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Abstract

Reactive systems are fundamental building blocks in the development of critical safety

systems. The are called �reactive� due to the necessity of them interacting with (or

against) an unpredictable and uncontrollable environment, for an inde�nite amount of

time. As a consequence, the veri�cation of a critical system more often than not in-

volves the process of writing requirements, modeling, implementing and testing reactive

subcomponents. Research in formal veri�cation for reactive systems attempts to solve

fundamental problems in each of these processes, with an emphasis given on the cre-

ation of mathematical proofs regarding the system's safety. More importantly, it has

been shown that such proofs can lead to signi�cant savings both in development time

as well as overall production cost.

This dissertation explores the problem of reactive synthesis, where the goal is the

development of decision procedures that are able to (dis)prove the realizability of reactive

system speci�cations, as well as produce artifacts that essentially serve as witnesses

to the decision. Reactive synthesis is a problem closely related to formal veri�cation,

as it requires the development of precise, mathematical proofs of realizability. The

overwhelming majority of research conducted in this area has so far been focused in

its application to propositional speci�cation, where only operations over the Boolean

domain can be performed. For the �rst part of this thesis, we propose novel, e�cient

reactive synthesis algorithms that extend the support for propositional speci�cation to

also generate implementations when the requirements involve the use of richer theories,

such as integer and real arithmetic. We discuss the advantages and disadvantages of each

algorithm, and accompany their implementation with a formal proof of soundness. In

the second part of this dissertation, we delve into an unexplored sub-problem in reactive

iv



synthesis, where we present the �rst attempt ever to synthesize witnesses for in�nite-state

problems in which the implementation behaves in a random, diverse manner. While the

product of synthesis is typically expected to be a deterministic witness, we argue that

randomness can still be valuable in practice. To that end, we evaluate the application

of randomly-behaving solutions to problems related to fuzz testing and robot motion

planning, demonstrating how reactive synthesis can be used in an innovative way in

software engineering concepts that have not been considered before.
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Chapter 1

Introduction

Software products are integral parts of today's industry, having a vast variety of appli-

cations and use cases as a means to achieve the most e�cient, scalable and user-oriented

solutions possible. The majority of our everyday interactions include the use of software

in one way or another, and it is clear that the most subtle parts of the software's design

are the ones that dictate whether the end product will meet our needs and desires. A

subset of this software is particularly classi�ed as critical, since it is used for applica-

tions where the end result directly a�ects the user's safety [42]. Outstanding examples

of critical systems include medical devices, nuclear reactors, �ight systems, as well as the

emerging class of autonomous vehicles. Designing software for critical systems is hence

driven with a single fundamental goal: it should never be the case that the system's

behavior leads to scenarios where the user's safety is threatened. It is apparent that

designing such systems is not a process to be taken lightly, but rather demands the use

of sophisticated techniques that ideally provide a proof that the system under design

retains the desired behavior while being safe.

For the reasons above, part of the software engineering community has focused its

resources into exploring ways to reason about critical software in a transparent and

1
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well-de�ned manner. Being naturally industry-driven, the initial attempts delved into

the development of testing processes against a �nished product, where a combination

of system inputs are used to examine the system behavior and compare it against a

predetermined standard for a safe behavior [78]. While testing has proven to be one of

the most crucial parts in software development, its fundamental weakness is due to the

fact that a �nished product has to �rst exist. In consequence, major resources are usually

spent on the implementation phase, while developers make imprecise claims regarding

the level of robustness of the end product, relying usually on the team's past experience.

This comes in direct con�ict with the overall perspective in the development of critical

software, where the system's safety drives the implementation decisions, instead of being

an extra feature.

This pursuit for safety brought life to work in veri�cation, an automated process

that requires means to reason about an existing implementation, and its goal is to

provide a de�nitive answer to the developer on whether certain desired properties are

met throughout the software's execution [30]. Being able to abstract away the �ne

details was crucial to achieving this, thus researchers focused on the creation of models

as software �forests�, but always keeping the software �tree" in perspective. Working

on an abstraction makes formal reasoning and expressing properties of interest easier,

reducing the problem of veri�cation to the development of techniques that can formally

prove the safety of the abstract model with respect to those properties [59]. Researchers

in formal verification strive to take advantage of this by experimenting with the creation

of logical frameworks where an abstract representation of the system is described, then

veri�ed against a set of requirements, usually described in a language �exible enough to

express logical conjectures [30, 53].
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R1
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Figure 1.1: Realizable (tick) and unrealizable (cross) requirements

On a parallel track to advancements in formal veri�cation through model check-

ing [24] and theorem proving [40], were e�orts to identify and develop automated rea-

soning techniques over the system requirements, prior to the existence of a �nal im-

plementation [16]. The motivation was clear; a substantial amount of software failures

could be traced back to erroneous or missing requirements. Formal analysis of spec-

i�cation was thus seen as a promising step towards the development of safer critical

systems, leading not only to a higher degree of con�dence provided by a proof of the

speci�cation's consistency [52], but also to a reduction in overall costs by avoiding the

need to exhaustively debug an existing implementation. Consistency, i.e. a proof of

satis�ability of the system's desired properties, is not the only desirable characteristic

of a speci�cation, though. For the purposes of this dissertation, we explore the problem

of program synthesis [74], where we ask the following questions:

1. Given a formal specification for the desired system, does there exist an

implementation with specification-complying behavior? In other words,

is the specification realizable? Figure 1.1 provides a visual representation of
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this problem. Assume that we have a state space 𝑆 within which potential imple-

mentations exist that exercise some of these states. Given a set of requirements

(𝑅1, 𝑅2, 𝑅3 in Figure 1.1), we want to see whether an implementation exists such

that it always complies with the corresponding requirement, i.e. whether the set

of requirements is realizable. This is a typical example where the answer is essen-

tially a simple �yes� or �no�, and a decision procedure is necessary. Nevertheless, as

a useful addendum we require that the same procedure provides witnesses when

the speci�cation is unrealizable. For example, in Figure 1.1 speci�cations 𝑅2 and

𝑅3 are not realizable, since no implementation, i.e. no subset of states in 𝑆 exists

that can satisfy the corresponding requirements. This is important for the re-

quirements engineer, as it is a minimal summary of what might be wrong with the

candidate speci�cation, and provides invaluable intuition towards not only �xing

the problem, but also further understanding subtleties that cause it.

2. Given a proof of the specification’s realizability, can we define an au-

tomated procedure that will generate a witnessing program? In other

words, can we synthesize an implementation? Synthesis essentially involves

the construction of a witness of the speci�cation's realizability. The outcome is

an implementation that is guaranteed by design to always satisfy constraints ex-

pressed by the engineer through the requirements, and can be viewed as a set of

system behaviors that is su�cient to perform the given task. As it is minimal, a

lot of implementation details are abstracted away, and it is apparent that, for the

majority of its applications, it is not viewed as a candidate alternative to hand-

written implementations, but it can still be used as a means to understand what

the implementation could do, rather than how it should do it, to remain safe.

We further restrict the scope of this thesis to the area of reactive systems [57], where
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the system is required to inde�nitely respond to external inputs over which it has no

sense of control. Reactive systems are very often used as subcomponents of critical

applications. Such systems have to perform in a safe manner under any allowable en-

vironment, and it is crucial to be able to reason regarding this characteristic during

veri�cation. Program synthesis in this context is usually referred to as reactive syn-

thesis [86], with the goal being the examination on the speci�cation's realizability, as

well as the automated generation of a system that when run inde�nitely, can safely

react to its environment. Here, it is important to point out that as much e�ort is be-

ing put into writing requirements for the system, an equal amount of care is essential

with respect to capturing its environment. Reasoning without any assumptions on the

environment more often than not leads to unrealizable speci�cation, while under- and

overconstraining the environment can lead to undesirable behavior by the system, even

if an implementation for it exists.

1.1 Contributions

The objective of this thesis is to propose e�cient algorithms for the synthesis of reactive

systems. The �rst key attribute that we want to achieve is to free the user from the

burden of guiding the algorithms towards �nding a solution, thus making the entire

process completely automated. This feature comes in contrast to relevant approaches

in the area, where the user has to describe the shape of the solution through the use of

templates. The second contribution of this work is the introduction of a class of reactive

synthesis applications, for which little to no prior work existed. We thus explore the

problem of synthesizing reactive systems that exercise sets of diverse safe behaviors.

The three main research achievements presented in this dissertation are:

� a novel application of 𝑘-induction to achieve realizability checking and synthesis
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from the formal speci�cation of in�nite-state systems;

� a greatest-�xpoint synthesis procedure to overcome soundness issues in the 𝑘-

induction algorithm;

� a synthesis procedure of systems with random behavior, which enables the appli-

cation of synthesis in new, previously unexplored research problems.

The contributions are brie�y discussed in the following subsections.

1.1.1 Reactive synthesis from K-Inductive Proofs of Realizability

The mathematical principle of 𝑘-induction has been used towards the formal veri�cation

of software systems [14]. The goal in this context is to construct a 𝑘-inductive proof

that no execution trace exists, in which the system is led into a property-violating state.

While standard 1-induction would be su�cient for memoryless systems, the same does

not apply when its response depends on prior states. As such, a 𝑘-inductive proof

identi�es a least �xpoint of �nite-length paths, i.e. the shortest execution path length,

which is su�cient to reason about in order to determine the preservation of a system

property.

While 𝑘-induction has been successfully used in the context of model checking, its

usefulness with respect to the problem of program synthesis was previously unknown.

In this dissertation, we present a reactive synthesis algorithm, based on the construction

of a 𝑘-inductive proof of the speci�cation's realizability. Realizability is a prerequisite to

achieve synthesis, as an implementation can never exist for an unrealizable speci�cation.

As such, the algorithm attempts to determine whether a least �xpoint of safe states

exists, such that an implementation can be synthesized. The synthesized witness is

essentially an in�nite traversal of states belonging in the least �xpoint.



7

The resulting algorithm is automated, in the sense that the user is not involved

as a guide towards the successful synthesis of a witness. For the cases of unrealizable

scenarios, it is capable of providing an explanation using counterexample traces where the

system is eventually forced to violate at least one property. This is particularly important

in terms of identifying the reasons that cause this unrealizability to manifest, and the

requirements that contain con�icting statements. In addition, the technique is theory-

agnostic, enabling the reasoning over speci�cation with expressions that may involve

standard arithmetic, through the use of an o�-the-self Satis�ability Modulo Theories

(SMT) solver.

1.1.2 Validity-Guided Reactive Synthesis

Due to the limited capabilities of state-of-the-art SMT solvers with nested quanti�ers,

the 𝑘-induction algorithm for realizability checking was simpli�ed in such a way that

�unrealizable� results are not sound. In other words, when the algorithm declares a

speci�cation as �unrealizable�, it may be the case that this is not true, and an imple-

mentation that satis�es it can still be developed. This was the main catalyst towards

discovering a technique that, while still automated and applicable to in�nite-state prob-

lems, is also provably sound for both realizable and unrealizable speci�cations.

Towards that end, we developed a greatest �xpoint approach where the main concept

is to identify the greatest set of safe system states that can be used to generate a

reactive implementation, in a similar way to how Property Directed Reachability is used

in veri�cation [13]. The new algorithm is sound on both realizable and unrealizable

results, and takes advantage of the Model-Based Projection technique [68] as a means

to e�ciently remove unsafe states through abstraction, remaining competitive in terms

of performance with other in�nite-state reactive synthesis tools.
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1.1.3 Synthesis of Infinite-State Reactive Systems with Random Be-

havior

A synthesized witness is typically seen (and thought of) as a deterministic solution to

the original problem. As such, given the same system state and the same stimulus

provided by the system's environment, we expect to observe the same reaction by the

system, no matter how many times we run the same experiment. Still, there are potential

applications of reactive systems where determinism would either be insu�cient or simply

incompatible with the problem in question. In robot motion planning, randomness can

enable the synthesis of solutions for coverage path planning [18, 50]. Furthermore, it can

be considered as an additional safety measure when the robot has to perform against

adversaries with learning capabilities; A random strategy is inherently harder to infer

and exploit, while the current proposed techniques in active automata learning can only

be used against �nite-state black-box systems [60]. The idea of a reactive system with

random behavior also unveils an exciting application in model-based fuzz testing, where

the goal is to exhaustively test an existing system using random input sequences as test

cases. In this context, given a set of requirements and input speci�cation for the system-

under-test, we can e�ectively synthesize an ad hoc reactive fuzzer, capable of utilizing

information from prior tests (system coverage and crashes), to improve overall system

input coverage.

In this context, we present the �rst approach towards synthesizing random1 reactive

systems for in�nite-state problems. The idea of identifying such permissive strategies

was �rst proposed through the Reactive Control Improvization framework [45], which

currently only supports �nite-state speci�cations. Our proposed work de�nes a novel

Skolemization algorithm within AE-VAL, a validity detection tool for ∀∃ formulas,

1For the sake of brevity, throughout the paper, we refer to systems that exercise random behavior
using the adjective random (e.g. random system/design/witness/controller).
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utilizing the concept of uninterpreted random number generators to capture a range of

possible safe reactions, instead of deterministically opting for a speci�c reaction within

that range. The random solutions can exhibit diverse behavior leading to bigger overall

coverage of the problem's state space, and in the context of fuzz testing, function as

competitive reactive fuzzers against state-of-the-art tools, in terms of both raw system

coverage and capability of exposing vulnerabilities.

1.2 Thesis Outline

The remainder of this thesis is structured as follows:

Chapter 2 presents the state-of-the-art in reactive synthesis, and identi�es the key

distinctions between prior work in the area and the techniques presented in this thesis.

Chapter 3 provides the essential formal notations and de�nitions for this work.

Chapter 4 presents a reactive synthesis algorithm, namely JSyn, for in�nite-state

problems based on the construction of a 𝑘-inductive proof of realizability. First, we

demonstrate how realizability checking is possible using the principle of 𝑘-induction and

show how theorem proving can be used to construct machine-checked proofs of JSyn's

soundness on �realizable" results. We then proceed to de�ne a synthesis procedure which,

when provided with the 𝑘-inductive proof, generates a witness reactive implementation.

As the product of a Skolemization procedure over a mathematically proven proof, the

witness is speci�cation compliant by construction.

Chapter 5 presents the second synthesis algorithm, namely JSyn-vg, for which the

objective was to identify a realizability checking decision procedure that provides sound

answers, both for realizable and unrealizable contracts. In comparison to JSyn, JSyn-

vg uses a greatest-�xpoint approach, capable of identifying an inductive set of con-

straints that uniquely identi�es the states that can be used towards the synthesis of a

safe witness.
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Chapter 6 introduces the concept of synthesis of random reactive systems, and pro-

poses a novel Skolemization algorithm in order to achieve diversity of behaviors within a

synthesized witness. The algorithm is supplemented by two case studies on applications

which can bene�t from the use of a random reactive system.

Finally, Chapter 7 concludes this dissertation by providing a summary over its con-

tributions, as well as an extensive discussion on future research directions.



Chapter 2

Related Work

Program synthesis is also known as �Church's problem�, since it was �rst formally de-

scribed by Alonzo Church in 1963 [19]. In the 1970s, Manna and Waldinger [74] �rst in-

troduced a synthesis procedure using principles of theorem proving. Almost two decades

later, Pnueli and Rosner [86] �rst formally described the implementability of reactive

systems, considering �rst order logic formulas that stem from temporal speci�cations.

In the same work, they provided a complete approach to synthesize �nite-state imple-

mentations through the construction of deterministic Rabin automata [98].

In the recent years, program synthesis has enjoyed a vast variety of contributions

under numerous contexts. Gulwani [51] presented an extended survey, hinting future

research directions. Synthesis algorithms have been proposed for simple LTL speci�ca-

tion [11, 99] subsets of it [17, 32, 67], as well as under other temporal logics [56, 76], such

as SIS [4]. Chatterjee and Henzinger [15] proposed a novel component-based approach

using the notion of Assume-Guarantee contracts.

Inductive synthesis is an active area of research where the main goal is the generation

of an inductive invariant that can be used to describe the space of programs that are

guaranteed to satisfy the given speci�cation [41]. This idea is mainly supported by

11
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the use of SMT solvers to guide the invariant re�nement through traces that violate

the requirements, known as counterexamples. Our approach di�erentiates from this

approach by only considering the capability of constructing k-inductive proofs, with no

further re�nement of the problem space.

Template-based approaches to synthesis described in [6, 95] focus on the exploration

of programs that satisfy a speci�cation that is re�ned after each iteration, following the

basic principles of deductive synthesis. In particular, the E-HSF engine used in Con-

Synth [6], uses a prede�ned set of templates to search for potential Skolem relations

and thus to solve ∀∃-formulas. In contrast, our synthesis algorithms are template-free.

In addition, enumeration techniques such as the one used in E-HSF is not an optimal

strategy for our class of problems, since the witnesses constructed for the most com-

plex contracts are described by nested if-then-else expressions of depth (i.e. number of

branches) 10-20, a point at which space explosion is di�cult to handle since the number

of candidate solutions is large.

A rather important contribution in the area is the recently published work by Ryzhyk

and Walker [92], where they share their experience in developing and using a reactive

synthesis tool called Termite for device drivers in an industrial environment. The

driver synthesis uses a predicate abstraction technique [102] to e�ciently cover the state

space for both safety and liveness GR(1) speci�cations, leveraging the theory of �xed-

size vectors. The authors adopt a user-guided approach, that continuously interacts with

the user in order to combat ambiguities in the speci�cation. In contrast, our approach

supports safety speci�cations using in�nite-state, linear-arithmetic domains and follows

a �hands-o��, automated process.

Iterative strengthening of candidate formulas is also used in abductive inference [28]

of loop invariants. Their approach generates candidate invariants as maximum universal

subsets (MUS) of quanti�er-free formulas of the form 𝜑 ⇒ 𝜓. While a MUS may be
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su�cient to prove validity, it may also mislead the invariant search, so the authors use a

backtracking procedure that discovers new subsets while avoiding spurious results. By

comparison, in our approach the regions of validity are maximal and therefore back-

tracking is not required. More importantly, reactive synthesis requires mixed-quanti�er

formulas, and it requires that inputs are unconstrained (other than by the contract as-

sumptions), so substantial modi�cations to the MUS algorithm would be necessary to

apply the approach of [28] for reactive synthesis.

The concept of synthesizing implementations by discovering �xpoints was mostly

inspired by the IC3 algorithm, otherwise known as Property Directed Reachability [13,

31], which was �rst introduced in the context of veri�cation. Work from Cimatti et

al. e�ectively applied this idea for the parameter synthesis in the HyComp model

checker [20, 21]. Discovering �xpoints to synthesize reactive designs was �rst extensively

covered by Piterman et al. [85] who proved that the problem can be solved in cubic

time for the class of GR(1) speci�cations. The algorithm requires the discovery of

least �xpoints for the state variables, each one covering a greatest �xpoint of the input

variables. If the speci�cation is realizable, the entirety of the input space is covered by

the greatest �xpoints. In contrast, our approach computes a single greatest �xpoint over

the system's outputs while avoiding any overconstraining of the input space. As the tools

use di�erent notations and support di�erent logical fragments, practical comparisons are

not straightforward.

More recently, Preiner et al. presented work on model synthesis [87], that employs a

counterexample-guided re�nement process [90] to construct and check candidate models.

Internally, it relies on enumerative learning, a syntax-based technique that enumerates

expressions, checks their validity against ground test cases, and proceeds to generalize the

expressions by constructing larger ones. In contrast, our approach is syntax-insensitive

in terms of generating regions of validity.
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As the most relevant work to this thesis, Neider and Markgraf recently proposed DT-

Synth, a reactive synthesis algorithm that takes advantage of active automata learning

strategies, where a �teacher� and a �learner� work cooperatively towards synthesizing

a winning strategy, repetitively re�ning it with respect to erroneous or incomplete hy-

potheses [79]. In comparison to DT-Synth, we present two approaches that rely on

fundamentally di�erent principles (𝑘-indunction, �xpoint computation), and, in the case

of JSyn-vg, show how our validity-guided approach leads to competitive performance.

Synthesizing reactive implementations with random behavior has only recently been

expressed formally through the Control Improvisation framework [29, 44, 45], where

Daniel Fremont et al. present a theoretical approach to synthesizing randomly-behaving

reactive controllers from speci�cations that contain traditional �hard� (typically safety)

properties, in addition to a set of �soft� requirements which the controller does not need

to satisfy at all times. The randomness introduced is particularly desirable in appli-

cations such as robot motion planning, as well as the synthesis of reactive fuzzers for

e�cient test generation and, consequently, improved coverage of the system under test.

The authors of the framework thus far have limited their approach to solving �nite

games. On the contrary in our work, we introduce a practical synthesis framework for

reactive fuzzers that allows the use of speci�cation that admits in�nite theories.



Chapter 3

Formal Background

3.1 Reactive systems and Two-player Games

A common way to formally describe a reactive system is using the mathematical notion

of an in�nitely long two-player game, where each player strives to achieve an objective

with respect to uncontrollable input provided by the opponent. Similarly, a critical reac-

tive system has to inde�nitely respond to its unpredictable environment, while satisfying

a prede�ned set of safety properties. In the context of this proposal, we discuss vari-

ous concepts using a variation of the minimum-backlog problem, the two player game

between Cinderella and her wicked Stepmother, �rst expressed by Bodlaender et al. [9].

The main objective for Cinderella (i.e. the reactive system) is to prevent a collection

of buckets from over�owing with water. On the other hand, Cinderella's Stepmother (i.e.

the system's environment) re�lls the buckets with a prede�ned amount of water that is

distributed in a random fashion between the buckets. For the running example, we chose

an instance of the game that has been previously used in template-based synthesis [6].

In this instance, the game is described using �ve buckets that are placed around in a

circle and each bucket can contain up to two units of water. Cinderella has the option

15
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Assumptions

•

•

ik � 0
5X

k=1

ik = 1

Implementation
(Cinderella)

?
ik bk, e

(
5, if k = 1

k � 1, otherwiseb0k =

(
0, if e = k _ e =

bk + ik, otherwise

Guarantees

•

•

•

bk = 0 (initially)

b0k  2

Figure 3.1: An Assume-Guarantee contract.

to empty two adjacent buckets at each of her turns, while the Stepmother distributes

one unit of water over all �ve buckets.

3.2 Assume-Guarantee Contracts

One popular way to represent the system requirements is by using an Assume-Guarantee

Contract. The assumptions of the contract restrict the possible inputs that the envi-

ronment can provide to the system, while the guarantees describe safe reactions of the

system to the outside world.

A (conceptually) simple example is shown in Figure 5.1. The contract describes a

possible set of requirements for a speci�c instance of the Cinderella-Stepmother game.

Our goal is to synthesize an implementation that describes Cinderella's winning region

of the game. Cinderella in this case is the implementation, as shown by the middle box

in Figure 5.1. Cinderella's inputs are �ve di�erent values 𝑖𝑘, 1 ≤ 𝑘 ≤ 5, determined

by a random distribution of one unit of water by the Stepmother. During each of her

turns Cinderella has to make a choice denoted by the output variable 𝑒, such that the

buckets 𝑏𝑘 do not over�ow during the next action of her Stepmother. We de�ne the

contract using the set of assumptions 𝐴 (left box in Figure 5.1) and the guarantee

constraints 𝐺 (right box in Figure 5.1). For the particular example, it is possible to

construct at least one implementation that satis�es 𝐺 given 𝐴. The proof of existence

of such an implementation is the main concept behind the realizability problem, while
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the automated construction of a witness implementation is the main focus of program

synthesis.

Given a proof of realizability of the contract in Figure 5.1, we are seeking an e�cient

synthesis procedure that could provide an implementation. On the other hand, consider

a variation of the example, where 𝐴 = true. This is a practical case of an unrealizable

contract, as there is no feasible Cinderella implementation that can correctly react to

Stepmother's actions. A possible counterexample to realizability allows the Stepmother

to pour random amounts of water into the buckets, leading to over�ow of at least one

bucket during each of her turns.

3.3 Formal Semantics

We use state to represent both internal state and external outputs. A transition system

is a pair (𝐼, 𝑇 ) where 𝐼 : state → bool holds on the initial states states and 𝑇 : state ×

input× state→ bool holds on 𝑇 (𝑠, 𝑖, 𝑠′) when the system can transition from state 𝑠 to

state 𝑠′ on receipt of input 𝑖. A path in this context is a sequence of transitions starting

from an initial state, where each transition results to a new state that is compatible with

respect to the de�ned transition relation.

A contract speci�es the desired behavior of a transition system. A contract is a pair

(𝐴,𝐺) of an assumption and a guarantee. The assumption 𝐴 : state × input → bool

speci�es for a given system state which inputs are valid. The guarantee 𝐺 is a pair

(𝐺𝐼 , 𝐺𝑇 ) of an initial guarantee and a transitional guarantee. The initial guarantee

𝐺𝐼 : state → bool speci�es which states the system may start in, that is, the possible

initial internal state and external outputs. The transitional guarantee 𝐺𝑇 : state ×

input × state → bool speci�es for a given state and input what states the system may

transition to.

We now de�ne what it means for a transition system to realize a contract. This
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requires that the system respects the guarantee for inputs which meet the assumptions.

Moreover, the system must always remain responsive with respect to these inputs. In

order to make this de�nition precise, we �rst need to de�ne which system states are

reachable given some assumptions on the system inputs.

Definition 3.3.1 (Reachable with respect to assumptions). Let (𝐼, 𝑇 ) be a transition

system and let 𝐴 : state× input→ bool be an assumption. A state of (𝐼, 𝑇 ) is reachable

with respect to 𝐴 if there exists a path starting in an initial state and eventually reaching

𝑠 such that all transitions satisfy the assumptions. Formally, Reachable𝐴(𝑠) is de�ned

inductively by

Reachable𝐴(𝑠) = 𝐼(𝑠) ∨ ∃𝑠prev, 𝑖. Reachable𝐴(𝑠prev) ∧𝐴(𝑠prev, 𝑖) ∧ 𝑇 (𝑠prev, 𝑖, 𝑠)

Definition 3.3.2 (Realization). A transition system (𝐼, 𝑇 ) is a realization of the con-

tract (𝐴, (𝐺𝐼 , 𝐺𝑇 )) when the following conditions hold

1. ∀𝑠. 𝐼(𝑠)⇒ 𝐺𝐼(𝑠)

2. ∀𝑠, 𝑖, 𝑠′. Reachable𝐴(𝑠) ∧𝐴(𝑠, 𝑖) ∧ 𝑇 (𝑠, 𝑖, 𝑠′)⇒ 𝐺𝑇 (𝑠, 𝑖, 𝑠
′)

3. ∃𝑠. 𝐼(𝑠)

4. ∀𝑠, 𝑖. Reachable𝐴(𝑠) ∧𝐴(𝑠, 𝑖)⇒ ∃𝑠′. 𝑇 (𝑠, 𝑖, 𝑠′)

The �rst two conditions in De�nition 3.3.2 ensure that the transition system respects

the guarantees. The second two conditions ensure that the system is non-trivial and

responsive to all valid inputs.

Definition 3.3.3 (Realizable). A contract is realizable if there exists a transition system

which is a realization of the contract.
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De�nitions 3.3.2 and 3.3.3 are useful for directly de�ning realizability, but not very

useful for checking realizability. We now develop an equivalent notion which is more

suggestive and amenable to checking. This is based on a notion called viability. Intu-

itively, a state is viable with respect to a contract if being in that state does not doom

a realization to failure. We can capture this notion without reference to any speci�c

realization, because condition 2 in the de�nition of realization tells us that 𝐺𝑇 is an

over-approximation of any 𝑇 .

Definition 3.3.4 (Viable). A state 𝑠 is viable with respect to a contract (𝐴, (𝐺𝐼 , 𝐺𝑇 )),

written Viable(𝑠), if 𝐺𝑇 can keep responding to valid inputs forever, starting from 𝑠.

Informally, one can say that a state 𝑠 is viable if it satis�es the in�nite formula:

∀𝑖1. 𝐴(𝑠, 𝑖1)⇒ ∃𝑠1. 𝐺𝑇 (𝑠, 𝑖1, 𝑠1) ∧ ∀𝑖2. 𝐴(𝑠1, 𝑖2)⇒ ∃𝑠2. 𝐺𝑇 (𝑠1, 𝑖2, 𝑠2) ∧ ∀𝑖3. · · ·

Formally, viability is de�ned coinductively by the following equation

Viable(𝑠) = ∀𝑖. 𝐴(𝑠, 𝑖)⇒ ∃𝑠′. 𝐺𝑇 (𝑠, 𝑖, 𝑠
′) ∧ Viable(𝑠′)

Theorem 3.3.1 (Alternative realizability). A contract (𝐴, (𝐺𝐼 , 𝐺𝑇 )) is realizable if and

only if ∃𝑠. 𝐺𝐼(𝑠) ∧ Viable(𝑠).

Proof. For the �only if� direction the key lemma is ∀𝑠. Reachable𝐴(𝑠) ⇒ Viable(𝑠).

This lemma is proved by coinduction and follows directly from conditions 2 and 4 of

De�nition 3.3.2. Then by conditions 1 and 3 we have some state 𝑠 such that 𝐼(𝑠) and

𝐺𝐼(𝑠). Thus Reachable𝐴(𝑠) holds and applying the lemma we get 𝐺𝐼(𝑠) ∧ Viable(𝑠).

For the �if� direction, let 𝑠0 be such that 𝐺𝐼(𝑠0) and Viable(𝑠0). De�ne 𝐼(𝑠) = (𝑠 =

𝑠0) and 𝑇 (𝑠, 𝑖, 𝑠
′) = 𝐺𝑇 (𝑠, 𝑖, 𝑠

′) ∧ Viable(𝑠′). Conditions 1, 2, and 3 of De�nition 3.3.2
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are clearly satis�ed. Condition 4 follows from the observation that ∀𝑠. Reachable𝐴(𝑠)⇒

Viable(𝑠) and from the de�nition of viability.

Assuming that a contract is realizable with respect to De�nition 3.3.1, we can then

describe the program synthesis problem using the following de�nition.

Definition 3.3.5 (Synthesis from realizable contracts). Determine an initial state 𝑠𝑖

and function 𝑓(𝑠, 𝑖) such that 𝐺𝐼(𝑠𝑖) and ∀𝑠, 𝑖.Viable(𝑠)⇒ Viable(𝑓(𝑠, 𝑖)).

We will use this de�nition in future chapters to describe the correctness of di�erent

synthesis algorithms.



Chapter 4

Synthesis from K-Inductive Proofs

of Realizability

Our �rst synthesis algorithm is based on the idea of constructing k-inductive proofs of

correctness, a prominent technique that has been successfully used in formal veri�cation.

In the context of synthesis, a proof of the speci�cation's correctness is formally replaced

by the notion of realizability. In Section 4.1 we present two di�erent formal approaches

to determine the realizability of a given speci�cation and in Section 4.2 we propose a

sound algorithm to synthesize implementations given a 𝑘-inductive proof of realizability.

4.1 Realizability Checking using K-Induction

In this section we describe two versions of an algorithm for automatically checking

the realizability of a contract. The �rst version is based on Theorem 3.3.1 together

with under- and over-approximations of viability. An over-approximation is useful to

show that a contract is not viable, while an under-approximation is useful to show

that a contract is viable. The algorithm itself is intractable, and as such we present

21
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an alternative procedure that mitigates the di�culty that solvers would otherwise face

when dealing with the original formulas.

We �rst de�ne an over-approximation of viability called finite viability based on a

�nite unrolling of the de�nition of viability. Because this is an over-approximation, if a

contract does not have an initial state which is �nitely viable, then the contract is not

viable. We formalize this when we prove the correctness of the realizability algorithm.

Definition 4.1.1 (Finite viability). A state 𝑠 is viable for 𝑛 steps, written Viable𝑛(𝑠) if

𝐺𝑇 can keep responding to valid inputs for at least 𝑛 steps. That is,

Viable𝑛(𝑠) , ∀𝑖1. 𝐴(𝑠, 𝑖1)⇒ ∃𝑠1. 𝐺𝑇 (𝑠, 𝑖1, 𝑠1)∧

∀𝑖2. 𝐴(𝑠1, 𝑖2)⇒ ∃𝑠2. 𝐺𝑇 (𝑠1, 𝑖2, 𝑠2) ∧ · · · ∧

∀𝑖𝑛. 𝐴(𝑠𝑛−1, 𝑖𝑛)⇒ ∃𝑠𝑛. 𝐺𝑇 (𝑠𝑛−1, 𝑖𝑛, 𝑠𝑛)

All states are viable for 0 steps.

We next de�ne an under-approximation of viability based on one-step extension.

This notion looks if 𝐺𝑇 can respond to valid inputs given a �nite historical trace of valid

inputs and states.

Definition 4.1.2 (One-step extension). A state 𝑠 is extendable after 𝑛 steps, written

Extend𝑛(𝑠), if any valid path of length 𝑛 from 𝑠 can be extended in response to any

input. That is,

Extendn(s) , ∀𝑖1, 𝑠1, . . . , 𝑖𝑛, 𝑠𝑛.

𝐴(𝑠, 𝑖1) ∧𝐺𝑇 (𝑠, 𝑖1, 𝑠1) ∧ · · · ∧𝐴(𝑠𝑛−1, 𝑖𝑛) ∧𝐺𝑇 (𝑠𝑛−1, 𝑖𝑛, 𝑠𝑛) =⇒

∀𝑖. 𝐴(𝑠𝑛, 𝑖) =⇒ ∃𝑠′. 𝐺𝑇 (𝑠𝑛, 𝑖, 𝑠
′)
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We now use these two notions to formally de�ne our realizability algorithm. The

core of the algorithm is based on two checks called the base and extend check.

Definition 4.1.3 (Realizability Algorithm). De�ne the checks:

BaseCheck(𝑛) , ∃𝑠. 𝐺𝐼(𝑠) ∧ Viable𝑛(𝑠)

ExtendCheck(𝑛) , ∀𝑠. Extend𝑛(𝑠)

The following algorithm checks for realizability or unrealizability of a contract.

1 for 𝑛 = 0 to ∞ do

2 if ¬BaseCheck(𝑛) then
3 return unrealizable;
4 else if ExtendCheck(𝑛) then
5 return realizable;

6 end

Theorem 4.1.1 (Soundness of �unrealizable� result). If ∃𝑛. ¬BaseCheck(𝑛) then the

contract is not realizable.

Proof. By induction on 𝑛 we prove ∀𝑠, 𝑛. Viable(𝑠)⇒ Viable𝑛(𝑠). The result then follows

from Theorem 3.3.1.

Theorem 4.1.2 (Soundness of �realizable� result). If ∃𝑛. BaseCheck(𝑛)∧ExtendCheck(𝑛)

then contract is realizable.

Proof. First we show how Extend𝑛(𝑠) can be used to shift Viable𝑛(𝑠) forward. The

following is proved by induction on 𝑛.

∀𝑠, 𝑛, 𝑖. Extend𝑛(𝑠) ∧ Viable𝑛(𝑠) ∧𝐴(𝑠, 𝑖)⇒ ∃𝑠′. 𝐺𝑇 (𝑠, 𝑖, 𝑠
′) ∧ Viable𝑛(𝑠

′)
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Using this lemma we can show the following by coinduction.

∀𝑠, 𝑛. Viable𝑛(𝑠) ∧ ExtendCheck(𝑛)⇒ Viable(𝑠)

The result then follows from Theorem 3.3.1.

Corollary 4.1.1 (Soundness of Realizability Algorithm). The Realizability Algorithm

is sound.

Due to the approximations used to de�ne BaseCheck(𝑛) and ExtendCheck(𝑛), the

algorithm is incomplete. The following two examples show how both realizable and

unrealizable contracts may send the algorithm into an in�nite loop.

Example 4.1.1 (Incompleteness of �realizable� result). Suppose the type 𝑠𝑡𝑎𝑡𝑒 is inte-

gers. Consider the contract:

𝐴(𝑠, 𝑖) = ⊤ 𝐺𝐼(𝑠) = ⊤ 𝐺𝑇 (𝑠, 𝑖, 𝑠
′) = (𝑠 ̸= 0)

This contract is realizable by, for example, a system that starts in state 1 and always

transitions into the same state. Yet, for all 𝑛, ExtendCheck(𝑛) fails since one can take

a path of length 𝑛 which ends at state 0. This path cannot be extended.

Example 4.1.2 (Incompleteness of �unrealizable� result). Suppose the type 𝑠𝑡𝑎𝑡𝑒 is

integers. Consider the contract:

𝐴(𝑠, 𝑖) = ⊤ 𝐺𝐼(𝑠) = (𝑠 ≥ 0) 𝐺𝑇 (𝑠, 𝑖, 𝑠
′) = (𝑠′ = 𝑠− 1 ∧ 𝑠′ ≥ 0)

This contract is not realizable since in any realization the state 0 would be reachable, but

the contract does not allow a transition from state 0. However, BaseCheck(𝑛) holds for

all 𝑛 by starting in state 𝑠 = 𝑛.
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Implementing this algorithm requires a way of automatically checking the formulas

BaseCheck(𝑛) and ExtendCheck(𝑛) for validity. This can be done in an SMT-solver

that supports quanti�ers over the language the contract is expressed in. Checking

ExtendCheck(𝑛) is rather nice in this setting since it has only a single quanti�er al-

ternation. Moreover, using an incremental SMT-solver one can reuse much of the work

done to check ExtendCheck(𝑛) to also check ExtendCheck(𝑛+1). However, BaseCheck(𝑛)

is problematic. First, it has 2𝑛 quanti�er alternations which puts even small cases out-

side the reach of modern SMT-solvers. Second, the quanti�ers make it impractical to

reuse the results of BaseCheck(𝑛) in checking BaseCheck(𝑛 + 1). Finally, due to the

quanti�ers, a counterexample to BaseCheck(𝑛) would be di�cult to relay back to the

user. Thus we need a simpli�cation of BaseCheck(𝑛) in order to make our algorithm

practical.

Definition 4.1.4 (Simpli�ed base check). De�ne a simpli�ed base check which checks

that any path of length 𝑛 from an initial state can be extended one step.

BaseCheck′(𝑛) , ∀𝑘 < 𝑛.(∀𝑠.𝐺𝐼(𝑠) =⇒ Extend𝑘(𝑠))

First, note that this check has a single quanti�er alternation. Second, this check can

leverage the incremental features in an SMT-solver to use the results of BaseCheck′(𝑛) in

checking BaseCheck′(𝑛+1). Finally, when this check fails it can return a counterexample

which is a trace of a system realizing the contract for 𝑛 steps, but then becoming stuck.

This provides very concrete and useful feedback to system developers. The correctness

of this check is captured by the following theorem.

Theorem 4.1.3 (One-way soundness of simpli�ed base check).

(∃𝑠. 𝐺𝐼(𝑠))⇒ ∀𝑛. BaseCheck′(𝑛)⇒ BaseCheck(𝑛)
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Proof. By induction on 𝑛 we can easily prove that:

∀𝑠, 𝑛. Extend𝑛(𝑠) ∧ Viable𝑛(𝑠)⇒ Viable𝑛+1(𝑠)

The �nal result follows using this and induction on 𝑛.

Thus replacing BaseCheck(𝑛) in the realizability algorithm with BaseCheck′(𝑛) pre-

serves soundness of the �realizability� result. However, because the implication in Theo-

rem 4.1.3 is only in one direction, the algorithm is no longer sound for the �unrealizable�

result. That is, it may return a counterexample showing 𝑛 steps of a realization of the

contract that gets into a stuck state. The following example makes this point explicit.

Example 4.1.3. Consider again Example 4.1.1 where the type 𝑠𝑡𝑎𝑡𝑒 is integers and the

contract is:

𝐴(𝑠, 𝑖) = ⊤ 𝐺𝐼(𝑠) = ⊤ 𝐺𝑇 (𝑠, 𝑖, 𝑠
′) = (𝑠 ̸= 0)

As before, this contract is easily realizable. However, BaseCheck′(𝑛) fails for all 𝑛 since

it will consider a path starting at state 𝑛 and transitioning 𝑛 steps to state 0 where no

more transitions are possible.

4.1.1 Implementation

We have built an implementation of the realizability algorithm as an extension to

JKind [47], a re-implementation of the KIND model checker [54] in Java. Our tool

is called JRealizability and is packaged with JKind1. The model's behavior is described

in the Lustre language, which is the native input language of JKind and is used as an

intermediate language for the AGREE tool suite, where contracts are typically expressed

1Latest release as of the time of writing this dissertation is 4.3.0.
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using the architecture description language AADL [25, 93].

We unroll the transition relation de�ned by the Lustre model into SMT problems

(one for the base check and another for the extend check) which can be solved in parallel.

We use the SMT-LIB Version 2 format which most modern SMT solvers support [5]. The

most signi�cant issue for SMT solvers involves quanti�er support, so we use the Z3 SMT

solver [27] which has good support for reasoning over quanti�ers and incremental search.

The tool is often able to provide an answer for models containing integer and real-valued

variables very quickly (in less than a second). Because of the use of quanti�ers over a

range of theories, it is possible that for one of the checks, Z3 returns unknown; in this

case, we discontinue analysis. In addition, because our realizability check is incomplete,

the tool terminates analysis when either a timeout or a user-speci�ed max unrolling

depth (default: 200) is reached. In this case we are able to report how far the base check

reached which may provide some con�dence in the realizability of the system.

4.1.2 Case Studies on Realizability Checking

As a part on testing the algorithm in actual components, we examined three di�erent

cases: a quad-redundant �ight control system, a medical infusion pump, and a simple

microwave controller. In this section, we provide a brief description of each case study

and summarize the results in Table 4.1 at the end of the section.

Quad-Redundant Flight Control System

We ran our realizability analysis on a Quad-Redundant Flight Control System (QFCS)

for NASA's Transport Class Model (TCM) aircraft simulation. We were provided with a

set of English language requirements for the QFCS components and a description of the

architecture. We modeled the architecture in AADL and the component requirements

as assume/guarantee contracts in AGREE. As the name suggests, the QFCS consists
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of four redundant Flight Control Computers (FCCs). Each FCC contains components

for handling faults and computing actuator signal values. One of these components is

the Output Signal Analysis and Selection component (OSAS). The OSAS component

is responsible for determining the output gain for signals coming from the control laws

and going to the actuators. The output signal gain is determined based on the number

of other faulty FCCs or based on failures within the FCC containing the OSAS compo-

nent. The OSAS component contains 17 English language requirements including the

following:

OSAS-S-170 � If the local Cross Channel Data Link (CCDL) has failed, OSAS

shall set the local actuator command gain to 1 (one).

OSAS-S-240 � If OSAS has been declared failed by CCDL, OSAS shall set the

actuator command gain to 0 (zero).

We formalized these requirements using the following guarantees:

guarantee : ccdl failed⇒ (fcc gain′ = 1)

guarantee : osas failed⇒ (fcc gain′ = 0)

These guarantees are contradictory in the case when the local CCDL has failed and

the local CCDL reports to the OSAS that the OSAS has failed. This error eluded the

engineers who originally drafted the requirements as well as the engineers who formalized

them. In this case, there should be an assumption that if the CCDL has failed then it

will not report to the OSAS that the OSAS has failed. This was not part of the original

requirements. However, AGREE's realizability analysis was able to identify the error

and provide a counterexample.
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Medical Device Example

Our realizability tool was also used to verify the realizability of the components in the

Generic Patient Controlled Analgesia infusion pump system that was described in [77].

The controller consists of six subcomponents that were given as input for the tool to

verify the requirements described inside. While �ve of the models were proven to be

realizable, a subtly incorrect requirement de�nition was found in the contract for the

controller's infusion manager.

GPCA-1 - The mode range of the controller shall be one of nine di�erent modes.

If the controller is in one of the �rst two modes the commanded �ow rate shall be

zero.

guarantee :

(IM OUT.Current System Mode′ ≥ 0) ∧

(IM OUT.Current System Mode′ ≤ 8) ∧

(IM OUT.Current System Mode′ = 0⇒

IM OUT.Commanded Flow Rate′ = 0)∧

(IM OUT.Current System Mode′ = 1⇒

IM OUT.Commanded Flow Rate′ = 0)

(4.1)

GPCA-2 - Whenever the alarm subsystem has detected a high severity hazard,

then Infusion Manager shall never infuse drug at a rate more than the speci�ed

Keep Vein Open rate.



30

guarantee :

(TLM MODE IN.System On′∧

ALARM IN.Highest Level Alarm′ = 3)⇒

(IM OUT.Commanded Flow Rate′ = CONFIG IN.Flow Rate KVO′)

(4.2)

The erroneously de�ned guarantee (4.2) tries to assert that the

IM OUT.Commanded Flow Rate to some (potentially non-zero) Flow Rate KVO if

the alarm input is 3; however, this may occur when the IM OUT.Current System Mode

is computed to be zero or one, in which case the �ow rate is commanded to be 0. While

discovering and �xing the problem was not di�cult, the error was not discovered by the

regular consistency check in AGREE.

Microwave Assignment

The third case study originates from a class assignment on AGREE in a graduate-level

software engineering class at the University of Minnesota. The students were organized

into six teams of four members. Each team was asked to specify the control software

for a simpli�ed microwave oven in AADL using a virtual integration approach. The

software was split into two subsystems: one for controlling the heating element and

another for controlling the display panel, with several requirements for each subsystem.

The goal was to formalize these component-level requirements and use them to prove

three system-level safety requirements.

Table 4.1 shows the corresponding results for each team, named as MT1, MT2, etc.

While every team but one managed to provide an implementable set of requirements

for the microwave's mode controller, there were several interesting cases involving the

display control component. As an example, consider the two following requirements.
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Microwave-1 - While the microwave is in cooking mode, seconds to cook shall

decrease.

Microwave-3 - When the keypad is initially enabled, if no digits are pressed, the

value shall be zero.

Team 6 formalized these requirements as

guarantee : (cooking mode′ = 2)⇒ (seconds to cook′ = seconds to cook− 1)

guarantee : (¬keypad enabled ∧ keypad enabled′ ∧ ¬any digit pressed′)⇒

(seconds to cook′ = 0)

In the counterexample provided, the state where the microwave is cooking

(cooking mode = 2) and no digit is pressed creates a con�ict regarding which value

is assigned to the seconds to cook variable: should it decrease by one, or be assigned

to zero? This counterexample is interesting because it indicates a missing assumption

on the environment: the keypad is not enabled when the cooking mode is 2 (cooking).

Without this assumption about the inputs, the guarantees are not realizable.

Table 4.1 contains the exact results that were obtained during the three case studies.

Every �realizable� result was determined to be correct since an implementation was

produced for each of the components analyzed, ensuring the accuracy of the tool. Every

contract that was identi�ed as �unrealizable� was manually con�rmed to be unrealizable,

i.e., there were no spurious results. Additionally, the number of steps that the base check

required to provide a �nal answer was not more than one, with the unknown results being

particularly interesting, as the tool timed out before the solver was able to provide a

concrete answer. This shows that there is still work to be done in terms of the algorithm's
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Case study Model Result Time elapsed (seconds)
Base check depth

(# of steps)

QFCS FCS realizable 1.762 0

QFCS FCC unrealizable 0.981 1

GPCA Infusion Manager unrealizable 0.2 1

GPCA Alarm realizable 0.316 0

GPCA Con�g realizable 0.102 0

GPCA OutputBus realizable 0.201 0

GPCA System Status realizable 0.203 0

GPCA Top Level realizable 0.103 0

MT 1 Mode Control realizable 0.229 0

MT 1 Display Control unrealizable 0.207 1

MT 2 Mode Control realizable 0.202 0

MT 2 Display Control unknown 1000 (tool timeout) 1

MT 3 Mode Control realizable 0.203 0

MT 3 Display Control unrealizable 0.202 1

MT 4 Mode Control realizable 0.202 0

MT 4 Display Control unrealizable 0.521 1

MT 5 Mode Control unrealizable 0.1 1

MT 5 Display Control unrealizable 0.222 1

MT 6 Mode Control realizable 0.201 0

MT 6 Display Control unknown 1000 (tool timeout) 1

Table 4.1: Realizability checking results for case studies

scalability, as well as an e�cient way to eliminate quanti�ers, making the solving process

easier for Z3.

4.1.3 Machine-Checked Proofs for K-inductive Realizability Checking

Algorithms

In the previous sections, we presented how k-induction can be used as the main engine

in checking the realizability of contracts. We provided hand-proofs for several aspects

of two algorithms related to the soundness of the approach with respect to both proofs

and counterexamples.

Unfortunately, hand proofs of complex systems often contain errors. Given the criti-

cality of realizability checking to our tool chain and the soundness of our computational

proofs, we would like a higher level of assurance than hand proofs can provide. In this
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section, we provide a formalization of machine-checked proofs of correctness that ensure

that the proposed 𝑘-inductive realizability algorithms will perform as expected, using

the Coq proof assistant.2 The facilities in Coq, notably mixed use of induction and

co-induction, make the construction of the proofs relatively straightforward. The pre-

sented approach illustrates how interactive theorem proving and SMT solving can be

used together in a pro�table way; Interactive theorem proving is used for describing the

soundness of the realizability checking algorithm, and the algorithm is then implemented

using a SMT solver, which can automatically solve complex veri�cation instances.

The work presented in this section is the �rst machine-checked formalization (to

our knowledge) of a realizability checking algorithm. This is an important problem for

both compositional veri�cation involving virtual integration and component synthesis.

In addition, the formalization process exposed errors regarding our initial de�nitions,

including necessary assumptions to one of the main theorems to be proved and an error

in the de�nition of realizability itself (we present these later in this section). While these

errors did not ultimately impact the correctness of the algorithm, they underscore the

importance of machine-checked proofs.

The Coq Proof Assistant

Coq3 is an interactive tool used to formalize mathematical expressions and algorithms,

and prove theorems regarding their correctness and functionality [97]. The tool was a

result of the work on the calculus of constructions [26]. Its uses in the context of computer

science vary, such as being a tool to represent the structure of a programming language

and its characteristics, as well as to prove the correctness of underlying procedures in

compilers. Compared to other mainstream interactive theorem provers, Coq is a tool

2The Coq file is available at https://github.com/andrewkatis/Coq/blob/master/
realizability/Realizability.v

3The Coq Proof Assistant is available at https://coq.inria.fr/

https://github.com/andrewkatis/Coq/blob/master/realizability/Realizability.v
https://github.com/andrewkatis/Coq/blob/master/realizability/Realizability.v
https://coq.inria.fr/
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that provides support for several aspects, such as the use of dependent types, as opposed

to the Isabelle theorem prover [82], and proof by re�ection, which is not supported

by the PVS proof assistant [81]. A particularly essential feature is the tool's support

for inductive and coinductive de�nitions. De�nitions using the 𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 type in Coq

represent a least �xpoint of the corresponding type and are always accompanied by an

induction principle, which is implicitly used to progress through a proof by applying

induction on the de�nition. 𝐶𝑜𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 de�nitions, on the other hand, represent a

greatest �xpoint to their type. They describe a set containing every �nite or in�nite

instance of that type, and their uses in proofs are essentially in�nite processes, built in

a one-step fashion and requiring the existence of a guard condition that needs to hold

for them to remain well-formed. Coinductive de�nitions allow a natural expression of

in�nite traces, which are central to our formalization of realizability, and are tedious to

prove with hand-written proofs.

Definitions

The types 𝑠𝑡𝑎𝑡𝑒 and 𝑖𝑛𝑝𝑢𝑡𝑠 are used to represent a state, and a given set of inputs. We

use Coq's 𝑃𝑟𝑜𝑝 de�nition to describe the logical propositions regarding the component's

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑠𝑦𝑠𝑡𝑒𝑚 through a set 𝐼 of 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 states and the 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 relation 𝑇 be-

tween two states and a set of inputs. Finally, the contract is de�ned by its 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

and 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒, with the latter being implicitly referenced by a pair of initial and tran-

sitional guarantees (𝑖𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒 and 𝑡𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒). The corresponding de�nitions in Coq

are shown below. Note that we do not expect that a contract would be de�ned over

all variables in the transition system � rather its outputs � but we do not make any

distinction between internal state variables and outputs in the formalism. This way, we

can use state variables to, in some cases, simplify statements of guarantees.

� Inductive inputs : Type :=
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realizable_contract
realizableTheorem 

realizable_contract_implies_realizable
&

Theorem 
realizable_implies_realizable_contract

Lemma 
reachable_viable

reachable realization

Theorem 
unrealizable_soundness

Lemma 
viable_implies_finitely_viable

viable

Theorem 
realizable_soundness

BaseCheck(n)

ExtendCheck(n)

finitely_viable

extendable

Lemma 
extend_viable_shift

Lemma 
fv_ex_implies_viable

Theorem 
BaseCheck_soundness

BaseCheck’(n)
(or BaseCheck_simple(n))

Lemma 
finitely_viable_plus_one

Figure 4.1: Proof Graph

input : id → nat → inputs.

� Inductive state : Type :=

st : id → nat → state.

� Definition initial := state → Prop.

� Definition transition := state → inputs → state → Prop.

� Definition iguarantee := state → Prop.
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� Definition tguarantee := state → inputs → state → Prop.

� Definition assumption := state → inputs → Prop.

A state 𝑠 is 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 with respect to the given assumptions if there exists a path from

an initial state to 𝑠, while each transition in the path is satisfying the assumptions. Given

a contract (𝐴, (𝐺𝐼 , 𝐺𝑇 )), a transition system (𝐼, 𝑇 ) is its 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 if the following four

conditions hold:

1. ∀𝑠. 𝐼(𝑠)⇒ 𝐺𝐼(𝑠)

2. ∀𝑠, 𝑖, 𝑠′. 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝐴(𝑠) ∧𝐴(𝑠, 𝑖) ∧ 𝑇 (𝑠, 𝑖, 𝑠′)⇒ 𝐺𝑇 (𝑠, 𝑖, 𝑠
′)

3. ∃𝑠. 𝐼(𝑠)

4. ∀𝑠, 𝑖. 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝐴(𝑠) ∧𝐴(𝑠, 𝑖)⇒ ∃𝑠′. 𝑇 (𝑠, 𝑖, 𝑠′)

Finally, we de�ne that a given contract is 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒, if the existence of a transition

system, which is a realization of the contract, is proved. The formalized de�nitions in

Coq for the 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 state, the 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 of a contract and whether it is 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒

follow.

� Inductive reachable (s : state) (I : initial) (T : transition) (A : assumption) :

Prop :=

rch :

((I s) ∨

((∃ (s’ : state) (inp : inputs),

(reachable s’ I T A) ∧ (A s’ inp) ∧ (T s’ inp s))) →

reachable s I T A).

� Inductive realization (I : initial) (T : transition) (A : assumption) (𝐺𝐼 : iguar-

antee) (𝐺𝑇 : tguarantee) : Prop :=
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real : ((∀ (s : state), (I s) → (𝐺𝐼 s)) ∧

(∀ (s s’ : state) (inp : inputs),

((reachable s I T A) ∧ (A s inp) ∧ (T s inp s’ )) → 𝐺𝑇 s inp s’ ) ∧

(∃ (s : state), I s) ∧

(∀ (s : state) (inp : inputs), (reachable s I T A ∧ (A s inp)) →

(∃ (s’ : state), T s inp s’ ))) →

realization I T A 𝐺𝐼 𝐺𝑇 .

� Inductive realizable contract (A : assumption) (𝐺𝐼 : iguarantee) (𝐺𝑇 : tguar-

antee) : Prop :=

rc : (∃ (I : initial) (T : transition), realization I T A 𝐺𝐼 𝐺𝑇 ) →

realizable contract A 𝐺𝐼 𝐺𝑇 .

While the de�nitions of 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 and 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 are quite straightfor-

ward, they cannot be used directly to construct an actual realizability checking algo-

rithm. Therefore, we proposed the notion of a state being 𝑣𝑖𝑎𝑏𝑙𝑒 with respect to a

contract, meaning that the transition system continues to be a realization of the con-

tract, while we are at such a state. In other words, a state is 𝑣𝑖𝑎𝑏𝑙𝑒 (𝑣𝑖𝑎𝑏𝑙𝑒(𝑠)) if the

transitional guarantee 𝐺𝑇 in�nitely holds, given valid inputs. Using the de�nition of

𝑣𝑖𝑎𝑏𝑙𝑒, a contract is 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 if and only if ∃𝑠. 𝐺𝐼(𝑠) ∧ 𝑣𝑖𝑎𝑏𝑙𝑒(𝑠).

� CoInductive viable (s : state) (A : assumption) (𝐺𝐼 : iguarantee) (𝐺𝑇 : tguar-

antee) : Prop :=

vbl : (∀ (inp : inputs), (A s inp) →

(∃ (s’ : state), 𝐺𝑇 s inp s’ ∧ viable s’ A 𝐺𝐼 𝐺𝑇 )) →

viable s A 𝐺𝐼 𝐺𝑇 .

� Inductive realizable (A : assumption) (𝐺𝐼 : iguarantee) (𝐺𝑇 : tguarantee) :

Prop :=
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rl : (∃ (s : state), 𝐺𝐼 s ∧ viable s A 𝐺𝐼 𝐺𝑇 ) → realizable A 𝐺𝐼 𝐺𝑇 .

Having a more useful de�nition for realizability, we need to prove the equivalence

between the de�nitions of 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 and 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒. The Coq de�nition of

the theorem was split into two separate theorems, each for one of the two directions

of the proof. Towards the two proofs, the auxiliary lemma that, given a realization,

∀𝑠. 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝐴(𝑠)⇒ 𝑣𝑖𝑎𝑏𝑙𝑒(𝑠) is necessary.

� Lemma reachable viable : ∀ (s : state) (I : initial) (T : transition) (A : assumption)

(𝐺𝐼 : iguarantee) (𝐺𝑇 : tguarantee),

realization I T A 𝐺𝐼 𝐺𝑇 → reachable s I T A → viable s A 𝐺𝐼 𝐺𝑇 .

The informal proof of the lemma relies initially on the unrolling of the 𝑣𝑖𝑎𝑏𝑙𝑒 de�-

nition, for a speci�c state 𝑠. Thus, we are left to prove that there exists another state

𝑠′ that we can traverse into, in addition to being viable. The former can be proved

directly from the conditions 2 and 4 of the de�nition of 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛. For the latter, by

the de�nition of 𝑣𝑖𝑎𝑏𝑙𝑒 on 𝑠′ we need to show that 𝑠′ is reachable. Given the de�nition of

𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 though, we just need to prove that there exists another reachable state from

which we can reach 𝑠′, in one step. But we already know that 𝑠 is such a state, and thus

the lemma holds.

� Theorem realizable contract implies realizable (I : initial) (T : transition) : ∀ (A

: assumption) (𝐺𝐼 : iguarantee) (𝐺𝑇 : tguarantee),

realizable contract A 𝐺𝐼 𝐺𝑇 → realizable A 𝐺𝐼 𝐺𝑇 .

� Theorem realizable implies realizable contract (I : initial) (T : transition) : ∀ (A

: assumption) (𝐺𝐼 : iguarantee) (𝐺𝑇 : tguarantee),

realizable A 𝐺𝐼 𝐺𝑇 → realizable contract A 𝐺𝐼 𝐺𝑇 .

The �rst part of the theorem requires us to prove that there exists a viable state

𝑠 for which the initial guarantee holds. Considering that we have a contract that is
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realizable under the 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 de�nition, we have a transition system that

is a realization of the contract, and thus from the third condition of the 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

de�nition, there exists an initial state 𝑠′ for which, using the �rst condition, the initial

guarantee holds. Thus, we are left to prove that 𝑠′ is viable. But, by proving that 𝑠′ is

reachable, we can use the 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑣𝑖𝑎𝑏𝑙𝑒 lemma to show that 𝑠′ is indeed viable.

The second direction requires a bit more e�ort. Assuming that we have a viable state

𝑠0 with 𝐺𝐼(𝑠0) being true, we de�ne 𝐼(𝑠) = (𝑠 = 𝑠0) and 𝑇 (𝑠, 𝑖𝑛𝑝, 𝑠
′) = 𝐺𝑇 (𝑠, 𝑖𝑛𝑝, 𝑠

′) ∧

𝑣𝑖𝑎𝑏𝑙𝑒(𝑠′). Initially, we need to prove the 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑣𝑖𝑎𝑏𝑙𝑒 lemma in this context, with

the additional assumption that another viable state already exists (𝑠0 in this case).

Having done so, we need to prove that there exists a transition system that is a realization

of the given contract. Given the transition system that we de�ned earlier, we need to

show that each of the four conditions hold. Since 𝐼(𝑠) = (𝑠 = 𝑠0) and 𝐺𝐼(𝑠0) hold,

the proof for the �rst condition is trivial. Using the assumption that 𝑇 (𝑠, 𝑖𝑛𝑝, 𝑠′) =

𝐺𝑇 (𝑠, 𝑖𝑛𝑝, 𝑠
′)∧𝑣𝑖𝑎𝑏𝑙𝑒(𝑠′), we can also trivially prove the second condition, while the third

condition is simply proved by re�exivity on the state 𝑠0. Finally, for the fourth condition

we need to prove that ∀𝑠, 𝑖𝑛𝑝. 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝐴(𝑠)∧𝐴(𝑠, 𝑖𝑛𝑝)⇒ ∃𝑠′. 𝐺𝑇 (𝑠, 𝑖𝑛𝑝, 𝑠
′)∧𝑣𝑖𝑎𝑏𝑙𝑒(𝑠′).

By applying the 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑣𝑖𝑎𝑏𝑙𝑒 lemma on the reachable state 𝑠 in the assumptions,

we show that 𝑠 is also viable, if 𝑠0 is viable, which is what we assumed in the �rst place.

Thus, coming back into what we need to prove, and unrolling the de�nition of 𝑣𝑖𝑎𝑏𝑙𝑒

on 𝑠, we have that ∀𝑖𝑛𝑝. 𝐴(𝑠, 𝑖𝑛𝑝)⇒ ∃𝑠′. 𝐺𝑇 (𝑠, 𝑖𝑛𝑝, 𝑠
′)∧ 𝑣𝑖𝑎𝑏𝑙𝑒(𝑠′) which completes the

proof.

Algorithms

In this section we provide a detailed description of the formalization and proof of sound-

ness of our realizability checking algorithms within Coq. Initially, we de�ne an under-

approximation of the de�nition of viability, for the �nite case. Recall that a state is
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𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑣𝑖𝑎𝑏𝑙𝑒 for 𝑛 steps (𝑣𝑖𝑎𝑏𝑙𝑒𝑛(𝑠)), if the transitional guarantee 𝐺𝑇 holds for at

least 𝑛 steps, given valid inputs.

� Inductive finitely viable : nat → state → assumption → tguarantee → Prop

:=

| fvnil : ∀ s A 𝐺𝑇 , finitely viable O s A 𝐺𝑇

| fv : ∀ n s A 𝐺𝑇 , finitely viable n s A 𝐺𝑇 →

(∀ (inp : inputs), A s inp → (∃ s’, 𝐺𝑇 s inp s’ )) →

finitely viable (S n) s A 𝐺𝑇 .

In addition to the 𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑣𝑖𝑎𝑏𝑙𝑒 de�nition, an under-approximation of viability

is also used, called one-step extension. Therefore, a valid path leading to a state 𝑠 is

𝑒𝑥𝑡𝑒𝑛𝑑𝑎𝑏𝑙𝑒 after 𝑛 steps, if any path from 𝑠, of length at least 𝑛, can be further extended

given a valid input.

� Inductive extendable : nat → state → assumption → tguarantee → Prop :=

| exnil : ∀ (s : state) (A : assumption) (𝐺𝑇 : tguarantee),

(∀ (inp : inputs), A s inp → ∃ (s’ : state), 𝐺𝑇 s inp s’ ) →

extendable O s A 𝐺𝑇

| ex : ∀ n s A 𝐺𝑇 ,

(∀ inp s’, A s inp ∧ 𝐺𝑇 s inp s’ ∧ extendable n s’ A 𝐺𝑇 ) →

extendable (S n) s A 𝐺𝑇 .

An Exact Algorithm for Realizability Checking

The algorithm that we propose for realizability checking consists of two checks. The

𝐵𝑎𝑠𝑒𝐶ℎ𝑒𝑐𝑘(𝑛) procedure ensures that ∃𝑠. 𝐺𝐼(𝑠) ∧ 𝑣𝑖𝑎𝑏𝑙𝑒𝑛(𝑠), while 𝐸𝑥𝑡𝑒𝑛𝑑𝐶ℎ𝑒𝑐𝑘(𝑛)

makes sure that the given state from 𝐵𝑎𝑠𝑒𝐶ℎ𝑒𝑐𝑘 is extendable for any 𝑛.
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� Definition BaseCheck (n : nat) (A : assumption) (𝐺𝐼 : iguarantee) (𝐺𝑇 :

tguarantee) :=

∃ (s : state), (𝐺𝐼 s ∧ finitely viable n s A 𝐺𝑇 ).

Definition ExtendCheck (n : nat) (A : assumption) (𝐺𝑇 : tguarantee) :=

∀ s A 𝐺𝑇 , extendable n s A 𝐺𝑇 .

Using the 𝐵𝑎𝑠𝑒𝐶ℎ𝑒𝑐𝑘(𝑛) and 𝐸𝑥𝑡𝑒𝑛𝑑𝐶ℎ𝑒𝑐𝑘(𝑛) de�nitions, the algorithm determines

the realizability of the given contract, using the following procedure (Section 4.1).

1 for 𝑛 = 0 to ∞ do

2 if ¬BaseCheck(𝑛) then
3 return unrealizable

4 else if ExtendCheck(𝑛) then
5 return realizable

6 end

Using the de�nitions of 𝐵𝑎𝑠𝑒𝐶ℎ𝑒𝑐𝑘 and 𝐸𝑥𝑡𝑒𝑛𝑑𝐶ℎ𝑒𝑐𝑘, we proved the algorithm's

soundness, both for the 'unrealizable' and 'realizable' case. The main idea behind the

proof of soundness for the 'unrealizable' result is to prove the contrapositive, that is,

given a realizable contract, there exists a natural number 𝑥 for which 𝐵𝑎𝑠𝑒𝐶ℎ𝑒𝑐𝑘(𝑥)

holds. Unfolding the de�nition of 𝐵𝑎𝑠𝑒𝐶ℎ𝑒𝑐𝑘(𝑥), we need to show that ∃𝑠. 𝐺𝐼(𝑠) ∧

𝑣𝑖𝑎𝑏𝑙𝑒𝑥(𝑠). Knowing that our assumption 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 𝐴 𝐺𝐼 𝐺𝑇 is equivalent to

the 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 de�nition, provides us with a state 𝑠′, for which 𝐺𝐼(𝑠
′)∧ 𝑣𝑖𝑎𝑏𝑙𝑒(𝑠′) holds.

Here, we need an additional lemma, according to which ∀𝑠, 𝑛. 𝑣𝑖𝑎𝑏𝑙𝑒(𝑠) ⇒ 𝑣𝑖𝑎𝑏𝑙𝑒𝑛(𝑠)

(stated as 𝑣𝑖𝑎𝑏𝑙𝑒 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑣𝑖𝑎𝑏𝑙𝑒 below). Thus, using the lemma on 𝑣𝑖𝑎𝑏𝑙𝑒(𝑠′)

with 𝑛 = 𝑥, we get that 𝑣𝑖𝑎𝑏𝑙𝑒𝑥(𝑠
′), thus completing the proof.

� Lemma viable implies finitely viable : ∀ s A 𝐺𝐼 𝐺𝑇 n,

viable s A 𝐺𝐼 𝐺𝑇 → finitely viable n s A 𝐺𝑇 .
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� Theorem unrealizable soundness : ∀ (I : initial) (T : transition) (A : assumption)

(𝐺𝐼 : iguarantee) (𝐺𝑇 : tguarantee),

(∃ n, ¬BaseCheck n A 𝐺𝐼 𝐺𝑇 ) → ¬ realizable contract A 𝐺𝐼 𝐺𝑇 .

For the soundness of the 'realizable' result, we �rst need to prove two lemmas.

Initially, 𝑒𝑥𝑡𝑒𝑛𝑑 𝑣𝑖𝑎𝑏𝑙𝑒 𝑠ℎ𝑖𝑓𝑡, shows the way that 𝐸𝑥𝑡𝑒𝑛𝑑𝑛(𝑠) can be used to shift

𝑣𝑖𝑎𝑏𝑙𝑒𝑛(𝑠) forward. The proof for this lemma is done by using induction on 𝑛. The base

case is proved trivially, by unfolding the de�nitions of 𝑒𝑥𝑡𝑒𝑛𝑑𝑎𝑏𝑙𝑒 and 𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑣𝑖𝑎𝑏𝑙𝑒 in

the assumptions. For the inductive case, we assume that the same state 𝑠 is extendable

and �nitely viable for paths of length 𝑛+ 1, and try to prove that there exists a �nitely

viable state 𝑠′ for paths of length 𝑛+ 1, to which we can traverse from 𝑠, with the con-

tract guarantees still holding after the transition. By considering that 𝑠 is extendable

for paths of length 𝑛 + 1, we can use it as that potentially existing state in the proof,

requiring that we can transition from 𝑠 to itself, with the transitional guarantees staying

true, and 𝑠 being �nitely viable for paths of length 𝑛 + 1. The former is true through

the de�nition of 𝑒𝑥𝑡𝑒𝑛𝑑𝑎𝑏𝑙𝑒, while the second is an already given assumption by the

inductive step.

� Lemma extend viable shift : ∀ (s : state) (n : nat) (inp : inputs) (A : assumption)

(𝐺𝐼 : iguarantee) (𝐺𝑇 : tguarantee),

(extendable n s A 𝐺𝑇 ∧ finitely viable n s A 𝐺𝑇 ∧ A s inp) →

(∃ s’, 𝐺𝑇 s inp s’ ∧ finitely viable n s’ A 𝐺𝑇 ).

� Lemma fv ex implies viable : ∀ (s : state) (n : nat) (A : assumption) 𝐺𝐼 𝐺𝑇 ,

(finitely viable n s A 𝐺𝑇 ∧ ExtendCheck n A 𝐺𝑇 ) → viable s A 𝐺𝐼 𝐺𝑇 .

� Theorem realizable soundness : ∀ (I : initial) (T : transition) A 𝐺𝐼 𝐺𝑇 ,

(∃ n, (BaseCheck n A 𝐺𝐼 𝐺𝑇 ∧ ExtendCheck n A 𝐺𝑇 )) →

realizable contract A 𝐺𝐼 𝐺𝑇 .



43

To prove the theorem, we try to prove the equivalent for the 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 de�nition

instead. The existence of a state for which the initial guarantees hold is derived from

the assumption that 𝐵𝑎𝑠𝑒𝐶ℎ𝑒𝑐𝑘 holds for a �nitely viable state, while the proof that

the same state is also viable comes from the use of the 𝑓𝑣 𝑒𝑥 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑣𝑖𝑎𝑏𝑙𝑒 lemma,

which is proved through the use of 𝑒𝑥𝑡𝑒𝑛𝑑 𝑣𝑖𝑎𝑏𝑙𝑒 𝑠ℎ𝑖𝑓𝑡.

An Approximate Algorithm for Realizability Checking

Earlier in this section we outlined the problematic nature of 𝐵𝑎𝑠𝑒𝐶ℎ𝑒𝑐𝑘(𝑛) having

2𝑛 quanti�er alternations, which cannot be handled e�ciently by an SMT solver. To

that end, we proposed a simpli�ed version of the 𝐵𝑎𝑠𝑒𝐶ℎ𝑒𝑐𝑘(𝑛) procedure, called

𝐵𝑎𝑠𝑒𝐶ℎ𝑒𝑐𝑘′(𝑛), stated as 𝐵𝑎𝑠𝑒𝐶ℎ𝑒𝑐𝑘 𝑠𝑖𝑚𝑝𝑙𝑒 below.

� Definition BaseCheck simple (n : nat) (A : assumption) (𝐺𝐼 : iguarantee)

(𝐺𝑇 : tguarantee) := ∀ s, (𝐺𝐼 s) → extendable n s A 𝐺𝑇 .

� Lemma finitely viable plus one : ∀ s n A (gi : iguarantee) (𝐺𝑇 : tguarantee) (inp

: inputs),

(extendable n s A 𝐺𝑇 ∧ finitely viable n s A 𝐺𝑇 ) →

finitely viable (S n) s A 𝐺𝑇 .

� Theorem BaseCheck soundness : ∀ n A (𝐺𝐼 : iguarantee) (𝐺𝑇 : tguarantee) (i :

inputs),

((∃ s, 𝐺𝐼 s) ∧ (∀ k, (k≤n) → BaseCheck simple k A 𝐺𝐼 𝐺𝑇 )) →

BaseCheck n A 𝐺𝐼 𝐺𝑇 .

The simpli�ed 𝐵𝑎𝑠𝑒𝐶ℎ𝑒𝑐𝑘′(𝑛), while being an easier instance for an SMT solver, is

not sound for the 'unrealizable' case, falsely reporting some realizable contracts to not
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be so. Nevertheless, we proved the modi�ed algorithm's soundness for the 'realizable'

result, with the use of an auxiliary lemma.

The lemma, 𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑣𝑖𝑎𝑏𝑙𝑒 𝑝𝑙𝑢𝑠 𝑜𝑛𝑒 simply refers to the fact that an extendable

and �nitely viable state 𝑠, for a given number of steps 𝑛, is also �nitely viable for 𝑛+ 1

steps. The proof is done by induction on 𝑛. The base case is trivially proved, by the

de�nition of 𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑣𝑖𝑎𝑏𝑙𝑒, and the assumption that 𝑠 is extendable. For the inductive

case, we use the inductive hypothesis, which leaves us to prove the assumptions on a

speci�c state 𝑠. The extendability is trivially shown since we already know that 𝑠 is

extendable for paths of length 𝑛 + 1, with the same idea being applied to prove that 𝑠

is �nitely viable for 𝑛.

Finally, the proof of soundness for the 'realizable' result of the 𝐵𝑎𝑠𝑒𝐶ℎ𝑒𝑐𝑘′(𝑛) pro-

cedure is done by using induction on 𝑛. The base case is trivially true, using the fact

that all paths of zero length are �nitely viable. The inductive step then requires us

to prove that 𝐵𝑎𝑠𝑒𝐶ℎ𝑒𝑐𝑘(𝑛 + 1) holds. In order to do so, we need to construct the

inductive hypothesis' assumption, as a separate assumption to the theorem's scope.

By applying the inductive hypothesis to the newly created assumption, we have that

𝐵𝑎𝑠𝑒𝐶ℎ𝑒𝑐𝑘(𝑛) holds. By unrolling the de�nition of 𝐵𝑎𝑠𝑒𝐶ℎ𝑒𝑐𝑘(𝑛) and applying the

lemma 𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑣𝑖𝑎𝑏𝑙𝑒 𝑝𝑙𝑢𝑠 𝑜𝑛𝑒 on the extracted state, say 𝑥, we �nally prove that 𝑥 is

extendable through the de�nition of 𝐵𝑎𝑠𝑒𝐶ℎ𝑒𝑐𝑘′(𝑛), completing the proof at the same

time.

Figure 4.1 provides a simpli�ed proof graph of all the necessary de�nitions and

partially, for graph simplicity purposes, the way that they are used towards proving the

lemmas and theorems stated in this section.
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Discussion

While our work on realizability is based on simple de�nitions, formalizing them and

re�ning the algorithms in Coq was non-trivial. Proving the lemmas and theorems using

Coq helped us discover minor errors in our informal statements. For example, our

handwritten proof of the one-way soundness Theorem 4.1.3 for the simpli�ed 𝐵𝑎𝑠𝑒𝐶ℎ𝑒𝑐𝑘

originally lacked the necessary assumption that there exists a state for which the initial

guarantees hold. Another example is that we forgot to include initial states in our

de�nition of reachable states in the informal proof. The use of a mechanized theorem

prover exposed some missing knowledge in the informal text, and helped us provide a

more precise version of the theorem. Although these errors in the hand proofs did not

lead to problems with our implementation, Coq improved both our theorems and proofs,

and provided strong assurance that our algorithm is correct.

4.2 Program Synthesis from Proofs of Realizability

The algorithm sketched in Section 4.1 can be further used for solving the more complex

problem of program synthesis to automatically derive an implementation from the proof

of a contract's realizability. Consider checks BaseCheck′(𝑛) and ExtendCheck(𝑛) (Def-

initions (4.1.4) and (4.1.3) respectively) that are used in the realizability checking al-

gorithm. Both checks require that the reachable states explored are extendable using

De�nition (4.1.2). The key insights are then 1) we can start with an arbitrary state

in 𝐺𝐼 since it is non-empty, 2) we can use witnesses from the proofs of Extendk (s)

in BaseCheck′(𝑛) to create a valid path of length 𝑛 − 1, and 3) we can extend that

path to arbitrary length by repeatedly using the witness of the proof of Extendn(s) in

ExtendCheck(𝑛).

In �rst order logic, witnesses for valid ∀∃-formulas are represented by Skolem
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functions. Intuitively, a Skolem function expresses a connection between all univer-

sally quanti�ed variables in the antecedents of the ∀∃-formulas of BaseCheck′(𝑛) and

ExtendCheck(𝑛), and the existentially quanti�ed variable 𝑠′ within Extendn(s) on the

right-hand side of each implication. To generate Skolem functions from the validity

of BaseCheck′(𝑛) and ExtendCheck(𝑛) we use the AE-VAL tool [37]. In the following

subsections we present AE-VAL, and our proposed synthesis algorithm, named JSyn.

4.2.1 Witnessing existential quantifiers with AE-VAL: Validity and

Skolem extraction

Skolemization is a well-known technique for removing existential quanti�ers in �rst order

formulas. Given a formula ∃𝑦 . 𝜓(𝑥⃗, 𝑦), a Skolem function for 𝑦, sk𝑦(𝑥⃗) is a function such

that ∃𝑦 . 𝜓(𝑥⃗, 𝑦) ⇐⇒ 𝜓(𝑥⃗, sk𝑦(𝑥⃗)). We generalize the de�nition of a Skolem function for

the case of a vector of existentially quanti�ed variables 𝑦⃗, by relaxing the relationships

between elements of 𝑥⃗ and 𝑦⃗. Given a formula ∃𝑦⃗ .Ψ(𝑥⃗, 𝑦⃗), a Skolem relation for 𝑦⃗ is a

relation Sk 𝑦⃗(𝑥⃗, 𝑦⃗) such that 1) Sk 𝑦⃗(𝑥⃗, 𝑦⃗) =⇒ Ψ(𝑥⃗, 𝑦⃗) and 2) ∃𝑦⃗ .Ψ(𝑥⃗, 𝑦⃗) ⇐⇒ Sk 𝑦⃗(𝑥⃗, 𝑦⃗).

The pseudocode of the AE-VAL algorithm that decides validity and extracts Skolem

relation is shown in Algorithm 4.1 (we refer the reader to [37] for more detail). It assumes

that the formulaΨ can be transformed into the form ∃𝑦⃗ .Ψ(𝑥⃗, 𝑦⃗) ≡ 𝑆(𝑥⃗) =⇒ ∃𝑦⃗ . 𝑇 (𝑥⃗, 𝑦⃗),

where 𝑆(𝑥⃗) has only existential quanti�ers, and 𝑇 (𝑥⃗, 𝑦⃗) is quanti�er-free. To decide the

validity, AE-VAL partitions the ∀∃-formula and searches for a witnessing local Skolem

relation of each partition. AE-VAL iteratively constructs (line 6) a set of Model-Based

Projections (MBPs): 𝑇𝑖(𝑥⃗), such that (a) for each 𝑖, 𝑇𝑖(𝑥⃗) =⇒ ∃𝑦⃗ . 𝑇 (𝑥⃗, 𝑦⃗), and (b)

𝑆(𝑥⃗) =⇒ ⋁︀
𝑖 𝑇𝑖(𝑥⃗). Each MBP 𝑇𝑖(𝑥⃗) is connected with the local Skolem 𝜑𝑖(𝑥⃗, 𝑦⃗), such

that 𝜑𝑖(𝑥⃗, 𝑦⃗) =⇒ (𝑇𝑦⃗𝑖(𝑥⃗) =⇒ 𝑇 (𝑥⃗, 𝑦⃗)). AE-VAL relies on an external procedure [68]

to obtain MBPs for theories of Linear Real Arithmetic and Linear Integer Arithmetic.

Intuitively, each 𝜑𝑖 maps models of 𝑆 ∧ 𝑇𝑖 to models of 𝑇 . Thus, a global Skolem
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Algorithm 4.1: AE-VAL
(︁
𝑆(𝑥⃗), ∃𝑦⃗ . 𝑇 (𝑥⃗, 𝑦⃗)

)︁
, cf. [37]

Input: 𝑆(𝑥⃗), ∃𝑦⃗ . 𝑇 (𝑥⃗, 𝑦⃗)
Output: Return value ∈ {valid, invalid} of 𝑆(𝑥⃗) =⇒∃𝑦⃗ . 𝑇 (𝑥⃗, 𝑦⃗), Skolem.
Data: models {𝑚𝑖}, MBPs {𝑇𝑖(𝑥⃗)}, local Skolems {𝜑𝑖(𝑥⃗, 𝑦⃗)}.

1 SmtAdd(𝑆(𝑥⃗));
2 for (𝑖← 0; true; 𝑖← 𝑖+ 1) do
3 if (isUnsat(SmtSolve())) then
4 return valid, Sk 𝑦⃗(𝑥⃗, 𝑦⃗) from (4.3);
5 SmtPush();
6 SmtAdd(𝑇 (𝑥⃗, 𝑦⃗));
7 if (isUnsat(SmtSolve())) then
8 return invalid, ∅;
9 𝑚𝑖 ← SmtGetModel();

10 (𝑇𝑖, 𝜑𝑖(𝑥⃗, 𝑦⃗))←GetMBP(𝑦⃗,𝑚𝑖, 𝑇 (𝑥⃗, 𝑦⃗)));
11 SmtPop();
12 SmtAdd(¬𝑇𝑖);
13 end

relation Sk 𝑦⃗(𝑥⃗, 𝑦⃗) is de�ned through a matching of each 𝜑𝑖 against the corresponding 𝑇𝑖:

Sk𝑦⃗(𝑥⃗, 𝑦⃗) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜑1(𝑥⃗, 𝑦⃗) if 𝑇1(𝑥⃗)

𝜑2(𝑥⃗, 𝑦⃗) else if 𝑇2(𝑥⃗)

· · · else · · ·

𝜑𝑛(𝑥⃗, 𝑦⃗) else 𝑇𝑛(𝑥⃗)

(4.3)

4.2.2 Refining Skolem relations into Skolem functions

The output of the original AE-VAL algorithm does not ful�l our program synthesis

needs due to two reasons: (1) interdependencies between 𝑦⃗-variables and (2) inequalities

and disequalities in the terms of the Skolem relation. Indeed, in the lower-level AE-VAL

constructs each MBP iteratively for each variable 𝑦𝑗 ∈ 𝑦⃗. Thus, 𝑦𝑗 may depend on the
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variables of 𝑦𝑗+1, . . . , 𝑦𝑛 that are still not eliminated in the current iteration 𝑗.

Inequalities and disequalities in a Skolem relation are not desirable because the �nal

implementation should contain assignments to each existentially quanti�ed variable. To

specify the exact assignment value, the Skolem relation provided by AE-VAL should be

post-processed to contain only equalities.

We formalize this procedure as �nding a Skolem function 𝑓𝑗(𝑥⃗) for each 𝑦𝑗 ∈ 𝑦⃗, such

that (𝑦𝑗 = 𝑓𝑗(𝑥⃗)) =⇒ ∃𝑦𝑗+1, . . . , 𝑦𝑛 . 𝜓𝑗(𝑥⃗, 𝑦𝑗 , . . . , 𝑦𝑛). An iteration of this procedure,

for some 𝑦𝑗 , is presented in Algorithm 4.2. At the entry point, it assumes that the Skolem

functions 𝑓𝑗+1(𝑥⃗), . . . , 𝑓𝑛(𝑥⃗) for variables 𝑦𝑗+1, . . . , 𝑦𝑛 are already computed. Thus, Al-

gorithm 4.2 straightforwardly substitutes each appearance of variables 𝑦𝑗+1, . . . , 𝑦𝑛 in

𝜓𝑗 by 𝑓𝑗+1(𝑥⃗), . . . , 𝑓𝑛(𝑥⃗). Once accomplished (line 4), formula 𝜓𝑗(𝑥⃗, 𝑦𝑗 , . . . , 𝑦𝑛) has the

form 𝜋𝑗(𝑥⃗, 𝑦𝑗), i.e., it does not contain variables 𝑦𝑗+1, . . . , 𝑦𝑛.

The remaining part of the algorithm aims to derive a function 𝑓𝑗(𝑥⃗), such that

𝑦𝑗 = 𝑓𝑗(𝑥⃗). In other words, it should construct a graph of a function that is embedded

in a relation. Note that AE-VAL constructs each local Skolem relation by conjoining the

substitutions made in 𝑇 to produce 𝑇𝑖. Each of those substitutions in linear arithmetic

could be either an equality, inequality, or disequality. This allows us consider each

𝜋𝑗(𝑥⃗, 𝑦𝑗) to be of the following form:

𝜋𝑗(𝑥⃗, 𝑦𝑗) = 𝐿𝜋𝑗 ∧ 𝑈𝜋𝑗 ∧𝑀𝜋𝑗 ∧ 𝑉𝜋𝑗 ∧ 𝐸𝜋𝑗 ∧𝑁𝜋𝑗 (4.4)

where:

𝐿𝜋𝑗 ,
⋀︁

𝑙∈𝐶(𝜋𝑗)

(𝑦𝑗 > 𝑙(𝑥⃗)) 𝑈𝜋𝑗 ,
⋀︁

𝑢∈𝐶(𝜋𝑗)

(𝑦𝑗 < 𝑢(𝑥⃗)) 𝑀𝜋𝑗 ,
⋀︁

𝑙∈𝐶(𝜋𝑗)

(𝑦𝑗 ≥ 𝑙(𝑥⃗))

𝑉𝜋𝑗 ,
⋀︁

𝑢∈𝐶(𝜋𝑗)

(𝑦𝑗 ≤ 𝑢(𝑥⃗)) 𝐸𝜋𝑗 ,
⋀︁

𝑒∈𝐶(𝜋𝑗)

(𝑦𝑗 = 𝑒(𝑥⃗)) 𝑁𝜋𝑗 ,
⋀︁

ℎ∈𝐶(𝜋𝑗)

(𝑦𝑗 ̸= ℎ(𝑥⃗))
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Algorithm 4.2: ExtractSkolemFunction(𝑦𝑗 , 𝜑(𝑥⃗, 𝑦⃗))

Input: 𝑦𝑗 ∈ 𝑦⃗, local Skolem relation 𝜑(𝑥⃗, 𝑦⃗) =
⋀︀

𝑦𝑗∈𝑦⃗(𝜓𝑗(𝑥⃗, 𝑦𝑗 , . . . , 𝑦𝑛)), Skolem

functions 𝑦𝑗+1 = 𝑓𝑗+1(𝑥⃗), . . . , 𝑦𝑛 = 𝑓𝑛(𝑥⃗)
Output: Local Skolem function 𝑦𝑗 = 𝑓𝑗(𝑥⃗).
Data: Factored formula 𝜋𝑗(𝑥⃗, 𝑦𝑗) = 𝐿𝜋𝑗 ∧ 𝑈𝜋𝑗 ∧ 𝐸𝜋𝑗 ∧𝑁𝜋𝑗 .

1 for (𝑖← 𝑛; 𝑖 > 𝑗; 𝑖← 𝑖− 1) do
2 𝜓𝑗(𝑥⃗, 𝑦𝑗 , . . . , 𝑦𝑛)← Substitute(𝜓𝑗(𝑥⃗, 𝑦𝑗 , . . . , 𝑦𝑛), 𝑦𝑖, 𝑓𝑖(𝑥⃗));
3 end

4 𝜋𝑗(𝑥⃗, 𝑦𝑗)← 𝜓𝑗(𝑥⃗, 𝑦𝑗 , . . . , 𝑦𝑛);
5 if (|𝐸𝜋𝑗 | ≠ 0) then
6 return 𝐸𝜋𝑗 ;
7 𝜋𝑗(𝑥⃗, 𝑦𝑗)←Merge(𝐿𝜋𝑗 ,MAX , 𝜋𝑗(𝑥⃗, 𝑦𝑗));
8 𝜋𝑗(𝑥⃗, 𝑦𝑗)←Merge(𝑈𝜋𝑗 ,MIN , 𝜋𝑗(𝑥⃗, 𝑦𝑗));
9 if (|𝑁𝜋𝑗 | = 0) then
10 if (|𝐿𝜋𝑗 | ≠ 0 ∧ |𝑈𝜋𝑗 | ≠ 0) then
11 return Rewrite(𝐿𝜋𝑗 ∧ 𝑈𝜋𝑗 ,MID , 𝜋𝑗(𝑥⃗, 𝑦𝑗));
12 if (|𝐿𝜋𝑗 | = 0) then
13 return Rewrite(𝑈𝜋𝑗 ,LT , 𝜋𝑗(𝑥⃗, 𝑦𝑗));
14 if (|𝑈𝜋𝑗 | = 0) then
15 return Rewrite(𝐿𝜋𝑗 ,GT , 𝜋𝑗(𝑥⃗, 𝑦𝑗));

16 else

17 return Rewrite(𝐿𝜋𝑗 ∧ 𝑈𝜋𝑗 ∧𝑁𝜋𝑗 ,FMID , 𝜋𝑗(𝑥⃗, 𝑦𝑗));

We present several primitives needed to construct 𝑦𝑗 = 𝑓𝑗(𝑥⃗) from 𝜋𝑗(𝑥⃗, 𝑦𝑗) based on

the analysis of terms in 𝐿𝜋𝑗 , 𝑈𝜋𝑗 , 𝑀𝜋𝑗 , 𝑉𝜋𝑗 , 𝐸𝜋𝑗 and 𝑁𝜋𝑗 . For simplicity, we omit some

details on dealing with non-strict inequalities in 𝑀𝜋𝑗 and 𝑉𝜋𝑗 since they are similar to

strict inequalities in 𝐿𝜋𝑗 and 𝑈𝜋𝑗 . Thus, without loss of generality, we assume that 𝑀𝜋𝑗

and 𝑉𝜋𝑗 are empty. In the description, we denote the number of conjuncts in formula

𝐴 as |𝐴|. We focus on Linear Real Arithmetic in this section; and the corresponding

routine for Linear Integer Arithmetic is worked out similarly.

The simplest case (line 5) is when there is at least one conjunct (𝑦𝑗 = 𝑒(𝑥⃗)) ∈ 𝐸𝜋𝑗 .

Then (𝑦𝑗 = 𝑒(𝑥⃗)) itself is a Skolem function. Otherwise, the algorithm creates a Skolem

function from the following primitives.
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Definition 4.2.1. Let 𝑙(𝑥⃗) and 𝑢(𝑥⃗) be two terms in linear real arithmetic, then oper-

ators MAX , MIN , MID , LT , GT are de�ned as follows:

GT (𝑙)(𝑥⃗) , 𝑙(𝑥⃗) + 1 MAX (𝑙, 𝑢)(𝑥⃗) , 𝑖𝑡𝑒(𝑙(𝑥⃗) < 𝑢(𝑥⃗), 𝑢(𝑥⃗), 𝑙(𝑥⃗))

LT (𝑢)(𝑥⃗) , 𝑢(𝑥⃗)− 1 MIN (𝑙, 𝑢)(𝑥⃗) , 𝑖𝑡𝑒(𝑙(𝑥⃗) < 𝑢(𝑥⃗), 𝑙(𝑥⃗), 𝑢(𝑥⃗))

MID(𝑙, 𝑢)(𝑥⃗) ,
𝑙(𝑥⃗) + 𝑢(𝑥⃗)

2

Lemma 1. If |𝐿𝜋𝑗 | = 𝑛, and 𝑛 > 1, then 𝐿𝜋𝑗 is equivalent to 𝑦𝑗 > MAX (𝑙1,MAX (𝑙2, . . .

MAX (𝑙𝑛−1, 𝑙𝑛)))(𝑥⃗). If |𝑈𝜋𝑗 | = 𝑛, and 𝑛 > 1, then 𝑈𝜋𝑗 is equivalent to 𝑦𝑗 < MIN (𝑢1,

MIN (𝑢2, . . .MIN (𝑢𝑛−1, 𝑢𝑛)))(𝑥⃗).

This primitive is applied (lines 7-8) in order to reduce the size of 𝐿𝜋𝑗 and 𝑈𝜋𝑗 . Thus,

from this point on, with out loss of generality, we assume that each 𝐿𝜋𝑗 and 𝑈𝜋𝑗 have

at most one conjunct.

Lemma 2. If |𝐿𝜋𝑗 | = |𝑈𝜋𝑗 | = 1, and |𝐸𝜋𝑗 | = |𝑁𝜋𝑗 | = 0, then the Skolem relation can be

rewritten into 𝑦𝑗 = MID(𝑙, 𝑢)(𝑥⃗).

This primitive is applied (line 11) in case the graph of a Skolem function can be con-

structed exactly in the middle of the two graphs for the lower- and the upper boundaries

for the Skolem relation. Otherwise, if some of the boundaries are missing, but |𝑁𝜋𝑗 | = 0

(lines 13-15), then the following primitive is applied:

Lemma 3. If |𝐿𝜋𝑗 | = 1, and |𝑈𝜋𝑗 | = |𝐸𝜋𝑗 | = |𝑁𝜋𝑗 | = 0, then the Skolem relation can

be rewritten into the form 𝑦𝑗 = GT (𝑙)(𝑥⃗). If |𝑈𝜋𝑗 | = 1, and |𝐿𝜋𝑗 | = |𝐸𝜋𝑗 | = |𝑁𝜋𝑗 | = 0,

then the Skolem relation can be rewritten into the form 𝑦𝑗 = LT (𝑙)(𝑥⃗).

Finally, the algorithm handles the cases when |𝑁𝜋𝑗 | > 0 (line 17). We introduce
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operator FMID that for given 𝑙, 𝑢, and ℎ and each 𝑥⃗ outputs either MID(𝑙, 𝑢) or

MID(𝑙,MID(𝑙, 𝑢)) depending on if MID(𝑙, 𝑢) equals to ℎ or not.

Lemma 4. If |𝐿𝜋𝑗 | = |𝑈𝜋𝑗 | = |𝑁𝜋𝑗 | = 1, and |𝐸𝜋𝑗 | = 0, then the Skolem relation can be

rewritten into the form 𝑦𝑗=FMID(𝑙,𝑢,ℎ)(𝑥⃗), where

FMID(𝑙, 𝑢, ℎ)(𝑥⃗) , 𝑖𝑡𝑒
(︁
MID(𝑙, 𝑢)(𝑥⃗) = ℎ(𝑥⃗),

MID
(︀
𝑙,MID(𝑙, 𝑢)

)︀
(𝑥⃗), MID(𝑙, 𝑢)(𝑥⃗)

)︁

For |𝑁𝜋𝑗 | > 1, the Skolem gets rewritten in a similar way recursively.

Lemma 5. If |𝐿𝜋𝑗 | = |𝑁𝜋𝑗 | = 1, and |𝐸𝜋𝑗 | = |𝑈𝜋𝑗 | = 0, then the Skolem relation

can be rewritten into the form 𝑦𝑗 = FMID(𝑙, 𝐺𝑇 (𝑙), ℎ)(𝑥⃗). If |𝑈𝜋𝑗 | = |𝑁𝜋𝑗 | = 1,

and |𝐸𝜋𝑗 | = |𝐿𝜋𝑗 | = 0, then the Skolem relation can be rewritten into the form

𝑦𝑗 = FMID(𝐿𝑇 (𝑢), 𝑢, ℎ)(𝑥⃗).

Theorem 4.2.1 (Soundness). Iterative application of Algorithm 4.2 to all variables

𝑦𝑛, . . . , 𝑦1 returns a local Skolem function to be used in (4.3).

Proof. Follows from the case analysis that applies the lemmas above.

Recall that the presented technique is designed to e�ectively remove inequalities and

disequalities from local Skolem relations. The resulting local Skolem functions enjoy a

more �ne-grained and easy-to-understand form. We admit that for further simpli�cations

(that would bene�t the synthesis procedure), we can exploit techniques to rewriteMBP -s

into compact guards [37].

4.2.3 Synthesis Algorithm

Algorithm 4.3, named JSyn, provides a summary of the synthesis procedure. The

algorithm �rst determines whether the set of initial states 𝐺𝐼 is non-empty. Second, it
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Algorithm 4.3: JSyn (A : assumptions, G : guarantees)

Input: 𝐴(𝑠, 𝑖) : assumptions, 𝐺𝐼(𝑠), 𝐺𝑇 (𝑠, 𝑖, 𝑠
′) : guarantees

Output: ⟨realizable, 𝑆𝑘𝑜𝑙𝑒𝑚𝑠⟩/unrealizable
1 𝑆𝑘𝑜𝑙𝑒𝑚𝑠← ⟨⟩;
2 𝐼𝑛𝑖𝑡𝑅𝑒𝑠𝑢𝑙𝑡←Sat?(𝐺𝐼);
3 if (isUnsat(𝐼𝑛𝑖𝑡𝑅𝑒𝑠𝑢𝑙𝑡)) then
4 return unrealizable;
5 for (𝑖← 0; true; 𝑖← 𝑖+ 1) do
6 ⟨valid ,Skolem⟩ ← AE-VAL(ExtendCheck(𝑖));
7 if valid then

8 𝑆𝑘𝑜𝑙𝑒𝑚𝑠.𝐴𝑑𝑑(Skolem);
9 return ⟨realizable, 𝑆𝑘𝑜𝑙𝑒𝑚𝑠⟩;

10 ⟨valid ,Skolem⟩ ← AE-VAL(BaseCheck′𝑘(𝑖));
11 if ¬valid then

12 return unrealizable;
13 𝑆𝑘𝑜𝑙𝑒𝑚𝑠.𝐴𝑑𝑑(Skolem);

14 end

attempts to construct an inductive proof of the system's realizability, using AE-VAL

to �nd Skolem witnesses. For each call of AE-VAL we write ⟨𝑥, 𝑦⟩ ← AE-VAL(. . .): 𝑥

speci�es if the given formula is valid or not, and 𝑦 contains the Skolem function (only

in case of the validity). The algorithm iteratively proves BaseCheck′𝑘(𝑖) , ∀𝑠.𝐺𝐼(𝑠) =⇒

Extend 𝑖(𝑠), ∀𝑘.𝑘 < 𝑖 and accumulates the resulting Skolem functions. If BaseCheck′𝑘(𝑖)

ever fails, we know BaseCheck′(𝑖) would also fail and so the system is unrealizable. At the

same time, the algorithm tries to prove ExtendCheck(i). As soon as the inductive step of

ExtendCheck(i) passes, we have a complete k-inductive proof stating that the contract

is realizable. We then complete our synthesis procedure by generating a Skolem function

that corresponds to the inductive step, and return the list of the Skolem functions. Note

that in Algorithm 4.3 for a particular depth 𝑘, we perform the extends check prior to

the base check. The intuition is that BaseCheck′(𝑖) checks ∀𝑘 < 𝑖; thus, it is one step

�smaller� than the extends check and this avoids a special case at 𝑘 = 0.

Given a list of Skolem functions, it remains to plug them into an implementation
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Template 4.1: Structure of an implementation

1 assign Init();
2 read inputs();
3 Skolems[0]();
4 . . .
5 read inputs();
6 Skolems[𝑘 − 1]();
7 while 𝑡𝑟𝑢𝑒 do
8 read inputs();
9 Skolems[𝑘]();

10 update history();

11 end

skeleton as shown in Template 4.1. The combination of Lustre models and k-inductive

proofs allow the properties in the model to manipulate the values of variables up to 𝑘−1

steps in the past. Thus, the �rst step of an implementation (method assign Init())

creates an array for each state variable of size 𝑘+1, where 𝑘 is the depth of the solution

to Algorithm 4.3. This array represents the depth of history necessary to compute the

recurrent Skolem function produced by the ExtendCheck(𝑛) process. The BaseCheck′(𝑛)

Skolem functions initialize this history.

In each array, the 𝑖-th element, with 0 ≤ 𝑖 ≤ 𝑘−1, corresponds to the value assigned

to the variable after the call to 𝑖-th Skolem function. As such, the �rst 𝑘 − 1 elements

of each array correspond to the 𝑘 − 1 Skolem functions produced by the BaseCheck′(𝑛)

process, while the last element is used by the Skolem function generated from the formula

corresponding to the ExtendCheck(𝑛) process.

The template uses the Skolem functions generated by AE-VAL for each of the

BaseCheck′(𝑛) instances to describe the initial behavior of the implementation prior to

depth 𝑘. There are two �helper� operations: update history() shifts each element in

the arrays one position forward (the 0-th value is simply forgotten), and read inputs()

reads the current values of inputs into the 𝑖-th element of the variable arrays, where 𝑖
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represents the 𝑖-th step of the process. Once the history is entirely initialized using the

BaseCheck′(𝑛) Skolem functions, we add the Skolem function for the ExtendCheck(𝑛)

instance to describe the recurrent behavior of the implementation (i.e., the next value

of outputs in each iteration in the in�nite loop).

To establish the correctness of the algorithm, we present proofs as to the validity of

BaseCheck ′(n) and ExtendCheck(n) using the Skolem functions. The majority of the

contracts are expected to have realizability proofs of length equal to 0 or 1, and as such,

we limit our proofs of correctness to these two speci�c cases.

Theorem 4.2.2 (Bounded Soundness of BaseCheck and ExtendCheck using Skolem

Functions). Let BaseCheck𝑆(𝑠𝑛,𝑖,𝑠′)(𝑛) and ExtendCheck𝑆(𝑠𝑛,𝑖,𝑠′)(𝑛), 𝑛 ∈ 0, 1, be the valid

variations of the corresponding formulas BaseCheck(n) and ExtendCheck(n), where

the existentially quantified part ∃𝑠′. 𝐺𝑇 (𝑠𝑛, 𝑖, 𝑠
′) has been substituted with a witnessing

Skolem function 𝑆(𝑠𝑛, 𝑖, 𝑠
′). We have that:

� ∀(𝐴,𝐺𝐼 , 𝐺𝑇 ).BaseCheck(𝑛)⇒ BaseCheck𝑆(𝑠𝑛,𝑖,𝑠′)(𝑛)

� ∀(𝐴,𝐺𝐼 , 𝐺𝑇 ).ExtendCheck(𝑛)⇒ 𝐸𝑥𝑡𝑒𝑛𝑑𝐶ℎ𝑒𝑐𝑘𝑆(𝑠𝑛,𝑖,𝑠′)(𝑛)

Proof. The proof uses the de�nition Extend𝑛(𝑠) of an extendable state, after replacing

the next-step states with corresponding Skolem functions. From there, the proof of the

two implications is straightforward.

4.2.4 An Illustrative Example

The left side of Figure 4.2 shows a (somewhat contrived) contract for a system that

detects whether a string of two zeros or two ones ever occurs in a stream of inputs written

in a dialect of the Lustre language [61]. The right side shows a possible implementation

of that contract, visualized as a state machine. Rather than use this implementation, we
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node top (x : i n t ; s t a t e : i n t ) r e tu rns ( ) ;
var

b ia s : i n t ;
guarantee1 , guarantee2 , guarantee3 ,
guarantee4 , guarantee5 , guarantee_al l : bool ;
bias_max : bool ;

l e t
b ia s = 0 => ( i f x = 1 then 1 e l s e =1) + pre ( b ia s ) ;
bias_max = f a l s e =>

( b ia s >= 2 or b ia s <= =2) or pre ( bias_max ) ;
a s s e r t ( x = 0) or (x = 1 ) ;
guarantee1 = ( s t a t e = 0 => ( b ia s = 0 ) ) ;
guarantee2 = true =>

( pre ( s t a t e = 0) and x = 1) => s ta t e = 2 ;
guarantee3 = true =>

( pre ( s t a t e = 0) and x = 0) => s ta t e = 1 ;
guarantee4 = bias_max => s ta t e = 3 ;
guarantee5 = s t a t e = 0 or s t a t e = 1

or s t a t e = 2 or s t a t e = 3 ;
guarantee_al l = guarantee1 and guarantee2 and

guarantee3 and guarantee4 and guarantee5 ;
==%PROPERTY guarantee_al l ;
==%REALIZABLE x ;

t e l ;

Figure 4.2: Requirements and possible implementation for example

would like to synthesize a new one directly from the contract. There are two unassigned

variables in the contract, x and state. The --%REALIZABLE statement speci�es that

x is a system input, and by its absence, that state is a system output. The contract's

assumption is speci�ed by the assert statement and restricts the allowable input values

of x to either 0 or 1. We also have �ve guarantees: guarantee2 and guarantee3 are

used to indirectly describe some possible transitions in the automaton;4 guarantee5

speci�es the range of values of variable state; guarantee1 and guarantee4 are the

requirements with respect to two local variables, bias and bias_max, where bias

calculates the number of successive ones or zeros read by the automaton and bias_max

indicates that at least two zeros or two ones have been read in a row.

Note that while Lustre is a compilable language, using standard compilation tools

the �program� in Figure 4.2 would not compile into a meaningful implementation: it has

no outputs! Instead, it de�nes the guarantees we wish to enforce within the controller,

and our synthesis tool will construct a program which meets the guarantees.

The realizability check on this example succeeds with a k-inductive proof of length

4In Lustre, the arrow (->) and pre operators are used to provide an initial value and access the
previous value of a stream, respectively.
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i f ( ( ( x [ 1 ] == 1 && (=1 == bia s [ 0 ] ) ) | | ( x [ 1 ] == 0 && (1 == bia s [ 0 ] ) ) )
&& ! bias_max [ 0 ] && ( s t a t e [ 0 ] != 0 | | x [ 1 ] == 0)
&& ( ! s t a t e [ 0 ] != 0 | | x [ 1 ] == 1)) {

bias_max [ 1 ] = 0 ;
b i a s [ 1 ] = 0 ;
s t a t e [ 1 ] = 0 ;

}

Figure 4.3: A code snippet of the synthesized implementation for the contract from Fig. 4.2.

𝑘 = 1. The two corresponding ∀∃-formulas (𝑘 = 0 for the base check and 𝑘 = 1 for the

inductive check) are valid, and thus AE-VAL extracts two witnessing Skolem functions

that e�ectively describe assignments to the local variables of the speci�cation, as well

as to state (see Appendix B for the particular formulas).

The Skolem functions are used to construct the �nal implementation following the

outline provided in Template 4.1. The main idea is to rede�ne each variable in the

model as an array of size equal to 𝑘 and to use the 𝑘-th element of each array as

the corresponding output of the call to 𝑘-th Skolem function. After this initialization

process, we use an in�nite loop to assign new values to the element corresponding to the

last Skolem function, to cover the inductive step of the original proof. The �nal code, a

snippet of which is presented below, is 144 lines long. Since each Skolem is represented

by an ite-statement (to be explained in Section 6.4), each branch is further encoded into

a C-code, as shown in Figure 4.3.

Notice how each variable is represented by an array in the snippet above. We chose

to use this easy to understand representation in order to e�ectively store all the past 𝑘−1

values of each variable, that may be needed during the construction of the k-inductive

proof.

Recall that the user-de�ned model explicitly speci�es only two transitions (via

guarantee2 and guarantee3), while the set of implicitly de�ned transitions (via

guarantee1 and guarantee4) is incomplete. Interestingly, our synthesized imple-

mentation turns all implicit transitions into explicit ones which makes them executable
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and, furthermore, adds the missing ones (e.g., as in the aforementioned snippet, from

state = 1 to state = 0).

4.2.5 Implementation

We developed JSyn, our synthesis algorithm on top of JKind [47], a Java implementa-

tion of the KIND model checker.5 Each model is described using the Lustre language,

which is used as an intermediate language to formally verify contracts in the Assume-

Guarantee Reasoning (AGREE) framework [25]. Internally, JKind uses two parallel

engines (for BaseCheck and ExtendCheck) in order to construct a 𝑘-inductive proof for

the property of interest. The �rst order formulas that are being constructed are then

fed to the Z3 SMT solver [27] which provides state of the art support for reasoning

over quanti�ers and incremental search. For all valid ∀∃-formulas, JSyn proceeds to

construct a list of Skolem functions using the AE-VAL Skolemizer. AE-VAL supports

LRA and LIA and thus provides the Skolem relation over integers and reals.6

As discussed in Section 4.2, we construct a Skolem function for each base check up

to depth 𝑘 and one for the inductive relation at depth 𝑘. What remains is to knit those

functions together into an implementation in C. The SMTLib2C tool performs this

translation, given an input list of the original Lustre speci�cation (to determine the I/O

interface) and the Skolem functions (to de�ne the behavior of the implementation). The

main translation task involves placing the Skolem functions into the template described

in Template. 4.1. Each Skolem function describes a bounded history of at most depth 𝑘

over speci�cation variables, so each variable is represented by an array of size 𝑘 in the

generated program. The tool ensures that the array indices for history variables match

5An unofficial release of JKind supporting synthesis is available to download at
https://github.com/andrewkatis/jkind-1/tree/synthesis. AE-VAL needs to be installed separately
from https://github.com/grigoryfedyukovich/aeval.

6For realizability checks over Linear Integer and Real Arithmetic (LIRA), JKind has an option to
use Z3 directly.



58

up properly across the successive base- and inductive-case Skolem functions. Note that

during this translation process, real variables in Skolem functions are de�ned as �oats

in C, which could cause over�ow and precision errors in the �nal implementation. We

will address this issue in future work.

4.2.6 Experimental Results

For the purposes of this work, we synthesized implementations for 58 contracts written

in Lustre, including the running example from Figure 4.2.7 The original Lustre pro-

grams contained both the contract as well as an implementation, which provided us

with a complete test benchmark suite since we were able to compare the synthesized

implementations to already existing handwritten solutions. By extracting the hand-

written implementation, we synthesized an alternative, and translated both versions to

an equivalent C representation, using SMTLib2C for the synthesized programs and

the LustreV6 compiler [61], including all of its optimization options, for the original

implementations.

Figure 4.4 shows the overhead of synthesis by JSyn comparing to the realizability

checking by JKind, while Figure 5.4a provides a scatter plot of the results of our ex-

periments in terms of the performance of the synthesized programs against the original,

handwritten implementations. Each dot in the scatter plot represents a pair of running

times (x - handwritten, y - synthesized) of the 58 programs.For the two most complex

models in the benchmark suite, the synthesized implementations underperform the pro-

grams generated by LustreV6. As the level of complexity decreases, we notice that

both implementations share similar performance levels, and for the most trivial contracts

in the experiment set, the synthesized programs perform better with a noticeable gap.

We attribute these results mainly to the simplicity of the requirements expressed in the

7The benchmarks can be found at https://github.com/andrewkatis/synthesis-
benchmarks/tree/master/verification.
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Figure 4.4: Performance comparison (time) of realizability checking and synthesis

Figure 4.5: Performance comparison (time) of synthesized and handwritten implementations

majority of the models which were proved realizable for 𝑘 = 0 by JKind, except for the

example from Section 5.1 and two complex contracts for a cruise controller, which were

proved for 𝑘 = 1. It is important at this point to recall the fact that the synthesized

implementations are not equivalent to the handwritten versions, in a similar fashion to

the example used in Section 5.1.
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Figure 4.6: Size comparison (lines of code) of synthesized and handwritten implementations

Figure 4.6 presents the size of the implementations. Here, we can see the direct

e�ect of the speci�cation complexity to the size of the Skolem functions generated by

AE-VAL. Two out of the �ve synthesized programs that are larger than their hand-

written counterparts were also slower than the handwritten implementations. Since the

majority of the models contained simple requirements, the overall size of the synthesized

implementation remained well below LustreV6-programs.

Handwritten implementations are still prevalent in application domains since they

provide advantages in numerous aspects, such as readability, extendability and mainte-

nance. Nevertheless, the results show that the synthesized implementations can be used

as e�cient placeholders to reduce the time required to verify a system under construc-

tion, without needing a �nal implementation for all its components.

4.3 Conclusion

In this chapter, we presented a novel approach to program synthesis guided by the

proofs of realizability of Assume-Guarantee contracts. To check realizability, it performs
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k-induction-based reasoning to decide validity of a set of ∀∃-formulas. Whenever a

contract is proven realizable, it further employs the Skolemization procedure in AE-VAL

and extracts a �ne-grained witness to realizability. The generated Skolem functions are

then translated into an executable implementation. We implemented the technique in

the JSyn tool and evaluated it for the set of Lustre models of di�erent complexity.

The experimental results provided fruitful conclusions on the overall e�cacy of the the

approach.

To the best of our knowledge our work is the �rst complete attempt at providing

a synthesis algorithm based on the principle of k-induction using in�nite theories. The

ability to express contracts that support ideas from many categories of speci�cations,

such as template-based and temporal properties, increases the potential applicability of

this work to multiple subareas on synthesis research.

As a notable byproduct of this work, the machine-checked proofs that we developed

in Coq were crucial towards verifying our approach and learning more about the actual

functionality of the algorithm. Interactive theorem provers like Coq provide the neces-

sary support to de�ne the notions and assertions while being able to e�ectively prove

theorems in a far more convenient and reassuring way, in contrast to hand-written, infor-

mal proofs, especially when it comes down to tracking formulas containing alternating

quanti�ers. Furthermore, the procedure of proving the theorems in an interactive way

with a tool allowed us to re�ne our de�nitions. Additionally, the time that was re-

quired was minimal when compared to the process of considering the informal proofs

and writing down our requirements in English. The most important outcome was the

proof of correctness of our approach that enabled us to provide a complementary set of

de�nitions and proofs, easily processed by an experienced Coq user.



Chapter 5

Validity-Guided Reactive Synthesis

The lack of soundness for unrealizable results in JSyn made imperative the pursuit for

a better approach. The intuition behind the second algorithm in this thesis relies on the

discovery of a greatest �xpoint 𝐹 that only contains viable states. We can determine

whether 𝐹 is a �xpoint by examining the validity of the following formula:

∀𝑠, 𝑖. (𝐹 (𝑠) ∧𝐴(𝑠, 𝑖)⇒ ∃𝑠′.𝐺𝑇 (𝑠, 𝑖, 𝑠
′) ∧ 𝐹 (𝑠′))

In the case where the greatest �xpoint 𝐹 is non-empty, we check whether it satis�es

𝐺𝐼 for some initial state. If so, we proceed by extracting a witnessing initial state and

witnessing skolem function 𝑓(𝑠, 𝑖) to determine 𝑠′ that is, by construction, guaranteed

to satisfy the speci�cation.

To achieve witness extraction, we again depend on AE-VAL, with its support for

generating regions of validity being particularly crucial for the computation of �xpoints.

62
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Assumptions

•

•

ik � 0
5X

k=1

ik = 1

Implementation
(Cinderella)

?
ik bk, e

(
5, if k = 1

k � 1, otherwiseb0k =

(
0, if e = k _ e =

bk + ik, otherwise

Guarantees

•

•

•

bk = 0 (initially)

b0k  2

Figure 5.1: An Assume-Guarantee contract.

5.1 Overview: The Cinderella-Stepmother Game

We illustrate the �ow of the validity-guided synthesis algorithm using a variation of

the minimum-backlog problem, the two player game between Cinderella and her wicked

Stepmother, �rst expressed by Bodlaender et al. [9].

The main objective for Cinderella (i.e. the reactive system) is to prevent a collection

of buckets from over�owing with water. On the other hand, Cinderella's Stepmother (i.e.

the system's environment) re�lls the buckets with a prede�ned amount of water that is

distributed in a random fashion between the buckets. For the running example, we chose

an instance of the game that has been previously used in template-based synthesis [6]. In

this instance, the game is described using �ve buckets, where each bucket can contain up

to two units of water. Cinderella has the option to empty two adjacent buckets at each

of her turns, while the Stepmother distributes one unit of water over all �ve buckets. In

the context of this chapter we use this example to show how speci�cation is expressed,

as well as how we can synthesize an e�cient implementation that describes reactions for

Cinderella, such that a bucket over�ow is always prevented.

We represent the system requirements using an Assume-Guarantee Contract. The

assumptions of the contract restrict the possible inputs that the environment can provide

to the system, while the guarantees describe safe reactions of the system to the outside

world.
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A (conceptually) simple example is shown in Figure 5.1. The contract describes a

possible set of requirements for a speci�c instance of the Cinderella-Stepmother game.

Our goal is to synthesize an implementation that describes Cinderella's winning region

of the game. Cinderella in this case is the implementation, as shown by the middle box

in Figure 5.1. Cinderella's inputs are �ve di�erent values 𝑖𝑘, 1 ≤ 𝑘 ≤ 5, determined by

a random distribution of one unit of water by the Stepmother. During each of her turns

Cinderella has to make a choice denoted by the output variable 𝑒, such that the buckets

𝑏𝑘 do not over�ow during the next action of her Stepmother. We de�ne the contract

using the set of assumptions 𝐴 (left box in Figure 5.1) and the guarantee constraints 𝐺

(right box in Figure 5.1). For the particular example, it is possible to construct at least

one implementation that satis�es 𝐺 given 𝐴 which is described in Section 5.3.3. The

proof of existence of such an implementation is the main concept behind the realizability

problem, while the automated construction of a witness implementation is the main

focus of program synthesis.

Given a proof of realizability of the contract in Figure 5.1, we are seeking an e�cient

synthesis procedure that could provide an implementation. On the other hand, consider

a variation of the example, where 𝐴 = true. This is a practical case of an unrealizable

contract, as there is no feasible Cinderella implementation that can correctly react to

Stepmother's actions. An possible counterexample allows the Stepmother to pour ran-

dom amounts of water into the buckets, leading to over�ow of at least one bucket during

each of her turns.

5.2 Skolem functions and regions of validity

In order to decide the validity of ∀∃-formulas and extract Skolem functions, we rely on the

already established algorithm calledAE-VAL. It takes as input a formula ∀𝑥 .∃𝑦 .Φ(𝑥, 𝑦)

where Φ(𝑥, 𝑦) is quanti�er-free. To decide its validity, AE-VAL �rst normalizes Φ(𝑥, 𝑦)
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S(x)

P1(x)

P2(x)

9y . T (x, y)

Figure 5.2: Region of validity computed for an example requiring AE-VAL to iterate two times.

to the form 𝑆(𝑥) ⇒ 𝑇 (𝑥, 𝑦) and then attempts to extend all models of 𝑆(𝑥) to models

of 𝑇 (𝑥, 𝑦). If such an extension is possible, then the input formula is valid, and a

relationship between 𝑥 and 𝑦 are gathered in a Skolem function. Otherwise the formula

is invalid, and no Skolem function exists.

Both of the synthesis algorithms presented in this thesis rely on the fact that during

each run, AE-VAL iteratively creates a set of formulas {𝑃𝑖(𝑥)}, such that each 𝑃𝑖(𝑥)

has a common model with 𝑆(𝑥) and 𝑃𝑖(𝑥) ⇒ ∃𝑦 . 𝑇 (𝑥, 𝑦). After 𝑛 iterations, AE-VAL

establishes a formula 𝑅𝑛(𝑥)
def
=

⋁︀𝑛
𝑖=1 𝑃𝑖(𝑥) which by construction implies ∃𝑦 . 𝑇 (𝑥, 𝑦). If

additionally 𝑆(𝑥) ⇒ 𝑅𝑛(𝑥), the input formula is valid, and the algorithm terminates.

Figure 5.2 shows a Venn diagram for an example of the opposite scenario: 𝑅2(𝑥) =

𝑃1(𝑥) ∨ 𝑃2(𝑥), but the input formula is invalid. However, models of each 𝑆(𝑥) ∧ 𝑃𝑖(𝑥)

can still be extended to a model of 𝑇 (𝑥, 𝑦).

In general, if after 𝑛 iterations 𝑆(𝑥) ∧ 𝑇 (𝑥, 𝑦) ∧ ¬𝑅𝑛(𝑥) is unsatis�able, then AE-

VAL terminates. Note that the formula ∀𝑥. 𝑆(𝑥) ∧ 𝑅𝑛(𝑥) ⇒ ∃𝑦. 𝑇 (𝑥, 𝑦) is valid by

construction at any iteration of the algorithm. We say that 𝑅𝑛(𝑥) is a region of validity,
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Algorithm 5.1: JSyn-vg (A : assumptions, G : guarantees)

1 𝐹 (𝑠)← true ◁ Fixpoint of viable states;
2 while true do
3 𝜑← ∀𝑠, 𝑖. (𝐹 (𝑠) ∧𝐴(𝑠, 𝑖)⇒ ∃𝑠′.𝐺𝑇 (𝑠, 𝑖, 𝑠

′) ∧ 𝐹 (𝑠′));
4 ⟨valid , validRegion,Skolem⟩ ← AE-VAL(𝜑);
5 if valid then

6 if ∃𝑠.𝐺𝐼(𝑠) ∧ 𝐹 (𝑠) then
7 return ⟨realizable,Skolem, 𝑠, 𝐹 ⟩;
8 else ◁ Empty set of initial or viable states
9 return unrealizable;

10 else ◁ Extract region of validity 𝑄(𝑠, 𝑖)
11 𝑄(𝑠, 𝑖)← validRegion;
12 𝜑′ ← ∀𝑠. (𝐹 (𝑠)⇒ ∃𝑖.𝐴(𝑠, 𝑖) ∧ ¬𝑄(𝑠, 𝑖));
13 ⟨ , violatingRegion, ⟩ ← AE-VAL(𝜑′);
14 𝑊 (𝑠)← violatingRegion;
15 𝐹 (𝑠)← 𝐹 (𝑠) ∧ ¬𝑊 (𝑠) ◁ Re�ne set of viable states;

16 end

and in this chapter, we are interested in the maximal regions of validity, i.e., the ones

produced by disjoining all {𝑃𝑖(𝑥)} produced by AE-VAL before termination and by

conjoining it with 𝑆(𝑥). Throughout the paper, we assume that all regions of validity

are maximal.

Lemma 6. Let 𝑅𝑛(𝑥) be the region of validity returned by AE-VAL for formula

∀𝑠. 𝑆(𝑥)⇒ ∃𝑦 . 𝑇 (𝑥, 𝑦). Then ∀𝑥. 𝑆(𝑥)⇒ (𝑅𝑛(𝑥)⇔ ∃𝑦 . 𝑇 (𝑥, 𝑦)).

Proof. (⇒) By construction of 𝑅𝑛(𝑥).

(⇐) Suppose towards contradiction that the formula does not hold. Then there exists

𝑥0 such that 𝑆(𝑥0)∧ (∃𝑦.𝑇 (𝑥0, 𝑦))∧¬𝑅𝑛(𝑥0) holds. But this is a direct contradiction for

the termination condition for AE-VAL. Therefore the original formula does hold.
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5.3 Validity-Guided Synthesis

Algorithm 5.1, named JSyn-vg (for validity guided), shows the validity-guided technique

that we use towards the automatic synthesis of implementations. The speci�cation is

written using the Assume-Guarantee convention that we described in Chapter 3 and is

provided as an input. For this algorithm we modify the form of the results provided by

AE-VAL to ⟨𝑥, 𝑦, 𝑧⟩ ← AE-VAL(. . .): 𝑥 again speci�es if the formula is (not) valid, 𝑦

identi�es the region of validity (in both cases), and 𝑧 � the Skolem function (only in case

of the validity).

The algorithm maintains a formula 𝐹 (𝑠) which is initially assigned true (line 1).

It then attempts to strengthen 𝐹 (𝑠) until it only contains viable states (recall De�-

nition 3.3.4 and Theorem 3.3.1), i.e., a greatest �xpoint is reached. We �rst encode

De�nition 3.3.4 in a formula 𝜑 and then provide it as input to AE-VAL (line 4) which

determines its validity (line 5). If the formula is valid, then a witness Skolem is non-

empty. By construction, it contains valid assignments to the existentially quanti�ed

variables of 𝜑. In the context of viability, this witness is capable of providing viable

states that can be used as safe reactions, given an input that satis�es the assumptions.

With the valid formula 𝜑 in hand, it remains to check that the �xpoint intersects with

the initial states, i.e., to �nd a model of satis�ability of Theorem 3.3.1. If a model exists,

it is directly combined with the extracted witness and used towards an implementation of

the system, and the algorithm terminates (line 6). Otherwise, the contract is unrealizable

since either there are no states that satisfy the initial state guarantees 𝐺𝐼 , or the set of

viable states 𝐹 is empty.

If 𝜑 is not true for every possible assignment of the universally quanti�ed variables,

AE-VAL provides a region of validity 𝑄(𝑠, 𝑖) (line 11). At this point, one might assume

that 𝑄(𝑠, 𝑖) is su�cient to restrict 𝐹 towards a solution. This is not the case since 𝑄(𝑠, 𝑖)

creates a subregion involving both state and input variables. As such, it may contain



68

constraints over the contract's inputs above what are required by 𝐴, ultimately leading

to implementations that only work correctly for a small part of the input domain.

Fortunately, we can again use AE-VAL's capability of providing regions of validity

towards removing inputs from 𝑄. Essentially, we want to remove those states from 𝑄

if even one input causes them to violate the formula on line 3. We denote by 𝑊 the

violating region of 𝑄. To construct 𝑊 , AE-VAL determines the validity of formula

𝜑′ ← ∀𝑠. (𝐹 (𝑠)⇒ ∃𝑖.𝐴(𝑠, 𝑖) ∧ ¬𝑄(𝑠, 𝑖)) (line 12) and computes a new region of validity.

If 𝜑′ is invalid, it indicates that there are still non-violating states (i.e., outside 𝑊 )

that may lead to a �xpoint. Thus, the algorithm removes the unsafe states from 𝐹 (𝑠) in

line 8, and iterates until a greatest �xpoint for 𝐹 (𝑠) is reached. If 𝜑′ is valid, then every

state in 𝐹 (𝑠) is unsafe, under a speci�c input that satis�es the contract assumptions

(since ¬𝑄(𝑠, 𝑖) holds in this case), and the speci�cation is unrealizable (i.e., in the next

iteration, the algorithm will reach line 7).

5.3.1 Soundness

Lemma 7. Viable⇒ 𝐹 is an invariant for Algorithm 5.1.

Proof. It su�ces to show this invariant holds each time 𝐹 is assigned. On line 1, this

is trivial. For line 8, we can assume that Viable ⇒ 𝐹 holds prior to this line. Suppose

towards contradiction that the assignment on line 8 violates the invariant. Then there

exists 𝑠0 such that 𝐹 (𝑠0),𝑊 (𝑠0), and Viable(𝑠0) all hold. Since𝑊 is the region of validity

for 𝜑′ on line 12, we have𝑊 (𝑠0)∧𝐹 (𝑠0)⇒ ∃𝑖.𝐴(𝑠0, 𝑖)∧¬𝑄(𝑠0, 𝑖) by Lemma 6. Given that

𝑊 (𝑠0) and 𝐹 (𝑠0) hold, let 𝑖0 be such that 𝐴(𝑠0, 𝑖0) and ¬𝑄(𝑠0, 𝑖0) hold. Since 𝑄 is the

region of validity for 𝜑 on line 3, we have 𝐹 (𝑠0)∧𝐴(𝑠0, 𝑖0)∧ ∃𝑠′.𝐺𝑇 (𝑠0, 𝑖0, 𝑠
′)∧𝐹 (𝑠′)⇒

𝑄(𝑠0, 𝑖0) by Lemma 6. Since 𝐹 (𝑠0), 𝐴(𝑠0, 𝑖0) and ¬𝑄(𝑠0, 𝑖0) hold, we conclude that

∃𝑠′.𝐺𝑇 (𝑠0, 𝑖0, 𝑠
′) ∧ 𝐹 (𝑠′) ⇒ ⊥. We know that Viable ⇒ 𝐹 holds prior to line 8, thus

∃𝑠′.𝐺𝑇 (𝑠0, 𝑖0, 𝑠
′) ∧ Viable(𝑠′) ⇒ ⊥. But this is a contradiction since Viable(𝑠0) holds.
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Therefore the invariant holds on line 8.

Theorem 5.3.1. The realizable and unrealizable results of Algorithm 5.1 are

sound.

Proof. If Algorithm 5.1 terminates, then the formula for 𝜑 on line 3 is valid. Rewritten,

𝐹 satis�es the formula

∀𝑠. 𝐹 (𝑠)⇒
(︀
∀𝑖. 𝐴(𝑠, 𝑖)⇒ ∃𝑠′.𝐺𝑇 (𝑠, 𝑖, 𝑠

′) ∧ 𝐹 (𝑠′)
)︀
. (5.1)

Let the function 𝑓 be de�ned over state predicates as

𝑓 = 𝜆𝑉.𝜆𝑠. ∀𝑖. 𝐴(𝑠, 𝑖)⇒ ∃𝑠′.𝐺𝑇 (𝑠, 𝑖, 𝑠
′) ∧ 𝑉 (𝑠′). (5.2)

State predicates are equivalent to subsets of the state space and form a lattice in the

natural way. Moreover, 𝑓 is monotone on this lattice. From Equation 5.1 we have

∀𝑠.𝐹 (𝑠) ⇒ 𝑓(𝐹 )(𝑠). Thus 𝐹 is a post-�xed point of 𝑓 . In De�nition 3.3.4, Viable

is de�ned as the greatest �xed-point of 𝑓 . Thus 𝐹 ⇒ Viable by the Knaster-Tarski

theorem. Combining this with Lemma 7, we have 𝐹 = Viable. Therefore the check on

line 6 is equivalent to the check in Theorem 3.3.1 for realizability.

5.3.2 Termination on finite models

Lemma 8. Every loop iteration in Algorithm 5.1 either terminates or removes at least

one state from 𝐹 .

Proof. It su�ces to show that at least one state is removed from 𝐹 on line 8. That is,

we want to show that 𝐹 ∩𝑊 ̸= ∅ since this intersection is what is removed from 𝐹 by

line 8.
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If the query on line 4 is valid, then the algorithm terminates. If not, then there

exists a state 𝑠* and input 𝑖* such that 𝐹 (𝑠*) and 𝐴(𝑠*, 𝑖*) such that there is no state

𝑠′ where both 𝐺(𝑠*, 𝑖*, 𝑠′) and 𝐹 (𝑠′) hold. Thus, ¬𝑄(𝑠*, 𝑖*), and 𝑠* ∈ violatingRegion,

so 𝑊 ̸= ∅. Next, suppose towards contradiction that 𝐹 ∩𝑊 = ∅ and 𝑊 ̸= ∅. Since

𝑊 is the region of validity for 𝜑′ on line 12, we know that 𝐹 lies completely outside

the region of validity and therefore ∀𝑠. ¬∃𝑖.𝐴(𝑠, 𝑖) ∧ ¬𝑄(𝑠, 𝑖) by Lemma 6. Rewritten,

∀𝑠, 𝑖. 𝐴(𝑠, 𝑖) ⇒ 𝑄(𝑠, 𝑖). Note that 𝑄 is the region of validity for 𝜑 on line 3. Thus 𝐴

is completely contained within the region of validity and formula 𝜑 is valid. This is a

contradiction since if 𝜑 is valid then line 8 will not be executed in this iteration of the

loop. Therefore 𝐹 ∩𝑊 ̸= ∅ and at least one state is removed from 𝐹 on line 8.

Theorem 5.3.2. For finite models, Algorithm 5.1 terminates.

Proof. Immediately from Lemma 8 and the fact that AE-VAL terminates on �nite

models [37].

5.3.3 Applying JSyn-vg to the Cinderella-Stepmother game

Figure 5.3 shows one possible interpretation of the contract designed for the instance

of the Cinderella-Stepmother game that we introduced in Section 5.1. The contract

is de�ned as a Lustre [61] node game, with a global constant C denoting the bucket

capacity. The node describes the game itself, through the problem's input and output

variables. The main input is Stepmother's distribution of one unit of water over �ve

di�erent input variables, i1 to i5. While the node contains a sixth input argument,

namely e, this is in fact used as the output of the system that we want to implement,

representing Cinderella's choice at each of her turns.

We specify the system's inputs i1, . . . , i5 using the REALIZABLE statement and de-

�ne the contract's assumptions over them: 𝐴(𝑖1, . . . , 𝑖5) = (
⋀︀5

𝑘=1 𝑖𝑘 >= 0.0)∧(∑︀5
𝑘=1 𝑖𝑘 =
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const C = 2 . 0 ;

== empty buckets e and e+1 each round
node game( i1 , i2 , i3 , i4 , i 5 : r e a l ; e : i n t ) r e tu rn s ( guarantee : bool ) ;
var

b1 , b2 , b3 , b4 , b5 : r e a l ;
l e t

a s s e r t i 1 >= 0.0 and i 2 >= 0.0 and i 3 >= 0.0 and i 4 >= 0.0 and
i 5 >= 0 . 0 ;

a s s e r t i 1 + i 2 + i3 + i4 + i5 = 1 . 0 ;

b1 = 0 .0 => ( i f ( e = 5 or e = 1) then i 1 e l s e ( pre ( b1 ) + i1 ) ) ;
b2 = 0 .0 => ( i f ( e = 1 or e = 2) then i 2 e l s e ( pre ( b2 ) + i2 ) ) ;
b3 = 0 .0 => ( i f ( e = 2 or e = 3) then i 3 e l s e ( pre ( b3 ) + i3 ) ) ;
b4 = 0 .0 => ( i f ( e = 3 or e = 4) then i 4 e l s e ( pre ( b4 ) + i4 ) ) ;
b5 = 0 .0 => ( i f ( e = 4 or e = 5) then i 5 e l s e ( pre ( b5 ) + i5 ) ) ;

guarantee = b1 <= C and b2 <= C and b3 <= C and b4 <= C and
b5 <= C;

==%REALIZABLE i1 , i2 , i3 , i4 , i 5 ;
==%PROPERTY guarantee ;

t e l ;

Figure 5.3: An Assume-Guarantee contract for the Cinderella-Stepmother game in Lustre.

1.0). The assignment to boolean variable guarantee (distinguished via the PROPERTY

statement) imposes the guarantee constraints on the buckets' states through the entire

duration of the game, using the local variables b1 to b5. Initially, each bucket is empty,

and with each transition to a new state, the contents depend on whether Cinderella chose

the corresponding bucket or not. If so, the value of each b𝑘 at the the next turn be-

comes equal to the value of the corresponding input variable i𝑘. Formally, for the initial

state, 𝐺𝐼(𝐶, 𝑏1, . . . , 𝑏5) = (
⋀︀5

𝑘=1 𝑏𝑘 = 0.0) ∧ (
⋀︀5

𝑘=1 𝑏𝑘 ≤ 𝐶), while the transitional guar-

antee is 𝐺𝑇 ([𝐶, 𝑏1, . . . , 𝑏5, 𝑒], 𝑖1, . . . , 𝑖5, [𝐶, 𝑏
′
1, . . . , 𝑏

′
5, 𝑒

′]) = (
⋀︀5

𝑘=1 𝑏
′
𝑘 = 𝑖𝑡𝑒(𝑒 = 𝑘 ∨ 𝑒 =

𝑘𝑝𝑟𝑒𝑣, 𝑖𝑘, 𝑏𝑘 + 𝑖𝑘)∧ (
⋀︀5

𝑘=1 𝑏
′
𝑘 ≤ 𝐶), where 𝑘𝑝𝑟𝑒𝑣 = 5 if 𝑘 = 1, and 𝑘𝑝𝑟𝑒𝑣 = 𝑘− 1 otherwise.

Interestingly, the lack of explicit constraints over 𝑒, i.e. Cinderella's choice, permits the

action of Cinderella skipping her current turn, i.e. she does not choose to empty any of
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the buckets. With the addition of the guarantee (𝑒 = 1) ∨ . . . ∨ (𝑒 = 5), the contract

is still realizable, and the implementation is veri�able, but Cinderella is not allowed to

skip her turn anymore.

If the bucket was not covered by Cinderella's choice, then its contents are updated

by Stepmother's addition, if any, to the volume of water that the bucket already had.

The arrow (->) operator distinguishes the initial state (on the left) from subsequent

states (on the right), and variable values in the previous state can be accessed using the

pre operator. The contract should only be realizable if, assuming valid inputs given

by the Stepmother (i.e. positive values to input variables that add up to one water

unit), Cinderella can keep reacting inde�nitely, by providing outputs that satisfy the

guarantees (i.e. she empties buckets in order to prevent over�ow in Stepmother's next

turn). We provide the contract in Figure 5.3 as input to Algorithm 5.1 which then

iteratively attempts to construct a �xpoint of viable states, closed under the transition

relation.

Initially 𝐹 = true, and we query AE-VAL for the validity of formula 𝜑
def
= ∀𝑖1, . . . ,

𝑖5, 𝑏1, . . . , 𝑏5 . 𝐴(𝑖1, . . . , 𝑖5) ⇒ ∃𝑏′1, . . . , 𝑏′5, 𝑒 . 𝐺𝑇 (𝑖1, . . . , 𝑖5, 𝑏1, . . . , 𝑏5, 𝑏
′
1, . . . , 𝑏

′
5, 𝑒). Since

𝐹 is empty, there are states satisfying 𝐴, for which there is no transition to 𝐺𝑇 . In

particular, one such counterexample identi�ed by AE-VAL is represented by the set

of assignments cex = {. . . , 𝑏4 = 3025, 𝑖4 = 0.2, 𝑏′4 = 3025.2, . . .}, where the already

over�own bucket 𝑏4 receives additional water during the transition to the next state,

violating the contract guarantees. In addition, AE-VAL provides us with a region of

validity 𝑄(𝑖1, . . . , 𝑖5, 𝑏1, . . . , 𝑏5), a formula for which ∀𝑖1, . . . , 𝑖5, 𝑏1, . . . , 𝑏5 . 𝐴(𝑖1, . . . , 𝑖5)∧

𝑄(𝑖1, . . . , 𝑖5, 𝑏1, . . . , 𝑏5) ⇒ ∃𝑏′1, . . . , 𝑏′5, 𝑒 . 𝐺𝑇 (𝑖1, . . . , 𝑖5, 𝑏1, . . . , 𝑏5, 𝑏
′
1, . . . , 𝑏

′
5, 𝑒) is valid.

Precise encoding of 𝑄 is too large to be presented; intuitively it contains some constraints

on 𝑖1, . . . , 𝑖5 and 𝑏1, . . . , 𝑏𝑘 which are stronger than 𝐴 and which block the inclusion of

violating states such as the one described by cex .
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Since 𝑄 is de�ned over both state and input variables, it might contain constraints

over the inputs, which is an undesirable side-e�ect. In the next step, AE-VAL decides

the validity of formula ∀𝑏1, . . . , 𝑏5 .∃𝑖1, . . . , 𝑖5 . 𝐴(𝑖1, . . . , 𝑖5)∧¬𝑄(𝑖1, . . . , 𝑖5, 𝑏1, . . . , 𝑏5) and

extracts a violating region 𝑊 over 𝑏1, . . . , 𝑏5. Precise encoding of 𝑊 is also too large to

be presented; intuitively it captures certain steps in which Cinderella may not take the

optimal action. Blocking them leads us eventually to proving the contract's realizability.

From this point on, the algorithm continues following the steps explained above. In

particular, it terminates after one more re�nement, at depth 2. At that point, the re-

�ned version of 𝜑 is valid, and AE-VAL constructs a witness containing valid reactions

to environment behavior. In general, the witness is described through the use of nested

if-then-else blocks, where the conditions are subsets of the antecedent of the implica-

tion in formula 𝜑, while the body contains valid assignments to state variables to the

corresponding subset.

5.4 Implementation and Evaluation

The implementation of the algorithm has been added to a branch of the JKind [47]

model checker1. JKind o�cially supports synthesis using a 𝑘-inductive approach, named

JSyn [62]. For clarity, we named our validity-guided technique JSyn-vg (i.e., validity-

guided synthesis). JKind uses Lustre [61] as its speci�cation and implementation lan-

guage. JSyn-vg encodes Lustre speci�cations in the language of linear real and integer

arithmetic (LIRA) and communicates them to AE-VAL2. Skolem functions returned by

AE-VAL then get translated into an e�cient and practical implementation. To com-

pare the quality of implementations with those produced by JSyn, we use SMTLib2C,

1The JKind fork with JSyn-vg is available at https://goo.gl/WxupTe.
2The AE-VAL tool is available at https://goo.gl/CbNMVN.

https://goo.gl/WxupTe
https://goo.gl/CbNMVN
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a tool that has been speci�cally developed to translate Skolem functions to C implemen-

tations3.

5.4.1 Experimental results

We evaluated JSyn-vg by synthesizing implementations for 124 contracts4 originating

from a broad variety of contexts. Since we have been unable to �nd past work that

contained benchmarks directly relevant to our approach, we propose a comprehensive

collection of contracts that can be used by the research community for future advance-

ments in reactive system synthesis for contracts that rely on in�nite theories. Our

benchmarks are split into three categories:

� 59 contracts correspond to various industrial projects, such as a Quad-Redundant

Flight Control System, a Generic Patient Controlled Analgesia infusion pump,

as well as a collection of contracts for a Microwave model, written by graduate

students as part of a software engineering class;

� 54 contracts were initially used for the veri�cation of existing handwritten imple-

mentations [55];

� 11 contracts contain variations of the Cinderella-Stepmother game, as well as ex-

amples that we created.

All of the synthesized implementations were veri�ed against the original contracts using

JKind.

The goal of this experiment was to determine the performance and generality of the

JSyn-vg algorithm. We compared against the existing JSyn algorithm, and for the

Cinderella model, we compared against [6] (this was the only reactive synthesis problem

in that paper). We examined the following aspects:

3The SMTLib2C tool is available at https://goo.gl/EvNrAU.
4All of the benchmark contracts can be found at https://goo.gl/2p4sT9.

https://goo.gl/EvNrAU
https://goo.gl/2p4sT9
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JSyn JSyn-vg

Problems solved 113 124

Synthesis time (avg - seconds) 5.72 2.78

Synthesis time (max - seconds) 352.1 167.55

Implementation Size (avg - Lines of Code) 72.88 70.66

Implementation Size (max - Lines of Code) 2322 2142

Implementation Performance (avg - ms) 57.84 56.32

Implementation Performance (max - ms) 485.88 459.95

Table 5.1: Benchmark statistics.

� time required to synthesize an implementation;

� size of generated implementations in lines of code (LoC);

� execution speed of generated C implementations derived from the synthesis pro-

cedure; and

� number of contracts that could be synthesized by each approach.

Since JKind already supports synthesis through JSyn, we were able to directly com-

pare JSyn-vg against JSyn's 𝑘-inductive approach. We ran the experiments using a

computer with Intel Core i3-4010U 1.70GHz CPU and 16GB RAM.

A listing of the statistics that we tracked while running experiments is presented

in Table 5.1. Figure 5.4a shows the time taken by JSyn and JSyn-vg to solve each

problem, with JSyn-vg outperforming JSyn for the vast majority of the benchmark

suite, often times by a margin greater than 50%. Figure 5.4b on the other hand, depicts

small di�erences in the overall size between the synthesized implementations. While

it would be reasonable to conclude that there are no noticeable improvements, the big

picture is di�erent: solutions by JSyn-vg always require just a single Skolem function,

but solutions by JSyn may require several (𝑘 − 1 to initialize the system, and one for

the inductive step). In our evaluation, JSyn proved the realizability of the majority of

benchmarks by constructing proofs of length 𝑘 = 0, which essentially means that the
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Game
JSyn-vg ConSynth [6]

Impl. Size
(LoC)

Impl. Performance
(ms)

Time
Time
(Z3)

Time
(Barcelogic)

Cind (C = 3) 204 128.09 4.5s
3.2s 1.2s

Cind2 (C = 3) 2081 160.87 28.7s

Cind (C = 2) 202 133.04 4.7s
1m52s 1m52s

Cind2 (C = 2) 1873 182.19 27.2s

Table 5.2: Cinderella-Stepmother results.

entire space of states is an inductive invariant. However, several spikes in Figure 5.4b

refer to benchmarks, for which JSyn constructed a proof of length 𝑘 > 0, which was

signi�cantly longer that the corresponding proof by JSyn-vg. Interestingly, we also

noticed cases where JSyn implementations are (insigni�cantly) shorter. This provides

us with another observation regarding the formulation of the problem for 𝑘 = 0 proofs.

In these cases, JSyn proves the existence of viable states, starting from a set of pre-

initial states, where the contract does not need to hold. This has direct implications to

the way that the ∀∃-formulas are constructed in JSyn's underlying machinery, where

the assumptions are �baked� into the transition relation, a�ecting thus the performance

of AE-VAL.

One last statistic that we tracked was the performance of the synthesized C imple-

mentations in terms of single step of execution of the system, which can be seen in

Figure 5.4c. The performance was computed as the mean of 1000000 iterations of exe-

cuting each implementation using random input values. According to the �gure as well

as Table 5.1, the di�erences are minuscule on average.

Figure 5.4 does not cover the entirety of the benchmark suite. From the original 124

problems, eleven of them cannot be solved by JSyn's 𝑘-inductive approach. Four of these

�les are variations of the Cinderella-Stepmother game using di�erent representations of

the game, as well as two di�erent values for the bucket capacity (2 and 3). Using the

variation in Figure 5.3 as an input to JSyn, we receive an �unrealizable� answer, with
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the counterexample shown in Figure 5.5. Reading through the feedback provided by

JSyn, it is apparent that the underlying SMT solver is incapable of choosing the correct

buckets to empty, leading eventually to a state where an over�ow occurs for the third

bucket. As we already discussed though, a winning strategy exists for the Cinderella

game, as long as the bucket capacity C is between 1.5 and 3. This provides an excellent

demonstration of the inherent weakness of JSyn for determining unrealizability. JSyn-

vg's validity-guided approach, is able to prove the realizability for these contracts, as

well as synthesize an implementation for each.

Table 5.2 shows how JSyn-vg performed on the four contracts describing the

Cinderella-Stepmother game. We used two interpretations for the game, di�ering in

terms of the number of variables and auxillary functions that are used, and exercised

both for the cases where the bucket capacity C is equal to 2 and 3. Regarding the synthe-

sized implementations, their size is proportional to the complexity of the program (Cind2

contains more local variables and a helper function to empty buckets). Despite this, the

implementation performance remains the same across all implementations. Finally for

reference, the table contains the results from the template-based approach followed in

Consynth [6]. From the results, it is apparent that providing templates yields better

performance for the case of 𝐶 = 3, but our approach overperforms Consynth when it

comes to solving the harder case of 𝐶 = 2. Finally, the original paper for Consynth

also explores the synthesis of winning strategies for Stepmother using the liveness prop-

erty that a bucket will eventually over�ow. While JKind does not natively support

liveness properties, we successfully synthesized an implementation for Stepmother using

a bounded notion of liveness with counters. We leave an evaluation of this category of

speci�cations for future work.

Overall, JSyn-vg's validity-guided approach provides signi�cant advantages over

the 𝑘-inductive technique followed in JSyn, and e�ectively expands JKind's solving
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capabilities regarding speci�cation realizability. On top of that, it provides an e�cient

�hands-o�� approach that is capable of solving complex games. The most signi�cant con-

tribution however, is the applicability of this approach, as it is agnostic to the exercised

theory and can be extended in the future to support other kinds of speci�cations.

5.5 Conclusion

This chapter presented a novel and elegant approach towards the synthesis of reactive

systems, using only the knowledge provided by the system speci�cation expressed in

in�nite theories. The main goal is to converge to a �xpoint by iteratively blocking

subsets of unsafe states from the problem space. This is achieved through the continuous

extraction of regions of validity which hint towards subsets of states that lead to a

candidate implementation.

This is the �rst complete attempt, to the best of our knowledge, on handling valid

subsets of a ∀∃-formula to construct a greatest �xpoint on speci�cations expressed using

in�nite theories. We were able to prove its e�ectiveness in practice, by comparing it to an

already existing approach that focuses on constructing 𝑘-inductive proofs of realizability,

as well as Consynth, a state-of-the-art synthesizer for in�nite games. We showed how

the new algorithm performs better than the 𝑘-inductive approach, both in terms of

performance as well as the soundness of results.
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Figure 5.4: Experimental results.
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
UNREALIZABLE || K = 6 || Time = 2.017s

Step
variable 0 1 2 3 4 5
INPUTS
i1 0 0 0 0.416* 0.944* 0.666*
i2 1 0 0.083* 0.083* 0 0.055*
i3 0 1 0.305* 0.5 0.027* 0.194*
i4 0 0 0.611* 0 0 0.027*
i5 0 0 0 0 0.027* 0.055*

OUTPUTS
e 1 3 1 5 4 5

NODE OUTPUTS
guarantee true true true true true false

NODE LOCALS
b1 0 0 0 0.416* 1.361* 0.666*
b2 0 0 0.083* 0.166* 0.166* 0.222*
b3 0 1 1.305* 1.805* 1.833* 2.027*
b4 0 0 0.611* 0.611* 0 0.027*
b5 0 0 0 0 0.027* 0.055*

* display value has been truncated
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Figure 5.5: Spurious counterexample for Cinderella-Stepmother example using JSyn



Chapter 6

Synthesis of Infinite-State Reactive

Systems with Random Behavior

6.1 Introduction

In the previous two chapters we discussed the problem of program synthesis from formal

speci�cations. Synthesized implementations are generated from a proof of the speci�-

cation's realizability and typically have the form of deterministic witnesses. Thus, by

design they always compute (1) an output that meets the speci�cation, and (2) the same

output for each particular input. Determinism, however, prevents us from synthesizing

systems that take advantage of randomness to diversify their behavior1. Advantages

o�ered by these systems can be better understood when put into context of their ap-

plications. For the purposes of this dissertation we consider two such promising areas,

robot motion planning and fuzz testing.

Fuzz testing. Synthesis of random designs allows one to specify and create system-

speci�c fuzzers [73]. The idea is to follow a mindset similar to how model-based testing

1For the sake of brevity throughout the chapter, we refer to such systems using the adjective random
(e.g. random system/design/witness/controller).

81
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techniques utilize the system-under-test (SUT) speci�cation to generate test cases [100].

We propose to use the fragment of the model related to the SUT inputs to synthe-

size a fuzzer that repeatedly generates random (and sometimes malformed) tests. This

fragment can be alternatively viewed as the fuzzer's speci�cation, which can be further

enriched with properties that dictate its behavior when certain testing objectives are

met. For example, when a vulnerability is detected, we can limit the fuzzer's next gen-

erated test cases within a desired range around the test that exposed the issue. System

coverage is also one such objective, where we can dictate how the fuzzer diversi�es the

generated tests through its speci�cation, improving the chances of reaching previously

unexplored system states. From a qualitative standpoint, synthesis in model-based fuzz

testing can be considered as a viable high-level solution that does not require the user

to create extensive corpora of tests. Furthermore, the synthesized fuzzers can be strong,

SUT-speci�c alternatives to general-purpose model-based fuzzers. [3, 58, 101].

Robot motion planning. In coverage path planning problems, the goal is to

maximize the area that a robot can cover while avoiding obstacles [50]. Furthermore,

randomness can serve as an additional security barrier in avoidance games that involve

adversaries with learning capabilities. A random strategy is typically harder to infer and

exploit. In the special case of in�nite-state problems, it is an even bigger challenge, as

the current state-of-the-art in automata learning is limited to �nite-state problems [60].

We treat systems in the aforementioned applications as so-called reactive systems,

which have to exhibit speci�cation-compliant behavior against an unpredictable envi-

ronment. Examples are commonly found in aviation, autonomous vehicles, and medical

devices. Synthesis of random reactive designs is o�ered by the recent Reactive Control

Improvisation (RCI) [44, 46] framework, but limited only to �nite-state systems (i.e.,

over the boolean domain), relies on probabilistic analysis to determine the realizabil-

ity of the speci�cation, and its synthesized witnesses require further re�nement to be
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applicable in real world scenarios.

We present a novel approach to synthesis of random in�nite-state systems, whose

corresponding speci�cations may involve constraints over the Linear Integer or Real

Arithmetic theories (LIRA) [5] and thus not limited to �nite-state systems. The intuition

behind this e�ort is to allow reasoning, and consequently synthesis, over ranges of safe

reactions instead of computing witnesses with deterministic responses.

The pursuit of generality poses new challenges, for which we propose a novel Skolem-

ization procedure to simulate randomness. We built this procedure on top of JSyn-

vg [63], the validity-guided synthesis algorithm presented in Chapter 5. It iteratively

generates a greatest �xpoint over system states that ensures the realizability of the given

speci�cation but o�ers only a brute and in�exible strategy for witness extraction (via

predetermined Skolemization rules) [35, 36, 38]. Our key novelty is in a new algorithm

that enables replacing deterministic assignments in the Skolem functions with applica-

tions of uninterpreted random number generators. Uninterpreted functions allow us to

reason about solutions with random, broad, and most importantly, compliant behavior.

The new Skolem extraction algorithm preserves JSyn-vg's important properties.

Thus, the procedure remains completely automated, unlike previous work on in�nite-

state synthesis that requires additional templates, or the user's intervention [2, 7, 39, 91].

More importantly, our work imposes no performance overheads over JSyn-vg, remaining

thus competitive with other state-of-the-art tools which could be considered for random

synthesis [79]. We implemented the Skolem extraction algorithm and applied it in two

distinct case studies.

Model-based fuzz testing. We are the �rst to explore the applicability of reactive

synthesis in fuzz testing. On a chosen set of applications designed for the DARPA Cyber

Grand Challenge [43, 72], the synthesized fuzzers performed competitively against well-

established tools (AFL [103], AFLFast [10]), both in terms of code coverage as well as
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exposing vulnerabilities.

Robot motion planning. We synthesized safe robot controllers that participate in

avoidance games on both bounded and in�nite arenas. Using simulation, we show how

the synthesized controller leads to the robot being capable of avoiding its adversary while

moving in random patterns. We demonstrate how the synthesized strategies are safe by

design, no matter what bias is introduced at the implementation level. Furthermore, we

showcase why randomness in the controller behavior is a mandatory feature, if synthesis

is to be considered for coverage path planning problems.

To summarize, the contributions of this work are:

� the �rst complete formal framework that enables speci�cation and synthesis of

random in�nite-state reactive systems;

� a novel Skolemization procedure that enables random synthesis with no perfor-

mance overhead, by taking advantage of uninterpreted functions to reason about

ranges of valid reactions;

� a novel application of synthesis in model-based fuzz testing, where we generated

reactive fuzzers, yielding competitive results in terms of system coverage and vul-

nerability detection; and

� the application of synthesized random controllers in safety problems for robot

motion planning, outlining important advantages over deterministic solutions.

The rest of the paper is structured as follows. Section 6.2 provides the necessary

formal background on which our work depends. Section 6.3 illustrates and Section 6.4

describes in detail the algorithm for synthesis of random Skolem functions. The im-

plementation is outlined in Section 6.5 and the case studies are presented in Sect 6.6
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and Section 6.7, with an evaluation of synthesis time in Section 6.8. Finally, we discuss

related work in Section 6.9 and conclude in Section 6.10.

6.2 Background and Notation

A �rst-order formula 𝜙 is satis�able if there exists an assignment 𝑚, called a model,

under which 𝜙 evaluates to ⊤ (denoted 𝑚 |= 𝜙). If every model of 𝜙 is also a model

of 𝜓, then we write 𝜙 ⇒ 𝜓. A formula 𝜙 is called valid if ⊤ ⇒ 𝜙. For existentially-

quanti�ed formulas of the form ∃𝑦 . 𝜓(𝑥, 𝑦), validity requires that each assignment of

variables in 𝑥 can be extended to a model of 𝜓(𝑥, 𝑦). For a valid formula ∃𝑦 . 𝜓(𝑥, 𝑦),

a term sk𝑦(𝑥) is called a Skolem, if 𝜓(𝑥, sk𝑦(𝑥)) is valid. More generally, for a valid

formula ∃𝑦⃗ . 𝜓(𝑥, 𝑦⃗) over a vector of existentially quanti�ed variables 𝑦⃗, there exists a

vector of individual Skolem terms, one for each variable 𝑦⃗[𝑗], where 0 < 𝑗 ≤ 𝑁 and

𝑁 = |𝑦⃗|, such that: ⊤ ⇒ 𝜓(𝑥, sk 𝑦⃗[1](𝑥), . . . , sk 𝑦⃗[𝑁 ](𝑥)).

6.2.1 Synthesis with JSyn-vg

The work presented in this paper is based on JSyn-vg, the reactive synthesis proce-

dure for speci�cations in the form of Assume-Guarantee contracts that was presented in

Chapter 5. To keep the present chapter self-contained we summarize the algorithm and

its main characteristics in this section.

Systems are described in terms of inputs 𝑥⃗ and outputs 𝑦⃗, using the predicate 𝐼(𝑦⃗) to

denote the set of initial outputs and 𝑇 (𝑦⃗, 𝑥⃗, 𝑦⃗′) for the system's transition relation, where

the next (primed) outputs 𝑦⃗′ depend on the current input and state. Assumptions 𝐴(𝑥⃗, 𝑦⃗)

correspond to assertions over the system's current state, while the set of guarantees is

decomposed into constraints over the initial outputs 𝐺𝐼(𝑦⃗), and guarantees 𝐺𝑇 (𝑦⃗, 𝑥⃗, 𝑦⃗
′)

that have to hold over any valid transition (i.e., with respect to 𝑇 (𝑦⃗, 𝑥⃗, 𝑦⃗′)).
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Algorithm 6.1: JSyn-vg
(︁
𝐴(𝑥⃗, 𝑦⃗), 𝐺𝐼(𝑦⃗), 𝐺𝑇 (𝑦⃗, 𝑥⃗, 𝑦⃗

′)
)︁
, cf. [63].

Input: 𝐴(𝑥⃗, 𝑦⃗): assumptions, 𝐺𝐼(𝑦⃗), 𝐺𝑇 (𝑦⃗, 𝑥⃗, 𝑦⃗
′): guarantees

Output: ⟨realizable,Skolem⟩/unrealizable
1 𝐹 (𝑦⃗)← ⊤;
2 while ⊤ do
3 𝜑← ∀𝑥⃗, 𝑦⃗. (𝐹 (𝑦⃗) ∧𝐴(𝑥⃗, 𝑦⃗)⇒ ∃𝑦⃗′.𝐺𝑇 (𝑦⃗, 𝑥⃗, 𝑦⃗

′) ∧ 𝐹 (𝑦⃗′));
4 ⟨valid , validRegion(𝑥⃗, 𝑦⃗),Skolem⟩ ← AE-VAL(𝜑);
5 if valid then
6 if ∃𝑦⃗.𝐺𝐼(𝑦⃗)∧𝐹 (𝑦⃗) then return ⟨realizable,Skolem⟩;
7 else return unrealizable;

8 else 𝐹 (𝑦⃗)← 𝐹 (𝑦⃗) ∧ ¬ExtractUnsafe(validRegion(𝑥⃗, 𝑦⃗));
9 end

The algorithm behind JSyn-vg performs a realizability analysis to determine the

existence of a greatest �xpoint of states meeting the contract, that can lead to an imple-

mentation. Furthermore, the computed �xpoint can be directly used for the purposes of

synthesis, as it precisely captures a collection of system output constraints which, when

instantiated, de�ne safe reactions. Formally, the computed �xpoint is a set of viable

outputs, guaranteed to preserve safety by requiring that a valid transition to another

viable output is always available.

Viable(𝑦⃗)
def
= ∀𝑥⃗, 𝑦⃗.(𝐴(𝑥⃗, 𝑦⃗)⇒ ∃𝑦⃗′. 𝐺𝑇 (𝑦⃗, 𝑥⃗, 𝑦⃗

′) ∧ Viable(𝑦⃗′)) (6.1)

The coinductive de�nition of viable states is su�cient to prove the realizability of a

contract, as long as the corresponding decision procedure can �nd a viable output that

satis�es the initial guarantees 𝐺𝐼(𝑦⃗):

∃𝑦⃗.𝐺𝐼(𝑦⃗) ∧ Viable(𝑦⃗)

Given a proof of the contract's realizability, the problem of synthesis is formally

de�ned as the process of computing an initial output 𝑦⃗init and a function 𝑓(𝑥⃗, 𝑦⃗) such
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that 𝐺𝐼(𝑦⃗init) and ∀𝑥⃗, 𝑦⃗.Viable(𝑦⃗)⇒ Viable(𝑓(𝑥⃗, 𝑦⃗)) hold true.

Algorithm 6.1 summarizes JSyn-vg. It begins with the generic candidate �xpoint

𝐹 (𝑦⃗) = ⊤, and solves the ∀∃-formula 𝜑 for the validity (line 4) that corresponds to

the de�nition of viable outputs in Eq. 6.1. If 𝜑 is valid and an output vector in 𝐹 (𝑦⃗)

exists that satis�es the initial guarantees, then the contract is declared realizable, and

a witnessing Skolem term is extracted. If 𝜑 is invalid, the algorithm extracts a max-

imal set of states as validRegion(𝑥⃗, 𝑦⃗) ⊂ 𝐹 (𝑦⃗) ∧ 𝐴(𝑥⃗, 𝑦⃗), for which 𝜑 is valid. Due

to the possibility of validRegion(𝑥⃗, 𝑦⃗) strengthening the assumptions 𝐴(𝑥⃗, 𝑦⃗), an addi-

tional step on validRegion(𝑥⃗, 𝑦⃗) is used to extract a set of constraints over unsafe states

(ExtractUnsafe). The negation of this set is then added as a new conjunct to the

candidate 𝐹 (𝑦⃗) and the algorithm iterates until either 𝜑 is valid or 𝐹 (𝑦⃗) = ⊥. For

further details, we refer the reader to Chapter 5 on JSyn-vg [63].

6.2.2 Realizability and Synthesis with AE-VAL

The greatest �xpoint algorithm described by JSyn-vg uses AE-VAL, a specialized deci-

sion procedure to determine the validity of ∀∃-formulas, as well as generate deterministic

witnesses in the form of Skolem terms. The latter feature is also the point of interest

behind this work, as randomness is supported naturally through our proposed Skolem

extraction algorithm.

Algorithm 6.2 gives a brief pseudocode of AE-VAL2. The procedure lazily derives

a sequence of Model-Based Projections (MBPs) [8] that decompose the problem, where

each model gives rise to a precondition that captures an arbitrary subspace on the

universally-quanti�ed variables and a corresponding collection of Skolem constraints for

the existentially-quanti�ed variables (line 6, vector formulas pre and 𝜋, respectively).

2Note that for simplicity of presentation, in the pseudocode we assume a single existentially quantified
variable 𝑦 (however, the algorithm and the implementation can handle any vector 𝑦⃗).
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Skolem constraints have the form of a conjunction (which by construction can be com-

posed only of arithmetic relations) and serve as the building blocks towards generating

the actual Skolem term. The ExtractSk procedure, used for Skolem extraction, im-

plements an in�exible strategy to turn conjunctive Skolem constraints to Skolem terms.

The �nal Skolem term has a form of a decision tree, where preconditions are placed on

the nodes and local Skolem terms (i.e., outputs of ExtractSk) are on the leaves, i.e.,

the nested if-then-else structure (ite(·)):

𝑠𝑘𝑦(𝑥⃗)
def
= ite(pre[1], 𝑠𝑘1,𝑦(𝑥⃗), ite(pre[2], 𝑠𝑘2,𝑦(𝑥⃗), . . . ,

(ite(pre[𝑀 − 1], 𝑠𝑘𝑀−1,𝑦(𝑥⃗), 𝑠𝑘𝑀,𝑦(𝑥⃗)))))

Finally, in the case that the input formula ∀𝑥⃗∃𝑦 . 𝜓(𝑥⃗, 𝑦) is invalid, AE-VAL returns
𝑀−1⋁︀
𝑖=1

pre[𝑖](𝑥⃗) as the formula's maximal region of validity, i.e., the maximal subset of the

universally quanti�ed variables for which the formula becomes valid. This region is used

by JSyn-vg in order to further re�ne the candidate �xpoint during each of its iterations

(Algorithm 6.1, line 8).

6.3 Random Synthesis - Motivating Example

In this section, we demonstrate a complete run of the synthesis procedure and show

how the standard synthesized witnesses are unable to exhibit random behavior. As an

example, we use a safety robot motion planning problem from Neider et al. [79]. In this

problem, a robot is placed on a one-dimensional grid with two players, the environment

and the system, controlling its movement. Each player can choose to either move the

robot left or right, or not move it at all (we refer to these choices using the values

−1, 0, 1). The robot starts at position = 0, and the safety property for the system is to

retain the robot in the area of the grid for which position ≥ 0.
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Algorithm 6.2: AE-VAL
(︁
∀𝑥⃗∃𝑦 . 𝜓(𝑥⃗, 𝑦)

)︁
, cf. [36, 38].

Input: ∀𝑥⃗∃𝑦 . 𝜓(𝑥⃗, 𝑦)
Data: MBPs pre, Skolem constraints 𝜋
Output: Return value ∈ {valid, invalid} of ∀𝑥⃗∃𝑦 . 𝜓(𝑥⃗, 𝑦), validRegion, Skolem

1 𝑀 ← 1;
2 while ⊤ do

3 if
𝑀−1⋀︀
𝑖=1

¬𝑝𝑟𝑒[𝑖](𝑥⃗)⇒ ⊥ then

4 return ⟨valid,⊤,DecisionTree(pre,ExtractSk(𝑥⃗, 𝑦, 𝜋))⟩;

5 if ∃𝑚 |= 𝜓(𝑥⃗, 𝑦) ∧
𝑀−1⋀︀
𝑖=1

¬pre[𝑖](𝑥⃗) then
6 pre[𝑀 ](𝑥⃗), 𝜋[𝑀 ](𝑥⃗, 𝑦)← GetMBP(𝑥⃗, 𝑦,𝑚, 𝜓);
7 𝑀 ←𝑀 + 1;

8 else return ⟨invalid,
𝑀−1⋁︀
𝑖=1

pre[𝑖](𝑥⃗),∅⟩;

Figure 6.1 shows an Assume-Guarantee contract for the example, described in the

Lustre language. The contract has the singleton input 𝑥⃗ = {𝑥} (internally identi�ed

by the --%REALIZABLE statement) and the outputs 𝑦⃗ = {𝑦, position}3. The contract

assumption is that the environment will only make legal choices, i.e., 𝐴(𝑥⃗, 𝑦⃗)
def
= −1 ≤

𝑥∧𝑥 ≤ 1. The initial guarantee refers to the initial position of the robot and the system

choices for movement, i.e., 𝐺𝐼(𝑦⃗)
def
= (position = 0) ∧ (−1 ≤ 𝑦 ∧ 𝑦 ≤ 1). On the other

hand, the transitional guarantee captures the safety property along with the stateful

computation step for the new position, i.e., 𝐺𝑇 (𝑦⃗, 𝑥⃗, 𝑦⃗
′)

def
= (position ′ = position + 𝑥 +

𝑦′)∧ (position ′ ≥ 0) (the transition relation for position is de�ned using Lustre's -> and

pre operators).4 The safety properties are captured by ok1 and ok2 (declared as such

using --%PROPERTY).

The procedure begins with a call to JSyn-vg using the contract as its input. The

contract is realizable and the greatest �xpoint of viable states is 𝐹 (𝑦⃗)
def
= property ≥ 0.

3Variable property is local to the contract. Formally, local variables are treated as system outputs.
4Intuitively, the problem is formalized in a manner where the position of the robot is updated after

both players make a choice, with the system reacting to the choice of the environment.
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node onedim (x , y : i n t ) r e tu rn s ( ) ;
var

ok1 , ok2 : bool ;
p o s i t i o n : i n t ;

l e t
a s s e r t x >= =1 and x <= 1 ;
p o s i t i o n = 0 => ( pre ( p o s i t i o n ) + x + y ) ;
ok1 = y >= =1 and y <= 1 ;
ok2 = po s i t i o n >= 0 ;

==%PROPERTY ok1 ;
==%PROPERTY ok2 ;
==%REALIZABLE x ;

t e l ;
Figure 6.1: Assume-Guarantee contract in Lustre.

void skolem ( ) {
i f ( p o s i t i o n + x == 1) {
y = =1;

} e l s e i f ( p o s i t i o n + x >= =1 &&
po s i t i o n + x <= 0) {

y = = ( p o s i t i o n + x ) ;
} e l s e {

y = 0 ;
}

}
Figure 6.2: Synthesized deterministic witness in C.

AE-VAL declares that the formula 𝜑
def
= ∀𝑦⃗, 𝑥⃗.(𝐴(𝑥⃗, 𝑦⃗)∧𝐹 (𝑦⃗)⇒ ∃𝑦⃗′.𝐺𝑇 (𝑦⃗, 𝑥⃗, 𝑦⃗

′)∧𝐹 (𝑦⃗′)

is valid and extracts a Skolem term as a witness. Figure 6.2 presents a direct translation

of the function to C. The synthesized implementation behaves in a deterministic way

under the following conditions:

1. whenever position + 𝑥 = 1, the system chooses to move left (𝑦 = −1);

2. if position+𝑥 equals 0 or -1, then the system chooses to do nothing or move right,

respectively (𝑦 = −(position + 𝑥));

3. for any other case, the system chooses to do nothing (𝑦 = 0).

While the implementation preserves safety, the set of possible actions are limited
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due to the deterministic assignments to the output 𝑦. Interestingly, for this particular

implementation the system forces the robot to go back to positions that are dangerously

close to the unsafe region! Similarly, the corresponding solution by Neider et al. is the

set of positions in [0, 3) (the authors refer to it as the winning set), which would translate

to implementations where the system would never move the robot beyond 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 2.

Nevertheless, implementations exist for which the system can exercise a broader set of

behaviors. For this example in particular, when either condition (1) or (3) is true, the

system can freely choose any possible move action without violating the safety properties.

Figure 6.3 shows an implementation that can (theoretically) exercise any such possible

assignment (we explain why in Section 6.4.2). In the following sections, we present a

new method to synthesize a random witness that can, in theory, provide all such possible

permutations using a single implementation.

Algorithm 6.3: ExtractSk(𝑥⃗, 𝑦, 𝜋)

Input: Variables 𝑥⃗, 𝑦, Skolem constraints 𝜋(𝑥⃗, 𝑦) =
⋀︀

𝑟∈𝐸∪𝐷∪𝐺∪𝐺𝐸∪𝐿∪𝐿𝐸

𝑟(𝑥⃗, 𝑦)

Output: Term 𝑠𝑘, such that (𝑦 = 𝑠𝑘(𝑥⃗))⇒ 𝜋(𝑥⃗, 𝑦)
1 ℓclosed ← ⊥, 𝑢closed ← ⊥;
2 if 𝐸 ̸= ∅ then return ASN(𝑒), s.t. 𝑒 ∈ 𝐸;
3 if 𝐺 ∪𝐺𝐸 ̸= ∅ then
4 ℓ←MAX(𝐺 ∪𝐺𝐸);
5 ℓclosed ← 𝐺 = ∅ ∨MAX(𝐺) <MAX(𝐺𝐸);

6 if 𝐿 ∪ 𝐿𝐸 ̸= ∅ then
7 𝑢←MIN(𝐿 ∪ 𝐿𝐸);
8 𝑢closed ← 𝐿 = ∅ ∨MIN(𝐿) >MIN(𝐿𝐸);

9 if ℓ(𝑥⃗) = 𝑢(𝑥⃗) then return ℓ;
10 𝐻 ← ⟨ASN(𝑑) | 𝑑 ∈ 𝐷⟩;
11 if ℓ = undef ∧ 𝑢 = undef then return 𝑓rng(𝐻,⊤,⊤,−∞,+∞);
12 if ℓ = undef then return 𝑓rng(𝐻,⊤, 𝑢closed ,−∞, 𝑢);
13 if 𝑢 = undef then return 𝑓rng(𝐻, ℓclosed ,⊤, ℓ,+∞);
14 return 𝑓rng(𝐻, ℓclosed , 𝑢closed , ℓ, 𝑢)
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6.4 Synthesizing random designs

The standard Skolem term extraction algorithm in AE-VAL does not support the gener-

ation of Skolem functions with random variable assignments. In this section, we present

a new procedure to compute witnesses that can be used to simulate random behavior.

6.4.1 Overview

Our proposed algorithm preserves the overall structure of AE-VAL as well as the sound-

ness of its results [36]. The main idea is to replace the deterministic assignments that

eventually appear in the leaves of the generated decision tree with applications of unin-

terpreted functions, which when translated at the implementation level, can be viewed

as function calls to a user-de�ned random number generator. We refer to these functions

as uninterpreted random number generators:

Definition 6.4.1 (Uninterpreted Random Number Generator). An uninterpreted ran-

dom number generator (URNG) is an uninterpreted function

𝑓rng(𝐻, ℓclosed , 𝑢closed , 𝑙, 𝑢) : 𝑇1 × . . .× 𝑇|𝐷| × B× B× 𝑇 × 𝑇 → 𝑇,

where 𝑇, 𝑇𝑖 : {Z,R}, 𝐻 is a collection of right side expressions extracted from the set

of disequalities 𝐷, ℓ and 𝑢 determine the bounded interval for the randomly generated

value, and ℓclosed , 𝑢closed are boolean �ags that, when set, identify the corresponding

bound as being closed. Furthermore, we require the following postconditions to hold, on

any supplied implementation of 𝑓rng:

1. ∀ℎ ∈ 𝐻.𝑓rng(𝐻, , , , ) ̸= ℎ

2. 𝑓rng(𝐻,⊥,⊥, ℓ, 𝑢) ∈ (ℓ, 𝑢)

3. 𝑓rng(𝐻,⊥,⊤, ℓ, 𝑢) ∈ (ℓ, 𝑢]
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4. 𝑓rng(𝐻,⊤,⊥, ℓ, 𝑢) ∈ [ℓ, 𝑢)

5. 𝑓rng(𝐻,⊤,⊤, ℓ, 𝑢) ∈ [ℓ, 𝑢]

The use of URNGs allows us to reason about valid regions of values for variable

assignments instead of a particular value. Furthermore, the postconditions de�ned for

these functions play an integral role in determining the soundness of the resulting Skolem

function. It is important to note that we do not have to reason regarding the emptiness

of the intervals. The intuition behind this is that such computed constraints infer an

unrealizable contract. In these scenarios AE-VAL would declare the input ∀∃-formula

as invalid, and the Skolem extraction algorithm would never be invoked.

6.4.2 Algorithm

Algorithm 6.3 shows our proposed procedure for extracting Skolem functions that allow

for random choices. It is invoked from Algorithm 6.2 and takes a set of universally

quanti�ed variables 𝑥⃗, an existentially quanti�ed variable 𝑦, and a conjunction of Skolem

constraints 𝜋 computed in Algorithm 6.2. Note that AE-VAL generates an exhaustive

set of conjunctive predicates that together describe the space of the Skolem predicate

(i.e., in Disjunctive Normal Form) and our algorithm is trivially generalizable to this

form by separately solving each conjunct and introducing a random choice between

them. Algorithm 6.3 constructs a graph of a function that is embedded in a relation,

speci�ed by a conjunction of expressions over the relational operators {=, ̸=, >,≥,≤, <},

using the following constraints:

𝐸
def
= {𝑦 = 𝑓𝑖(𝑥)}𝑖 𝐷

def
= {𝑦 ̸= 𝑓𝑖(𝑥)}𝑖 𝐺

def
= {𝑦 > 𝑓𝑖(𝑥)}𝑖

𝐺𝐸
def
= {𝑦 ≥ 𝑓𝑖(𝑥)}𝑖 𝐿𝐸

def
= {𝑦 ≤ 𝑓𝑖(𝑥)}𝑖 𝐿

def
= {𝑦 < 𝑓𝑖(𝑥)}𝑖
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In addition to the constraints above, Algorithm 6.3 also utilizes the following helper

functions (where ∼∈ {<,≤,=, ̸=,≥, >}):

ASN(𝑦 ∼ 𝑒(𝑥)) def
= 𝑒 MIN({𝑠}) def

= ASN(𝑠) MAX({𝑠}) def
= ASN(𝑠)

MIN(𝑆)
def
= ite(ASN(𝑠) (≤)MIN(𝑆∖{𝑠}),ASN(𝑠),MIN(𝑆∖{𝑠})), 𝑠 ∈ 𝑆

MAX(𝑆)
def
= ite(ASN(𝑠) (≥)MAX(𝑆∖{𝑠}),ASN(𝑠),MAX(𝑆∖{𝑠})), 𝑠 ∈ 𝑆

Operator MIN (MAX) computes a symbolic minimum (maximum) of the given set

of constraints. While the algorithm is applicable for both LIA and LRA, the following

transformations are used for the case of integers:

𝐴 < 𝐵
𝐴 ≤ 𝐵 − 1

𝐴 ≥ 𝐵
𝐴 > 𝐵 − 1

These transformations help avoid clauses containing < and ≥. Line 1 initializes the

value of the boolean �ags ℓclosed and 𝑢closed to false, and line 2 handles the case where

equality constraints exist over 𝑦. Lines 3 to 8 construct the expressions for the lower and

upper bounds, and the truth of the �ags depends on the (symbolic) comparison between

the symbolic minima and maxima. Line 9 handles the case where the lower bound is

equal to the upper bound. It should be noted that for cases handled by lines 2 and 9

only deterministic choices exists.

Lines 10 to 14 attempt to compute an expression containing a URNG that considers

the set of disequalities 𝐷. First, the algorithm extracts the right-hand side of disequal-

ities in line 10. If both bounds are unde�ned, line 11 returns the application of the

URNG 𝑓rng(𝐻,⊤,⊤,−∞,+∞), where −∞ and +∞ are represented as free variables
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that can be later mapped respectively to the minimum and maximum arithmetic repre-

sentations supported by the implementation (e.g. INT MIN and INT MAX for integers

in C). If only the lower bound is unde�ned (line 12), we use 𝑓rng(𝐻,⊤, 𝑢closed ,−∞, 𝑢)

to generate a random value with an unconstrained lower bound. Similarly, we handle

the case where no constraints exist for the upper bound in line 13. In line 14, both

ℓ and 𝑢 are de�ned and the algorithm returns 𝑓rng(𝐻, ℓclosed , 𝑢closed , ℓ, 𝑢) to capture a

random value within the respective bounds. In all above cases, when 𝐻 ̸= ∅, the URNG

is expected to generate a value that satis�es all disequality constraints in 𝐷. For the

special case where 𝐷 = ∅, there are no such disequalities over 𝑦 and the Skolem term

can freely assign any value within the computed bounds ℓ and 𝑢.

As an illustration of our procedure, we present summarized runs over the following

examples.

Example 6.4.1. Consider the formula ∀𝑥.∃𝑦1, 𝑦2.𝜓(𝑥, 𝑦1, 𝑦2) over LIA, where:

𝜓(𝑥, 𝑦1, 𝑦2)
def
=

(𝑥 ≤ 2 ∧ 𝑦1 > −3𝑥 ∧ 𝑦2 < 𝑥) ∨ (𝑥 ≥ −1 ∧ 𝑦1 < 5𝑥 ∧ 𝑦2 > 𝑥)

The formula is valid since there exists an assignment to 𝑦1 and 𝑦2 that satisfies the

constraints in 𝜓, for any 𝑥. In order to construct such a witness, AE-VAL needs to

consider two separate cases for 𝑥, i.e., the constraints 𝑥 ≤ 2 and 𝑥 ≥ −1.

Under 𝑥 ≤ 2, the deterministic Skolem terms generated by the original Skolemization

procedure in AE-VAL would be −3𝑥+ 1 for 𝑦1 and 𝑥− 1 for 𝑦2. For the random case,

Algorithm 6.3 computes 𝑓rng,𝑦1(∅,⊥,⊤,−3𝑥,+∞) and 𝑓rng,𝑦2(∅,⊤,⊥,−∞, 𝑥). Under

𝑥 ≥ −1, the deterministic terms would be −3𝑥+ 1 for 𝑦1 and 𝑥+ 1 for 𝑦2, while Algo-

rithm 6.3 computes the functions 𝑓rng,𝑦1(∅,⊤,⊥,−∞, 5𝑥) and 𝑓rng,𝑦2(∅,⊥,⊤, 𝑥,+∞),



96

respectively.

For the sake of completion, note that the above terms are finally combined into the

Skolem term for ∃𝑦1, 𝑦2.𝜓(𝑥, 𝑦1, 𝑦2):

𝑠𝑘𝑦⃗(𝑥)
def
= ite(𝑥 ≤ 2,

(𝑦1 = 𝑓rng,𝑦1(∅,⊥,⊤,−3𝑥,+∞) ∧ 𝑦2 = 𝑓rng,𝑦2(∅,⊤,⊥,−∞, 𝑥)),

(𝑦1 = 𝑓rng,𝑦1(∅,⊤,⊥,−∞, 5𝑥) ∧ 𝑦2 = 𝑓rng,𝑦2(∅,⊥,⊤, 𝑥,+∞)))

Example 6.4.2. Consider an Assume-Guarantee contract for a system with the input

vector 𝑥⃗ = {𝑥1, 𝑥2, 𝑥3} ∈ R3 and one output 𝑦 ∈ R and the following constraints

� 𝐴(𝑥1, 𝑥2)
def
= 𝑥1, 𝑥2 ∈ (0, 1)

� 𝐺𝐼(𝑦)
def
= ⊤

� 𝐺𝑇 (𝑦, 𝑥1, 𝑥2, 𝑦
′)

def
= 𝑦′ ∈ (0, 1) ∧ 𝑦′ ̸= 𝑥1 ∧ 𝑦′ ̸= 𝑥2

The above specification is realizable as there are infinitely many assignments to 𝑦

that satisfy the guarantees 𝐺 given any value of 𝑥1, 𝑥2 in (0, 1). Using Algorithm 6.3 we

retrieve the following Skolem term to enable random behavior (note that input 𝑥3 is not

included in the set 𝐻, i.e. the first argument of the function):

𝑠𝑘𝑦(𝑥⃗)
def
= 𝑓rng,𝑦({𝑥1, 𝑥2},⊥,⊥, 0, 1).

Example 6.4.3. Consider the contract from Figure 6.1. The details of the synthesis

procedure remain identical with the deterministic approach up until the Skolemization

step. Figure 6.3 shows the C implementation for the random witness that is synthesized

using Algorithm 6.3. Our proposed Skolemization procedure returns the assignment value
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void skolem ( ) {
i f ( p o s i t i o n + x == 1) {
y = RandVal (1 , 1 , =1, 1 ) ;

} e l s e i f ( p o s i t i o n + x >= =1 &&
po s i t i o n + x <= 0) {

y = = ( p o s i t i o n + x ) ;
} e l s e {

y = RandVal (1 , 1 , =1, 1 ) ;
}

}
Figure 6.3: Synthesized random witness.

double RandVal (_Bool l f l a g , _Bool u f lag ,
i n t min = l f l a g ? lbound : lbound+1;
i n t max = u f l a g ? ubound : ubound=1;
i n t range = max = min + 1 ;
double rnd = ( double ) rand ( ) /

( 1 . 0 + ( double ) RAND_MAX) ;
i n t va lue = ( i n t ) ( ( double ) range * rnd ) ;
r e turn value + min ;

}
Figure 6.4: Example random number generator.

for 𝑦 that is equivalent to 𝑓rng(⊤,⊤,−1, 1), for the conditions under which the system

can safely choose to move the robot either left, right, or not at all. The actual choice is

randomly made through the application of a function named RandVal. The implemen-

tation of the function is then left to the engineer’s discretion (an example is given in

Figure 6.4, noting that there is no argument to represent the set of disequalities).

6.4.3 Soundness and Completeness

In this section we prove that Algorithm 6.3 is sound, and can provide all possible Skolem

terms given a conjunction of Skolem constraints 𝜋(𝑥⃗, 𝑦). As we noted in the beginning

of Section 6.4.2, the Skolem extraction procedure is easily generalized to the case where

𝜋(𝑥⃗, 𝑦) contains disjunctions of constraints. As such, the corresponding part of the proofs

is omitted from this section.
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Theorem 6.4.1 (Soundness of Skolem Extraction). Assuming that the properties 1-5

from Def. 6.4.1 hold, Algorithm 6.3 returns valid Skolem terms.

Proof. To prove this statement, it su�ces to show that any computed Skolem term

𝑠𝑘𝑦(𝑥⃗) by Algorithm 6.3 accompanied by the associated postconditions in Def. 6.4.1,

implies the input Skolem constraints in 𝜋(𝑥⃗, 𝑦). Return lines 2 and 9 in ExtractSK

are trivial cases, as they reduce to a simple assignment from equality constraints. Line 11

refers to the case where no bounds have been de�ned and the computed Skolem term is a

URNG that utilizes the unconstrained variables −∞ and +∞ along with postcondition

5 to ensure the choice of an arbitrary value lies within the speci�ed domain. Lines 12

and 13 handle the case where inequalities exist that determine the lower and upper

bounds ℓ(𝑥⃗) and 𝑢(𝑥⃗). If the lower bound is unde�ned, line 12 returns a URNG that

is guaranteed to provide a random value between −∞ and 𝑢 as per postconditions 4

and 5. We prove the soundness of terms provided by line 13 in a similar manner. If

both bounds exist, then in line 14 the Skolem term returned is a URNG guaranteed to

provide a value within the range speci�ed by ℓ(𝑥⃗), 𝑢(𝑥⃗), as per postconditions 2-5.

Theorem 6.4.2 (Completeness of Skolem Extraction). The Skolem terms generated by

Algorithm 6.3 are sufficient to represent all possible witnesses of the conjunctive ∀∃-

formula in Eq. 3.3.4.

Proof. It su�ces to prove that no weaker set of postconditions 𝑝𝑐′ (i.e., 𝑝𝑐⇒ 𝑝𝑐′) exists,

such that:

∀𝑥⃗.𝑝𝑐′(𝑠𝑘(𝑥⃗))⇒ 𝜋(𝑥⃗, 𝑠𝑘(𝑥⃗)) (6.2)

We prove this by contradiction, assuming that 𝑝𝑐′ exists whenever Algorithm 6.3 returns.

Lines 2 and 9. Algorithm 6.3 returns the deterministic assignments ASN(𝑒) and ℓ,

for which no weaker postconditions exist.
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Line 11. In this case, no bounds have been de�ned, and postconditions 1 and 5 are

used to denote a range with unconstrained bounds −∞ and +∞. Formally, we can

simplify postcondition 5 to 𝑝𝑐 = 𝑡𝑟𝑢𝑒, for which no weaker postcondition exists. It is

also noteworthy to state that weaker postconditions would have to violate at least one

disequality in 𝐷 and postcondition 1.

Line 12. We have ℓ = undef, i.e., no constraints exist for the lower bound, and the

Skolem term

𝑠𝑘(𝑥⃗) = 𝑓rng(𝐻,⊤, 𝑢closed ,𝑚𝑖𝑛, 𝑢)

is returned. Depending on whether the upper bound 𝑢 is closed or not, we have two

cases. For brevity, we show the proof for the case where 𝑢 is closed, and the corresponding

case for the open bound follows similar principles.

� When 𝑢 is closed, the output constraints are simpli�ed to 𝜋(𝑥⃗, 𝑠𝑘(𝑥⃗)) = 𝑠𝑘(𝑥⃗) ≤ 𝑢

and the Skolem term

𝑠𝑘(𝑥⃗) = 𝑓rng(𝐻,⊤,⊤,−∞, 𝑢)

is returned, with postcondition 5 capturing the term's range. Assume that a

weaker postcondition 𝑝𝑐′ exists with the same set of disequalities 𝐷, such that

Eq. 6.2 holds. Without loss of generality, we pick

𝑝𝑐′ = 𝑓rng(𝐻,⊤,⊤,−∞, 𝑢) ∈ [−∞, 𝑢′]

with 𝑢′ > 𝑢. Therefore, we have that 𝑝𝑐 ⇒ 𝑝𝑐′, but Eq. 6.2 does not hold for 𝑝𝑐′,

as the new term may provide the value 𝑢′ as an output, falsifying 𝜋(𝑥⃗, 𝑠𝑘(𝑥⃗)).

Line 13. Similar to proof for line 12.

Line 14. ℓ ̸= 𝑢 ̸= undef, and as such the output constraints can be simpli�ed into
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𝜋(𝑥⃗, 𝑠𝑘(𝑥⃗)) = ℓ ∼ 𝑠𝑘(𝑥⃗) ∼ 𝑢, where ∼ ∈ {<,≤}. We have the following cases corre-

sponding to the possible ranges:

1. (ℓ, 𝑢). In this case we have 𝑠𝑘(𝑥⃗) = 𝑓rng(𝐻,⊥,⊥, ℓ, 𝑢) and as postcondition 𝑝𝑐

the second postcondition from Def 6.4.1. Assume that a weaker postcondition 𝑝𝑐′

exists, such that Eq. 6.2 holds. We can pick 𝑝𝑐′ = 𝑓rng(𝐻,⊥,⊥, ℓ, 𝑢) ∈ [ℓ, 𝑢]. In

this case, 𝑝𝑐 ⇒ 𝑝𝑐′ holds, but Eq. 6.2 does not hold, as we can pick any of the

assignments 𝑠𝑘(𝑥⃗) = ℓ, 𝑠𝑘(𝑥⃗) = 𝑢, which violate the constraints in 𝜋, reaching a

contradiction.

2. [ℓ, 𝑢). Similar to the previous proof, by picking, e.g., 𝑝𝑐′ = 𝑓rng ∈ [ℓ, 𝑢].

3. (ℓ, 𝑢]. Similarly, we can pick 𝑝𝑐′ = 𝑓rng ∈ [ℓ, 𝑢].

4. [ℓ, 𝑢]. Similarly, we can pick 𝑝𝑐′ = 𝑓rng ∈ [ℓ′, 𝑢], where ℓ′ < ℓ.

6.5 Implementation and Evaluation

We implemented our random synthesis algorithm as a complementary procedure to the

original synthesis framework JKind [48], a Java implementation of a popular Kind

model checker [14, 48, 63]. Following Kind, the input contracts are expressed using the

Lustre data�ow language [61]. JKind provides support for synthesis both through the

�xpoint algorithm in JSyn-vg as well as its predecessor, JSyn, a realizability checking

algorithm based on the 𝑘-induction principle [49, 64, 65]. Our proposed Skolemization

procedure in Algorithm 6.3 is a new extraction method that is performed after the

validity checking procedure in AE-VAL, thus making it inherently compatible with both

JSyn and JSyn-vg. It is noteworthy that our approach does not add any performance

overhead to the baseline implementation of JSyn-vg, as shown in Table 6.2.
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Since the synthesized Skolem functions are expressed in the SMT-LIB 2.0 language [5]

by default, we translate them into executable C implementations. For the purposes of

this paper, we mapped the application of URNGs to calls to random number generators

of uniformly distributed values, unless otherwise noted.

The evaluation process of our work is twofold:

1. Empirical. We performed case studies in applications where synthesis of random

designs can be bene�cial.5 For the �rst case study, we conducted an experiment in

the context of model-based fuzz testing, where the goal was to synthesize reactive

graybox fuzzers capable of exposing vulnerabilities that can crash an application,

through random test case generation. The second study revolves around controller

synthesis for avoidance games in robot motion planning.

2. Synthesis time. We investigated the e�ect that our Skolemization algorithm had

on JSyn-vg in terms of synthesis time. Furthermore, we compared our work to

DT-Synth, a state-of-the-art synthesis tool for in�nite-state problems [79].

6.6 Case Study 1: Reactive Fuzzers

In our �rst case study, we explored the applicability of synthesized implementations with

random behavior in fuzz testing. We focused on model-based approaches to examine a

system-under-test (SUT), the input speci�cation of which was used to derive test cases

(see Utting et al. for a detailed survey [100]). In the past, model-based fuzz testing

revolved around the use of structured descriptions of the system input in the form of

grammars and a sophisticated implementation of a fuzzer that, given a grammar, would

continuously feed random inputs to the SUT [1, 3, 84, 101]. We show that synthesis o�ers

a viable alternative technique in this context, where the generated implementations

5The benchmarks are available at https://figshare.com/s/ce2dfd885b3caf20f46d.

https://figshare.com/s/ce2dfd885b3caf20f46d
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Specification Fuzzer Target Monitor

JSYN-VG

Synthesis

Figure 6.5: Fuzzer synthesis and testing diagram

can serve as SUT-speci�c fuzzers, requiring for con�guration nothing but the input

speci�cation for the SUT.

6.6.1 Setup and Evaluation

The main intuition is that the SUT's input description can be viewed as a substantial

fragment of the fuzzer's speci�cation, which can then be used to synthesize a reactive

random test case generator. Figure 6.5 depicts our exact setup, where the designer

already has a speci�cation for the SUT and uses JSyn-vg with our Skolemization algo-

rithm to automatically generate a corresponding fuzzer. The fuzzer is then attached to

the SUT (Target), along with an accompanied monitoring service (Monitor) that tracks

progress with respect to the SUT-related statistics (e.g., coverage). Following the def-

inition of graybox fuzzing, a feedback loop exists where monitored information can be

subsequently fed to the fuzzer, in order to dictate the generation of future test cases.
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Using this setup, we proceeded with a thorough performance evaluation of our syn-

thesized fuzzers, following guidelines that were recently proposed by Klees et al. [66]:

SUT Selection. We considered ten applications from the DARPA Cyber Grand Chal-

lenge (CGC) 6, a benchmark collection that has been extensively used in the past to

assess the performance of fuzzers due to the high degree of interactivity between the

SUT and the user [83, 89, 96]. The original collection was aimed towards the evaluation

of automated reasoning and testing tools, and each application is intentionally docu-

mented in a way that is insu�cient to derive a precise speci�cation from the documents

themselves. To simulate the context under which synthesis would make most sense as a

tool, we closely inspected and ran each of the ten applications that appear in this paper,

in order to identify the types and sequences of inputs each application takes.

Fuzzer specification. Using the information regarding each application's inputs, we

wrote a corresponding Assume-Guarantee contract for a fuzzer. Each fuzzer speci�cation

consists of properties that capture the valid ranges of values for each one of the SUT

inputs. Moreover, the speci�cation is stateful, making each fuzzer reactive to changes

(or lack thereof) in coverage results from previously generated tests. We speci�ed the

behavior of the fuzzer in such a way that, for the majority of its runtime, valid inputs are

fed into the SUT. When no progress is made in terms of coverage, the fuzzer attempts

generating invalid tests with probability 𝑝 = 0.2.

Formalization. All of the aforementioned elements that comprise the fuzzer speci�ca-

tion can be expressed using a set of safety properties over the SUT inputs, where each

set precisely captures the conditions under which a (in)valid value is generated for the

corresponding input. An example pair of such properties is the following:

� 𝑝𝑟𝑜𝑝1
def
= 𝑝′ ≥ 0 ∧ 𝑝′ ≤ 1

� 𝑝𝑟𝑜𝑝2
def
= (¬𝑐𝑣𝑔 ∧ (𝑝 ≤ 0.1 ∨ 𝑝 ≥ 0.9))⇒ 𝑖𝑛′sys /∈ 𝑆valid

6The public CGC benchmark collection is available at https://bit.ly/2HBqrJq.

https://bit.ly/2HBqrJq
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Variables 𝑝 and 𝑖𝑛sys are fuzzer outputs, with 𝑖𝑛sys also serving as a corresponding

input for the SUT. The value of 𝑝 ∈ [0, 1] is picked randomly for each test, and it

determines whether the next (primed) system input 𝑖𝑛′sys will be assigned to a valid

value (i.e., a value in 𝑆valid) or not. Variable 𝑐𝑣𝑔 is an input to the fuzzer and can

be viewed as a �ag which, when set, informs the fuzzer that the previous test resulted

in progress in system coverage (e.g., line coverage improved). If such progress was not

observed, then we allow the fuzzer to randomly consider invalid values in subsequent

tests. More speci�cally, when 𝑝 ≤ 0.1 ∨ 𝑝 ≥ 0.9, the fuzzer will generate an invalid

value, i.e., a value that does not satisfy the constraints that de�ne 𝑆valid. Following the

notation that we described in previous sections, the synthesis problem for the properties

above is to ensure that ∀𝑝, 𝑐𝑣𝑔, 𝑖𝑛sys∃𝑝′, 𝑖𝑛′sys.(𝑝𝑟𝑜𝑝1 ∧ 𝑝𝑟𝑜𝑝2) is valid.

Synthesis and Evaluation. Using the fuzzer contracts, we synthesized a fuzzer for

each application and ran it against the SUT using the setup in Figure 6.5. We set the

timeout for each fuzzing campaign to nine hours, and monitored the SUT line coverage

(gcov) as well as crashes. To compare performance, we also ran fuzzing campaigns using

AFL [103] and AFLFast [10], using their default con�gurations. We selected these

tools primarily due to AFL being one of the most prominent tools in the area, while

AFLFast is a recent extension to AFL that has been shown to perform better with

respect to vulnerability detection.7 Both tools were run both with and without an initial

corpus in order to provide a more complete picture of their performance, whether the user

provides additional information or not. To remain fair with respect to the evaluation,

the corpora were created using tests that exercise application locations that are as deep

as possible.

Table 6.1 shows the results of our experiments. Most of the applications contain

7Both AFL and AFLFast do not support line coverage reporting natively. To monitor coverage,
we used afl-cov [88], a wrapper tool that enables the use of gcov with AFL and its variants.
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unreachable code related to debugging methods, and as such 100% coverage is not at-

tainable using gcov without further modi�cations to the source code. While we were

able to achieve ≥ 75% line coverage for the majority of the benchmarks, the applica-

tion �Movie Rental Service� was the worst performing with only 49.5%. Despite that,

the synthesized fuzzer outperformed both AFL and AFLFast on either con�guration

with a signi�cant margin. In fact, our synthesized fuzzers outperformed both AFL and

AFLFast on four applications and remained within 4% of the best performing tool

for �ve others, with �Quadtree Conways� being the only exception. More interestingly,

seven of the synthesized fuzzers were able to crash the corresponding application at least

once, whereas AFL/AFLFast were only able to crash three.

Considering the performance results along with the low synthesis time per fuzzer,

we believe that synthesis of model-based fuzzers should be considered a viable tactic

towards testing systems where a speci�cation already exists. Arguably, a synthesized

fuzzer is as easy to use as a general-purpose tool like AFL. Furthermore, the user does

not have to provide additional information through a corpus, a procedure in testing that

often times can be time consuming and cumbersome, as both valid and invalid input

sequences have to be considered for a successful campaign.

6.7 Case Study 2: Robot Motion Planning

In our second study, we synthesized implementations for robots participating in two-

player safety games against an adversary. The study is furthermore split into two parts.

6.7.1 Simulating avoidance games

We experimented on simulating an avoidance game in a bounded arena, where the syn-

thesized solution was used against two di�erent adversarial scenarios. Both the proper-

ties of the robot and the adversary were speci�ed using their position in terms of (𝑥, 𝑦)
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coordinates. Formally, we described the game using the following properties:

� Initial state : The robot starts in (𝑥init, 𝑦init) (similarly for the adversary).

� Valid transitions : 𝑥′robot ∈ [𝑥robot− 𝛿, 𝑥robot + 𝛿], where 𝛿 is user-de�ned and cap-

tures the maximum distance between subsequent moves (similarly for 𝑦-coordinate

and the adversarial transitions).

� In-bounds property : 𝑥robot ≥ 𝑥min∧𝑥robot ≤ 𝑥max (similarly for the 𝑦-coordinate).

� Avoidance property : 𝑥robot ̸= 𝑥adversary ∨ 𝑦robot ̸= 𝑦adversary.

The �rst scenario in our presentation involves the adversary patrolling on a speci�c

route, while in the second the adversary is always moving towards the robot. Trajectory

videos for both scenarios are available online8.

Real Coordinates.

Figure 6.6 shows three possible trajectories that were generated after running the syn-

thesized solution for 1000 turns against the patrolling adversary. Both robots move in

the arena using rational coordinates in a 5x5 box. The initial location for the robot

is the point (0.5, 0.5) and the adversary begins its route from (0.8, 0.8). While the

adversary has a predetermined route, the robot is allowed to move towards any pos-

sible direction (vertically, horizontally and diagonally). Moreover, the robot can move

at varying distances up to 0.1 units away from its current position, in both axes (i.e.,

|𝑥robot − 𝑥′robot| ≤ 0.1, and similarly for the y axis). Figure 6.6a indicates how the

synthesized solution can respond in a random pattern, covering di�erent parts of the

bounded arena while preserving safety. Figure 6.6b and 6.6c demonstrate the resulting

8Pictures and videos of the simulated games presented in this section were anonymized and made
available at https://figshare.com/s/ce2dfd885b3caf20f46d.

https://figshare.com/s/ce2dfd885b3caf20f46d
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Figure 6.6: Random trajectories of a robot (irregular solid line) while avoiding a patrolling adversary
(inner square).

trajectories when the user introduces bias in the values returned by the random num-

ber generators, using the same generated witness from AE-VAL. As a result, the robot

was limited to moves that would retain its position within the central area of the arena

(Figure 6.6b) and close to the bottom left corner of the patrolling adversary's route

(Figure 6.6c).
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Integer Coordinates.

For this experiment, we aimed to demonstrate the advantages that randomness can

provide with respect to how well a robot covers a bounded arena, inspired by work in

coverage path planning problems. Figure 6.7 shows how two trajectories evolved over

several turns (100, 250 and 1000 turns) for a similar motion planning problem using

integer coordinates. To demonstrate which parts of the arena the robot explored we

outline its trajectory with a bold black line, while the red line represents the trajectory

of the adversary. In this game, the adversary is aggressively chasing after the robot in a

random fashion. The robot's objective remains the same, i.e., move within the bounded

arena while avoiding the adversary. The robot's initial location is the point (0, 0), while

the adversary begins at (6, 6).

In fact, Figure 6.7a, 6.7c, and 6.7e show moves performed by a random controller,

while Figure 6.7b, 6.7d,and 6.7f depict the behavior of the deterministic solution pro-

vided by the standard synthesis algorithm in JSyn-vg. It is apparent that the former

visits 100% states in less than 250 turns, whereas the latter visits only 30% states in 1000

turns. This comparison showcases the advantages that a random solution can provide in

terms of overall coverage as well as the diversity of behaviors that can be observed and

exercised when an implementation can be generated that always considers the entire set

of safe choices, instead of an instantiated strategy.

6.8 Evaluation – Synthesis time

Our case study in robot motion planning was inspired by results in this context from

the most recent and related work on DT-Synth [79]. This reactive synthesis frame-

work incorporates learning techniques to generate winning sets for in�nite-state safety

games in the form of decision trees. DT-Synth has been shown to outperform previous
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proposed synthesis tools, both in in�nite-state (ConSynth [6] and �nite-state prob-

lems (RPNI-Synth and SAT-Synth [80]). While the authors do not explicitly talk

about randomness, the winning sets provided by DT-Synth are su�cient to generate

implementations with diverse behavior. Despite this fact, the generated winning sets

are subsets of the greatest �xpoint of safe states, which would lead to implementations

that only exercise a fragment of the reachable state space. An example is the winning

set that we mentioned for the motivating example in Section 6.3.

Note that DT-Synth works only for �nite-branching game graphs, and the user

must additionally specify a minimum value for the number of successors for each vertex

in the graph. An incorrect value for this threshold can lead to unsound witnesses. With

our JSyn-vg, such additional knowledge is not required from the user since it is only

reliant on the original speci�cation and is guaranteed to provide sound results, thanks

to Theorem 6.4.1.

Table 6.2 presents the comparison of JSyn-vg and DT-Synth. As an addendum we

included the synthesis times for the problems using the existing deterministic synthesis

algorithm in JSyn-vg. As we mentioned in Section 6.5, the performance is identical

when compared to synthesizing random witnesses.

For the purposes of this comparison, we used the in�nite-state benchmarks presented

in the original paper on DT-Synth [79], as well as the simulated avoidance games from

Section 6.7.1, namely bounded evasion and bounded evasion ints. The two tools have

similar performance for half the benchmarks, with signi�cant di�erences for the rest. For

diagonal, the main distinction is thatDT-Synth requires the de�nition of two additional

expressions to guide the learning procedure, whereas JSyn-vg �nds a solution without

additional templates. On the other hand, DT-Synth's ability to synthesize memoryless

strategies allows for faster synthesis for solitarybox, where the robot is simply moving

freely within an in�nite arena while staying within a horizontal stripe of width equal
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Table 6.2: Synthesis time of DT-Synth and JSyn-vg (seconds).

Benchmark JSyn-vg
JSyn-vg

(random)
DT-Synth

box 0.603 0.606 0.258
diagonal 1.109 1.011 6.027
evasion 0.705 0.605 0.660
follow 3.34 3.029 1.034
limitedbox 3.229 3.332 3.350
solitarybox 1.902 1.816 0.284
square 5.823 5.605 6.44
program-repair 3.122 3.638 2.452
repair-critical 83.891 88.073 30.593
synth-synchronization 23.013 23.2 89.804
cinderella (𝑐 = 2) 20.061 20.167 > 900
cinderella (𝑐 = 3) 12.02 11.294 > 900
bounded evasion 49.528 49.662 unsupported
bounded evasion ints 31.614 32.611 > 900

to three. JSyn-vg is targeted at synthesis of stateful systems, and as such, a more

elaborate strategy is generated.

In the case of repair-critical, DT-Synth appears to be more e�cient in terms of

handling disjunctive expressions in the speci�cation, while for synth-synchronization

DT-Synth seems to require more elaborate hypotheses in order to come up with

a witness. The latter is further demonstrated in the results for the cinderella

and bounded evasion ints games, where DT-Synth fails to synthesize a witness within

the timeout of 15 minutes. In contrast, JSyn-vg computes a greatest �xpoint of safe

states and synthesizes a solution in a few seconds. Finally, for the game bounded evasion,

DT-Synth does not currently support the theory of linear real arithmetic.

6.9 Related Work

The idea of synthesizing reactive designs with random behavior is relevant to synthesis

for permissive games. This area has been explored in the past for �nite-state prob-

lems [12, 69]. More recently, Fremont and Seshia described a formal extension to the
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theory of Control Improvisation to support reactive synthesis [46]. Their probabilistic

approach is limited to �nite-state problems and practically useful only for the subset of

safety games. The end result is a maximally-randomized �nite word generator, called

an improviser, where each word satis�es the predetermined probability threshold con-

straints. In comparison, our approach synthesizes designs that simulate randomness for

in�nite-state problems. Furthermore, we do not provide guarantees regarding the ran-

domness of the responses from the synthesized witness. Instead, we focus on synthesizing

witnesses that consider regions of values as candidates to variable assignments, a prob-

lem reducible to SMT. In our case, the end product is an implementation that can be

further re�ned by the engineer with a custom probability distribution to retrieve random

values. This provides and added degree of freedom as the user can then choose whether

to express bias through the requirements or through the random number generators

themselves.

The original work on JSyn-vg targeted the area of in�nite-state problems. In this

context, Beyenne et al. �rst proposed a template-based approach called ConSynth,

where the speci�cation is accompanied by a template regarding the shape of the solu-

tion to guide the synthesizer towards a solution [7]. In contrast, JSyn-vg is a completely

automated approach exempting the user from necessity to further reason about the shape

of the computed solution and allowing to focus on expressing the problem in the form

of input-output contracts. Permissive solutions for in�nite-state games have primarily

been proposed in the context supervisor synthesis [23, 94], where a controller is syn-

thesized considering a formal representation of the behavior (inputs) provided by the

participating plant. Compared to this work, our proposed solution explores the applica-

bility of synthesized controllers with random behavior, while the overall synthesis task

is inherently harder due to not requiring an exact model of the controller's environment.

Neider and Markgraf recently proposed DT-Synth [79], a learning-based approach
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to synthesizing winning sets for in�nite state games in the form of decision trees, as an

extension to previous work by Neider and Topcu for �nite-state problems [80]. DT-

Synth requires additional knowledge regarding the number of successor states, where

lack thereof can lead to unsound results. As with ConSynth, for more complex prob-

lems, the game speci�cation is supported by additional syntactic expressions that help

the learner converge faster to a solution. In contrast, our Skolem extraction algorithm is

guaranteed to provide sound witnesses and does not depend on additional user-provided

input.

6.10 Conclusion

We have presented a novel Skolemization procedure for the AE-VAL solver enabling the

synthesis of in�nite-state reactive implementations with random behavior. The proposed

solution is an extension toAE-VAL and the synthesis algorithm JSyn-vg that computes

a greatest �xpoint of safe states. The product is a witness where values inside safe regions

are considered as equally safe candidate assignments. Our solution provides the engineer

with �exibility when it comes to introducing additional bias through the speci�cation or

the implemented random number generators.

To the best of our knowledge, this is the �rst work that is capable of synthesizing

in�nite-state systems with random, speci�cation-compliant behavior. We showed how

the extended synthesis framework can be e�ectively used to synthesize promising so-

lutions in the context of robot motion planning, as well as a novel application in fuzz

testing. In the future, we wish to continue exploring the area of reactive fuzzer synthesis,

particularly in the context of identifying a formal speci�cation standard. To expand its

applicability in robot motion planning, we wish to explore ways to support liveness spec-

i�cations, as well as soft requirements. The outstanding result of this work is a Skolem

extraction procedure general enough to be applicable to other, unexplored aspects of the
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synthesis problem.
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Figure 6.7: Trajectories and area coverage over time of random (left column) versus deterministic
(right column) controller.



Chapter 7

Summary and Future Work

In this dissertation we presented novel techniques towards the realizability checking and

synthesis of in�nite-state reactive systems. The following subsections summarize the

contributions introduced in this work, and discuss future research avenues to explore.

7.1 Thesis Summary

Chapter 4 presented the �rst ever application of 𝑘-induction in the context of reactive

synthesis, and demonstrated its usefulness in industrial-level scenarios. 𝐾-induction has

been primarily popular in model checking in the past, and we demonstrated how it can

be used towards other aspects in the formal analysis of requirements. We provided a

rigorous proof of its soundness with respect to realizable contracts and created a machine-

checked proof using Coq to gain high assurance in the correctness of the formulation and

our results.

While the 𝑘-inductive realizability checking algorithm was is sound with regards to

realizable results, the approximations that were used in practice could not guarantee

116
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soundness when the algorithm declares a speci�cation as unrealizable. Chapter 5 pre-

sented our e�orts to tackle the soundness issue, pursuing a di�erent approach towards

solving the problem of synthesis. In this chapter, we presented a new synthesis algorithm

based on the mathematical concept of greatest �xpoints. Intuitively, the algorithm com-

putes the greatest set of system states that can be considered towards synthesis of safe

implementations. Our experimental comparisons showed how the �xpoint algorithm can

outperform 𝑘-induction when synthesis is considered and, most importantly, how it is

universally sound. A direct comparison depicted that our approach was competitive

with, and in many cases outperformed, other state of the art tools.

Finally, Chapter 6 presents new, previously unexplored applications of synthesis when

the generated implementations can exhibit a diversi�ed portfolio of possible behaviors.

Diversity can be directly related to the range of safe assignments that the synthesized

witness can consider when reacting to certain conditions. This chapter proposed a novel

Skolemization algorithm that enables synthesis of such systems, reducing the problem to

computing the precise set of safe states under environmental assumptions. The outcome

is an executable implementation that utilizes randomness as a tool towards picking a

random safe state for its next response. Through empirical evaluation, we showcased

how these implementations can be valuable in applications in robot motion planning

and model-based fuzz testing, where synthesis has never before been considered as a

potential solution.

7.2 Future Research Directions

The results presented in this dissertation pose exciting future research directions. In

this section, we list the ones that we believe are of signi�cant interest.

Supporting liveness specifications. The algorithms presented in this thesis are lim-

ited to speci�cation that admits safety properties. As such, requirements describing that
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�something good must eventually happen� are not currently supported. While liveness is

arguably not as important in safety-critical applications, they are still useful to describe

agent goals in robot motion planning problems. In combination with the fact that arti-

�cial intelligence has seen an unprecedented blowup in popularity due to advancements

in autonomy, it is reasonable to expect that the formal synthesis of systems with liveness

properties will be relevant for many years to come. Currently, the possibility of sup-

porting liveness in our proposed synthesis framework remains unknown. Despite this,

we believe that the direction that yields the biggest potential is in the greatest-�xpoint

approach to solving synthesis. Intuitively, it may be possible to utilize the intermediate

candidate �xpoints computed by JSyn-vg, in order to identify a looping sequence of

viable states that are guaranteed to lead to the eventual satisfaction of the liveness prop-

erty. In practice, this would translate to direct performance overhead over the current

support for safety properties and as such, development of techniques to alleviate this

issue is an equally crucial research goal.

Debugging unrealizable specifications. While synthesis tools are traditionally eval-

uated in terms of their ability to generate implementations for complex problems, under-

standing unrealizability is the �other side� of the synthesis �coin� that arguably stands

at the same level in terms of research signi�cance, as it is an invaluable asset towards

e�cient debugging of erroneous speci�cations. This context has been explored in the

past, primarily through the proposal of techniques that identify minimal sources of unre-

alizability within a contract [22, 70, 71]. While minimality in explanations is important,

it comes with severe overhead both in terms of scalability, as well as the ability for the

engineer to actually understand the artifacts that are produced by these formal tech-

niques. We believe that there exists a big opportunity in further exploring this area

as realizability, under certain conditions, can be solved using divide-and-conquer tactics

that preserve soundness of results. Furthermore, at the user interface level, we believe
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that advancements in modern graphical interfaces can be utilized to present results re-

lated to unrealizable speci�cations in a clear and unambiguous way. The latter applies

also in the context of automated repair of unrealizable speci�cations [75], where the

problem of choosing between a number of suggested repairs remains unclear.

Synthesis of designs with random behavior. In Chapter 6, we presented an ex-

tensive empirical study on the applicability of synthesized witnesses that are capable of

exercising diverse sets of behaviors. Since this is an aspect of synthesis that has not

been considered in the past, we believe that there exists considerable research potential

in exploring its applicability to similar problems. In robot motion planning, randomness

of behavior is an expected feature in order for agents to perform well with respect to

coverage path planning problems [50]. On the other hand, synthesis in fuzz testing has

never been considered before, despite the fact that model-based fuzzing tools already

exist [1, 3, 84, 101]. This fact entertains the question of whether one can identify common

patterns in the fuzzer speci�cation that lead to better testing results (SUT coverage, vul-

nerability detection) over a speci�c application domain, or properties that can translate

to better performance for general-purpose fuzzers. Furthermore, we believe that it would

be of interest to explore the applicability of model-based fuzzer synthesis in combination

with other formal techniques in testing, such as dynamic invariant detection [33, 34]. In

this context, valuable details can be inferred through the generated invariants that could

potentially help to guide the fuzzer towards previously uncovered portions of the SUT

state space.
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Appendix A

Coq Proof Definitions on

K-inductive Realizability Checking

Algorithms

Definition admit {T : Type} : T.

Inductive id : Type :=

Id : nat → id.

Inductive inputs : Type :=

input : id → nat → inputs.

Inductive state : Type :=

st : id → nat → state.

Definition initial := state → Prop.

Definition transition := state → inputs → state → Prop.

Definition iguarantee := state → Prop.
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Definition tguarantee := state → inputs → state → Prop.

Definition assumption := state → inputs → Prop.

Inductive reachable (s:state) (init : initial) (t : transition) (a:assumption) : Prop

:=

rch : ((init s) ∨ (∃ (s’ :state) (inp:inputs),

(reachable s’ init t a) ∧ (a s’ inp) ∧ (t s’ inp s))) →

reachable s init t a.

Inductive realization (init : initial) (t : transition) (a:assumption) (gi :iguarantee)

(gt : tguarantee) : Prop :=

real : ((∀ (s:state), (init s) → (gi s)) ∧

(∀ (s s’ :state) (inp : inputs),

((reachable s init t a) ∧ (a s inp) ∧ (t s inp s’ )) → gt s inp s’ ) ∧

(∃ (s:state), init s) ∧

(∀ (s:state) (inp:inputs), (reachable s init t a ∧ (a s inp)) →

(∃ (s’ :state), t s inp s’ )))->

realization init t a gi gt.

Inductive realizable contract (a:assumption) (gi : iguarantee) (gt : tguarantee) :

Prop :=

rc : (∃ (init : initial) (t : transition), realization init t a gi gt) → realizable contract a

gi gt.

CoInductive viable (s:state) (a:assumption) (gi :iguarantee) (gt : tguarantee) :

Prop :=

vbl : (∀ (i :inputs), (a s i) → (∃ (s’ :state), gt s i s’ ∧ viable s’ a gi gt)) → viable s a

gi gt.

Inductive realizable (a:assumption) (gi : iguarantee) (gt :tguarantee) : Prop :=
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rl : (∃ (s:state), gi s ∧ viable s a gi gt) → realizable a gi gt.

Lemma init reachable : ∀ (s:state) (init :initial) (t :transition) (a:assumption),

init s → reachable s init t a.

Lemma reachable viable : ∀ (s :state) (init :initial) (t :transition) (a:assumption)

(gi :iguarantee) (gt :tguarantee),

realization init t a gi gt → reachable s init t a → viable s a gi gt.

Theorem realcontract implies real (init :initial) (t :transition) : ∀ (a : assumption)

(gi : iguarantee) (gt : tguarantee),

realizable contract a gi gt → realizable a gi gt.

Theorem reach via : ∀ (s s0 :state) (a:assumption) (gi :iguarantee) (gt :tguarantee),

viable s0 a gi gt → reachable s (fun s ⇒ s = s0 ) (fun s i s’ ⇒ gt s i s’ ∧ viable s’ a

gi gt) a → viable s a gi gt.

Theorem real implies realcontract (init :initial) (t :transition) : ∀ (a : assumption)

(gi : iguarantee) (gt : tguarantee),

realizable a gi gt → realizable contract a gi gt.

Fixpoint finite viable (n:nat) (s:state) (a:assumption) (gt :tguarantee) : Prop :=

match n with

| O ⇒ True

| S n’ ⇒ ∀ i, a s i → ∃ s’, gt s i s’ ∧ finite viable n’ s’ a gt

end.

Fixpoint extendable (n:nat) (s:state) (a:assumption) (gt :tguarantee) : Prop :=

match n with

| O ⇒ ∀ i, a s i → ∃ (s’ :state), gt s i s’

| S n’ ⇒ ∀ i s’, a s i → gt s i s’ → extendable n’ s’ a gt

end.
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Definition Basecheck (n:nat) (a:assumption) (gi :iguarantee) (gt :tguarantee) :=

∃ (s:state), (gi s ∧ finite viable n s a gt).

Definition Extendcheck (n:nat) (a:assumption) (gt :tguarantee) :=

∀ s a gt, extendable n s a gt.

Lemma viable implies finite viable : ∀ a gi gt n s,

viable s a gi gt → finite viable n s a gt.

Theorem unrealizable soundness : ∀ (s:state) (init :initial) (t :transition) a gi gt,

(∃ n, ¬Basecheck n a gi gt) → ¬ realizable contract a gi gt.

Lemma finite viable plus one : ∀ n a gt (gi :iguarantee) (i :inputs) s,

(extendable n s a gt ∧ finite viable n s a gt) → finite viable (S n) s a gt.

Lemma extend viable shift : ∀ (n : nat) (a : assumption) (gi : iguarantee) (gt :

tguarantee) (s : state) (i : inputs),

(extendable n s a gt ∧ finite viable n s a gt ∧ a s i) → (∃ s’, gt s i s’ ∧ finite viable

n s’ a gt).

Lemma fv ex implies viable : ∀ n (a:assumption) gi gt (init :initial) (t :transition)

(s:state),

(finite viable n s a gt ∧ Extendcheck n a gt) → viable s a gi gt.

Theorem realizable soundness : ∀ (s:state) (init :initial) (t :transition) a gi gt,

(∃ n, (Basecheck n a gi gt ∧ Extendcheck n a gt)) → realizable contract a gi gt.

Definition Basecheck simple (n:nat) (a:assumption) (gi :iguarantee)

(gt :tguarantee):=

∀ s, (gi s) → extendable n s a gt.

Theorem basecheck soundness one way : ∀ n a (gi :iguarantee) gt (i :inputs),

((∃ s, gi s) ∧

(∀ k, (k≤n) → Basecheck simple k a gi gt)) → Basecheck n a gi gt.
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Definition skolem 0 (s:state) (i :inputs) : state := admit.

Definition skolem 1 (s:state) (i : inputs) (s’ : state) (i’ : inputs) : state := admit.

Inductive extendable f : nat → state → assumption → tguarantee → Prop :=

|exnill : ∀ s (a:assumption) (gt :tguarantee), (∀ i, a s i → (gt s i (skolem 0 s i))) →

extendable f O s a gt

|exone : ∀ s i (a:assumption) (gt :tguarantee), a s i ∧ gt s i (skolem 0 s i) ∧

(∀ s’ i’, a s’ i’ → gt s’ i’ (skolem 1 s i s’ i’ )) → extendable f (S O) s a gt.

Theorem extf zero implies ext zero : ∀ (a:assumption) (gt :tguarantee) (s:state),

extendable f O s a gt → extendable O s a gt.

Theorem extf one implies ext one : ∀ (a:assumption) (gt :tguarantee) (s:state),

extendable f 1 s a gt → extendable 1 s a gt.

Definition Basecheck simple f (n:nat) (a:assumption) (gi :iguarantee)

(gt :tguarantee):=

∀ s, (gi s) → extendable f n s a gt.

Definition Extendcheck f (n:nat) (a:assumption) (gt :tguarantee) :=

∀ s a gt, extendable f n s a gt.

Theorem BCheck f imp BCheck zero : ∀ (a:assumption) (gi :iguarantee)

(gt :tguarantee),

Basecheck simple f O a gi gt → Basecheck simple O a gi gt.

Theorem BCheck f imp BCheck one : ∀ (a:assumption) (gi :iguarantee)

(gt :tguarantee),

Basecheck simple f 1 a gi gt → Basecheck simple 1 a gi gt.

Theorem ECheck f imp ECheck zero : ∀ (a:assumption) (gt :tguarantee) (s:state),

Extendcheck f O a gt → Extendcheck O a gt.

Theorem ECheck f imp ECheck one : ∀ (a:assumption) (gt :tguarantee) (s:state),
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Extendcheck f 1 a gt → Extendcheck 1 a gt.
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Appendix B

Single Iteration of JSyn over

Example in Figure 4.2

(Section 4.2.4)

Here we consider our example from Fig. 4.2 and demonstrate one iteration of the syn-

thesis procedure. In particular the ∀∃-formula of ExtendCheck is as follows:

(𝑥0 = 0 ∨ 𝑥0 = 1)∧

𝑏𝑖𝑎𝑠0 = 𝑖𝑡𝑒(𝑖𝑛𝑖𝑡, 0, 𝑖𝑡𝑒(𝑥0 = 1, 1,−1) + 𝑏𝑖𝑎𝑠−1)∧

𝑏𝑖𝑎𝑠 𝑚𝑎𝑥0 = 𝑖𝑡𝑒(𝑖𝑛𝑖𝑡, 𝑓𝑎𝑙𝑠𝑒, ((𝑏𝑖𝑎𝑠0 ≥ 2) ∨ (𝑏𝑖𝑎𝑠0 ≤ −2)) ∨ 𝑏𝑖𝑎𝑠 𝑚𝑎𝑥−1)∧

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒10 = ((𝑠𝑡𝑎𝑡𝑒0 = 0) =⇒ (𝑏𝑖𝑎𝑠0 = 0))∧

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒20 = 𝑖𝑡𝑒(𝑖𝑛𝑖𝑡, 𝑡𝑟𝑢𝑒, ((𝑠𝑡𝑎𝑡𝑒−1 = 0) ∧ 𝑥0 = 1) =⇒ (𝑠𝑡𝑎𝑡𝑒0 = 2))∧

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒30 = 𝑖𝑡𝑒(𝑖𝑛𝑖𝑡, 𝑡𝑟𝑢𝑒, ((𝑠𝑡𝑎𝑡𝑒−1 = 0) ∧ 𝑥0 = 0) =⇒ (𝑠𝑡𝑎𝑡𝑒0 = 1))∧

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒40 = (𝑏𝑖𝑎𝑠 𝑚𝑎𝑥0 =⇒ (𝑠𝑡𝑎𝑡𝑒0 = 3))∧

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒50 = ((𝑠𝑡𝑎𝑡𝑒0 = 0) ∨ (𝑠𝑡𝑎𝑡𝑒0 = 1) ∨ (𝑠𝑡𝑎𝑡𝑒0 = 2) ∨ (𝑠𝑡𝑎𝑡𝑒0 = 3))∧

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒 𝑎𝑙𝑙0 = (𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒10 ∧ 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒20 ∧ 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒30 ∧ 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒40∧

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒50) ∧ 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒 𝑎𝑙𝑙0∧

𝑏𝑖𝑎𝑠1 = 𝑖𝑡𝑒(𝑓𝑎𝑙𝑠𝑒, 0, 𝑖𝑡𝑒(𝑥0 = 1, 1,−1) + 𝑏𝑖𝑎𝑠0)∧

𝑏𝑖𝑎𝑠 𝑚𝑎𝑥1 = 𝑖𝑡𝑒(𝑓𝑎𝑙𝑠𝑒, 𝑓𝑎𝑙𝑠𝑒, ((𝑏𝑖𝑎𝑠1 ≥ 2) ∨ (𝑏𝑖𝑎𝑠1 ≤ −2)) ∨ 𝑏𝑖𝑎𝑠 𝑚𝑎𝑥0)∧

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒11 = ((𝑠𝑡𝑎𝑡𝑒1 = 0) =⇒ (𝑏𝑖𝑎𝑠1 = 0))∧

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒21 = 𝑖𝑡𝑒(𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒, ((𝑠𝑡𝑎𝑡𝑒0 = 0) ∧ 𝑥0 = 1) =⇒ (𝑠𝑡𝑎𝑡𝑒1 = 2))∧

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒31 = 𝑖𝑡𝑒(𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒, ((𝑠𝑡𝑎𝑡𝑒0 = 0) ∧ 𝑥0 = 0) =⇒ (𝑠𝑡𝑎𝑡𝑒1 = 1))∧

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒41 = (𝑏𝑖𝑎𝑠 𝑚𝑎𝑥1 =⇒ (𝑠𝑡𝑎𝑡𝑒1 = 3))∧

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒51 = ((𝑠𝑡𝑎𝑡𝑒1 = 0) ∨ (𝑠𝑡𝑎𝑡𝑒1 = 1) ∨ (𝑠𝑡𝑎𝑡𝑒1 = 2) ∨ (𝑠𝑡𝑎𝑡𝑒1 = 3))∧

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒 𝑎𝑙𝑙1 = (𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒11 ∧ 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒21 ∧ 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒31 ∧ 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒41 ∧ 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒51) =⇒

∃𝑏𝑖𝑎𝑠2, 𝑏𝑖𝑎𝑠 𝑚𝑎𝑥2, 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒12, 𝑠𝑡𝑎𝑡𝑒2, 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒22, 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒32,

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒42, 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒52, 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒 𝑎𝑙𝑙2 .

(𝑥1 = 0 ∨ 𝑥1 = 1)∧

𝑏𝑖𝑎𝑠2 = 𝑖𝑡𝑒(𝑓𝑎𝑙𝑠𝑒, 0, 𝑖𝑡𝑒(𝑥1 = 1, 1,−1) + 𝑏𝑖𝑎𝑠0)∧

𝑏𝑖𝑎𝑠 𝑚𝑎𝑥2 = 𝑖𝑡𝑒(𝑓𝑎𝑙𝑠𝑒, 𝑓𝑎𝑙𝑠𝑒, ((𝑏𝑖𝑎𝑠2 ≥ 2) ∨ (𝑏𝑖𝑎𝑠2 ≤ −2)) ∨ 𝑏𝑖𝑎𝑠 𝑚𝑎𝑥0)∧

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒12 = ((𝑠𝑡𝑎𝑡𝑒2 = 0) =⇒ (𝑏𝑖𝑎𝑠2 = 0))∧

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒22 = 𝑖𝑡𝑒(𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒, ((𝑠𝑡𝑎𝑡𝑒0 = 0) ∧ 𝑥1 = 1) =⇒ (𝑠𝑡𝑎𝑡𝑒2 = 2))∧

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒32 = 𝑖𝑡𝑒(𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒, ((𝑠𝑡𝑎𝑡𝑒0 = 0) ∧ 𝑥1 = 0) =⇒ (𝑠𝑡𝑎𝑡𝑒2 = 1))∧

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒42 = (𝑏𝑖𝑎𝑠 𝑚𝑎𝑥2 =⇒ (𝑠𝑡𝑎𝑡𝑒2 = 2))∧

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒52 = ((𝑠𝑡𝑎𝑡𝑒2 = 0) ∨ (𝑠𝑡𝑎𝑡𝑒2 = 1) ∨ (𝑠𝑡𝑎𝑡𝑒2 = 2) ∨ (𝑠𝑡𝑎𝑡𝑒2 = 3))∧

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒 𝑎𝑙𝑙2 = (𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒12 ∧ 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒22 ∧ 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒32 ∧ 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒42 ∧ 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒52)∧

𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒 𝑎𝑙𝑙2
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AE-VAL proceeds by constructing MBP -s and creating local Skolem functions. In

one of the iterations, it obtains the following MBP :

(𝑥1 = 1 ∧ −1 = 𝑏𝑖𝑎𝑠0) ∨ (𝑥1 = 0 ∧ 1 = 𝑏𝑖𝑎𝑠0)∧

¬𝑏𝑖𝑎𝑠 𝑚𝑎𝑥0∧

(¬(𝑠𝑡𝑎𝑡𝑒0 = 0)) ∨ 𝑥1 = 0 ∧ (¬(𝑠𝑡𝑎𝑡𝑒0 = 0)) ∨ 𝑥1 = 1

and the following local Skolem function:

𝑠𝑡𝑎𝑡𝑒2 = 0∧ 𝑏𝑖𝑎𝑠2 = 0∧ 𝑏𝑖𝑎𝑠 𝑚𝑎𝑥2 = 0

In other words, the pair of the MBP and the local Skolem function is the synthesized

implementation for some transitions of the automaton: the MBP speci�es the source

state, and the Skolem function speci�es the destination state. From this example, it is

clear that the synthesized transitions are from state 1 to state 0, and from state 2 to

state 0. These MBP and the local Skolem are further encoded into the snippet of C

code that after slight simpli�cations looks as follows:

. . .
i f ( ( ( x [ 1 ] == 1 && (=1 == bia s [ 0 ] ) ) | | ( x [ 1 ] == 0&& (1 == bia s [ 0 ] ) ) )

&& ! bias_max [ 0 ]
&& ( s t a t e [ 0 ] != 0 | | x [ 1 ] == 0)
&& ( ! s t a t e [ 0 ] != 0 | | x [ 1 ] == 1)) {

bias_max [ 1 ] = 0 ;
b i a s [ 1 ] = 0 ;
s t a t e [ 1 ] = 0 ;

}
. . .
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