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Abstract

As digital systems become ubiquitous, providing all-around support for decision makers

has become a significant part of contemporary information systems. To this end, nu-

merous data-driven analytics techniques have been widely adopted by various platforms

to facilitate decision making in a wide variety of application domains, e.g., product

choice, employee recruitment, and medical diagnosis. The appropriate application of

various data-driven methodologies for decision support in complex real-world contexts

is crucial to gain benefits and to avoid unexpected consequences and, thus, the ability

take into account multiple perspectives for better decision support represents an im-

portant challenge. In order to provide insights into this question, this thesis focuses

on investigating some of the problems existing in decision support applications and at-

tempts to provide various solutions and empirical evidence of the effectiveness of these

solutions. Specifically, my thesis proposes to provide more nuanced decision support in

different application domains by balancing different aspects of decision support models

or by providing complementary sources of information for decision makers, e.g., bal-

ancing accuracy and long-tailness to address popularity bias in recommender systems;

using individual prediction reliability to complement outcome prediction to support de-

cision making in highly risk-sensitive domains like medical diagnosis or financial mar-

kets; providing complementary channels to fulfill online consumption decision support

in the retailing industry. Solutions and findings provided by my thesis advance the un-

derstanding of decision support problems in multifaceted contexts, and have practical

implications for information systems that adopt data-driven methods.
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Chapter 1

Introduction

1.1 Research Background and Motivation

The past few decades have witnessed the evolution of numerous data-driven analyt-

ics techniques and their applications in business, economics, and various other fields.

These techniques have been shown to greatly improve decision quality and create value

for firms and customers. For example, companies adopting “data-driven decision mak-

ing” have been shown to achieve productivity gains that were 5-6% higher than other

factors could explain (Brynjolfsson et al. 2011a). In the healthcare industry, associations

and patterns discovered from data can help healthcare providers and other stakeholders

develop more informed diagnoses and treatment, contributing to higher quality care at

lower costs, i.e., better overall outcomes (Raghupathi and Raghupathi 2014). On Spo-

tify, more than 40% of the users continuously listen to personalized playlists generated

by the platform (Buskirk 2016). The emergence of myriad applications also increases

the need and reliance on data-driven technologies to address decision-making problems

in more complex contexts, such as product recommendation, medical diagnosis, personal

finance, retailer channel management, where multiple perspectives are often necessary
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and challenges exist due to inadequate or noisy data, and multiple, often conflicting,

objectives.

Many real-world decision making problems are multifaceted in nature. Decision mak-

ing tools and methods which fail to take into account multiple important factors can

lead to unintended consequences or suboptimality. One example is the popularity bias

of most existing recommendation algorithms (Hosanagar et al. 2013) which emphasize

popular items (i.e., items with more ratings) over “long tail” items. Part of the reason

for such side effects is that most automated decision making models are trained on single

or limited measures (e.g., accuracy), leaving out other factors like diversity and, thus,

causing less favorable outcome to already disadvantaged group (Barocas and Selbst

2016). Another example is MHC1 binding prediction in biological and pharmaceutical

research where experimental validation should proceed based on not only the predic-

tion, but also the confidence in the prediction in order to confirm more good binders

with fewer costly experiments (Briesemeister et al. 2012). This thesis is motivated by

these phenomena and attempts to address some of these issues by balancing several

goals in predictive model development or integrating perspectives from complementary

sources of information to facilitate decision making. Developing these multi-perspective

solutions is critical to provide intelligent decision support as data-driven techniques pen-

etrate all aspects of our daily lives. The thesis uses a multi-essay format and consists

of three essays addressing three multi-perspective decision support problems.

Recommender systems are widely used predictive analytics applications that help

users to make consumption decisions among huge amount of choices. They have been

creating great value for online business, as personalized recommendations can have sig-

nificant impact on users’ purchase decisions (Pathak et al. 2010). Nevertheless, some

recent studies have shown that classic recommendation techniques, i.e., collaborative

1Major Histocompatibility Complex
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filtering-based methods, have popularity bias which directs users’ attention to top per-

centile products (Hosanagar et al. 2013, Abdollahpouri et al. 2019). This is due partly

to the fact that most existing methods are accuracy-oriented, downplaying other as-

pects like recommendation diversity or long-tailness. However, there is an increasing

understanding that long tail recommendations are also valuable, since they better sat-

isfy heterogeneous consumer needs (Brynjolfsson et al. 2011b) and, thus, can lead to

more engagement (Baumol and Ide 1956, Kekre and Srinivasan 1990) and drive more

consumption. For platforms, niche items or products can have higher profit margin.

For example, Netflix could lower its movie licensing costs by recommending users to

watch niche movies (Goldstein and Goldstein 2006). Sales of the tremendous number

of niche products offered on platforms could also add up to a large share of total sales

(Anderson 2006, Hart 2007). An intuitive way to address the suboptimality caused by

popularity bias is to take a multi-perspective view, i.e., evaluate recommendations be-

yond their accuracy, and develop new methods to improve recommendation quality on

multiple dimensions. Thus, the first essay of this thesis explores popularity bias caused

by single-dimensional (i.e., accuracy-oriented) recommendation evaluation in most ma-

chine learning-based recommender systems. Specifically, it utilizes additional metrics

beyond accuracy to inspect this issue and proposes a cosine pattern-based recommen-

dation technique to tackle the problem.

The complexity of using data-driven decision support also comes from the fact that

the automated predictions based on which decisions are made are often imperfect due to

noisy, limited data or simplified mathematical or statistical assumptions (Kleinberg et al.

2018). The imperfection of predictive models poses challenges in decision-making facili-

tation, especially in highly risk-sensitive domains like pharmaceutical research, medical

diagnosis, or financial markets (Briesemeister et al. 2012, Tomassetti et al. 2016, Huang
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et al. 2018). So far, most predictive models focus primarily on providing individual pre-

diction outcomes, while the quality of predictions is commonly evaluated using aggregate

prediction accuracy metrics. While the overall performance is an important aspect of

model evaluation, a more nuanced understanding of the model, e.g., when and how

much it works better or worse, can be critical in many real-world applications. Individ-

ual prediction reliability, e.g., prediction confidence (Wonnacott 1987), constitutes as

an additional and valuable aspect for model evaluation and application. Providing such

extra reliability information to complement individual predictions can be a practical

way to intelligently apply predictive results. For example, to help a specific customer to

make a final decision about investing in a stock portfolio, it would be important to know

not only the actual prediction of its 3-year return but also the estimated reliability of

such a prediction. Thus, the second essay of this thesis examines the issue of providing

individual prediction reliability information in addition to outcome predictions for a

decision maker. A general machine learning-based framework is proposed to estimate

individual prediction reliability, i.e., interpretable measurement of prediction confidence

for decision support.

In addition to deploying (online) information systems based on data-driven methods

for automated decision making, offering complementary sources for multi-perspective

information collection is also imperative to provide effective decision support. This

is especially true under the context of product choices where purchase decisions often

rely on the inspection of multi-dimensional product features (Bell et al. 2017). While

the penetration of digital commerce has shown the incomparable advantages of digital

channel in many aspects, for example, breaking geographical barrier in communicating

with potential customers at much lower costs, providing richer product information

in the forms of product reviews and user ratings to support decision making, offering

broader selection of products to improve shopping satisfaction (Brynjolfsson et al. 2013),
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etc., given the complexity of purchase decision making, traditional brick-and-mortar

stores are also valuable in reducing consumers uncertainties about products by allowing

them to touch and feel merchandise. Despite the conspicuous benefits of both outlets,

there have been inconsistent strategies adopted by different retailers in practice, i.e.,

while some are reducing their physical presence (Egan 2016, Gustafson and Reagan

2016), others are increasingly investing in offline assets (Addady 2016, Cadell 2017).

Similarly, existing academic studies have also yielded different insights on the economic

impact of offline channels. Some studies provide evidence of cannibalization among

different channels (Choi and Bell 2011, Shriver and Bollinger 2015) while others find

the complementary effect of multiple channels during purchases (Ansari et al. 2008,

Balasubramanian et al. 2005). These contradictory findings call for further investigation

of the underlying mechanism of the multi-channel effect and deeper understanding of

potential strategies to provide comprehensive support that consumers need to make

purchase decisions. Thus, the third essay of this thesis investigates the complementarity

among different channels in consumer purchase conversion and provides managerial

insights on firms channel management for effective consumer decision making.

It is not unreasonable to state that the significance of data-driven methodologies and

information systems based on them will continue to dominate the landscape across many

application domains. As information systems encompass greater scope of application

relevance and responsibility, it is necessary for the platforms or firms to develop decision

support methodologies and theories to practically deal with complex and multifaceted

nature of decision support. This thesis takes a multi-perspective view toward several

important decision support problems encountered in various application domains and

attempts to enhance existing data-driven techniques for better decision support.
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In summary, all three essays are related to the overarching theme of the thesis. The

first two essays advocate multi-dimensional evaluation of data-driven predictive model-

ing solutions for the purpose of their intelligent applications and make methodological

contributions to advance predictive-analytics-based decision support. The third essay

makes a theoretical contribution and provides empirical evidence of the complementary

role of multiple information sources in facilitating consumer decision making. Each es-

say is written in a self-contained manner. The first two essays are in collaboration with

my adviser Dr. Gediminas Adomavicius and the third essay is in collaboration with Dr.

Jason Chan. To acknowledge their contributions, I use “we” throughout the thesis. An

overview of three individual essays is provided in the next section.

1.2 Overview of Three Essays

The first essay aims at addressing the long-standing popularity bias of most existing

collaborative filtering-based techniques in the recommender systems field by designing

a new method that balances recommendation quality from multiple aspects.

As mentioned earlier, one of the main properties of most widely-used recommenda-

tion methods, i.e., popularity bias, leads to more recommendations and, thus, exposure

of popular items, creating rich-get-richer effects for these popular products and vice

versa for unpopular ones. It is well understood that recommending items that are al-

ready well-known and bestselling (and that the users are likely to be aware of) arguably

might be less valuable than the ability to find something truly relevant and person-

alized from the “long tail” of the item popularity distribution (Baumol and Ide 1956,

Kekre and Srinivasan 1990). For platforms like Netflix, recommending users to rent

niche movies could also lower the cost of licensing blockbusters (Goldstein and Gold-

stein 2006). To alleviate the popularity bias caused by accuracy-oriented evaluation of

recommendations, other performance aspects of recommender systems, e.g., diversity
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and novelty, have been studied in prior work (Levy and Bosteels 2010, Adomavicius

and Kwon 2012, Castells et al. 2015). While improvements in recommendation diver-

sity and novelty may be associated with better long-tail recommendation as well, it’s

not guaranteed to be so. Long-tail recommendation could also be achieved by improv-

ing rating estimation specifically for niche items (Park and Tuzhilin 2008, Zhang and

Hurley 2009, Niemann and Wolpers 2013). However, such methods tend to achieve this

at the substantial expense of overall recommendation accuracy or by requiring a much

richer set of features and extra preprocessing. Meanwhile, as the user population and

item catalog in the system grow over time, scalability of long-tail recommendation is

also an important concern. Also, the ability to easily adjust the degree of popularity of

recommended items is another highly practical and important characteristic that is not

present in existing long-tail recommendation approaches.

To address some of these limitations, in this essay we propose the CORE (COsine

pattern-based REcommendation) approach to long-tail recommendation. CORE is a

pattern-based method, which finds associations, represented by cosine patterns, among

different items (especially niche items) and then utilizes the discovered associations

for the purpose of item recommendation. The scalability of CORE is facilitated by a

specialized data structure as well as parallel computing schemes, which is crucially im-

portant for real-time recommendation capabilities in large-scale applications. Through

comprehensive experimental comparison between the proposed approach and various

baseline recommendation algorithms, we demonstrate that our method provides prac-

tical benefits in accuracy, flexibility, scalability, in addition to the superior long-tail

recommendation performance.

My second essay focuses on providing individual prediction reliability (confidence) as

complementary information to outcome predictions for the purposes of comprehensive

interpretation and prudent application of predictive models.
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The development and improvement of machine learning in the past few decades

have spurred a myriad of applications where critical human decisions (e.g., employee

recruitment, defendant bail, patient diagnosis, etc.) start relying on model predictions.

However, those predictions can be imperfect due to limited or noisy data, simplified

computational or probabilistic reasoning. Thus in addition to individual predictions,

providing reliability estimation for each single prediction adds a finer-grained evalua-

tion even for presumably well-trained predictive models and gives practitioners more

confidence in making decisions based on predictions.

While previous studies have proposed various approaches, e.g., confidence intervals

(Wonnacott and Wonnacott 1990), prediction intervals (Khosravi et al. 2010, Shrestha

and Solomatine 2006), Gaussian process-based predictive distribution (Rasmussen 2003),

and heuristic-based methods (Bosnić and Kononenko 2008a), for reliability estimation,

many of them are missing some desirable features, which limits their application and

evaluation. First, traditional confidence interval-based and predictive distribution-based

reliability representations are highly oriented toward regression models and rely on dis-

tributional assumptions about prediction errors. Thus, these approaches are not directly

applicable to estimate prediction reliability of many other predictive techniques, such

as neural networks, and can fail when homoscedasticity assumption is violated in real-

world settings. Second, a number of traditional approaches have the problem of low

interpretability. For example, when using “density” of data points as an indicator for

prediction reliability (Clark 2009, Bosnić and Kononenko 2008a), we can only interpret

that a higher density (e.g., input space with more learning examples) is an indicator of

higher prediction reliability, yet a precise magnitude of expected prediction error cannot

be inferred, which is often crucial for interpretability and decision-making purposes.

To alleviate those concerns, in this essay, we propose to estimate the reliability of in-

dividual predictions of any given numerical outcome prediction model by using machine
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learning techniques. We convert the reliability estimation problem to a numeric predic-

tion problem by proposing to use absolute prediction error as an indicator of prediction

reliability due to its merits of higher interpretability and easier evaluation. Based on

this idea, individual prediction reliability could then be estimated by using machine

learning techniques that attempt to directly learn prediction errors obtained from the

given model. A complete general-purpose framework is also designed for implementing

and testing the proposed approach. Experimental results show that machine learning

methods are advantageous in identifying the relationships between prediction reliability

and complex input features, and thus can significantly improve prediction reliability es-

timation as compared to a number of heuristic approaches used in prior work, especially

in more complex predictive scenarios.

The third essay examines the complementary role played by retailers’ offline channels

in consumers’ online purchase decision making.

With increasing ecommerce penetration, it is believed that consumers are spending

more of their shopping time online and away from physical stores. Recently, there has

been a heated debate on whether the traditional offline retailers are still relevant. On

one hand, a lot of major retailers in the United States are closing their stores. As an

example, Macy’s, the iconic retailer that used to be a main stay in America’s malls,

closed over 15% of its 650 stores (Egan 2016). Nevertheless, some rising retailers like

TJ-max and fashion companies like Zara are still expanding their businesses by opening

more brick-and-mortar stores (Valladares 2017). More interestingly, online first retailers

like Amazon and Alibaba which have no legacy of offline presence before are now keen

on investing in offline stores (Cadell 2017). Investigations into cross-channel effect,

and more specifically effect of launching brick-and-mortar stores on consumers’ online

purchases, have also yielded different insights. Substitution can occur as newly opened

physical stores compete with online stores for sales, leading to cannibalization (Choi and
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Bell 2011), while some other studies find that offline stores can play a complimentary role

to online channels as well (Ansari et al. 2008, Avery et al. 2012, Wang and Goldfarb

2017). Thus whether brick-and-mortar stores still matter, and if so, how, with the

thriving of online purchase facilities, has become an intriguing question to think about.

In this essay, we attempt to shed light on this question using a quasi-experiment,

taking place through a nationwide retailer that expanded its physical presence over

time. Through a difference-in-differences-in-differences model applied at the product-

level, we provide more direct evidence on the positive effect of the physical store on sales

in the online channel. In particular, we explicitly show that the showcase of products in

stores, i.e., the conspicuous benefits of physical stores, has a positive relationship with

products’ online purchases. We also find that online purchases for products showcased in

physical stores increase for both high and low involvement products. This set of results

suggest that two mechanisms are likely driving the online sales of products displayed in

physical stores. An experiential effect helps consumers converge their purchase for high

involvement products by providing them additional sources of product information that

is not available online, and an exposure effect increases purchases by generating greater

top-of-the-mind awareness of low-involvement products. This study dispels concerns on

the diminishing role of physical stores and demonstrates how those stores can fulfill a

crucial decision support purpose in the digital age.



Chapter 2

Essay 1: Efficient and Flexible

Recommendation Using Cosine

Patterns

2.1 Introduction and Motivation

The development and adoption of web technologies and services gave rise to so-called

“infinite inventory” digital commerce and content delivery platforms (Anderson 2006),

such as Amazon, Netflix, and Spotify, which are able to provide many more items than

their brick-and-mortar counterparts, and also fueled the development of various busi-

ness analytics applications for targeting customers more effectively and for providing

better services to them. Recommender systems play a unique role in online business,

as high-quality personalized recommendations have been shown to have huge impact

on users’ purchase and consumption decisions (Pathak et al. 2010). For example, 60%

of Netflix rentals and 35% of Amazon’s sales are attributed to their recommendation

systems (Hosanagar et al. 2013); also, more than 40% of users on Spotify continuously

11
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listen to personalized playlists generated by the platform (Buskirk 2016). Over the

years, a wide variety of methods, typically based on collaborative filtering techniques,

have been proposed to improve the relevance of recommended items (Adomavicius and

Tuzhilin 2005, Ricci et al. 2015). Although these methods have ween widely applied,

such recommender systems also have been shown to have popularity bias, which refers

to the tendency of the systems to recommend disproportionately more popular items,

i.e., items with more ratings or purchases, to users (Fleder and Hosanagar 2009, Abdol-

lahpouri et al. 2019).

Recommender systems manifest popularity bias due to different reasons. To begin

with, personalized recommendations are generated from historical data on users’ pre-

vious consumptions, which is inherently skewed towards popular items. Collaborative

filtering methods generate recommendations to a given user by analyzing consumption

of similar users; thus, popular items consumed by a large number of other users natu-

rally get more exposure as part of the modeling process (Fleder and Hosanagar 2009).

Also, recommender systems have been focusing largely on predictive-accuracy-oriented

performance metrics, and recommending popular items can lead to higher accuracy since

they are more likely to be consumed by users. The popularity bias of traditional rec-

ommender systems focuses users’ demand mainly to top-percentile products or services,

and the profit from popular items is definitely important for online businesses. However,

there is a growing understanding that recommending comparatively popular items is not

necessarily always the most advantageous strategy. For instance, recommending items

that are already well-known and bestselling (and that the users are much more likely to

be already aware of) arguably might be less valuable than the ability to find something

truly relevant and personalized from the “long tail” of the item popularity distribution.

Also, when a platform wants to push its “back catalog”, adaptation of collaborative

filtering algorithms is required to identify relevant but less popular products (Lee and
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Hosanagar 2019). Yet, due to the fact that less data is available on these products,

user preferences for them are harder to predict and, thus, accurately recommending the

long-tail (niche) items remains an important challenge. This constitutes the focus of

our study.

The value of long-tail recommendations has been increasingly recognized in different

sectors. This can be illustrated from both demand- and supply-sides. On the demand-

side, the long-tail (niche) titles can increase consumer surplus and drive consumption

(Brynjolfsson et al. 2006). In particular, consumers are known to have a propensity to

seek variety over time (Farquhar and Rao 1976, Pessemier 1978), while recommending

niche items can encourage users to try products that are outside their awareness (Bryn-

jolfsson et al. 2011b) and, thus, better satisfy customers’ heterogeneous needs. In the

long run, more user engagement on the platform can be stimulated to increase overall

demand (Baumol and Ide 1956, Kekre and Srinivasan 1990). On the supply side, it has

been suggested that niche products can be more profitable for companies, e.g., niche

movies cost a fraction of blockbusters to make and market (Anderson 2006). Further-

more, for platforms like Netflix, recommending users to view more niche movies and

fewer blockbusters is advantageous, as blockbusters tend to have much higher licensing

costs (Goldstein and Goldstein 2006). In addition, unlike offline shops, online platforms

are not constrained by limited shelf space and can typically carry tremendous amount

of niche products. Sales of these niche items could also grow to take up a large share of

total sales (Anderson 2006, Hart 2007). As an example, an average Barnes Noble store

carries 130,000 titles; yet more than half of Amazon’s book sales come from outside

its top 130,000 titles (Kresh 2007). Furthermore, generating niche recommendations

in online marketplace like Amazon can incentivize the producers of niche products to

stay on the platform instead of being crowded out by producers of popular products

(Abdollahpouri et al. 2019).
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However, many platforms have not taken advantage of niche products’ potential due

to the fact that discovering long-tail items is not easy (Tan et al. 2017), and popularity

bias (which is perpetuated in most existing online recommender systems) is known to

exacerbate this problem. As a result, ability to provide effective long-tail recommenda-

tions is critical for helping platforms to maintain flexible business strategies.

To alleviate the popularity bias caused by accuracy-oriented evaluation of recom-

mendations, other performance aspects of recommender systems, e.g., diversity and

novelty, have been studied in prior work (Castells et al. 2015). Novelty and diversity

of recommendations could be enhanced by re-ranking the initial recommendation list

(Ziegler et al. 2005, Zhang 2009, Levy and Bosteels 2010, Adomavicius and Kwon 2012)

or by optimizing the ranking process using a combined objective of accuracy and di-

versity (Yin et al. 2012, Shi 2013, Hurley 2013, Su et al. 2013). While improvements

in recommendation diversity and novelty may be associated with better long-tail rec-

ommendation as well, it’s not guaranteed to be so. For example, some studies find

that recommender systems can improve individual diversity while still reducing aggre-

gate diversity (Fleder and Hosanagar 2009). Long tail recommendation could also be

achieved by improving rating estimation specifically for niche items (Park and Tuzhilin

2008, Zhang and Hurley 2009, Niemann and Wolpers 2013). However, such methods

tend to achieve this at the substantial expense of overall recommendation accuracy or

by requiring a much richer set of features and extra preprocessing. Meanwhile, as the

user population and item catalog in the system grow over time, scalability of long-tail

recommendation is also an important concern. Also, the ability to easily adjust (param-

eterize) the degree of popularity of recommended items is another highly practical and

important characteristic that is not present in a number of long-tail recommendation

approaches.
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Pattern-based, especially association rule-based, recommendation algorithms have

attracted some attention since the early days of recommender systems research (Mobasher

et al. 2001, Lin et al. 2002). One key reason is the interpretability of their recommen-

dations (“people who bought these items also bought...”). Typically, pattern-based

algorithms first build a knowledge base containing patterns (e.g., association rules or

itemsets) of typically co-occurring items and then recommend items to users based on

this knowledge. Different target items are ranked by some interestingness measures,

such as support or confidence, of the discovered patterns (Záıane 2002, Kazienko 2009,

Ghoshal and Sarkar 2014). Many websites have embedded rule-based approach into

their commercial recommender systems, e.g., YouTube used association rules to recom-

mend relevant videos to their users (Davidson et al. 2010). However, the traditional

framework for association rule discovery, which is based on confidence and support met-

rics, has certain limitations that can lead to less accurate recommendations (especially

with skewed data distributions). First, confidence as an interestingness measure might

fail to filter some spurious associations among items (Brin et al. 1997), and recom-

mendations based on spurious rules would not be useful. Second, support-based (i.e.,

frequency-based) pruning strategy of pattern mining might be problematic on data with

inherently skewed support distributions, i.e., where correlations among niche items are

key to long-tail recommendation yet are harder to be discovered due to low rates of

niche item occurrence. As a result, traditional pattern-based recommender systems

built on the support-confidence framework might not be perfectly suitable for long-tail

recommendation.

To address some of these limitations, in this study we propose the CORE (COsine

pattern-based REcommendation) approach to long-tail recommendation. CORE is a

pattern-based method, which finds associations, represented by cosine patterns, among

different items (especially niche items) and then utilizes the discovered associations
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for the purpose of item recommendation. The scalability of CORE is facilitated by

a specialized data structure as well as parallel computing schemes, which is crucially

important for real-time recommendation capabilities in large-scale applications.

Specifically, this paper makes the following contributions. First, we overview several

pattern-based recommendation methods and discuss their limitations. In contrast, the

proposed approach uses an extra measure, i.e., cosine, to select more relevant patterns

for recommendation. Second, we develop CORE, a new recommendation method based

on cosine patterns, which is able to substantially improve both long-tail and accuracy

performance of pattern-based approaches by limiting the discovery of spurious patterns.

The proposed method also supports convenient parameterization of the popularity of

recommended items; that is, the dual configuration of support and cosine thresholds

adds more flexibility in generating recommendations of different popularity (or long

tail) levels in order to achieve various recommendation goals. Third, to facilitate the

scalability of the proposed approach, we further use a special CP-tree (Cosine-Pattern

tree) structure to accelerate the recommendation process. The CP-tree is easily built

and stored, and can be partitioned to parallelize the recommendation process. Based

on the proposed data structure, we also design a parallel computing and load balanc-

ing framework for recommendation generation to guarantee the scalability of CORE.

Fourth, comprehensive experiments on three benchmark data sets illustrate the advan-

tages of CORE to existing pattern-based methods in terms of accuracy and long-tail

recommendation as well as the advantages of CORE with respect to a number of clas-

sical, widely used collaborative-filtering-based approaches. And, a separate experiment

on a larger-scale dataset further emphasizes the applicability and scalability of the pro-

posed approach for practical, real-time recommendation tasks.
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2.2 Background and Related Work

2.2.1 Recommender Systems and the Long-Tail Challenge

With the boom of the consumer-oriented content delivery and retail platforms since early

2000s, recommender systems have been progressively developed for various application

domains, including movies, music, books, etc., to confront information overload and fa-

cilitate personalized information retrieval (Ricci et al. 2015). Over the years, accuracy of

recommender systems has been the major lens through which their performance is eval-

uated and compared. For example, Netflix held an open competition (with $1M prize

for the winner) for the most accurate recommendation algorithm to predict user ratings

for movies (Koren et al. 2009). However, research studies increasingly point out that

focusing on accuracy alone in recommender systems can result in sales diversity reduc-

tion (Fleder and Hosanagar 2007), since classical collaborative-filtering-based methods

tend to disproportionately recommend popular items. According to Hart (2007), tak-

ing advantage of the long-tail market is one of the keys towards increasing profits on

e-commerce platforms. Thus, in this study, we focus on the long-tail perspective of

recommender systems with the goal of developing a recommendation method that can

achieve better long-tail performance while still being highly competitive in terms of

recommendation accuracy.

Previous studies have attempted to address the long-tail challenge in different ways.

One general stream of research has focused on taking a broader perspective on rec-

ommender systems evaluation, rather than focusing just on accuracy, which gave rise

to a number of additional recommendation performance dimensions, such as diversity,

novelty, etc. (Castells et al. 2015). In particular, different metrics related to recommen-

dation diversity and novelty have been proposed, e.g., average individual (intra-list)

diversity (Zhang and Hurley 2008, Ziegler et al. 2005), aggregate diversity (Fleder and
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Hosanagar 2009), serendipity (Murakami et al. 2007, Zhou et al. 2010), unexpectedness

(Adamopoulos and Tuzhilin 2015), as well as recommendation algorithms for improving

these metrics (Zhang 2009, Adomavicius and Kwon 2012, Adamopoulos and Tuzhilin

2015). Of course, diversity and novelty metrics represent an indirect way to affect long-

tail recommendation performance; i.e., although these metrics have some correlation

with long-tail recommendation performance (as they typically affect the distribution of

recommended items), it is not guaranteed to be the case. For example, some studies

show that aggregate diversity of recommendations can decrease even when individual

diversity increases (Fleder and Hosanagar 2009, Jannach et al. 2013).

Therefore, some other studies have investigated ways to tackle the long-tail recom-

mendation problem more directly. These studies can be further categorized by whether

the long-tail-aware computations are applied as a pre-processing step vs. embedded

more directly into the recommendation process. As an example of a pre-processing ap-

proach, Park and Tuzhilin (2008) proposed to first split items into head- and tail-groups

based on their rating frequency, cluster tail items into different clusters, and then pre-

dict user ratings within each cluster. In their follow up study (Park 2013), different

head-tail grouping strategies to enhance long-tail recommendation are compared, and

the results show that accuracy of the long-tail item recommendations indeed increases

through clustering. A similar idea was explored by Zhang and Hurley (2009), where

items in each active user’s profile are clustered first, and recommendations are generated

based on each cluster instead of complete user profiles. In contrast to pre-processing

approaches, several other studies propose to embed information about item popularity

into recommendation generation process, e.g., discounting popular items when learn-

ing to rank. For instance, in order to promote long-tail items in recommendations,

probability for a user to consume a certain item (i.e., recommendation score) based on

the whole user-item interaction graph could be discounted by the rating frequency of
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that item (Yin et al. 2012). Similarly, Shi (2013) proposes a Markovian graph-based

recommendation approach, where weights on edges could be tuned to enhance the prob-

ability of recommending long-tail items. Other related studies propose to optimize the

recommendation list based on different objectives, e.g., increasing accuracy, reducing

popularity (Hamedani and Kaedi 2019), or prioritizing niche items based on their usage

context (e.g., co-occurrence with other popular items) (Niemann and Wolpers 2013).

Another set of studies propose hybrid approaches to improve long-tail recommen-

dation performance. For example, in Alshammari et al. (2017), content-based and

collaborative-filtering recommendation methods are used in combination to recommend

long-tail and popular items, respectively. Similarly, in Zhang et al. (2012) and Ribeiro

et al. (2015), the ensemble of outputs of multiple recommendation algorithms are used

to balance accuracy and novelty. Other related studies use side information (i.e., infor-

mation other than user-item interactions) to direct long-tail recommendation. Examples

include adding semantic knowledge extracted from content information to better rep-

resent long-tail items (Craw et al. 2015) or explicitly collecting users’ preferences for

different types of items (Taramigkou et al. 2013).

In this paper, we focus on a new pattern-based recommendation method that tries to

avoid some of the limitations of existing long-tail recommendation approaches (such as

requiring a much richer set of features, significant pre-processing, or resulting in substan-

tial reductions in accuracy), while exhibiting scalability, flexibility, and explainability

benefits.

2.2.2 Association Analysis and Its Application to

Recommender Systems

Association mining or frequent pattern discovery (Agrawal et al. 1993, Agrawal and

Srikant 1994, Ceglar and Roddick 2006) is known as the task of discovering co-occurrences
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between items, which has its roots in the analysis of shopping basket data to better un-

derstand consumer purchasing behavior. More formally, given a database of all users’

consumption histories T , Cu ∈ T is a set of items {i1, i2, · · · , i|Cu|} consumed by the

user u. A pattern can be represented either by an itemset or a rule. Itemset P is simply

a set of items, i.e., P = {i1, i2, · · · , iK} that represents some co-occurence relationship

among the items. Rule P → Q is an association between two disjoint itemsets that can

be interpreted as an if-then statement, i.e., if P happens, then Q happens as well.

Many different measures have been proposed to evaluate the pattern strength or

interestingness (Tan et al. 2002), and support is one of the most fundamental, popular

measures. The support of itemset P is given by supp(P ) = σ(P )/|T |, where σ(P ) is

the support count of P defined as the number of users u for whom P ⊆ Cu (i.e., users

who consumed all items in P ). For example, supp(P ) = 0.3 means 30% of users have

consumed all items that are present in pattern P . Similarly, the support of rule P → Q

is defined as supp(P → Q) = σ(P ∪Q)/|T |. In summary, the support measure reflects

the prevalence of a pattern in the data. In addition to the use of support as the pattern

prevalence metric, rule discovery commonly uses an additional metric, i.e., confidence,

which is calculated as conf(P → Q) = supp(P → Q)/supp(P ), higher confidence

indicating stronger association between P and Q. For example, conf(P → Q) = 0.6

means that, out of all users who consumed all items in P , 60% of them also consumed

all items in Q. Confidence could also be interpreted as conditional probability, i.e., users

who consume items in P tend to also consume items in Q with a probability of 60%.

If the support of itemset P satisfies a prespecified minimum support threshold τs,

i.e., supp(P ) ≥ τs, then P is a frequent itemset or pattern. Similarly, if the support

and confidence of the rule P → Q satisfy pre-specified minimum support and confidence

thresholds τs and τconf , i.e., supp(P → Q) ≥ τs and conf(P → Q) ≥ τconf , then P → Q

will be a discovered association rule. These thresholds can be set by users or domain
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experts, and several algorithms, e.g., Apriori (Agrawal et al. 1993) and FP-growth

(Han et al. 2000) have been proposed to discover frequent patterns and association

rules efficiently from data.

Association-based approaches have been used in many application domains, includ-

ing recommender systems, for their high interpretability (Sarwar et al. 2000, Lin et al.

2002, Davidson et al. 2010). For example, in an e-commerce application, the discovered

rule “computer, monitor → keyboard, mouse” could be used to recommend a keyboard

and a mouse to consumers who already have a computer and a monitor in their shopping

carts.

However, the traditional association rule discovery framework based on support

and confidence has certain limitations that make it less appealing for recommendation

and, more specifically, long tail recommendation. In particular, the confidence metric

often might not reflect a meaningful association among items, in part due to item-

popularity-related issues, as illustrated by the classic “coffee-tea” example (Brin et al.

1997, Tan et al. 2006). Consider a scenario where 90% of shopping baskets have coffee,

i.e., in general consumers buy coffee 90% of the time. Furthermore, let’s assume that,

among all baskets containing tea, 75% of them contain coffee as well, i.e., the confidence

of rule tea → coffee is 75%. In other words, even though the confidence of buying

coffee given that tea is already in the shopping basket is quite high (i.e., 75%), the two

items are actually negatively associated with each other, i.e., buying tea reduces users’

probability of buying coffee. Thus, recommending based on such rules is likely to reduce

recommendation accuracy.

To deal with the aforementioned limitation, correlation-oriented measures can be

used to augment the support-confidence framework for association rules (Tan et al.

2006). Among such measures, lift has been a popular choice. Lift of rule P → Q is

calculated as lift(P → Q) = conf(P → Q)/supp(Q) = supp(P→Q)
supp(P )∗supp(Q) , which reflects
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Table 2.1: Impact of null-consumptions on pattern/rule evaluation measures.

Data Set A B AB AB AB AB conf(A→ B) lift(A→ B) cos({A,B})
D1 11,000 15,000 10,000 5,000 1,000 100,000 0.91 7.03 0.78
D2 11,000 15,000 10,000 5,000 1,000 100 0.91 0.98 0.78

A: # of users who consumed A; AB: # of users who consumed A and B; AB: # of users who consumed neither A nor B;

B: # of users who consumed B; AB: # of users who consumed B not A; AB: # of users who consumed A not B.

the degree to which the occurrence of P “lifts” the occurrence of Q. However, the lift

metric is sensitive to null-consumption histories, i.e., to the number of users who did not

consume any items contained in the rule of interest. As a quick illustration, Table 2.1

shows two example data sets about consumption of items A and B, including statistics

on number of users who consumed both A and B (denoted as AB), not A but B (AB),

A but not B (AB), neither A nor B (AB). The latter value represents the number of

null-consumption histories with respect to A and B. The table shows that lift(A→ B)

changes significantly with the size of AB, even when the consumption statistics of A, B,

and AB are identical, while we don’t see such problems with other metrics like confidence

and cosine, i.e., conf(A → B) and cosine({A,B}) remain the same in both cases. In

summary, for any general pattern P → Q, such sensitivity of a key association metric

(i.e., lift) to null-consumption histories might not be desirable, as the metric becomes

more reflective of the prevalence of the pattern in data (which is already captured by

support) than of the association between P and Q. As a result, cosine can serve as a

more appropriate metric than lift to measure the association among items.

Another limitation of the support-confidence framework is that the traditional support-

based pruning strategy for pattern mining (based on setting an appropriate support

threshold) might be inadequate on data with skewed support distributions (Xiong et al.

2006). Lower thresholds often result in excessive or redundant patterns, as well as

patterns that have items with substantially different support levels (i.e, the so-called



23

cross-support patterns, to be discussed in Section 2.2.3), leading to lower-quality rec-

ommendations. Higher thresholds favor highly frequent items and omit less frequent

but potentially advantageous itemsets (patterns), which leads to popularity bias.

To address the limitations of confidence and lift metrics, we propose to use cosine

patterns for recommendation. In what follows, we give some preliminaries on cosine

patterns and describe important properties that make them particularly suitable for

long tail and scalable recommendation.

2.2.3 Cosine Patterns and Their Properties

In this paper, we adopt cosine (Tan et al. 2002) as an interestingness measure to be used

simultaneously with support for pattern evaluation and pattern-based recommendation.

The cosine value of a K-itemset (i.e., an itemset of K items) P is defined as:

cos(P ) =
supp(P )(∏K

k=1 supp({ik})
)1/K

, K ≥ 2, (2.1)

which reduces to the traditional cosine measure when K = 2 (Wu et al. 2012). An

important advantage of the cosine metric, as can be seen from the example in Table 2.1,

is that the cosine value of a pattern is not affected by the number of null-consumptions.

In traditional association analysis, itemset P is called a frequent pattern if supp(P ) ≥

τs, where τs is the user-defined minimum support threshold. Cosine pattern discovery

takes one more threshold τc, i.e., the minimum cosine threshold, for pattern evaluation.

Definition 2.2.1 (Cosine Pattern). Itemset P is a cosine pattern w.r.t. τs and τc, if

supp(P ) ≥ τs and cos(P ) ≥ τc, where τs and τc are user-defined thresholds.

As is shown in Equation (1), the cosine value of a pattern is calculated as the

support (i.e., overall prevalence) of the pattern normalized by the geometric mean of

the support of each single item within the pattern. Intuitively, cosine value reflects
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the “cohesiveness” of a pattern. Patterns with higher cosine values contain items with

similar popularity, indicating stronger association among items. This is also independent

of the overall prevalence of the pattern, i.e., patterns with lower support can have high

cosine values as long as the co-occurring items have similar support. Such patterns are

extremely useful for long-tail recommendation, as will be illustrated in Section 2.3.1.

Another key appeal of the cosine measure lies in its anti-cross-support property. As

defined by Xiong et al. (2006), P is a cross-support pattern (CSP) w.r.t. τ (0 ≤ τ ≤ 1)

if its CSP value Vcsp(P ) ≤ τ . Here Vcsp(P ) = s(il)/s(ih), with il and ih representing

items with lowest and highest support values in P , respectively. A smaller Vcsp(P )

value indicates a more severe imbalance of item supports in a pattern. By its definition,

a CSP is a pattern containing items with significantly different support levels and,

thus, more likely representing spurious, less cohesive (and potentially less meaningful)

associations among items, as will be discussed in more detail in Section 2.3.1. The

minimum confidence threshold, which is traditionally used in association rule mining,

is not sufficient for filtering out CSPs. It could be argued that CSPs can be filtered

by setting a higher τs, but this would lead to the omission of rare but interesting

(niche) patterns and, thus, to the information loss for recommendation, especially for

long tail recommendation. As shown by Wu et al. (2012), for P = {i1, i2, · · · , iK},

cos(P ) ≤ K
√
Vcsp(P ). This implies that a pattern tends to have a lower cosine value as

Vcsp(P ) gets smaller; i.e., the patterns with lower cross-support values are less likely to

be cosine patterns. Thus, cosine measure has the anti-cross-support property.

The anti-cross-support property of the cosine metric allows to control the “cohesive-

ness” of patterns discovered, making cosine patterns suitable for flexible recommenda-

tions. For example, setting large τs and moderate τc allows to obtain cohesive patterns

with highly popular items; in contrast, reducing τs while keeping τc high allows to ob-

tain the most cohesive patterns with both popular and niche items. Both cases, based
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on threshold use, can guard against excessive generation of redundant patterns while

providing flexibility to recommend items of desired popularity levels.

Mining cosine patterns based on τs and τc thresholds is not a trivial task. As is well

known, the support measure holds the so-called anti-monotone property (AMP) defined

as follows.

Definition 2.2.2 (AMP). Itemset interestingness measure M is said to possess AMP,

if for every P and P ′ such that P ⊂ P ′, we have M(P ) ≥M(P ′).

Since support holds AMP, if itemset P is infrequent (i.e., supp(P ) < τs), then all its

supersets are also infrequent (i.e., ∀X such that X ⊃ P , we have supp(X) ≤ supp(P ) <

τs) and can be removed from consideration without further calculations. AMP of an

interestingness measure is critical for efficient pattern mining (Agrawal and Srikant

1994). While the cosine measure does not hold AMP, it holds the following Conditional

Anti-Monotone Property (CAMP) (Wu et al. 2012).

Definition 2.2.3 (CAMP). Itemset interestingness measure M is said to possess

CAMP, if for every P and P ′ such that (i) P ⊂ P ′ and (ii) ∀ i ∈ P , ∀ i′ ∈ P ′ \ P ,

s({i}) ≤ s({i′}), we have M(P ) ≥M(P ′).

Compared with AMP, CAMP provides an extra condition to gain the anti-monotone

property. Because cosine holds CAMP, cosine patterns can be mined efficiently. In

particular, if P is not a cosine pattern, then any pattern P ′ that can be created by

adding high-support items to P (i.e., items that have higher support than any item in P )

will not be a cosine pattern due to CAMP, and thus can be removed from consideration

without further calculations. This principle allows to avoid extra computations and lays

the foundation of efficient cosine pattern mining.

The CoPaMi algorithm was proposed specifically to mine cosine patterns (Wu et al.

2014). It aligns the items in each consumption history in a support-ascending order (to
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facilitate CAMP conditions for patterns sharing the same prefix), and then employs the

tree-based data structure and depth-first traversal strategy to effectively prune patterns

based on both support and cosine. We parallelize CoPaMi on the Spark platform and

use it to mine cosine patterns in our experiments.

2.3 Cosine Pattern-Based Recommendation

2.3.1 Cosine Patterns for Recommendation

As mentioned earlier, pattern-based recommender systems have attracted substantial

attention (Lin et al. 2002, Záıane 2002, Kazienko 2009), partly for their high inter-

pretability of recommendations. A recent survey (Paraschakis et al. 2015) on more

than 30 popular e-commerce platforms also reveals that industries often favor less com-

plex recommendation techniques like association rules mining or nearest neighbor-based

collaborative filtering for efficiency and engineering cost concerns. This indicates that

improving the recommendation performance of pattern-based (such as itemset- or rule-

based) methods is of theoretical and practical importance.

We argue that the prevalence of the cross-support patterns is largely responsible for

the lower accuracy and higher popularity bias of traditional rule-based recommender

systems. To illustrate this, Table 2.2 shows some representative examples of 2-item

movie association rules (10 out of top 150 highest confidence rules) and 2-item cosine

patterns (10 out of top 150 highest cosine patterns)1 discovered from the MovieLens

data2 with τs = 2%, τconf = 76%, and τc = 0.5.3

1For comparison, the illustrative sets of 10 cosine patterns and 10 association rules were picked to
have similar support (and to be representative of the broad range of support values).

2Detailed information of this data set could be found in Table 2.4.
3Thresholds were set to have similar number (between 150 and 200) of patterns discovered in both

cases.



27

From Table 2.2 we can see that there is a large imbalance of support levels between

the antecedent and consequent in each example association rule, as indicated by low

Vcsp values. In contrast, the Vcsp values for cosine patterns are substantially higher.

Moreover, in the last two columns of Table 2.2, we present two additional indicators

of how related are the two movies that appear in each pattern (or how “cohesive” the

pattern is). The first indicator is the correlation coefficient (CorrCoef) of the ratings

for two movies, i.e., how similar are the preferences for these two movies among the

users who saw both of them. The second indicator is the Jaccard similarity (JSim) of

the movie consumptions, i.e., how similar are the sets of users who saw each movie.

Both of these indicators consistently show that association rules contain items that are

less related to each other (i.e., have substantially lower CorrCoef and JSim) than cosine

patterns. This insight is further emphasized by Table 2.3, which provides the aggregate

statistics across top-150 association rules and top-150 cosine patterns. In particular, the

patterns mined based on the confidence measure (i.e., association rules) contain items

that are highly imbalanced in terms of their support and substantially less related to

each other than the patterns mined based on the cosine measure.

In summary, recommendations generated from association rules have several limita-

tions. In particular, as shown above, association rules tend to contain items that are

less related to each other, which can lead to lower accuracy when deployed for recom-

mendations. As importantly, due to the fact that many discovered association rules

have low cross-support values, the movies that end up being recommended using asso-

ciation rules (i.e., movies in the consequent of the rule) are largely high-support items

(i.e., popular movies), such as Star Wars, Fargo, Back to the Future, and Raiders of the

Lost Ark. This perpetuates the so-called popularity bias existing in many collaborative-

filtering-based recommender systems, leading to insufficient recommendation of niche

movies and long-tail recommendation challenges. As shown in Tables 2.2 and 2.3, cosine
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pattern mining can effectively overcome these limitations due to its anti-cross-support

objective, which allows for discovery of more cohesive patterns, including patterns with

less common (niche) items. Take pattern {Manon of the Spring, Jean de Florette} as an

example. Although movies in this pattern have been watched only by a relatively small

number of users, the cohesiveness of this pattern is quite high: the movies are liked very

similarly by users who saw both of them (CorrCoef = 0.76), and the sets of users who

saw each movie are quite similar as well (JSim = 0.60). Nevertheless, such a pattern

is unlikely to be discovered as an association rule due to its relatively low confidence.

The ability to discover connections among items with comparatively smaller audience

is a key to addressing the long-tail recommendation challenge and, thus, is one of the

motivating factors for the proposed cosine pattern-based method for long-tail recom-

mendation. At the same time, the minimum support and cosine threshold parameters

provide the flexibility to fine-tune the proposed method to the desired specifications

(e.g., in terms of recommending popular vs. niche items), as will be shown later in the

paper.

2.3.2 Basic Recommendation Scheme

Here we introduce the basic scheme of cosine pattern-based recommendation. We as-

sume that the set of all applicable cosine patterns CP (i.e., patterns with supp(P ) ≥ τs

and cos(P ) ≥ τc for some user-specified thresholds τs and τc) has been mined in advance

(e.g., using the standard library CoPaMi) and focus on the problem of generating top-K

recommendations for each user.

Given the set of all discovered cosine patterns CP and user u (represented by her

consumption history Cu), the recommendation process consists of three main stages: (i)

identifying u’s target items Tu; (ii) identifying the set of eligible patterns EPui (where

EPui ⊆ CP) for each target item i ∈ Tu; and (iii) calculating recommendation scores
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Table 2.2: Association rules and cosine patterns discovered from the MovieLens dataset.
Association Rules

Antecedent Consequent Supp Conf Cosine Vcsp Corr JSim
(%) (%) Coef

Dead Man (34) Star Wars (583) 2.3 77.3 0.15 0.06 -0.22 0.05
Only You (39) The Princess Bride (324) 2.9 77.8 0.24 0.12 0.06 0.10
Giant (51) Casablanca (243) 3.9 81.1 0.33 0.21 0.21 0.20
Trees Lounge (50) Fargo (508) 4.1 79.5 0.24 0.10 0.23 0.10
Weekend at Bernie’s (60) Back to the Future (350) 4.6 79.1 0.30 0.31 0.31 0.16
Dumb and Dumber (50) Back to the Future (350) 4.8 82.2 0.29 0.20 -0.06 0.18
Flirting With Disaster (42) The Empire Strikes Back (367) 5.5 77.4 0.25 0.10 0.12 0.24
Nell (81) Raiders of the Lost Ark (420) 5.8 76.4 0.30 0.20 0.32 0.17
Victor/Victoria (77) Return of the Jedi (507) 5.8 80.0 0.28 0.15 0.09 0.13
Casino (91) Raiders of the Lost Ark (420) 7.0 78.8 0.34 0.22 0.14 0.20

Cosine Patterns
Movie 1 Movie 2 Supp Conf Cosine Vcsp Corr JSim

(%) (%) Coef
Manon of the Spring (58) Jean de Florette (64) 2.3 37.9 0.51 0.38 0.76 0.60
Three Colors: White (59) Three Colors: Blue (64) 2.9 45.8 0.87 0.42 0.75 0.58
A Grand Day Out (66) The Wrong Trousers (118) 3.9 56.1 0.58 0.31 0.66 0.50
Private Benjamin (66) Home Alone (137) 4.1 58.2 0.52 0.28 0.32 0.31
Bram Stoker’s Dracula (120) Interview with the Vampire (137) 4.8 38.3 0.52 0.34 0.45 0.55
Batman Forever (114) Batman Returns (142) 4.8 35.4 0.51 0.40 0.35 0.55
Star Trek: Final Frontier (63) Star Trek: Motion Picture (117) 5.6 45.3 0.55 0.33 0.44 0.52
Die Hard With a Vengeance (151) Die Hard 2 (166) 5.7 35.8 0.51 0.33 0.75 0.68
Under Siege (124) Clear and Present Danger (179) 5.8 44.4 0.51 0.31 0.50 0.47
Ghost (170) Mrs. Doubtfire (192) 7.0 39.4 0.51 0.35 0.45 0.48
In parentheses after each movie title: the number of users who rated the movie;
Vcsp: support ratio of items within rules/patterns;
CorrCoef: correlation coefficient of movie ratings;
JSim: Jaccard similarity of movie consumptions.

Table 2.3: Descriptive statistics of top-150 rules/patterns.
Supp (%) Conf (%) Cosine Vcsp CorrCoef JSim

Association Rules 3.0 (1.08) 80.37 (3.49) 0.25 (0.05) 0.13 (0.05) 0.17 (0.22) 0.11 (0.05)
Cosine Patterns 11.6 (3.70) 42.50 (4.00) 0.53 (0.02) 0.83 (0.14) 0.32 (0.15) 0.55 (0.06)
Standard Deviation in Parentheses.

for each i ∈ Tu (by aggregating information from EPui) and ranking all target items

according to the scores. We describe each stage below.

Stage 1: For each user u, target item set Tu consists of items not yet consumed by

user u, i.e., Tu = I \ Cu, where I represents the set of all possible items.

Stage 2: For each target item i in Tu, we need to find eligible pattern set EPui. An

eligible pattern is defined as follows.

Definition 2.3.1 (ui-Related Eligible Pattern). Let P be a cosine pattern and Cu be

user u’s consumption history. P is an eligible pattern for u w.r.t. i, if i ∈ P , i /∈ Cu,

and P \ {i} ⊆ Cu.
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In other words, cosine pattern P is a ui-related eligible pattern if: (1) P contains

target item i, and (2) all other items in P (i.e., other than i) have been consumed by

user u. Thus, any ui-related eligible pattern represents a cohesive itemset consisting

of some items already consumed by u and one new item i, making item i a natural

candidate for recommendation. The set of all ui-related eligible patterns is denoted as

EPui.

As a simple illustration, let’s assume that we have a recommendation applica-

tion with seven items, i.e., I = {A,B,C,D,E, F,G}, where the following three co-

sine patterns (itemsets) have been mined from users’ consumption histories: CP =

{{A,B,C}, {A,D,E,G}, {A,B,D}}. Also, let’s assume that user u’s consumption his-

tory is Cu = {B,C,D,E}. Then, user u’s target item set is Tu = I \ Cu = {A,F,G}.

Considering item A as a target item, we can see that EPuA = {{A,B,C}, {A,B,D}}.

In other words, {A,B,C} is a uA-related eligible pattern, since all items in it except A

have been consumed by u, and so is pattern {A,B,D}. Note, however, that {A,D,E,G}

is not an uA-related eligible pattern even though it also contains target item A, because

there are multiple (i.e., more than one) target items in it (i.e., A and G).

Stage 3: For user u, recommendation score for target item i is derived from EPui by

summing the cosine values of all patterns in EPui, i.e., score(u, i) =
∑

P∈EPui
cos(P ).

For any given user u, all target items in Tu will be ranked by their recommendation

scores, and the recommendation list Lu for user u would be generated by selecting the

top-K ranked items.

In other words, the current version of CORE adopts a relatively simple scoring

method for target items i ∈ Tu, which adds up the cosine values of all ui-related eligible

patterns. There have been several studies investigating ways in which pattern-based rec-

ommendation algorithms could combine eligible patterns to provide better recommen-

dations. For instance, Wickramaratna et al. (2009) proposed a Dempster-Shaffer-based
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approach to combine rules with conflicting predictions. Ghoshal and Sarkar (2014) pro-

posed to partition eligible rules into groups of rules with disjoint antecedents and same

consequent and developed a probability model to select the group that maximizes the

likelihood of purchasing target item for recommendation. Lin et al. (2002) adopted

heuristics like adding up the supports and confidences of all eligible rules with the same

consequent as its recommendation score. Even though there exist different strategies

for determining recommendation scores for items based on discovered patterns, theo-

retical or empirical studies on deriving optimal strategies are rarely seen. In this study,

we used the cosine value of a pattern, as it provides a meaningful quantification of

the itemset cohesiveness, as discussed earlier. Furthermore, if target item i appears in

multiple ui-related eligible patterns (i.e., provides a cohesive combination with several

consumed itemsets of user u), arguably this provides an even stronger signal of item i’s

relevance to u; hence, we chose to use a simple aggregation of the cosine values across

all eligible patterns to empirically show the benefits of using cosine patterns for long

tail recommendation. This scoring approach is not only easy to implement and com-

putationally scalable, but also demonstrates excellent recommendation performance (as

demonstrated by our experimental evaluation). In-depth analysis of optimal recommen-

dation score aggregation across multiple patterns represents an interesting direction for

future work.

We call the above approach COsine pattern-based REcommendation, or CORE for

short. As will be demonstrated in the evaluation section, by leveraging the anti-cross-

support property of cosine patterns, CORE not only exhibits good recommendation

accuracy, but is also able to successfully recommend long-tail items. Furthermore, the

two threshold parameters for cosine pattern mining (i.e., τs and τc) provide CORE with

flexibility in recommending items across the popularity distribution. For example, in
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order to to recommend more popular items we can set a high τs and a moderate τc,

while to recommend more niche items we can set a small τs but a high τc.

2.3.3 Cosine-Pattern Tree Traversal Approach

The key computational challenge of the proposed cosine-pattern-based recommendation

process is finding ui-related eligible patterns for given user u’s all target items i. To

deal with this, we propose to use a data structure called Cosine-Pattern Tree to boost

the eligible pattern discovery process, which leads to CORE+ (an enhanced version of

CORE).

Based on the definition, for given user u and target item i ∈ Tu, a simple way

to compute EPui is to first find all cosine patterns that contain i, i.e., CP i = {P ∈

CP|i ∈ P}, and then keep only those where the remaining items are covered by Cu, i.e.,

EPui = {P ∈ CP i|P \{i} ⊆ Cu}. The most time-consuming aspect of this calculation is

determining whether pattern P ∈ CP i satisfies the latter condition. A straightforward

way to do this is to examine each item in P \ {i} to see whether it is contained in Cu.

By storing Cu in a hash table, where time complexity to look up any item is Θ(1), the

overall time complexity for checking all items in one pattern is O(|P |), and it would take

O(
∑

P∈CPi
|P |) to go through all candidates and identify all ui-related eligible patterns.

Under this strategy, two factors can slow down the recommendation process. First,

the target item set, i.e., number of non-consumed items, for each user is typically very

large; thus, time required to find candidate and eligible patterns for all items can add up

quickly. Second, due to CAMP, a cosine pattern typically contains many similar cosine

patterns as subsets, which would entail a great deal of repeated (redundant) matching

of highly similar patterns with Cu.

Both of these factors can be addressed by using advantageous data structures and

algorithms for storing and retrieving cosine patterns. In particular, to facilitate efficient

cosine pattern traversal and reduce redundant matching in eligible pattern detection,
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uC

uD

Figure 2.1: An example for CP-tree construction and traversal.

we build upon the notion of the FP-tree (Han et al. 2000) as well as the ideas from

the CoPaMi cosine pattern mining approach (Wu et al. 2014) to use Cosine-Pattern

Tree (CP-tree). While FP-tree is proposed for compact storage of user consumption

and efficient discovery of frequent patterns, CP-tree in our study is used for compact

representation of discovered cosine patterns. Based on CP-tree, an intelligent, depth-

first search strategy is designed to find all eligible patterns efficiently.

Generally, CP-tree is constructed in a similar fashion as FP-tree, i.e., it is a fully-

connected, hierarchical tree structure, where each node represents an item. Each path

from the root node to any other node in the CP-tree represents a cosine pattern (itemset)

containing all the items on that path. Thus, cosine patterns that share a common prefix

will share (a part of) the same path.

More formally, CP-tree consists of two types of nodes: (i) one special node denoting

the start of all paths (i.e., all patterns stored in the tree) and labeled as root, and (ii)

possibly multiple regular nodes denoting items, each labeled with a corresponding item

name. Each node has three fields, storing its relevant information: item (i.e., the label

of this node), cosine (i.e., the cosine value of the pattern that ends with this node),

and childlist (i.e., the list of children nodes that are connected to this node).
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Before tree construction, all items in each cosine pattern P are sorted in a support-

ascending order, which guarantees that every prefix of P is also a cosine pattern, due to

CAMP. E.g., if supp(A) ≤ supp(B) ≤ supp(C) and {A,B,C} is a cosine pattern, then

{A,B} is guaranteed to be a cosine pattern, due to CAMP. An illustration of CP-tree

construction process is shown on the left side of Fig. 2.1, where all items are assumed to

be sorted in the support-ascending order. Initially, the CP-tree contains only the default

root node. After reading the first cosine pattern {A,B}, the nodes labeled as A and B

are created, and path root→ A→ B is then added, and the value of cos({A,B}) = 0.5

is saved in the cosine field of node B, as shown in Fig. 2.1a. The second cosine pattern

{A,B,C} shares a common prefix {A,B} with the first pattern, and therefore only

one new node marked as C is added to the end of path root → A → B with the

corresponding cos({A,B,C}) = 0.3 value in Fig. 2.1b. This process continues until

every cosine pattern has been mapped onto one of the paths in CP-tree, which leads

to the final CP-tree in Fig. 2.1c. Because of this specific prefix-based tree construction

as well as the CAMP property of the cosine measure, all distinct cosine patterns are

represented by all the paths from the root node to every node that is below the first

two levels of CP-tree (since a cosine pattern must have at least two items).

Thus, any arbitrary path [P ] = root → i1 → · · · → ip in CP-tree represents cosine

pattern P = {i1, · · · , ip}, when |P | ≥ 2. With respect to specific user u, any given

path [P ] (and its corresponding cosine pattern P ) can be classified into three different

categories – 0-target path, 1-target path, and multi-target path – depending on how

many target items the path contains. In particular, [P ] is a 0-target path if |P \Cu| = 0

or, equivalently, P ⊆ Cu, i.e., the path does not contain any target items for user u.

Alternatively, [P ] is a 1-target path if |P \ Cu| = 1. Finally, [P ] is a multi-target path if

|P \Cu| ≥ 2, i.e., if it contains multiple target items for user u. Note that only 1-target
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paths represent ui-related eligible cosine patterns that can be used for recommendation,

as they contain exactly one target item.

The above categorization suggests an intelligent and highly efficient computational

strategy that allows, for any user u, to find all relevant target items and calculate

their recommendation scores with a single traversal through CP-tree. Intuitively, the

main idea is to traverse CP-tree, visiting nodes in a depth-first manner. Each visited

node represents path [P ] (i.e., path from the root to this node), which can be one of

the following: (i) 0-target path, in which case no recommendation decisions need to be

made, and the depth-first search continues to the children of this node; (ii) 1-target path,

in which case the recommendation score for target item i (that is contained in [P ]) is

increased by cos(P ), and the depth-first search continues to the children of this node; or

(iii) multi-target path, in which case no recommendation decisions need to be made, and

the depth-first search is stopped along this path, as all subsequent extensions of path

[P ] will continue to be multi-target paths. In summary, the proposed approach does

not have to check all possible target items, but rather finds them (and calculates their

recommendation scores) organically in one shot by efficiently browsing cosine patterns

and matching them with each user’s consumption history.

Algorithm 1 provides more detailed overview of the implementation of the proposed

search-and-scoring routine. The main function SearchCP (Lines 1-23) employs a depth-

first search on CP-tree. Besides variable cur to indicate the current node, variable

target is introduced to indicate the target item contained in the current eligible pattern.

Traversal along any given path in CP-tree terminates as soon as the path becomes a

multi-target path (Lines 13-14), which avoids unnecessary search of longer patterns.

Last-in-first-out stack S is used to execute the depth-first traversal, and variable target

corresponding to target item contained in the current path is pushed into (or popped

out from) the stack simultaneously with each node (Lines 6, 8, 12, 17, 22). Lines 11
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Algorithm 1 Eligible-pattern searching and target-item scoring from CP-tree.
Input: root, Cu . root is the root node of CP-tree, Cu is the consumption history of user u
Output: score . list of recommendation scores of all items for user u

1: procedure SearchCP(root, Cu)
2: S := ∅; . S: a last-in-first-out stack
3: for i ∈ I do . I: the set of all items
4: score(i) := 0; . initialization of recommendation score for each item

5: target := null . detected target item in the beginning is null
6: PushChildNodes(S, root, target);
7: while S 6= ∅ do . continue traversing until the stack is empty
8: (cur, target) := S.POP; . pop out the top tuple (current node, target item) in S
9: if target is not null then . check whether a target item is already detected

10: if cur.item ∈ Cu then . check whether current item is in user’s consumption history
11: score(target) := score(target) + cur.cosine; . update score of the target item
12: PushChildNodes(S, cur, target); . push node’s children and target item into the stack
13: else
14: continue . traversal of a path stops when a second target item is detected

15: else . in case no target item has been detected so far
16: if cur.item ∈ Cu then
17: PushChildNodes(S, cur, target); . keep traversing when no target item is detected
18: else
19: target := cur.item; . update the value of taget when a target item is detected
20: if cur is not child of root then . update score when the target item is beyond the first level
21: score(target) := score(target) + cur.cosine;

22: PushChildNodes(S, cur, target); . push node’s children and target item into the stack

23: end procedure
24: procedure PushChildNodes(S, cur, target)
25: for node ∈ cur.childlist do
26: S.Push(node, target); . push current node’s children and detected target item into the stack

27: end procedure

and 21 update the recommendation scores of target items whenever the traversed path

is a 1-target path.

The right side of Fig. 2.1 illustrates the use of Alg. 1 for user u with specific con-

sumption history Cu. Note that the cosine values of patterns are shown next to the

end nodes of their corresponding paths, the dashed nodes are target items (i.e., items

that are not in Cu), and thick lines represent actual traversals performed by Alg. 1.

Consider traversal along root→ A→ B → C. Because C is the first item not contained

in Cu, root → A → B → C becomes a 1-target path with C as its target item. This

path can be extended further either with D or with E. In the case of former, traversal

would stop at node D, as it is the second item not contained in Cu, making the path a

multi-target path at that point; going deeper would not detect any new eligible patterns.
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This avoids redundant checks of successive nodes D, F , and G along the same path. In

contrast, root → A → B → C → E would be identified as another 1-target path with

C as its target item. As another example, after traversal of path root→ B → D, D is

identified as another target item, and three 1-target paths with D as target item would

be discovered: root → B → D, root → B → D → E, and root → B → D → E → G.

Eventually, in this example, five eligible patterns that contribute to recommending C

and D are identified with a single traversal of CP-tree.

CORE+ recommendation approach is highly computationally efficient. Space com-

plexity of CP-tree is O(|CP|), since the total number of nodes in the tree equals the

total number of cosine patterns plus a small fixed number (i.e., the root node and its im-

mediate children). Meanwhile, given any user consumption history Cu, time complexity

of finding all eligible patterns using Alg. 1 is O(|CP|). To elaborate, there are O(|CP|)

nodes in the CP-tree and, in the extreme case, all of them may have to be examined,

with constant amount of time needed per node; e.g., to check whether an item is con-

tained in Cu is Θ(1) using a hash table. Therefore, with CP-tree and Alg. 1, the time

complexity of recommendation given Cu reduces substantially from O(|Tu|
∑

P∈CP |P |)

to O(|CP|), where |P | is the number of items in pattern P . This implies that the upper

bound of the running time of CORE+ is simply proportional to the number of cosine

patterns, regardless of their size or the number of potential target items.

2.3.4 Parallelizing Cosine Pattern-based Recommendation

In this section, we describe a distributed framework designed for CP-tree based rec-

ommendation, which leads to CORE++, a parallelized version of CORE+ for online

recommendation.

Intuitively, user partitioning, i.e., distributing active users to different servers on

which a complete CP-tree is stored in advance for recommendation, is a straightforward
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Figure 2.2: Illustration of parallelization based on CP-tree partitioning.

way to improve scalability. For example, according to the widely-used strategy of proxy

cache servers (Gama et al. 2001), network traffic could naturally be reduced by repli-

cating static content (CP-tree in our case). However, when the CP-tree is large, i.e., a

huge amount of cosine patterns is discovered from consumption or purchase data of a

gigantic online retailer like Amazon, recommendation generation for a single user can

still take a considerable amount of time.

To address this challenge, we propose to use a parallelization framework based on

CP-tree partitioning to further speed up recommendation. Specifically, by taking a

complete CP-tree as a forest with a null root node, each subtree rooted at the second

level can then be allocated to one computational node, and thus the entire CP-tree

can be stored separately on Z available computational nodes. The parallelized CP-

tree based recommendation (i.e., CORE++) could then be done in three stages: (i)

broadcast user u’s consumption history Cu to Z computational nodes; (ii) run Alg. 1

for u on Z nodes in parallel; (iii) aggregate local scores for each target item to obtain

the final recommendation score. Fig. 2.2 illustrates the three stages using the example

from Fig. 2.1, where the initial CP-tree in Fig. 2.1c is decomposed into two subtrees by
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removing the root node. Each subtree is then distributed to a separate computational

node, along with all users’ consumption histories. Recommendation score for each target

item based on each subtree would be generated by running Alg. 1 simultaneously on

the two computational nodes. The final recommendation score for each target item can

then be obtained by aggregating scores from each node (e.g., recommendation score of

B for u2 based on two subtrees is aggregated as 1.1 + 0.4 = 1.5). In Fig. 2.2, for each

user, we pick one target item with the highest score for recommendation.

In the above parallelization scheme, the time to generate recommendations for each

user hinges on the slowest computational node. Thus, it is desirable to partition the

CP-tree in such a way that workload on all nodes is evenly distributed. This could be

formally defined as a load-balanced partitioning (LBP) problem as follows.

Definition 2.3.2 (LBP Problem). Let S = {s1, s2, · · · , sq} be the set of subtrees and

αi ≥ 0, i ∈ {1, . . . , q}, be a load indicator of the i-th subtree. Denote the set of subtrees

distributed to z-th computational node as S(z), z ∈ {1, . . . , Z}. Then, the load of the

z-th node is Lz =
∑

i:si∈S(z) αi, and the maximum load across all nodes is L = maxz Lz.

So, the LBP problem is to find an assignment S(z), z ∈ {1, . . . , Z}, such that L is

minimized.

Based on Def. 2.3.2, minimizing the overall load L essentially means finding Z dis-

joint subsets of S on which computation loads Lz (z ∈ {1, . . . , Z}) are close. This,

however, is an NP-complete problem (Cormen et al. 2001). Thus, we adopt the longest

processing time (LPT) strategy which has been proved to be a 4/3-approximation (Gra-

ham 1969) for load balancing. The LPT strategy for CP-tree partitioning is applied by

sorting all subtrees in descending order based on their load indicators αi, and then

sequentially allocating each tree to the node that currently has the lowest estimated

computational load. This process continues until all subtrees have been assigned. The

performance of LBP mainly depends on how well the load indicator values (αi) can be
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estimated, and below we propose two simple heuristic approaches for estimating actual

computational load.

Intuitively, a subtree of CP-tree rooted with a higher support item is likely to rep-

resent patterns that are more commonly (frequently) found in a user population. Thus,

such a subtree has a greater chance to be traversed for eligible patterns and, therefore,

can entail more intensive calculations. Thus, our first heuristic approach is a support-

based load indicator, where we use the support value of the subtree root item as the

subtree load indicator. Alternatively, the size of a subtree is also related to traversal

cost, as bigger subtrees contain more patterns. In other words, the eligible pattern

discovery process may result in heavier computation load due to having to check poten-

tially more patterns. Therefore, our second heuristic approach is a pattern-based load

indicator, where we adopt the subtree size (i.e., number of patterns in a subtree) as the

subtree load indicator.

Note that neither of the two indicators dominates the other theoretically; which

one works better is context-dependent. The support-based load indicator is likely to be

more suitable for relatively sparse data. In such cases, on average, Cu would contain few

items, so most subtrees would have limited eligible patterns for recommending certain

target items to u. This indicates that the computational cost would mainly come from

multiple traversals of frequent subtrees, which would be captured by the support-based

load indicator. In contrast, the pattern-based indicator is likely to perform better on

denser data. In this case, on average, Cu would contain more items, and most of the

subtrees are likely to be traversed. Thus, the computational cost may depend much more

on the size of subtrees (the number of patterns to be checked), which would be estimated

by the pattern-based load indicator. We compare the two indicators empirically in

Section 2.4.5.
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Table 2.4: Summary statistics of datasets.
Rating #Users #Items #Ratings Sparsity(%) Avg.#Ratings % of Ratings % of Ratings Gini

per Item from Top from Top Coefficient
20% Items 50% Items

Book-Crossing [1,10] 1834 2172 41,337 98.96 13 40% 65% 0.37
Last.fm [1,5] 635 4100 14,175 99.46 5 53% 70% 0.57
MovieLens [1,5] 943 1682 100,000 93.70 59 65% 93% 0.63
Sparsity=100(1−#Ratings/(#Users×#Items)), i.e., percentage of unknown ratings.

2.4 Experimental Results

In this section, we conduct computational experiments to evaluate CORE. We first

compare CORE to two types of baselines, i.e., the pattern-based and the classic CF-

based (Collaborative Filtering) methods. We then analyze the advantages of CORE

for long-tail recommendation followed by a discussion on the flexibility of CORE in

recommending items of different popularity levels.

2.4.1 Experimental Setup

Data. CORE is tested using three publicly available datasets4 that are widely used

in recommender systems research: Book-Crossing, Last.fm, and MovieLens. For

Book-Crossing and Last.fm, we sample the data to include users with at least ten

ratings to avoid extreme sparsity. Table 2.4 provides the summary statistics of the

three data sets, including the information about the distributional inequality in item

consumption. E.g., if we consider the most popular 20% of items in each dataset, in

MovieLens such items receive over 65% of all ratings, while the numbers are significantly

lower for the other two datasets, i.e., 40% and 53%, indicating a heavier-tailed nature

of Book-Crossing and Last.fm datasets. The Gini Coefficient values further highlight

the differences among datasets in terms of item rating frequency distributions.

4The datasets can be found at http://grouplens.org/datasets/hetrec-2011/.

http://grouplens.org/datasets/hetrec-2011/
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Performance metrics. Even though the main motivation behind the proposed

approach is addressing the long-tail recommendation challenges, recommendation accu-

racy is always an important performance dimension. Precision (or precision-in-top-k) is

commonly used to evaluate the accuracy of top-K recommendation lists and is calculated

as follows. For each user u,

Precisionu = #hitsu/K, (2.2)

where #hitsu is the number of items from user u’s recommendation list that are also in

u’s test set, and K is the length of the recommendation list (by default, we use K = 10

in our experiments).

To evaluate the long-tail performance of recommendation algorithms, we use two

metrics: (i) the average popularity (AvgPop) of items in the top-K recommendation

list, where each item’s popularity is reflected by the number of ratings it has (Yin et al.

2012, Niemann and Wolpers 2013), and (ii) the ratio of niche items (NicheRatio) in the

top-K recommendation list. In a given dataset, an item is defined to be a niche item if

it has fewer ratings than the average number of ratings per item in the data set. More

formally, for each user u,

AvgPopu = (

K∑
n=1

#ItemRatingsn)u/K, NicheRatiou = #NicheItemsu/K. (2.3)

The overall performance for each metric is obtained by averaging its values over all

users.

Baselines. We compare CORE with two types of baselines, i.e., pattern-based and

collaborative filtering methods. The former includes the association rule-based method

(AR) (Lin et al. 2002) and the frequent pattern-based method (FP) (Nakagawa and
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Mobasher 2003). The collaborative filtering category includes five widely adopted meth-

ods: UCF (User-based Collaborative Filtering) (Resnick et al. 1994), ICF (Item-based

Collaborative Filtering) (Sarwar et al. 2001), SVD (Funk 2006), WRMF (Weighted

Regularized Matrix Factorization) (Hu et al. 2008), and BPR (Bayesian Personalized

Ranking) (Rendle et al. 2009). In particular, AR, FP, BPR, WRMF and CORE are de-

signed specifically for implicit feedback data (i.e., 0/1 data that reflects only whether a

user consumed or purchased an item, and not the user’s explicit preference rating for that

item). For unified comparison with different baselines, we first convert explicit ratings

in the three data sets to consumption (i.e., 0/1) data, based on the absence/presence

of user rating. We then adopt the standard split-validation method commonly used

in recommender systems research to evaluate different methods; that is, we randomly

select 70% percent of the consumed items of each user for model training purposes,

and use the remaining 30% of items for performance evaluation. Hyperparameters of

each algorithm – e.g., the neighborhood size in UCF and ICF, the number of latent

factors in SVD, WRMF, and BPR, the support and cosine thresholds for CORE, etc.

– were carefully tuned using standard predictive modeling practices for best accuracy

performance.

2.4.2 Recommendation Accuracy Performance

Fig. 2.3 compares CORE to different baselines in terms of precision-in-top-10 (30%

of data is used for testing). In terms of accuracy comparisons with other pattern-

based approaches, the results show that the precision of CORE is consistently higher

than that of AR and FP across all data sets. In terms of accuracy comparisons with

collaborative filtering methods, Fig. 2.3 shows that CORE is highly competitive on

Book-Crossing (only very slightly behind the best baseline ICF) and Last.fm (best

performance among all methods). On MovieLens, collaborative filtering baselines show
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performance advantages over CORE, and we will take a closer look at this later in the

paper.

(a) Book-Crossing (b) Last.fm (c) MovieLens

Figure 2.3: CORE vs. baseline algorithms on accuracy (test-set ratio = 30%).

(a) Book-Crossing (b) Last.fm (c) MovieLens

Figure 2.4: CORE vs. baseline algorithms on accuracy under different K.

To demonstrate the robustness of the CORE performance under different settings,

we provide accuracy comparisons for different lengths of the top-K recommendation list

and for different splits of training and test data. The results are shown in Figs. 2.4-

2.6. Specifically, Fig. 2.4 shows that the relative accuracy performance of different

methods remains consistent when different number of recommendations is provided.

I.e., CORE remains competitive on Book-Crossing and demonstrates superior perfor-

mance on Last.fm; on MovieLens, CORE is outperformed by collaborative filtering

baselines, but performs better than pattern-based methods. Relative accuracy perfor-

mance also remains consistent for different training-test data splits, as illustrated by

Figs. 2.5 and 2.6, which show the precision comparisons among different methods when
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90% and 50% of the data is used for model learning (the remaining 10% and 50% are

used for model evaluation), respectively.

(a) Book-Crossing (b) Last.fm (c) MovieLens

Figure 2.5: CORE vs. baseline algorithms on accuracy (test-set ratio = 10%).

(a) Book-Crossing (b) Last.fm (c) MovieLens

Figure 2.6: CORE vs. baseline algorithms on accuracy (test-set ratio = 50%).

Overall, accuracy comparisons in Figs. 2.3-2.6 demonstrate highly promising per-

formance of CORE; i.e., it dominates pattern-based methods across all data sets and

is highly competitive with the widely used CF-based approaches on two heavier-tailed

data sets, i.e., Book-Crossing and Last.fm.

2.4.3 Long-Tail Recommendation Performance

The key objective of the proposed approach is the long-tail recommendation. There-

fore, in this section, we go beyond recommendation accuracy and focus on the long-tail

recommendation performance evaluation. Tables 2.5 and 2.6 show the average popular-

ity (AvgPop), i.e., average number of ratings, and ratio of niche items (NicheRatio) of
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Table 2.5: Average popularity of recommended items.
Data Set AvgFreq CORE AR FP UCF ICF SVD WRMF BPR
Book-Crossing 13 43 76 101 72 45 69 65 92
Last.fm 5 31 89 107 61 52 34 48 96
MovieLens 59 135 318 383 333 338 397 301 275
AvgFreq: average number of ratings per item in a data set.

Table 2.6: Percentage of niche items recommended.
Data Set AvgFreq CORE(%) AR(%) FP(%) UCF(%) ICF(%) SVD(%) WRMF(%) BPR(%)
Book-Crossing 13 13.50 0.05 0.04 2.10 1.38 1.81 3.20 0.40
Last.fm 5 16.90 1.72 0.02 2.16 4.44 5.77 9.30 0.20
MovieLens 59 25.35 0.00 0.00 0.02 0.20 0.00 0.11 1.41
AvgFreq: average number of ratings per item in a data set.

top-10 items recommended by the same exact model configurations evaluated in Sec-

tion 2.4.2. Again, the same 30% of data was used for testing.

The results highlight the significant advantages of CORE over baseline algorithms

for long-tail recommendation. In particular, baseline algorithms tend to recommend

popular items, as indicated by the average popularity metric and by the fact that, in the

vast majority of settings, less than 2% of recommendations by baseline algorithms are

niche items. These results are consistent with the findings of previous studies (Fleder

and Hosanagar 2009) that most existing recommender systems have popularity bias,

creating the rich-get-richer effect for popular items. In contrast, CORE is successfully

able to provide recommendations of items with lower popularity and recommendations

containing substantially higher percentage of niche items across all datasets.

Fig. 2.7 reiterates the results from Sections 2.4.2 and 2.4.3 by comparing the overall

performance of different recommendation techniques in a two-dimensional (i.e., accuracy

vs. long-tail recommendation) space. Specifically, Figs. 2.7a-2.7c show each method’s

position in the Precision-AvgPop performance space and, similarly, Figs. 2.7d-2.7f show

Precision-NicheRatio comparison. Methods appearing in the top-right corner in these

figures demonstrate better performance on both accuracy and long-tail recommendation.

As shown in Fig. 2.7, for Book-Crossing and Last.fm, CORE is not only the advan-

tageous choice in terms of the long-tail recommendation performance, but it is also an
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excellent overall choice based on both performance dimensions. For MovieLens, CORE

demonstrates dramatic improvements in long-tail performance at the expense of some

accuracy reduction with respect to CF baselines (but still significantly outperforming

pattern-based baselines).

(a) Book-Crossing (b) Last.fm (c) MovieLens

(d) Book-Crossing (e) Last.fm (f) MovieLens

Figure 2.7: CORE vs. baseline algorithms on accuracy and long-tail recommendation.

2.4.4 Additional Experiments

In this section, we discuss a number of additional important characteristics of the CORE

approach.

Preference for Heavier-Tailed Datasets. From the main results discussed so

far, we see that traditional pattern-based and collaborative filtering methods tend to

recommend items with higher popularity, while CORE is able to recommend substan-

tially more long-tail items across all data sets. In terms of accuracy performance, on

more skewed datasets (such as MovieLens, where small percentage of popular items are

responsible for high percentage of ratings/consumptions, as could be seen in Table 2.4),
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traditional (popularity-oriented) collaborative filtering techniques tend to have some

inherent advantage. However, this accuracy advantage of traditional techniques dis-

appears on heavier-tailed data sets (such as Book-Crossing and Last.fm, with larger

percentage of ratings dispersed to niche items), where CORE exhibits highly competitive

accuracy performance.

We provide additional support for this finding with the following experimental eval-

uation, where we compare CORE with WRMF (i.e., one of the collaborative filtering

baselines that demonstrates consistently good performance) on datasets with varying

degrees of skewness.

In particular, we take MovieLens data, where WRMF consistently demonstrates

superior accuracy performance over other methods (including CORE), manipulate its

rating distribution to achieve different levels of skewness, and investigate the changes

in relative performance of WRMF vs. CORE. Specifically, we first rank all items in

MovieLens by their support (i.e., the number of ratings), and then remove items ranking

in top 10%, 20%, 30%, 40%, and 50%, respectively, to generate five new data sets with

heavier-tailed distribution. Descriptive statistics and distributions of these new datasets

are shown in Table 2.7, from which we can see that, the more popular items are being

removed, the closer the rating distribution is to the one in Last.fm, one of our heavier-

tailed datasets.

Figure 2.8: CORE vs. WRMF on different distributions of item popularity.
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Table 2.7: Descriptions of adjusted data sets.
Rating #Users #Items #Ratings Sparsity(%) Avg.#Ratings % of Ratings % of Ratings Gini

per item from Top from Top Coefficient
20% Items 50% Items

MovieLens [1,5] 943 1682 100,000 93.70 59 65% 93% 0.63
MovieLens-10% [1,5] 943 1512 56,960 96.00 38 57% 90% 0.57
MovieLens-20% [1,5] 939 1344 35,181 97.21 26 54% 89% 0.54
MovieLens-30% [1,5] 919 1175 21768 97.98 19 52% 87% 0.52
MovieLens-40% [1,5] 866 1004 12,866 98.52 13 49% 84% 0.50
MovieLens-50% [1,5] 756 838 7,218 98.86 9 48% 83% 0.46
Last.fm [1,5] 635 4100 14,175 99.46 5 53% 70% 0.57

Fig. 2.8 shows the precision (accuracy) and AvgPop (long-tail recommendation per-

formance) of WRMF vs. CORE on the original MovieLens data and five new datasets

generated from it. In particular, as the rating distribution of MovieLens moves more

toward niche items, the accuracy gap between WRMF and CORE gradually narrows.

Eventually, e.g., in settings where 40% and 50% popular movies are removed, CORE

actually starts to outperform WRMF in terms of accuracy. Meanwhile, the long-tail

recommendation performance of CORE remains better (i.e., lower AvgPop of recom-

mended items) than WRMF’s, albeit by a smaller margin, as there are much fewer

popular items for the WRMF’s popularity bias to manifest itself strongly.

In summary, this provides additional evidence that, aside from demonstrating supe-

rior long-tail recommendation performance across a wide variety of datasets, on heavier-

tailed datasets CORE demonstrates highly competitive performance in terms of accu-

racy as well.

Flexible Recommendation. An important characteristic of the proposed CORE

approach is that it allows to fine-tune the popularity level of recommended items in a

flexible manner. In particular, as was mentioned in Section 2.3.2, the types of items that

appear in the discovered cosine patterns can be easily tuned by setting cosine and/or

support thresholds accordingly.

Figs. 2.9 and 2.10 show the performance of different variations of COREcos,supp,

i.e., CORE under different cosine and support thresholds. For a given level of sup-

port, the popularity of recommended items tends to go down as the cosine threshold
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goes up. For Book-Crossing data (Fig. 2.9a), this can be seen from the fact that

AvgPop(CORE0.05,0.2) ≥ AvgPop(CORE0.1,0.2) ≥ AvgPop(CORE0.2,0.2). For Last.fm

(Fig. 2.9b): AvgPop(CORE0.2,0.2) ≥ AvgPop(CORE0.3,0.2) ≥ AvgPop(CORE0.4,0.2).

Correspondingly, the ratio of niche recommendations tends to go up with the co-

sine threshold as well, as shown in Fig. 2.10. The intuition is that a higher cosine

threshold filters out more cross-support patterns containing high-frequency (i.e., pop-

ular) items. Alternatively, for a given level of cosine, the popularity of recommended

items tends to go up as the support threshold goes up. E.g., in Fig. 2.9a we can see

AvgPop(CORE0.2,0.2) ≤ AvgPop(CORE0.2,0.3) for Book-Crossing; in Fig. 2.9b we have

AvgPop(CORE0.2,0.2) ≤ AvgPop(CORE0.2,0.3) for Last.fm. The ratio of recommended

niche items also correspondingly goes down. With higher support threshold, only items

in comparatively more frequent patterns, i.e., more frequently consumed items, would

be recommended. Not surprisingly, fine-tuning CORE for even better long-tail recom-

(a) Book-Crossing (b) Last.fm

Figure 2.9: Two dimensional (Precision-AvgPop) performance comparison.

mendation performance may come at the expense of some recommendation accuracy,

as Figs. 2.9 and 2.10 show. Therefore, in real-world applications, cosine and support

thresholds should be set by the domain experts keeping in mind the specific application
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requirements, such as the desired mix of popular and niche item recommendations, var-

ious levels of recommendation popularity for users with different popularity preferences,

and the trade-offs between accuracy and long-tail performance.

(a) Book-Crossing (b) Last.fm

Figure 2.10: Two dimensional (Precision-NicheRatio) performance comparison.

Comparisons with the Long-Tail-Oriented Baseline. Our main experiments

demonstrated the benefits of CORE as compared to multiple popular, general-purpose

baseline algorithms. The benefits are especially prominent on the heavier-tailed datasets,

where CORE shows advantages not only in long-tail performance, but in accuracy per-

formance as well. Here we conduct an additional experiment to show that CORE’s

performance advantages on heavier-tailed data remain even when compared to a spe-

cialized long-tail-oriented baseline. Specifically, we compare CORE with the long-tail

recommendation strategy proposed by Park and Tuzhilin (2008). We chose this ap-

proach due to its adaptability to different existing recommendation techniques and its

flexibility (somewhat similar to CORE’s) for parameterizing the long-tail recommenda-

tion performance.

As with our main experiments, we hold out 30% of each users’ ratings as the ground

truth for evaluation purposes. Again, we chose to use the WRMF baseline in con-

junction with the long-tail recommendation strategy due to WRMF’s consistently good
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performance across different datasets. To adapt WRMF for long-tail recommendation,

all items in the training data (i.e., 70% of each user’s ratings) are first pre-processed

by partitioning them into head (H) and tail (T) groups using different rating frequency

thresholds α (depending on the overall item frequency in a given dataset). Items with the

number of ratings greater than α would be in group H, the rest of the items in group T.

Those in group T are further clustered into β clusters as proposed in Park and Tuzhilin

(2008). The above process guarantees a more balanced item rating distribution within

each group and, thus, alleviates the concern of recommendation bias towards highly

popular items. In particular, we set α ∈ {10, 20, 30} for Book-Crossing, α ∈ {3, 5, 10}

for Last.fm, and β ∈ {5, 10} for both datasets. Based on the pre-processing, recommen-

dations are first generated using WRMF within H and each of β groups within T and

then aggregated to form the final top-K recommendation list. Figs. 2.9 and 2.10 show

the comparison between different variations of COREcos,supp (i.e., CORE under different

cosine and support thresholds, as discussed earlier) and WRMFα,β (i.e., WRMF under

different settings of pre-processing).

Note that, although we run a number of different CORE and WRMF variations, for

clarity of visualization in Figs. 2.9 and 2.10 we display only the performance “frontiers”

both for CORE and WRMF. In other words, we do not display CORE and WRMF vari-

ations where the recommendation performance is dominated by some other variations

in both dimensions, i.e., both in recommendation accuracy and long-tail performance.

First, the results verify the effectiveness of the approach proposed by Park and Tuzhilin

(2008) for boosting long-tail recommendation of WRMF. Second (and, again, not sur-

prisingly), better long-tail recommendation performance often comes at the expense of

recommendation accuracy, which applies for both CORE and long-tail-oriented WRMF

and CORE. And, finally and importantly, CORE still provides better performance in
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terms of both accuracy and long-tail recommendation, as the performance frontier of

CORE dominates the one of the long-tail-oriented WRMF.

Benefits of Hybridization with CORE. As discussed earlier, CORE provides

clear performance advantages on heavier-tailed data (both in long-tail and accuracy

performance dimensions). However, on other kinds of datasets, such as MovieLens, no

method strongly dominates others on both dimensions. For example, as was shown

in Figs. 2.7c and 2.7f, while CORE still exhibits superior long-tail recommendation

performance, it is WRMF that demonstrates best accuracy (although underperforming

significantly in terms of long-tail recommendation). In such cases, it is possible to obtain

advantages on both dimensions by developing a hybrid (or ensemble) recommender

system.

As an example, we can hybridize WRMF and CORE in different ways by taking top-i

recommended items from CORE and top-(10− i) recommended items from WRMF and

merging them into the final top-10 list. For any given i ∈ {0, 1, . . . , 10}, we denote the

resulting hybrid method Hi. The two-dimensional performance comparison of original

WRMF (i.e., H0), CORE (i.e., H10), and all hybrid methods (i.e., H1, H2, ..., H9) is

shown in Fig. 2.11. For example, consider performance of H5. The results indicate

that, from a simple hybridization strategy of taking top-5 items from WRMF and top-5

items from CORE, H5 is able to get nearly half of the long-tail performance benefits

of CORE (over what original WRMF showed) as well as the vast majority of accuracy

benefits of WRMF (over what original CORE showed). This further highlights the

practical applicability and value of CORE in achieving different recommendation goals,

e.g., providing accurate (popular) recommendations for mainstream users and long-tail

recommendations for variety-seeking, idiosyncratic, or contrarian users.
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Figure 2.11: Performance of hybrid CORE and WRMF approaches on MovieLens data.

2.4.5 Scalability Demo: CORE for Hashtag Recommendation

In this section, we demonstrate scalability of CORE by applying it on the large-scale

application of hashtag recommendation on a social media platform.

Social media platforms like Twitter or Instagram provide opportunities for instant

information sharing and diffusion. However, the ease of posting encourages and facili-

tates rapid content generation, which can lead to information overload for the users. To

deal with this issue, some platforms encourage their users to create and cite hashtags,

i.e., relevant keywords or phrases (that start with hashtag symbol #) to indicate the

themes of their posts. For example, a post with hashtag #SuperBowl can be easily

associated with other Super-Bowl-related posts for future search, recommendation, or

analysis. With the accumulation of huge numbers of hashtags over time, analyzing data

of user-hashtag engagement and providing personalized hashtag recommendations in

real time has become an important function of social media platforms, which facilitates

discovery of relevant content and encourages further engagement.

To build and evaluate CORE for hashtag recommendation, we collected data on

user engagement with different hashtags from Sina Weibo, a Twitter-like platform in

China. Specifically, we collected all tweets that were posted by users over a period of
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one month and extracted all hashtags that were ever used. This resulted in a dataset

containing 172,981,649 observations (user-hashtag interactions) from 1,629,504 users on

46,281 different hashtags (with extreme sparsity of 99.77%) and over half billion tweets

posted by those users. For each user, 70% of all the hashtags used were randomly chosen

as the training set and the remaining 30% as the test set.

We had two different implementations of CORE for this recommendation task: (i)

we applied CORE directly on the entire user population, and (ii) we partitioned the

users into several more homogeneous sub-populations and applied CORE separately on

each sub-population. The latter approach is a popular practice in large-scale recom-

mender systems that can often result in better recommendations due to the use of data

from more relevant user population (i.e., population with similar interests, tastes, and

behavior). Clustering of users was done by first applying LDA (Blei et al. 2003), a

well-known topic modeling technique, to all tweets to discover a set of different topics

users discussed. Each user would then be represented as a probability distribution over

discovered topics (i.e., their preferences to different topics). Based on users’ topic prefer-

ences, K-means clustering was used to segment users into 10 different clusters, which we

denote as C0, C1, . . . , C9. The number of clusters was determined according to a com-

monly used evaluation procedure, i.e., elbow criterion with the sum-of-squared-errors

metric. The size of each cluster (i.e., number of users) is shown in Table 2.8.

Our experiments showed a substantial accuracy gain of using CORE on partitioned

user population. Specifically, applying CORE on the entire user population resulted

in precision-in-top-10 of 31.8%, whereas the performance increased to 37.5% in the

partitioned population setting. Therefore, we focus our discussion on the latter imple-

mentation in the remainder of this section.

We summarize the computational efficiency comparison of the straightforward (CORE),

CP-tree-based (CORE+), and parallel CP-tree-based (CORE++) implementations of
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Table 2.8: Straightforward vs. CP-tree based recommendation efficiency.
Total C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Size 1,629,504 477,811 170,369 166,566 112,961 23,539 31,388 28,300 61,494 376,222 180,854
TCORE (s) 2,069,134 872,005 183,828 136,917 313,354 74,713 69,430 143,906 79,389 82,016 113,576
TCORE+ (s) 21,049 5,439 2,758 3,500 1,219 366 229 894 270 1,036 5,338
TCORE++ (s) 2390 590 304 393 124 40 27 103 36 188 585

TCORE/TCORE+ 98 160 67 39 257 204 303 161 294 79 21
pattern-based LBP
TCORE+/TCORE++ 8.8 9.2 9.1 8.9 9.8 9.2 8.4 8.7 7.5 5.5 9.1
support-based LBP
TCORE+/TCORE++ 8.4 8.3 8.9 8.7 8.7 8.4 8.3 9.3 6.8 6.2 8.5

CORE for hashtag recommendation in Table 2.8. Specifically, TCORE , TCORE+, and

TCORE++ denote the total amount of time (in seconds) that was needed to gener-

ate recommendations. The table also displays the speedup ratio of using CP-tree (i.e.,

TCORE/TCORE+) as an indicator of efficiency gain. While time consumed varies with

the cluster size and the number of patterns discovered within each cluster, CORE+ is

nearly 100 times faster on average. More specifically, on average, it takes about 1270ms

to generate recommendations for a single user using the straightforward implementation,

while it takes only about 13ms using CORE+. Finally, the last two rows of Table 2.8

demonstrate the additional efficiency gain due to parallelization, by comparing runtimes

of CORE+ and CORE++, where CORE++ is implemented as parallel CORE+ with

12 computational nodes. In summary, CORE++ is 8-9 times faster than CORE+,

and it takes only about 1.5ms on average for CORE++ to generate recommendations

for a single user. Note that, for CORE++, two different load-balanced partitioning

(LBP) strategies (as proposed in Section 2.3.4) were compared, and pattern-based load

indicator yielded slightly better speedup than the support-based one. These scalability

illustrations further emphasize the practicality and real-time capabilities of CORE.

2.5 Conclusions

With the increasing adoption and growth of digital content provision, recommender

systems have become an indispensable component of various online platforms, as they
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help users to find relevant products or services from a vast array of choices more ef-

ficiently via personalized recommendations. Such systems have been reported to have

significant impact on product sales and users’ consumption behaviors. In particular,

many traditional recommendation approaches (e.g., collaborative filtering approaches)

exhibit substantial popularity bias, i.e., recommendations tend to direct users’ attention

largely towards popular products. At the same time, it is widely acknowledged that

long-tail recommendations can also be valuable, both for consumers and providers, as

they better satisfy heterogeneous consumer needs and can lead to increases in demand,

engagement, and loyalty. For certain business models (e.g., for streaming service plat-

forms), recommending more niche content to users could also reduce content licensing

costs and, thus, lead to higher provider surplus.

However, due to the highly skewed distribution of consumed items and the fact that

user preferences for more idiosyncratic and less popular items are harder to predict, ac-

curate recommendation of long-tail items remains a significant challenge. In this paper,

we propose CORE, a cosine-pattern-based technique, for effective long-tail recommen-

dation. The proposed approach has two key components. First, it uses a special type

of item co-occurrence patterns, called cosine patterns, that are mined from consumers’

consumption histories and, as discussed in the paper, turn out to be highly advanta-

geous for recommendation purposes, especially for long-tail, niche items. Second, it

generates personalized recommendations by matching each user’s consumption history

against the discovered patterns. To ensure scalability of the proposed approach, we

design a CP-tree structure for efficient recommendation generation (CORE+) and can

further employ a parallel recommendation framework (CORE++) to facilitate real-time

recommendation.

In our experimental studies, we observe that cosine patterns indeed demonstrate

the advantages of discovering more cohesive relationships among items, including niche
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items. The proposed cosine-pattern-based approach (CORE) is tested on three public

datasets from different application domains, and we compare it to two types of baseline

algorithms – pattern-based and collaborative-filtering-based – in terms of accuracy and

long-tail recommendation performance. The results show that CORE dominates all

baselines in terms of long-tail recommendation, while being highly competitive in terms

of recommendation accuracy. In particular, on heavier-tailed datasets, CORE con-

sistently demonstrates accuracy performance that on par with the highest-performing

baselines. On other datasets, in addition to its superior long-tail performance, CORE

offers straightforward “hybridization” opportunities for combining it with traditional

top-accuracy baselines to achieve combined benefits in both accuracy and long-tail per-

formance. Finally, in addition to its high explainability, which is common to most

pattern-based recommendation approaches, CORE demonstrates high flexibility, which

provides the system designers with the ability to fine-tune the system (i.e., using dif-

ferent thresholds for support and cosine metrics) towards the desired popularity of

recommended items, as well as high scalability, which enables to facilitate real-time

recommendations for a given user (i.e., in a matter of milliseconds) in large-scale rec-

ommendation applications.

This study also provides several directions for future research. One such direction

would be to further our understanding regarding the impact of dataset characteristics

on the performance of cosine-pattern-based recommendation method. As shown in the

paper, skewness in item popularity and consumption has an impact on the cosine pat-

terns that are discovered and, hence, on the performance of the proposed algorithm.

Developing a deeper mathematical understanding of the role that specific dataset char-

acteristics play in the cosine-pattern-based recommendation performance would allow

to further improve the effectiveness of pattern-based recommendation algorithms. An-

other promising research direction would be to move beyond pattern-based methods and
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to use advantages of the cosine metric more directly in the recommendation generation

process, e.g., perhaps as part of a rating-prediction or learning-to-rank approach based

on supervised machine learning methodologies. More specifically, the current approach

uses the cosine metric to learn item associations (patterns) first, and then generates

recommendations based on patterns. Bypassing the intermediate step of pattern gen-

eration and designing more direct methods of using cosine information may lead to

additional performance benefits. And, finally, conducting user studies to obtain fur-

ther insights on users’ interactions with (and acceptance of) cosine-based recommender

systems constitutes another interesting direction for future work.



Chapter 3

Essay 2: Improving Reliability

Estimation for Individual

Numeric Predictions

3.1 Introduction and Motivation

Many critical decisions in real world rely on predictions, e.g., investors forecast returns,

doctors diagnose diseases, producers predict sales. Facilitated by continuous improve-

ments in data processing and storage technologies, this has spurred development and

improvement of machine learning and, more generally, predictive modeling techniques.

However, these automated predictions are often imperfect because they are made from

noisy, limited data or using simplified computational or probabilistic reasoning.

For numeric prediction tasks, predictive models focus primarily on providing indi-

vidual prediction outcomes; for example, a diabetes risk estimation model would output

the risk score of diabetes for each potential patient. Meanwhile, the quality of predic-

tive models is commonly evaluated using aggregate prediction accuracy metrics, such as

60
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mean absolute error or root mean squared error, calculated on some test set of data.

The issue of individual prediction reliability (IPR), i.e., the magnitude of error or level of

uncertainty of any specific individual prediction, has not been explored as comprehen-

sively. When applying properly trained models, i.e., models with best possible aggregate

accuracy, to real-world data, the ability to provide reliability estimation for any specific

prediction is undoubtedly important, especially for the purpose of facilitating decision

support. As an example, let’s assume that, when estimating the severity of Parkinson’s

disease for two individual patients using Parkinson’s Disease Rating Scale (Tsanas et al.

2009), both patients are predicted to have the same rating score of 123, i.e., the same

predicted disease severity. At the same time, the prediction reliability could be highly

different for numerous reasons, e.g., because these two patients belong to highly different

age groups for which different amounts of data are available. For example, it is possible

that the prediction of 123 for a younger patient means that the true disease rating value

likely is 123 ± 30 (i.e., between 93 and 153), while the same prediction for an older

patient might be much more reliable, i.e., 123 ± 5. The diagnosis reliability information

is important for deciding on individualized treatment, yet is not captured by the pre-

dicted outcome (i.e., 123) alone. In general, knowledge of prediction reliability provides

a more nuanced understanding of predictive model performance and can be critical

in many real-world numeric prediction applications, especially in highly risk-sensitive

domains like pharmaceutical research, medical diagnosis, or financial markets.

As a simple illustration of the research context, consider the stylized, synthetically

generated data 1 in Fig. 3.1, where X axis represents the input variable and Y axis

represents the outcome to be predicted. Specifically, the black dots represent data

points (x, y), and the solid red line represents the estimated linear regression model

12000 points were created by generating their x values uniformly at random from [−2, 2], and their
corresponding y values were generated using function y = 2.5x+ ε, ε N(0, σ2). In particular, σ = 2 for
x ∈ [−2,−0.5] ∪ [0.5, 2]; σ = 10 for x ∈ [−0.5, 0.5].
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Figure 3.1: Synthetic Data Example for Prediction Reliability Issue.
(X/Y axis: input/outcome variable. Dots: data points. Solid line: predictive model based on linear regression.)

y = f̂(x) that is used for prediction. Although the linear regression model represents

the most accurate predictive model for this dataset (as this dataset was generated with

this purpose in mind), it is easy to see that the predictions for x ∈ [−0.5, 0.5] are much

less reliable in a given setting, i.e., prediction errors e = |y−ŷ| = |y−f(x)| for individual

data points in this area are typically much higher than for x /∈ [−0.5, 0.5].

In other cases, where the true data generating process cannot be accurately recov-

ered, the prediction errors can result not only from the random noise, which typically

leads to the variance of outcome predictions, but also from the misfit of the models

which leads to systematic bias of outcome predictions (Domingos 2000, Geman et al.

1992). It is also important to reiterate that individualized prediction reliability esti-

mates are not captured by traditional aggregate accuracy metrics. By design, the goal

of individual prediction reliability is not to be another metric that needs to be balanced

together (e.g., as part of the machine learning loss function) with the overall model

accuracy, but rather to provide diagnostic information to decision makers who use a

given outcome prediction model, i.e., providing not only the model’s prediction for a
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given input, but also the indication of how reliable each specific prediction is expected

to be.

It should be mentioned that prediction reliability has been referred to in different

ways in previous literature: prediction risk, prediction uncertainty, prediction confi-

dence, etc. We draw on (Bosnić and Kononenko 2008a) to use prediction reliability for

the sake of terminological consistency. Reliability estimation has been used for two main

purposes. One line of research uses estimated reliability as an additional criterion (e.g.,

in conjunction with accuracy-based metrics) for model evaluation, where models with

higher prediction reliability are typically more preferred. Different methods have been

proposed for estimating prediction reliability for this purpose, e.g., cross-validation,

bootstrapping, Bregman divergence, covariance-based (Efron 2004, Shao 1996). Similar

to aggregate accuracy metrics mentioned before, reliability estimated in this type of

work is still used as an aggregate model evaluation tool. The other line of research

uses prediction reliability for individual prediction explanation or description, which is

directly aligned with the focus of this paper. Those studies fall into three finer-grained

groups based on the type of outcome to be predicted, i.e., reliability for a single example

in classification, probability estimation, or numeric prediction. In this paper, we focus

specifically on reliability of numeric prediction models (as will be discussed in the next

section), which has been significantly underexplored in research literature, as compared

to reliability estimation for other types of outcomes. For example, reliability of prob-

ability estimation is often measured by Brier score (Brier 1950) which is calculated as

the squared difference between actual outcome (binary or categorical) and predicted

probability assigned to that outcome. There have been numerous studies investigating

individual classification reliability. For some classifiers, like logistic regression or näıve

Bayes (Hand and Yu 2001, Walker and Duncan 1967), the posterior probability of an

individual predicted class can be viewed as confidence (reliability) of its prediction.
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Most related studies propose more general (model-agnostic) approaches, e.g., transduc-

tive reliability estimation (Kukar and Kononenko 2002, Tzikas et al. 2007) drawing on

transduction based confidence estimation (Ho and Wechsler 2003, Proedrou et al. 2002,

Saunders et al. 1999) or the typicalness framework (Melluish et al. 2001, Nouretdinov

et al. 2001).

Even though the reliability estimation for numeric prediction models has been signif-

icantly underexplored in research literature, it undoubtedly represents an increasingly

important issue due to the needs for more fine-grained understanding of predictive model

performance, as will be discussed in next section. Therefore, going beyond the evalua-

tion of the overall (i.e., aggregate) accuracy performance of numeric prediction models,

in this study we focus on providing a general-purpose, data-driven approach to individ-

ual prediction reliability (IPR)2 estimation. In particular, we propose to use a simple

IPR indicator based on expected absolute prediction errors. This is motivated by an

observation that the performance of existing IPR estimators are usually evaluated by

how well they are aligned with actual errors of outcome prediction models. As a result,

an indicator based on the actual prediction errors can provide a more direct measure-

ment of IPR, i.e., high estimated error indicates low IPR (see Section 3.3.1 for a detailed

description). On the whole, such an indicator has the benefits of being intuitive and

providing highly interpretable information to the decision makers as well as allowing

for more precise evaluation of reliability estimation quality. Even more importantly,

the proposed IPR indicator also allows us to reframe reliability estimation itself as a

canonical numeric prediction problem (of the absolute prediction error). Specifically,

estimating the proposed IPR indicator is equivalent to learning a numeric prediction

model where targets are actual absolute prediction errors and then applying the model

for error prediction given any new observations. The error prediction model aims at

2We use acronym IPR to refer to “individual prediction reliability” throughout the paper.
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capturing the relationship between individual inputs and their prediction errors. The

reframing of the problem makes the proposed approach general-purpose (i.e., can work

in conjunction with any outcome prediction model), alleviates the need for any sta-

tistical/distributional assumptions, and enables the use of advanced, state-of-the-art

machine learning techniques to learn IPR patterns directly from data. Advantages of

the proposed approach are demonstrated using comprehensive computational experi-

ments on seven real-world datasets and in comparison to multiple techniques from prior

work. Error estimation performance measured by two different evaluation metrics show

that the proposed machine-learning-based approaches, especially ensemble-based meth-

ods like XGBoost and Random Forest, provide significantly better reliability estimation

over various baselines, especially in more complex application settings (e.g., datasets

with more input features).

3.2 Related Work

Given the popularity of (and reliance on) predictive modeling techniques in many as-

pects of everyday life, in general a more comprehensive and nuanced understanding of

predictive model performance represents an increasingly important issue. Ability to

provide IPR estimates is an important aspect for both application and interpretation

of predictive models (Briesemeister et al. 2012, Bosnić and Kononenko 2008a, Shrestha

and Solomatine 2006). In particular, for a given predictive model, IPR estimates would

provide better understanding for which data points the model is expected to perform

better vs. worse (i.e., have higher vs. lower reliability). This connects well to the topic

of error analysis, which helps to find opportunities for substantial increase in predictive

performance. For example, in biomedical informatics, the error models of individual

cells can discern new subpopulations within complex mixtures of cells and derive more

robust measures for cell classification (Kharchenko et al. 2014). In medical diagnosis,
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analyzing inaccurate predictions are important to find out what cases can confuse ma-

chine learning models even when the overall predictive performance is impressive (Choi

et al. 2017). In biological natural language processing (Hakala et al. 2013), analyzing

inaccurate predictions helps diagnosing whether false predictions of the event type (e.g.,

gene expression, transcription, etc.) is due to missing or incorrectly constructed fea-

tures. In speech recognition (Qian et al. 2018), error analysis is used to identify top

types of errors (substitution, deletion, etc.) that the system makes under different noise

contexts, which is valuable in informing prediction application as well as system adapta-

tion. In online recommender systems, examining rating prediction errors at individual

level can inform designing of meta-learning algorithms for different users or user groups

(Collins et al. 2018). IPR estimates are also relevant to the important research topic

of algorithmic bias (Datta et al. 2015, Simoiu et al. 2016, Hosanagar 2019, Johndrow

et al. 2019), as they could provide early detection signals of potential systematic bias of

predictive models. Finally, as mentioned earlier, IPR provides extra information, which

is important for facilitating better decision making across a broad array of applications

in chemical and pharmaceutical research (Briesemeister et al. 2012, Liu et al. 2018,

Toplak et al. 2014, Cortés-Ciriano and Bender 2018), financial markets (Dash et al.

2015, Huang et al. 2018, Solares et al. 2019), medical diagnosis (Lebedev et al. 2014,

Iorio et al. 2015, Tomassetti et al. 2016), and many others.

In terms of methodologies for the IPR representation and calculation, traditional

approaches could be summarized into two broad categories: (i) distribution-based, i.e.,

estimating an entire distribution of the outcome variable predictions for any given input

value x, which can then be provided to the decision makers directly or in some aggre-

gate form (such as confidence interval) as information about prediction reliability or

confidence, and (ii) indicator-based, i.e., providing a simple, single-numeric-value-based

indicator of IPR for given x, often based on some heuristic.
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Distributional, or confidence-interval-based (Wonnacott and Wonnacott 1990), ap-

proaches are rooted in statistical properties of prediction models, especially regression

models, and represent an intuitive way to indicating IPR – predictions with wider

confidence intervals (for a given confidence level) indicate higher model uncertainty.

Distributional approaches also tend to be model-specific, i.e., designed specifically for

a particular outcome prediction model, and rely on certain statistical assumptions. In

both least-squares-based and likelihood-based learning of regression models, generation

of confidence intervals or other confidence metrics is based on the assumption of indepen-

dent and identical distribution of errors across the input space (i.e., homoscedasticity)

(Halperin 1963, Knafl et al. 1985). However, this homoscedasticity assumption is usually

violated in many real-world settings which is explicitly the focus of this study (reflecting

situations similar to the one illustrated in Fig. 3.1, and thus, the derived confidence

intervals would fail to reflect actual IPR. More sophisticated regression-based distribu-

tional approaches draw on the flexible Gaussian process (Rasmussen 2003), which allows

to incorporate information on similarity between data points into the model building.

Although the probabilistic Gaussian process regression model facilitates the derivation

of predictive distribution for the regression outcome, the key characteristic of this mod-

eling technique is that the variance of the distribution for new observation x (i.e., the

indicator of its prediction reliability) only depends on the input features of x and, in

particular, on the relative location (e.g., distance calculated using feature values) of x to

other observations in the training data, and not on the observed target (outcome) values

(Rasmussen 2003). Because of the latter fact, it is unlikely to capture the magnitude of

error in the prediction that is due to variability in the outcomes, which makes it a less

informative measurement of IPR. Fig. 3.2a emphasizes this by presenting the 95% pre-

diction intervals of Gaussian process regression learned from the synthetic dataset used

in Fig. 3.1 – the widths of individual prediction intervals are similar across the input
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(x) space, not reflecting the actual variability in the outcomes. There have been other

distributional approaches that extend certain specific learning techniques to make pre-

dictions together with corresponding probabilistic reliability estimates (Khosravi et al.

2010, Papadopoulos et al. 2001). For example, Hwang and Ding (1997) use an asymp-

totic approach to build confidence intervals for neural networks; however, similarly to

what has been discussed above, due to traditional statistical assumptions on errors (e.g.,

homoscedasticity) and model parameters, the prediction intervals generated by this ap-

proach are not designed to reflect the variability in the actual outcomes (but rather

the variability in model predictions), as illustrated in Figure 3.2b on the same stylized

dataset.

(a) Gaussian Process-based (b) Neural Networks-specific (c) Bootstrapping-based

Figure 3.2: IPR Representation Based on 95% Confidence / Prediction Interval
(X/Y axis: input/outcome variable. Dots: data points. Solid line: model based on different techniques.)

Another standard approach to construct prediction distributions and correspond-

ing prediction intervals is bootstrapping (Efron 1992). This approach has some clear

benefits in that it can be used with all kinds of predictive models (i.e., it is not model-

specific) and generate distributions without relying on statistical assumptions; however,

heteroscedasticity still poses a significant challenge for bootstrapping-derived IPR rep-

resentation in certain situations. To illustrate, in Fig. 3.2c we plot confidence intervals

obtained from this approach on data presented in Fig. 3.1 3. Due to the similarity of

3Each bootstrap sample was generated from original training data by randomly sampling (with
replacement) 500 data points, on which a linear regression model was learned and then applied to make
predictions for test data. We repeat this process 100 times – resulting in 100 predictions for each data
point, from which 95% prediction interval is empirically constructed.
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data patterns in the bootstrap samples, the predictions of all linear models across the

entire input space are similar. This means that, across the entire range of input values

(x), the width of point-wise confidence intervals derived from the prediction variance

would be similar too and not reflective of the actual underlying variability of data, as

indicated in Fig. 2c.

To summarize, the existing distributional approaches (many of which are model-

specific and rely on restrictive statistical assumptions) have been designed mainly to

reflect the distribution of model predictions and, therefore, are less well-suited for cap-

turing the actual underlying variability of ground truth data (and, hence, actual predic-

tion errors), i.e., for capturing IPR in heteroscedastic environments. As an alternative,

a number of prior studies addressed this issue by turning to simpler, yet more flexible,

indicator-based approaches to IPR estimation, which we discuss next.

Indicator-based approaches typically represent general-purpose (i.e., applicable with

any outcome prediction model, free from statistical assumptions) IPR estimators that

provide a simple numeric value as an indicator of IPR for any individual input value.

Among these approaches, early work focused on using nonparametric bootstrapping

techniques (Carney et al. 1999, Heskes 1997) and summarizing the individual prediction

variability across samples (e.g., by using confidence/prediction interval widths or pre-

diction variance) as reliability indicators, or estimating errors based on the covariance

among data points (Efron 2004). Several other methods are based on heuristics that

try to exploit local information of individual data points in order to directly capture the

actual variability of underlying data, e.g., using prediction errors (Briesemeister et al.

2012), prediction variance of the nearest neighbors of the focal data point (Clark 2009),

or the density of the input space in close proximity to the focal data point (Bosnić and

Kononenko 2008a), as surrogates of IPR. These approaches are based on intuition that

the uncertainty of individual predictions should be higher around data points with high
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prediction errors or high prediction variance, or for points around which there is not

much training data available. One can see that some of these heuristics – in particular,

density-based – would not be very useful in heteroscedastic settings (such as the one

illustrated by Fig. 3.1). Somewhat similarly, Shrestha and Solomatine (2006) propose

to partition the input space into different clusters and then construct prediction inter-

vals based on the empirical distributions of the errors associated with instances in the

same cluster. In terms of specific IPR indicators, (Briesemeister et al. 2012) designed

two statistics based on the local properties of training data, while another related study

(Bosnić and Kononenko 2008b) proposed several empirical measures based on sensitivity

analysis.

For our computational experiments, we use nine commonly used indicator-based re-

liability approaches as baselines for comparison: VarBag (Breiman 1996), VarA, MSE

(Briesemeister et al. 2012), VarP, AvgDiff (Bosnić and Kononenko 2008a), AvgDist

(Sheridan et al. 2004), LCV (Demut 2010), SAV and SAB (Bosnić and Kononenko

2008b). The relevant notation and the formal definitions of these approaches are pro-

vided in Tables 3.1 and 3.2, respectively; note that all measures are calculated for a

given individual data point (x, y), where x represents an input feature vector and y

is an outcome (target) value. We narrowed down our choice to this particular set of

approaches as most promising baseline candidates due to their potential flexibility for

capturing IPR in heteroscedastic environments and for their advantageous performance

reported in prior studies and observed in our pilot experiments.

Finally, evaluation is necessary to test and compare the effectiveness of different

methods for IPR estimation. As observed in prior literature, for an IPR indicator to be

meaningful and useful, the estimates that it produces should be “aligned” with actual

individual prediction errors; i.e., predictions estimated to be more reliable should exhibit

smaller errors (and vice versa). Based on this intuition, previous studies typically use
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Table 3.1: Common Notations for Describing Reliability Estimation Methods
Symbol Definition

x input vector (of different features) of a given example
y outcome value of a given example
xi input vector of ith nearest neighbor in heuristic-based methods
yi actual outcome of ith nearest neighbor in heuristic-based methods
ŷi predicted outcome of ith nearest neighbor in heuristic-based methods
ε̂i εi = yi − ŷi ,prediction error of ith nearest neighbor in heuristic-based methods
m number of random samples in bootstrapping-based methods
Mj prediction for x made by the model learned from the jth sample in bootstrapping-based methods
n number of nearest neighbors selected in heuristic-based methods

d(xi, x) distance between the example x and its ith nearest neighbor in heuristic-based methods
ŷ−i leave-one-out prediction of ith nearest neighbor in heuristic-based methods
τ sensitivity parameters (τ ∈ [0, 1])
S set of sensitivity parameters. An example of S = 0.01, 0.1, 0.5, 1

tmax/tmin Maximum/minimum value of outcome in the training data
ŷτ predicted outcome of x using models trained using training data (X,Y ) plus augmented sample of (x, y + τ ∗ (tmax − tmin)) in sensitivity based methods
ŷ−τ predicted outcome of x using models trained using training data (X,Y ) plus augmented sample of (x, y − τ ∗ (tmax − tmin)) in sensitivity based methods

Table 3.2: Description of Baseline Reliability Estimation Methods
Baseline Calculation and Description

VarBag 1
m

∑m
j=1(Mj − ŷ)2, ŷ =

∑m
j=1Mj

m .Variance of example x’s predictions Mjs made by models learned from different random samples.

VarA 1
n

∑n
i=1(ȳ − yi)2, ȳ = 1

n

∑n
i=1 yi.Variance of example x’s nearest neighbors’ actual values (yis).

VarP 1
n

∑n
i=1(¯̂y − ŷi)2, ¯̂y = 1

n

∑n
i=1 ŷi.Variance of example x’s nearest neighbors’ predictions (ŷis).

AvgDiff |
∑n
i=1 yi
n − ŷ|. Difference between the average of nearest neighbors’ actual values (yis) and the example x’s prediction ()

MSE 1
n

∑n
i=1(εi)

2,εi = yi − ŷi. Mean squared error of example x’s nearest neighbors’ predictions (ŷis)
AvgDist 1

n

∑n
i=1 d(xi, x). Average distance between the example x and its nearest neighbors (xis).

LCV
∑n
i=1 d(xi,x)∗Ei∑n
i=1 d(xi,x)

, Ei = |yi − ŷ−i|. Weighted average errors of nearest neighbors’ leave-one-out predictions (ŷ−i).

SAV
∑
τ∈S(ŷτ−ŷ−τ )
|S| . Average difference between sensitivity predictions ŷτ and ŷ−τ over different sensitivity parameters in set S.

SAB
∑
τ∈S(ŷτ−ŷ)+(ŷ−τ−ŷ)

2∗|S| . Average difference between sensitivity predictions (ŷτ or ŷ−τ ) and original prediction (ŷ).

the correlation coefficient (between the reliability estimates and actual prediction errors)

as the measure of “alignment” to evaluate the performance of proposed IPR indicators

for numeric prediction models (Bosnić and Kononenko 2009, Briesemeister et al. 2012),

where higher correlation indicates better IPR estimation performance.

In summary, the general structure and contribution of many existing individual

prediction reliability estimation studies can be outlined as: (i) defining some reliability

indicator; (ii) demonstrating how it can be computed/derived; and (iii) showing its

quality by showing that its values are well “aligned” with the actual outcome prediction

errors (using some “alignment” measure, typically correlation coefficient). Our study

follows the same general structure to provide further improvements to the current state

of the art in this area, as discussed in the next section.
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3.3 Machine Learning Approach to Individual Prediction

Reliability Estimation

3.3.1 Individual Prediction Reliability Indicator: General Overview

In this study, we propose a novel indicator-based approach to IPR representation and

calculation. The key motivation for the proposed method was the observation that,

while the existing IPR indicators have been defined in a variety of different ways (e.g.,

as variance or density of certain data, etc.), their performance is always judged by how

well the IPR estimates are aligned with actual errors of the outcome prediction model.

Therefore, we propose to use a simple and intuitive reliability indicator that is designed

to be directly related to errors of the outcome prediction model, i.e., an indicator based

on expected absolute prediction error for a given individual prediction.

More specifically, prediction uncertainty can come from different sources that are

often hard to disentangle, e.g., random noise/variability, inappropriate model selection,

or suboptimal model parameters. The actual prediction errors, i.e., the discrepancies

between observed y and prediction ŷ from some predictive model, provide the most

reliable signals of the level of prediction uncertainty. Higher prediction error typically

indicates lower IPR, and prediction errors could arguably be used in at least two distinct

ways under different contexts.

In particular, one could use absolute prediction errors, i.e., e = |ŷ − y|, vs. di-

rect prediction errors, i.e., e = ŷ − y; the latter would reflect not only the absolute

magnitude of discrepancy, but also its direction, in other words, whether y is overes-

timated or underestimated by the outcome prediction model. In this study, we focus

on the absolute-error-based IPR indicator for the following key reason. The situations

where the model’s prediction errors are highly imbalanced (model under-predicts and

over-predicts in numerous portions of the data space) typically reflect the fact that the
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outcome prediction model poorly represents the underlying generative process of the

data (i.e., the model is biased, poorly fit), and the first goal typically is to improve the

overall model fit. These situations often can be readily diagnosed with standard, tradi-

tional aggregate model evaluation metrics; of course, such situations could be remedied

by looking at direct errors as well, and there are entire machine learning approaches

dedicated to that4. However, once the outcome prediction model fit is improved using

detected systematic direct errors (no significant over- or under-prediction), the remain-

ing patterns of direct errors would be impossible to learn (essentially being random

noise of different magnitudes), yet the key IPR problem as stated in the paper would

still be highly relevant (as motivated by Fig. 3.1). And, insightful and actionable IPR

information can still be mined from data.

Thus, abstracting away from the directionality of errors, we propose to view the

reliability of a given individual prediction as the expected absolute prediction error. As

mentioned earlier, this allows us to address the IPR estimation problem as a canonical,

meta-algorithmic numeric prediction problem, i.e., it can to use any advanced machine

learning technique for reliability estimation. More specifically, IPR represented by ab-

solute prediction error, i.e., e = |y− ŷ|, could be directly modeled as a function of input

variables x, i.e., as e = F (x), to capture the structural relationships between the input

space and the prediction reliability for any given outcome prediction model. Building

machine learning model F (i.e., the reliability estimator) does require labeled training

data {(x, e)}. It is important to point out that this data usually is readily available,

because the outcome prediction models (i.e., models predicting ) are typically evaluated

4In cases where prediction errors are not balanced (i.e., when the outcome prediction model is
significantly biased), there are substantial opportunities to improve the outcome predictive models
themselves first, before performing reliability estimation. In fact, some boosting-based machine learning
techniques, e.g., XGBoost (Chen and Guestrin 2016), use this idea: they build an ensemble of models
sequentially one-by-one and take advantage of the unbalanced direct prediction errors from models
learned in earlier stages iteratively to improve the ultimate outcome prediction performance of the
entire ensemble model.
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on some hold-out test data {(x, y)} which can then be straightforwardly reused to con-

struct the ground truth for reliability estimation; i.e., every data point (x, y) together

with corresponding outcome prediction ŷ can be converted to (x, e), where e = |ŷ − y|.

Taking the data shown in Fig. 3.1 as an example, the absolute prediction error (and,

hence, the IPR) of the best outcome prediction model is consistently higher in certain

areas. This is illustrated in Fig. 3.3a, where x axis still represents the input features,

while vertical axis now represents absolute error (i.e., e) of the outcome prediction

model. As the figure shows, the absolute prediction error is much higher within interval

x ∈ [−0.5, 0.5] than elsewhere, which can be learned by machine learning techniques. For

example, using the data plotted in Fig. 3.3a, a regression tree model can learn to predict

e from x, and we show the pointwise prediction errors estimated from this regression

tree in Fig. 3.3b. Each blue dot in Fig. 3.3b represents an estimated absolute prediction

error for given x, which shows that the prediction of the errors, i.e., the IPR indicators

(ê), are quite informative. As can be seen in Fig. 3.3b, estimated reliability is able

to accurately differentiate the levels of outcome model’s prediction uncertainty across

different intervals, i.e., the uncertainty is lower for x ∈ [−2.0,−0.5] and x ∈ [0.5, 2.0]

and higher for x ∈ [−0.5, 0.5].

It is important to reiterate that reframing IPR estimation as a data-driven numeric

prediction problem makes the proposed approach general-purpose (i.e., reliability es-

timation can be done for any outcome prediction model) and alleviates the need for

distributional modeling assumptions. An added benefit of the proposed IPR indicator

is its clear interpretability to end-users and decision makers, which may not be the case

with some existing approaches that require probabilistic assumptions (e.g., distribution-

based approaches) and non-intuitive quantifications (e.g., density-based heuristic indi-

cators). Specifically, the reliability score of a given prediction simply represents the
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expected absolute error for this prediction, along the lines of “for given x, the outcome

prediction model is expected to be off by this much, on average”.

(a) Actual absolute prediction error (b) Regression-tree-based error estimation

Figure 3.3: Pointwise Prediction Error Estimation of Linear Regression Model from Fig. 3.1
(X axis: input variable. Y axis: absolute prediction error.

Black dots: actual abs. prediction error. Blue dots: estimated abs. prediction error.)

Finally, the proposed approach also allows for a more precise and informative eval-

uation. As mentioned earlier, a popular reliability evaluation metric has been the cor-

relation between IPR values and actual prediction errors. Even though correlation

coefficient is not a very precise measure in the sense that it captures only very high-

level patterns (general trends), it has been widely used largely because the existing IPR

indicators have been defined in highly differing ways (as variance, density, or average

of certain data, etc.) – a more direct comparison to actual prediction errors was not

feasible. In other words, even with high correlation, it is possible that the magnitude

of IPR estimates might be significantly different than the one of the actual errors, thus,

reducing diagnosticity (or interpretability) of IPR indicators. In contrast, the proposed

IPR indicator (i.e., expected absolute prediction error) is, by design, “on the same scale”

as the ground truth (i.e., actual absolute prediction error) against which the reliability

is judged. This allows for an even more precise performance measurement (going well
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beyond correlation coefficient), e.g., using canonical numeric accuracy measures such as

root mean squared error (RMSE).

3.3.2 Estimating and Evaluating the Proposed Reliability Indicator:

ML-Based Framework

In this subsection, we more formally describe the details of machine-learning-based

framework, which can be used for estimating and evaluating the proposed absolute-

prediction-error-based IPR indicator. We also use this framework for the computational

experiments in our study.

As a quick summary, the proposed framework follows a two-stage process. Because

IPR estimation is done for some given outcome prediction model, the overarching goal

of Stage 1 is to use the outcome prediction model (build it first, if necessary) and

produce the data about its errors, which is typically achieved by deploying the outcome

prediction model on a representative, hold-out data sample (i.e., test data). This data

then serves as the ground truth for Stage 2, where the actual IPR estimation is done –

i.e., the actual absolute prediction errors from Stage 1 are used as outcome variables to

build an error prediction model using best machine learning practices. The overview of

the entire framework is depicted in Fig. 3.4.

In terms of data, as depicted in the first row of Fig. 3.4 and as is typical in predic-

tive modeling, we assume the existence of two datasets (often based on a random split

of an underlying database with known outcome values) {(xo, yo)} and {(xtest, ytest)},

where the former is used for outcome prediction model learning and the latter for out-

come model evaluation. In both datasets, for each data point, x represents the input

feature vector, and y represents the corresponding outcome variable. In Stage 1, given

{(xo, yo)}, outcome prediction model f is built using any desired numeric prediction

modeling technique, e.g., Neural Network, Regression Tree, Random Forest, etc., as is
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shown in the second row of Fig. 3.4 5. This is a standard model learning process where

the best machine-learning practices and procedures, such as cross-validation method

(Kohavi et al. 1995, Picard and Cook 1984), can be used to properly build and fine-

tune outcome prediction models. In our experiments (discussed later in the paper),

we use multiple different machine learning techniques to explore the effectiveness of the

proposed prediction reliability approach in conjunction with various outcome prediction

models.

After model f is trained, naturally it can be deployed for outcome prediction pur-

poses, i.e., to make outcome predictions for any input x as f(x). Stage 1 concludes

by deploying f on outcome evaluation data {(xtest, ytest)}, i.e., prediction for each ob-

servation (xtest, ytest) is constructed as ŷtest = f(xtest), and corresponding (absolute)

prediction error is derived as e = |ŷtest − ytest|. This newly generated data e – the set

of actual prediction errors of f on the outcome evaluation dataset – has traditionally

been used for the final, authoritative evaluation of model f performance on hold-out

data. However, it also carries specific information about the performance on individual

predictions (i.e., actual errors) by model f and, thus, we use this information in the

form of labeled error learning dataset (xtest, e) in Stage 2 for building models for IPR

estimation.

Stage 2 represents our proposed machine-learning approach to IPR estimation. As

discussed earlier, we propose to use machine-learning techniques to estimate absolute

prediction errors (representing IPR) of any given outcome prediction model directly

as a function of input features x. The ground truth labels for this machine learning

task are obtained from Stage 1, which results in the labeled error learning dataset

5In our study, during Stage 1, we use outcome prediction models built using machine learning
techniques, as is done in many advanced real-world applications. However, any outcome-predicting
model can be used in this framework, e.g., an already existing rule-based expert system or some black-
box approach which may not require separate outcome learning data at this point.
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{(xtest, e)}, as discussed above and shown in Fig. 3.4. Following standard machine-

learning practices, dataset {(xtest, e)} is randomly split into training dataset {(xt, et)}

and validation dataset {(xv, ev)}. Based on training dataset {(xt, et)}, to encapsulate

the underlying relationships between input feature vector xt and the absolute error et,

error prediction model fe is constructed as êt = fe(xt), where êt denotes the model

prediction. Model fe could be produced by any available machine learning technique

using best model-building and fine-tuning practices (e.g., cross-validation), and the best

choice of the technique ultimately will depend on the context of each specific prediction

problem, e.g., complexity of underlying relationships in data, availability of the data,

etc. In our experiments, we use numerous machine learning techniques to explore their

performance under different contexts.

Once error prediction model fe is trained, it can be deployed for reliability estimation

purposes, and Stage 2 concludes by deploying fe to error validation data {(xv, ev)}, as

shown in Fig. 3.4. In particular, the actual absolute prediction error ev of outcome

prediction model f for any data point (xv, yv), i.e., ev = |ŷv − yv|, would be estimated

by fe as êv = fe(xv). In other words, fe(xv) represents the proposed IPR indicator for

the corresponding individual outcome prediction f(xv), for any input xv. In summary,

based on the proposed approach and framework, for any given input x, the two models

(f and fe) would be able to provide the essential prediction-related information: the

outcome prediction as f(x) and the estimated reliability of this prediction as fe(x).

Finally, error validation dataset {(xv, ev)} can also be used to properly evaluate the

performance of error prediction model fe, as this data has been used to build neither

outcome prediction nor IPR estimation models. Thus, as shown in Fig. 3.4, the final

evaluation of reliability estimation performance is done by comparing the obtained IPR

estimates {êv} with actual prediction errors {ev}. As discussed earlier, for an IPR indi-

cator to be meaningful, the IPR estimates ideally should be “aligned” with actual errors
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Figure 3.4: Two-Stage Machine-Learning-Based Framework for Reliability Estimation

of the outcome prediction model; thus, one relevant and widely used IPR estimation

performance metric is correlation coefficient, i.e., corr({ev},{êv}); a higher correlation

value indicates better performance. Importantly, as the proposed IPR indicator has

been designed to be “on the same scale” as the ground truth, it allows to use more

precise numeric prediction accuracy measures as well, such as root mean squared error,

i.e., RMSE({ev}, {êv}) =
√∑

v(ev − êv)2/|{ev}|, where a lower RMSE value indicates

better performance.

3.4 Experiments

3.4.1 Experimental Setup

We demonstrate the effectiveness of our approach through comprehensive computational

experiments following the general two-stage framework described in Section 3.3.2 and

Fig. 3.4.
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Seven public data sets from UCI Machine Learning Repository 6(as summarized in

Table 3.3) are used to test the performance of the proposed approach. Selected data sets

vary by application domain, size (number of records), and complexity (number of input

attributes). For Stage 1, each data set is randomly split into two parts, i.e., outcome

learning data and outcome evaluation data, with percentages of 40% and 60%, respec-

tively. For Stage 2, the latter part is used as error learning data and is further randomly

split into equal-sized (i.e., 50%-50%) error training and error validation datasets. Note

that we do the performance evaluation 30 times for each dataset (by generating a differ-

ent random split into outcome learning, error learning, and error validation datasets).

All results are based on the average performance of the 30 runs, and all techniques

(ML-based and baselines) were evaluated on the same evaluation data within each run.

For Stage 1, i.e., to build outcome prediction models, we chose seven machine learn-

ing techniques widely used for predicting numeric outcomes, i.e., KNN (k nearest neigh-

bors), NN (neural network), LR (linear regression), RT (regression tree), RF (random

forest), SVR (support vector regression), and XGB (extreme gradient boosting). The

use of different predictive modeling techniques highlights the general-purpose applica-

bility of the proposed reliability estimation approach for use in conjunction with a wide

variety of outcome prediction models. For Stage 2, i.e., to build absolute error predic-

tion models, we used the same set of machine learning techniques to explore whether

some of them might be more advantageous for the reliability estimation task.

To benchmark the proposed approach, we use nine baseline algorithms for com-

parison (summarized in Table 3.2): one bootstrapping-based and eight heuristic-based

reliability estimators. For parameter setting, specifically, in our experiments, we set

m = 20 (number of random samples generated from original data in bootstrapping) and

n = 20 (number of nearest neighbors chosen to calculate those heuristic-based baselines).

6https://archive.ics.uci.edu/ml/datasets.html
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Table 3.3: Overview of Data Sets Used in Computational Experiments

Data Set #Obs #Attributes Output description Output range
Power Plant 9568 4 Hourly electrical energy output. [420,495]
ISE 536 7 Istanbul Stock Exchange 100 index. [-8.5,10]
Housing 506 13 Value of houses in $1000s. [6,50]
Bike Rental 17389 16 Daily count of rental bikes. [1,977]
Parkinsons 5875 26 Parkinson’s disease symptom score. [7,29]
Posts Comments 40949 54 Log of number of Facebook posts comments. [0,8]
News Popularity 39797 58 Log of number of total shares of news. [3,13]

The reliability estimation performance of different approaches is evaluated using both

correlation-based and predictive-accuracy-based metrics, i.e., correlation coefficient and

RMSE; as mentioned earlier, higher correlation and lower discrepancy between actual

and estimated prediction errors indicate better reliability estimation.

For expositional completeness, we first present the predictive accuracy measured by

RMSE of different outcome prediction models (i.e., models built in Stage 1), as shown

in Table 3.4, where each row and column represents each outcome prediction model

and dataset, respectively. Note that, for each technique, the results represent the best

performance of each model achieved after optimizing model parameters, e.g., the number

of nearest neighbors in KNN, depth of the tree in RT and RF, number of neurons and

hidden layers in NN, number of estimators and size of subsample in XGB, length scale

and gamma parameters of kernel functions in SVR, and many other parameters. Best

performance, i.e., lowest RMSE, on each dataset is highlighted in bold, which shows

that XGB generally tends to perform well on different data sets, followed by RF and

NN. The one exception is the simple ISE dataset, where arguably the simplest model –

linear regression – is sufficient to capture predictive relationships in the data.

The next two subsections discuss the results of IPR estimation (i.e., Stage 2) exper-

iments.
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Table 3.4: Predictive Accuracy (RMSE) of Different Outcome Prediction Models.
(Average performance based on 30 runs; best performance on each data set is shown in bold.)

Model Power Plant ISE Housing Bike Rental Parkinsons Posts Comments News Popularity
KNN 3.985 1.548 6.040 0.896 0.329 0.701 0.882
LR 4.578 1.404 5.600 1.072 0.378 0.814 0.874
NN 4.285 1.431 4.914 0.431 0.364 0.647 0.869
RF 3.775 1.524 4.643 0.369 0.277 0.509 0.864
RT 4.415 1.688 5.696 0.501 0.382 0.555 0.888
SVR 4.535 1.526 7.095 0.906 0.400 0.634 0.889
XGB 3.574 1.514 4.601 0.341 0.226 0.493 0.852

Table 3.5: Comparison of Reliability Estimation Performance (Correlation Coefficient)
(Average performance based on 30 runs; better result on each data set is shown in bold; red bold: machine

learning technique is significantly better; blue bold: baseline is significantly better)
Outcome
Prediction KNN LR NN RF RT SVR XGB
Model
Prediction
Reliability Best Best Best Best Best Best Best Best Best Best Best Best Best Best
Estimator BL ML BL ML BL ML BL ML BL ML BL ML BL ML

Power Plant 0.23 0.29*** 0.23 0.41*** 0.18 0.37*** 0.19 0.23*** 0.16 0.31*** 0.23 0.42*** 0.18 0.21*
ISE 0.27*** 0.12 0.34*** 0.16 0.32*** 0.13 0.28*** 0.17 0.32*** 0.23 0.32*** 0.18 0.30*** 0.16
Housing 0.40 0.54*** 0.36 0.51*** 0.42 0.46*** 0.42 0.43 0.39 0.41 0.45 0.64*** 0.44 0.45
Bike Rental 0.52 0.75*** 0.46 0.87*** 0.31 0.50*** 0.38 0.51*** 0.32 0.48*** 0.52 0.84*** 0.38 0.50***
Parkinsons 0.56 0.64*** 0.55 0.65*** 0.45 0.66*** 0.53 0.63* 0.62 0.71*** 0.57 0.70*** 0.45 0.58***
Comments 0.47 0.64*** 0.50 0.68*** 0.40 0.63*** 0.43 0.54*** 0.38 0.55*** 0.41 0.62*** 0.32 0.53***
News Pop 0.14 0.23*** 0.14 0.24*** 0.17 0.25*** 0.15 0.26*** 0.13 0.24*** 0.13 0.23*** 0.18 0.26***

*significant at 5%;**significant at 1%;***significant at 0.1%

3.4.2 Performance Comparison Based on Correlation

We first focus on the performance comparisons in terms of correlation coefficient –

the widely used metric for evaluating IPR indicators, as discussed earlier. We first

show the detailed performance of each machine-learning-based method for our proposed

absolute-error-based IPR indicator as well as each baseline method, and then compare

the effectiveness of these two classes of methods using summarized results.

In particular, Table 3.6 compares the reliability estimation performance among seven

machine learning techniques. The bold numbers represent best performance for a given

outcome prediction model in terms correlation coefficient. A closer look at the results

shows that the XGB approach produced the best (or near best) reliability performance

among the ML-based approaches. Specifically, in the majority (33 out of 49) of settings

that were explored XGB outperforms other techniques, followed closely by RF which

performs the best in the rest (15 out of 49) of the settings. An interesting pattern

observed from the results is that RF is better than or competitive with XGB only on
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Table 3.6: Performance of Machine-Learning-Based Methods (Correlation Coefficient)
(Average performance based on 30 runs; best result for each prediction model on each data shown in bold.)

Outcome Prediction KNN LR NN RF RT SVR XGB
Reliability Estimation

KNN 0.253 0.336 0.304 0.215 0.240 0.337 0.202
LR 0.071 0.089 0.104 0.074 0.077 0.121 0.062
NN 0.094 0.194 0.156 0.099 0.105 0.201 0.094

Power Plant RF 0.291 0.413 0.374 0.219 0.311 0.416 0.191
RT 0.059 0.182 0.137 0.068 0.097 0.175 0.046

SVR 0.160 0.286 0.271 0.157 0.185 0.265 0.155
XGB 0.278 0.407 0.373 0.229 0.301 0.415 0.210
KNN 0.122 0.099 0.089 0.135 0.182 0.150 0.123
LR 0.015 0.026 0.020 0.040 0.000 0.000 0.015
NN 0.043 0.052 0.047 0.107 0.115 0.080 0.046

ISE RF 0.123 0.163 0.129 0.173 0.231 0.183 0.160
RT 0.045 0.075 0.112 0.062 0.157 0.097 0.199

SVR 0.058 0.035 0.100 0.028 0.103 0.083 0.023
XGB 0.110 0.100 0.066 0.133 0.199 0.141 0.111
KNN 0.419 0.384 0.333 0.327 0.339 0.454 0.306
LR 0.381 0.326 0.340 0.308 0.293 0.442 0.326
NN 0.490 0.484 0.357 0.310 0.321 0.635 0.341

Housing RF 0.538 0.500 0.457 0.433 0.424 0.638 0.440
RT 0.398 0.409 0.360 0.320 0.298 0.518 0.350

SVR 0.301 0.318 0.279 0.253 0.264 0.398 0.227
XGB 0.522 0.505 0.459 0.431 0.417 0.636 0.453
KNN 0.523 0.490 0.392 0.460 0.408 0.563 0.447
LR 0.460 0.382 0.342 0.398 0.349 0.527 0.396
NN 0.557 0.567 0.345 0.405 0.357 0.617 0.400

Bike Rental RF 0.742 0.858 0.482 0.499 0.462 0.840 0.488
RT 0.684 0.798 0.365 0.410 0.361 0.801 0.419

SVR 0.479 0.441 0.370 0.443 0.383 0.541 0.434
XGB 0.748 0.865 0.494 0.505 0.480 0.844 0.498
KNN 0.508 0.478 0.476 0.484 0.538 0.560 0.419
LR 0.267 0.205 0.235 0.257 0.279 0.285 0.237
NN 0.285 0.232 0.255 0.277 0.307 0.345 0.226

Parkinsons RF 0.496 0.377 0.430 0.498 0.456 0.404 0.401
RT 0.240 0.209 0.239 0.283 0.254 0.248 0.242

SVR 0.424 0.223 0.255 0.246 0.196 0.428 0.283
XGB 0.637 0.653 0.664 0.625 0.714 0.697 0.575
KNN 0.528 0.519 0.478 0.428 0.438 0.495 0.420
LR 0.489 0.556 0.449 0.374 0.395 0.456 0.368
NN 0.539 0.599 0.451 0.460 0.459 0.506 0.458

Comments RF 0.634 0.672 0.622 0.532 0.541 0.611 0.525
RT 0.574 0.589 0.566 0.496 0.512 0.551 0.491

SVR 0.549 0.526 0.492 0.435 0.448 0.491 0.427
XGB 0.640 0.676 0.629 0.540 0.549 0.618 0.527
KNN 0.185 0.197 0.201 0.204 0.182 0.183 0.209
LR 0.203 0.229 0.227 0.226 0.200 0.204 0.233
NN 0.205 0.226 0.232 0.232 0.207 0.206 0.237

News Pop RF 0.213 0.227 0.236 0.243 0.221 0.215 0.246
RT 0.175 0.181 0.194 0.199 0.179 0.171 0.202

SVR 0.052 0.175 0.198 0.179 0.179 0.181 0.181
XGB 0.229 0.242 0.251 0.258 0.236 0.233 0.262
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data with simpler structure (having fewer input features), e.g., Housing, ISE, and Power

Plant; that is, XGB consistently has the edge over all approaches on more complex

datasets.

Similarly, in Table 3.7 we show the comparison among nine baseline techniques.

Although no one baseline predominantly outperforms others, MSE (heuristic-based) and

VarBag (bootstrapping-based) tend to have higher correlation coefficient with actual

errors in 20 and 12 (out of 49) settings, respectively.

Another observation is that VarBag is more competitive on data with less com-

plex structure (having fewer input features), e.g., Power Plant, ISE, Housing, and Bike

Rental, while on data sets like Parkinsons, Posts Comments, and News Popularity,

heuristic-based estimators like MSE and VarA generally perform better.

We summarize the comparison of correlation coefficient results between ML-based

reliability estimators and baselines in Table 3.5.

Specifically, we compare the best baseline (BL) technique (chosen among the nine

baseline techniques discussed earlier) and the best machine learning (ML) model (chosen

from the seven ML techniques used earlier) in terms of correlation. The bold and red

numbers represent significantly higher correlation coefficients from ML-based methods,

and the bold and blue numbers represent better results from baselines. The results

show that, in 42 out of 49 (85.7%) predictive task configurations in our experiments,

the best ML-based estimator is a better IPR indicator (exhibiting higher correlation with

actual prediction errors), and in 39 out of these 42 cases the advantage is statistically

significant, emphasizing the advantages of using the proposed approach over baselines

for IPR estimation.

Also note that ML-based IPR estimators were outperformed by baselines only on

the ISE dataset, i.e., the simple dataset (536 observations and 7 input features) with

less complex predictive relationships, where a simpler outcome prediction model like
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linear regression was sufficient to guarantee high prediction accuracy, as mentioned

earlier. In other words, the heuristic-based IPR estimators may be sufficient for simpler

datasets; however, more sophisticated approaches are advantageous when more complex

predictive settings must be considered.

3.4.3 Performance Comparison Based on RMSE

As discussed in Section 3.3.1, while correlation coefficient is able to capture general

variability patterns, it is not designed to reflect the situations where the magnitude of

IPR estimates might be significantly different than that of the actual errors, reducing

our ability to make more precise judgements about IPR estimation performance. The

proposed absolute-prediction-error-based IPR indicator provides for more precise and

informative performance evaluation, due to being “on the same scale” as the ground

truth, which allows us to bring in standard numeric prediction accuracy measures –

specifically, root mean squared error (RMSE) – and provide a much clearer picture

of true IPR estimation performance, as discussed below. Here we follow the same

structure as in the previous subsection, where we first show the detailed performance of

each machine-learning-based method for our proposed absolute-error-based reliability

indicator, followed by detailed performance of each baseline method, and then compare

the effectiveness of these two classes of methods using summarized results.

In Table 3.8, we compare the IPR estimation performance in terms of RMSE among

machine learning methods, bold numbers representing best performance for each out-

come prediction model. The results show similar patterns as in the correlation coefficient

comparisons. In particular, XGB still performs the best, i.e., exhibits lower discrepancy

with actual prediction errors, among all machine learning techniques in most cases.

Specifically, in 29 out of 49 cases, XGB produces most accurate reliability estimation,

followed by RF and KNN which perform better in the rest 14 and 6 cases, respectively.
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Also, detailed results show that RF and KNN tend to outperform XGB on datasets

with fewer input features, i.e., Power Plant, ISE, and Housing, while XGB is more

advantageous on more complex datasets.

As mentioned earlier, RMSE should be calculated when IPR indicator and actual

prediction error are on the same scale. However, this is not the case for heuristic-based

IPR indicators, and computing RMSE based on raw values of heuristic-based indicators

would put them at a significant disadvantage in terms of their performance comparison

with the proposed approach.

Therefore, we take a broader view of the heuristic-based indicators by observing

that some of them are calculated by aggregating (e.g., as variance) a certain set of

discrepancies (errors), and we aggregated these discrepancies by averaging their absolute

values to provide the best-effort estimation of an absolute prediction error. In particular,

only five (i.e., VarBag, VarA, VarP, AvgDiff, MSE) out of nine baseline IPR indicators

could be converted to estimates of absolute prediction errors (i.e., VarBag.AE, VarA.AE,

VarP.AE, AvgDiff.AE, MSE.AE) and, thus, could be used for RMSE comparisons. The

other baselines are heuristics that provide a numeric index indicating the degree of

prediction reliability but have no direct connection to prediction errors.

As a result, in Table 3.10 we provide the comparison of reliability estimation per-

formance in terms of RMSE among the four aforementioned baselines. As with perfor-

mance comparisons based on correlation coefficient, no single heuristic-based indicator

dominates all others, but MSE.AE and VarA.AE provide best performance in 24 and

21 (out of 49) settings, respectively.

Finally, we summarize the comparison of error estimation accuracy (RMSE) between

ML-based estimators and baselines in Table 3.9. Similar to Table 3.5, we compare RMSE

of the best baseline (BL) technique chosen among the four baselines discussed earlier

and the best machine learning (ML) model of the seven machine learning techniques
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used earlier. Significantly lower RMSEs from machine learning based methods are high-

lighted in bold and red, while significantly lower RMSEs from baselines are highlighted

in bold and blue. The results show that, in 40 out of 49 (81.6%) predictive settings

in our experiments, ML approaches constitute better IPR indicators, i.e., exhibit lower

discrepancy with actual prediction errors as measured by RMSE. Furthermore, in 35

out of 49 cases, best ML-based IPR indicators provide statistically significantly better

performance than the heuristic approaches. In contrast, only in 1 out of 49 settings,

baselines were statistically significantly better than ML-based approaches. Even on

the simpler ISE dataset (where heuristic-based approaches demonstrated better corre-

lation performance), with a more precise performance evaluation using RMSE no statis-

tically significant performance differences are observed between ML-based approaches

and baselines. In aggregate, all the experimental results indicate substantial advantages

of using machine learning techniques to estimate IPR.

3.5 Conclusions

Estimating individual prediction reliability (IPR) is important for both interpretation

and application of predictive models. Going beyond global prediction performance, it

gives a finer-grained evaluation for predictive models. In particular, by providing extra

information on the potential error of individual predictions, it gives practitioners more

confidence in making decisions, which can be helpful in a variety of application domains.

For example, reliability of a certain disease prediction can help healthcare providers bet-

ter evaluate a patient’s health condition and make a customized treatment plan. Simi-

larly, individual prediction reliability of a stock return can better inform an investor of

the investment risk and, thus, facilitate rational financial decision making. Or, in rec-

ommendation applications, when deciding between several highly recommended items,

the final selection can be informed by which of these recommendations is estimated
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to be more reliable. Moreover, even when the outcome prediction model is relatively

accurate in general, it may be important to know that, under some circumstances, some

predictions objectively are expected to be less reliable than others. Such knowledge not

only can provide signals of potential bias of the prediction models, but also point to how

model prediction performance can be improved, e.g., by collecting more data related

to less reliable predictions. More generally, IPR can be used as part of the criteria for

identifying informative data points as candidates for subsequent actions, e.g., identify-

ing most reliable predictions for decision making or least reliable predictions for error

analysis, additional data collection, and model refinement.

While the awareness of how reliable the specific individual predictions are can be

important in many complex real-world numeric predictive modeling applications, this

issue has been under-explored in research literature. In this study, we propose to esti-

mate IPR for any given numerical outcome prediction model by using machine learning

techniques. Specifically, we reconceptualize the reliability estimation problem to a nu-

meric prediction problem by proposing to use absolute prediction error as a simple IPR

indicator due to its merits of higher interpretability and easy evaluation. The study

also describes a general-purpose framework for implementing the proposed reliability

estimation approach, which takes can take advantage of any state-of-the-art machine

learning methods to directly learn the relationships between input features of a given

data point and absolute prediction errors (i.e., reliability indicators) obtained from the

outcome prediction model. In addition to providing an intuitive reliability indicator,

the proposed machine-learning-based approach is general-purpose (i.e., reliability esti-

mation can be done for any outcome prediction model), reduces the need for statistical

modeling assumptions that some distributional approaches require, and allows for more

precise and informative performance evaluation.
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The general-purpose framework was also used in comprehensive computational ex-

periments designed to test the proposed approach. Specifically, we observed that ma-

chine learning methods can significantly improve IPR estimation, especially in more

complex settings, i.e., on datasets that are larger both in the number of examples and in-

put features. We compared the proposed approach with numerous heuristic approaches

used in prior work on seven different public datasets based on two different evaluation

metrics. The performance advantages of the proposed machine-learning-based approach

(over heuristic-based indicators) can be observed across different outcome prediction

models, which further emphasizes the generality of the proposed approach.

In addition to introducing a machine-learning-based approach to estimating IPR and

demonstrating its effectiveness, this study provides a number of directions for future re-

search. One such direction would be to understand the impact of dataset characteristics

on the performance of simpler (heuristic-based) vs. more complex (machine-learning-

based) reliability estimators. Another direction would be to explore the impact of

different sources of prediction uncertainty, e.g., whether low reliability of an individual

prediction is due to noisy data, model misfit, etc. Revisiting the possibilities of design-

ing additional, more sophisticated and accurate reliability indicators of different types

(indicator-based vs. distribution-based) and levels of applicability (general-purpose vs.

building specifically on the strengths of some specific outcome prediction model) also

represent important direction for follow-up investigations. Advancing our understand-

ing of these issues should not only make reliability estimation increasingly relevant and

valuable in real-world predictive modeling applications, but should also lead to deeper,

more significant developments of reliability estimation theory.
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Table 3.7: Performance of Heuristic-Based Methods (Correlation Coefficient)
(Average performance based on 30 runs; best result for each prediction model on each data shown in bold.)

Outcome Prediction KNN LR NN RF RT SVR XGB
Reliability Estimation

VarBag 0.232 0.030 0.018 0.187 0.102 0.123 0.184
VarA 0.173 0.104 0.139 0.133 0.136 0.150 0.117
VarP 0.058 -0.001 0.002 0.096 0.070 0.025 0.091

AvgDiff 0.025 0.023 0.015 0.014 0.044 0.009 0.018
Power Plant MSE 0.187 0.231 0.173 0.124 0.160 0.225 0.098

AvgDist 0.028 0.002 -0.007 -0.010 0.018 0.045 -0.010
LCV -0.026 -0.045 0.141 -0.015 -0.027 -0.016 -0.009
SAV -0.003 0.012 0.132 -0.006 0.024 0.103 -0.078
SAB 0.017 0.002 0.180 -0.001 0.012 0.001 0.111

VarBag 0.166 0.342 0.321 0.253 0.250 0.227 0.296
VarA 0.107 0.093 0.084 0.112 0.152 0.100 0.122
VarP 0.084 0.153 0.132 0.126 0.174 0.167 0.137

AvgDiff -0.024 -0.023 -0.001 -0.010 0.024 0.008 0.005
ISE MSE 0.100 0.075 -0.087 0.066 0.078 0.073 0.071

AvgDist 0.273 0.252 0.261 0.284 0.318 0.315 0.287
LCV 0.040 0.024 0.094 -0.016 -0.005 0.013 -0.009
SAV 0.007 0.259 0.007 0.082 0.181 0.311 0.078
SAB 0.020 -0.064 0.020 0.023 -0.003 0.004 -0.046

VarBag 0.396 0.342 0.404 0.418 0.385 0.266 0.437
VarA 0.373 0.326 0.349 0.306 0.280 0.397 0.306
VarP 0.272 0.130 0.329 0.294 0.256 0.108 0.305

AvgDiff -0.316 -0.323 -0.417 -0.360 -0.268 -0.318 -0.373
Housing MSE 0.368 0.353 0.245 0.303 0.232 0.452 0.271

AvgDist 0.178 0.204 0.130 0.071 0.027 0.174 0.082
LCV -0.148 0.006 0.240 -0.061 -0.074 -0.358 -0.033
SAV 0.007 0.143 0.106 0.012 0.162 0.255 0.122
SAB -0.123 -0.037 -0.002 -0.002 0.132 0.053 0.217

VarBag 0.445 0.052 0.295 0.376 0.323 0.299 0.376
VarA 0.523 0.461 0.242 0.241 0.180 0.505 0.261
VarP 0.395 0.038 0.234 0.221 0.177 0.390 0.253

AvgDiff 0.149 0.049 0.172 0.249 0.161 0.162 0.275
Bike Rental MSE 0.479 0.463 0.305 0.384 0.265 0.522 0.272

AvgDist 0.052 0.025 0.172 0.233 0.238 0.004 0.202
LCV -0.014 0.014 0.035 0.072 0.073 0.078 0.011
SAV -0.014 0.022 0.188 -0.002 0.233 0.169 0.225
SAB 0.052 -0.012 -0.131 -0.021 -0.003 0.046 0.212

VarBag 0.470 0.053 0.055 0.293 0.022 0.102 0.399
VarA 0.531 0.413 0.446 0.315 0.423 0.434 0.361
VarP 0.276 -0.012 0.134 0.149 0.116 0.124 0.263

AvgDiff 0.120 0.013 -0.026 0.184 0.162 0.013 0.192
Parkinsons MSE 0.557 0.552 0.452 0.532 0.615 0.570 0.445

AvgDist -0.085 -0.045 -0.080 -0.048 -0.010 -0.100 -0.069
LCV 0.112 -0.007 -0.107 0.059 0.164 0.188 0.054
SAV -0.002 -0.053 -0.047 -0.157 -0.163 0.132 -0.026
SAB -0.082 0.001 -0.043 -0.048 0.014 0.064 0.034

VarBag 0.384 0.321 0.263 0.310 0.283 0.238 0.309
VarA 0.470 0.379 0.404 0.330 0.353 0.410 0.318
VarP 0.346 0.276 0.346 0.292 0.310 0.297 0.279

AvgDiff -0.213 -0.130 -0.137 -0.188 -0.201 -0.178 -0.178
Comments MSE 0.473 0.493 0.393 0.326 0.383 0.379 0.317

AvgDist 0.230 0.361 0.214 0.159 0.171 0.257 0.149
LCV -0.083 0.006 0.043 -0.065 -0.051 -0.02 -0.075
SAV -0.045 0.365 0.320 0.429 0.251 0.312 0.279
SAB -0.095 -0.047 0.227 0.067 0.100 -0.062 0.237

VarBag 0.135 0.063 0.050 0.107 0.047 0.077 0.130
VarA 0.137 0.139 0.155 0.146 0.130 0.134 0.150
VarP 0.125 0.132 0.129 0.111 0.068 0.119 0.125

AvgDiff -0.085 -0.116 -0.129 -0.125 -0.106 -0.087 -0.128
News Pop MSE 0.135 0.142 0.142 0.128 0.130 0.115 0.103

AvgDist 0.106 0.125 0.119 0.120 0.106 0.108 0.116
LCV -0.016 0.001 0.172 -0.007 -0.035 -0.042 0.148
SAV -0.005 0.083 0.080 0.143 0.026 0.05 0.182
SAB 0.068 0.008 0.007 0.050 -0.011 0.046 0.095
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Table 3.8: Reliability Estimation Performance of Machine-Learning-Based Methods (RMSE)
(Average performance based on 30 runs; best result for each prediction model on each data shown in bold.)

Outcome Prediction KNN LR NN RF RT SVR XGB
Reliability Estimation

KNN 2.606 2.613 2.552 2.520 2.806 2.680 2.407
LR 2.680 2.759 2.658 2.566 2.875 2.902 2.446
NN 2.683 2.728 2.642 2.565 2.862 2.790 2.442

Power Plant RF 2.590 2.535 2.498 2.530 2.756 2.594 2.417
RT 2.693 2.739 2.654 2.576 2.890 2.824 2.456

SVR 2.684 2.672 2.599 2.566 2.858 2.839 2.450
XGB 2.598 2.550 2.501 2.524 2.768 2.595 2.415
KNN 1.014 0.909 0.954 1.018 1.133 1.043 1.019
LR 1.049 0.931 0.973 1.043 1.179 1.075 1.051
NN 1.037 0.925 0.962 1.024 1.146 1.053 1.034

ISE RF 1.033 0.912 0.958 1.014 1.115 1.031 1.020
RT 1.073 0.942 0.981 1.054 1.161 1.081 1.055

SVR 1.024 0.918 0.961 1.026 1.146 1.039 1.025
XGB 1.059 0.940 0.995 1.047 1.150 1.061 1.054
KNN 4.292 3.750 3.429 3.346 4.023 5.025 3.372
LR 4.377 3.869 3.433 3.397 4.125 5.011 3.395
NN 4.076 3.536 3.342 3.367 4.033 4.308 3.324

Housing RF 3.924 3.477 3.206 3.200 3.906 4.179 3.164
RT 4.408 3.700 3.451 3.395 4.086 4.868 3.276

SVR 4.503 3.919 3.522 3.425 4.171 5.169 3.527
XGB 4.046 3.526 3.295 3.275 4.041 4.315 3.259
KNN 0.532 0.580 0.269 0.247 0.327 0.527 0.228
LR 0.553 0.615 0.275 0.255 0.335 0.541 0.234
NN 0.518 0.550 0.275 0.255 0.334 0.501 0.234

Bike Rental RF 0.417 0.342 0.256 0.240 0.317 0.339 0.222
RT 0.454 0.402 0.272 0.254 0.334 0.376 0.231

SVR 0.558 0.604 0.276 0.254 0.338 0.546 0.233
XGB 0.414 0.335 0.254 0.240 0.314 0.337 0.221
KNN 0.188 0.210 0.205 0.144 0.198 0.217 0.131
LR 0.207 0.229 0.223 0.159 0.219 0.244 0.140
NN 0.206 0.228 0.223 0.158 0.217 0.239 0.141

Parkinsons RF 0.188 0.216 0.207 0.139 0.206 0.234 0.130
RT 0.207 0.228 0.222 0.157 0.220 0.246 0.140

SVR 0.201 0.233 0.225 0.160 0.227 0.238 0.139
XGB 0.169 0.180 0.176 0.124 0.173 0.188 0.115
KNN 0.442 0.526 0.407 0.333 0.362 0.400 0.324
LR 0.455 0.471 0.415 0.343 0.372 0.408 0.333
NN 0.443 0.517 0.462 0.329 0.360 0.427 0.318

Comments RF 0.401 0.459 0.362 0.311 0.338 0.360 0.303
RT 0.425 0.496 0.382 0.320 0.346 0.382 0.311

SVR 0.440 0.495 0.412 0.337 0.364 0.393 0.327
XGB 0.399 0.462 0.360 0.310 0.336 0.358 0.301
KNN 0.593 0.577 0.574 0.569 0.581 0.614 0.566
LR 0.591 0.573 0.570 0.566 0.579 0.611 0.563
NN 0.591 0.574 0.570 0.565 0.578 0.613 0.562

News Pop RF 0.589 0.573 0.569 0.563 0.576 0.609 0.561
RT 0.594 0.579 0.574 0.569 0.581 0.615 0.566

SVR 0.604 0.586 0.584 0.575 0.591 0.621 0.575
XGB 0.587 0.571 0.567 0.561 0.574 0.607 0.558
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Table 3.9: Comparison of Reliability Estimation Performance (RMSE)
(Average performance based on 30 runs; better result on each data set is shown in bold; red bold: machine

learning technique is significantly better; blue bold: baseline is significantly better)

Outcome
Prediction KNN LR NN RF RT SVR XGB
Model
Prediction
Reliability Best Best Best Best Best Best Best Best Best Best Best Best Best Best
Estimator BL ML BL ML BL ML BL ML BL ML BL ML BL ML

Power Plant 2.64 2.59 2.65 2.54*** 2.79 2.50*** 2.80 2.52*** 2.86 2.76** 2.78 2.60** 2.78 2.41***
ISE 1.02 1.01 0.92 0.91 0.96 0.95 1.02 1.01 1.09 1.12 1.02 1.03 1.02 1.02
Housing 4.44 3.92* 3.80 3.48* 3.70 3.21* 3.95 3.20*** 4.56 3.91* 5.04 4.18*** 4.24 3.16***
Bike Rental 0.54 0.41*** 0.58 0.34*** 0.24*** 0.25 0.28 0.24*** 0.35 0.31*** 0.54 0.34*** 0.27 0.22***
Parkinsons 0.17 0.17 0.18 0.18 0.18 0.18 0.14 0.12* 0.17 0.17 0.31 0.19*** 0.13 0.12***
Comments 0.45 0.40*** 0.45 0.46 0.44 0.36*** 0.35 0.31*** 0.37 0.34*** 0.52 0.36*** 0.34 0.30***
News Pop 0.60 0.59*** 0.58 0.57*** 0.58 0.57*** 0.57 0.56*** 0.59 0.57*** 0.84 0.61*** 0.57 0.56***

*significant at 5%;**significant at 1%;***significant at 0.1%

Table 3.10: Reliability Estimation Performance of Heuristic-Based Methods (RMSE)
(Average performance based on 30 runs; best result for each prediction model on each data shown in bold.)

Outcome Prediction KNN LR NN RF RT SVR XGB
Reliability Estimation

VarBag.AE 3.977 4.569 4.366 3.741 4.078 4.535 3.609
VarA.AE 2.822 2.877 2.815 2.964 2.967 2.894 2.941

Power Plant VarP.AE 2.865 3.149 3.151 2.798 3.241 3.310 2.783
AvgDiff.AE 3.301 3.345 3.446 3.072 3.358 3.391 3.260

MSE.AE 2.641 2.646 2.791 3.038 2.858 2.778 2.993
VarBag.AE 2.090 2.087 2.087 2.088 2.089 1.534 2.088
VarA.AE 1.021 0.936 0.961 1.020 1.091 1.022 1.019

ISE VarP.AE 1.185 1.003 1.033 1.099 1.297 1.191 1.081
AvgDiff.AE 1.031 0.915 1.154 1.164 1.176 1.166 1.170

MSE.AE 1.031 0.915 0.961 1.164 1.176 1.066 1.215
VarBag.AE 6.011 5.693 5.356 4.699 4.981 7.085 4.647
VarA.AE 4.436 3.804 4.261 4.557 5.111 5.036 4.657

Housing VarP.AE 4.439 3.859 4.124 4.377 5.184 6.033 4.546
AvgDiff.AE 4.858 4.026 4.095 4.408 5.263 5.773 4.274

MSE.AE 4.536 3.833 3.690 3.953 4.564 5.239 4.238
VarBag.AE 0.902 1.072 0.235 0.367 0.414 0.902 0.343
VarA.AE 0.552 0.578 0.862 0.915 0.882 0.587 0.921

Bike Rental VarP.AE 0.605 0.823 0.826 0.895 0.849 0.626 0.895
AvgDiff.AE 0.758 0.809 0.695 0.739 0.738 0.716 0.734

MSE.AE 0.542 0.584 0.282 0.302 0.361 0.538 0.278
VarBag.AE 0.330 0.378 0.272 0.275 0.381 0.399 0.229
VarA.AE 0.170 0.182 0.181 0.184 0.175 0.305 0.181

Parkinsons VarP.AE 0.281 0.326 0.251 0.260 0.356 0.390 0.197
AvgDiff.AE 0.718 0.702 0.702 0.913 0.718 0.692 0.184

MSE.AE 0.173 0.187 0.210 0.136 0.173 0.398 0.131
VarBag.AE 0.701 0.863 0.536 0.504 0.525 0.608 0.493
VarA.AE 0.446 0.452 0.451 0.491 0.496 0.631 0.495

Comments VarP.AE 0.521 0.598 0.449 0.459 0.473 0.515 0.462
AvgDiff.AE 0.498 0.523 0.452 0.500 0.482 0.575 0.462

MSE.AE 0.447 0.529 0.435 0.349 0.365 0.629 0.339
VarBag.AE 0.883 0.872 0.903 0.859 0.878 0.882 0.849
VarA.AE 0.601 0.582 0.579 0.574 0.586 0.841 0.571

News Pop VarP.AE 0.808 0.744 0.665 0.687 0.751 0.840 0.658
AvgDiff.AE 0.605 0.733 0.590 0.690 0.723 0.850 0.714

MSE.AE 0.602 0.585 0.585 0.590 0.589 0.839 0.605



Chapter 4

Essay 3: The Role of Physical

Stores in the Digital Age

4.1 Introduction

With the increasing growth of e-commerce, the Internet has dramatically changed the

landscape of retail shopping. Online retailing is currently the fastest growing sector in

the US and will continue to grow at a compound annual rate of 12 percent through

2020, surpassing $1 trillion mark by 2027(Bose 2017). As shopping behaviors shift away

from the offline purchasing of goods in brick-and-mortar stores, pundits are engaged in

the ongoing debate on the role of traditional physical retailers in the digital economy.

Mirroring this debate, we see a divergence of strategies among retailers in practice. On

the one hand, several major retailers in the United States are closing physical stores.

For instance, the iconic retailer Macy’s which used to be a mainstay in America’s malls,

has closed over 15% of its 650 stores in recent years (Egan 2016). Similarly, other major

retailers including Walmart and JCPenny have also pulled the plugs of hundreds of

their stores (Gustafson and Reagan 2016). On the other hand, retailers like Nike and

93
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Nordstrom are opening new physical stores and revamping them as “concept stores”

to help customers experience and discover their products/services, so as to boost sales.

Interestingly, pure online retailers like Amazon have begun to invest in their offline

presence in recent years, as seen in their acquisition and launch of physical grocery

stores and book stores, etc. (Bensinger 2014, Addady 2016). Similarly, the Chinese e-

commerce giant, Alibaba, has invested more than $9.3 billion in offline stores since 2015

(Cadell 2017). These contradictory trends bring up questions on the role of physical

stores in the digital age, with emphasis on whether they are still of value to retailers in

face of the impending unstoppable digitization of the industry.

Apart from inconsistent strategies from different retailers, past academic studies

have yielded different insights on the effect of physical stores on online sales. Some

studies have found the presence of substitutive effects wherein newly opened physical

stores compete with online stores for sales (Brynjolfsson et al. 2009, Forman et al. 2009,

Choi and Bell 2011), while others found a complementary effect among the two chan-

nels (Balasubramanian et al. 2005, Ansari et al. 2008). As e-commerce technologies

and practices mature, it is imperative to reexamine the inter-relationships between the

sales channels as the effects of physical stores might have evolved over time as con-

sumer mindsets is likely to shift with increasing digitization. To that end, marketing

scholars have recently attempted to investigate the cross-channel effects between on-

line and offline stores to understand the mechanisms that underlie these relationships

(Avery et al. 2012, Wang and Goldfarb 2017). Specifically, these studies proposed that

stores fulfilled roles in the purchase funnel through two channel capabilities: 1) conspic-

uous capabilities (e.g., immediate satisfaction of on-site purchase, product information

gathering through direct interaction with products and salespersons, no shipping cost,

etc.) and experiential capabilities (e.g., generating brand awareness and association,

increasing reach and frequency of brand message over time, etc.). In particular, both
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studies found that physical stores mainly played the latter role of generating awareness

of the existence of the retailer’s brand and building its brand associations, i.e., a bill-

board effect. Further questions on the role of stores follows from these findings: are

the conspicuous aspects of stores less important in the increasingly digitized world of

retailing, if not, when would these capabilities matter? Recently, Bell et al. (2017) and

Kumar et al. (2019) provide evidence showing that the conspicuous benefits of product

sampling and in-store interactions can be helpful in spurring the purchase of certain

products under the right conditions.

Despite these body of works, several gaps in the literature continue to exist. First,

the studied impacts of physical stores till date were all based on observations of the

US market. Consequently, little is known about the dynamics of the offline-online

consumer behavior in retail markets beyond the western world. Of particular interest

is the Chinese retail market which has hit US$5.8 trillion in 2018, making it on par

with the size of the US market. This sizable market continues to grow at 10 percent

annual rate and is projected to be one of the world’s largest consumer market, as over

60% of world’s middle-class population will reside in Asia in the next ten years. More

importantly, consumers in this market are known to possess shopping habits distinct

from western consumers (Ettenson and Wagner 1991, Wang and Lin 2009), making it

hard to determine if past results would apply to the retail market in China. Second,

with the exception of Bell et al. (2017), most existing work are faced with the challenge

of not being able to directly observe if the exposure to products showcased in physical

stores led to subsequent purchase behavior online. Understandably, this is an empirical

limitation due to a lack of detailed data. Finally, extant findings on the multi-channel

relationships are derived from on retailers that carry a specific type of product, e.g., eye

glasses (Bell et al. 2017), and apparels and home products (Kumar et al. 2019). Thus,

it is unclear if these findings may generalize to products beyond these studied goods.
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Noting these gaps, we study the impact of newly open stores of a large Chinese re-

tailer on the online sales of customers living near these stores. The retailer under study

serves as a good institutional setting to investigate the multi-channel relationship for

a few reasons. First, it’s a traditional offline-first retailer which carries a wide variety

of products in store. Findings from the analysis of this data provide the much-needed

insights to large pool of offline-first retailers, across different products. Second, the

retailer has been exploring multi-channel, offline-online strategy since 2011 to which its

customers have become relatively familiar with fulfilling purchases on both offline and

online channels. This mature ecommerce setting allows us to abstract away from learn-

ing effects and heterogeneity in terms of ecommerce adoption preferences. Third, we

were able to make use of a quasi-experimental setup in our estimation, as the retailer ex-

panded its pool of physical stores during the study period. No new stores were launched

in the twelve months preceding this expansion plan. Fourth, the retailer provided data

that tracks online purchases at the household-level, which is more finer-grained com-

pared to that in most previous studies. More importantly, we were able to observe

which products are showcased in each physical store, allowing us to establish a stronger

link between online purchases of consumers and the newly opened store. These highly

detailed information also facilitates the ability to test for the mechanisms underlying

the link between physical stores and online purchase. Finally, the retailer provided a

complete view of the transactions that occur during the study period, covering the entire

range of merchandise carried. Not only does this allow us to derive estimates mirroring

the actual magnitude of the impact of physical stores on online sales, we are also able

to arrive at a more generalized view of the store effect across various product types.

Using difference-in-differences identification coupled with propensity score matching,

we find that physical stores can complement online channel in terms of boosting sales

in the Chinese market. Specifically, our analyses reveal that following the opening of
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a new store, the amount of online purchases increases by 26%, which translates to an

additional online sales worth $40 thousand per week (i.e., approximately $2 million

per year). This increase in online sales occur in both tract-level and household-level

analyses. A triple difference analysis at the product-level provides further evidence of

the complementarity between physical stores and online purchases. Specifically, our

analysis shows that the increase in online sales happens for showcased products and not

for non-showcased products, indicating that the positive impact of stores materializes

through the showcasing of products in physical stores. We further find that online

purchases for products showcased in physical stores increase for both high and low

involvement products, which we interpret as evidence for conspicuous and experiential

capabilities of stores at work. When segmenting locations by virgin territories and tracts

with existing stores, we find that the new stores in virgin territories exert a larger impact

on online purchases, though the opening of new stores in both types of locations yield

positive and significant spillovers on online sales. Analysis conducted on different groups

of customers show that physical stores drive inactive customers to purchase significantly

more low involvement products, while they encourage active customers to make more

online purchases across all product types.

Our work contributes to the multi-channel marketing literature from several aspects.

First, we provide stronger evidence of the complementarity of physical stores to online

purchases. In particular, we are able to link the online purchases of certain products to

the offline showcasing of these products, an evidence that has not been shown in previous

studies. This results help to dispel the wide spread belief that physical stores are less

valuable in the digital age, particularly in the Chinese retail market. Second, evidence of

the conspicuous and experiential benefits of physical stores being simultaneously present

in a single setting clarifies the role of the offline channel in the multichannel strategy.

This finding provide insights on the mechanisms through which the value of physical
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stores manifest in the digital age. Third, our results also reveal nuanced insights on

how the impact of new stores on online sales varies across locations and customer types.

Knowledge of these details provide guidance to academics and practitioners alike on

how best to deploy physical stores to enhance online sales.

4.2 Related Work and Theoretical Background

4.2.1 Multi-channel Retailing

The rapid development of the Internet technologies and their applications to the retail-

ing industry over the past decade has made the online channel an imperative consumer

touchpoint. This new marketing touchpoint bears several advantages, by which the

most crucial one lies in its ability of overcoming geographical constraints in their com-

munications with potential customers. Retailers have experimented with multi-channel

strategies by having online storefronts to supplement their existing pool of offline stores,

to understand if this new digital channel would improve overall business performance

(Verhoef et al. 2015, Narang and Shankar 2019). These are non-trivial decisions to

make as adding new channels can affect existing channels since different channels op-

erates quite differently in the customer conversion process. Brick-and-mortars work by

allowing consumers to touch-and-feel merchandise, reducing their uncertainties about

products, and providing instant gratification of on-site purchase. Internet channels, on

the other hand, convey product information through product reviews and user ratings

to support decision making, and enhance shopping satisfaction by providing a broad

selection of products (Brynjolfsson et al. 2013).

Previous studies have investigated the contribution of different channels on firm per-

formance. Earlier studies mainly focused on the impact of adding an online channel, and

documented positive effects on sales volume (Ansari et al. 2008), financial performance
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(Geyskens et al. 2002) and brand awareness (Halligan and Shah 2009). More recently,

scholars started to study the impact of physical stores on online sales performance of

traditional offline and online-first retailers. These studies yielded different insights. For

instance, it was found that substitution occurs as newly opened physical stores leads to

fewer purchases and activity online, indicating the presence of cannibalization (Bryn-

jolfsson et al. 2009, Forman et al. 2009, Choi and Bell 2011). This is especially true

for those customers who live close to store locations (Shriver and Bollinger 2015). Yet,

another set of studies found the opposite to be true, that is, offline stores compliment

online channels by driving up online sales (Balasubramanian et al. 2005, Ansari et al.

2008).

Motivated by those contradictory findings, further studies dug deeper into the ques-

tion by investigating the underlying mechanisms of the multi-channel effect. In particu-

lar, Avery et al. (2012) posit that the nature of the economic relationship between offline

and online stores (i.e., substitution or complementarity) is dependent on how closely

the channel capabilities are related. If a new channel duplicates existing capabilities

or offers superior capabilities, it would cannibalize sales from the existing channel. In

contrast, additional demand in existing channels will be generated if the new channel

provides capabilities complementary to existing channel. Avery et al. (2012) theorize

that offline stores can have conspicuous or experiential capabilities, which manifest in

short-term and long-term periods, respectively. They show that having a denser store

population in an area can enhance branding effects leading to increased online purchases

over time. Drawing on the framework of Avery et al. (2012), Wang and Goldfarb (2017)

emphasize the role of physical stores in providing the information about a retailer’s

existence. Using the data from a US-based specialty retailer, they found that store

openings tend to attract more first-time customers and that the increase in online sales
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is mainly driven by these new customers, suggesting that the physical stores exert a

billboard effect to draw in sales from new customers.

On the other hand, Bell et al. (2017) found that online sales of products is driven by

the opening of offline showrooms reduce uncertainty in the purchase process by provid-

ing tactile product information to consumers. This result suggests that the conspicuous

capabilities of physical stores play an important role in helping consumers converge in

their purchase decisions. We note that the evidence presented in Bell et al. (2017) holds

for an online-first retailer specializing in eye-wear. Pauwels and Neslin (2015) found

physical stores play a conspicuous role of facilitating product returns and exchanges.

Kim et al. (2019) showed that access to physical stores reduces uncertainty about prod-

uct fit and quality, which manifests through impacts on product returns. Under the

context of apparels and home-products (i.e., goods with non-digital attributes), Kumar

et al. (2019) found that that physical stores increase online sales through a store engage-

ment effect, which again demonstrates a conspicuous capability at work. In particular,

the authors demonstrate the store engagement effect by showing that the proportion of

consumers who made purchases in both online and offline stores increase at a greater

rate than those who purchase online only, especially in locations where new stores are

opened relative to locations where there are no new stores.

Thus far, we have seen one set of works providing evidence of physical stores mainly

working through its experiential capability, while another set of works showing that

brick-and-mortars increase online sales via its conspicuous capabilities. Taken jointly,

these evidence coincidentally show the impact of offline stores on online purchase mani-

festing through one type of capability, but not simultaneously through both experiential

and conspicuous capabilities. Thus, the question on whether physical stores can simulta-

neously work through both qualities remains as an open puzzle. Furthermore, With the

exception of Bell et al. (2017), inferences are made without directly observing whether
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physical stores influence subsequent online purchasing behaviors through the specific

showcasing of certain products. Additionally, in the latter set of works, the conspicuous

capabilities of physical store are demonstrated to hold largely on fit-and-feel products

(i.e., eye-wear and apparel). Apart from this narrow set of products, we are unaware if

retailers carrying other types of merchandise would stand to benefit from conspicuous

aspects of opening physical stores.

4.2.2 Roles of Physical Stores in Chinese Markets

Apart of the gaps identified above, the multi-channel literature is silent on the the role of

physical stores in markets beyond the western world. Yet, non-Western markets, espe-

cially that of the Chinese market, are rapidly growing in size to the point of overtaking

the US in terms of sales volume. Cultural value systems are recognized as a powerful

force in shaping consumers’ motivations, lifestyles and product choices (Yau 1988, Tse

et al. 1989, Wang et al. 2000). In particular, Chinese values have served as a clear

and consistent system for generations, to which the learning and mastery of these value

is a crucial prerequisite for achieving social status (Kindel 1985). Given the disparity

between western and oriental cultural values, it is plausible that the causal mechanisms

underlying the purchase behaviors of the US consumer may not generalize to that of

the Chinese consumer (Kindel 1985, Yau 1988), which meant that past findings on the

economic nature of physical stores may not materialize similarly in the Chinese retail

market. In fact, industry experts have opined that physical shopping complexes in

China have a good chance of surviving and thriving in the digital age, given that the

lifestyle favored by Chinese consumers support shopping visits to physical stores (Shep-

ard 2017). Among the numerous conceptualizations of the Chinese cultural values, the

values of thriftiness and relational orientation are most pertinent to our discussion on

the potential impacts of stores on online sales.
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Synergies with Conspicuous Capability

First, the Chinese consumer is influenced by the oriental values which emphasize thrift

and value consciousness (Wang and Lin 2009). Individuals living in collectivist cultures

tend to adopt frugal mindsets as they value inter-generational over individual inter-

ests, and are likely to maintain a longer time horizon with respect to their individual

consumption (West 1989). A direct consequence of thriftiness and value consciousness

meant that Chinese consumers, relative to their American counterparts, are more willing

to invest significant amount of efforts in obtaining product information before making

a purchase (Ackerman and Tellis 2001, Pattaratanakun and Mak 2015), so as to reduce

the chances of making a bad purchase decision. Such strategic consumers are willing to

delay their purchases when they deemed product value to be uncertain (Swinney 2011),

and would actively seek out product information from various sources to affirm their

value. While the online channel offer consumers a wide variety of benefits, e.g., access to

large product variety and enables side-by-side comparison of products (Smith and Bryn-

jolfsson 2001, Brynjolfsson et al. 2003), it does not allow for the evaluation of non-digital

attributes of the product. Offline stores fill this gap by moving undecided consumers

toward purchase decisions by allowing a “full inspection” of the product through the

touching and feeling of the merchandise (Avery et al. 2012, Bell et al. 2017, Ching and

Ishihara 2012). Empirical evidence suggests that Chinese consumers actively seek out

physical stores to shop at, especially at those that are conveniently located near their

living vicinity (Ettenson and Wagner 1991). This suggests that Chinese customers are

likely to place a strong emphasis on the physical examination of products to extract

tactile information that are not readily available in online descriptions.

Second, the Chinese consumer is immersed in a culture that has a strong rela-

tional orientation, by which a distinctive set of marketing implications ensues (Wang

and Lin 2009). Compared to the Western counterpart, oriental individuals are more
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consensual-driven and tend to perceive themselves as more connected to others, such as

the family and the community (Wang et al. 2000). This difference between Western and

non-Western self-construal approximates the distinction in individualist and collectivist

selves (Hsu and Marsella 1985, Markus and Oyserman 1989). Due to this distinction in

self-construal, Chinese consumers react more favorably to marketing stimulus with con-

nected appeals (i.e., relational ties with significant others and interdependence), while

American participants favor marketing approaches with separated appeals (i.e., unique-

ness, individuality, independence, autonomy) (Wang et al. 2000). A strong relational

orientation also influences how Chinese consumers views the act of shopping. Because

Chinese individuals value spending time with friends and family, shopping is deemed

as an important social activity as it allows people to get together naturally (Wang and

Lin 2009). Moreover, a relational orientation meant that peer pressure and opinion

leaders often serve as key influential factors in purchase decisions. This social nature of

shopping indicates that Chinese consumers prefer to develop personal relationships with

salespersons, to which greater emphasis is placed on a salesperson’s mannerism and less

on the tangible aspects of shopping (e.g., store return policy) (Ettenson and Wagner

1991). This emphasis on interpersonal relationships is built on the principle of doing

favors for others, which is considered a form of social investment by which reciprocity is

expected (Yau 1988). As long as shopping is perceived to be a social occasion, physical

stores and salesmanship will continue to play a significant role in the Chinese market,

even with the increasing growth of digital commerce.

Thus far, we have seen how Chinese cultural values can influence purchasing process

of consumers in China. The values of thriftiness and relational orientation meant that

Chinese consumers are likely to value the conspicuous capabilities of physical stores i.e.,

being able to physically examine merchandise, shop with friends, establish relationships

with salespersons in stores. The direct interactions with the products and salespersons
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build up product interest, spur purchase intentions, and solidify purchase decisions.

Having experienced a product in store in various dimensions, customers are likely to

follow up with further product searches online (Verhoef et al. 2007), especially at the

same retailer given that the prior relational links built up with their in-store salesper-

sons. Moreover, with limitations on inventory size of physical stores, shopping trips

can lead to online purchase at the same retailer for a particular product variant that

is not available in store (certain models, sizes or colors are available online). These are

practical instances of how physical stores complement and encourage online sales in the

Chinese market.

Synergies with Experiential Capability

In addition to the conspicuous capabilities at work, physical stores can also play impor-

tant experiential roles in generating awareness and shaping perceptions of brand images

(Jacoby and Mazursky 1984, Keller 1993). Valuable brand associations built through

the offline channel may be transferred to other channels. Wang and Goldfarb (2017)

showed that it is possible that the brand salience conferred by physical stores can stim-

ulate consumers’ purchases from the same retailer from a different channel. On top of a

“billboard effect”, it is quite possible that the experiential aspect of physical stores may

also influence brand perceptions at the product level. The awareness and familiarity

of certain products is heightened when consumers are exposed to products showcased

in physical stores. The increased familiarity leads consumers to pay more attention to

these products when they are browsing through the online store. Specifically, the en-

gagement with products on display in stores produces an exposure effect which is shown

to enhance consumers’ affective and evaluative responses to these brands (Obermiller

1985). Recent exposure to a brand or product increases its salience and recall rate, pro-

ducing greater levels of top-of-mind awareness for showcased merchandise, which can in
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turn inhibit the recall of competing products (Gruber 1969, Alba and Chattopadhyay

1986).

The experiential capability of physical stores in enhancing the brand image of prod-

ucts is particularly important in satisfying the Chinese consumers. The value conscious

and consensual nature of these consumers meant that they are inclined to adopt a risk

adverse approach in making purchase decisions, and would prefer to buy from brands

that are established as the normative standard for their reference group (Wang and Lin

2009, Yau 1988). Here, having a wider exposure via in-store displays to gain a top-

of-mind awareness increases the likelihood of purchase conversion, as the first brand

in the Chinese consumer mind is her most probable choice (Xu 1992). At the same

time, Chinese individuals tend to conform to what others are buying as a result of their

social consensual tendency. Thus, a broader exposure through product showcasing in

multiple physical stores would be helpful in spurring purchase intents, as product famil-

iarity is increased across a larger consumer base. In sum, product placements in offline

stores are likely to spur the purchase volume on the online channel, via the experiential

capabilities of physical stores in the Chinese context.

Sales Impact on Different Products

Heightened sales due to the conspicuous and experiential capabilities of offline stores

are likely to manifest in the purchase of different product types. Prior marketing work

documents that consumer decision process differ significantly with the level of prod-

uct involvement (Clarke and Belk 1979, Engel and Roger 1995). Product involvement

refers to a consumer’s perceived importance or complexity of a product (Traylor 1981,

Richins and Bloch 1986). Consumers typically engage in an “extensive search for infor-

mation or a comprehensive evaluation of the choice alternatives” (Zaichkowsky 1985)
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to make the right decision for high-involvement products, while customers are less en-

gaged in their search process when purchasing low-involvement products. Examples of

high-involvement products include costlier, durable products such as electronics, large

appliances, and furniture, to which consumers tend to expend effort in collecting product

information through product inspection and/or communicating with in-store salesper-

sons (Laurent and Kapferer 1985). Thus, the conspicuous aspect of physical stores facil-

itates the effortful information gathering process that consumers engage in the purchase

of high involvement products. Should Chinese consumers value the the conspicuous as-

pects of physical stores, an increase in high involvement products should ensue upon

the launch of new physical stores.

On the other hand, low-cost, non-durable products like groceries, household supplies,

and sundry goods are instances of low-involvement products (Kannan et al. 2001, Gu

et al. 2012) to which consumers are relatively less worried about making bad purchase

decisions compared to high involvement products (Levy and Nebenzahl 2008, Mathwick

and Rigdon 2004). Although consumers do not expend significant efforts in amassing

information for the purchase of low involvement products, the experiential component

of physical stores can play a role in increasing the purchase of these products by ex-

posing consumers to these products and enhancing their top-of-mind awareness of these

products. Hence, if the effects of experiential capabilities of stores were to exist in the

Chinese retail market, physical stores would induce an increase in the purchase of low

involvement products.
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4.3 Empirical Context and Data Description

4.3.1 Empirical Context

We base our empirical analysis on one of the largest offline-first retailers in China. Sim-

ilar to large US retailers (e.g., Walmart or Target), our focal retailer has thousands of

physical stores across China.1 On top of physical stores, the retailer has been invest-

ing in its online presence, by having a digital storefront since 2011. Products sold by

our retailer include household appliances (e.g., TVs, laundry machines, refrigerators),

electronic devices (e.g., laptops, cameras), general merchandise (e.g., Fast Moving Con-

sumer Goods (FMCG), office supplies), and household commodities (e.g., furniture,

kitchenware). In our data, we observe all online and offline purchases made by con-

sumers between August 2014 and March 2016 in three major Chinese cities, i.e., Bei-

jing, Shanghai and Nanjing. For each purchase, we have detailed information including

the product, prices and quantity purchased. In addition, we have information on the

consumer’s address (i.e., latitude and longitude coordinates) for orders placed online.

Based on the dataset provided by our retailer, we are also aware of the locations of

all existing physical stores in the three cities. For each store, we are able to see what

products were showcased during the observation period. During our study period, we

observe 67 new stores launched in those three cities, which we also have information on

their location coordinates.

4.3.2 Sales Tract Definition

The official geographical segmentation of the Chinese cities based administrative dis-

tricts is overly broad for our purpose, as each district often contain several physical

1We are unable to disclose the identity of the retailer in writing due to a non-disclosure agreement.
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stores making it hard to isolate the effect of each store on online sales.2 To address this

issue, we rely on a clustering-based approach to define sale tracts in our study context.

To do so, we rely on a three step procedure. First, we amass mailing addresses (as

represented by the latitude and longitude coordinates) of all customers who have placed

online orders. Using these coordinates, we use K-means clustering (Forgy 1965) to group

these locations into clusters. As a distance-based technique, K-means clustering works

by assigning geographical locations into the same cluster if they are close to one an-

other (relative to other coordinates). Based on the typical population size in an average

neighborhood of our study cities (TMO Group 2018), we set the clustering parameter

(i.e., total number of clusters) such that the end result of our clustering exercise pro-

duces neighborhood clusters containing 100 to 300 customers on average. Based on this

criterion, our clustering algorithm generated 3000 different clusters. Fig. 4.1 illustrates

the clusters identified in Nanjing: the original locations of households are represented by

grey dots and the centroid of each cluster is represented by a red cross. Fig. 4.2 shows

that the distribution of customers across different clusters is well-dispersed, validating

that our choice of the clustering parameter is appropriate and does not produce skewed

outcomes.

Having established the neighborhoods for our households, we next associate neigh-

borhoods to the physical stores. This step allows us to understand which store is serving

each customer from a distance perspective, to create sales tracts for our study. A 5 kilo-

meters distance is set as an initial threshold in which customers are willing to travel

to reach a store.3 The distance is measured by the Euclidean distance between the

location of a store and the center of that tract. In our final step, we cluster the leftover

neighbourhoods that are not served by any close-by stores together so that they can

2In Beijing, there are 16 administrative districts containing over 150 physical stores. This meant
that each area is served by multiple stores. The situation is similar in Shanghai and Nanjing.

3In our robustness checks, we also attempted alternative cut-offs of 2 and 10 kilometers in our
definition of the sales tracts.
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Figure 4.1: Clusters Discovered in Nanjing.

form sales tracts of their own. Through this three-step procedure, 585 sale tracts across

three cities are formed. With this sale tracts define, we go on to examine the impact of

a new store on the purchase behaviors of consumers living within the same sales tract.

4.3.3 Descriptive Statistics

Using defined sale tracts, we generate a panel of weekly online sales volume, matched

with the indicator of whether a physical store is present in the tract in a given week.

The weekly sales volume of a tract is the aggregate quantity of products ordered online

by consumers living within it. During our study period, we observe 67 instances of

new store openings and no instance of store closing. In total, our panel have 29,040

observations spanned across 86 weeks.

We include several control variables in our dataset. First, we control for the pur-

chasing power of consumers in each sale tract by measuring its average monthly volume

of online orders for the four largest product categories (i.e., household appliances, elec-

tronic devices, kitchen appliances, fast moving consumer goods) in a six-month window
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Figure 4.2: Distribution of Consumer Base of Different Clusters in Nanjing.

before our actual study period (i.e., February 2014 to July 2014). Second, we use the

average housing price of neighborhoods in each tract as an another indicator of the

purchasing ability of the customer base in each tract. That is, a higher housing price

implies greater spending capabilities, and vice versa. Third, we control for the size of

the online customer base for each tract by capturing the number of customers who have

ever placed online orders in pre-observation period and the size of the tract (proxied

using radius of tract in kilometers). Finally, we also include the distance to the city

center as a control variable, given that locations closer to the city center are likely

to experience greater flow of customer traffic in stores leading to greater purchase in-

cidence. Descriptive statistics of all independent and dependent variables (excluding

pre-observation period) are presented in Table 4.1.

4.3.4 Natural Experiment Involving Offline Store Expansion

In September 2015, our focal retailer collaborated with a property developer, to expand

their offline operations. This collaboration entails the opening of new stores in about a

hundred locations. Prior to this expansion effort, the retailer did not engage in any store

openings in the last twelve months. As seen in Fig. 4.3, we can clearly see that several
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Table 4.1: Descriptive Statistics

Observations Mean Std.Dev. Min Max

Dependent Variables
OnlineSales ($1K) 29040 80.02 885.49 0.00 40273.11
TotalSales ($1K) 29040 176.66 1087.82 0.00 42245.3
OnlineOrders (1K) 29040 1.20 13.12 0.00 1385.26
TotalOrders (1K) 29040 1.82 14.88 1.00 1386.26
Independent Variables
StoreOpening 29040 0.03 0.17 0.00 1.00
Appliances 29040 16.88 59.50 0.00 839.67
Electronics 29040 121.34 702.48 0.00 11513.25
Houseware 29040 28.03 134.49 0.00 2453.00
FMCG 29040 295.46 588.10 0.17 5555.50
HousingPrice ($) 29040 6165.09 3131.90 919.54 16038.42
Userbase 29040 1088.25 1628.80 4.00 15735.00
TractRadius (km) 29040 3.04 1.71 0.34 9.78
DistanceToCityCenter (km) 29040 32.63 22.23 0.98 109.10

new brick-and-mortar stores were opened after the launch of the collaboration beginning

in September 2015. The expansion plan represents a natural shock in our study period,

to which the sales tracts across the three cities experience a greater incidence of store

openings. Through this expansion effort, new stores are opened in both tracts that do

not have stores (“virgin terrorities”) and tracts that already have existing stores (from

the same retailer). By exploiting the variation in store opening across sale tracts, we

can quantify the impact of physical stores on online purchases, by contrasting changes

in sale volume before and after store openings via a difference-in-difference framework.

The major challenge to empirically identifying the impact of store opening on online

purchase is the endogeneity concerns of unobserved biases that are inherent in the store

launch decisions. It is plausible that the retailer has strategically chosen to open stores in

certain tracts due to considerations of their market potential which will have profitability

impacts. As a result, the mere comparison of sales growth between those “treated”
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Figure 4.3: New Store Opening Over Time.

tracts and “control” tracts without accounting for such endogeneity can lead to biased

estimation of the store opening effect. We employ several econometric techniques to

account for this issue, which we described more detail next.

4.4 Econometric Model and Identification Strategies

4.4.1 Difference-in-Differences

We apply a difference-in-differences (henceforth referred to as DID) framework coupled

with propensity score matching to measure the effect of offline stores on online purchases.

The DID model is widely used for measuring treatment effect in a given period, by

contrasting the outcomes of a treated group that received a certain intervention with the

same outcomes of a control group that was not exposed to such intervention in the same

period (Meyer 1995, Angrist and Pischke 2008). In our context, the “treated” units are

tracts with a new store opened during our observation period, and the “control” group

includes tracts without new stores. The DID framework has been generally accepted as

a reliable model to estimate the impact of physical stores in past works (Bell et al. 2014,

Wang and Goldfarb 2017), as it accounts for heterogeneous differences across locations

and time. In essence, our DID estimates capture the average treatment effect of a new

physical store on the treated tract after its opening on purchase behaviors of customers
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living in the tract. Specifically, our main estimation equation for tract i in week t is:

Salesit = β0 + β1 ∗ (TreatedTract i ∗AfterTreatment t)+

α ∗ TreatedTract i + γ ∗AfterTreatment t + β2 ∗Xit + µt + εit .

(4.1)

Our main dependent variable is the logged number of products ordered online by

customers living in tract i at time t , i.e., Log(1 + OnlineOrdersit). TreatedTracti

is a indicator on whether a tract experiences a new store launch during the study

period. It is assigned “1” if it is a treated tract i and “0” otherwise. This binary

term controls for the time-invariant geographical differences that may exist between

treated and untreated sale tracts. AfterTreatmentt is a binary variable that indicates

the post expansion period for all tracts, and is denoted as “1” after week 60, i.e.,

period when offline expansion starts, and “0” before that. This variable accounts for

potential temporal-related factors that may simultaneously affect the timing of store

openings and purchase behaviors of customers across tracts (e.g., marketing campaigns

and advertising efforts to promote awareness of new store openings). The coefficient

β1 for the interaction term, i.e.,TreatedTractsi ∗Aftertreatmentt, represents the DID

estimator which captures the average incremental effect of store opening on online sales.

More specifically, it quantifies how online purchase behaviors of customers in treated

tracts change after the launch of offline stores, relative to the same difference of control

tracts during the same period. Standard errors are clustered by tracts to allow for serial

correlation over time (Bertrand et al. 2004).

In our model, we also control for observed covariates, Xit, which include each sale

tract’s average housing price, distance to central area of the city, size of customer base

(via number of customers and tract radius), customers’ past purchase behaviors, and

week-fixed effects, ut. These covariates and time fixed-effects control for the observed

differences across tracts and systematic changes over time.
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We also attempt an alternative DID specification by which we utilize an indicator to

denote the launch of each store (i.e., concurrent variation across tract and time), so that

the individual tract-level fixed effects can be included in the specification to account for

unobserverable factors related to the location. Arguably, tract-fixed effects might be

able to do a better job than the use of covariates, given that the use of covariates leaves

questions on unobservables of tract differences not being accounted for. The alternative

estimation equation for tract i in week t is as follows:

Outcomeit = β0 + β1 ∗ Treated it + αi + µt + εit . (4.2)

where Treatedit is denoted as “1” after a new store is opened in tract i after week

t, and “0” otherwise. Similar to the previous model, the coefficient β1 captures the

marginal change in online purchases in sale tracts served by new stores relative sale

tracts that do not have stores in the same time period. αi controls for the unobserved

characteristics of each tract that might have an impact on its online sales.

4.4.2 Propensity Score Matching

In addition to the use of the DID framework and covariates, we rely on propensity

score matching as another defence against endogeneity concerns. The matching process

helps to derive a set of control tracts that share similar characteristics with that of the

treated tracts, such that each treated sale tract is paired up with a control tract that

has a similar propensity of being treated (more details on matching are provided in

Section 4.4.2). Assuming that matching is effective in accounting for effects from the

unobservables, the regressions based on a matched set of tracts would abstract away

from extraneous factors that are simultaneously correlated with the treatment status
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and the outcome, allowing for an unbiased estimate to be derived (Rosenbaum and

Rubin 1983).

Given that a major source of endogeneity lies in the strategic decisions of launching

stores in certain tracts, we match tracts based on their profitability potential using

the set of covariates listed earlier, i.e,. sales volume of four largest product categories,

average housing prices, user base size, tract radius and distance to city center. At the

same time, these factors are likely to affect customers’ purchase behaviors and should

be accounted for, so that tracts under consideration would be more similar. In the first

three columns of Table 4.2, we present summary statistics for those variables before

and after matching. In the pre-matched variables, we observe significant differences

between control and treated tracts. For instance, the monthly average amount of online

purchases of different types of products of customers who live in treated tracts tend to

be higher than control tracts; the treated tracts tend to have a larger user base size than

the control tracts; and treated tracts are generally closer to city centers relative control

tracts. These differences are aligned with our intuition that retailers do not open stores

in random locations, but are guided by a combination of market potential and growth

opportunities of locations.

Our baseline matching uses one-to-one matching with replacement to derive the

control tracts that are most similar to the treated tracts under a caliper size set to be

the standard deviation of the propensity scores. In addition, we also tried three nearest

neighbors matching to assess whether inclusion of more control tracts would affect the

results. We find that under the baseline matching process, appropriate matches are

derived. Columns (5) to (7) in Table 4.2 show that the differences between the treated

and control means are greatly reduced and are no longer significantly different (i.e.,

based on t-test on mean difference) after matching. Following Haviland et al. (2007), we

conduct a balance check by comparing the standardized bias before and after matching.
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Table 4.2: Illustrative Summary Statistics-Mean(SD)
BeforeMatch AfterMatch Std.bias

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Treated Control Mean Diff Std.bias Treated Control Mean Diff Std.bias Improvement (%)

Appliances 2.56 1.74 0.82*** 0.38 2.56 2.62 −0.06 0.02 93.8
(1.16) (1.25) (73.83) (1.16) (1.30) (3.37)

Electronics 3.37 2.19 1.18*** 0.42 3.37 3.31 0.06 0.02 95.7
(2.06) (1.82) (59.76) (2.06) (1.88) (1.89)

Houseware 2.73 1.95 0.78*** 0.33 2.73 2.80 −0.07 0.03 92.3
(1.22) (1.46) (68.27) (1.22) (1.32) (3.40)

FMCG 5.34 4.17 1.17*** 0.24 5.34 5.40 −0.06 0.01 95.4
(1.45) (1.85) (86.06) (1.45) (1.41) (3.92)

HousingPrice ($) 5780.44 6217.82 −437.38** 0.07 5780.44 5904.31 −123.87 0.02 70.9
(2997.26) (3146.31) (11.56) (2997.26) (3186.38) (2.40)

Userbase 1839.30 985.29 854.01*** 0.58 1839.30 1982.77 −143.47 0.08 87.0
(1663.19) (1596.76) (52.92) (1663.19) (2650.17) (7.42)

TractRadius (km) 3.87 2.39 1.48*** 0.46 3.87 3.76 0.11 0.03 93.7
(1.60) (1.64) (95.62) (1.60) (1.67) (0.36)

DistanceToCityCenter (km) 26.76 33.43 −6.67*** 0.22 26.76 26.58 0.18 0.01 96.9
(17.06) (22.73) (44.02) (17.06) (18.83) (1.26)

As shown in Columns (4) and (8), the biases between the two groups are greatly reduced

after matching, with a 70 to 90 percent reduction across different covariates as shown

in Column (9). These results affirm that those two groups are statistically similar after

matching.

4.4.3 Individual and Product level Analysis

The aforementioned analysis aims at identifying aggregate online sales increase in a

tract resulting from the new store openings. While the use of covariates and matching

are helpful in accounting for extraneous factors at the tract level, there might still exist

unobserved geographical effects that simultaneously affect the launch of new store in

the tract and the average online purchase levels of the location. To further alleviate

such endogeneity concerns, we perform a robustness check at a finer unit of analysis

that examines that change in online purchase levels at the individual household level

by contrasting “treated” households that have been experience a new store launch near

them with “control” households that did not. In this analysis, we use stratified sampling
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to randomly pick 20,000 households from different sale tracts. We utilize a population-

weighted sampling strategy, so that more households are sampled from tracts with higher

population density. We then use the weekly household online purchase volume as an

dependent variable. The model specification used here is similar to Equations (1) and

(2). Should the store entry have a positive impact on households’ online purchase, the

DID estimate would produce a significant coefficient.

In addition to performing a finer level analysis at the individual level, we also attempt

to conduct our analysis at the product level. Given that the exposure to products

showcased in physical store is one of the main mechanisms by which physical stores

induce and stimulate online purchases, it would be reasonable to assess if a statistical

relationship exists between showcased products and online purchase in each tract. A

unique advantage we have through our unusually rich dataset is the ability to see the

products that are showcased in each store at each period. By exploiting the variation

in products showcased across stores and time, we apply a third layer of differencing

to our DID framework to arrive at a triple-difference estimation approach (henceforth

referred to as DDD) model (Matsa and Miller 2013). As an extension of DID, an

additional layer of differences can make parallel trends assumptions across different

groups more plausible. In our setting, the DDD estimator compares the changes in the

outcome variables, e.g., amount of online purchases of each product before and after

its showcasing in a tract with the corresponding difference in other tracts where those

products never get showcased in the same time period. The DDD specification is as

follows:

Outcomeijt = β0 + βDDD
1 ∗ Showcased ijt + αi + µt + εijt . (4.3)
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where Showcasedijt is denoted as 1 after a product is showcased in tract i after week

t and 0 otherwise. Under this setting, βDDD1 measures the change in the difference in

product sales before and after product showcasing in certain tracts, compared to sales

difference of the same set of products over the same period in other tracts where those

products are not on display. On top of the week fixed effects, we include a product level

fixed effects in our specification to alleviate potential confounding trend arising from

product-specific characteristics. This fixed effect controls for the selection of certain

products that are more likely to be chosen to be showcased in stores. 4 The tract level

fixed effects further helps to account for the fact that some products are better received

in certain areas than others, with or without showcasing. For robustness, we include

tract-product fixed effects to control for the possibility that some products might be

more popular in certain locations. Similarly, we also utilize a product-time fixed effects

to see if the results might be affected by the general popularity of certain products at

certain time periods. In our DDD analysis, we utilize the universal product code (UPCs)

to identify individual products based on their model and variant. However, an analysis

at the UPC level is met with operational concerns given that the global set of products

sold by our retailer is enormous. To resolve this operational issue, we randomly sample

ten distinct UPC codes from each of the fourteen product categories5 that the retailer

carry, resulting in the use of 140 unique products in our DDD regressions. To check if

the results are robust, we randomly sampled products thrice and repeated the respective

regressions to arrive at three sets of DDD estimates.

While a DDD estimation based on product level showcasing is insightful, we are

only able to cover a select set of products in this analysis. To further ascertain that

the showcasing of a particular product in the physical store has an influence on online

4The products used in this analysis were showcased in some tracts and not in other tracts.
51. imported snacks and healthcare 2. sundry goods 3. food and drinks 4. skin care 5. household

supplies 6. maternity 7. electronic devices 8. houseware 9. laundry machine and refrigerator 10. A/C
11. PC/laptop 12. kitchenware 13. TV 14. communication
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sales of that product, we perform an additional check where we consider all products

by splitting them into two groups based on whether they have ever been showcased in

a tract before. Specifically, we tabulate the online sales volume of products that have

been showcased in a tract and products that have not been showcased before in a tract,

and use that as dependent variables in Equations (1) and (2). Should the showcasing of

product play a role in inducing greater online purchase, we should see the DID estimate

having a significant coefficient on the online sales of showcased products. An absence

of a significant DID estimate for the online sales of non-showcased product will affirm

that the increase in online sales comes mainly from exposing consumers to products

showcased in stores.

4.5 Empirical Results

4.5.1 Impact of Stores on Online Sales

We first present our main results based on the DID setup. Table 4.3 shows the re-

gression results from different models (i.e., OLS with log-transformed online purchase

volume: Equation 4.1, Negative Binomial, and specification with tract fixed effects:

Equation 4.2). We run each model using both unmatched and matched samples to see

how the results might differ. From the results, we could see that the DID estimates

from different models are positive and significant across various models, which indicate

that online sales volume of a tract increases after the launch of a new store in the same

tract. Results on matched samples also indicated that the launch of physical stores has

a significant positive impact on online sales, albeit with a smaller magnitude. Based

on the coefficient estimate of the main model using matched samples (i.e., Column 2

of Table 4.3), the online sales of tracts with new physical stores increases by 25.8%

on average. Using average monetary sales values, this additional online sale volume
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Table 4.3: Impact of Store Opening on Total Sales (Volume)

OLS (logged) NB FixedEffect

(1) (2) (3) (4) (5) (6)
Unmatched Matched Unmatched Matched Unmatched Matched

TreatedTractsi∗ 0.43*** 0.41*** 1.05*** 0.88***
Aftertreatmentt (0.09) (0.10) (0.32) (0.19)
TreatedTractsi 0.14 0.04 −0.01 0.15

(0.14) (0.09) (0.17) (0.10)
Aftertreatmentt −0.23*** −0.25*** −0.04 −0.33*

(0.04) (0.09) (0.12) (0.19)
(0.03) (0.04) (0.05) (0.04)

Treated 0.42*** 0.35***
DistanceToCityCenter (km) −0.02*** 0.01* −0.01*** 0.00

(0.00) (0.00) (0.00) (0.00)
Userbase 0.00 0.00 −0.00** 0.00

(0.00) (0.00) (0.00) (0.00)
HousingPrice ($) 0.00*** 0.00 0.00* 0.00

(0.00) (0.00) (0.00) (0.00)
Appliances 1.04*** 0.10 1.29*** −0.01

(0.10) (0.08) (0.12) (0.08)
Electronics −0.00 −0.08 −0.00** −0.06

(0.00) (0.05) (0.00) (0.07)
Houseware 0.00 0.55*** −0.00 0.60***

(0.00) (0.16) (0.00) (0.18)
FMCG 0.00* 0.61*** 0.00 0.66***

(0.00) (0.10) (0.00) (0.10)

Observations 29040 6395 29040 6395 29040 6395
City fixed effect Yes Yes Yes Yes
Week fixed effect Yes Yes Yes Yes
Tract fixed effect Yes Yes
R2 0.77 0.83 0.43 0.50
Pseudo R2 0.09 0.10

*significant at 10%;**significant at 5%;***significant at 1%

induced by new stores translates into approximately US$40 thousand per week, which

equates to an average annual increase of US$2 million. We also note that the coeffi-

cient magnitudes derived under Equation 4.1 and Equation 4.2 are highly comparable,

suggesting that the chosen set of covariates is as proficient as the tract fixed effects in

capturing extraneous effects. In all, these results suggest evidence of a complementarity

effect between offline and online channels.
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In addition to online purchases, we also run a regression analysis for total purchase

volume in each tract (sum of online and offline sales volumes). The results show that

following the opening of a new store in a tract, total sales from that tract rises sig-

nificantly (β1 = 0.41, p < .01 based on the main model). Specifically, the total sales

volume increases by about 50% on average, which is worth US$198.8 thousand on a

weekly basis. Upon checking with the store managers from our retailers, their internal

information show that the additional sales is able cover the cost of operating the new

stores, i.e., positive profits are made.

(a) Unmatched Sample

(b) Matched Sample

Figure 4.4: Coefficients of the Weekly Interactions Before and After Offline Expansion.
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Next, we assess the validity of the parallel trends assumption underlying the DID

approach. To do so, we include the interactions of week dummies and the treatment indi-

cator to our main regression specification (i.e., adding
∑

w=26,...,85 βw(TreatedTract i∗µw )

to Equation (1)) to capture the effect of store opening over time. Fig. 4.4 visualizes the

estimated coefficients βw before and after the launch of each store. From the figures of

both the unmatched (Fig. 4.4 (a)) and matched sample (Fig. 4.4 (b)), the coefficients

are mostly non-significant, indicating an absence of a pre-treatment trend. For coeffi-

cients that are significant, we note that they are negative in nature, which goes against

the concern that treated tracts bear certain characteristics which allowed them to gain

a greater sales volume even without the treatment. Trend lines plotted to approximate

the sales volume before and after the store launches across tracts (i.e., dashed lines)

showed that sales growth before retail expansion is rather flat, suggesting the chosen set

of covariates is sufficiently effective in accounting for profitability potential of the tract

locations, reduces the concern of unobserved tract effects at play in affecting the pur-

chase patterns of consumers. We notice that some of the coefficient estimates become

positive and significant in the period after stores are launched in treated tracts. More

coefficients are significant after the stores are opened for over a month, which goes to

show that the positive impact of physical stores do not surface immediately. This makes

intuitive sense, given that it takes time for customers to gain awareness of new stores

and to take time to make store visits. The fact that significant and positive impacts

of physical stores are strictly restricted to the post-treatment period further assures us

that a pre-treatment trend is absent and that the parallel trend assumption is satisfied.

We also note that the positive impact on sales in the post treatment extends beyond six

months, which we interpret as a sign that the complementary impact of physical stores

is not simply a novelty effect that diminishes over time.
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4.5.2 Robustness Checks

We conduct a series of robustness checks to validate the consistency of the main effect

under different assumptions and conditions. In particular, we examine whether the

results are robust with respect to a finer unit of analysis, alternative definitions of sale

tracts and outcome variables, and accounting for additional external factors that might

have driven online sales.

First, we conduct our analysis at the household level, wherein we examine how the

volume of online purchases of each household change after a new store is opened nearby.

In our analysis, we also consider households that are located in those matched tracts

to address potential endogeneity concerns. Results of various models are displayed in

panel A of Table 4.4. All of these results show a significant increase in online purchases

at the household level, after offline stores are launched in the neighborhood. Based on

these results, it is likely that our results are robust towards endogeneity concerns related

to unobserved household level factors which we explicitly account for using a finer level

of analysis.

For the second set of robustness check, we assess whether the main results are

sensitive to the size of sale tract defined. Instead of assuming each store’s reach to be

effective in serving a distance of five kilometers, we attempted narrower and broader

cutoff thresholds. In particular, we set the thresholds of 2 and 10 km to arrive at

alternative sales tracts.6 The results from these two extra thresholds are shown in

panel B and C of Table 4.4. We can see that the effect of physical stores on online

purchases remains positive and significant across different specifications and samples.

In our third robustness check, we adopt (Wang and Goldfarb 2017)’s definition of

sale tracts by which we treat each existing store as the center of a tract, and then

6A 2 km scope can be seen as a store that is of walking distance, and a 10 km scope is able to serve
consumers who are within driving distance.
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defining its service area by including households that are within a 5 km radius of the

store. For cases where two stores are less than 5km to each other, we would combine

these stores as a single tract when they are less than 2km apart. If they are more than

2 km apart, we divide the area between them evenly to form two tracts.7 Results based

on this alternative tract definition are shown in panel D of Table 4.4. DID estimates

are consistent with our main results in that they remain positive and significant.

In our fourth robustness check, we test the sensitivity of the main results to an

alternative measurement of online sales. While the earlier results inform us that online

sale volume has increase as a result of store openings, it does not inform us on whether

the dollar value of these sales have also increased. It is plausible that the increased

amount of online purchase may be driven by the greater purchase level of less expensive

products. To assess for this possibility, we use the dollar value of purchases as an

alternative outcome variable. Panel E of Table 4.4 shows that the DID estimate remains

positive and significant when dollar amount is used as the dependent variable. In

particular, we find that the launch of a new store leads to an average increase of 16%

in the monetary amount transacted in the online channel of the retailer. Thus, the

qualitative conclusion from the results remains similar to the main results under an

alternative sales measure.

Finally, we consider whether the increase in sales might be an artifact of promotional

events of the retailer. It is plausible that the launch of the new stores were intentionally

made to coincide with festive occasions and holidays, where Chinese consumers have

habits to purchase more. Based on the annual online and offline promotion plans pro-

vided by the retailer (i.e., 2015 Chinese New Year, the retailer’s anniversary, Singles’

Day:November 11), we remove observations from the weeks when major online promo-

tions were held. Regression results of this check is documented in panel F of Table

7Only a few cases fall into this category in our dataset. Most stores are geographically well dispersed
with little overlaps.
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Table 4.4: Robustness Checks.

OLS (logged) FixedEffect

(1) (2) (3) (4)
Unmatched Matched Unmatched Matched

(A) Household Purchases 0.05*** 0.03*
No.obs = 110451/45876 (0.02) (0.02)

unmatched/matched 0.05*** 0.03*
(0.02) (0.02)

(B) Service Radius=2km 0.26*** 0.22***
No.obs = 36384/4787 (0.07) (0.07)

unmatched/matched 0.24*** 0.23***
(0.07) (0.08)

(C) Service Radius=10km 0.22*** 0.22***
No.obs = 21308/8974 (0.06) (0.07)

unmatched/matched 0.20*** 0.18***
(0.06) (0.07)

(D) Alternative Tract Definition 0.32*** 0.24***
No.obs = 12918/5165 (0.06) (0.07)

unmatched/matched 0.30*** 0.19***
(0.06) (0.07)

(E) Sales in Dollar Values 0.22*** 0.15***
No.obs = 29040/6395 (0.05) (0.06)

unmatched/matched 0.23*** 0.15***
(0.04) (0.05)

(F) Removing Promotion Effect 0.24*** 0.22***
No.obs = 26626/5875 (0.05) (0.07)

unmatched/matched 0.25*** 0.21***
(0.06) (0.07)

*significant at 10%;**significant at 5%;***significant at 1%

4.4, The coefficients from different models are positive and significant, after accounting

the promotional effect. This test rules out the possibility that the observed increased

in sales is driven by promotional efforts of the retailer, but is largely due to a true

complementary impact from the physical store.
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4.5.3 Product level Analysis

The exposure of showcased products in physical stores is a plausible mechanism of induc-

ing greater level of online purchases. If evidence of this mechanism can be empirically

verified, the causal link between offline stores and online purchases would be strength-

ened. As described earlier, we rely on a DDD framework that exploit the variation in

product showcasing across tract and time to identify this effect. Our analysis results

are reported in Table 4.5. We find that online purchases of those showcased products

significantly increase after they are being showcased in offline stores. The findings are

consistent across different model specifications, and with the inclusion of product-tract

and product-time fixed effects.

As an additional check, we consider all products carried by the retailer to assess if

the launch of a store affects the online sales of showcased and non-showcased products

in Table 4.6. Results show that a newly opened store significantly affects the amount

of online purchase of showcased products (Model 1), but not so for products that are

not showcased (Model 2). This is another evidence showing that when products are

displayed in stores, customers living in the vicinity of these stores are more likely to

purchase those products online. The absence of a sales increase of products that are not

showcased goes to show that the main mechanism through which the positive impact of

physical stores work is through the exposure of products to consumers in stores.

4.6 Mechanisms and Heterogeneous Effects

4.6.1 Conspicuous and Experiential Roles of Stores

Thus far, we have seen evidence of a positive, complementary effect of physical stores

on online sales, particularly through the exposure of products to consumers in stores.
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Table 4.5: Effect of Product Showcase on Online Sales (Volume)

Sample1 Sample2 Sample3

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Showcase 0.03*** 0.03*** 0.03*** 0.05*** 0.03*** 0.04*** 0.01** 0.01** 0.01*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Tract fixed effect Yes No Yes Yes No Yes Yes No Yes
Week fixed effect Yes Yes No Yes Yes No Yes Yes No
Product fixed effect Yes Yes Yes Yes Yes Yes Yes Yes Yes
Tract-Product fixed effect No Yes No No Yes No No Yes No
Product-Week fixed effect No No Yes No No Yes No No Yes
Observations 246992 246992 246992 265912 265912 265912 235812 235812 235812
R2 0.04 0.11 0.18 0.06 0.20 0.18 0.03 0.10 0.12

*significant at 10%;**significant at 5%;***significant at 1%

Table 4.6: Effect of Offline Showcase on Online Sales (Volume)

OLS(logged) FixedEffect

(1) (2) (3) (4)
Showcased NotShowcased Showcased NotShowcased

TreatedTractsi∗ 0.22*** 0.02
Aftertreatmentt (0.06) (0.06)
TreatedTractsi 1.42*** −1.53***

(0.38) (0.44)
Aftertreatmentt −0.41*** −0.20**

(0.06) (0.09)
Treated 0.18*** 0.04

(0.06) (0.06)

Observations 6395 6395 6395 6395
R2 0.57 0.30 0.44 0.39

*significant at 10%;**significant at 5%;***significant at 1%

Despite these findings, the finer mechanisms that drive this positive relationship re-

mains unclear. As discussed in our literature review, there are two main ways in which

physical store can facilitate more online purchases, namely through the conspicuous

and experiential characteristics of stores. The purchase of high involvement products

tend to require a more comprehensive evaluation as they are costlier and have a larger
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number of attributes to consider (Hansen 1985). Here, the conspicuous aspect of stores

would be helpful in the conversion process as it allows consumers to physically experi-

ence products and getting advice from salespersons about the products. On the other

hand, the purchase of low involvement products involves lower risks, and tend to be

largely driven by top-of-mind awareness of products that can be built up by product

exposure facilitated through the experiential aspect of stores. Thus, by examining the

types of products that experienced an increase in online sales in tracts that experience

the launch of new stores, we are able to identifying which roles are at work in the

purchase conversion process.

To do so, we first partition all products into high and low involvement types. We rely

on two different methods to segment the products so that various definitions of product

involvement are considered. We begin by using a simplistic approach of categorizing

products based on their prices. Two thresholds were utilized: the the 10th percentile

(representing products that cost $250 or less) and 25th percentile (representing products

that cost $650 or less). Products that cost more than these threshold values are deemed

as high involvement products, while those that are below the thresholds are classified as

low involvement products. We also adopt a clustering approach to segment the products.

Specifically, we tabulated product features including price and purchase volume. Based

on these features, a K-means clustering method is used to group all products into two

clusters8. A visualization of the clustering result in a two dimensional space involving

purchase volume and price is shown in Fig. 4.5. From this figure we could see that, in

general, products with higher prices and lower purchase volume (i.e., orange stars) form

one cluster which is indicative of high involvement products, while those with relatively

lower prices and higher purchase volume (i.e., blue dots) form the other cluster consisting

8We tried different values for the number of clusters, and plotted the line graph of Sum of Squared
Errors of each value. The checks reveal that optimal number of clusters is 2 (i.e., at the elbow point
of the graph), which is in line with our apriori expectation that the price and purchase volume would
produce a natural split between high and low involvement products.
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Figure 4.5: Discovered Product Clusters.

of low involvement products. After these product types are identified, we run separate

regressions on each of these product types.

The results of our analysis are shown in Table 4.7. Under a price-based classification

(i.e., first two rows), we see that DID estimator for all products and showcased products

are positive and significant, for both the high and low involvement products. The results

are qualitatively similar under a more elaborate classification scheme that considers

multiple product attributes (i.e., third row). These results provide initial evidence that

both the conspicuous and experiential aspects of physical stores are at work in driving

online purchases.

The classification the products into two broad high-low categories can be rigid given

that there might nuances underlying each product that can influence consumer’s con-

sideration in their purchase process. To gain deeper insights on how physical stores may

influence online purchases of different products, we adopt a more fine-grained catego-

rization by splitting products by store categories provided by the retailer. Through this

categorization, there are eight major product categories, including laundry machines,
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Table 4.7: Impact of Stores on Online Sales (Split by Product Involvement)

High Involvement Low Involvement

(1) (2) (3) (4)
All Showcased All Showcased

Store Opening 0.10* 0.14** 0.22*** 0.21***
(10th percentile price-based classification) (0.05) (0.05) (0.07) (0.06)

Store Opening 0.15** 0.20*** 0.21*** 0.20***
(25th percentile price-based classification) (0.06) (0.07) (0.07) (0.06)

Store Opening 0.12** 0.20*** 0.22*** 0.20***
(Clustering-based classification) (0.05) (0.06) (0.07) (0.06)

Observations 6395 6395 6395 6395

*significant at 10%;**significant at 5%;***significant at 1%

TVs, kitchen-based electronics, cell phones, kitchenware, household supplies, skin care

products, and food and drinks. We conduct the same analysis on the sales volume of

these product categories.

The results are shown in Table 4.8. The results in this analysis generally agree with

our earlier intuition. Products that require greater efforts in information collection via

the physical examination and communications with salesperson (i.e., laundry machines,

TVs, kitchen electronics and cell phones) are enjoying greater online purchase volumes

in tracts that experience the launch of new stores. The more expensive items, such as

laundry machines and TVs, experience an increase of about 15-17%, and the relatively

less costly items such as kitchen electronics and cellphones see an increase of about

18-24%. This is reasonable given that the purchase decision process of the former

two categories of products are likely to involve greater deliberation and consideration

compared to the latter two, given that they are “riskier” purchases with greater costs

involved. The remaining product categories, i.e., kitchenware, household supplies, skin

care products, and food and drinks, are largely considered low involvement products
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Table 4.8: Effect of Stores on Online Sales (Fine-grained Categorization)

LaundaryMachine TV KitchenElectronics Cellphone

(1) (2) (3) (4) (5) (6) (7) (8)
All Showcased All Showcased All Showcased All Showcased

Store Opening 0.12*** 0.14*** 0.12* 0.16*** 0.03 0.17*** 0.17*** 0.24***
(0.03) (0.03) (0.06) (0.06) (0.05) (0.05) (0.06) (0.06)

Kitchenware HouseholdSupplies SkinCare FoodDrinks

(9) (10) (11) (12) (13) (14) (15) (16)
All Showcased All Showcased All Showcased All Showcased

Store Opening 0.08* 0.08** 0.16** 0.17*** 0.05 0.07 0.24*** 0.25***
(0.04) (0.04) (0.07) (0.05) (0.06) (0.05) (0.09) (0.07)

Observations 6395 6395 6395 6395 6395 6395 6395 6395

*significant at 10%;**significant at 5%;***significant at 1%

that are bought with greater frequency and are generally of lower cost compared to the

previous set of products. We find the online purchase of these items are heightened in

treated tracts that experience the launch of physical stores, with the exception of skin

care products. The lack of an effect for skin care products seems reasonable when we

consider that the retailer is not known for carrying skin care products and they indeed

dedicate a smaller proportion of store space for skin care products (less than 3% are for

skin care products) relative to other products.

4.6.2 Impact in Different Territories

It is possible that the complementary effect of offline stores on online sales may be

different across locations. In particular, we are interested in seeing if the effect of stores

are constrained to virgin tracts that are not already served by an existing store from

the retailer. To investigate this, we split the tracts into different two main categories,

namely virgin territories and territories with existing stores. Results are displayed in

Table 4.9. We first report that estimates for all locations in columns (1) and (2) for

comparison. Columns (3) and (4) show the impact of new stores that are opened in



132

virgin locations, and Columns (5) and (6) show that for new stores opened in locations

without existing stores. Across both types of territories, new stores generate positive

and significant impacts on online sales. While we have contrasted the impact of new

stores opening up in non-virgin tracts with tracts that do not have the retailer’s presence

in Columns (5) and (6), it is unclear if the effect of an additional store would result

in an additional improvement in online sales when compared to tracts that are served

by one operating physical store. We repeat the same analysis by utilizing non-virgin

locations that did not experience the launch of new stores as the control tracts to see if

there are incremental effects. The results in Columns (6) and (7) show a positive and

significant impact on online sales, albeit smaller in magnitude compared to the previous

estimates.

It is interesting to note that the positive effect of physical stores are not limited

to the virgin territories but also in tracts that already have existing retailer presence.

Here, our results are slightly different from that of past work by Wang and Goldfarb

(2017), which did not detect an effect on online sales when stores are opened in non-

Virgin locations. We interpret this set of results as supporting our earlier finding that

stores in the Chinese retail context serve a conspicuous role, on top of an experiential

role, in the conversion of online purchases. Given the relative larger population density

in Chinese cities, additional stores within a sales tract can help to serve a larger base

of customers at the same time. This aspect is likely to be important in the Chinese

market, as consumers have a greater desire to seek out product information in stores

before making purchase.

4.6.3 Impact on Customer Types

Next, we explore if the new stores have varying impacts on different customer types.

The focal retailer is one of the largest retailers in China and is well known by the
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Table 4.9: Effect of Stores Opened in Different Types of Locations

All Locations Virgin Locations With Existing Stores With Existing Stores (subset)

(1) (2) (3) (4) (5) (6) (7) (8)
Unmatched Matched Unmatched Matched Unmatched Matched Unmatched Matched

TreatedTractsi∗ 0.25*** 0.23*** 0.29*** 0.30** 0.15*** 0.13* 0.22*** 0.14*
Aftertreatmentt (0.06) (0.07) (0.08) (0.12) (0.06) (0.07) (0.06) (0.07)
TreatedTractsi −0.07 −0.04 −0.16* −0.04 −0.07 −0.01 −0.11** −0.05

(0.05) (0.06) (0.08) (0.11) (0.05) (0.05) (0.05) (0.05)
Aftertreatmentt −0.32*** −0.41*** −0.24*** −0.37** −0.31*** −0.40*** −0.45*** −0.45***

(0.04) (0.09) (0.06) (0.16) (0.05) (0.09) (0.06) (0.08)
Dist2cen (km) 0.05 0.07 −0.04 0.05 0.04 0.00 0.06 −0.01

(0.05) (0.08) (0.07) (0.20) (0.05) (0.08) (0.06) (0.07)
Userbase 0.29*** 0.14 0.36*** 0.17 0.29*** 0.10 0.24*** 0.12

(0.05) (0.09) (0.06) (0.13) (0.05) (0.11) (0.06) (0.11)
HousingPrice ($) 0.07 0.06 0.08 0.11 0.06 −0.01 −0.14* −0.08

(0.05) (0.10) (0.06) (0.15) (0.05) (0.12) (0.07) (0.09)
Appliances 0.12*** 0.11*** 0.15** 0.11 0.11*** 0.07* 0.13*** 0.03

(0.04) (0.04) (0.06) (0.08) (0.04) (0.04) (0.05) (0.02)
Electronics −0.01 −0.02 −0.05 −0.07 0.02 0.02 0.07*** 0.06*

(0.03) (0.03) (0.06) (0.04) (0.03) (0.03) (0.02) (0.03)
Houseware 0.19*** 0.45*** 0.29** 0.54*** 0.16*** 0.31** 0.17** 0.23

(0.06) (0.12) (0.12) (0.12) (0.06) (0.13) (0.08) (0.14)
FMCG 0.53*** 0.41*** 0.50*** 0.39*** 0.55*** 0.54*** 0.45*** 0.58***

(0.04) (0.06) (0.05) (0.08) (0.04) (0.07) (0.06) (0.08)

Observations 29040 6395 18084 3192 27078 4433 10956 3203
R2 0.87 0.87 0.78 0.79 0.87 0.90 0.78 0.89

*significant at 10%;**significant at 5%;***significant at 1%

Chinese consumers, which makes it less relevant to consider a “new vs old” dichotomy

of customers. Indeed, an examination of the customer IDs in our dataset reveals that

there are very few instances of customers who were new customers in our study period.

Extant literature has been shown that the hiatus heuristic, based on whether customers

have made a purchase within a set time period, works well in distinguishing customer

groups in practice (Mumford 1995, Wübben and Wangenheim 2008). Guided by this

categorization scheme, we distinguish customers based on their activity level, which we

define as whether they are made a purchase from the retailer in the last six months

(Gigerenzer and Gaissmaier 2011). Specifically, active customers purchase from our

focal retailer in the last six months, while inactive customers did not. For these two

groups of customers, we look at the impact of store openings on different outcomes
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Table 4.10: Impact of Store Opening on Online Sales (Split by Customer Group)

Inactive Customers Active Customers
(last purchase before 6 months) (last purchase within 6 months)

(1) (2) (3) (4) (5) (6) (7) (8)
Number Order All Order High Order Low Number Order All Order High Order Low

Store Opening 0.04* 0.17** 0.03 0.17** 0.10** 0.22*** 0.11** 0.21***
(0.02) (0.08) (0.03) (0.08) (0.04) (0.07) (0.05) (0.07)

Observations 5753 5692 6323 5719 6395 6395 6395 6395

*significant at 10%;**significant at 5%;***significant at 1%

including the number of customers who made purchases, online sales volume, and online

sales of high- and low-involvement products.

The results are reported in Table 4.10. From the results, we see that inactive cus-

tomers are making online purchases after a new store is opened in their associated sales

tract (Column (1)). Specifically, approximately 4% inactive customers are becoming

active shoppers via online purchases. We also find that these customers are increasing

their online sale volume (Column (2)) by 18.5%. Interestingly, this increase is largely

attributed to the purchase of low involvement products (Columns (3) and (4)). We take

this as a sign of inactive customers re-bonding with the retailer by making purchases

involving less complex decisions. For active customers, our results show that follow-

ing the addition of a new store, the number of online shoppers grows significantly, i.e.,

approximately 10% more active customers (Column (5)) are making online purchases,

which accounts for roughly 25% more online sales (Column (6)). In contrast to inactive

customers, active customers are purchasing both high and low involvement products

(Columns (7) and (8)). Given that active customers are more loyal to begin with, the

presence of a nearby store can help to further supports their purchase process, thereby

generating a greater amount of online sales conversion for both types of products.

Finally, we conduct an analysis that considers both location and customer types on

the online purchase of different product types in response to physical store openings.
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The results are shown in Table 4.11. We see that the results for virgin locations are

quite similar to the results in Table 4.10, in that inactive customers purchase signif-

icantly more low involvement products online (column (3)), and active customers are

buying more of both types of products online, after a new store is opened in their

tract (Columns (1) to (6)). In the case of store openings in tracts with existing stores,

inactive customers remain inactive, while active customers are purchasing more high

involvement products. Given that existing stores are not already inducing online pur-

chases for inactive customers, it is reasonable to see that having an additional store

would not be helpful in moving these consumers towards more online purchase. New

stores in non-virgin territories work in a more specialized fashion of providing more

opportunities for serving the active customers living in the vicinity. These additional

physical stores serve as additional avenues to which customers are able to solicit product

information through physical examination and question-asking. This set of results is

consistent with our previous conjecture that additional stores is helpful in serving the

densely populated customer base in Chinese retail market.

4.7 Implications and Future Research

The advent of digital commerce has spurred dramatic changes in consumers’ shopping

behaviors and the landscape of retailing industry in the past two decades. One of the

most significant impacts is the growing prominence of online retailing shifting the value

placed on physical stores. To adapt to the change in consumer purchase behaviors,

many traditional retailers have adopted multi-channel strategies which involve adding

an online channel to their existing set of offline touchpoints, and managing customers

across channels. As the retailing industry progresses further in the digital age, the

question of whether physical stores continue to matter and how they generate value

becomes important to retailers who are competing for market share in this industry. In
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Table 4.11: Customer Maintenance in Different Types of Locations

Virgin Locations

Inactive Customers Active Customers
(last purchase before 6 months) (last purchase within 6 months)

(1) (2) (3) (4) (5) (6)
Order All Order High Order Low Order All Order High Order Low

Store Opening 0.23** 0.01 0.22* 0.29** 0.15*** 0.28**
(0.11) (0.01) (0.11) (0.12) (0.05) (0.12)

Observations 3192 3192 3192 3192 3192 3192

Locations with Existing Stores

Inactive Customers Active Customers
(last purchase before 6 months) (last purchase within 6 months)

(7) (8) (9) (10) (11) (12)
Order All Order High Order Low Order All Order High Order Low

Store Opening 0.22 0.07 0.21 0.12* 0.17** 0.09
(0.14) (0.07) (0.14) (0.07) (0.08) (0.07)

Observations 4433 4433 4433 4433 4433 4433

*significant at 10%;**significant at 5%;***significant at 1%

this work, we provide an updated view of the impact of offline store on retailers’ online

business in the under-studied Chinese retail market. Guided by the framework of Avery

et al. (2012), we investigate the effects of physical stores on consumers’ online purchases,

under a quasi-experimental framework that involves variation in the launch of new stores

across tracts and time. We augment this analysis framework by exploiting an additional

layer of variation in product showcasing across stores and weeks in an effort to establish

stronger evidence of the link between physical stores and online purchase.

Our results reveal that the launch of a new offline store enhances online weekly

purchase by 26% per tract, on average. This positive impact appears to be long stand-

ing, which does not diminish over time. The increased amount of online purchases is

economically substantial, representing approximately an increase of US$2 million in an-

nual sales. Product level analysis reveals that the online purchase of the same product

significantly increases in tracts where they are showcased, but not in tracts where they
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are not showcased. We further find that the complementary impact of physical stores

increases both high and low involvement products, which we interpret as evidence sup-

porting the conspicuous and experiential role of stores at work in the conversion process.

Our analysis indicate that the positive impact of stores on online sales manifest in both

locations with or without existing stores, though a larger effect is observed in virgin

territories. Finally, the impact of offline stores exert heterogeneous effects on different

customers, inducing inactive customers to purchase more low involvement products and

active customers to purchase more of high and low involvement products. Overall, our

empirical results provide evidence that offline channels can have complementary impacts

on online channels in the Chinese context, and marketing efforts should be coordinated

to greater cross-channel synergies.

Our main results depicting a complementary offline-to-online effect is generally

aligned with past works, including Avery et al. (2012), Wang and Goldfarb (2017),

Bell et al. (2017) and Kumar et al. (2019). The distinct addition of our work to this lit-

erature is two-folds. Past works have mainly found evidence of the experiential influence

of traditional retail stores at work in the Western market (e.g., Avery et al. (2012), Wang

and Goldfarb (2017), but less comprehensive evidence of the effects of the conspicuous

role of stores. Our work speaks to this topic by showing the simultaneous presence of

both conspicuous and experiential roles of stores at work when a broader assortment of

products are considered. At the same time, we proposed theoretical linkages of the Ori-

ental culture that might influence the conspicuous and experiential roles of offline stores

on the purchase behavior of Chinese consumers. We find that some of these theoretical

propositions are helpful in explaining why the conspicuous aspect of stores is also found

to be present in our study context, on top of the effects emanating from the experiential

role of stores. The second contribution we provide pertains to providing finer empirical

evidence that the positive impact of stores on online purchase. We do so by drawing
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a connection between the products that were exposed to consumers in close-by stores,

with the same products that the same set of consumers purchase online. This evidence

circumvents criticisms of DID evidence based on geographical and temporal variation,

thereby validating the conclusions of a positive impact of stores found in past works.

Our study provides several managerial insights for practitioners. First, our findings

show that offline stores continue to play an important role in the digital age, and should

still be given serious consideration by retailers to complement the online channel. This

is especially in the Chinese retail scene. The confidence in Chinese market is also

reflected in Lego’s recent decision to double the number of shops in China in 2019

(Gronholt-Pedersen 2019). Second, our results indicate that offline stores enhances

both the online sales of high and low involvement products, by which in-store product

placement decisions should take into consideration. While high involvement products

generate higher per-unit profit margin, these items constitute a lower purchase frequency

compared to the low involvement counterparts. In certain cases, large purchase volume

of items with small profit margins may sometimes be more helpful in generating profits

compared to the infrequent sales of high-margin items. Retailers would need to balance

these considerations when deciding how much store space to allocate to high and low

involvement products that they carry. Finally, our study results find that offline stores

are an important vehicle for maintaining customer relationship, in that it spurs inactive

customers into making purchases with the retailer. Marketing strategies that allow for

customer retention is of crucial value to marketers in the increasingly competitive retail

landscape of retail, as consumers can easily contrast product offerings across providers

via a quick online search.

There are a few limitations of this research. First, our result is based on one re-

tailer in China by which caution is warranted when drawing conclusions to broader
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contexts. Given that the company considered in our study is a well-known brick-and-

mortar retailer, results that we get may not apply to other retailers that do not enjoy

this brand recognition. Furthermore, due to lack of data on retailer’s competitors, we

are unable to draw any inferences related to the competitive dynamics between retailers

and whether the focal retailer experiences the negative aspects of “showrooming” (i.e.,

shoppers browsing products in one retailer’s physical store and making their purchase

online from another retailer). Second, while we have significantly improved the em-

pirical identification of the estimation of the effect of physical stores by conducting a

store-product analysis, we still do not directly observe if a certain individual saw an

interacted with a product in store before making a purchase of the same product online.

We leave this as a research topic for future work, which will involve the use of video an-

alytics and facial recognition techniques to capture and identify customers in stores and

their interest in products during their shopping trips. This information when matched

to online identities and online purchase behaviors will be instrumental in generating an

even tighter identification of the effects of physical stores. Finally, our work is unable

to directly assess and contrast the difference in effects across physical stores in different

countries. Ideally, we would want to observe the same retailer operating in Western

and Oriental countries and see how the launch of new stores might shift online purchase

behaviors across cultures, so that we can pinpoint finer mechanisms that underlie be-

haviors in these geographies. Notwithstanding these limitations, our study documents

a substantial economic impact of the offline stores on online purchase, using fine-tune

data from a major Chinese retailer. We hope that our work would spur more research

in this domain.



Chapter 5

Concluding Remarks

My thesis examined data-driven decision making problems encountered in contexts

where multiple perspectives are required to inform intelligent data-driven decisions.

While various data-driven analytics methods have been applied in numerous applica-

tion domains to achieve efficient and effective decision making, adapting existing tech-

niques to deal with the multifaceted nature of practical problems remains a significant

challenge. This thesis takes a step further in addressing this issue by proposing a multi-

perspective view for data-driven model adaptation and application. Specifically, in three

essays, I respectively investigated: (1) the solutions to balance aspects of accuracy and

long tail recommendation in real-world recommender systems; (2) the provision of com-

plementary information, i.e., individual prediction reliability, for outcome prediction

models for more nuanced application and better decision support; (3) the complemen-

tary role of offline channels for product information collection and consumer purchase

decision support in e-commerce platform.

My thesis research contributes new methodologies and empirical understanding to

decision support literature in the field of Information Systems. In the first essay, we

140
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discussed the necessity of evaluating recommendation techniques beyond accuracy to ad-

dress the popularity bias in traditional recommender systems. To improve the quality of

recommendations on multiple aspects, we proposed a new method that can capture the

key relationship among niche items for relevant long tail recommendations. Comprehen-

sive experimental results compare the proposed approach to a wide variety of classical,

widely-used recommendation algorithms and demonstrate its practical benefits in accu-

racy, flexibility, and scalability, in addition to the superior long-tail recommendation.

While the first essay adapts existing methods directly to balance multiple perspec-

tives of predictive model quality for better decision support, the second essay proposed

to provide an additional aspect of information, i.e., individual prediction reliability (or

confidence, uncertainty), to complement aggregate predictive accuracy for the purpose

of more nuanced decision support. A general machine learning-based framework is also

designed to provide intuitive and highly interpretable prediction reliability estimation.

Extensive experimental results on multiple real-world datasets show that the proposed

machine-learning-based approach can significantly improve individual prediction relia-

bility estimation as compared to a number of baselines from prior work, especially in

more complex predictive scenarios.

Finally, the third essay investigated the role of retailers’ offline channel (e.g., phys-

ical stores) in consumers’ online purchase decision making using a quasi-experiment,

taking place through a nationwide retailer that expanded its physical presence during

the study period. Through a “triple-differences” framework, we provide a more di-

rect data-driven evidence on the effect of the physical channel on consumers’ online

purchases. We also find that the product showcase process can significantly increase

online transactions, suggesting the imperative function of offline channel in providing

complementary information for consumer purchase decision support.
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Findings from my thesis provide several managerial implications, both for various

information systems that adopt data-driven methodologies to provide decision support

and any businesses that use online platforms to build digital presence and facilitate

online transactions. For example, it is imperative to be cognizant of the multifaceted

nature of decision making problems in real-world applications. Decision support tech-

nologies failing to take into account multiple perspectives can lead to unintended con-

sequences. For example, popularity bias occurs when recommendation techniques are

accuracy-oriented, leaving out other aspects of recommendation evaluation. Incorpo-

rating multiple perspectives is key to the design of intelligent decision support and,

thus, the viability and sustainability of the information system. In addition, platform

or business designers can consider several ways to account for multiple perspectives for

decision support, such as by directly adapting existing methods to balance various as-

pects or by integrating complementary sources of information. Further exploration of

these insights and of new ways to facilitate multi-perspective decision making represent

a problem-rich set of directions for future research.
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