The orbital effect in particular has been studied in detail in [175], who

reach the same conclusion for trigonal systems using a Ginzburg-Landau free energy (specifically for

the D3d point group, which has additional terms in the free energy compared to D3h).

The ‘exception’ to both the orbital and paramagnetic instances of the theorem is if the mirror/spin-

rotation symmetry is broken spontaneously by the system, in which case the vector D selects a

direction not necessarily related to the magnetic field. Breaking a discrete symmetry requires the

gap to transform according to a two (or higher) dimensional irreducible representation (irrep).1 We

saw an example of this in Section 4.3.1, and this is also found by [175] for the orbital effects. Of

course, the mirror symmetry may be explicitly broken by a substrate. In this case, as we saw, this

generally correspond to the presence of Rashba SOC, as and as we noted several times it is generally

expected to be present in the system.

The discussion above addresses the question of when an anisotropic response to an in-plane

magnetic field is at all possible. We see that it generally requires either Rashba SOC or a presence

of a 2D irrep, in this case the E′′ irrep (note that E′ is symmetric under Mz and so cannot break

the spin-rotation symmetry). In fact we would expect that the layers in a bilayer (as well as samples

with more layers) have strong Rashba SOC because of locally broken inversion symmetry if the

layers are not too strongly coupled [112, 47, 193, 183, 116], even in h-BN encapsulated samples.

A second question, however, is why the anisotropy is two-fold symmetric. This again can be

a result of either a spontaneous symmetry breaking by E′′ or E′ (i.e. condensation of an order

parameter that itself breaks the C3 rotation symmetry), or symmetry breaking by an external field

which in this case would most naturally be provided by strain, which itself transforms according to

the E′ irrep. Regardless of the microscopic mechanism, therefore, the experiment shows that (i)

the horizontal mirror symmetry is broken; and (ii) rotational symmetry is broken. Both may or

may not be broken spontaneously, but the latter symmetry always requires a 2D irrep of D3h to be

present in the gap function.

1A subtle note: for 1D irreps, the gap function may transform non-trivially under point group symmetries if it’s
not in the trivial irrep, but the BdG Hamiltonian nevertheless does not break the point group symmetries which note
have to be extended to the particle-hole space of the BdG Hamiltonian, as we saw in Section 3.3.

144



6.2. Ginzburg-Landau Free Energy

6.2 Ginzburg-Landau Free Energy

We now demonstrate how the symmetry breaking may occur using a phenomenological Ginzburg-

Landau free energy: since we do not know the microscopic origin of the two-fold symmetry, here

we simply consider all symmetry allowed terms (essentially generalizing [160]). Since we expect the

behavior of few-layer NbSe2 to be representative of the monolayer compound, we consider the point

group of the latter, which is D3h. This point group is non-centrosymmetric, reflecting the fact that

it incorporates the effects of the Ising spin-orbit coupling (SOC). When mirror symmetry is broken

e.g. by Rashba SOC, the point group symmetry is reduced to to C3v.

For simplicity, we only consider the SC gap function on the Γ pocket. The possible supercon-

ducting gaps, which we denote ∆(`µm), can be classified based on the irreducible representation

` of D3h or C3v under which they transform, as well as whether they correspond to spin-singlet

µ = 0 or one of three spin-triplet µ = x, y, z Cooper pairs. When ` is not 1-dimensional, we use the

index m to distinguish different components of the corresponding multiplet. Recall that since D3h

is noncentrosymmetric, a given irrep contains both singlet and triplet gap components.

`(D3h) `(C3v) Σ
(`0)
Γ = Θ

(`0)
Γ (θ)iσy Σ

(`j)
Γ = Θ

(`j)
Γ (θ)σjiσy Field

A
′

1 A1 iσy cos 3θ σziσy NA

A
′

2 A2 sin 6θ iσy sin 3θ σziσy Bz
A
′′

1 A2 pz cos 3θ iσy pzσ
ziσy, (cos θ σx + sin θ σy) iσy Bz × Ez

A
′′

2 A1 pz sin 3θ iσy (sin θ σx − cos θ σy) iσy Ez
E
′

E cos 2θiσy, cos θ cos 3θ iσy cos θσziσy Ex
sin 2θiσy, sin θ cos 3θ iσy sin θσziσy Ey

E
′′

E pz cos θiσy cos 3θσxiσy, (cos θσx − sin θσy) iσy By
pz sin θiσy cos 3θσyiσy, (sin θσx + cos θσy) iσy −Bx

Table 6.1: Lattice harmonics/basis functions for the gap function in the spin basis expanded around
the Γ pocket belonging to various irreps of D3h and C3v. For the ±K pockets, take cos 3θ → ±1
wherever it appears (including sin 6θ). Note that in 2D, pz = 0. We also list the external perturbing
fields transforming according to each irrep. B = (Bx, By, Bz) is the magnetic field, E = (Ex, Ey) is
the shear strain field (electric field E transforms in the same way). Note that Ez induces Rashba
SOC as discussed in Section 1.2, which is therefore in the same irrep.

The total SC gap ∆(p) is in general

∆(p) =
∑
`µm

Σ(`µm)(p)D(`µm) (6.6)

where D(`µm) are complex scalars that are the order parameters of the corresponding irrep. We
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take Σ(`µm)(p) to be functions of only the angle θ with respect to the Γ-K direction. Recall that by

particle hole symmetry, ∆(p) = −∆T (−p), which implies that Σ(`0m)(p) (Σ(`jm)(p) with j = x, y, z)

is an even (odd) function of p. All the irreps relevant to our analysis here are shown in Table 6.1.

As we saw in Chapter 2, the leading instabilities in the microscopic theory are in the A′1 and E′′

irreps, which we will therefore focus on. Since we are also including strain as a possible explanation

of the two-fold anisotropy, we will also consider the E′ irrep.

Note that in the phenomenological approach, the functional form of the gap is not determined,

only the relative weights of each irrep. In particular, if an irrep has a non-zero weight, all terms

(including singlet and triplet terms) belonging to that irrep are in general present in the solution.

In practice, one of the terms within a given irrep in Table 6.1 is usually dominant, and the rest can

be dropped. We can therefore drop the superscript on the coefficients in front of the gap function

within a given irrep and label them as DA′1
, DE′ , and DE′′ , where the latter are 2-component vectors

representing the doublet that as we will see give rise to the two-fold anisotropy.

We assume that the dominant superconducting instability in the absence of perturbing field

is in the A′1 irrep (recall that the E′′ is projected out by Ising SOC in the absence of Rashba

SOC/magnetic field). Near the superconducting transition temperature (in the absence of a magnetic

field or strain), the free energy has the form

F0 = F0

[
DA′1

]
+

1

2

(
χ−1
E′ (T )|DE′ |2 + χ−1

E′′(T )|DE′′ |2
)
. (6.7)

Here χ`(T ) ∝ 1/(T − T (`)
c ) is the susceptibility associated with superconducting fluctuations in the

` irrep with transition temperature T
(`)
c . Our main assumption is that the leading superconducting

instability takes place at a temperature T
(A′1)
c that is larger than T

(E′)
c and T

(E′′)
c .

Perturbations like strain and magnetic field that transform according to non-trivial irrep of D3h

(and therefore break it down to a smaller point group) introduce couplings between gaps in the

corresponding irrep and in the A′1 irrep, since we can construct a scalar from the product of the

field and the two gaps (one gap being conjugated to make it a real scalar) that is therefore allowed

in the free energy.

First, since the in-plane magnetic field b (in units of the Bohr magneton times the Landé g-

factor, b = 1
2gLµBB) transforms according to the E′′ irrep and the Ising spin-orbit coupling vector

λp3
F cos 3θẑ transforms according to A′1, a singlet A′1-triplet E′′ mixing term of the form λp3

FDA′1
b ·

(ẑ×DE′′) is allowed, corresponding to the s+ if mixing we saw in Section 4.2 and as noted in [109].
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The resulting term in the free energy is

F [DA′1
,DE′′ ] = λ1Re

[
D∗A′1 (byDE′′,1 − bxDE′′,2)

]
. (6.8)

where λ1 is some coupling constant proportional to λ. Minimizing the resulting free energy with

respect to DE′′,m, we find that

(DE′′,1, DE′′,2) = −λ1χE′′DA′1
(by,−bx) (6.9)

and the total superconducting gap is

∆(p) = DA′1

[
Σ(A′1)(p)− λ1χE′′Σ

(E′′)(p) · (ẑ × b)
]

(6.10)

which is a mixture of the s-wave singlet A′1 gap and the p- or f -wave triplet E′′ gap. Note that

since the magnetic field components break the D3h symmetry, they also lift the degeneracy of the

E′′ solution and fix the direction of the E′′ order parameter (in particular, the magnetic field sets

the direction of the vector D(E′′) to be perpendicular to the field). The magnitude of DE′′ (relative

to that of DA′1
) is set by the coefficient λ1χE′′ |b|. Since the magnetic field b is a small perturbation,

generically we expect this coefficient to be small, and the corresponding mixing to be weak. However,

if T
(E′′)
c is comparable to T

(A′1)
c (which in the model presented in Chapter 4 may be the case when

the instability is predominantly triplet and Rashba SOC is large), then in the vicinity of T
(A′1)
c the

susceptibility χE′′(T ) ∼ 1/(T
(A′1)
c − T (E′′)

c ) is very large.

We can similarly consider the shear strain E = (εxx − εyy, 2εxy), which transforms according

to the E′ irreducible representation, where εij ≡ 1
2 (∂iuj + ∂jui) is the strain tensor and u is the

displacement vector. This leads to a coupling between A′1 and E′ gaps of the form:

F [DA′1
,DE′ ] = λ2

[
(εxx − εyy)Re

(
D∗A′1DE′,1

)
+ 2εxyRe

(
D∗A′1DE′,2

)]
. (6.11)

where λ2 is some coupling constant. Minimizing the free energy leads to a mixed s-wave and d-wave

superconducting gap

∆(p) = ∆A′1

[
Σ(A′1)(p)− λ2χE′Σ

(E′) · E
]

(6.12)

Again, small strains will only lead to a significant E′ component in the superconducting gap if the A′1

and E′ superconducting instabilities have similar transition temperatures. In addition to the second
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order terms above that correspond to explicit symmetry breaking, there are fourth order terms linear

in the A′1 gap function and cubic in either the E′ and E′′ gap functions that couples them directly,

leading to spontaneous symmetry breaking for T < Tc. This has been pointed out in [186] and earlier

for twisted bilayer graphene in [26]. This term has the same form as Eq. (6.12) but with a strain

field being induced by the E′ or E′′ order parameters as E ∝ (|∆E1|2−|∆E2|2,∆∗E1∆E2 + ∆∗E2∆E1)

(with E = E′ or E′′). We do not speculate here on whether the symmetry breaking is explicit or

spontaneous; there is some evidence for spontaneous symmetry breaking in some samples as the

measured anisotropy seems to be directed along a crystal symmetry axis, but it alone is unlikely to

explain the data since the effect would only be relevant far below Tc.

Figure 6.2: (a-c): the energy gap in the BdG spectrum ∆E as a function of momentum angle θk
along the Fermi surface obtained with parameters listed under (6.16) for (a) pure s-wave singlet A′1
gap, (b) A′1 mixed with E′ gap, and (c) A′1 mixed with E′′ gap. Note that the inner and outer
gaps are essentially identical in this case. The sharp minima are due to Ising SOC, which for higher
magnetic fields become nodes. Insets show schematic forms of the gap around the Fermi surface.
(d-f): the energy gap minimum (in meV) as a function of field angle θ ≡ ϑ in the presence of Rashba
SOC for the same cases as in (a-c). Note that with triplet E′′ mixed in, the inner and outer gaps
now differ (shown in green and gray), and only the global minimum is two-fold symmetric. Figure
adapted with permission from [58].

Note that the d-wave E′ terms and p-wave E′′ term lead to a 2-fold anisotropy of the supercon-

ducting gap around the Γ pocket in momentum space. We show this in Figure 6.2(a-c). We obtained

148



6.2. Ginzburg-Landau Free Energy

the plots using a simple model of the single-body Hamiltonian in momentum space:

H(p) =
∑
pα

ε(p)d†pαdpα +
∑
pαβ

d†pα
[
λp3

F cos 3θσz + b · σ
]
αβ
dpβ =

∑
pαβ

d†pα [H0]αβ dpβ (6.13)

where α and β are spin indices,

ε(p) = − p2

2m
− µ, (6.14)

and θ, as above, is the angle measured from the center of the Γ pocket with θ = 0 corresponding to

the direction towards the K point. We use λp3
F = 40 meV, which is the Ising SOC value reported

in the literature once averaged over all Fermi surfaces [40]. We also set µ = −0.4 eV, which gives

m = p2
F /2µ ≈ 2m0 when the wavenumber corresponding to the Fermi momentum is pF /~ = 0.45 Å−1

[18]. Here, m0 is the electron rest mass. All these parameters were chosen so that the Fermi surface

of the toy-model parabolic dispersion is similar to that obtained from first principle calculations

[62, 110, 40, 184]. These values should thus not be understood as actual parameters that a first-

principle calculation would yield. The key point is that our conclusions do not rely on this set of

parameter values, as they are used to illustrate the two-fold gap anisotropy that must follow from

mixing an A′1 gap with either E′ or E′′ gaps. Finally, for the magnetic field, we use b = 0.5 meV,

which is about 8.3 T.

The superconducting excitation spectrum is then given by the eigenvalues of the Bogolyubov-de

Gennes (BdG) Hamiltonian:

HBdG =
1

2

∑
p

Ψ†pH(p)Ψp (6.15)

where we use the Nambu-Gor’kov representation Ψp = (dp↑, dp↓, d
†
−p↑, d

†
−p↓)

T and

H(p) =

 H0(p) ∆(p)

∆†(p) −HT0 (−p)

 . (6.16)

We took ∆(p) as in Eqs. (6.10) and (6.12) with the singlet d-wave term for E′ and the triplet p-wave

term for E′′ from Table 6.1. For all plots, we took ∆A′1
= 1 meV (on the order of Tc). For the mixed

A′1/E′ gaps, we took |∆E′ | = 0.1 meV and a uniaxial strain along the x axis, E ∝ (1, 0). For the

mixed A′1/E′′ gap, the mixing is relatively weak unless the mixed gaps are close in magnitude; for

this reason, we used |∆E′′ | = 0.5 meV in the plot. Note that we plot the energy gap in the spectrum
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of HBdG (i.e. difference between bottom positive energy band and top negative energy band) along

both the inner and outer Fermi surfaces. The resulting gaps on the inner and outer surfaces are

identical within the resolution of the figure.

Note that since we did not include Rashba SOC, the spectra are independent of the direction of

the applied in-plane field, which was set to θ = 0. This is a consequence of the horizontal mirror

symmetry (equivalent to spin-rotation about the z axis) discussed above. It must be broken in order

to explain the experimental data, which we account for by adding Rashba SOC:

HR = αR (pyσ
x − pxσy) (6.17)

Rashba SOC belongs to the A′′2 irrep and reduces D3h to C3v; although in principle this introduces

additional gap functions ∆A′′2
, these are three-fold symmetric and so we do not include them in our

analysis. With Rashba SOC included, however, the BdG spectrum does depend on the direction

of the applied magnetic field. A quantity that illustrates this (and may possibly be relevant to

experiment) is the minimum of the energy gap, which we plot if Figure 6.2(d-f) for the three cases

considered above with αRpF = 0.2 meV (for comparison, αRpF was estimated to be about 0.8 meV

in gated MoS2 in [98]). As we saw in Section 4.2, in the absence of Rashba SOC the minima become

nodes when the magnetic field exceeds the Pauli limit. Recall that Rashba SOC lifts the nodes

unless the magnetic field points along one of the K directions, in which case two pairs of the original

12 nodes remain. Below the Pauli limit (as we consider here) the nodes become sharp minima. In

the pure A′1 case, this results in a six-fold symmetric signal, with sharp peaks when the magnetic

field points along Γ-M due to the minimum moving from Γ-M direction to the next. When E′ or

E′′ terms are included, the minima of the gap function for magnetic field pointing along different

Γ-M lines are no longer equal, and the signal becomes two-fold symmetric.

6.3 Other Scenarios

For completeness, we consider some scenarios beyond one involving nearby E′ or E′′ instabilities

that we presented above, and discuss why they are unlikely to explain the data by themselves.

Nevertheless, some of them may still play a complementary role. The fact that a 2D irrep along

with horizontal mirror symmetry breaking must be present is of course true for all the scenarios.

The most trivial explanation would be that the magnetic field was not perfectly aligned with the

sample plane as it was rotated in the field, which would result in a small out-of-plane component
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of the magnetic field with a magnitude that varies as | sinϑ| as the sample rotates in the magnetic

field. This has been considered in more detail in [58]. The main argument against this is that this

would lead to cusps in the signal due to the absolute value, which is not seen.

6.3.1 Microscopic Calculation with Strain Without Closely Competing

Irreps

As noted above, the mixing between the A′1 irrep and E′ or E′′ irreps requires the channels to have

comparable Tc’s. In the presence of Rashba SOC, in-plane magnetic field and strain there is another

term, however, that in principle can lead to a two-fold anisotropy and that does not require channel

mixing. Rather the anisotropy in that case arises from the Fermi surface/band structure. Here we

show that this effect requires unrealistically large strain in order to explain the observed data.

Microscopically, the additional twofold anisotropic term arises in the pairing susceptibility/particle-

particle bubble in Eq. (4.33) (now including K pockets and taking the strong SOC limit):

Πητ (θ′) =
Nητ

2
$

(
2ξAητ (θ)

T

)
(6.18)

with Nητ the density of states on the η pocket on the τ Fermi surface and

$ (x) = − log
1.13Λ

T
+ Re

[
ψ

(
1

2
+
ix

4π

)
− ψ

(
1

2

)]
(6.19)

where ψ is the digamma function. Recall that

ξAητ (p) =
ξητ (p)− ξ−ητ (−p)

2
(6.20)

where

ξητ (p) = εη(p) + τ
∣∣βη(p)

∣∣ ≡ εη(p) + τβη(p) (6.21)

is the normal state dispersion including the SOC and magnetic field:

βη = βηz(p)ẑ + αR (pyx̂− pxŷ) + b (6.22)
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In addition, we include strain by taking

εη(p) =
p2

0

2mη

(
(1 + ε)2 cos2 θ + (1 + ε)−2 sin2 θ

)
(6.23)

which effectively stretches the Fermi surfaces along which px = (1 + ε)p0 cos θ and py = (1 +

ε)−1p0 cos θ (note that the areas enclosed by the Fermi surfaces remains the same for all ε; this

is also equivalent to taking unequal effective masses for different directions). Recall (as we saw in

Section 4.2.3) that for large Ising SOC,

ξAητ (p) ≈ τ αR(pybx − pxby)

βI
≈ τ αRp0b

βI
[sin(θ − ϑ)− ε sin(θ + ϑ)] (6.24)

and the last term gives rise to the aforementioned twofold anisotropic term.2 Although the term

is small, because it enters the detuning parameter, Tc (and hence Bc) are relatively sensitive to

it. Including the strain in the linearized gap equation (4.19) by taking px = (1 + ε)p0 cos θ and

py = (1 + ε)−1p0 cos θ and solving it numerically, we find that Bc varies by about 4-10% as a

function of field angle for αRp0bε ≈ 0.001β2
I , with ε = 0.2. See Figure 6.3. Realistically, we expect

ε on the order of 10−4, so this cannot explain the data.

Although the input gap function is in this case pure A′1, the energy gap has E′ and E′′ components

due to the projection onto the Fermi surface. This result is therefore consistent with the general

requirement that gap components belonging to a 2D irrep must be present in order to break the

rotational symmetry.

6.3.2 Superconducting Fluctuations and Non-equilibrium

Another ‘trivial’ explanation could be that the symmetry is broken by the experimental apparatus

in some way. The most obvious symmetry-breaking part of the ‘apparatus’ is the applied current

direction, and related to it the contact geometry. Unfortunately a detailed theoretical treatment of

the system including the supercurrent is somewhat involved, as the system is not in equilibrium.

Heuristically, we can argue that in the normal state a static current amounts to a shift of the

entire band structure (including the Fermi surface) by an amount qdrift. For a sufficiently large

supercurrent, this can eventually drive an FFLO state that we mentioned in Section 4.2.3 (the

particle branch shifts by qdrift while the hole branch shifts by −qdrift by PHS).3 More intuitively,

2Recall that $ (x)−$ (0) ≈ 7ζ(3)x2

16π2 for small x, and expanding ξ2Aητ gives a correction proportional to αRp0bε.
3Non-equilibrium properties of FFLO states in systems with applied currents has apparently not been studied in

detail until recently [139].
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Figure 6.3: Numerical solutions of the gap equation (4.19) including strain demonstrating the two-
fold anisotropy. Top left plot shows Tc as a function of magnetic field angle at various magnetic field
strength, bottom left shows Tc as a function of magnetic field strength for various field angles. Top
(bottom) right shows the critical magnetic field Bc (normalized by Bc(ϑ = 0)) as a function of field
direction at various temperatures. All parameters are in units of Ising SOC βI . Model parameters
used were g1 = −1.7, g2 + g3 = −0.6, g4 = 0.2 (other coupling constants set to zero), λp3

0 = βI ,
αRp0 = 0.05βI , and ε = 0.2.
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6.3. Other Scenarios

one can imagine that the gap is sampled by the current with a momentum bias qdrift, so that if the

gap function itself has both a momentum dependence and a magnetic field dependence (as it does

in presence of Rashba SOC, e.g. see Figure 4.3) it could potentially translate to a two-fold signal

(note that spin rotation symmetry breaking is still required for this explanation). One would expect

the maximum signal to be then correlated with the direction of the applied current. This appears

to not be the case in experiment, however, where the maximum is not correlated with the current

direction or contact geometry.

A more likely effect could be due to SC fluctuations in the vicinity of the phase transition which

are well-known to affect conductivity, in this regime called paraconductivity [88] (note that this is

precisely the regime in which the transport experiments are performed). Since the samples are 2D,

fluctuations are moreover expected to be large and likely explain why the transition into the SC phase

as temperature is lowered appears to be smooth and not as sharp as in conventional BCS theory.

Unfortunately, the computation of paraconductivity is somewhat involved (computation of Maki-

Tompson and Aslamazov-Larkin corrections to conductivity are required [88]). We can, however,

again take a phenomenological approach to look at SC fluctuations that arise from gradient terms

in the free energy that we have so far neglected (which in this case do not cause vortices as they

normally would). For the one-component A′1 irrep, the only allowed gradient term is of the form

F (A′1)
∇ = K0|∇D(0)|2, which is clearly rotationally invariant. For the two dimensions E′ and E′′

representations the terms in F involving gradients of the gap functions are more interesting [160]:

F (`)
∇ = K1|∇ ·∆`|2 +K2|∇ ×∆`|2 +K3

(
|∂x∆`1 − ∂y∆`2|2 + |∂x∆`2 + ∂y∆`1|2

)
(6.25)

where ` = E′, E′′. These terms can be understood as corresponding to the scalar, (axial) vector, and

tensor components of the total derivative ∇∆, assuming no z dependance (respectively the trace,

anti-symmetric part, and traceless symmetric part analogous to the expansion, rotation, and shear

parts of the deformation/strain tensor). Fourier transforming this expression it follows that, in the

presence of an external symmetry-breaking field such as strain, the total gradient term is twofold

anisotropic. We therefore expect the paraconductivity corrections to also exhibit twofold anisotropy.

Note that this particular explanation does not require mirror symmetry to be broken by the system,

as the magnetic field that breaks the symmetry itself contributes to the conductivity. The main

issue with this explanation, however, is that it does not seem to account for the tunneling data that

probed a system deep inside the ordered phase where the fluctuations are strongly suppressed. This

therefore cannot alone explain the data.
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Chapter 7

Conclusions

7.1 What We Did

To summarize, in this dissertation we have performed an analysis of 1H-NbSe2 and similar 1H-

TMD systems. We first used a parquet RG approach in Chapter 2 to identify possible instabilities

of the system: uniform superconductivity (SC) and pair density wave (PDW) channels. Within

each channel, we find that interactions uniform of the Fermi pockets can give rise to both s-wave

singlet and f -wave triplet instabilities, even if the bare interactions are repulsive. For SC, the singlet

interaction can be driven by repulsive pair hopping processes between pairs at Γ and at ±K, while

the triplet phase is stabilized by repulsive exchange interactions between the pairs at K pockets

(a process equivalent to backscattering under which K ↔ −K). The key for the latter is that the

pairing is between disconnected Fermi surfaces. Bare attraction of course can always lead to either

singlet or triplet instabilities even without K points, but repulsive interactions can only drive either

SC instability in the presence of the K pockets (neglecting the Kohn-Luttinger effect and similar

mechanisms).

We then included Ising spin-orbit coupling (SOC) in a self-consistent mean-field analysis in

Chapter 4, including also known symmetry breaking perturbations, namely Rashba SOC, due to

substrate effects, and an in-plane magnetic field, since we know that SC is stable in large in-plane

magnetic fields (above the Pauli limit) due to the strong SOC. Both symmetry breaking terms are

known to produce unconventional SC phases, as previously found for 1H-NbSe2 in large in-plane

magnetic fields in [62]. In particular, they find a nodal topological SC phase above the Pauli limit.

This phase protected by a time-reversal-like symmetry that is product of the time-reversal symmetry

(TRS) and the horizontal mirror symmetry. Both TRS and the mirror symmetry are broken by the

magnetic field, but their product is not. This moreover ensures the symmetry of the Fermi surfaces
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7.1. What We Did

under momentum reversal p→ −p that is necessary to guarantee the SC instability.

While in our work [153] we confirm the existence of the nodal topological phase, we also find that

it is unstable against even small Rashba SOC that breaks the TR-like symmetry and generally lifts

all of the nodes. The main finding, however, is that a different, crystalline, nodal topological phase

can be realized instead in presence of both Rashba SOC and in-plane magnetic fields, provided the

field points along one of the Γ-K directions. The reason is that a single vertical mirror symmetry

(with the reflection plane containing the Γ-M line perpendicular to the magnetic field) remains in

that case and protects two pairs out of the original six pairs that lie in the mirror plane. Because

this phase is protected by a crystalline symmetry rather than an anti-unitary one, it falls outside of

the more familiar tenfold classification of topological phases.We discussed some of the topological

invariants that characterize topological phases in Chapter 3 and showed how they can be computed

using the Berry connection including some in the tenfold classification, as well as an example of a

crystalline phase in 1D and a crystalline nodal phase in 2D, which happens to be precisely in the

same class as the phase that we found in 1H-NbSe2.

Because the combination of Rashba SOC and the in-plane magnetic field breaks the momentum-

reversal symmetry and shifts the Fermi surfaces, the SC phase in that case becomes unstable once

the symmetry breaking is too large. We confirmed, however, that the SC phase is stabilized in a

large region of the phase diagram thanks to Ising SOC. When SC becomes unstable, FFLO phases

with pairing relative the shifted centers of the Fermi surfaces (i.e. with Cooper pairs with equal

energies) are moreover expected to be realized, and we showed that the crystalline nodal topological

phase remains protected in the FFLO case as well. In the uniform SC phase, the symmetry breaking

moreover shifts the nodes away from zero energy, resulting in small Bogolyubov Fermi surfaces.

In the absence of the magnetic field but in the limit of strong Rashba SOC (compared to Ising

SOC), we also find that in the limit of strong triplet interactions a chiral SC emerges (which we also

discussed in Chapter 3), consistent with earlier results in the absence of Ising SOC. Although it is

not likely to be realized in 1H-NbSe2 due to the Ising SOC being too strong, it may be relevant in

other similar systems. As we mentioned above, the origin of the triplet instability lies in the fact that

pairing is between disconnected Fermi surfaces at K points, and importantly Rashba SOC favors

a gap function belonging to a 2D irreducible representation (irrep) of D3h (E′′), which is known

to spontaneously break time reversal symmetry, as we confirmed along with its chiral nature. The

recipe for such a phase is therefore a combination of pairing between K pockets giving rise to the

triplet instability and strong Rashba SOC giving rise to a 2D irrep.

Next, in Chapter 5 we turned to a closer study of the PDW channel we also found in the RG
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7.1. What We Did

analysis. While in principle attractive interactions could result in a PDW instability, no mechanism

is know by which they can favor a PDW phase over an SC phase. In the case of repulsive interactions,

however, we find that a singlet PDW instability can be driven by an Umklapp process taking a pair

within a K pocket to a pair on Γ and −K (allowed since 3K is an Umklapp momentums), and a

triplet PDW can be driven by an exchange process between Γ and −K pockets. As the K pocket was

necessary to produce instabilities from repulsion in the SC channel, repulsion in the PDW channel

can only drive an instability if a Γ pocket is present. This is consistent with the results of [67], who

considered a system without a Γ pocket and found that the Kohn-Luttinger mechanism (in a two-loop

RG calculation) was needed to produce a PDW in that case. Although we do not find a microscopic

mechanism for a PDW instability arising in the absence of a Γ pocket, our phenomenological and

mean-field analyses naturally include such a possibility, which we consider to compare our results

with previous literature.

There are in fact two degenerate PDW channels in RG: one with pairing momentum K, and one

with −K (with order parameters ∆±K respectively). Using a phenomenological Ginzburg-Landau

free energy, we find that higher order terms lift this degeneracy, producing either an FF-type PDW

with only one order parameter present (i.e. ∆K = 0 or ∆−K = 0, but not both), or an LO-type

PDW with both orders present with equal magnitudes (|∆K | = |∆−K |). Both types of PDW break

translational symmetry, but the FF-type PDW additionally breaks TRS. We discuss additional

orders that may be induced by either type of PDW which may be more directly measurable in

experiment. We also consider the microscopic free energy for our model without a Γ pocket, in

which case we find that the LO-type PDW is favored, even when uniform SC fluctuations are

integrated out.

Since, unlike the SC instability, the PDW instability is not guaranteed by symmetry, we perform

a stability analysis using a self-consistent mean-field calculation, both with and without a Γ pocket

(though we emphasize that we do not find a microscopic mechanism for the latter). The two

symmetry breaking effects are trigonal warping at the K points, and mismatch between the band

structures at Γ and K pockets. As expected, we find that a PDW instability remains possible as

long as those effects are small compared to Tc0 the PDW critical temperature in the absence of those

effects.

Though we do not perform a full self-consistent calculation of PDW with Ising SOC included, we

comment on the effects of Ising SOC on the PDW phase. From the same argument as in [67], we find

that at K points Ising SOC results in triplet pairing between equal spins, with the corresponding

LO-type PDW belonging to a 2D irrep. As also found in [67], we see that the gap function in

157



7.2. What We Did Not Do

general exhibit phase winding, which results in non-zero Chern numbers (as we saw in Chapter 3).

We comment that the PDW pairing between Γ and K pockets is not as simple, and neither a triplet

nor singlet PDWs are obviously favored. We leave the precise calculation of the self-consistent gap

functions and their topology to a future study.

Finally, in Chapter 6, we discussed a recent experiment [58] performed on few-layer supercon-

ducting 1H-NbSe2. Contrary to our expectations based on the mean-field calculation in Chapter 4,

a twofold anisotropy with respect to the direction of the in-plane magnetic field is observed. From a

symmetry point of view, we argue that this necessarily implies the breaking of the horizontal mirror

symmetry already in the absence of the magnetic field, and an additional order belonging to a 2D

irrep (in this case the E irrep of C3v). The best-known sources of such symmetry breaking are

Rashba SOC and strain respectively. Moreover, using a phenomenological Ginzburg-Landau free

energy we argue that a mixing between nearby instabilities belonging to the A′1 and either of E′ or

E′′ irreps of D3h is necessary. We also consider some complementary effects that may also result in

a twofold anisotropy, but rule them out as its sole sources.

7.2 What We Did Not Do

Having summarized what we did, to conclude let us mention some of the things that we did not do,

some of which have been done by others, while some may provide avenues for future research. We

have for example completely neglected CDW which is known to exist in these systems, a question

that has been considered in [91, 117, 198]. Another thing that we haven’t included in our analysis

is disorder, which has been considered in 1H-TMDs in the absence of Rashba SOC in particular

to study its effects on the upper critical magnetic field [70, 110, 111, 115, 166]. Note that TMDs

are known to be very disordered, and the mean field theory predicts critical magnetic fields much

higher than actually observed. Part of this may be explained by Rashba SOC (which as we saw

destabilizes the SC phase), though in our calculations we find that it has to be very strong to

match the experiment. Likely a combination of both Rashba SOC and disorder (and strain) may be

necessary to provide a full explanation. Strain has also not been considered in these systems, but

may be interesting in light of the recent experimental results in [58, 186].

Another obvious calculation relevant to experiment would be a calculation of the paraconductivity

[88], as we discussed briefly in Chapter 6. This is a somewhat involved calculation and to the best

of our knowledge has not been done for 2D non-centrosymmetric systems to study anisotropy with

respect to in-plane magnetic fields. Similarly, a calculation of the tunneling rates relevant to some
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7.2. What We Did Not Do

of the experiments may be of interest. These generally fall into the category of non-equilibrium

effects, which also include the possibility of systems driven by external fields. Driven TMD systems

have been considered in [165, 59, 31]. Another transport phenomenon that has been considered

in TMDs is the (reverse) Edelstein magnetoelectric effect [43], which causes a magnetization to

appear perpendicular to an applied supercurrent, considered in systems with SOC in [61], and more

generally is known to occur in some non-centrosymmetric systems [13, 108].

Another experimental limitation is that most samples produced are few-layer systems rather than

true monolayers, which can result in interesting effects of their own. Heterostructures of 2D materials

in general have received a lot of interest, and bilayer and trilayer superconducting TMD systems have

been considered in [183, 116, 94, 25].1 The orbital effect, which is absent for monolayers, has been

found in particular to lead to interesting vortex-like phases, including some similar to Josephson

vortices known in thin films [16], or two counter-propagating FFLO phases in each layer similar to

the one we discussed in Chapter 4.

Superconductivity has also more recently been observed in a related family of monolayer TMDs,

like the 1T’-TMDs like WTe2 [44, 134]. Unlike the 1H family, these are centrosymmetric, but have

a different property symmetry interesting property of being nonsymmorphic, meaning systems with

symmetries involving a point group symmetry like rotation or reflection combined with a translation

(that are not symmetries on their own). Nonsymmorphic materials are known to potentially host

interesting topological phases including crystalline, superconducting and higher-order phases [95,

180, 93], as well as the better-known and recently reported quantum spin Hall effect [129, 125]. 1T’-

TMDs like WTe2 has been reported to host the QSHE and more recently to become superconducting

when gated in [44, 134]. The possibility of interesting topological SC phases has already been

considered [68] but is an area of active research.

Interesting questions remain about the superconducting phase 1H-TMDs like NbSe2, especially

in light of recent experimental evidence of competing instabilities [58, 186] that we discussed, as well

as some recent theoretical evidence that spin fluctuations may be strong in these systems [184, 75].

These may lead to some of the phases that we have considered in this thesis. Possibly, and perhaps

more likely, even more novel phases may be realized.

1Bilayers with Rashba SOC have also been predicted to host a helical topological SC phase [118].
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Appendix A

Tight Binding Model of TMDs

Here we present a simple tight-binging model that we used to study the edge modes and produce the
plots in Figure 1.2, Figure 4.6 and Figure 5.1. The tight binding model is defined on the triangular
lattice with sites we label with indices i and j, which stand for Ri = nia1 +mia2, where a1 = (a, 0)
and a2 = a

2 (1,
√

3) are the lattice basis vectors. We take a = 1 for convenience below, and also

define a3 = a2 − a1 = a
2 (−1,

√
3). Each site then has six nearest neighbors at ±a1, ±a2 and ±a3.

The Hamiltonian has the general form

H = H0 +HZ +HSC (A.1)

The first term describes the normal state band structure in the presence of SOC; the second-term is
the Zeeman coupling due to in-plane magnetic field; and the last term represents the superconducting
pairing gap. For simplicity we use a tight-binding model that only includes the η = Γ pocket Fermi
surface, since the ±K pockets are unimportant for the crystalline nodal topological superconductor.

We describe our model in terms of the creation operators d†i,α, where α =↑, ↓ is a spin index, and
i is a site index. We have

H0 =
∑
iα

µ d†iαdiα +
∑
〈ij〉α

t d†iαdjα

+
∑
〈ij〉αβ

[
4iλνijσ

z
αβ +

iαR
3

ẑ · (σ × aij)αβ

]
d†iαdjβ

HZ =
∑
iαβ

(b · σ)αβ d
†
iαdiβ (A.2)

HSC =
1

2

∑
ijαβ

[∆]
ij
αβ d

†
iαd
†
jβ + h.c.

where νij = 1 (−1) if the vector is a1, −a2, a3 ( −a1, a2, −a3). For Figure 4.6 we considered the
singlet-instability regime in the crystalline nodal topological phase with b� αR. In this region the
self-consistent solutions of the gap equation obtained in a k · p model are well-approximated by

∆ij = ∆tνij (σx cosϑ+ σy sinϑ) iσy + ∆siσ
y (A.3)

where ϑ is the direction of the magnetic field, assuming ∆s � ∆t (higher lattice harmonics are in
general needed to match the k · p model exactly). The numerical coefficients are chosen to match
the k · p Hamiltonian (including the value of pF ).
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Appendix A. Tight Binding Model of TMDs

The cylinder is created by taking periodic boundary conditions in the vertical y direction, and
open zig-zag boundary conditions along the x direction. To produce the plot, we Fourier transform
in the y direction:

dRiα =
1√
N

∑
py

dRixpyαe
−ipyRiy ≡ 1√

N

∑
py

dipyαe
−ipyRiy (A.4)

where Ri = (Rix, Riy). Note that i labels the x coordinates of the sites which go in increments of
a/2, while the period along the y axis is actually doubled since identical sites are now separated by
2a2, resulting in the folding of the 1D Brillouin zone (which has a period of 2π√

3a
).

The resulting BdG Hamiltonian on the cylinder can be expressed

HBdG =
1

2

∑
ij,py

Ψ†i,pyH
ij(py)Ψj,−py (A.5)

where Ψi,py =
(
di,py↑, di,py↓, d

†
i,−py↑, d

†
i,−py↓

)
and

Hij(py) =

(
Hijkin(py) ∆ij(py)

−
(
∆ij(−py)

)∗ −
(
HTkin(−py)

)ji ) (A.6)

where we have defined

H0 +HZ =
∑
ijαβ

(Hkin(py))
ij
αβ d

†
ipyα

djpyβ (A.7)

In Figure 4.6 we plot the spectrum of (A.6) with the number of sites along the non-periodic x
direction N = 300 (which corresponds to 150 unit cells due to period doubling) and took t = 1,
µ = 0, λ = 0.2, b = 1, αR = 0.1, ∆t = 1 and ∆s = 0.1. The magnetic field was again aligned along
one of the Γ-K directions, ϑ = 0.

Note that we have only included the Γ pocket above. The K pockets originate from next nearest-
neighbor hopping terms:

Hnnn =
∑
〈〈ij〉〉α

tnnn d
†
iαdjα (A.8)

where the next nearest neighbors are at a1 + a2, 2a2 − a2, a2 − 2a1, and their opposites. To make
Figure 5.1 we took t = 1, λ = 0.4, αR = b = 0 and tnnn = 2.5.
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the spin resonance in Fe-based superconductors. Phys. Rev. B, 90:104509, Sep 2014.
doi:10.1103/PhysRevB.90.104509. URL https://link.aps.org/doi/10.1103/PhysRevB.

90.104509.

[64] A. Hinojosa, R. M. Fernandes, and A. V. Chubukov. Time-reversal symmetry breaking super-
conductivity in the coexistence phase with magnetism in Fe pnictides. Phys. Rev. Lett., 113:
167001, Oct 2014. doi:10.1103/PhysRevLett.113.167001. URL https://link.aps.org/doi/

10.1103/PhysRevLett.113.167001.

[65] P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin. Gap symmetry and structure of Fe-based
superconductors. Reports on Progress in Physics, 74(12):124508, oct 2011. doi:10.1088/0034-
4885/74/12/124508. URL https://doi.org/10.1088%2F0034-4885%2F74%2F12%2F124508.
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