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ABSTRACT 

Atrial fibrillation (AF), a cardiac arrhythmia, is a major public health problem. 

AF is largely a disease of advancing age and contributes to other cardiovascular 

complications. Identification of novel protein biomarkers could advance 

understanding of AF mechanisms and may improve the prediction of incident AF. 

Additionally, it is unknown if disparities exist in AF treatment and outcomes in rural 

versus urban areas of the US. 

For manuscripts 1 and 2, we used data from the Atherosclerosis Risk in 

Communities (ARIC) study, a cohort of older-aged adults in the US. For manuscripts 

3 and 4, we used a sample of Medicare beneficiaries enrolled from 2011-2016 with 

residential zip code categorized into 4 rural/urban areas.  

In the first manuscript, we examined the association of plasma proteins and 

identified 40 novel protein biomarkers associated with incident AF. These biomarkers 

provide insight into mechanistic pathways of AF development. In the second 

manuscript, we derived and validated a series of 5-year incident AF prediction models 

that are better targeted and calibrated to older populations. Incorporating biomarkers, 

including proteomics data, into the models improved AF risk prediction. In the third 

and fourth manuscripts, we examined the initiation of anticoagulation use and 

compared the risks of subsequent stroke, heart failure, myocardial infarction, and 

mortality in newly-diagnosed AF patients in rural versus urban areas. Patients in rural 

areas were more likely to initiate anticoagulant treatment; however, they were less 

likely to initiate a newer class of anticoagulants compared to those in urban areas. 

Those in rural areas had modestly higher risk of cardiovascular outcomes and 

mortality compared to those in urban areas.  

Proteomics aids in understanding AF mechanisms and improves risk 

prediction. Future research should validate our prediction models, develop meaningful 

ways to incorporate protein biomarkers in clinical practice, and focus on improving 

AF treatment in rural areas.  
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2. INTRODUCTION 
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, with a 

lifetime risk in the United States (US) of 1 in 3 among whites and 1 in 5 among African 

Americans.1 AF is largely a disease of advancing age2, 3 and is associated with increased risks 

of adverse cardiovascular outcomes including stroke,4 myocardial infarction (MI),5 and 

mortality,6 resulting in significant costs to the US healthcare system.7 Once AF develops, 

patients have a 5-fold increased risk of stroke compared to those without AF,4 and therefore 

the mainstay of stroke prevention in AF is the initiation and maintenance of anticoagulant 

therapies.8 

The risk of AF increases with advancing age, European ancestry, cigarette smoking, 

taller height, greater weight, higher blood pressure and corresponding blood pressure 

medication use, diabetes, history of MI, and history of heart failure (HF).9, 10 In addition to the 

traditional clinical risk factors listed above, various biomarkers have been identified as risk 

factors for incident AF including markers of inflammation,11-14 oxidative stress,15 myocardial 

necrosis,11, 16, 17 myocardial stress,11, 18-23 and mineral metabolism.24, 25 Identification of novel 

biomarkers, beyond what is currently known, could advance our understanding of AF 

mechanisms. New technology has allowed for the systematic assessment of a large portion of 

the entire range of proteins measurable in plasma (the plasma proteome), commonly referred 

to as proteomics. The application of proteomics provides opportunities for unbiased discovery 

of novel markers and has the potential to advance our understanding of disease mechanisms. 

The growing public health significance of AF has spurred efforts to identify 

individuals at higher risk of developing this arrhythmia and its complications. Several AF risk 

prediction scores have been developed with respectable discriminative abilities in middle-

aged adults. However, these scores may have diminished discrimination in populations of 

older adults, in which AF is most prevalent. A well-calibrated risk score for prediction of 

incident AF would optimize screening in high-risk older individuals, allow for more specific 

clinical trial enrollment, and would lead to opportunities for targeted preventive strategies. 

Improving established risk prediction scores may depend on whether novel markers, such as 

proteomics, can add to or refine predictive models.  

There are nearly 60 million people (19% of the population) living in rural areas 

according to the US Census Bureau. Those in rural areas have higher rates of cardiovascular 

risk factors such as cigarette smoking, hypertension, diabetes, and obesity.26-28 There are rural 

vs. urban disparities in cardiovascular disease (CVD) in the US, such as a 40% higher heart 

disease prevalence in rural areas and higher risk of stroke.29, 30 Despite the higher risk of 

stroke from AF, there is little known regarding anticoagulation rates in AF patients in rural vs. 
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urban areas. In addition, it is unknown if CVD disparities exist in AF patients living in rural 

versus urban areas of the US. 

 

3. PATHOPHYSIOLOGY OF ATRIAL FIBRILLATION 

3.1. NATURAL HISTORY 

AF was first reported to affect humans in 1906 when 2 publications reported that 

“auricular fibrillation” was common in heart disease patients and that it could be identified by 

a new instrument, the electrocardiograph (ECG).31 AF is an uncoordinated atrial 

tachyarrhythmia caused by rapid and irregular atrial depolarization which results in 

ineffective atrial contraction.32 Key ECG findings are the following: a loss of P waves and 

replacement by fibrillatory waves; erratic activation of the ventricles resulting in an irregular, 

rapid heart rate (usually 90 to 170 beats per minute [bpm]); and a narrow QRS complex, 

unless other conduction abnormalities coexist, as seen in Figure 3.1.33 Note the absence of 

distinct P wave, chaotic activity of atria, irregular R-R intervals with narrow QRS complex.34 

 

Initiation of AF requires a trigger, and in order for AF to persist, the trigger must 

remain or electrical remodeling that promotes AF in the absence of the trigger must occur.33 

Micro-reentry and enhanced automaticity in one or more atrial circuits are the most common 

triggers for AF, and can be attributed to any number or combination of mechanisms that are 

not mutually exclusive. Underlying atrial pathology can result in AF and atrial fibrosis and 

loss of atrial muscle mass are the most common pathoanatomic changes.35 Atrial dilation can 

be caused by any type of cardiovascular disease (CVD) associated with AF, including 

hypertension, heart failure (HF) and atherosclerosis, 34 and atrial fibrosis can be triggered by 

Figure 3.1. Electrocardiogram showing atrial fibrillation.  
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many factors including inflammation.13 Heterogeneity of electrical conduction is caused, at 

least in part, by fibrotic atrial fibers juxtaposed on healthy atrial tissue.36 Additionally, 

sympathetic and parasympathetic activation can provoke or worsen AF by shortening the 

atrial refractory period, which increases susceptibility to reentry and enhanced automaticity.37 

Once AF occurs, AF itself produces changes in atrial function and structure and provides a 

possible explanation for the progressive nature of this arrhythmia. 36   

3.2. TYPES OF AF 

AF results from several disease processes, each with different prognoses. 

Nonvalvular AF occurs in the absence of rheumatic valve disease, a mechanical or 

bioprosthetic valve, or mitral valve abnormalities. AF can also be caused by valvular disease; 

however, nonvalvular AF is the most common form of AF and will be the focus on this 

dissertation. Paroxysmal AF is arbitrarily defined as AF that is episodic and resolves 

spontaneously or with intervention within 7 days. Persistent AF lasts more than 7 days. 

Permanent AF indicates a decision to discontinue attempts to restore or maintain sinus 

rhythm. Paroxysmal and permanent forms carry the same long-term risk of stroke.38 AF can 

also be due to noncardiac diseases, referred to as secondary AF; treating its cause often 

resolves the arrhythmia.  

3.3. DIAGNOSIS 

Patients with AF may present with mild or no symptoms, HF, myocardial infarction 

(MI), stroke, or hemodynamic collapse.34 Common symptoms, if they appear, include fatigue, 

palpitations, chest pain, syncope, dizziness, dyspnea, and orthopnea.34 A classical sign of AF 

is an irregularly irregular pulse. A systematic review was conducted to determine the 

accuracy of pulse palpation to detect AF compared with an ECG diagnosis of AF. The review 

found checking  pulse rate is 94% sensitive and 72% specific for diagnosis,39 indicating this 

method is useful for ruling out AF at that time.  Even suspected AF based on evaluation of 

pulse rate should always be confirmed with 12-lead ECG, and if the patient has AF, the ECG 

will show an absence of P waves, as seen in Figure 1. However, a normal test result does not 

completely rule out the presence of AF because an ECG may not capture a paroxysmal 

arrhythmia. When clinical suspicion of AF persists despite normal ECG results, a Holter 

monitor (typically a 24 to 48-hour recording), or ambulatory event monitor (>24 hours, up to 

30 days) may be required.  
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4. DESCRIPTIVE EPIDEMIOLOGY-INCIDENCE AND PREVALANCE 
 

AF is the most common sustained cardiac arrhythmia, with a lifetime risk of 1 in 3 

among whites and 1 in 5 among African Americans.1  Both the incidence and prevalence of 

AF have been steadily increasing, and the aging of the population and accompanying rise in 

prevalence have magnified its morbidity and health care costs. In 2010, AF affected between 

2.7 and 6.1 million Americans; the prevalence is estimated to increase to between 5.6 and 

12.1 million by 2030.40-42 AF is largely a disease of advancing age, as risk doubles with each 

progressive decade of gaining and exceeds 20% by age 80 years.2, 3 The prevalence of AF 

increases with older age, from 0.1% among people younger than 55 years to 9% among 

people 80 years or older.40 

Several population-based cohort studies have estimated the incidence of AF in the 

US. In Olmsted County, Minnesota, a predominately white population, the age- and sex-

adjusted incidence of AF in the county increased 12.6% in 20 years: from 3.04 (95% 

confidence interval [CI]: 2.78 – 3.31) per 1000 person-years in 1980 to 3.68 (95% CI: 3.42 – 

3.95) per 1000 person-years in 2000.41 AF is more prevalent in men and also more often 

diagnosed in whites compared to blacks. The Atherosclerosis Risk in Communities (ARIC) 

study (age 45-64 at baseline) found that crude incidence rates of AF were 6.7, 4.0, 3.9, and 

3.0 per 1,000 persons per year in white men, white women, black men, and black women, 

respectively. In ARIC, compared to whites, blacks had a 41% (95% CI: 8% - 62%) lower age- 

and sex-adjusted risk of being diagnosed with AF.9 Several cohort studies also report 

incidence rates by age. The Framingham Heart Study (FHS) found an overall incidence rate 

of 12.6 per 1000 person-years, and the incidence increased in age, ranging from 6.2 and 3.8 

cases per 1000 person-examinations in men and women, respectively, aged 55 to 64 years, to 

75.9 and 62.8 cases per 1000 person-examinations in men and women aged 85 to 94 years.43 

Similarly, the Cardiovascular Health Study (CHS), a population-based study among adults 

aged ≥ 65 years, calculated an overall AF incidence rate of 19.2 per 1,000 person- years.44 

Onset of AF in CHS was also strongly associated with age and male sex; the incidence rate 

per 1,000 person-years among men aged 65 – 74 and 75 – 84 was 17.6 and 42.7, respectively, 

and the corresponding rates for women were 10.1 and 21.6, respectively.44  

In addition to utilizing cohort studies to determine AF incidence, administrative data 

from Medicare have been used. In the Medicare population, in those 65 years and older, the 

age- and sex-adjusted incidence rate of AF per 1,000 person-years was virtually unchanged 

from 1993 to 2007 at 27.3 and 28.3, respectively.45 Similarly to population based studies, 

incidence increased substantially with age and men and whites had consistently higher rates.45 
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Administrative data from the Medicare population indicates that the prevalence of AF has 

increased during the last several decades, and data from 2003-2007 shows a mean 5% 

increase in prevalence per year.45 The magnitude of prevalence increase was greatest among 

the oldest beneficiaries which were those age 90 and older.45 
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5. RISK FACTORS 
 

A number of important risk factors for developing AF have been identified and the 

main clinically-based risk factors include advancing age, male sex, white race, height, weight, 

systolic and diastolic blood pressure, use of hypertension medications, diabetes, obesity, MI, 

and HF. Each of these, along with several other risk factors are discussed in this section. Risk 

factors in the context of risk prediction scores for incident AF are more thoroughly discussed 

in a later chapter.   

5.1. DEMOGRAPHIC 

Demographic characteristics, including age, sex and race are known to be associated 

with AF. Age is the most important nonmodifiable risk factor for AF, with the incidence of 

AF doubling with each decade of life.43  The prevalence of AF increases from 0.5% at age 50-

59 to 9% at age 80-89.46 The median age of patients with AF is 75, and about 70% of AF 

patients are between 65 and 85 years old.47, 48  

Male sex has consistently been associated with increased risk of AF.9, 41, 43, 44 In the 

FHS, men had a 1.5-fold higher risk (95% CI: 1.3-1.8) of developing AF compared to women 

after adjustment for age and other risk factors.43 However, the prevalence is high among both 

men and women at older age.40 In CHS, AF prevalence was higher among men than women 

among 65-69 year olds; however, the prevalence was similar between men and women among 

70-79 year olds.44, 49  

The majority of epidemiologic data on AF in the US is based on those with white 

race. Despite limited data on racial/ethnic differences, there is evidence that differences do 

exist. In the US, incidence and prevalence of AF is lower among blacks even though blacks 

have a higher prevalence of risk factors for AF.50, 51 In the ARIC study, the age and sex 

adjusted incidence of AF in blacks was 41% lower (95% CI: 8%-62%) compared to whites.9 

Among other racial groups, whites have an increased risk of AF when compared to blacks, 

Asians or Hispanics.52, 53 

5.2. BEHAVIORAL AND CLINICAL 

The association between behavioral risk factors such as alcohol and exercise and the 

risk of AF has been studied in observational cohort studies. Episodic heavy alcohol 

consumption, coined “holiday heart” is known to be associated with the onset of AF.54 Results 

regarding habitual consumption of low to moderate amounts of alcohol are mixed; FHS found 

an increased risk of AF among those who consumed > 3 drinks/day, but no association at 
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lower levels.55   CHS found no association between moderate alcohol consumption and 

development of AF;56 however, a meta-analysis reported an increased risk of 1.08 (95% CI: 

1.05-1.10) for each 10 gram / day increment of alcohol.57  

The association between exercise and the risk of AF appears to vary by intensity of 

exercise and age of the population in the study. Numerous studies have reported an increased 

risk of AF, particularly AF without any underlying CVD risk factors, among elite athletes and 

extreme exercisers.58-61 Among 2 studies of middle-age populations, no associations were 

observed between physical activity and risk of AF.62, 63 Among adults ≥65, exercise intensity 

had a U-shaped association with AF; light to moderate physical activity was associated with a 

reduced risk of AF.64 

Incidence rates, relative hazards and population attributable fractions for AF in the 

ARIC study by common risk factor profiles of blood pressure, body mass index (BMI), 

diabetes, and smoking are listed in Table 5.1, adapted from Huxley et al.65 Hypertension is 

consistently one of the most important contributors to the burden of AF, and there is a linear 

relationship between increasing systolic and diastolic blood pressure and AF risk.10, 43, 44 

Elevated blood pressure was the most important independent contributor of AF risk, 

accounting for 21.6% (95% CI: 16.8-26.7) of incident AF cases in ARIC.65 

Smoking is considered a moderate to strong risk factor for AF. In ARIC, after 

multivariable-adjustment, the risk of AF was 2 times higher in current smokers, and 1.3 times 

in former smokers compared to never smokers.66  These results are similar to earlier findings 

in the Rotterdam Study67 and the Manitoba Follow-up study.68 

Type-2 diabetes mellitus and obesity are moderate to strong risk factors for AF. In 

ARIC, type-2 diabetes was associated with a 35% increased risk of incident AF (95% CI: 

1.14-1.60),69 and a meta-analysis reported that diabetes patients had a 34% greater risk of AF 

compared to non-diabetics (95% CI: 1.07-1.68).70 Obesity consistently has been associated 

with an increased risk of incident AF. Obesity and overweight accounted for 17.9% of all 

incident AF cases in the ARIC study,65 and a meta-analysis based on 5 population-based 

cohort studies reported a 49% increased risk (95% CI: 1.36-1.64) in obese compared to non-

obese adults.71  
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Table 5.1. Incidence rate, relative hazard (95% confidence intervals) and population 
attributable fractions for atrial fibrillation for risk factors in the Atherosclerosis Risk in 
Communities study, 1987 – 2007   

IR = Incidence Rate of AF per 1000 person-years adjusted for age (mean age = 54.2 years); †Adjusted 

for age, gender, race, study site, education, income and height and each of the other risk factors. 

Table published in Huxley et al.65 

 

There are several additional clinical risk factors associated with incident AF including 

a higher risk of AF in those with taller height, 10, 44, 51 low estimated glomerular filtration rate 

(eGFR),72 varied associations with lipid levels,73, 74 very low or very high resting heart rate75-

77, low magnesium,78 and high phosphorus.79  

Individuals with major cardiovascular comorbidities such as MI and HF are at an 

increased risk of developing AF. In the FHS, history of MI was associated with an adjusted 

odds ratio (OR) of developing AF of 1.4 (95% CI: 1.0-2.0) in men and 1.2 (95% CI: 0.8-1.8) 

in women.43  In the ARIC study, prevalent MI was associated in a 2.21 times higher risk (95% 

 No. at 

Risk 

No. 

Incident 

AF 

IR* RH (95% CI) † PAF % 

 

95% CI 

History of Cardiac 

Disease (%) 

      

Optimal 13398 1259 5.00 0.54 (0.46-0.62) 0.00 - 

Elevated 1200 261 12.17 1 [Ref] 5.35 3.32 to 7.45 

Blood pressure (%)       

Optimal 5626 381 3.93 0.55 (0.48-0.63) 0.00 - 

Borderline 3317 304 4.72 0.65 (0.56-0.74) 2.89 -0.11 to 5.64 

Elevated 5655 835 7.65 1 [Ref] 21.6 16.8 to 26.7 

BMI (%)       

Optimal 4889 389 4.27 0.65 (0.56-0.74) 0.00 - 

Borderline 5767 591 5.28 0.70 (0.62-0.79) 5.16 0.93 to 9.26 

Elevated 3942 531 7.36 1 [Ref] 12.7 9.30 to 16.3 

Diabetes (%)       

Optimal 7558 645 4.68 0.67 (0.58-0.78) 0.00 - 

Borderline 5491 617 5.83 0.71 (0.61-0.82) 0.78 -3.52 to 4.84 

Elevated 1533 253 8.77 1 [Ref] 3.08 0.91 to 5.30 

Smoking (%)       

Optimal 6077 510 4.23 0.55 (0.48-0.62) 0.00 - 

Borderline 4769 550 5.76 0.60 (0.52-0.68) 2.06 -2.05 to 6.05 

Elevated 3752 460 7.45 1 [Ref] 9.78 6.74 to 12.9 
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CI: 1.71-2.84) of AF compared to those without MI after demographic adjustment.29. Other 

population-based cohort studies have found a similar increased risk.10, 49, 51, 68 HF is 

consistently and substantially associated with an increased risk of AF. 43, 49, 51, 68, 80 In the 

ARIC study, prevalent HF was associated with 3 times the risk (95% CI: 2.32-3.95) of AF 

compared to those without HF after adjustment for age, sex and race.51 Other cohort studies 

have found a similar in the range of 2 to 3 times higher risk of AF in those with HF.10  

 

5.3. BLOOD BIOMARKERS 

Incident AF has been associated with a diverse array of circulating biomarkers, 

including markers of inflammation (high-sensitivity C-reactive protein, fibrinogen),18, 81, 82 

atrial overload (atrial and B-type natriuretic peptides),18, 81, 82 myocardial ischemia (high- 

sensitivity troponin T and I),11, 16, 81 cardiac fibrosis (galectin-3),83, 84 and others (soluble ST2, 

growth differentiation factor-15).11  

 

5.4. ELECTROCARDIOGRAPHY 

Several ECG- derived variables have been associated with an increased risk of AF 

including the PR interval, 10, 51, 85 ECG-based left ventricular hypertrophy,10, 51, 85 QRS 

duration,86  and a prolonged QT interval.87 Several P wave indices have been associated with 

incident AF. A pooled analysis of the FHS and ARIC cohorts found associations with P wave 

duration, P wave area, and P wave terminal force with the incidence of AF.88 Abnormal P 

wave axis was associated with AF, reporting a hazard ratio (HR) of 2.34 (95% CI: 2.12-2.58) 

after multivariable adjustment.89 Finally, an analysis of 1260 participants in the CHS cohort 

found that a doubling of hourly premature atrial contractions count from 24-hour Holter 

monitoring was associated with a 17% increased risk of AF (95% CI: 1.13-1.22).90 

 

5.5. IMAGING 

Information on cardiac structure and function obtained from echocardiographic 

studies, such as left atrial diameter, left ventricular function, left ventricular mass, and left 

ventricular wall thickness, have been associated with incident AF.85, 91-94 CHS found 

significant independent associations of measures of ventricular diastolic filling parameters 

including left atrial size, peak E velocity, and A wave velocity time interval with incident 

AF.92 
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5.6. GENETICS 

Recent research has identified several common genetic variants associated with the 

risk of AF.95 Genome-wide association studies (GWAS) in individuals of European descent 

have identified three genomic regions associated with AF on chromosomes 4q25 (PITX2), 

16q22 (ZFHX3), and 1q21 (KCNN3). 96-98  Studies of electrocardiographic traits have also 

identified a number of loci associated with AF.99, 100 A GWAS meta-analysis further identified 

6 new susceptibility loci in or near plausible candidate genes involved in pacemaking activity, 

signal transduction and cardiopulmonary development. 95 
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6. ADVERSE OUTCOMES ASSOCIATED WITH AF 

6.1. STROKE 

Ischemic stroke and systemic arterial occlusion in AF are primarily attributed to 

embolism of a thrombus as a result of blood stasis in the left atrium.35 Individuals with AF 

have a 5-fold higher stroke incidence compared to those without AF, 4  and among those ≥ 75 

years of age, AF is the most important single cause of ischemic stroke.101 Among Olmsted 

County residents diagnosed with AF, 11% had a first ischemic stroke over a mean follow-up 

of 5.5 years.102 A collaborative analysis of 5 randomized controlled trials identified age, 

hypertension, previous transient ischemic attack or stroke, and diabetes as independent risk 

factors for stroke among AF patients.103 In the FHS, the relative risk (RR) of stroke associated 

with AF was fairly stable across age groups; however, the attributable risk increased 

significantly with age, from 1.5% among 50-59 year olds to 23.5% among 80-89 year olds. 4 

Although ischemic stroke in AF patients is primarily attributed to an AF-related embolism, up 

to 25% of stroke in AF patients might be the result of intrinsic cerebrovascular diseases, other 

cardiac sources of embolism or atherosclerotic pathology in the proximal aorta.104, 105 

Treatment with anticoagulants greatly reduces the risk of stroke and is discussed in a later 

chapter.   

 

6.2. MYOCARDIAL INFARCTION AND HEART FAILURE 

The development of AF is also associated with subsequent increased risk of the major 

cardiovascular conditions of MI5, 106 and HF.80, 107 In ARIC, AF was associated with a 63% 

increased risk of MI (HR=1.63; 95% CI: 1.32-2.02); however, when type of MI was 

considered, AF was associated with non-ST-segment elevation MI [HR (95 CI) = 1.80 (1.39- 

2.31)] but was not associated with ST-segment elevation MI.5  

Studies looking at the timing of AF and HF show a bidirectional association, often 

with one developing within a few years of the other.80 The existing severity of specific 

cardiovascular risk factors, along with age and sex, may determine whether AF or HF occurs 

first.108, 109 For example, in FHS, among 382 individuals with both AF and HF, 38% had AF 

first, 41% had HF first, and 21% had both diagnosed on the same day.109 AF is one of the 

strongest risk factors for HF. In a recent meta-analysis, AF was associated with nearly 5-times 

of the risk of incident HF; RR (95%CI) = 4.99 (3.04-8.22). The absolute risk increase in 

incident HF associated with AF was 11.1 (5.7 to 20) events/1000 participant years.110 
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6.3. COGNITIVE IMPAIRMENT AND DEMENTIA 

There is increasing evidence that AF is a risk factor for cognitive impairment and 

dementia. A meta-analysis restricted to studies conducted among non-stroke AF patients 

reported a pooled OR of dementia of 1.64 (95% CI: 1.00 – 2.71) comparing those with and 

without AF.111 A prospective cohort study among the residents of Olmsted County with 

incident AF and without stroke found the cumulative incidence rate of dementia was 2.7% at 

one year, and 10.5% at 5 years after AF.112 In ARIC, incident AF has been associated with 

additional cognitive decline and incident dementia, independent of clinical stroke,113, 114 and 

this association might be explained by the presence or development of subclinical cerebral 

infarcts.115 

6.4. BLEEDING EVENTS 

Even though oral anticoagulation in AF reduces the risk of ischemic stroke and 

systemic thromboembolism, this benefit is accompanied by an increased bleeding risk.116-120 

Therefore gastrointestinal (GI) bleeding and other major bleeding events are important 

outcomes to consider when looking at AF outcomes. Identifying individuals at higher risk of 

bleeding complications when using oral anticoagulants may facilitate personalized treatments. 

To date, at least four risk scores for the assessment of bleeding risk in patients with AF 

treated with vitamin K antagonists have been published (summarized in Table 6.1).121-124 

Variables consistently associated with increased bleeding risk in this patient population 

include older age, renal disease, and a history of prior bleeding, with anemia, cancer, and 

hypertension included in several of the scores. As with the scores used for stroke risk 

stratification, the existing bleeding predictive models have only moderate discrimination and 

do not differ significantly from each other when applied to the same population.125-127 Of note, 

these scores have been developed for the prediction of bleeding among persons with AF using 

vitamin K antagonists (warfarin). DOACs may have a different bleeding profile compared to 

vitamin K antagonists, and scores are currently being developed for patients using DOACs. 

 

 

 

 

 

 

 



13 
 

Table 6.1. Risk stratification schemes for bleeding prediction in AF patients using vitamin K 
antagonists 

Risk score HEMORR2HAGES 121 HAS-BLED 122 ATRIA123 ORBIT-AF124 

Variables Age 

Hepatic / renal disease 

Hypertension 

Prior bleeding  

Stroke  

Alcohol abuse  

Anemia  

Cancer 

Reduced platelet count / 

function  

Genetic factors 

Fall risk 

Age 

Abnormal renal / liver 

function  

Hypertension 

Prior bleeding  

Stroke  

Drugs/alcohol  

Labile INR 

Age 

Renal disease 

Hypertension 

Prior bleeding 

Anemia 

Age 

Abnormal kidney 

function  

Prior bleeding 

Anemia 

Antiplatelet use (heart 

failure) (cancer) (COPD) 

(hip fracture / 

osteoporosis) (smoking) 

INR: International Normalized Ratio 

 

 

6.5. MORTALITY 

The presence of AF has been shown to independently increase the risk of death and 

the mortality risk is highest during the first year after AF manifests.6, 107, 128, 129  The age-

adjusted mortality rate from AF was 6.5 per 100,000 people in 2017. As might be expected, 

the annual mortality rates associated with AF vary substantially depending on the population 

demographics. Based on medical insurance claim data, values range from 2.6% in 

asymptomatic untreated individuals, to 24.2% amongst an elderly population with high rates 

of comorbidities.45, 130 The risk of death among those with first-detected AF is particularly 

high during the months immediately following diagnosis. Among residents of Olmsted 

County, MN , the age- and sex-matched HRs for mortality among those with new-onset AF 

compared to those without AF were 9.62 (95% CI: 8.93 – 10.32) in the first 4 months after 

diagnosis, and fell to 1.66 (95% CI: 1.59 – 1.73) in subsequent follow-up period.6 Among 

Medicare beneficiaries, mortality following an AF diagnosis is 3.5 times higher than 

expected; 30-day and one-year mortality are 12.6% and 27.6%, respectively.45 

Evidence indicates the risk of mortality in AF patients may differ by sex and race. In 

the FHS, the multivariable adjusted OR for death among those with AF compared to those 

without AF was of 1.5 (95% CI: 1.2 – 1.8) in men and 1.9 (95% CI: 1.5 – 2.2) in women.128  

In addition, there was a significant sex interaction such that AF appeared to diminish the 

survival advantage typically observed in females.128 A meta-analysis has also found that the 

adjusted risk of death was significantly stronger in females than in males with AF [RR (95% 
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CI) =1.2 (1.07-1.17)].131  The Women’s Health Study (WHS) has additionally corroborated 

these findings.132 In a Medicare unadjusted analysis, blacks and Hispanics had a higher risk of 

death than their white counterparts with AF; however, after adjustment for comorbidities, 

blacks (HR, 0.95 [95% CI, 0.93–0.96]; P<0.001) and Hispanics (HR, 0.82 [95% CI, 0.80- 

0.84]; P<0.001) had a lower risk of death than whites with AF.133 In contrast, in the 

population-based ARIC study, the rate difference for all-cause mortality for individuals with 

AF versus without AF was nearly double in blacks compared to whites.113 During AF-related 

hospitalizations, in-hospital mortality has been shown to be highest amongst African-

Americans in comparison to other ethnic groups.134 

Although stroke is the most feared complication of AF, the RE-LY clinical trial 

reported that stroke accounted for only ~7.0% of deaths in AF, with sudden cardiac death 

(SCD) (22.25%), progressive HF (15.1%), and noncardiovascular death (35.8%) accounting 

for the majority of deaths.135 In a study that examined data from 2 population based studies, 

AF was associated with a doubling in the risk of SCD after accounting for baseline and time-

varying confounders. In ARIC, the unadjusted incidence rate per 1000 person-years was 1.30 

(95% CI: 1.14–1.47) in those without AF and 2.89 (95% CI: 2.00–4.05) in those with AF; 

corresponding rates in CHS were 3.82 (95% CI:  3.35–4.35) and 12.00 (95% CI, 9.45–15.25), 

respectively. When the 2 cohort studies combined results, the multivariable-adjusted HR 

associated with AF for SCD was 2.47 (95% CI: 1.95–3.13).136 In a meta-analysis of 7 studies, 

individuals with AF had an RR of SCD of 1.88 (95% CI: 1.36–2.60).110 
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7. TREATMENT  

7.1. OVERVIEW 

The primary goals for treating patients with AF are improvement of symptoms and 

reduction of AF-related morbidity. The 3 basic tenets for therapy of AF are 1) control of 

ventricular rate responses, or rate control; 2) restoration and maintenance of sinus rhythm, or 

rhythm control; and 3) prevention of thromboembolism. In patients who are 

hemodynamically unstable, immediate evaluation and treatment are warranted, including 

emergency cardioversion, if necessary. In stable patients, treatment depends on the duration 

of AF and the presence of underlying cardiac disease or other comorbidities. Figure 

7.1 (adapted from Gutierrez et al34, updated 2016) presents an algorithm showing the key 

decision-making points in the process.  

Figure 7.1. Algorithm for the evaluation and treatment of a patient with AF.  
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7.2. RATE CONTROL 

Rate control is an essential part of AF treatment in acute and chronic settings. It 

promotes hemodynamic function by slowing ventricular response, improving diastolic 

ventricular filling, reducing myocardial oxygen demand, and improving coronary perfusion 

and mechanical function. Given the challenges of achieving and maintaining normal sinus 

rhythm and the deleterious effects of antiarrhythmic drugs, most patients with AF are treated 

with rate control.34, 137, 138 

Beta blockers or nondihydropyridine calcium channel blockers are used to achieve 

heart rate goals. Lenient rate control to achieve a resting rate less than 110 bpm is reasonable 

in the majority of patients.139 Stricter rate control (less than 80 bpm during rest) may be 

appropriate if needed to resolve symptoms. Beta blockers and calcium channel blockers are 

contraindicated in patients with preexcitation (Wolff-Parkinson-White syndrome). Non-

cardioselective beta blockers are also contraindicated in patients with acute heart failure, 

severe chronic obstructive pulmonary disease, and asthma. Digoxin is no longer considered a 

first-line agent or recommended as monotherapy, but it can be added to therapy with beta 

blockers or calcium channel blockers. Amiodarone offers another choice for rate control when 

beta blockers and calcium channel blockers do not work, but its delayed action, potential 

toxicity, and drug interactions severely limit its use. It may also cause acute cardioversion, 

which could lead to a stroke if anticoagulation therapy has not been properly administered.34 

 

7.3. CARDIOVERSION 

The main indication for cardioversion is unstable or poorly tolerated AF that is 

unresponsive to drug therapy.35, 140 Unless done emergently, or when the duration of the 

arrhythmia is known to be less than 48 hours, 4 weeks of pre- and post-cardioversion 

anticoagulation is required. Cardioversion can be attempted electrically or pharmacologically. 

Electrical cardioversion is usually successful in the short term, but often not in the long term. 

If transesophageal echocardiography shows no thrombus in the left atrium, it is safe to omit 

pre-cardioversion anticoagulation.35, 140 Electrical cardioversion delivers a direct-current 

electric shock in synchrony with the QRS complex to avoid triggering ventricular fibrillation. 

One or more shocks of 200 to 300 joules may be necessary.35, 140 

Pharmacologic cardioversion uses intravenous ibutilide, flecainide, dofetilide, 

propafenone, or amiodarone. Cardioversion and maintenance of normal sinus rhythm using 

medication are challenging because of the limited long-term effectiveness of antiarrhythmics, 
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the risk of triggering ventricular arrhythmias, and long-term adverse effects. In general, 

maintenance of normal sinus rhythm with oral medications is more successful in patients 65 

years and younger with structurally normal hearts, as well as patients who have only recently 

developed AF.35, 140 Contraindications to either form of cardioversion include known atrial 

thrombus, digitalis toxicity, multifocal atrial tachycardia, and suboptimal anticoagulation. 

 

7.4. ABLATION THERAPY 

Electrophysiologic radiofrequency ablation is a nonoperative, catheter-based 

procedure used to isolate and possibly destroy abnormal foci responsible for AF. Specific foci 

that cause AF have been found at or near the pulmonary vein ostia in the left atrium; locating 

these sites allows targeted ablation.34 Some trials have shown that radiofrequency ablation is 

superior to antiarrhythmics in selected patients, including patients with paroxysmal AF who 

are symptomatic but without structural heart disease, patients who are intolerant of 

antiarrhythmics, and patients with inadequate pharmacologic rhythm control.141, 142 However, 

data on the long-term effectiveness and safety of radiofrequency ablation are limited. AF may 

recur after ablation, and a repeat procedure may be required in approximately 20% of cases. 

Ablation of the accessory pathway is the optimal treatment for patients with Wolff-Parkinson-

White syndrome and AF.35, 140 The procedure is contraindicated in patients who cannot be 

anticoagulated one month before and at least several months after the procedure. 

 

7.5. SURGERY AND PERCUTANEOUS LEFT ATRIAL APPENDAGE ISOLATION 

Surgical treatments for AF are invasive, high risk, and are considered only in patients 

undergoing cardiac surgery for other reasons.34 The primary surgical therapies for treating AF 

are the Maze procedure and left atrial appendage (LAA) obliteration. The Maze procedure 

aims to eliminate AF through the use of incisions in the atrial wall to interrupt 

arrhythmogenic wavelet pathways and reentry circuits.143 LAA obliteration reduces stroke 

risk by percutaneous ligation or surgical removal of the LAA.144-146 LAA obliteration does not 

correct the underlying AF; however, because approximately 90% of cardiac thrombi occur in 

the appendage, it decreases the subsequent risk of stroke.34 Two percutaneously inserted 

devices, the Watchman and the Amplatzer Cardiac Plug, can be used to achieve occlusion of 

the LAA, although the latter is not yet approved for AF treatment in the US. Both are non-

inferior to warfarin (Coumadin) in stroke risk reduction.147, 148 A newer device, the Lariat, is 

available to ligate the LAA, but data on its long-term effectiveness and safety are limited.147 
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7.6. ANTICOAGULATION 

Anticoagulation is an essential part of AF management. It significantly reduces the 

risk of embolic stroke, but increases the risk of bleeding. Although the benefit of 

anticoagulation exceeds the risk of bleeding for most patients, discussions about stroke 

prevention versus risk of bleeding remain challenging especially in elderly patients. Tools to 

aid in the assessment of the risks of stroke and bleeding are available and are useful in making 

decisions with patients about therapeutic options. They are discussed in other chapters.  

For many years, the CHADS2 (congestive heart failure; hypertension; age 75 years or 

older; diabetes mellitus; prior stroke, transient ischemic attack, or thromboembolism 

[doubled]) scoring system was used to estimate risk of stroke in patients with AF. 

Anticoagulation was recommended for patients with a CHADS2 score of 2 or more, unless a 

contraindication is present.121 More recently, the CHA2DS2-VASc (congestive heart failure; 

hypertension; age 75 years or older [doubled]; diabetes; prior stroke, transient ischemic 

attack, or thromboembolism [doubled]; vascular disease; age 65 to 74 years; sex category) 

scoring system has been recommended by the American College of Cardiology.35 Due to a 

high risk for stroke in AF patients, the current ACC/AHA/HRS Guideline for the 

Management of Patients with AF recommends oral anticoagulation in those with a prior 

stroke or transient ischemic attack, or those with a moderate or greater risk of stroke 

(CHA2DS2-VASc score ≥1 in males or ≥2 in females).35  Importantly, >80% of all AF patients 

are in this risk category of recommended anticoagulation.149 CHA2DS2-VASc significantly 

increases the number of patients eligible for anticoagulation compared with CHADS2. 

Warfarin 

Historically, warfarin (Coumadin) has been prescribed since the 1950’s as an oral 

anticoagulant for stroke prevention in patients with AF. AF patients taking warfarin have a 

stroke risk reduction >60% compared to placebo.150 However, warfarin requires frequent 

monitoring of international normalized ratio (INR) measures, and many patients have 

difficulty achieving and maintaining optimal INR measures. Even with optimal compliance, 

patients using warfarin are within the therapeutic range (2 to 3 for AF) only 55% to 66% of 

the time.34 Additional limitations include a significant risk for bleeding complications, a 

narrow therapeutic range and the presence of numerous dietary and drug interactions. 

Therefore, many patients eligible for anticoagulation are not receiving it (up to 40% in some 
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studies151) and among those using warfarin, misuse results in inadequate protection against 

stroke and/or increased risk of bleeding.  

Direct oral anticoagulants  

 There were 4 direct oral anticoagulants (DOACs) approved by the Food and Drug 

Administration (FDA) between 2010 and 2015 for the prevention of stroke and systemic 

embolism in patients with AF. Dabigatran (brand name Pradaxa), was the first to be FDA-

approved (Oct. 2010), followed by rivaroxaban (Xarelto) approved Nov. 2011, apixaban 

(Eliquis), approved Dec. 2012), and Edoxaban (Savaysa) approved in 2015. AF patients 

taking DOACs experience lower rates of stroke and intracranial bleeds compared to those 

taking warfarin.152-154 Additional advantages of DOACs compared to warfarin include fixed 

dosing, no food interactions, and no need for INR monitoring. Their major drawbacks are 

higher costs, and until recently, reversal agents were not available. The lack of a reversal 

agent is important to consider because if a provider believed an AF patient is at a higher risk 

of falls, injury, or bleeding, the provider may be likely to prescribe warfarin, which can be 

easily reversed. Table 7.1 outlines the pharmacologic properties of DOACs and warfarin; 

none are recommended for patients on hemodialysis, nor are they approved for use during 

pregnancy or in patients with valvular AF or advanced kidney disease.  

Table 7.2 compares some of the risks and benefits of DOACs vs. warfarin, using 

information from the Phase 3 randomized controlled trials of each drug.152-155 Dabigatran is as 

effective as warfarin in preventing stroke and systemic emboli. Major bleeding events were 

similar to those of warfarin, with fewer intracranial bleeds, but increased GI bleeding. 

Rivaroxaban and edoxaban have are noninferior in preventing stroke and systemic 

thromboembolic events compared to warfarin, although edoxaban has a lower rate of major 

bleeding. Apixaban is superior to warfarin in stroke prevention and has a lower bleeding risk. 

Follow-up analyses of dabigatran, rivaroxaban, and apixaban in large commercially insured 

databases in the US indicate similar results as those in the clinical trials.119, 120, 156-159   
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Table 7.1. Pharmacologic Properties of Anticoagulants Used for the Prevention of Thromboembolism in Patients with Atrial Fibrillation 

Drug 

Year FDA 

approved Mechanism Dosing 

Oral bio-

availability 

Time to 

effect 

(hours) 

Half-

life 

(hours) 

Year 

reversal 

agent 

approved Cost* 

Apixaban 

(Eliquis) 

2012 Factor Xa 

inhibitor 

5 mg twice daily 

2.5 mg twice daily for patients with ≥ 2 of the 

following: creatinine > 1.5 mg/dL, age > 80 years, 

weight < 132 lb 

58% 3 to 4 8 to 15 2018 ($445) 

Dabigatran 

(Pradaxa) 

2010 Direct 

thrombin 

inhibitor 

150 mg twice daily 

75 mg twice daily for CrCl 15 to 30 mL 

/min/1.73m2 

Not recommended if CrCl <15 mL/min/1.73m2 

3% to 7% 1 to 2  12 to 

17 

2015 ($417) 

Edoxaban 

(Savaysa) 

2015 Factor Xa 

inhibitor 

60 mg daily 

30 mg daily if CrCl 15 to 50 15 mL/min/1.73m2 

Avoid use if CrCl >95 15 mL/min/1.73m2 due to 

increased clearance 

Not recommended if CrCl < 1515 mL/min/1.73m2 

Avoid in Child-Pugh Class B or C liver disease 

62%  1 to 2 10 to 

14 

none 

approved 

($365) 

Rivaroxaban 

(Xarelto) 

2011 Factor Xa 

inhibitor 

20 mg daily 

15 mg daily for CrCl 15 to 50 15 mL/min/1.73m2 

Not recommended if CrCl < 15 15 

mL/min/1.73m2 

60% 2 to 4 5 to 9 2018 ($449) 
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Warfarin 

(Coumadin) 

1954 Vitamin K 

antagonist 

Variable (dose adjusted to internal normalized 

ratio (INR)) 

100% 72 to 96 40 Various 

reversals 

have been 

used since 

1954 

Varies by 

dose, $3 

to $19 

CrCl = creatinine clearance 

*Estimated retail cost for one month of standard therapy based on information obtained at http://www.goodrx.com (accessed June 6, 2019). Medicare 

plan was arbitrarily listed as MedicareBlue Rx Standard for Minnesota in order to obtain prices. Coupons were available for use. Generic prices not 

available; brand price listed in parentheses. Prices vary based on Medicare plan.  

 

http://www.goodrx.com/
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Table 7.2. Risks and Benefits of Direct Oral Anticoagulants Compared with Warfarin 

Selected Clinical Outcome 

Apixaban  
5mg twice daily 
HR (95% CI) 
NNT per 2 years 

Dabigatran  
150mg twice daily 
RR (95%CI) 
NNT or NNH per 2 years 

Edoxaban  
60 mg daily 
HR (95% CI) 
NNT or NNH per 3 years 

Rivaroxaban  
20mg daily 
HR or RR (95% CI) 
NNT or NNH per 3 years 

Stroke or systemic emboli HR = 0.79 (0.66 to 0.95) 
NNT = 168 

RR = 0.66 (0.53 to 0.82)  
NNT = 91 

HR = 0.79 (0.63 to 0.99) 
NNT = 141 

HR = 0.79 (0.65 to 0.95)  
NNT = 134 

Intracranial bleed HR = 0.51 (0.35 to 0.75)  
NNT = 238 

RR = 0.26 (0.14 to 0.49)  
NNT = 182 

HR = 0.54 (0.38 to 0.77)  
NNT = 172 

HR = 0.67 (0.47 to 0.93)  
NNT = 247 

Major bleed HR = 0.69 (0.60 to 0.80) 
NNT = 79 

RR = 0.93 (0.81 to 1.07) 
nonsignificant 

HR = 0.80 (0.71 to 0.91)  
NNT = 66 

HR = 1.04 (0.90 to 1.20) 
nonsignificant 

Gastrointestinal bleed R = 0.89 (0.70 to 1.15) 
nonsignificant 

RR = 1.50 (1.19 to 1.89)  
NNH = 100 

HR = 1.23 (1.02 to 1.50)  
NNH = 167 

RR = 1.45 
NNH = 101 

Any cause of death HR = 0.89 (0.80 to 0.99)  
NNT = 132 

RR = 0.88 (0.77 to 1.00) 
nonsignificant 

HR = 0.92 (0.83 to 1.01) 
nonsignificant 

HR = 0.85 (0.70 to 1.02) 
nonsignificant 

CI = confidence interval; HR = hazard ratio; NNH = number needed to treat for a specific time to cause an adverse event; NNT = number needed to treat 
for a specific time to prevent an outcome; RR = relative risk. 

Table adapted from Gutierrez et al,34 using information from the main randomized controlled trials of each drug.152-155 
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7.7. AF ETIOLOGY AND TREATMENT IN OLDER VERSUS YOUNGER ADULTS 

AF is a heterogeneous condition, with significant differences in its epidemiology, 

pathogenesis, clinical presentation and management across age groups, as shown in Table 

7.3, adapted from Sankaranarayanan et al.160 Older patients are more likely to have an 

abnormal substrate and present at an advanced stage with atypical symptoms and associated 

comorbidities. The important differences between AF in younger and older adults necessitate 

clearly defined diagnostic and targeted management strategies to relieve symptoms as well as 

to prevent complications. 

 

Table 7.3. Common differences between AF in the young versus elderly 

 AF in the young AF in elderly patients 
Causes (i) Idiopathic (i) Ischemic heart disease 
 (ii) Genetic (ii) Heart failure 
 (iii) Alcohol, smoking (iii) Valvular heart disease 
 (iv) Personality traits (iv) Hypertension 
 (v) Body mass index (v) Cardiomyopathies 
 (vi) Endurance sports (vi) Hyperthyroidism 
 (vii) Cardiac pathologies (vii) Secondary causes such as post 

operative, infection, pulmonary 
embolism 

 (viii) Endocrine disorders (viii) Idiopathic 
Pathogenesis  Triggers/pulmonary vein 

Repetitive activity  
Substrate/atrial abnormalities  

Pulmonary vein repetitive activity  
Atrial Abnormalities  

Clinical features Usually typical symptoms Atypical symptoms or asymptomatic 
Management Rhythm control preferred 

Thromboprophylaxis usually 
not required unless based on 
CHADS2VASC 

Rate control preferred 
Thromboprophylaxis usually required 
unless contraindicated 

 

A study using Medicare data (age ≥ 65) reports race- and sex-related differences in 

care for newly diagnosed with AF. Females were less likely to receive oral anticoagulation 

compared to males, and blacks and Hispanics were less likely to receive oral anticoagulation 

compared to whites.161 Possible explanations include racial differences in access, patient 

preferences, treatment bias, and unmeasured clinical characteristics. This study uses data from 

2010-2011, and therefore most patients were prescribed warfarin instead of DOACs. It is 

unknown if these differences still exist in Medicare beneficiaries since the uptick in DOAC 

prescription.  
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7.8. REFERRAL TO CARDIOLOGY PROVIDERS 

The treatment of nonvalvular AF should be individualized to each patient's condition, 

which can change over time. Referral to a cardiologist is recommended for patients with 

complex cardiac disease; those who cannot tolerate AF despite rate control; those who need 

rhythm control, require ablation therapy, or may benefit from surgical treatment; and those 

who need a pacemaker or defibrillator because of another rhythm abnormality.34, 35, 140 Reports 

suggest cardiology providers are more likely to prescribe oral anticoagulants compared with 

primary care providers,162-165 and this possibly results in a lower risk of stroke among patients 

who are managed by cardiology specialists.163 
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8. RURAL CARDIOVACULAR DISPARITIES IN THE UNITED 

STATES  
There are nearly 60 million (19% of the population) people living in rural areas 

according to the US Census Bureau. Those in rural areas have higher rates of adverse 

cardiovascular risk factors such as cigarette smoking, hypertension, diabetes, and obesity.26-28 

There are known rural vs. urban disparities in cardiovascular disease (CVD) in the US, such 

as a 40% higher heart disease prevalence in rural areas and higher risk of stroke29, 30 although 

it is thought that these CVD disparities are driven mainly by race and socioeconomic status.166 

Additionally, the life expectancy gap is widening between rural and urban areas; in 2009 it 

was 79.1 years in metropolitan areas, as compared with 76.7 years in rural areas.167 In the next 

few sections we will discuss rural health disparities, and what evidence, if any, exists 

regarding rural disparities in AF treatment and outcomes. 

 

8.1. RURALITY AND HEALTH 

Rural beneficiaries make up nearly 19% of the overall US population and nearly 25% 

of the Medicare population.168 Health disparities between rural and urban residents are 

widespread and both rural providers and patients face specific challenges with health and 

health care delivery. As the US becomes increasingly urbanized, there is growing concern that 

rural areas are at risk of falling even farther behind on health metrics.168, 169 Rural 

communities face particular challenges in recruiting and sustaining an adequate health care 

workforce, and rural hospitals tend to have higher financial strain and slimmer margins. Low 

volumes, hospital market consolidation, and resulting financial pressures threaten many rural 

hospitals with closure, which could reduce access to care even further.170 Understanding these 

patterns will be critical to ensuring that the rural-urban gaps do not widen even further.  

Changes in Medicare’s payment landscape have also made research on rurality 

increasingly important.171 As hospitals, health plans, and providers are increasingly being held 

accountable for quality performance, patient outcomes, and efficiency of care under a variety 

of value-based payment programs and alternative payment models, the degree to which 

differences in context may impact performance is a critical question. A number of 

organizations, including the National Advisory Committee on Rural Health, the National 

Academy of Medicine (formerly Institute of Medicine), and the National Quality Forum, have 

recently issued reports suggesting that rurality may be an important element that should be 

addressed in the design and implementation of Medicare payment and policy changes.169  
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8.2. AF DIAGNOSIS IN RURAL POPULATIONS IN THE UNITED STATES 

There is little information regarding AF diagnosis in rural populations in the US. 

Figure 8.1 depicts a county-coded map of AF hospitalizations in the US Medicare population, 

and we see a higher concentration in the southeast section of the US, with a distribution 

similar to maps of the US depicting the high concentration of strokes in the “stroke-belt” 

region. However, this map is only accurate to a county-level and does not show rural / urban 

status at the individual level. In fact, very little research has been conducted looking at 

patient-level rural / urban AF diagnosis prevalence in the US.  

 

 
Figure 8.1. Atrial fibrillation rates for Medicare beneficiaries by county-level, 2009-2014.  
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8.3. RURAL DISPARITIES IN AF OUTCOMES 

Few research studies have been conducted regarding rural vs. urban disparities in 

outcomes in AF patients in the US. A recent paper showed in-hospital mortality of AF 

patients is higher in rural hospitals than in urban hospitals, and these results persisted across 

sex, race, and region.172 However, this study looks at the hospital location rather than the 

patient location, although one could say an urban patient is not as likely to be admitted to a 

rural hospital. Furthermore, this paper does not take into account distance to clinic, prior 

treatment such as anticoagulation, patient socioeconomic status, insurance, nor does it report 

other outcomes such as stroke. No research has been conducted looking at AF-related 

outcomes by individual-level geography in the US. 

 

8.4. RURAL DISPARITIES IN AF TREATMENT 

 Individuals with AF have a 5-fold increased risk of stroke compared to those without AF 

and therefore the mainstay of stroke prevention in AF is the initiation and maintenance of 

anticoagulant therapies.8 In regards to current recommended oral anticoagulants, the DOACs 

have fewer drug interactions, more predictable pharmacological profiles, an absence of major 

dietary effects, and a reduced risk of intracranial bleeding compared with warfarin.35 

Currently, DOACs account for >50% of anticoagulants prescribed for AF patients, and are 

associated with a higher percentage of AF patients receiving these recommended 

anticoagulant therapies.173, 174 Past studies have shown that underuse of warfarin is common 

for Medicare beneficiaries,175 and that elderly rural patients with AF received warfarin less 

frequently than elderly urban patients despite having a similar high-risk profile.176 Due to the 

individualized approaches to INR monitoring needed for warfarin patients, along with 

numerous limitations, it has been suggested that rural patients should be considered for 

DOACs instead.177 Figure 8.2 from Hernandez et. al 178 shows the regional variation in 

anticoagulant use in Medicare patients in 2013-2014. The adjusted probability of receiving 

any anticoagulation (warfarin or DOACs) is the top panel, and the probability of receiving a 

DOAC is the bottom panel. Any anticoagulant use was lowest in the south, and DOAC use 

was lowest in the northern US. To date, no studies have looked at DOAC treatment by rural 

status in the US. 
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Figure 8.2. Regional variation in anticoagulant use in Medicare patients in 2013-2014. 
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8.5. RURAL DISPARITIES IN CARDIOLOGY INVOLVEMENT 

 Reports suggest cardiology providers are more likely to prescribe oral anticoagulants 

compared with primary care providers,162-165 and this possibly results in a lower risk of stroke 

among patients who are managed by cardiology specialists.163 Rural residents are more likely 

to be seen by a primary care doctor versus a cardiologist, which could be one reason for the 

underutilization of anticoagulants in elderly rural patients.176 Furthermore, since early 

cardiology involvement after AF diagnosis increases the use of oral anticoagulants, this leads 

to a lower risk of stroke in patients seen by cardiology.163 Therefore, early cardiology 

involvement in rural AF patients may increase access to oral anticoagulant therapy and reduce 

future stroke events in this high-risk population. There is little known regarding 

anticoagulation rates in AF patients in rural vs. urban areas, and nothing published addressing 

DOAC prescriptions in rural areas. A careful examination of anticoagulant use in rural vs. 

urban areas, taking into account provider specialty is needed. Differences in the rate of 

anticoagulation and/or DOAC use may identify an area of practice improvement for providers 

to reduce the burden of stroke in this high-risk group. 

 

8.6. DEFINING A RURAL MEDICARE POPULATION 

We captured beneficiary zip code at the time of AF diagnosis. We mapped zip codes 

to Rural-Urban Communing Area (RUCA) codes, which are approximation codes developed 

by the University of Washington Research179 and commonly used to define rural and urban 

areas.180 RUCA codes combine standard Census definitions with area commuting behaviors to 

capture functional and work relationships between regions.  

This rural-urban taxonomy offered a more precise definition of “rural” relative to 

definitions based on population size alone, and has been used in other studies.169, 

181 Furthermore, it offered a more granular measure of rurality than county/-based measures 

such as metropolitan statistical areas, which are common measures in many claims databases. 

There are several ways in which rural and urban categories can be defined, and the Rural 

Health Research Center gives a number of suggested ways to categorize the data. We used a 

4- category classification to access the rurality of beneficiaries:  urban (RUCA codes 1-3, 4.1, 

5.1, 7.1, 8.1, 10.1), large rural (RUCA codes 4.0, 4.2, 5.0, 5.2, 6.0, 6.1), small rural (RUCA 

codes 7.0, 7.2, 7.3, 7.4, 8.0, 8.2, 8.3, 8.4, 9.0, 9.1, 9.2) and isolated (RUCA codes 10, 10.2, 

10.3, 10.4, 10.5, 10.6). Figure 8.3 depicts an example how these 4 categories are distributed 

in the upper Midwest. The US population breakdown of these 4 categories across the entire 

Medicare population is as follows: urban = 81%; Large rural = 9.6%; small rural=5.2%; 

isolated = 4.2%.  
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Figure 8.3. An example figure of the 4-level urban / rural classification using the Rural 

Health Research Center classification scheme based on ZIP codes.  
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9. PROTEOMICS 

Cardiovascular diseases are the leading causes of death and hospitalization globally, 

dominated by coronary artery disease, HF, AF, and stroke.182 Profiling of plasma proteins 

has been crucial for decision making in cardiovascular medicine since the introduction of 

many immunoassays in the 1980s, most prominently for the diagnosis of MI (creatine 

kinase, troponins) and HF (natriuretic peptides) and for cardiovascular risk stratification 

(lipoproteins). However, each of these markers suffers from limitations in diagnostic or 

predictive accuracy. Systematic assessment of a large portion of the entire range of proteins 

measurable in plasma (the plasma proteome) provides opportunities for unbiased discovery 

of novel markers to improve accuracy, generate pathophysiological insights, and identify 

therapeutic targets. 

 

9.1. PROTEOMIC PROFILING 

Proteins are vital parts of living organisms, with many functions. Although the 

genome remains relatively the same, the levels of proteins within various parts of the body 

are constantly changing in response to both internal and external factors (e.g., diet, aging, 

drug treatments, microorganisms, stress, etc.). Technological advances have enabled the 

identification of ever increasing numbers of proteins, along with their composition, structure 

and activity. Systematic profiling of a larger portion of the plasma proteome may provide 

opportunities for unbiased discovery of novel markers to improve diagnostic or predictive 

accuracy. In addition, proteomic profiling may inform pathophysiological understanding and 

point to novel therapeutic targets under the guiding hypothesis that different diseases and 

conditions each have novel protein profiles, including in the early stages of onset.  

 

 

Figure 9.1. Ten proteins constitute ~ 90% of the plasma protein mass 
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The human plasma proteome constitutes a complex mixture of proteins derived from 

all tissues, which makes plasma an attractive medium for clinical analysis as a dynamic 

representation of the molecular states of diverse systems.183 A wide range of proteins can 

thus be detected in plasma, including carrier proteins such as albumin, immune system 

effectors including immunoglobulins and complement factors, hemostatic factors, tissue 

messengers such as natriuretic peptides and interleukins, and tissue leakage products such as 

troponin and creatine kinase. This diversity in plasma protein function is accompanied by a 

diversity in protein abundance, with reference intervals for known plasma proteins in 

healthy subjects spanning >11 orders of magnitude.183 

 

9.2. PROTEOMIC PROFILING FOR AF 

Proteomic profiling enables systematic high-throughput analysis of proteins and may 

substantially accelerate novel biomarker discovery. Relatively unbiased proteomics 

approaches have the advantage of allowing simultaneous screening for large numbers of 

proteins involved in different biological pathways. Recently, 3 longitudinal cohort studies 

have reported proteomic profiling and the risk of new-onset AF. 12, 23, 184 The first study used 

a proximity extension assay (Olink Proseek Multiplex Cardiovascular 96 x 96 kit) to screen 

92 proteins in 2 community-based cohorts of older adults in Sweden with a total of 271 

incident AF cases in 1703 participants over a median follow-up of around 9 years.23  They 

identified 7 proteins that were associated with incident AF after adjustment for age and sex. 

Two proteins, NT-proBNP and IL-6, remained significantly associated with incident AF 

after multivariable adjustment and Bonferroni correction.23 The second cohort study used a 

community-based sample from Italy and focused on 75 inflammatory marker proteins 

identified from proximity extension assays (the Olink Proseek Multiplex CVD I 96 x 96 and 

the Proseek Multiple Inflammation I 96 x 96 kits).12 There were 117 new AF cases among 

880 participants during a 20-year follow-up. The Italian study reported the results of 75 

inflammatory biomarkers including FGF-23, fatty acid binding protein 4, and IL-6, none of 

which were associated with AF after adjustment for age and sex.12 The third study, from 

Framingham, used single-stranded DNA-based aptamers as affinity reagents (measured by 

the SOMAscan platform) to screen for 1373 proteins.184 This study included 1885 

participants with 349 incident AF cases during a mean follow-up of 18 years. In this study, 

Ko et al. identified 8 proteins associated with AF after adjustment for age and sex, and after 

further adjustment for AF risk factors, 2 proteins (ADAMTS13 and NT-proBNP) remained 

associated with new-onset AF.184   The biological functions of the 8 proteins associated with 

AF after age and sex adjustment are listed in Table 9.1.  
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Table 9.1. Biological functions of the 8 proteins associated with the risk of incident AF in 
Framingham 

Protein Function 
NCAM-120 Immunoglobulin-like glycoprotein. Activates fibroblast growth factor 

receptor and induces neurite outgrowth. Over-expression in 
neuroblastoma cells. 

WFKN2 (WFIKKN2) Multivalent protease-inhibitor. Inhibits growth differentiation factor 
and myostatin. 

TrkC (Ntrk3) One of tropomyosin receptor kinases that bind to neurotrophin-3, 
which in turn induces growth and differentiation of neuronal cells. 
Mutations in the gene associated with medulloblastoma, 
neuroblastoma, breast cancer, and other 
cancers. 

EGFR (ERBB1) Transmembrane glycoprotein kinase that acts as a receptor for 
epidermal growth factor. Mutations in the gene associated with 
different types of cancers. 

ADAMTS13 
(ATS13) 

Multivalent protein that cleaves von Willebrand Factor. Mutations in 
the gene are associated with thrombotic thrombocytopenic purpura. 

Angiopoietin-2 Inhibits angiopoietin-1 and endothelial TEK tyrosine kinase, thereby 
regulating angiogenesis and endothelial function. 

NT-proBNP Secreted by ventricular myocardium upon myocardial stretching and 
causes natriuresis, diuresis, vasodilation, and inhibition of the renin-
angiotensin- aldosterone system. 

BMPR1A Transmembrane serine/threonine kinase receptor that binds to the 
members of the TGF-β superfamily. Mutations in the gene are 
associated with pulmonary arterial hypertension and hereditary 
hemorrhagic telangiectasia. 

ADAMTS13: a disintegrin and metalloproteinase with thrombospondin motifs 13; BMPR1A: bone 
morphogenetic protein receptor type-1A; CI: confidence interval; EGFR: epidermal growth factor 
receptor; HR: hazard ratio; NCAM-120: Neural cell adhesion molecule 1, 120 kDa isoform; NT-proBNP: 
N-terminal pro-brain natriuretic peptide; TrkC: tropomyosin receptor kinase C; WFKN2: WAP, Kazal, 
immunoglobulin, Kunitz and NTR domain-containing protein 2 

 

 

NT-proBNP, a marker of ventricular remodeling, has been previously reported to be 

associated with incident AF by multiple prospective population-based studies.18-23 

ADAMTS13 is a von Willebrand factor protease, and its deficiency is found in thrombotic 

thrombocytopenic purpura. Previous case-control studies have shown that lower 

ADAMTS13 protein level was associated with chronic and paroxysmal AF.185 Additionally, 

higher von Willebrand factor / ADAMTS13 ratio was significantly associated with chronic 

AF and left arterial remodeling,185 and higher von Willebrand factor / ADAMTS13 ratio 

drawn 24 after cardioversion was associated with higher risk of AF recurrence.186  
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9.3. AN ASSAY FOR PLASMA PROTEOME 

Proteomic array platforms have been developed to improve diagnostics for conditions 

with large unmet clinical needs, such as oncology, renal disease, and infections. Recently, a 

modified aptamer-based technology, SOMAscan, was developed by SomaLogic as a highly 

sensitive and multiplexed proteomics platform.187-189 SOMAscan is based on Slow Off-rate 

Modified Aptamers (SOMAmers) that recognize specific conformational epitopes of natural 

3D proteins with high sensitivity and specificity.190 The SOMAscan assay is a hypothesis-

free protein biomarker discovery tool that currently allows for the measurement of ~5,000 

different proteins in an expedited fashion compared to previously existing technology, 

making it ideally suited for identifying clinically relevant biomarkers in a large number of 

samples.  

A recent proteomic analysis using SomaScan among patients with stable coronary 

disease identified a protein-based risk score that outperformed traditional risk scores in 

predicting adverse cardiovascular outcomes.191 Analysis of paired samples demonstrated that 

the protein-based risk score changed more than traditional CV risk markers among 

participants approaching new CV events.191 In addition, the protein-based risk score 

generated using the follow-up sample was a stronger predictor of subsequent outcomes than 

the preceding baseline risk score. In addition to cardiovascular disease, validated protein 

biomarkers based on SOMAscan technology for chronological age, active pulmonary 

tuberculosis, Duchenne muscular dystrophy, and malignant pleural mesothelioma have also 

been reported.192, 193 Whereas genomics are particularly useful for predicting lifelong risk, 

proteomics is a more dynamic approach to risk profiling that incorporates environmental and 

genetic influences. SOMAscan was capable of detecting dynamic changes in proteins over 

time as patients with latent tuberculosis approached conversion to active disease.194  
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10. THE PREDICTION OF ATRIAL FIBRILLATION 
With the aging of the population, the incidence and prevalence of AF are expected to 

grow in future decades as well as the burden from its associated complications.195 The 

growing public health significance of AF has spurred efforts to identify individuals at higher 

risk of developing this arrhythmia and its complications. Identifying individuals more likely 

to develop AF could facilitate targeting of preventive interventions and screening programs, 

while risk stratification schemes in AF patients can assist clinicians and patients in treatment 

decisions. 

10.1. AVAILABLE MODELS FOR PREDICTION OF INCIDENT AF 

Over the last few years, several risk scores and equations for the prediction of AF in 

the general population have been developed, published, and validated. Table 10.1 enumerates 

in chronological order the published scores, the variables included, the characteristics of the 

derivation and validation samples, if any, and the performance of the model (discrimination 

and calibration). Discrimination refers to the ability of the model to separate subjects who 

develop the outcome from those who do not, while calibration refers to the agreement 

between observed outcomes and predictions.196 
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Table 10.1. Risk scores and equations for the prediction of atrial fibrillation in the community 

Risk model Variables Derivation Performance Validation in external populations Performance 

FHS (10-year 
risk)85 

Age, sex, body mass 
index, systolic blood 
pressure, treatment for 
hypertension, PR interval, 
cardiac murmur, heart 
failure 

4764 participants, 
100% white, 55% 
women, 45–95 years of 
age, mean age 61 

C-statistic 
(95%CI): 0.78 
(0.76–0.80) 
χ2 = 4.2 (p = 0.09) 

AGES:197 4238 participants, 100% 
white, 
63% women, mean age 76 

C-statistic (95%CI): 0.67 (0.64, 0.71) 
Recalibrated χ2 = 16.2 (p = 0.06) 

    CHS: 197 5410 participants, 16% 
African-American, 84% white, 
60% women, 65 and older, mean 
age 75 

C-statistic (95%CI): 0.68 (0.66, 0.70) in whites, 
0.66 
(0.61, 0.71) in African Americans 
Recalibrated χ2 = 46.1 (p < 0.001) in whites and 
10.6 (p = 0.31) in African Americans 

    ARIC:51 14,546 participants, 27% 
African-American, 73% white, 
55% women, 45–64 years of age 

C-statistic: 0.68 overall, 0.69 in whites, 0.65 in 
African Americans 

    MESA:198 6663 participants, 38% 
white, 28% African-American, 
22% Hispanic,12% Chinese-
American, 53% women, 45–84 
years of age, mean age 62 

C-statistic (95%CI): 0.75 (0.72, 0.77) overall, 
0.75 
(0.72, 0.78) in whites, 0.74 (0.70, 0.78 in non-
whites χ2 = 57.4 (p < 0.001) overall, χ2 = 8.1 (p 
= 0.53) in whites, χ2 = 73.9 (p <0.001) in non-
whites 

ARIC (10-
year risk) 51 

Age, race, height, 
smoking, systolic blood 
pressure, treatment for 
hypertension, cardiac 
murmur, ECG-based left 
ventricular hypertrophy, 
ECG-based left atrial 
enlargement, diabetes, 
coronary heart disease, 
heart failure 

14,546 participants, 
27% African-American, 
73% white, 55% 
women, 45–64 years of 
age 

C-statistic: 0.78 
χ2 = 10.0 (p = 
0.35) 

None  
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WHS (10-
year risk)199 

Age, weight, height, 
systolic blood pressure, 
alcohol use, smoking 

19,940 participants, 
100% white, 100% 
women, median age 53 

C-statistic 
(95%CI): 0.72 
(0.68–0.75) 
χ2 = 8.1 (p = 0.43) 

None  

CHARGE-AF 
(5-year 
risk)10 

 18,556 participants, 
81% white, 19% 
African-American,57% 
women, 46–94 years of 
age, mean age 65 

C-statistic 
(95%CI): 0.77 
(0.75–0.78) 
χ2 = 9.3 (p = 0.41) 

AGES: 10 4469 participants, 100% 
white, 60% women, mean age 76 

C-statistic (95%CI): 0.66 (0.63, 0.70) 
Recalibrated χ2 = 12.6 (p = 0.18) 

    Rotterdam Study: 10 3203 
participants, 100% white, 59% 
women, mean age 72 

C-statistic (95%CI): 0.71 (0.66, 0.75) 
Recalibrated χ2 = 16.4 (p = 0.06) 

    EPIC-Norfolk:200 24,020 
participants, 
>99% white, 55% women, 39–79 
years of age, mean age 59 

C-statistic (95%CI): 0.81 (0.75, 0.85) 
χ2 = 142.2 (p < 0.001) 
Recalibrated χ2 = 13.3 (p = 0.15) 

    MESA198 6663 participants, 38% 
white, 
28% African-American, 22% 
Hispanic, 
12% Chinese-American, 53% 
women, 45–84 years of age, mean 
age 62 

C-statistic (95%CI): 0.78 (0.74, 0.81) overall, 
0.76 
(0.72, 0.81) in whites, 0.78 (0.72, 0.83 in non-
whites χ2 = 25.6 (p = 0.002) overall, χ2 = 14.6 
(p = 0.10) in whites, χ2 = 12.3 (p = 0.20) in non-
whites 

Ages: Age, Gene/Environment Susceptibility-Reykjavik Study; ARIC: Atherosclerosis Risk in Communities Study; CHARGE-AF: Cohorts for Aging and Research in 
Genomic Epidemiology—Atrial Fibrillation; CHS: Cardiovascular Health Study; CI: Confidence interval; EPIC: European Prospective Investigation into Cancer and 
Nutrition; FHS: Framingham Heart Study; MESA: Multi-Ethnic Study of Atherosclerosis; WHS: Women’s Health Study 
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The first published risk score was derived in 4764 mostly white participants in the 

FHS, and used basic demographic and clinical variables to predict the 10-year risk of AF.5 

The discrimination of the model, assessed with the C- statistic, was good (0.78, 95% 

confidence interval (CI) 0.76, 0.80). This score was subsequently validated in four different 

cohorts: the Age, Gene/Environment Susceptibility- Reykjavik (AGES) study, the ARIC 

study, CHS, and the Multi-Ethnic Study of Atherosclerosis (MESA).51, 197, 198  In these 

external cohorts, the discrimination of the model was acceptable, ranging from 0.67 in 

African American participants in CHS to 0.75 in the racially diverse MESA cohort. In most 

populations, however, the model required recalibration to adjust the predicted probabilities to 

the actual risk of AF in the different cohorts. Independently, the ARIC study also developed a 

10-year risk score for AF prediction among 14,546 study participants 45–64 years of age.51 In 

contrast to the FHS AF risk score, the ARIC model was based on a bi-racial cohort, including 

whites and African Americans. Given the well- established lower risk of AF among non-

whites compared to whites,9, 52 attention to race in AF prediction is relevant and the 

application of scores developed in a specific racial/ethnic group to another should be done 

carefully. The discrimination of the ARIC model was similar to the FHS AF risk score (C-

statistic 0.78). The ARIC model, however, has not been applied in any external cohorts and, 

therefore, its validity outside the ARIC population is uncertain. More recently, the Women’s 

Health Study (WHS), a cohort of mostly white, healthy women, derived and validated a 10-

year model among 19,940 participants.199 The model had good discrimination (C-statistic 

0.72) and excellent calibration in the WHS cohort, but has not been validated in external 

populations and its applicability to men is unknown. 

The FHS, ARIC, and WHS risk scores and predictive models were derived in single 

cohorts, and restricted in terms of race/ethnicity (FHS), age (ARIC), or sex (WHS), which 

may reduce generalizability to other populations. To address this limitation, the Cohorts for 

Aging and Research in Genomic Epidemiology (CHARGE)-AF consortium derived a new 

predictive model pooling data from 18,556 participants in the FHS, CHS and ARIC studies to 

predict the 5-year risk of AF. This model was then validated in 7,672 participants from the 

AGES and Rotterdam studies, showing acceptable discrimination.10 The CHARGE-AF 

model, which included demographic and clinical information readily available in clinical 

settings, had good discrimination in the derivation cohorts (C-statistic 0.77, 95%CI 0.75, 

0.78) and acceptable in AGES (0.66, 95% 0.63, 0.70) and the Rotterdam study (0.71, 95% 

0.66, 0.75).10 The CHARGE-AF risk model has been validated in two additional cohorts. In 

the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk study, the 

model had excellent discrimination (C-statistic 0.81, 95% 0.75, 0.85) but it overestimated the 
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risk of AF, requiring recalibration.200 Similarly, the CHARGE-AF model had good 

discrimination in the MESA cohort (C-statistic 0.78, 95%CI 0.74, 0.81), but also 

overestimated AF risk, particularly among those with the highest observed risk. 

Finally, some studies have suggested that scores derived for prediction of stroke in 

patients with AF, such as the CHADS2 and CHA2DS2-VASc, could be also applied in AF 

prediction.201, 202 In fact, most of the elements included in these scores (age, diabetes, 

hypertension, heart failure, vascular disease) are well established risk factors for AF. 

However, these scores perform worse than AF-specific predictive models (as assessed with c-

statistics, for example) and are not adequately calibrated to predict AF, failing to provide 

estimates of actual predicted AF risk over a particular time period.198 

 

10.2. AF PREDICTION BEYOND CLINICAL VARIABLES 

Extensions of these models have evaluated whether information on blood biomarkers, 

echocardiographic and ECG measurements, or genetic variants would improve prediction of 

AF beyond the information provided by clinical variables. 

Blood biomarkers 

The predictive value of a diverse array of circulating biomarkers, including markers 

of inflammation (high-sensitivity C-reactive protein, fibrinogen),18, 81, 82 atrial overload (atrial 

and B-type natriuretic peptides),18, 81, 82 myocardial ischemia (high- sensitivity troponin T and 

I),11, 16, 81 cardiac fibrosis (galectin-3),83, 84 and others (soluble ST2, growth differentiation 

factor-15),11 has been assessed in the literature. Of these, only natriuretic peptides have 

consistently demonstrated added predictive value beyond information on clinical variables 

across multiple populations. For instance, in the CHARGE- AF pooled analysis, which 

included five separate cohorts, B-type natriuretic peptides but not C-reactive protein helped in 

risk reclassification of individuals, as measured by the net reclassification index (NRI).18 

Similar observations have been made in the FHS,19 the Malmö Diet and Cancer Study,82 the 

MESA cohort,198 and in the Gutenberg Health Study.81 

Electrocardiography 

Some of the existing AF risk scores and models include ECG- derived variables, such 

as the PR interval in the FHS AF score, the ARIC score, and the CHARGE-AF model, or 

ECG-based left ventricular hypertrophy in the ARIC score and the CHARGE-AF model.10, 51, 

85 Their added predictive value beyond clinical variables, however, is only marginal. Other 
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ECG measurements considered as potential predictors of AF include P wave indices. A 

pooled analysis of the FHS and ARIC cohorts found that even though P wave indices such as 

P wave duration, area, and terminal force were associated with the incidence of AF, their 

contribution to risk prediction on top of established risk factors was minimal.88 However, a 

recent analysis adding abnormal P wave axis to the CHARGE-AF score modestly improved 

the C-statistic from 0.719 to 0.722 in ARIC.89 Information on atrial ectopy assessed through 

longer term heart rhythm monitoring could also improve AF prediction. An analysis of 1260 

participants in the CHS cohort found that information on premature atrial contractions count 

from 24-hour Holter monitoring led to clinically significant improvements in AF prediction 

beyond the information provided by the FHS AF score (C-statistic of 0.65 in the FHS AF 

score alone vs 0.72 after adding atrial ectopy information to the statistical model).90 

Imaging 

Information on cardiac structure and function obtained from echocardiographic 

studies, such as left atrial diameter, left ventricular function, left ventricular mass, or left 

ventricular wall thickness, have not demonstrated benefit in the prediction of AF once 

demographic and clinical information is considered.85, 91 Whether more novel measures of 

echocardiography-based left atrial function (e.g. left atrial strain by speckle tracking, tissue 

Doppler imaging-derived atrial conduction time)203, 204 or other cardiac imaging modalities 

(e.g. periatrial epicardial adipose tissue from computerized tomography)205 can be used for 

AF prediction remains to be determined. 

Genetics 

 Recent research has identified several common genetic variants associated 

with the risk of AF.95 The added value of information on these genetic variants to predict AF 

has been explored in at least two different populations. The WHS cohort found that a genetic 

risk score, calculated with information on 12 single nucleotide polymorphisms previously 

associated with AF, significantly improved prediction, measured with change in C-statistic 

and continuous NRI, beyond a clinical risk score in approximately 20,000 women: the C- 

statistic increased from 0.72 to 0.74, while the continuous NRI was 0.49 (95%CI 0.30– 

0.67).199 In a similar analysis among 27,471 participants of the Malmö Diet and Cancer Study, 

however, a genetic risk score also based on 12 single nucleotide polymorphisms only 

minimally improved risk prediction (C-statistic changed from 0.735 to 0.738).206 Notably, 

none of these analyses considered information on natriuretic peptides, which are possibly the 

strongest biomarkers for AF risk. Future studies should evaluate whether genetic information 
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improves our ability to predict AF on top of clinical variables and established AF circulating 

biomarkers. 

 

10.3. APPLICATIONS OF MODELS FOR AF PREDICTION 

Available risk scores, though imperfect, may play a role in identifying individuals at 

higher risk of developing AF, particularly the externally validated FHS and CHARGE-AF 

models. A follow-up question is whether this information has any clinical or public health 

implications. We think of two major areas in which these scores could be useful: as aids for 

selection of high-risk participants to screening programs and primary prevention trials, and as 

benchmarks for the testing of potential novel biomarkers of AF risk. 

The interest in developing screening programs for identification of asymptomatic AF 

is growing.207 AF is responsible for a substantial proportion of strokes, and in a number of 

cases, stroke is the first clinical manifestation of AF.208 Identifying individuals with 

asymptomatic AF offers a unique preventive opportunity if AF diagnosis is followed by 

adequate antithrombotic therapy. Restricting screening programs to individuals more likely to 

have AF—as identified by one of the validated risk scores—would make those programs 

more cost-effective. A similar rationale can be applied to the selection of participants for 

primary prevention trials of AF. Currently, there are no established interventions for the 

primary prevention of AF. Trials testing such interventions will have to be conducted in 

subgroups at higher risk of AF, which will lead to more efficient designs. 

Validated risk scores, particularly those including circulating natriuretic peptides as 

predictors, can also be used as benchmarks against which novel biomarkers purported to 

improve AF prediction can be compared. In this era of “precision medicine,” rigorous 

comparisons with extensively validated risk scores are needed to avoid the hype that 

frequently surrounds the discovery of novel markers of disease. For example, as summarized 

above, adequate testing against a model including natriuretic peptides (BNP or NT-proBNP) 

showed that inflammatory markers such as CRP, despite being associated with increased risk 

of AF in observational studies, are not particularly useful in AF prediction.18, 198 
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11. STUDY DESIGNS AND DATA COLLECTION 
Manuscript 1 and 2 utilized data from the ARIC study to study the relation of 

proteomics and incident AF and then to also develop a risk prediction score for incident AF in 

an elderly population. Manuscripts 3 and 4 used Medicare data to examine treatment and 

outcomes in rural versus urban AF patients 

 

11.1. THE ARIC STUDY  

The ARIC study is a prospective epidemiologic study of CVD conducted in four US 

communities: Forsyth County, NC; the city of Jackson, MS; eight northwestern suburbs of 

Minneapolis, MN; and Washington County, MD. The ARIC study has both cohort and 

community surveillance components and was designed to investigate the etiology and natural 

history of atherosclerosis, the etiology of clinical atherosclerotic disease and differences in 

cardiovascular risk factors, medical care and disease by race, sex, location and date.209 The 

cohort component of the ARIC Study was designed to identify characteristics associated with 

the development and progression of clinical atherosclerosis as measured by carotid B-mode 

ultrasonography, to identify risk factors associated with incident atherosclerotic events and to 

measure variation in risk factors over time.210 

Study design and population  

The ARIC Study recruited a prospective cohort of mainly white and black adults 

between 45 and 64 years of age at baseline, 1987 – 1989. Approximately 4,000 participants 

were selected from each of the 4 communities using community specific probability 

sampling; households were identified by area sampling in Forsyth County, NC, driver’s 

licenses or state identification cards were used in Jackson, MS, eligibility for jury duty (with 

driver’s license, voter registration cards or identification cards) were applied in Minneapolis, 

MN, and driver’s licenses or inclusion in a 1975 private county health census were utilized in 

Washington County, MD. Regardless of the community, all age-eligible residents of an 

identified household were selected as potential participants. Only blacks were recruited from 

the city of Jackson, MS; the other sites included both whites and blacks although < 5% of the 

population in Minneapolis, MN, and Washington County, MD, were black. A total of 15,792 

participants enrolled at baseline (8710 women, 4314 blacks). Participants had a clinical exam 

at baseline and the following visits have been completed thus far: visit 2 (1990-92), visit 3 

(1993-95), visit 4 (1996-1998), visit 5 (2011-2013) and visit 6 (2016-2017). Annual telephone 

calls are used to maintain contact with participants and identify medical events and death 
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throughout follow-up, and these calls have been conducted semi-annually since 2012. Follow-

up is currently complete through December 31, 2018. 

Data Collection 

Between 1987 and 1989 baseline data were collected; the baseline exam consisted of 

a home interview comprised of questionnaires about cardiovascular risk factors, 

socioeconomic status, and family medical history as well as a clinical examination. The 

baseline clinical exam and each of the follow-up exams consisted of anthropometry, sitting 

blood pressure, venipuncture, ECG, ultrasound, physical exam and interviewer-administered 

questionnaires on medical history, health behaviors (alcohol and tobacco use) and social 

characteristics. Additional data were collected at some exams; for example, certain 

biomarkers were measured at select visits (NT-proBNP was measured at visits 2, 4, 5, 6). 

Annual telephone calls continue to maintain contact with participants and to identify any 

cardiovascular events, hospitalizations and death. Each center’s institution review board 

approved the study and all participants provided written informed consent.209 For the purposes 

of this dissertation, the baseline visit for manuscripts 2 and 3 is visit 5 (2011-2013). 

Proteomics data was measured using visit 5 samples from the entire cohort. Risk factors and 

covariates were also measured at visit 5.  

Ascertainment of AF  

Utilizing ARIC data, prevalent AF was identified by baseline ECG. Incident AF was 

identified by ECG during follow-up study visits, hospital discharge codes and death 

certificates.9 Standard supine 12-lead resting ECGs were recorded at least one hour after 

consumption of caffeine or tobacco and transmitted to the ARIC ECG Reading Center for 

coding and interpretation. The baseline ECG had a two-minute rhythm strip and subsequent 

ECGs had a 10-second reading. ECGs automatically coded as AF were visually checked by a 

trained cardiologist to confirm the diagnosis.211 All ECGs were recorded using MAC PC 

Personal Cardiographs (Marquette Electronics, Inc., Milwaukee, WI). Hospitalizations were 

identified by annual telephone calls to participants and through surveillance of local hospital 

discharges in each of the ARIC communities.209, 210 A hospital discharge code, ICD-9-CM 

code of 427.3, 427.31 or 427.32, in any position, indicates AF. Starting in 2015, an ICD-10-

CM code of I48 was used to ascertain AF. AF hospitalization diagnoses occurring 

simultaneously with heart revascularization surgery or other cardiac surgery involving heart 

valves or septa, without evidence of AF in subsequent hospitalizations or study examinations 

were excluded. AF was identified though death certificates with an ICD-10 code I48 or ICD-9 
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code 427.3x as the underlying cause of death. The AF incidence date was defined as the first 

documented occurrence of AF on ECG, hospital discharge diagnosis or death certificate.  

In ARIC, two analyses were performed to determine the validity of the diagnosis of 

incident AF based on hospital discharge diagnosis codes.9 First, a sample of 125 hospital 

discharge summaries with a first ICD-9 code for AF and ECGs performed during that 

hospitalization were reviewed by a study physician; the positive predictive value (PPV) for 

AF was 89% and for incident AF was 62%.9 Second, a trained abstractor used information 

routinely collected for stroke ascertainment to complete a form with data from the complete 

medical record. The form includes information on the presence of AF during four weeks prior 

to the stroke hospitalization. Of 161 participants with AF recorded in the stroke abstraction 

form, 135 had an ICD code for AF (sensitivity = 84%) and of 1385 participants without AF in 

the abstraction form, 34 had an ICD code for AF (specificity = 98%).9 The sensitivity of using 

hospital discharge codes to identify AF was similar in CHS; hospital discharge diagnoses 

codes (ICD-9 code of 427.3x) correctly identified 29 (70.7%) of the 41 participants with AF 

or AFL on at least one ECG.44 A systematic review of algorithms used in administrative data 

to identify AF patients reported a median PPV of 89% (range: 70% - 96%) and a median 

sensitivity of 79% (range: 57% - 95%). 

 

11.2. MEDICARE  

Medicare is a health insurance program for 1) people age 65 or older, 2) people under 

the age of 65 with certain disabilities and 3) people of all ages with End-Stage Renal Disease. 

Available plans in Medicare include Part A, which is hospital insurance, Part B, which is 

medical insurance, and Part D, which is prescription drug coverage. The US Centers for 

Medicare and Medicaid Services (CMS) compiles the Medicare datasets and creates 

standardized datasets of a 5% random sample, a 20% random sample, and the 100% sample.  

Data Collection 

We obtained research identifiable claims data for a nationally representative 20% 

sample of Medicare beneficiaries from 2011-2016.The data include inpatient, outpatient, and 

carrier files from January 1, 2011 to December 31, 2016. The inpatient files contained 

institutional claims for inpatient services covered under Medicare Part A. The outpatient files 

contained institutional claims for outpatient services covered under Medicare Part B. The 

carrier files contained noninstitutional physician claims for services covered under Medicare 

Part B. All of the files contained discharge or service dates and International Classification of 

Diseases, Clinical Modification, 9th and 10 edition (ICD-9-CM and ICD-10-CM) diagnosis 
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codes. Denominator files contained the beneficiary identifier, date of birth, sex, race, date of 

death (if applicable), ZIP codes, concurrent enrollment in Medicaid (a proxy for low 

economic status), and information about program eligibility and enrollment. Additionally, the 

Part D Drug Event and Characteristics files were used to assess anticoagulation prescription 

fills, along with cardiovascular and other medication use. These files contain information on 

drug name, therapeutic class, prescription fill date, dose, and number of days supplied.  

Medicare data contains a ZIP code for the beneficiary, which is not provided in most 

other claims databases. This allowed us to assess individual location and rurality. Other 

claims databases often provide only a hospital location or a variable for a Metropolitan 

Statistical Area, which are typically larger areas than ZIP codes.  

Ascertainment of AF 

This analysis included patients age 65+ with at least one inpatient claim for AF or 2 

outpatient claims for AF 7 to 365 days apart. AF claims were identified using International 

Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) diagnosis codes 

427.3, 427.31, and 427.32, and ICD-10-CM codes starting October 1, 2015 of I48.x in any 

position, which is a standard definition used in claims analysis.45, 212 The validity of ICD-9-

CM codes for the identification of AF has been well-established with a systematic review of 

studies showing a positive predicted value (PPV) of approximately 90% and a sensitivity of 

approximately 80%.213  We defined the diagnosis date as the earlier of 1) the earliest 

discharge date for an inpatient claims, or 2) the earliest service date of the outpatient or 

physician claim. Consistent with prior research, 2 outpatient claims were required to diagnose 

outpatient AF in order to minimize the impact of rule-out diagnosis and to improve 

specificity.45  

 Strengths and limitations of Medicare data 

Within the Medicare database, we will utilize variables from hospitalization records, 

outpatient visits, pharmacy prescription fills, and basic information on each beneficiary, 

including ZIP code. Additional strengths of the Medicare dataset are the large number of 

beneficiaries from all areas of the US, the availability of important health variables, and key 

characteristics of the beneficiaries.  

Limitations of using the Medicare data include that we are including only individuals 

age 65 and older, and we are also limiting the sample to those with exclusive stand-alone 

coverage so we can be sure we are capturing their medical events and prescription fills. 

Requiring stand-alone Part D enrollment reduces our sample size and also limits the dataset to 
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patients who, in general, have more comorbidities and a lower socioeconomic status 

compared to the entire sample.178 Additionally, we were only able to capture prescriptions that 

have been filled; we have no way to track prescribed drugs that are not filled. Finally, claims 

datasets have inherent limitations given they are created for billing purposes, and therefore 

may not capture all the characteristics and intricacies of a patient’s health status. 

 

 



47 
 

12. Manuscript 1 - Proteomics and the Risk of Incident Atrial 

Fibrillation in Older Adults: The Atherosclerosis Risk in 

Communities (ARIC) Study 

 

12.1. OVERVIEW  

Background – Plasma proteomic profiling may aid in the discovery of novel biomarkers 

upstream of the development of atrial fibrillation (AF) and has the potential to advance our 

understanding of disease mechanisms. Prior studies relating proteomic markers to incident AF 

have included limited numbers of proteins. We used data from the Atherosclerosis Risk in 

Communities (ARIC) study to examine the relationship between large-scale proteomics and 

incident AF in a cohort of older-aged black and white adults in the US. 

Methods –We quantified 4877 plasma proteins in ARIC participants at visit 5 (2011-2013) 

using an aptamer-based proteomic profiling platform. We used Cox proportional hazards 

models to assess the association between protein levels and incident AF and explored 

relationships of selected protein biomarkers using annotated pathway analysis.  

Results – Our study included 4668 AF-free participants (mean age 75 ± 5 years; 59% female; 

20% black race) with proteomic measures. A total of 585 participants developed AF over a 

mean follow-up of 5.7 ± 1.7 years. After adjustment for clinical factors associated with AF, 

N-terminal pro-B-type natriuretic peptide (NT-proBNP) was associated with the risk of 

incident AF (hazard ratio, 1.82; 95% CI, 1.68-1.98; p-value=2.91 X 10-45). In addition, 36 

other proteins were also significantly associated with incident AF after Bonferroni correction. 

We further adjusted for medication use and estimated glomerular filtration rate and found 17 

proteins, including Angiopoietin-2 and Transgelin, remained significantly associated with 

incident AF. Pathway analyses implicated the inhibition of matrix metalloproteases as the top 

canonical pathway in AF pathogenesis.  

Conclusion – Using a large-scale proteomic platform we identified both novel and 

established proteins associated with incident AF, and explored mechanistic pathways of AF 

development 
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12.2. INTRODUCTION 

 Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, with a lifetime 

risk of 1 in 3 among whites and 1 in 5 among African Americans.1 The risk of AF is higher 

for those with advancing age, European ancestry, cigarette smoking, taller height, greater 

weight, higher blood pressure and corresponding blood pressure medication use, diabetes, 

history of myocardial infarction, and history of heart failure.9, 10 In addition to the traditional 

clinical risk factors listed above, various biomarkers have been identified as risk factors for 

incident AF including markers of inflammation,11-14 oxidative stress,15 myocardial necrosis,11, 

16, 17 myocardial stress,11, 18-23 and mineral metabolism.24, 25 Identification of novel biomarkers 

can advance our understanding of AF mechanisms, enhance opportunities for risk prediction, 

and may provide targeted preventive strategies for AF.  

 Proteomic profiling enables systematic high-throughput analysis of proteins and may aid 

in the discovery of novel biomarkers that are upstream of the development of AF. Proteomics 

approaches are relatively unbiased and have the advantage of allowing simultaneous 

screening for large numbers of proteins involved in different biological pathways. Recently, 

several longitudinal cohort studies have reported associations between plasma proteomic 

profiling and the risk of AF. 12, 23, 184, 214, 215 Appendix Table 1 lists an overview of each study 

along with the main results. Four of the studies measured N-terminal pro-B-type natriuretic 

peptide (NT-proBNP) in their proteomic platform, and in all 4 studies, higher NT-proBNP 

was significantly associated with greater incidence of AF, even after adjustment for multiple 

AF risk factors. However, similarities in the results end there as each study found several 

different proteins associated with incident AF. These prior studies are limited by modest AF 

events and power, and by limited numbers of proteins included on their proteomic platforms. 

The only prior study that assessed a panel with >100 proteins had <1,400 participants.184 

 In this study, we used data from the Atherosclerosis Risk in Communities (ARIC) study 

to screen for 4877 plasma proteins and identify novel biomarkers that are associated with risk 

of incident AF. This community-based cohort of black and white older adults in the US has a 

larger number of proteins measured compared to previous studies, and nearly 600 AF events 

in a 6-year follow-up time, allowing us to address some limitations of previous studies.  

 

12.3. METHODS  

Study population 

 The Atherosclerosis Risk in Communities (ARIC) study is a prospective cohort study of 

cardiovascular disease and atherosclerosis risk factors.209  Participants at baseline (1987-1989) 
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included 15,792 black and white men and women aged 45-64, recruited from 4 communities 

in the US (Washington County, Maryland; the northwest suburbs of Minneapolis, Minnesota; 

Jackson, Mississippi; and Forsyth County, North Carolina). Thus far, 7 study visits have been 

completed with visit 5 (baseline for our main analysis) occurring in 2011-2013. Additionally, 

ARIC participants have received annual follow-up calls (semi-annual after 2012), with 

response rates of ≥ 90% among survivors. The primary analysis examined the association of 

ARIC visit 5 protein levels with incident AF through the end of 2017 at the Jackson field 

center, and through the end of 2018 at the other 3 field centers. Among the 6538 participants 

who attended visit 5, we excluded those with prevalent AF at visit 5 (n=638), with missing 

(n=1170) or low quality proteomic data (n=15), with race other than white or black and non-

whites in the Minneapolis and Washington County field centers (due to low numbers; n=42), 

having missing covariates (n=5), resulting in a study population of 4668. We also conducted a 

midlife replication analysis including only those proteins significantly associated with AF risk 

in the visit 5 primary analyses. We examined the association of proteins measured at visit 3 

(1993-1995) with incident AF through the end of 2010, which was the approximate start of 

visit 5. After similar exclusions, 10,908 AF-free participants with protein measures at visit 3 

were included in the midlife replication analysis. This study was approved by institutional 

review boards at each participating center, and all study participants provided written 

informed consent. 

Ascertainment of AF  

 Incident AF was defined as in previous ARIC analyses.9 A trained abstractor obtained 

and recorded all International Classification of Diseases, Ninth Revision, Clinical 

Modification (ICD-9-CM) and ICD-10-CM hospital discharge diagnoses from each 

participant's hospitalizations reported in the follow-up interview. AF was defined as the 

presence of ICD-9-CM code 427.31 or 427.32 or ICD-10-CM code I48.xx. AF hospitalization 

diagnoses occurring simultaneously with heart revascularization surgery or other cardiac 

surgery involving heart valves or septa were not included as AF events. Deceased ARIC 

participants were also labeled as AF cases if their underlying cause of death was AF. AF was 

additionally identified by study visit ECGs, performed at visits 1-5. At each ARIC study visit, 

a 10-second 12-lead ECG was performed using a MAC PC cardiograph (Marquette 

Electronics Inc, Milwaukee, WI) and transmitted to the ARIC ECG Reading Center for 

coding, interpretation and storage.  All ECGs automatically coded as AF were visually 

checked by a trained cardiologist to confirm AF diagnosis.211  

Proteomics Profiling 
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 EDTA-plasma was obtained from blood samples that were collected during visits 3 

and 5 and stored at -80 degrees C.  Plasma samples were analyzed using a SOMAmer-based 

capture array called “SOMAscan” (Somalogic, Inc., Boulder, CO, USA). This assay was 

performed as described previously.216-219 Protein levels in the plasma samples were measured 

by the SOMAscan platform, which uses single-stranded DNA-based aptamers to capture 

conformational protein epitopes. Additional information on quality control can be found in the 

Supplemental Methods. After all quality control measures were completed, 4877 aptamers 

which recognize 4697 unique human proteins or protein complexes were analyzed in this 

study. We examined protein distributions and applied log base 2 transformation to all 

SOMAmer measures to correct for skewness. We winsorized outliers that were greater or less 

than 5 standard deviations from the sample mean on the log 2 scale.  

Covariates 

 Covariates for this analysis include AF risk factors from the CHARGE-AF score,10 

namely age, sex, race, cigarette smoking status, height, weight, systolic and diastolic blood 

pressure, anti-hypertensive medication use, diabetes, prevalent myocardial infarction, and 

prevalent heart failure. We additionally included several medications and estimated 

glomerular filtration rate (eGFR) as covariates, reasoning that, in addition to being associated 

with the risk of atrial fibrillation, these variables could also affect protein levels. Covariates 

measured at visit 5 were used in the main analysis and those measured at visit 3 were used in 

the midlife replication analysis. Detailed procedures for covariate measures have been 

published, 209 and further details can be found in the Supplemental Materials.   

Statistical analysis 

 Baseline characteristics were described as mean (SD) for continuous covariates and 

counts (%) for dichotomous covariates. Our primary analysis used Cox proportional hazards 

regression models to relate each log base-2 protein level to incident AF (censored at the last 

follow-up time, death, or the end of 2017 / 2018). We used a series of models to examine the 

associations and to compare results with other cohorts who have made similar adjustments. A 

minimally adjusted model 0 accounted for age, sex, and race/center and provided 

comparisons with previous cohorts’ results. Model 1 consisted of previously reported AF risk 

factors10 and adjusted for age, sex, and race/center, current cigarette smoking, height, weight, 

systolic and diastolic blood pressure, the use of hypertension medications, diabetes, prevalent 

myocardial infarction and prevalent heart failure. Model 2 additionally adjusted for the 

confounders of eGFR, anticoagulant use, beta blocker use, and antiarrhythmic (Class I and 

III) medication use. We explored liver disease, participant fasting status, and use of statins, 

cardiac glycosides, calcium or channel blockers as possible confounding variables and 
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deemed that they were not confounders and did not include them in the final models. 

Bonferroni correction was used to correct for multiple tests; we considered P<0.05 / 4877 = 

1.025 x 10-5 to be statistically significant.  

 We performed additional analyses on the 40 proteins that reached statistical significance 

in either model 1 or model 2. We explored interactions by age, sex and race using a 

multiplicative term in model 2. We additionally adjusted for NT-proBNP to determine the 

association of protein levels with incident AF, independent of the level of NT-proBNP. We 

assessed the proportional hazards assumption in the top 40 proteins with scaled Schoenfeld 

residuals using both graphical and numerical tests and found no evidence of modeling 

violations. 

 In the midlife replication analysis, we used ARIC visit 3 as baseline (1993-95) and 

examined the association of the 40 proteins with the risk of incident AF through the end of 

2010, which was approximately the start of visit 5. We applied the same exclusion criteria as 

for the visit 5 analysis and used covariates measured at visit 3. For all of these analyses using 

the top 40 proteins, Bonferroni correction was used to account for multiple tests; we 

considered P<0.05 / 40 = 1.25 x 10-3 to be statistically significant. We performed statistical 

analyses using SAS v 9.4 (SAS Inc, Cary, NC). 

 

Ingenuity Pathway Analysis  

 We performed network pathway analysis to 1) further explore biological mechanisms 

connected to the proteins associated with incident AF and 2) to identify factors upstream to 

AF.  We analyzed data using of Ingenuity Pathway Analysis (IPA) (QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis).220 We uploaded 

a dataset containing the protein identifiers, hazard ratios from our primary analyses using a 

fully adjusted model (model 2), and corresponding p-values, to identify novel mechanisms 

outside of the well-known associations between our covariates and AF. We then restricted the 

analysis to the proteins associated with incident AF at a false discovery rate (FDR) corrected 

threshold of  P < 0.05, resulting in 60 SOMAmers. Of these, 56 were successfully mapped to 

genes in the Ingenuity Pathways Knowledge Base; in some cases duplicated SOMAmers 

mapped to a single gene (e.g., SVEP1a and SVEP1b) and in other cases, more than one gene 

product corresponded to a single gene ID (e.g., NT-proBNP and natriuretic peptide B). In the 

case of duplicates, the maximum expression value of the two SOMAmers was used in the 

analysis.  
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 Further details regarding IPA can be found in the Supplemental Materials. In brief, we 

used IPA Core Analysis to estimate the degree to which specific canonical pathways, protein 

networks, and upstream regulators were implicated based on the set of proteins found to be 

associated with AF risk. For all of the IPA analyses, only statistically significant canonical 

pathways, physiological systems, upstream regulators, and causal networks are reported, and 

only a subset are provided in our results. 

 

12.4. RESULTS 

 A total of 4,688 participants with protein level measured at visit 5 were included in the 

main analysis (mean age = 75 ± 5 years; 59% female; 20% black race). A total of 585 (13%) 

participants developed incident AF during a mean (SD) follow-up time of 5.7 (2) years. 

Descriptive characteristics are provided in Table 12.1 based on incident AF status. Those 

who developed AF were older, more likely to be male and white, and had a worse 

cardiovascular profile compared to those who did not develop AF.  

Association of Protein Levels with Incident AF 

 After adjustment for age, sex, and race/center, 126 protein were significantly associated 

(p<1.025 x 10-5) with incident AF as listed in Appendix Table 2. After adjustment for 

variables included in the CHARGE-AF risk score (model 1), and further adjustment for eGFR 

and medication use (model 2) 37 and 17 proteins, respectively, remained significantly 

associated with incident AF. These proteins are listed in Table 12.2 and ordered by the p-

value (from smallest to largest) of Model 2 with p-values <1.025 x 10-5 considered significant. 

After multivariable adjustment, NT-proBNP had the most significant association; for each 

doubling of the protein measure, the risk of AF was 1.75 times higher (95% CI = 1.60-1.91). 

Transgelin had the strongest effect size in regards to the risk of incident AF; for every 

doubling of the protein level, the risk of AF was 2.01 times higher (95% CI = 1.56-2.59). 

Several proteins were inversely associated with incident AF including Protein delta homolog 

1 (DLK1) and ATS 13 (ADAMTS13). Protein SET had the strongest inverse effect size; for 

every doubling of Protein SET the risk of AF decreased by approximately 55% (HR=0.45, 

95% CI = 0.28-0.71).  Two of the top proteins, SVEP1 and DLK1, are listed twice due to 

distinct aptamers binding to the same protein. The top 100 proteins associated with incident 

AF after adjustment for model 2, along with the FDR p-values are presented in Appendix 

Table 3.  

 We examined interactions by age, sex, and race in the 40 proteins listed in Table 2 and 

we did not find any statistically significant interactions. We additionally adjusted for NT-

proBNP to determine the association of protein levels with incident AF independent of NT-
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proBNP, and results for the main 40 proteins are listed in Appendix Table 4. Eight of the 

protein remained significantly associated with incident AF and include CMRF35-like 

molecule 2 (CD300E), Growth/differentiation factor 11/8 (GDF11 MSTN), DLK1 (2 

aptamers), Antileukoproteinase (SLPI), Cartilage intermediate layer protein 2 (CILP2), 

Scavenger receptor class F member 1 (SCARF1), and Gamma-aminobutyric acid receptor-

associated protein-like 1 (GABARAPL1).  

 We ran a secondary analysis as an internal validation with 10,908 AF-free participants 

with protein measures at visit 3 and followed them until the end of 2010. At this visit, 

participants were younger with fewer comorbidities and on fewer medications (mean 

age = 60 ± 6 years; 55% female; 21% black race). A total of 1397 (13%) participants 

developed incident AF during a mean (SD) follow-up time of 13.9 (4) years. Of the top 40 

proteins from the main analysis, 21 were significantly associated with incident AF (Table 

12.3) in mid-life replication model 1, and 17 remained significant after adjustment for factors 

in model 2. NT-proBNP, SVEP1, Natriuretic peptides B, Transgelin, and Angiopoietin-2 

were the proteins most strongly associated with incident AF in both mid-life and later-life.  

Figure 12.1 depicts the beta estimates from model 2 for the top 40 proteins measured at mid-

life (visit 3) plotted against those measured in later life (visit 5) for the association with 

incident AF. Several proteins maintained relatively consistent effect sizes at both visits, 

including CILP2, IGFBP-2, and Angiopoietin-2, among others.  

Associations detected using IPA 

 Proteins associated with AF in late-life model 2 with an FDR P value <0.05 (listed in 

Appendix Table 3) were brought into the IPA environment. Of those, 56 proteins were 

mapped into 9 main networks and ordered from 1 to 9 by strength of association. Networks 1, 

2, 3 and 5 were considered connected networks. Figure 12.2 depicts the top 2 networks. 

Network 1 is centered around MMP-2, which was an upregulated protein in our analysis. 

Network 2 was centered around Protein Kinase B (PKB), more commonly referred to as Akt, 

and is a serine/threonine-specific protein kinase that plays a key role in multiple cellular 

processes such as glucose metabolism, apoptosis, transcription, and cell migration. A full list 

of molecules included in each network, along with associated diseases and functions, is listed 

in Appendix Table 5.   

 IPA identified canonical pathways, which are well-characterized metabolic and cell-

signaling pathways, using known associations of our uploaded proteins. The 10 canonical 

pathways that were most significantly associated with our proteins are listed in Appendix 

Table 6. The top canonical pathway was the inhibition of matrix metalloproteases (MMPs), 

followed by axonal guidance signaling, and factors promoting cardiogenesis. Figure 12.3 
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depicts proteins that were up or down activated in the MMP pathway. Downstream diseases 

and functions identified centered around the common themes of an inhibited inflammatory 

response, cardiac dysfunction, kidney failure, and cell movement of cancer cells.  

 To identify regulators upstream of our proteins we utilized 2 IPA analyses. Upstream 

regulator analysis identifies molecules upstream of the proteins in the dataset that potentially 

explain the observed expression changes. IPA predicts which upstream regulators are 

activated or inhibited to explain the upregulated and down-regulated proteins observed in our 

dataset.  Our top 20 top-identified upstream regulators are listed in Appendix Table 7.  Figure 

12.4 depicts the mechanistic networks that are associated with the top 2 identified upstream 

regulators, and links the upstream regulator to our observed proteins via the intermediary 

molecules depicted in the figure.  PTEN (phosphatase and tensin homolog) was predicted to 

be significantly inhibited based on the observed protein expressions in our data. PTEN 

inhibition was connected to 6 upregulated proteins including ANGPT2, MMP-2, NPPA, and a 

downregulated BMP-1 through intermediary pathways of activated ERK ½, STAT3, and 

IGF1, among others.  P38 MAPK was predicted to be our strongest activated upstream 

regulator. P38 MAPK activates tumor necrosis factor (TNF) and ERK ½, leading to the 

upregulation of MMP-2, NPPA, and TIMP-2, and downregulation of FAS-associated death 

domain protein (FADD).  

 Next, we implemented the causal analysis algorithms which are based on a “master” 

network which is derived from the Ingenuity Knowledge Base. The causal algorithm 

identified our potential top master regulators as the GATA group (involved in thrombin 

signaling) and MEF2C (myocyte enhancer factor 2C; plays a role in myogenesis) and they 

both have the same activation z-score. MEF2C contains many GATA group members, and 

therefore we chose to present a figure using MEF2C as the master regulator.  Figure 12.5 

depicts the relationships between MEF2C and the 19 proteins in our analysis that can be 

connected to MEF2C through intermediary regulators. The top 10 hypothesized master 

regulators based on the activation z-score are listed in Appendix Table 8, which depicts 

connected proteins through hypothesized participating regulators.   

 Finally, we used the regulator analysis function in IPA to determine potential pathways 

between upstream regulators, our measured proteins, and downstream diseases and functions. 

Figure 12.6 depicts our top identified regulator network, which links 5 activated upstream 

regulators to 3 downstream disease functions that consist of an activated innate immune 

response, an inhibited accumulation of leukocytes, and inhibited death of ovarian cancer cell 

lines.  
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12.5. DISCUSSION 

 In this community-based prospective population study of older adults, we tested 4,877 

plasma proteins and observed that 37 proteins were associated with the risk of incident AF 

over a nearly 6 year follow-up period at a Bonferonni corrected significance level and after 

adjustment for known AF risk factors. After additional adjustment for eGFR and medication 

use, 17 proteins remained significantly associated with an increased risk of AF. In a midlife 

replication sample that used proteins measured at an early ARIC visit, nearly half of the top 

proteins from the main analysis also demonstrated a robust association with non-overlapping 

incident AF events. Several proteins maintained relatively consistent effect sizes at both 

visits, including CILP2, IGFBP-2, and Angiopoietin-2, among others. In all analyses, NT-

proBNP was the protein with the strongest association with incident AF. Using a less 

stringent FDR-corrected threshold, we performed network pathway analysis on the top 56 

unique proteins mapped to genes and determined the top canonical pathway represented in 

our analysis was the inhibition of matrix metalloproteases. We identified several potential 

upstream regulators and mechanistic networks that provide insight into biological 

mechanisms involved in AF pathogenesis.  

 Natriuretic peptides (both NT-proBNP and mid-regional atrial natriuretic peptide) are 

markers of cardiac overload.  Multiple prospective population-based cohort studies and 

previous proteomic analyses have reported higher baseline NT-proBNP concentrations predict 

increased incident AF.10, 18, 20-23, 184, 214, 215 We also corroborated several other proteins that 

have been associated with incident AF in prior proteomic analyses including ATS13 

(ADAMTS13) and Angiopoietin-2.184 Additionally, previously reported BMP-1,184 MMP-2, 

and IGFBP-7214 associations with AF met our less-stringent FDR p value cutoff and were 

included in IPA. Angiopoietins are endothelial growth factors that regulate angiogenesis and 

vascular function and increased levels of angiopoietin-2 have been observed in several types 

of prevalent cardiovascular disease, including MI221 and heart failure.222 Similarly, the BMP 

signaling pathway plays an important role in the development of myocardial remodeling.223  

ATS13 is a von Willebrand factor protease that has been associated positively with incident 

MI, stroke, AF, and may be a marker of a prothrombotic environment.185, 224, 225  The peptic 

hormone insulin-like growth factor 1 (IGF-1) and several of its binding proteins are 

associated positively with cardiovascular disease incidence,226 and have additionally been 

linked to AF.214, 227  

 Our study reports several novel associations between circulating protein levels and 

incident AF which were also associated with incident AF in the mid-life replication analysis. 

Transgelin, a 22‐kD protein of the calponin family, is exclusively and abundantly expressed 
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in the cytoskeleton of visceral and vascular smooth muscle cells. Transgelin influences the 

pulmonary arterial smooth muscle cells function which then promotes pulmonary vascular 

remodeling and was found to be significantly up-regulated in the lung tissue of patients with 

congenital heart disease and pulmonary arterial hypertension.228 Many AF events are 

triggered by ectopic activation foci located in the pulmonary vein, and up-regulated transgelin 

may be indicative of pulmonary vascular remodeling that could result in AF. SVEP1 is a cell-

adhesion molecule that acts as a ligand for integrin α9β1 and is believed to facilitate cellular 

adhesion in the context of pro-inflammatory signaling.229, 230 The identification of a disease-

associated missense variant in SVEP1 has been hypothesized to play a role in the development 

of atherosclerosis and coronary heart disease.231  The role SVEP1 plays in contributing to AF 

remains to be clarified. In our causal pathway analysis, runt-related transcription factor 3 

(RUNX3) was identified upstream of SVEP1. RUNX3 translocates in response to 

transforming growth factor (TGF)-β signaling, an important mediator of fibrosis.232 Given 

that inflammation and oxidative stress are important in the pathogenesis of AF,233 SVEP1 

might increase susceptibility to AF by modulating these pathways. Additional prospective 

studies, using immunoassays, should verify whether Transgelin and SVEP1 are associated 

with AF incidence and whether the associations are causal. 

 Pathway analysis indicated our top canonical pathway was the inhibition of MMPs and 

that pathway included detected higher levels of TIMP-2, TIMP-4 and MMP-2. Atrial fibrosis 

is considered to be a key element of the AF substrate, with extracellular matrix (ECM) 

remodeling playing a major role in this process.38 The MMPs are a family of twenty zinc-

dependent enzymes that together with their specific endogenous inhibitors (tissue inhibitors of 

MMPs [TIMPs]), regulate the degradation of collagen and other ECM molecules. Several 

case-control studies have observed relationships between MMPs and AF, with the most 

significant associations related to MMP-9,234, 235 and mixed results between MMP-2 and 

incident AF.236  Observational studies of TIMP levels and AF have mainly shown no 

association, although higher TIMP-4 levels were found to be associated with prevalent AF in 

a few studies.236-238 We found increased levels of both TIMP-2 and MMP-2 to both be 

associated with greater incident AF, and appear to be activated by several different regulators 

in our network analysis. Of course, associations with AF and cardiac diseases may differ 

according to whether levels are measured from circulating plasma or from tissue samples, as 

circulating levels may not reflect expression in cardiac tissue.236 Furthermore, although 

expressed changes in MMPs and TIMPs occur in a number of cardiac disease states, these 

proteins appear to be differentially expressed in the atria and ventricles of patients with AF 

and end-stage heart failure.239 Compiled, these observations provide evidence that a likely 
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mechanistic underpinning of interstitial atrial fibrosis with AF is changes in MMP and TIMP 

abundance and/or MMP and TIMP stoichiometry.239 

 IPA hypothesized relationships upstream of our target molecules along with the 

predicted activated / inhibited state of genes and gene products. The top upstream molecule 

was PTEN, which is involved in aging and tumor suppression and was predicted to be 

significantly inhibited based on the observed protein expressions in our data. PTEN 

negatively regulates intracellular levels of phosphatidylinositol-3,4,5-trisphosphate in cells 

and functions as a tumor suppressor by negatively regulating the AKT/PKB signaling 

pathway. P38 MAPK was predicted by the IPA to be activated and plays a role in apoptosis 

and cell differentiation. This protein kinase is also involved in a variety of binding steps, 

including magnesium ion binding, phosphatase binding, and transcription factor binding 

among other functions.  

 The genes implicated by our results had little overlap with previously identified AF-

associated genes.  This may be due to the advanced age of the participants in our study, as 

genetic associations with AF tend to be stronger in younger individuals. Additionally, our 

study had a relatively low number of AF events compared to GWAS studies and may lack 

power to detect some genetic associations. However, a few commonalities exist. TBX5 is a 

transcription factor that is critical to the formation of the cardiac electrical system and has 

been associated with the development of AF in several GWAS studies.240, 241 In our analysis, 

TBX5 was present in our top hypothesized causal network and was regulated by MEF2C. Our 

results also corroborate previous findings that transcriptional regulation appears to be a key 

feature of AF etiology.242  Nearly half of the identified upstream regulators from IPA are 

transcription regulators. Genetic variations may influence the function of transcription factors 

and affect the ion channels, development of cardiac conduct system or myocardium fibrosis, 

and play important roles in the pathogenesis of AF. Identification of the exact targets 

regulated by AF-related transcription factors may lead to potential new treatments for AF. 

 The main strengths of this study are the plethora of proteomic data in a community-

based prospective sample, the quality of risk factor variables measured, and the number of AF 

events during follow-up. The ARIC study also includes black individuals, which have not 

been included in proteomic - AF analyses to date.  We found no evidence of race interaction, 

indicating that the observed associations did not differ between blacks and whites. We were 

able to perform an internal mid-life replication analysis which strengthened our findings in 

older adults, however, replication in an external cohort would further strengthen the 

reproducibility and particularly establish the generalizability of these findings.  Our study has 

several additional limitations. Incident AF was identified mainly from hospitalization 
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discharges, and we could be missing asymptomatic AF or AF managed exclusively in an 

outpatient setting. However, we and others have previously shown that the validity of AF 

ascertainment using hospitalizations is acceptable, and that incidence rates of AF in the ARIC 

study are consistent with other population-based studies.9, 44 Additionally, we are unable to 

classify AF type (paroxysmal, persistent, or permanent AF) or assess the burden of AF (the 

percentage of time a person is in AF) accurately in the ARIC study. The possibility of protein 

degradation during long-term storage cannot be excluded; however, a validation study in 

ARIC did not support widespread protein degradation across visits.243  Although our 

proteomic platform is the largest to date in cardiovascular research, we are only able to detect 

proteins included on this platform.  Finally, SOMAscan measurements were semi-quantitative 

and need replication in other prospective studies. 

In conclusion, we conducted proteomic profiling in a community-based population to 

assess the relationship between proteomics and incident AF in a cohort of older-aged black 

and white adults. The current results reinforced previous findings but additionally offer new 

observations into the biological changes that may precede AF onset and provide insight into 

mechanistic pathways of AF development.  If replicated further, these novel proteins might be 

worth evaluating for AF risk scores or for possible pharmacologic targets in AF. 
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Table 12.1. Baseline Clinical Characteristics of Participants by Incident Atrial Fibrillation Status, ARIC, 2011-2013 

 No incident atrial fibrillation 
through 2018 

Incident atrial fibrillation through 
2018 

N 4083 585  
Age, years 75.2 (5.1) 77.0 (5.4) 
Female sex 2434 (60%) 304 (52%) 
Black race 846 (21%) 73 (12%) 
Height, cm 165.4 (9.3) 166.7 (9.9) 
Weight, kg 78.2 (17.1) 81.0 (18.0) 
Current smoker  229 (6%) 36 (6%) 
Systolic blood pressure, mmHg 130.3 (17.8) 130.0 (19.0) 
Diastolic blood pressure, mmHg 66.5 (10.5) 64.0 (10.9) 
Antihypertensive medication use 2939 (72%) 484 (83%) 
Diabetes 1257 (31%) 204 (35%) 
Myocardial infarction 269 (7%) 67 (11%) 
Heart failure  131 (3%) 60 (10%) 
Estimated glomerular filtration rate, 

mL/min per m2 
65.5 (17.7) 60.8 (17.9) 

Anticoagulation medication use 90 (2%) 37 (6%) 
Beta blocker medication use 1213 (30%) 285 (49%) 
Antiarrhythmic use, class I and III 11 (0.3%) 13 (2%) 

Values correspond to mean (standard deviation) or N (%)  
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Table 12.2. Protein Biomarkers Associated with Incident Atrial Fibrillation in Late-life, ARIC, 2011-2018  

  Model 1 Model 2 
Protein Name Gene Name HR (95% CI) p value HR (95% CI) p value 

N-terminal pro-BNP NPPB 1.82 (1.68-1.98) 2.91E-45 ‡ 1.75 (1.60-1.91) 4.59E-35 ‡ 
Sushi, von Willebrand factor type A, EGF and pentraxin 
domain-containing protein 1 SVEP1 

2.01 (1.71-2.36) 2.39E-17 ‡ 1.89 (1.61-2.23) 2.47E-14 ‡ 

Sushi, von Willebrand factor type A, EGF and pentraxin 
domain-containing protein 1 SVEP1 

1.92 (1.65-2.24) 2.90E-17 ‡ 1.84 (1.57-2.16) 3.31E-14 ‡ 

Natriuretic peptides B NPPB 1.52 (1.36-1.70) 3.10E-13 ‡ 1.46 (1.30-1.65) 4.58E-10 ‡ 
Transgelin TAGLN 1.88 (1.54-2.29) 3.21E-10 ‡ 2.01 (1.56-2.59) 6.41E-08 ‡ 
Angiopoietin-2 ANGPT2 1.86 (1.53-2.25) 2.88E-10 ‡ 1.74 (1.42-2.14) 1.62E-07 ‡ 
Protein delta homolog 1 DLK1 0.72 (0.63-0.84) 1.73E-05 0.68 (0.58-0.79) 7.22E-07 ‡ 
Slit homolog 2 protein SLIT2 1.44 (1.25-1.65) 2.90E-07 ‡ 1.41 (1.23-1.62) 7.66E-07 ‡ 
CMRF35-like molecule 2 CD300E 1.51 (1.27-1.80) 2.28E-06 ‡ 1.52 (1.28-1.80) 1.68E-06 ‡ 
Protein delta homolog 1 DLK1 0.73 (0.63-0.85) 3.33E-05 0.68 (0.55-0.80) 1.81E-06 ‡ 
Antileukoproteinase SLPI 1.97 (1.54-2.51) 6.66E-08 ‡ 1.92 (1.46-2.52) 2.43E-06 ‡ 
Bone sialoprotein 2 IBSP 1.37 (1.22-1.54) 1.05E-07 ‡ 1.33 (1.18-1.50) 2.59E-06 ‡ 
Microfibril-associated glycoprotein 4 MFAP4 1.54 (1.31-1.80) 1.22E-07 ‡ 1.47 (1.25-1.72) 3.13E-06 ‡ 
Shadow of prion protein SPRN 1.53 (1.26-1.84) 1.14E-05 1.57 (1.30-1.90) 3.50E-06 ‡ 
R-spondin-4 RSPO4 1.65 (1.35-2.02) 1.45E-06 ‡ 1.63 (1.33-2.01) 3.67E-06 ‡ 
Chordin-like protein 1 CHRDL1 1.86 (1.47-2.37) 3.17E-07 ‡ 1.79 (1.39-2.31) 7.64E-06 ‡ 
Spondin-1 SPON1 1.93 (1.49-2.49) 6.24E-07 ‡ 1.81 (1.39-2.34) 7.70E-06 ‡ 
Endothelial cell-specific molecule 1 ESM1 1.76 (1.40-2.20) 7.77E-07 ‡ 1.66 (1.32-2.07) 1.08E-05 
R-spondin-1 RSPO1 1.65 (1.36-1.99) 2.64E-07 ‡ 1.57 (1.28-1.92) 1.26E-05 
Macrophage-capping protein CAPG 1.53 (1.31-1.77) 3.28E-08 ‡ 1.44 (1.22-1.70) 1.59E-05 
Scavenger receptor class F member 1 SCARF1 1.81 (1.42-2.32) 2.51E-06 ‡ 1.78 (1.37-2.31) 1.77E-05 
Atrial natriuretic factor NPPA 1.72 (1.42-2.09) 3.03E-08 ‡ 1.54 (1.26-1.88) 2.30E-05 
Insulin-like growth factor-binding protein 2 IGFBP2 1.40 (1.21-1.62) 7.27E-06 ‡ 1.35 (1.16-1.57) 9.30E-05 
Growth/differentiation factor 11/8 GDF11 MSTN 0.55 (0.42-0.72) 9.54E-06 ‡ 0.59 (0.45-0.77) 9.78E-05 
Triggering receptor expressed on myeloid cells 1 TREM1 1.56 (1.30-1.87) 1.14E-06 ‡ 1.50 (1.22-1.84) 1.00E-04 
A disintegrin and metalloproteinase with thrombospondin 
motifs 13 ADAMTS13 

0.55 (0.43-0.71) 2.56E-06 ‡ 0.60 (0.46-0.78) 1.15E-04 

Metalloproteinase inhibitor 4 TIMP4 1.52 (1.26-1.82) 7.03E-06 ‡ 1.43 (1.19-1.73) 1.58E-04 
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Ribonuclease pancreatic RNASE1 1.29 (1.17-1.44) 1.49E-06 ‡ 1.38 (1.17-1.64) 1.60 E-04 
EGF-containing fibulin-like extracellular matrix protein 1 EFEMP1 2.13 (1.57-2.90) 1.24E-06 ‡ 1.94 (1.37-2.75) 1.70E-04 
Regenerating islet-derived protein 3-alpha REG3A 1.30 (1.16-1.46) 4.81E-06 ‡ 1.26 (1.12-1.43) 2.01E-04 
Lysosomal Pro-X carboxypeptidase PRCP 0.56 (0.43-0.72) 9.07E-06 ‡ 0.60 (0.46-0.79) 2.13E-04 
Cartilage intermediate layer protein 2 CILP2 0.64 (0.53-0.78) 6.27E-06 ‡ 0.69 (0.57-0.84) 2.15E-04 
Sodium/potassium-transporting ATPase subunit beta-1 ATP1B1 0.62 (0.50-0.76) 9.74E-06 ‡ 0.66 (0.53-0.82) 2.50E-04 
Hepatitis A virus cellular receptor 2 HAVCR2 1.60 (1.31-1.95) 3.57E-06 ‡ 1.51 (1.21-1.88) 3.05E-04 
Endostatin COL18A1 1.93 (1.47-2.55) 3.14E-06 ‡ 1.90 (1.33-2.72) 4.07E-04 
Protein SET SET 0.36 (0.23-0.55) 4.36E-06 ‡ 0.45 (0.28-0.71) 5.88E-04 
Gamma-aminobutyric acid receptor-associated protein-like 
1 GABARAPL1 

1.80 (1.41-2.31) 2.60E-06 ‡ 1.65 (1.23-2.21) 8.44E-04 

Gamma-aminobutyric acid receptor-associated protein GABARAP 1.95 (1.46-2.60) 6.88E-06 ‡ 1.73 (1.22-2.47) 2.30E-03 
Coagulation Factor X F10 0.51 (0.40-0.64) 3.09E-08 ‡ 0.69 (0.47-0.99) 4.50E-02 
Coagulation factor Xa F10 0.52 (0.41-0.66) 8.99E-08 ‡ 0.71 (0.50-1.01) 5.95E-02 

Model 1: adjusted for age, sex, race/center, current cigarette smoking, height, weight, systolic and diastolic blood pressure, the use of hypertension 
medications, diabetes, prevalent myocardial infarction and prevalent heart failure.   
Model 2: adjusted for Model 1 + estimated glomerular filtration rate, antiarrhythmic medication use, beta blocker medication use, and anticoagulation use 
†Hazard ratio (HR) expressed as the risk of incident AF per doubling of the protein value 
‡Significance level of P<0.05/4877 = 1.025 x 10-5. These 40 proteins are ordered by smallest to largest p-value for Model 2.  
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Table 12.3. Replication Analysis of Associations of the Top 40 Late-Life Protein Biomarkers Measured in Mid-life with Incident Atrial Fibrillation, 
ARIC, 1993-2010  

  Model 1 Model 2 
Protein Target Name Gene Name HR (95% CI) p value HR (95% CI) p value 

N-terminal pro-BNP NPPB 1.40 (1.32-1.47) 3.29E-35 ‡ 1.37 (1.30-1.45) 2.92E-31 ‡ 
Angiopoietin-2 ANGPT2 1.77 (1.55-2.02) 3.54E-17 ‡ 1.73 (1.51-1.98) 6.42E-16 ‡ 
Sushi, von Willebrand factor type A, EGF and pentraxin 
domain-containing protein 1 SVEP1 1.57 (1.36-1.80) 3.11E-10 ‡ 1.57 (1.36-1.81) 4.20E-10 ‡ 
Sushi, von Willebrand factor type A, EGF and pentraxin 
domain-containing protein 1 SVEP1 1.52 (1.33-1.74) 6.99E-10 ‡ 1.52 (1.33-1.74) 9.91E-10 ‡ 
Triggering receptor expressed on myeloid cells 1 TREM1 1.49 (1.30-1.71) 1.14E-08 ‡ 1.46 (1.26-1.68) 1.73E-07 ‡ 
Insulin-like growth factor-binding protein 2 IGFBP2 1.26 (1.16-1.37) 7.11E-08 ‡ 1.25 (1.15-1.36) 1.91E-07 ‡ 
Ribonuclease pancreatic RNASE1 1.32 (1.21-1.45) 2.49E-09 ‡ 1.31 (1.18-1.45) 3.80E-07 ‡ 
EGF-containing fibulin-like extracellular matrix protein 1 EFEMP1 1.83 (1.47-2.27) 3.86E-08 ‡ 1.75 (1.40-2.18) 6.58E-07 ‡ 
Transgelin TAGLN 1.50 (1.30-1.74) 6.20E-08 ‡ 1.46 (1.25-1.70) 2.33E-06 ‡ 
Natriuretic peptides B NPPB 1.25 (1.13-1.38) 7.82E-06 ‡ 1.23 (1.12-1.36) 2.52E-05 ‡ 
Protein SET SET 0.56 (0.42-0.73) 2.12E-05 ‡ 0.58 (0.44-0.75) 7.90E-05 ‡ 
Gamma-aminobutyric acid receptor-associated protein GABARAP 1.69 (1.36-2.11) 2.37E-06 ‡ 1.58 (1.25-2.00) 1.17E-04 ‡ 
Gamma-aminobutyric acid receptor-associated protein-like 
1 GABARAPL1 1.48 (1.24-1.76) 1.14E-05 ‡ 1.42 (1.18-1.70) 2.49E-04 ‡ 
Hepatitis A virus cellular receptor 2 HAVCR2 1.34 (1.16-1.54) 5.11E-05 ‡ 1.29 (1.12-1.49) 4.43E-04 ‡ 
Microfibril-associated glycoprotein 4 MFAP4 1.21 (1.08-1.34) 5.41E-04 ‡ 1.21 (1.09-1.35) 4.56E-04 ‡ 
Cartilage intermediate layer protein 2 CILP2 0.77 (0.67-0.89) 3.87E-04 ‡ 0.77 (0.67-0.89) 4.98E-04 ‡ 
Endostatin COL18A1 1.45 (1.21-1.74) 7.41E-05 ‡ 1.39 (1.15-1.68) 7.77E-04 ‡ 
Antileukoproteinase SLPI 1.46 (1.21-1.76) 8.97E-05 ‡ 1.38 (1.13-1.68) 1.32E-03 
R-spondin-4 RSPO4 1.37 (1.14-1.64) 6.87E-04 ‡ 1.34 (1.12-1.61) 1.44E-03 
Scavenger receptor class F member 1 SCARF1 1.37 (1.13-1.66) 1.10E-03 ‡ 1.34 (1.11-1.63) 2.91E-03 
Chordin-like protein 1 CHRDL1 1.38 (1.13-1.68) 1.52E-03 1.33 (1.09-1.63) 5.16E-03 
R-spondin-1 RSPO1 1.23 (1.08-1.40) 1.64E-03 1.21 (1.06-1.38) 5.36E-03 
Spondin-1 SPON1 1.29 (1.07-1.56) 6.51E-03 1.28 (1.06-1.55) 9.41E-03 
Protein delta homolog 1 DLK1 0.91 (0.83-1.00) 4.96E-02 0.88 (0.80-0.97) 1.10E-02 
Protein delta homolog 1 DLK1 0.91 (0.82-1.00) 5.22E-02 0.88 (0.79-0.97) 1.24E-02 
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A disintegrin and metalloproteinase with thrombospondin 
motifs 13 ADAMTS13 0.81 (0.70-0.93) 3.70E-03 0.83 (0.72-0.96) 1.39E-02 
Metalloproteinase inhibitor 4 TIMP4 1.19 (1.04-1.35) 1.06E-02 1.16 (1.02-1.33) 2.29E-02 
Slit homolog 2 protein SLIT2 1.15 (1.00-1.31) 4.96E-02 1.15 (1.01-1.32) 3.96E-02 
Shadow of prion protein SPRN 1.15 (0.99-1.35) 6.63E-02 1.17 (1.00-1.36) 4.56E-02 
Lysosomal Pro-X carboxypeptidase PRCP 0.81 (0.69-0.96) 1.42E-02 0.84 (0.71-1.00) 4.84E-02 
Regenerating islet-derived protein 3-alpha REG3A 1.12 (1.02-1.22) 1.19E-02 1.09 (1.00-1.19) 5.64E-02 
Growth/differentiation factor 11/8 GDF11 MSTN 0.88 (0.74-1.04) 1.30E-01 0.87 (0.73-1.03) 1.05E-01 
Macrophage-capping protein CAPG 1.12 (1.01-1.25) 2.72E-02 1.09 (0.98-1.21) 1.06E-01 
Sodium/potassium-transporting ATPase subunit beta-1 ATP1B1 0.90 (0.79-1.02) 8.61E-02 0.91 (0.80-1.03) 1.26E-01 
Bone sialoprotein 2 IBSP 1.05 (0.95-1.15) 2.78E-01 1.06 (0.97-1.17) 1.98E-01 
CMRF35-like molecule 2 CD300E 1.08 (0.93-1.24) 3.06E-01 1.09 (0.93-1.26) 2.39E-01 
Atrial natriuretic factor NPPA 1.11 (0.92-1.34) 2.82E-01 1.11 (0.91-1.34) 2.99E-01 
Coagulation Factor X F10 0.87 (0.71-1.06) 1.71E-01 0.96 (0.77-1.20) 7.30E-01 
Endothelial cell-specific molecule 1 ESM1 1.03 (0.89-1.18) 7.15E-01 1.02 (0.89-1.17) 7.52E-01 
Coagulation factor Xa F10 0.88 (0.72-1.08) 2.08E-01 0.98 (0.78-1.22) 8.24E-01 

Model 1: adjusted for age, sex, race/center, current cigarette smoking, height, weight, systolic and diastolic blood pressure, the use of hypertension 
medications, diabetes, prevalent myocardial infarction and prevalent heart failure.   
Model 2: adjusted for Model 1 + estimated glomerular filtration rate, antiarrhythmic medication use, beta blocker medication use, and anticoagulation use 
†Hazard ratio (HR) expressed as the risk of incident AF per doubling of the protein value 
‡Significance level of P<0.05/40 = 1.25 x 10-3. These 40 proteins are ordered by smallest to largest p-value for Model 2.  
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Figure 12.1. Beta estimates for Associations of the Top 40 Protein Biomarkers Measured in Mid-life (visit 3) and Late-Life (visit 5) with Incident 

Atrial Fibrillation, ARIC, 1993-2018.  
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Figure 12.2. The top 2 protein networks identified using Ingenuity Pathway Analysis (IPA) for the association with incident AF.  

Each network is depicted radially, with the protein most central to the figure in the center.  
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Figure 12.3. A depiction of the top identified canonical pathway, the inhibition of matrix metalloproteases.  
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Figure 12.4. The top upstream regulators identified using IPA, based on experimentally observed relationships between regulators and genes or 
gene products.  

 Panel A depicts the hierarchical associations between PTEN and its expected downstream regulators to produce the associations we observe in the proteins in Panel B. Panel C 
depicts the hierarchical associations we would expect between P38 MAPK and intermediate regulators to produce the effects on the proteins observed in Panel D.  
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Figure 12.5. The top causal network identified using IPA, centered around MEF2C as the master regulator and connecting 19 observed protein 
states through intermediate regulators.  
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Figure 12.6. The top regulator effect network identified using IPA which depicts how predicted activated upstream regulators might cause 
increases or decreases in phenotypic or functional outcomes downstream.  
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Supplemental Methods 

SomaLogic Quality Control 

All measures are reported as relative fluorescent units (RFU). Each measure has 

been validated for its specificity, upper and lower limits of detection, and intra- and inter-

assay variability.244 Previous work indicates median intra- and inter-run coefficients of 

variation of approximately 5% and an intra-class correlation coefficient of ~0.9.243, 245 A list of 

all the 5,284 modified aptamers in the v.4 SOMAscan menu can be found in the supplement 

to a publication by Williams et al.246  

Protein analyte measurements underwent the regular SOMAscan data 

standardization and normalization process.243, 247 Briefly, hybridization control normalization 

was first applied to each sample based on a set of hybridization control sequences to correct 

for systematic biases during hybridization. Second, median signal normalization was applied 

to measures within a plate to remove sample or assay biases that may be because of 

pipetting variation, variation in reagent concentrations, assay timing, and other sources of 

systematic variability within a single plate run. Finally, each plate contained calibrator 

samples for each SOMAmer reagent, which was used to correct for plate-to-plate variation 

based on established global reference standards. Protein analytes with a calibration factor 

greater or less than the median calibration factor (0.4) were excluded from all analyses.  

 

ARIC quality control 

We inserted blind split-sample duplicate plasma aliquots for 197 of the 5327 (3%) 

participants with available SOMAmer data at visit 5 and 422 of 11,565 (4%) participants with 

SOMAmer data available at visit 3. The median inter-assay coefficient of variation for 

SOMAmers measured from visit 5 plasma (calculated using the Bland-Altman method 

because proteins levels are measured on a relative scale [CVBA]) was 4.7%. The median inter-

assay CVBA for SOMAmers measured from visit 3 plasma was 6.3%. Thus, the older samples 

collected at ARIC visit 3 show good performance overall for many proteins, but were inferior 

to those collected at visit 5. The median split sample reliability coefficient was 0.85 at visit 3 

and 0.94 at visit 5, after excluding quality control outliers, as described below.  

Of the 5284 available SOMAmers, we excluded 94 that had a CVBA >50% or a 

variance of < 0.01 on the log scale at either visit 5 or visit 3. Additionally, we excluded 313 
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SOMAmers because of binding to non-proteins, including hybridization control elution, non-

human proteins, non-biotin, non-cleavable, and spuriomer products.  

In a previous study on a subset of ARIC participants, we also were able to validate 

the measurement of three AF-associated aptamers, compared with immunoassays in the 

ARIC central laboratory. SomaScan and traditional immunoassay measurements were highly 

correlated: NT-proBNP (n=5168, r=0.90), B2M (n=5313, r=0.92), and GDF15 (n=142, 

r=0.94).243   

 

ARIC covariate measures 

 Participants reported information on smoking, history of cardiovascular disease, use of 

medications, and underwent a physical exam at each visit that included height and weight. 

Seated blood pressure was measured using a random-zero sphygmomanometer after 5 

minutes rest, and was defined as the average of the 2nd and 3rd measurements taken.  

Diabetes mellitus was defined as fasting glucose ≥ 126 mg/dL (7.0 mmol/L), non-fasting 

glucose ≥ 200 mg/dL (11.1 mmol/L), treatment for diabetes mellitus, or self-reported 

physician diagnosis of diabetes. MI was ascertained by study visit ECGs or the ARIC 

Morbidity and Mortality Classification Committee, by using data from follow-up calls, 

hospitalization records and death certificates.210 Prevalent HF was defined as the reported 

use of HF medication in the previous two weeks, presence of HF according the Gothenburg 

criteria (only at the baseline ARIC visit), or having had a HF hospitalization during follow-

up.248,249 Plasma creatinine and cystatin C were measured, and eGFR was calculated as 

mL/min/1.73 m2 using the CKD Epidemiology Collaboration (CKD-EPI) combined creatinine-

cystatin C equation.250  

 

Ingenuity Pathway Analysis 

IPA is a knowledge database relying on published literature related to protein 

function, localization, relevant interactions, and biological mechanisms. We ran the core 

analysis using the Ingenuity Knowledge Base as the reference set and included both direct 

and indirect experimentally confirmed relationships from all species. Networks were then 

algorithmically generated based on their connectivity. Methods used to determine the overlap 

of p-value, the activation z-score and causal analysis in IPA have been previously 

published.220 
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 The IPA Core Analysis calculates P-values using a right-tailed Fisher’s exact test to 

quantify the probability of overlap between a set of AF-associated proteins identified in 

current analysis and a set of proteins known to exist within a specific pathway or process due 

to random chance. We used a P-value of <0.05 as the threshold for statistical significance 

after applying Benjamini-Hochberg FDR adjustment for multiple comparisons. A z-score was 

also calculated, which quantifies the likelihood and directionality of the expression of 

canonical pathways and upstream regulators, considering the direction of the protein-specific 

association in our dataset and the known directional effect of one molecule on another 

molecule or on a process. A z-score <-2 or >2 has been recommended as the threshold for 

statistical significance when interpreting directionality. We used IPA network analysis to 

identify interactions between groups of highly connected proteins associated with AF risk, 

and the program generated algorithmically based networks on known genetic or molecular 

connectivity with other gene or gene products. Highly connected proteins or genes are first 

identified as focus molecules or “seeds.” Focus molecules identified as having the most 

interactions with other focus molecules are connected to form a network. We used IPA 

Upstream Regulator Analysis to identify the cascade of upstream transcriptional regulators 

that may be responsible for gene expression changes observed in our analysis.  IPA predicts 

which upstream regulators are activated or inhibited to explain the upregulated and down-

regulated proteins that we observed in our dataset. Mechanistic networks are provided for 

many of the upstream regulators and identify signaling cascades that connect upstream 

regulators to visualize how they may work together to elicit expression changes observed in 

our dataset.   

 We implemented 2 additional advanced analytics components of IPA.220 We performed 

a causal network analysis which uses algorithms based on a “master” network derived from 

the Ingenuity Knowledge Base. The power of causal network analysis is its ability to detect 

novel master upstream regulators that operate through other regulators, especially in cases 

where few or no relationships exist directly between it and the dataset genes. Finally, we used 

the Regulator Effects analysis function in IPA to determine potential pathways between 

upstream regulators, our measured proteins, and downstream diseases and functions. 

Regulator Effects explains how predicted activated or inhibited upstream regulators might 

cause increases or decreases in phenotypic or functional outcomes downstream. These causal 

hypotheses take the form of directionally coherent networks formed from the merger of 

Upstream Regulator networks with Downstream Effects networks. 
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13. Manuscript 2 -- Developing a Prediction Model for Atrial 

Fibrillation in the Elderly: The Atherosclerosis Risk in 

Communities (ARIC) study 
 

13.1. OVERVIEW 

Background –Existing atrial fibrillation (AF) risk prediction scores are not well-calibrated to 

older populations and improving these scores may depend on whether novel markers, such as 

proteomics, can add to or refine predictive models. We used data from the Atherosclerosis 

Risk in Communities (ARIC) study, a cohort of older-aged black and white adults in the US, 

to derive and internally validate 5-year prediction scores for incident AF. 

Methods – Our analysis included 4308 AF-free participants (mean age 75 ± 5 years; 58% 

female; 19% black race) with clinical, proteomic, ECG, and echocardiograph measures, who 

attended visit 5 in 2011-13. Using Cox regression models in 1000 bootstrapped samples, we 

developed a series of models from simple to involved that selected variables predicting 

incident AF within a 5 year period. The models were internally validated using 1000 

bootstrapped samples and adjusted for optimism. 

Results –A total of 394 participants developed AF over a 5-year follow-up. The final simple 

predictive stepwise model included the variables of age, race, weight, myocardial infarction, 

heart failure, and use of beta-blockers, anti-arrhythmic agents, and anticoagulants, and had 

moderate discrimination (c-statistic 0.697; 95% CI 0.671-0.723). The addition of blood 

biomarkers plus 16 proteins from proteomic analysis greatly improved the discrimination (c-

statistic 0.795; 95% CI 0.773-0.816) while still showing excellent calibration (χ2 = 7.6; P = 

0.58). Addition of abnormal P wave axis, left atrial diameter, and septal E/e prime moderately 

increased the c-statistic to 0.806 (95% CI: 0.785-0.827) in the full-developed model that 

contained 30 variables total. Using internal validation adjusted for optimism, discrimination 

of the fully-developed prediction model was acceptable (c-statistic 0.795).  

Conclusion –We developed a series of AF prediction models that are better targeted and 

calibrated to older populations. Results from our study should be externally validated. The 

addition of biomarkers, including proteomics data, improved prediction, suggesting it may be 

worthwhile to explore developing cost-effective and time-efficient ways to quantify the 

predictive protein biomarkers.  
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13.2. INTRODUCTION 

Atrial fibrillation (AF), a cardiac arrhythmia, has emerged as a major public health 

problem. AF is largely a disease of advancing age2, 3 and is associated with increased risks of 

adverse cardiovascular outcomes including stroke,4 myocardial infarction,5 and mortality,6 

resulting in significant costs to the US healthcare system.7 The aforementioned complications 

and financial burden associated with AF underscore the importance of accurate AF risk 

assessment. A well-calibrated risk score for prediction of incident AF would optimize 

screening in high-risk older individuals, allow for more specific clinical trial enrollment, and 

would lead to opportunities for targeted preventive strategies.  

Several AF risk prediction scores have been developed to predict AF with respectable 

discriminative abilities in middle-aged adults, including the Cohorts for Aging and Research 

in Genomic Epidemiology (CHARGE)-AF risk score.10 However, these scores may have 

diminished discrimination in populations of older adults, in which AF is most prevalent. A 

risk score that remains accurate in elderly populations is important; the burden that AF places 

on the health care system is increasing with the growth in the number of individuals in older 

age categories.  

Improving established risk prediction scores may depend on whether novel markers 

can add predictive value to existing models. New technology has allowed for the systematic 

assessment of a large portion of the entire range of proteins measurable in plasma (the plasma 

proteome), commonly referred to as proteomics. The application of proteomics provides 

opportunities for unbiased discovery of novel markers to improve accuracy in the prediction 

of AF. Furthermore, since the publication of the CHARGE-AF risk score in 2013 (derivation 

c-statistic =0.765), additional variables have been linked with an increased risk of incident AF 

and should be considered when re-evaluating an AF risk prediction equation. Current scores 

lack variables incorporating left atrial function and the addition of these variables along with 

biomarkers and proteomic profiles could improve individual AF risk prediction. We evaluated 

the performance of the existing CHARGE-AF risk score10 in a cohort of older black and white 

men and women. We then developed and internally validated 4 predictive scores for incident 

AF that ranged from a simple model to more complex models that included variables from lab 

measures, proteomics, ECGs and echocardiograms.   

13.3. METHODS 

Study population 

 The Atherosclerosis Risk in Communities (ARIC) study is a prospective cohort study 

of cardiovascular disease and atherosclerosis risk factors.209  Participants at baseline (1987-
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1989) included 15,792 black and white men and women aged 45-64, recruited from 4 

communities in the US (Washington County, Maryland; the northwest suburbs of 

Minneapolis, Minnesota; Jackson, Mississippi; and Forsyth County, North Carolina). Thus 

far, 7 study visits have been completed with visit 5 occurring in 2011-2013. Additionally, 

ARIC participants have received annual follow-up calls (semi-annual after 2012), with 

response rates of ≥ 90% among survivors. We chose ARIC visit 5 as baseline due to the 

older-age population and the availability of lab, proteomic, ECG and echocardiogram 

variables obtained at this visit. Among the 6538 participants that attended visit 5, we excluded 

those with prevalent AF at visit 5 (n=631), missing proteomics measures (n=1159), missing 

or indeterminate ECG or echocardiograph measures (n=342), race other than white or black 

and non-whites in the Minneapolis and Washington County field centers (due to small 

numbers; n= 42), and those missing covariates (n=56). This study was approved by 

institutional review boards at each participating center, and all study participants provided 

written informed consent. 

Ascertainment of AF  

 We defined incident AF as in previous ARIC analyses.9 A trained abstractor obtained 

and recorded all International Classification of Diseases, Ninth Revision, Clinical 

Modification (ICD-9-CM) and ICD-10-CM hospital discharge diagnoses from each 

participant's hospitalizations reported in the follow-up interview. AF was defined as the 

presence of ICD-9-CM code 427.31 or 427.32 or ICD-10-CM code I48.xx. AF hospitalization 

diagnoses occurring simultaneously with heart revascularization surgery or other cardiac 

surgery involving heart valves or septa were not included as AF events. Deceased ARIC 

participants were also labeled as AF cases if their underlying cause of death was AF. We 

identified 95% of the incident AF events from hospitalization records. Validity of ICD codes 

for AF is adequate as approximately 90% of the cases were confirmed in a physician review 

of discharge summaries from 125 possible AF cases.9 We ascertained incident AF events 

through a 5-year time period after visit 5, and the date of the first AF event was considered 

the outcome date.  

Candidate Prediction variables 

 We identified candidate predictors of incident AF from the literature and other 

prediction models (i.e. CHARGE-AF10 and its augmented models18). Candidates included 

clinical variables, blood measures and biomarkers, ECG variables, and echocardiographic 

variables measured at visit 5. We included several P wave indices from the including 

abnormal P wave axis,88, 251 and echocardiograph variables91, 252 associated with AF. We 

considered proteomics data consisting of 4877 proteins recently measured in the ARIC 
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cohort. Detailed procedures for ARIC measures have been published,209 and further details 

can be found in the Supplement Materials, along with a full list of all variables considered for 

inclusion. In brief, participants reported information on smoking, history of cardiovascular 

disease, use of medications, and underwent physical assessments and blood draw at the study 

visit. We measured protein levels in plasma samples using the SomaScan platform, which 

uses single-stranded DNA-based aptamers to capture conformational protein epitopes.  

Participants underwent ECGs and echocardiograms. Where appropriate, we evaluated 

candidate predictors as continuous variables, and if clinical cutpoints existed we also 

evaluated the variable by established cutpoints. We log base 2 transformed each proteomic 

variable and winsorized outliers that were greater or less than 5 standard deviations from the 

sample mean on the log 2 scale. 

 

Statistical analysis 

 We calculated person-years of follow-up from exam 5 (2011-2013) until first AF 

diagnosis, death, loss to follow-up, or a follow-up of 5 years, whichever came first.  All 

predictor variables were from exam 5 and not updated during follow-up.   Time to incident 

AF was the outcome for all models. All statistical analyses were performed with SAS 9.4 

(SAS Institute, Cary, NC).  

 

Performance of the CHARGE-AF risk score  

First, we assessed the performance of the original CHARGE-AF risk score to determine the 

risk of AF in an elderly cohort. We evaluated model performance using the c-statistic,253 and 

Nam and D’Agostino’s modified Hosmer-Lemeshow chi-square statistic for survival analysis 

(calibration).254 Calibration was also qualitatively assessed by plotting the observed risk 

within deciles of predicted risks. 

 

Overview of the derivation of predictive models 

 We performed an analysis to identify predictors and we created new AF risk scores in 

the elderly by deriving a 5-year predictive models. We followed guidelines from the 

Transparent Reporting of a multivariable prediction model for Individual Prognosis Or 

Diagnosis (TRIPOD): The TRIPOD Statement.255 The TRIPOD Statement is a set of 

recommendations for the reporting of studies developing, validating, or updating a prediction 

model, whether for diagnostic or prognostic purposes. A TRIPOD checklist is attached in the 
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Supplemental Materials. Currently, other potential validation cohorts lack the proteomic 

measures we included in our prediction model, and therefore, in concordance with the 

TRIPOD guidance, we developed and validated the model using the entire data set, but then 

used bootstrap resampling techniques to evaluate the performance and calibration of the 

developed model, thus internally validating our model.256  

 To facilitate the use of our score in clinical settings with limited access to blood and 

diagnostic tests, we first developed a predictive model that did not require information from a 

blood draw, ECG, or electrocardiogram, which we labeled the “simple model”. We then 

developed a sequence of more complex models, first by considering measures obtained from 

a blood draw. We included routine measures from a lab blood draw, including common 

biomarkers, which we labeled the “lab biomarker model”. We then created another model that 

contained proteomics variables measured from a blood plasma sample, which we labeled 

“proteomics model”. Finally, we developed a more complex model by adding in candidate 

ECG and echocardiographic variables, which we labeled “ECG and echo model”.   

 

Derivation of the predictive models 

We provide full details for each the derivation of each predictive model in the 

Supplemental Methods. Briefly, we initially ran minimally-adjusted Cox proportional hazard 

models to assess the individual predictors of AF. Variables significantly associated with AF 

were then considered candidate predictors and selected for inclusion into the next step. We 

generated 1000 bootstrap samples and ran Cox models with backward selection of the 

candidate predictors in each of the 1000 models. Based on recommendations from the 

literature, we selected variables included in at least 60% of the Cox models for inclusion in 

the final predictive model.257 As we progressed from the simple model to the more complex, 

we forced predictors from the previous model to stay in the model during backward selection 

in order to assess the added predictive value of the new variables.  

 

Assessment of the derived predictive models 

 Once the final variables were selected for each model, we calculated the model-based 

individual 5-year risk of AF using the beta estimates and ARIC mean reference values from 

each variable. We evaluated model performance using the c-statistic,253 and calibration chi-

square using Nam and D’Agostino’s modified Hosmer-Lemeshow statistic.254 We calculated 

the added predictive value of the complex models versus the simple model by assessing the 

discrimination slopes,258 and the categorical net reclassification improvement (NRI) using the 
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following risk categories: <5%, 5 to 15%, >15%. 258 We arbitrarily chose these risk categories 

based on our simple score where approximately 25% of our sample had a risk <5% and 20% 

had a risk > 15% and we wanted to see meaningful movement across categories. In addition, 

we estimated relative integrated discrimination improvement (IDI), which is the ratio of 

absolute difference in discrimination slopes of the 2 models over the discrimination slope of 

the original model.259 

Validation analysis 

 When prediction models are developed in relatively small samples, they may be 

overfitted and may show optimistic performance. To adjust for overfitting and optimistic 

performance of the model, we used bootstrap resampling for internal validation.255 

Bootstrapping methods provide more stable estimates with a lower bias compared to other 

methods of internal validation.256 We generated 1,000 bootstrap samples, sampling with 

replacement. A prognostic model was developed in each sample, and the performance was 

evaluated in the bootstrap samples and applied to the original sample. We used the same 

cohort for developing the score and for validation and therefore adjusted for optimism in our 

c-statistic obtained from the internal validation.260 

 

13.4. RESULTS 

 Our analysis included 4308 AF-free participants (mean age 75 ± 5 years; 5% female; 

19% black race) with clinical, proteomic, ECG and echocardiographic measures, who 

attended visit 5 in 2011-13. A total of 394 participants developed AF during a 5-year follow-

up. Descriptive characteristics are provided in Table 13.1 based on incident AF status. Those 

who developed AF were older, more likely to be male, white, use listed medications, and had 

a worse cardiovascular profile, including higher levels of biomarkers, compared to those who 

did not develop AF.  

 We applied the original, simple CHARGE-AF risk score in our cohort and obtained a 

modest c-statistic (95% CI) of 0.660 (0.634-0.686) with a poor calibration value of 27.4 

(p=0.001). We plotted the predicted vs. observed risk by decile and found the CHARGE-AF 

risk score over-predicted the risk in the lower deciles of risk. 

 In the derivation of our simple clinical model, the following 8 variables were selected 

in at least 60% of the predictive bootstrap samples: age, race, weight, prevalent heart failure, 

prevalent MI, use of beta-blockers, anticoagulants, and anti-arrhythmic medications. Hazard 

ratios (HR) and 95% CI for each predictor are listed in Table 13.2. Heart failure was one of 
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the strongest predictors of AF in the simple model [HR (95% CI) = 2.27 (1.59-3.25)], along 

with the use of anti-arrhythmic agents and anticoagulants.  

 For derivation of the lab biomarker model, plasma troponin-T and NT-proBNP were 

selected in at least 60% of the predictive bootstrap samples and were added to the simple 

prediction model, along with eGFR. The variable of eGFR was inversely associated with the 

risk of incident AF in age and sex-adjusted analysis, however, when included in the model 

with NT-proBNP, the association reversed direction. eGFR was considered borderline 

significant in this analysis (selected in 54% of the predictive bootstrap samples) and knowing 

that eGFR was an important variable to consider when measuring blood protein levels, we 

made the modeling decision to allow eGFR to stay and move forward in the sequence of 

deriving prediction models.  

 In developing the proteomics model, 16 proteins were selected in at least 60% of the 

prediction bootstrap samples and are listed in Table 13.2. Although the lab biomarker of NT-

proBNP (per 1 log-transformed SD) was already included in the model, the proteomic 

measure of NT-proBNP (log-base 2 transformed) was also significantly associated with 

incident AF and added predictive value in the model. Antileukoproteinase (SLPI) was 

strongly associated with AF; the risk of AF was 2.24 times higher for every doubling of the 

protein level [HR (95% CI) = 2.24 (1.55-3.25)]. Finally, when evaluating ECG and 

echocardiographic variables, the measures of abnormal P wave axis, left atrial diameter, and 

septal E/e-prime were included in the final predictive model.  

 Table 13.3 lists the c-statistic, calibration, NRI and IDI for each model. In the simple 

model, the c-statistic of the simple prediction score was 0.697 (95% CI, 0.671-0.723) with 

appropriate calibration chi-square of 9.4 (p=0.40). Driven mainly by NT-proBNP, the 

addition of the lab biomarkers raised the c-statistic to 0.742 (95% CI, 0.717-0.767) and 

calibration remained adequate (16.0; p-value =0.07). The NRI significantly increased 0.233 

(95% CI, 0.181, 0.285) as did the IDI. The NRI tables for each model compared to the simple 

model are shown in Figure 13.1. The lab biomarker model improved upon the simple model 

by correctly moving those with AF events up a risk category and also by correctly moving 

those without an AF event down a risk category. The addition of proteomics variables 

increased the c-statistic to 0.795 (95% CI, 0.773-0.816) while still showing excellent 

calibration (χ2 = 7.6; P = 0.58). NRI and IDI showed significant improvements over both the 

simple model and the lab biomarker model. The NRI tables in Figure 13.1 indicates the 

proteomics variables correctly moved up those with AF events and moved down those 

without AF. Finally, the addition of abnormal P wave axis, LA diameter, and septal E/e prime 

showed a modest improvement in the c-statistic to 0.806 (95% CI, 0.785-0.827), and 
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indicated a significant improvement in NRI over the simple model and also a slight 

improvement over the proteomics model. Figure 13.2 compares the NRI of each of the 

complex models to one another.  

 The beta coefficients, baseline survival, and ARIC mean variable values used to 

derive the prediction models are listed in Table 13.4. The formula to calculate the 5-year risk 

of incident AF based on these variables is included as a table footnote. 

 Finally, validation c-statistics for each model using internal bootstrapping with 

adjustment for optimism are listed in Table 13.3. The adjusted c-statistic of 0.692 for the 

simple model and 0.737 for lab biomarkers model, which were only slightly lower than our 

derived c-statistics, indicated that these scores would perform well in individuals from 

populations similar to the ARIC cohort. The validated c-statistic for the proteomics model 

was 0.784 and for the ECG and echo model was 0.795, and indicated that while there was 

most likely some overfitting of our derivation models, the validated predictive value in both 

scores remained good to excellent.  

 

13.5. DISCUSSION 

In this community-based prospective population study of older adults, we created a 

simple risk model calibrated to this age group (66-90 years old) that included variables 

routinely collected in a primary care setting and predicted future risk of AF. We incrementally 

added variables to this model including lab biomarkers, proteomics, ECG and 

echocardiographic measures and developed more complex models that increased the 

discrimination ability of each model. The derived models performed well using internal 

validation.  

 The need for the accurate prediction of AF has given rise to the development of 

several population-based prediction equations.117 Risk scores for AF have been developed in 

the Framingham Heart Study (FHS),85 ARIC,51 the Women’s Health Study,199 and the 

CHARGE-AF consortium.10  The CHARGE-AF risk score is a 5-year predictive model that 

used pooled data from 18,556 participants from ARIC, FHS, and the Cardiovascular Health 

Study (CHS), and was validated in the Age, Gene/Environment Susceptibility Reykjavik 

study (AGES) and the Rotterdam Study (RS), and in a separate study was again validated in 

MESA.198 Investigators developed a simple model, which incorporated common clinically-

measured variables, and an augmented model, which incorporated additional ECG measures 

and blood tests. The advanced-age cohort CHS (mean age 73) was used in deriving the 

prediction models, however the model did not perform as well in the elderly AGES cohort 
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(mean age 76) as it did in the pooled derivation sample; c-statistic of the simple model = 

0.664 in AGES vs. 0.765 in the pooled derivation cohort. Similarly, when we applied the 

simple CHARGE-AF score to our older ARIC cohort, the c-statistic was 0.660 with a poor 

calibration of 27.4 (p=0.001) indicating that a prediction model that was more accurate in the 

elderly was warranted. 

 Since the publication of the CHARGE-AF risk score in 2013, additional variables 

have been associated with an increased risk of incident AF and most notably, the addition of 

basal levels of the biomarker NT-proBNP significantly increased the predictive value.18 In 

that study conducted by Sinner et al, participants of the AGES and RS cohorts were markedly 

older than participants of the other cohorts and the authors observed the predictive 

performance of NT-proBNP was better in these two older cohorts compared to the younger 

participants, presumably reflecting a higher prevalence of subclinical disease in AGES and 

RS. In our study of AF-free older adults, elevated levels of NT-proBNP, even once adjusted 

for overt heart disease, predicted AF. Another biomarker, troponin T, is highly predictive for 

myocardial damage and is the pathological hallmark of acute MI or myocardial injury. Basal 

troponin T concentration has been associated with incident AF in several cohorts but it has 

not added predictive value in existing AF prediction scores.16, 18 However, in our analysis in 

this elderly cohort, troponin T remained as a significant predictor of incident AF, even after 

the addition of proteomics to the prediction model. Based on the results from our study, there 

may be significant clinical utility in measuring NT-proBNP and troponin T to determine risk 

of AF in older individuals.   

 This is the first study to determine the predictive value of adding novel protein 

measures to an AF risk prediction score. Importantly, all protein measures in our final score 

were predictive of incident AF independent of NT-proBNP, troponin T and independent of 

each other. The protein with the strongest independent predictive value of AF was 

Antileukoproteinase, also known as secretory leukocyte protease inhibitor (SLPI), which 

modulates the inflammatory and immune responses. SLPI functions as a non-redundant alarm 

anti-protease and is considered important in the defense against proteolytic attack from 

liberated granulocyte proteases.261 Apart from its anti-protease activity, SLPI has 

antibacterial, antiviral, and anti-inflammatory properties and promotes wound healing.262 

Immunoassays exist for several, but not all of the proteomic measures significant in our study. 

Moving forward, strategies to streamline the proteomic variables into clinically useful 

measures would include developing cost-effective and time-efficient assays. Another 

approach could be to develop disease-specific proteomic chips that measure pre-determined 

proteins in a time-efficient manner. For example, a chip that included the 16 protein measures 

included in our model would aid in prediction of AF in older populations. Alternatively, with 
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the uptick of proteomics measures applied to risk prediction scores, a single plasma sample 

could be processed to provide individual health information and simultaneously predict the 

future risk of diseases such as diabetes246 and cardiovascular diseases.245  

Abnormal P wave axis is associated with increased risk of AF and has added 

predictive value to the CHARGE-AF risk score in a previous study.251 Adverse atrial 

remodeling is associated with increased risk of AF and can be detected by this shift in the P 

wave axis. Left atrial diameter has been independently associated with incident AF in several 

cohorts.44, 91, 92 Increased left atrial size has been thought to increase AF risk as a result of 

stretch of the atrial appendage which leads to remodeling of the anatomy and physiology of 

the left atrium and increases dispersion of atrial refractoriness. Septal E/e prime, a measure of 

diastolic dysfunction, has been associated positively with AF,263 along with higher NT-

proBNP, incident HF and death,264 but its addition to a risk prediction score has not been 

evaluated until now. These 3 measures added modest value to an AF prediction score for 

older ages that already included clinical, biomarker, and proteomic variables.  

 The main strength of this study is the plethora and quality of candidate predictor 

variables, including proteomics data, available for AF prediction in this older cohort. 

Additionally, this study included black and white men and women from a community sample 

followed 5 years after baseline with nearly 400 AF events. Nevertheless, our findings need to 

be evaluated in the context of limitations in the study design. Foremost, our prediction model 

was not able to be externally validated in a comparable cohort at this time. As proteomics 

become more widespread, studies should attempt to replicate and validate our results. Our 

cohort contained individuals from 66 to 90 years of age and results may not be generalizable 

to those outside this age range, and similarly, might not be generalizable to those individuals 

with a race other than white or black.  Next, incident AF was identified mainly from 

hospitalization discharges, and we could be missing asymptomatic AF or AF managed 

exclusively in an outpatient setting. However, we and others have previously shown that the 

validity of AF ascertainment using hospitalizations is acceptable, and that incidence rates of 

AF in the ARIC study are consistent with other population-based studies.9, 44 Additionally, we 

will be unable to classify AF type (paroxysmal, persistent, or permanent AF) or assess the 

burden of AF (the percentage of time a person is in AF) in the ARIC study. It is currently 

unknown if the predictive variables differ by AF type or by AF burden.  

 In conclusion, we have developed a series of risk prediction models for the prediction 

of AF in older adults. The simple model uses information readily available in a primary care 

setting and includes variables more tailored and calibrated than previous prediction models to 

older individuals. The more complex models, which include blood biomarkers, proteomics, 
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ECG, and echocardiographic variables, greatly improve AF prediction.  These well-calibrated 

risk scores can optimize screening in high-risk older individuals, allow for more specific 

clinical trial enrollment, and can lead to opportunities for targeted preventive strategies.  

Future research should replicate our study results and should also develop simple and cost-

effective ways to quantify and evaluate novel protein measures so they might be readily 

included in AF prediction.  
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Table 13.1. Selected baseline characteristics of ARIC participants measured in 2011-2013, 
stratified by incident AF status within a 5-year follow-up period 
 No incident AF 

(n=3914) 

Incident AF 

(n=394) 

Age 75.0 (4.9) 77.0 (5.4) 

Female sex 2303 (59%) 204 (52%) 

Black race 761 (19%) 49 (12%) 

Height, cm 165.5 (9.4) 166.6 (10.0) 

Weight, kg 78.4 (17.1) 80.6 (17.6) 

Current smoker  226 (6%) 24 (6%) 

Current drinker  1982 (51%) 195 (49%) 

Systolic BP, mmHg 130.0 (17.6) 129.8 (19.4) 

Diastolic BP, mmHg 66.3 (10.4) 64.1 (11.3) 

Beta-blocker use 1164 (30%) 194 (49%) 

Diuretic use 1217 (31%) 121 (31%) 

Other antihypertensive medication use 2390 (61%) 262 (67%) 

Diabetes 1195 (31%) 131 (33%) 

Heart failure 112 (3%) 37 (9%) 

Myocardial infarction 411 (11%) 81 (21%) 

Stroke  108 (3%) 15 (4%) 

Statin use 2022 (52%) 223 (57%) 

Antiarrhythmic use 10 (0.3%) 11 (2.8%) 

Anticoagulant use  74 (1.9%) 23 (5.8%) 

eGFR mL/min per m2 67.0 (17.5) 60.8 (18.2) 

C-reactive protein, mg/L, Median (25-75%) 1.9 (0.9-4.1) 1.9 (1.0-4.2) 

Ln (c-reactive protein), mean (SD) 0.7 (1.1) 0.8 (1.1) 

Troponin-T, ng/L, Median (25-75%)  10 (7-15) 13 (8-21) 

Ln (troponin-T), mean (SD) 2.3 (0.6) 2.6 (0.7) 

NT-proBNP, pg/mL, Median (25-75%)  111 (59-211) 237 (130-451) 

Ln (NT-proBNP), mean (SD) 4.7 (1.1) 5.5 (1.2) 

Abnormal P-wave axis (<0 or >75) 430 (11%) 74 (19%) 

Left atrial diameter, cm 3.5 (0.5) 3.8 (0.5) 

Septal E/e-prime, cm/sec 9.5 (1.9) 8.4 (2.1) 

*Values correspond to mean ± standard deviation or N (%) unless indicated 
eGFR = estimated glomerular filtration rate; NT-proBNP = N-terminal pro B-type natriuretic peptide
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Table 13.2. Hazard Ratios (95% confidence intervals) for the final variables included in the derived multivariable models for 
the prediction of the 5-year risk of incident AF, derived in ARIC.  

Variables Simple model + Lab biomarkers + Proteomics + ECG and echo 
Age, per 5 years 1.43 (1.29-1.57) 1.21 (1.09-1.34) 1.14 (1.02-1.27) 1.14 (1.02-1.27) 
White race 1.68 (1.24-2.27) 1.75 (1.28-2.38) 1.36 (0.97-1.92) 1.29 (0.91-1.83) 
Weight, per 15 kg 1.14 (1.05-1.24) 1.14 (1.05-1.24) 1.17 (1.08-1.28) 1.06 (0.96-1.16) 
Prevalent heart failure 2.27 (1.59-3.25) 1.56 (1.08-2.25) 1.44 (1.00-2.07) 1.33 (0.92-1.92) 
Prevalent myocardial infarction 1.50 (1.16-1.95) 1.19 (0.91-1.55) 1.25 (0.96-1.64) 1.15 (0.88-1.51) 
Anti-arrhythmic agent use 5.79 (3.05-11.01) 5.21 (2.76-9.81) 5.35 (2.76-10.4) 4.76 (2.39-9.50) 
Beta-blocker use 1.72 (1.39-2.12) 1.41 (1.14-1.74) 1.29 (1.04-1.61) 1.14 (0.92-1.43) 
Anticoagulant use 2.38 (1.52-3.74) 2.11 (1.36-3.28) 2.23 (1.43-3.47) 2.16 (1.37-3.40) 
     
eGFR, per 10 mL/min per m2   1.06 (1.00-1.13) 1.16 (1.08-1.25) 1.13 (1.05-1.22) 
Ln (Troponin-T), per 0.65    1.28 (1.14-1.44) 1.29 (1.15-1.46) 1.26 (1.12-1.43) 
Ln (NT-proBNP), per 1.04    1.70 (1.52-1.91) 1.19 (1.03-1.37) 1.16 (1.00-1.33) 
     
Proteomics measures (per doubling)    
NT-proBNP   1.50 (1.29-1.74) 1.29 (1.10-1.50) 
CLM2   1.50 (1.24-1.83) 1.44 (1.18-1.77) 
ID-1   1.46 (1.27-1.69) 1.49 (1.29-1.72) 
CV015   0.60 (0.45-0.89) 0.60 (0.45-0.80) 
SIA10   0.74 (0.62-0.89) 0.77 (0.65-0.92) 
NBR1   1.63 (1.25-2.13) 1.58 (1.20-2.07) 
MIA   0.47 (0.32-0.69) 0.47 (0.32-0.69) 
EMIL3   0.59 (0.44-0.80) 0.62 (0.47-0.82) 
PGP   0.55 (0.40-0.77) 0.57 (0.41-0.80) 
SAP18   1.40 (1.15-1.70) 1.31 (1.08-1.60) 
sICAM-5   1.45 (1.18-1.79) 1.44 (1.16-1.78) 
SLPI   2.24 (1.55-3.25) 2.12 (1.47-3.05) 
PAP1   1.29 (1.10-1.50) 1.28 (1.10-1.50) 
GLP1R   0.53 (0.36-0.79) 0.55 (0.36-0.82) 
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CD244   0.65 (0.47-0.91) 0.65 (0.47-0.91) 
RAP2A   0.87 (0.78-0.97) 0.86 (0.77-0.96) 
     
Abnormal P wave axis (<0 or 
>75) 

   
1.42 (1.09-1.85) 

Left atrial diameter, per 0.5 cm    1.29 (1.14-1.45) 
Septal E/e prime, per 1.89 cm/s    0.77 (0.69-0.86) 

CLM2=CMRF35-like molecule 2, ID-1=DNA-binding protein inhibitor ID-1, CV015=Uncharacterized protein C22orf15, SIA10=Type 2 
lactosamine alpha-2,3-sialyltransferase, NBR1=Next to BRCA1 gene 1 protein, MIA=Melanoma-derived growth regulatory protein, 
EMIL3=EMILIN-3, PGP=Glycerol-3-phosphate phosphatase, SAP18=Histone deacetylase complex subunit SAP18, sICAM-5=Intercellular 
adhesion molecule 5, SLPI=Antileukoproteinase, PAP1=Regenerating islet-derived protein 3-alpha, GLP1R=Glucagon-like peptide 1 receptor, 
CD244=Natural killer cell receptor 2B4, RAP2A=Ras-related protein Rap-2a. The model derivation included 4308 participants and 394 AF events
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Table 13.3. Model Discrimination and Calibration for the derived and validated models for the prediction of the 5-year risk of incident AF 
 Derivation Models 
 Simple model + Lab biomarkers + Proteomics + ECG and echo 
C-statistic (95% CI) 0.697  

(0.671-0.723) 
0.742  
(0.717-0.767) 

0.795 
(0.773-0.816) 

0.806 
(0.785-0.827) 

Calibration chi-square (p-value) 9.4 (0.40) 16.0 (0.07) 7.59 (0.58) 9.44 (0.40) 
     
Net reclassification index 0 (Ref) 0.233 (0.181, 0.285) 0.446 (0.386, 0.501) 0.506 (0.445, 0.567) 
 -- 0 (Ref) 0.246 (0.191, 0.295) 0.289 (0.232, 0.332) 
 -- -- 0 (Ref) 0.053 (0.012, 0.095) 
     
Discrimination slope (IDI) 0 (Ref) 0.469 (0.313, 0.641) 1.17 (0.880, 1.51) 1.29 (0.960, 1.67) 
 -- 0 (Ref) 0.479 (0.340, 0.639) 0.559 (0.393, 0.741) 
 -- -- 0 (Ref) 0.054 (-0.005, 0.108) 
     
 Validation Models (internal validation and adjusted for optimism) 
 Simple model + Lab biomarkers + Proteomics + ECG and echo 
C-statistic (95% CI) 0.692  

(0.666-0.718) 
0.737  
(0.712-0.762) 

0.784 
(0.762-0.805) 

0.795 
(0.774-0.816) 
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Table 13.4. Beta estimates, baseline survival and mean variable values used for the prediction scores for the prediction of the 5-year risk 
of incident AF, derived in ARIC.  

 Simple model + Lab biomarkers + Proteomics + ECG and echo ARIC mean value 
Survival 0.91896 0.92857 0.94196 0.94387  
      
Variables (beta estimates)      
Age, per 5 years 0.35407 0.19056 0.12795 0.12870 15.0417 
White race 0.51718 0.55699 0.30730 0.25549 0.81198 
Weight, per 15 kg 0.13197 0.13049 0.15899 0.05758 5.23923 
Prevalent heart failure 0.82179 0.44558 0.36284 0.28161 0.03459 
Prevalent myocardial infarction 0.40775 0.17172 0.22567 0.14399 0.11421 
Anti-arrhythmic use 1.75647 0.34142 1.67728 1.56093 0.00487 
Beta-blocker use 0.54187 1.64969 0.25505 0.13361 0.31523 
Anticoagulant use 0.86877 0.74690 0.79968 0.76882 0.02252 
      
eGFR, per 10 mL/min per m2   0.05866 0.14888 0.12295 6.64459 
Ln (Troponin-T), per 0.65    0.24466 0.25614 0.23239 3.59721 
Ln (NT-proBNP), per 1.04    0.53066 0.16943 0.14571 4.56756 
      
Proteomics measures (log base 2 transformed)     
NT-proBNP   0.40584 0.25314 12.0392 
CLM2   0.40813 0.36595 9.02665 
ID-1   0.37848 0.39687 10.1221 
CV015   -0.51101 -0.51591 7.90483 
SIA10   -0.29686 -0.26044 12.7101 
NBR1   0.48899 0.45704 10.1393 
MIA   -0.75384 -0.76046 11.3157 
EMIL3   -0.51945 -0.47931 9.62080 
PGP   -0.59011 -0.55364 10.5765 
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SAP18   0.33548 0.27254 9.82916 
sICAM-5   0.37498 0.36270 10.9893 
SLPI   0.80857 0.74999 11.6821 
PAP1   0.25085 0.24938 13.4666 
GLP1R   -0.63018 -0.60502 9.11573 
CD244   -0.42839 -0.42880 6.80953 
RAP2A   -0.14089 -0.14882 9.88184 
      
Abnormal P wave axis (<0 or >75)    0.34778 0.11699 
LA diameter, per 0.5 cm    0.25340 7.02331 
Septal E/e prime, per 1.89 cm/s    -0.26314 4.99017 

The 5-year risk of incident AF can be calculated as 1 – survival exp (beta1*(X1-mean value1)+(beta2*(X2-mean value2)+….) where survival is model-specific, beta is the 
regression coefficient, X is the level for each risk factor, and mean value is ARIC specific. 
When calculating the risk, variable values must be divided by the number of units listed in the table, or for protein measures, log base 2 transformed 
and interpreted as per doubling of the measure. The model derivation included 4308 participants and 394 AF events 
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Figure 13.1. The categorical net reclassification improvement tables comparing each model to the simple model, stratified by AF status.  
Risk categories are <5%, 5-15%, and >15%. Shaded boxes indicate correct reclassification and patterned boxes indicates incorrect 
classification. 
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Figure 13.2. The categorical net reclassification improvement tables comparing each complex model, stratified by AF status.  
Risk categories are <5%, 5-15%, and >15%. Shaded boxes indicate correct reclassification and patterned boxes indicates incorrect 
classification.  
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Supplemental Methods:  

Candidate variables 

 The following variables from ARIC visit 5 were considered for inclusion in our 

prediction model, and can be found listed in Supplemental Table 1. We considered variables 

in the CHARGE-AF model that includes age, race, height, weight, current cigarette smoking, 

systolic and diastolic blood pressure, use of antihypertensive medication (split into categories 

of beta-blockers, diuretics and others), diabetes, heart failure, and history of myocardial 

infarction (MI).10 We considered variables included in an augmented CHARGE-AF model 

including ECG markers (PR interval (<120; 120-199; > 200), left ventricular hypertrophy 

(LVH): gender-specific Cornell voltage criteria (SV3 + RaVL > 2.8mV for men, and >2.2mV 

for women)), and more recent augmented models include NT-proBNP and C-reactive 

protein.10, 18, 198 Some clinical variables that were evaluated and not included in the final 

CHARGE-AF score were re-evaluated in this study as their predictive value may differ in the 

elderly. These included sex, fasting blood glucose, estimated glomerular filtration rate 

(eGFR), total cholesterol, HDL cholesterol, physical activity, triglycerides, alcohol 

consumption, use of lipid-lowering medications, heart rate, history of coronary artery bypass 

graft (CABG), history of stroke, blood troponin, and the following medications use: statins, 

anticoagulants, anti-arrhythmic agents, cardiac glycosides, and aspirin use. After literature 

review for associations with AF, we also considered the ECG and echocardiographic 

variables listed in Supplemental Table 1. If clinical cut-points existed for the measure, we 

looked at the cut-points and also at the continuous measure.  

Measures of candidate variables 

 Procedures for measures in ARIC have been published.209 In brief, participants 

reported information on smoking, history of cardiovascular disease, use of medications, and 

underwent a physical exam at the visit that included height and weight. Seated blood pressure 

was measured using a random-zero sphygmomanometer after 5 minutes rest, and was defined 

as the average of the 2nd and 3rd measurements taken. We defined diabetes mellitus was 

fasting glucose ≥ 126 mg/dL (7.0 mmol/L), non-fasting glucose ≥ 200 mg/dL (11.1 mmol/L), 

treatment for diabetes mellitus, or self-reported physician diagnosis of diabetes. MI was 

ascertained by study visit ECGs or the ARIC Morbidity and Mortality Classification 

Committee, by using data from follow-up calls, hospitalization records and death 

certificates.210 Prevalent HF was defined as the reported use of HF medication in the previous 

two weeks, presence of HF according the Gothenburg criteria (only at the baseline ARIC 

visit), or having had a HF hospitalization during follow-up.248,249 Plasma creatinine and 
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cystatin C were measured, and eGFR was calculated as mL/min/1.73 m2 using the CKD 

Epidemiology Collaboration (CKD-EPI) combined creatinine-cystatin C equation.250 

Participants underwent an ECGs during each clinical exam and details for each measure have 

been described.211 We defined abnormal P wave axis as any value outside of 0 to 75 degrees. 

Echocardiograms were obtained in all centers during visit 5 by certified study sonographers 

using uniform imaging equipment and following image acquisition protocol. Methods and 

details for each measure have been described.265  

 

Proteomic profiling 

EDTA-plasma was obtained from blood samples that were collected at visit 5 and 

stored at -80 degrees C.  Plasma samples were analyzed using a SOMAmer-based capture 

array called “SomaScan” (SomaLogic, Inc., Boulder, CO, USA). This assay was performed as 

described previously.216-219 Protein levels in the plasma samples were measured by the 

SomaScan platform, which uses single-stranded DNA-based aptamers to capture 

conformational protein epitopes. Of the 5284 available measures, we excluded 94 that had a 

CVBA >50% or a variance of < 0.01 on the log scale at visit 5. Additionally, we excluded 313 

because of binding to non-proteins, including hybridization control elution, non-human 

proteins, non-biotin, non-cleavable, and spuriomer products. For each measure, we 

winsorized outliers that were greater or less than 5 standard deviations from the sample mean 

on the log 2 scale. After all quality control measures were completed, 4877 SOMAmers 

which recognize 4697 unique human proteins or protein complexes were analyzed in this 

study.  

In a previous study on a subset of ARIC participants, we validated the measurement 

of several aptamers compared with immunoassays in the ARIC central laboratory. SomaScan 

and traditional immunoassay measurements were highly correlated: NT-proBNP (n=5168, 

r=0.90).The immunoassay measure was log-transformed and interpreted as the increase in 1 

SD of the log transformed measure (1.04).  

 

Derivation of the predictive models 

Derivation of the simple model  

 We first identified candidate predictors for the simple model by adjusting for age and 

sex. Variables significantly associated with incident AF (p<0.05) were then considered 

candidate predictors and selected for inclusion in the next step Next, we generated 1000 
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bootstrap samples and ran Cox proportional hazards models with backward selection of the 

candidate predictors in each of the 1000 samples. Based on recommendations from the 

literature, variables included in at least 60% of the Cox models were selected for inclusion in 

the final predictive model.257 We tested age and race interactions for inclusion in the final 

model and none significantly improved the prediction of the model.  

Derivation of the lab biomarker and proteomics models 

 Next, we wanted to develop a prediction model that would be useful in a clinical 

setting that included in a blood draw. Using similar steps as above, we ran a Cox model 

adjusting for age and sex with each lab variable and variables that were associated with 

incident AF at the p<0.05 were then considered candidate predictors and allowed into the next 

step. Then we generated 1000 bootstrap samples and ran Cox proportional hazards models 

that included adjustment for the simple model variables and had backward selection of the 

candidate predictor variables in each of the 1000 samples. We forced the variables from the 

simple model to stay in the model during backwards selection in order to determine what 

value, if any, the biomarkers added. Again, variables included in at least 60% of the Cox 

models were selected for inclusion in our prediction model.  

 We developed a proteomics model to determine to what extent adding proteomics 

variables would enhance the prediction. We started with 4877 possible proteomics variables, 

so we followed similar steps as above, but with slightly different criteria. Instead of just 

adjusting for age and sex, our first Cox model adjusted for all of the variables that were 

already included in the lab biomarker prediction model.  We used a threshold of a p-

value<0.005 to determine candidate predictors to move onto the next step.  We found 63 

proteins met this threshold and then became candidate predictors. Then we continued with the 

same steps as above, generating 1000 bootstrap samples, and ran Cox proportional hazards 

models that included adjustment for the simple model variables and the biomarkers above, 

with backward selection of the candidate predictor variables. We forced the variables from 

the lab biomarker model to stay in the model during backward selection. Variables included 

in at least 60% of the Cox models were selected for inclusion in the prediction model.  

Derivation of the ECG and Echo model 

 Finally, using similar steps as above, we determined if any candidate variables from 

ECGs or echocardiograms added value to the prediction model. We ran a Cox model 

adjusting for the variables included in the simple model and included those with a p-value 

<0.05 as candidate predictors. Then we generated 1000 bootstrap samples and ran Cox 

models that included adjustment for variables included in prediction models thus far and 
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included backward selection of the candidate predictor variables in each of the 1000 samples. 

We forced the variables from the previous model to stay in the model during backwards 

selection in order to determine what value, if any, these ECG and echo variables added. 

Again, variables included in at least 60% of the Cox models were selected for inclusion.  
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Table 13.5. Supplemental Table. Candidate variables considered for inclusion in AF 
prediction models, measured at ARIC visit 5, 2011-2013 

Clinical variables Lab biomarker variables 
Age, per 5 years Blood glucose,*per 10 mg/dL 
Sex, male vs female eGFR <60 mL/min per m2, vs ≥60 
White race vs black Total cholesterol,* per 40 mg/dL 
Height, per 10 cm HDL cholesterol,* per 15 mg/dL 
Weight, per 15 kg Triglycerides,*per 40 mg/dL 
Current smoker vs non smoker Log (hsCRP), per 1.43 (1 unit ln-transformed) 
Current drinker vs. not current Log (NT-proBNP), per 1.04 (1 unit ln-transformed) 
Amount of alcohol Log (troponin-T), per 0.65 (1 unit ln-transformed) 
Systolic BP, per 20 mm Hg  
Diastolic BP, per 10 mm Hg Proteomic variables (log base 2 transformed, 

interpreted as per doubling of the measure 
Diabetes N-terminal pro-BNP 
CABG history CMRF35-like molecule 2 
Heart failure history Origin recognition complex subunit 6 
Myocardial infarction history DNA-binding protein inhibitor ID-1 
Stroke history Netrin receptor UNC5D 
Statin use RGM domain family member B 
Beta-blocker use Sushi, von Willebrand factor type A, EGF and 

pentraxin domain-containing protein 1a 
Diuretic use Protein delta homolog 1 
Other Antihypertensive medication use Uncharacterized protein C22orf15 
Statin use Relaxin-3 
Anticoagulant use  Sushi, von Willebrand factor type A, EGF and 

pentraxin domain-containing protein 1b 
Antiarrhythmic agent use DnaJ homolog subfamily A member 2 
Aspirin use Protein delta homolog 1 
Cardiac glycosides Gamma-aminobutyric acid receptor-associated 

protein-like 1 
 Synaptotagmin-4 
ECG variables  Receptor-type tyrosine-protein phosphatase delta 
Heart rate, per 10 bpm Delta and Notch-like epidermal growth factor-

related receptor 
Left ventricular hypertrophy, Cornell 
criteria Proteasome subunit alpha type-5 
QRS duration, per 20 Interleukin-18 
QRS duration <90 (ref) vs. 90-120 Growth/differentiation factor 11/8 
 <90 (ref) vs. >120 Neutral and basic amino acid transport protein 

rBAT 
QT interval, per 31 Smoothelin 
QT interval ≥ 440 m, ≥ 460F Type 2 lactosamine alpha-2,3-sialyltransferase 
PR interval, per 30 ms Leukotriene B4 receptor 1 
PR interval (<120 vs.  120-199) Next to BRCA1 gene 1 protein 
PR interval (>199 vs. 120-199) BH3-interacting domain death agonist 
Abnormal P-wave axis (<0 or >75) Actin-related protein 2/3 complex subunit 3 
P-wave duration > 120 Ubiquitin-like protein ISG15 
P-wave terminal force > 4000 uV.ms 5'-nucleotidase domain-containing protein 3 
Advanced interarterial block Melanoma-derived growth regulatory protein 
 Attractin 
Echocardiogram variables MOB kinase activator 1A 
LA diameter, per 0.5 cm Shadow of prion protein 
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LA diameter :  >4.0cm M and > 3.7cm W EMILIN-3 
LA volume index, per 8 mL/m2 GDNF family receptor alpha-1 
LA volume index: ≥ 34mL/m2  Vesicle transport through interaction with t-

SNAREs homolog 1A 
E / E prime lateral ratio, per 3.9 cm/sec Neuronal growth regulator 1 
E / E prime lateral ratio: >11.5 M and > 13.3 
W Ephrin type-A receptor 3 
E/A ratio, per 0.27 NmrA-like family domain-containing protein 1 
Ejection fraction (<50%) Tyrosine-protein kinase Fyn 
LV mass index, per 20 g/m2 Glycerol-3-phosphate phosphatase 
LV mass index: >115 M and > 95 W Amyloid beta A4 precursor protein-binding family B 

member 3 
LV diastolic diameter, per 0.5 cm Macoilin 
LV diastolic diameter (>5.8 M and >5.2 W)  Neurocan core protein 
LV relative wall thickness, per 0.07 Histone deacetylase complex subunit SAP18 
Mean LV wall thickness, per 0.13 cm DnaJ homolog subfamily C member 4 
RV fractional area change, per 0.08 Glutamate receptor ionotropic, delta-2 
Septal E prime, per 1.45 cm/s Intercellular adhesion molecule 5 
Septal E / E prime, per 1.89 cm/s Antileukoproteinase 
 Keratocan 
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Figure 13.3. Supplemental Figure: TRIPOD statement 

 



99 
 
 

14. Manuscript 3 – Direct oral anticoagulants and warfarin for 
atrial fibrillation treatment: Rural and Urban trends in Medicare 
beneficiaries from 2011-2016   
 

14.1. OVERVIEW 

Background – Despite a higher risk of stroke in rural areas of the US compared to urban 

areas, there is little known regarding oral anticoagulation rates in atrial fibrillation (AF) 

patients in rural vs. urban areas. Furthermore, no data has been published addressing initiation 

of the recently-approved direct oral anticoagulants (DOACs) by patients’ rurality.  We used 

Medicare data to examine the initiation of anticoagulation use in newly-diagnosed AF 

patients in rural versus urban areas.  

Methods –We identified incident AF in a 20% sample of fee-for-service Medicare 

beneficiaries from 2011-2016, and collected beneficiary residential zip code and covariates at 

the time of AF diagnosis. We identified the first anticoagulant prescription filled, if any, 

following AF diagnosis. We categorized beneficiaries into 4 rural/urban areas by linking zip 

code to rural-urban commuting area codes and used Poisson regression models to compare 

anticoagulant prescription fills for patients in rural vs. urban areas. 

Results – Our study included 447,252 patients with diagnosed AF (mean age 79 ± 8 years) in 

which 82% were categorized as urban, 9% large rural, 5% small rural and 4% isolated. The 

percentage of those who initiated an anticoagulant rose from 34% in 2011 to 53% in 2016, 

driven by the uptake of DOACs. There were clear gradients of anticoagulant use by rurality. 

In a multivariable-adjusted analysis of beneficiaries matched by rural / urban category, those 

in rural areas were more likely to initiate an anticoagulant; those in isolated areas were 7% 

more likely (95% CI = 4-10%) compared to those in urban areas. However, those in rural 

areas were less likely to receive a DOAC; those in isolated areas were 18% less likely (95% 

CI = 15 to 22%) to initiate a DOAC compared to those in urban areas.  

Conclusion – In this Medicare population with AF, anticoagulation use was low but has 

increased over time due to the introduction of DOACs. Those in rural areas were less likely to 

receive a DOAC compared to those in urban areas, with the lowest DOAC use occurring in 

the most isolated areas. Increasing the percentages of DOAC use in AF patients living in rural 

areas may reduce the burdens of stroke and healthcare utilization of older adults in rural areas. 
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14.2. INTRODUCTION 

Individuals with atrial fibrillation (AF), a common cardiac arrhythmia, have a 5-fold 

increased risk of stroke compared to those without AF and therefore the mainstay of stroke 

prevention in AF is the initiation and maintenance of anticoagulant therapies.8 The oral 

anticoagulants currently recommended include warfarin and a class of direct oral 

anticoagulants (DOACs). Since 2010, the Food and Drug Administration (FDA) has approved 

4 DOACs for stroke prevention in AF, including the direct thrombin inhibitor dabigatran, and 

the direct factor Xa inhibitors, rivaroxaban, apixaban, and edoxaban.  The DOACs have fewer 

drug interactions, more predictable pharmacological profiles, an absence of major dietary 

effects, and a reduced risk of intracranial bleeding and ischemic stroke compared with 

warfarin.35 Currently, DOACs account for >50% of anticoagulants prescribed for AF patients 

and have directly contributed to the rising percentage of AF patients treated with 

anticoagulants.173, 174  

There are nearly 60 million people (19% of the population) living in rural areas 

according to the US Census Bureau. Those in rural areas have higher rates of adverse 

cardiovascular risk factors such as cigarette smoking, hypertension, diabetes, obesity, 

coronary heart disease, and stroke.26-28, 30 Despite the higher risk of stroke from AF, there is 

little known regarding anticoagulation rates in AF patients in rural vs. urban areas. 

Furthermore, no data have been published addressing the adoption of DOAC prescriptions in 

rural areas of the US. Differences in the initiation of anticoagulation and DOAC use by rural / 

urban status may identify an area of practice improvement for providers to reduce the burdens 

of stroke and healthcare utilization in a population of older adults.  

Using a sample of Medicare beneficiaries, which included patient geographic 

location, we describe trends in oral anticoagulant prescription fills, including the initiation of 

the DOACs, in AF patients from 2011-2016. We also compared type of anticoagulation 

treatment in AF patients living in rural vs. urban areas.  

14.3. METHODS 

Study population 

We conducted a retrospective study using health care utilization claims data from a 

20% sample of Medicare beneficiaries from 2011-2016. We limited the cohort to 

beneficiaries receiving fee-for-service Medicare who were 65 years or older living in the US, 

and enrolled in a stand-alone Part D prescription drug plan. We included those continuously 

enrolled in traditional fee-for-service Medicare Parts A/B/D without supplemental coverage 
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for at least 90 days during 2011-2016. We required at least the first 90 days of a beneficiaries’ 

follow-up time to be free of AF diagnosis codes and anticoagulation codes in order to 1) 

capture incident AF events, 2) capture the first anticoagulation prescription following an AF 

event, and 3) to serve as a run-in period to capture patient health information and 

comorbidities prior to an AF event. If a beneficiary enrolled in supplemental coverage we 

censored them at the time of supplemental enrollment. For this analysis, we required at least a 

30-day follow-up period after AF diagnosis in order to allow an appropriate time window for 

the beneficiary to fill an anticoagulant prescription.   

The initial sample included 910,649 AF patients aged 65 to 112 years. The exclusion 

flow chart is depicted in Figure 14.1. We excluded those with an AF diagnosis or prescription 

fill for an anticoagulant during the first 90 days of enrollment (n=412,076), those initiating 

edoxaban (due to small numbers; n=296), those with less than 30 days of follow-up (50,026), 

and those with a missing zip code or those with a zip code in a US territory (n=819). Our final 

analytic sample for the descriptive analysis overall was 447,252, and for the analyses 

comparing rural vs. urban, 210,953 of those were successfully matched.  

Ascertainment of AF Patients 

This analysis included patients age 65+ with at least one inpatient claim for AF or 2 

outpatient claims for AF 7 to 365 days apart. AF claims were identified using International 

Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) diagnosis codes 

427.3, 427.31, and 427.32, and ICD-10-CM codes starting October 1, 2015 of I48.x in any 

position, which is a standard definition used in claims analysis.45, 212 The validity of ICD-9-

CM codes for the identification of AF has been well-established with a systematic review of 

studies showing a positive predicted value (PPV) of approximately 90% and a sensitivity of 

approximately 80%.213  We defined the diagnosis date as the earlier of 1) the earliest 

discharge date for an inpatient claims, or 2) the earliest service date of the outpatient or 

physician claim. Consistent with prior research, 2 outpatient claims were required to diagnose 

outpatient AF in order to minimize the impact of rule-out diagnosis and to improve 

specificity.45  

Defining rural and urban beneficiaries 

We captured beneficiary zip code at the time of AF diagnosis. We mapped zip codes 

to Rural-Urban Communing Area (RUCA) codes, which are approximation codes developed 

by the University of Washington Research179 and commonly used to define rural and urban 
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areas.180 RUCA codes combine standard Census definitions with area commuting behaviors to 

capture functional and work relationships between regions.  

We used a 4- category classification to access the rurality of beneficiaries:  urban 

(RUCA codes 1-3, 4.1, 5.1, 7.1, 8.1, 10.1), large rural (RUCA codes 4.0, 4.2, 5.0, 5.2, 6.0, 

6.1), small rural (RUCA codes 7.0, 7.2, 7.3, 7.4, 8.0, 8.2, 8.3, 8.4, 9.0, 9.1, 9.2) and isolated 

(RUCA codes 10, 10.2, 10.3, 10.4, 10.5, 10.6). In a secondary analysis, we reported rural-

urban trends in oral anticoagulation use by splitting the US into 4 US Census Bureau Regions: 

Northeast (CT, ME, MA, NH, RI, VT, NJ, NY, PA), Midwest (IN, IL, MI, OH, WI, IA, KA, 

MN, MO, NE, ND, SD), South (DE, D.C., FL, GA, MD, NC, SC, VA, WV, AL, KY, MS, 

TN, AR, LA, OK, TX), West (AZ, CO, ID, NM, MT, UT, NV, WY, AK, CA, HI, OR, WA).  

Anticoagulation treatment definitions 

We identified filled prescriptions for oral anticoagulation using Part D 

pharmaceutical claims data which included the prescription fill date, the strength and number 

of days supplied. Beneficiaries were assigned to the first anticoagulant filled in either the 30 

days prior to, and anytime following their first AF claim. We included prescriptions initiated 

for warfarin, dabigatran, rivaroxaban, and apixaban in this analysis. We excluded edoxaban 

users due to small numbers. Validity of warfarin claims in administrative databases is 

excellent with a sensitivity of 94% and a PPV of 99%.266 Validation studies of DOAC claims 

have not yet been conducted.  

Covariates  

Using the Medicare datasets, we identified covariates prevalent at the time of AF 

diagnosis. Race was self-reported and we categorized it into the race categories of white, 

black, and other/unknown (due to small numbers). We defined pre-determined covariates 

based on inpatient, outpatient, carrier, and pharmacy claims using validated published 

algorithms.120, 267, 268 These included demographic characteristics, comorbidities, and 

pharmacy prescription fills.  Comorbidities of interest were ascertained with published 

algorithms from inpatient and outpatient claims and include prior stroke/transient ischemic 

attack(TIA), hemorrhagic stroke, heart failure, myocardial infarction, hypertension, diabetes, 

peripheral arterial disease, liver disease, kidney disease, chronic pulmonary disease, 

malignancies (except malignant skin neoplasm), metastatic cancer, history of bleeding, 

hematological disorders (anemia, coagulation defects), dementia, depression, and alcohol 

abuse.267, 268 ICD codes for the comorbidity variables are listed in Table 14.3 (Supplemental 

Table 1). We captured prescription fills for the following medication groups: clopidogrel, 
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angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, beta-blockers, 

calcium channel blockers, antiarrhythmics, and statins. We calculated the CHA2DS2-VASc 

score269 at AF date and it consisted of congestive heart failure, hypertension, age (1 point for 

age 65-74; 2 points for ≥ 75), diabetes, prior stroke or TIA (2 points), vascular disease, and 

female sex. The HAS-BLED score122 was calculated using the variables of hypertension, 

abnormal renal/liver function, stroke, bleeding history or disposition, elderly (age>65) and 

drugs/alcohol concomitantly; the variable International Normalized Ratio (INR) normally 

included in the HAS-BLED score was not available for this cohort. We used Medicare carrier 

claims datasets to identify provider specialty at outpatient visits. Beneficiaries who saw a 

cardiology provider within a predetermined period (30 days prior to or 90 days after AF 

diagnosis) were classified as the cardiology group, while patients seen exclusively by internal 

medicine, family practice, medical doctor, or unspecified multispecialty group were classified 

as primary care. Patients seen by a cardiologist were included in the cardiology provider 

group, regardless of a primary care visit. 

Statistical analysis 

We examined the anticoagulant prescription fill patterns in AF Medicare patients in 

rural vs. urban areas. Baseline characteristics at the time of AF diagnosis were compared 

between the 4 rurality groups. The proportion of patients with AF who filled oral 

anticoagulant prescriptions was evaluated graphically, first overall by year and quarter, and 

then in each rural/urban category by year. We also determined oral anticoagulant 

prescriptions within the CHA2DS2-VASc score by rural category. 

To compare proportions of anticoagulants, we matched beneficiaries based on AF 

date (± 30 days), age (± 1 years), sex, and CHA2DS2-VASc score (± 0). One beneficiary from 

each of the 3 rural categories was matched with up to 2 beneficiaries in the urban category 

using a greedy matching algorithm. We used Poisson regression models with robust variance 

estimates to compute risk ratios (RR) and 95% confidence intervals (CI).270 The model 

adjusted for age (continuous), race (white, black, other), sex, CHA2DS2-VASc (categorical, 0-

9), HAS-BLED score (continuous), specialist care (cardiology: yes/no), and the additional 

covariates listed above and in Table 1.  

We examined effect modification by sex, race, and age (<75, ≥75) by adding a 

multiplicative interaction term in the model.  A sensitivity analysis was limited to AF patients 

who qualify for oral anticoagulants (CHA2DS2-VASc scores ≥ 2); due to the advanced age 

and poly-comorbidity of Medicare patients, we had to exclude a small percentage (<2%) of 
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beneficiaries for this analysis. We conducted an additional sensitivity analysis requiring a 

180-day run-in time instead of 90 days.  

 

14.4. RESULTS 

After exclusion criteria were applied, our study included 447,252 AF patients (mean age 79 ± 

8 years), in which 369,357 (83%) lived in an urban area, 38,167 (9%) lived in a large rural 

area, 21,934 (5%) lived in a small rural area, and 17,794 (4%) lived in an isolated rural area.  

Characteristics of the total cohort of AF patients are listed in Table 14.1.  Those in urban 

areas were slightly older, more likely to be a minority, more likely to have seen a cardiologist, 

and had a higher CHA2DS2-VASc score compared to those in rural areas.  

We present several figures to graphically present anticoagulation initiation over the 

study period for the entire cohort. Overall temporal trends of the anticoagulants by year and 

quarter are depicted in Figure 14.4 (Supplemental Figure 1). In 2011, only 34% of 

beneficiaries used anticoagulants and by 2016, the percentage was 53%. The proportion of 

warfarin users decreased every year whereas the uptake of DOACs increased every year. By 

2016, apixaban was the most commonly used anticoagulant. Figure 14.2 shows the temporal 

trends of anticoagulation initiation by urban / rural category. Total anticoagulation increased 

in a similar manner each of the 4 rural/urban categories over time. Warfarin use is depicted 

with a clear gradient across rurality, and for every year, the highest percentage of AF patients 

prescribed warfarin are in the rural areas with those in isolated areas appearing to be the 

mostly likely to receive warfarin and the least likely to receive a DOAC. This pattern 

persisted when we stratified anticoagulation initiation by CHA2DS2-VASc score, presented in 

Figure 14.3.  Overall, anticoagulation frequency was higher in those in rural areas, but those 

in rural areas were more likely to be receiving warfarin compared to those in urban areas. In 

Figure 14.5 (Supplemental Figure 2), we present patterns of anticoagulant initiation by rural / 

urban category in 4 areas of the US. Total anticoagulation was highest in the Northeast 

region, and lowest in the Southern region. DOAC use was highest in the Southern region.  

  To formally test if anticoagulation and DOAC prescription patterns differed by rural / 

urban areas we matched 1 beneficiary from each of the 3 rural areas with up to 2 urban 

beneficiaries. The characteristics of patients after the matching are listed in Table 14.4 

(Supplemental Table 2). Statistical comparisons between rural / urban areas using the 

matched sample are listed in Table 14.2. Compared to urban areas, those in isolated areas 

were 7% more likely to use an anticoagulant, RR (95% CI) = 1.07 (1.04-1.10). However, they 

were 18% less likely to use a DOAC than those in urban areas, RR (95% CI) = 0.82 (0.78-
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0.85).  A similar pattern was seen, although to a slightly lesser extent, in the two other rural 

categories: those in the small rural areas were 5% more likely (95% CI = 2-7%) to be on 

anticoagulants, but 14% less likely (95% CI = 11-17%) to use a DOAC. Those in large rural 

areas were 2% more likely (95% CI = 0-4%) to be on anticoagulants, but 10% less likely 

(95% CI = 8-12%) to use a DOAC. Results were nearly identical when limited to those with a 

CHA2DS2-VASc score ≥ 2, and are listed in Table 14.2. Results were nearly identical when 

we required a 180 day run-in period instead of the 90 day run-in period (results not shown). 

We observed lower overall anticoagulation rates in women (8% lower) than in men but these 

rates did not differ by rural/urban status. We observed lower anticoagulation rates in blacks 

(16% lower) and other race (13% lower) compared to whites, but these rates did not differ by 

rural/urban status. We also did not observe a significant interaction for age by rural / urban 

status.  

14.5. DISCUSSION 

In this retrospective administrative claims analysis of AF Medicare patients, we 

found that anticoagulant prescription use in AF remains low, but has increased over time to 

53% in 2016, mainly due to the introduction of the DOACs. Overall, total anticoagulation use 

was higher in those in rural areas compared to urban areas; However, DOAC initiation was 

lower in rural areas compared to those in urban areas with those in isolated areas least likely 

to be using a DOAC. This pattern persisted across all CHA2DS2-VASC scores. There were 

modest regional variations in the proportion of beneficiaries using anticoagulants and 

differences in proportions initiating DOACs.  

 Past studies from the early 2000’s have shown that warfarin is underused among 

Medicare beneficiaries.175  Our study using updated Medicare data indicated that 

anticoagulation is still underutilized in the Medicare population, but the introduction of 

DOACs to the market has increased the percentage of those on anticoagulants. A study from 

Hernandez et. al 178 looked at the regional variation in anticoagulant use in Medicare patients 

in 2013-2014 and found the adjusted probability of receiving any anticoagulant use was 

lowest in the south, and DOAC use was lowest in the northern US. Our study indicated that a 

similar regional treatment effect held true through 2016. Similar to previous studies, we found 

that overall oral anticoagulation, including DOAC initiation, was lower in blacks and other 

races compared to whites, and was also lower in females.271, 272 In our study, these race and 

sex patterns held true across all rural / urban categories.  

 Our study adds to the literature by showing that DOAC initiation in Medicare patients 

remains lower in isolated and rural areas compared to those in urban areas. The most recent 
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European and North American guidelines for the management of AF incorporate 

recommendations on using DOACs as an alternative to warfarin.35, 140 Currently, 

recommendations specifically for rural patients are not mentioned in the guidelines. However, 

due to the individualized approaches to INR monitoring needed for warfarin patients, along 

with numerous limitations including distance to coagulation clinics, it has been suggested that 

rural patients should be considered for DOACs instead of warfarin.177 One barrier to DOAC 

initiation might be the higher cost of DOACs vs. warfarin use. However, the evidence 

suggests that long-term therapy with DOACs may be more cost-effective than warfarin 

treatment,273, 274  primarily due to lower monitoring costs and reduced numbers of patients 

with strokes and systemic embolism.  

 Reports suggest cardiology providers are more likely to prescribe oral anticoagulants 

compared with primary care providers,162-165 and this possibly results in a lower risk of stroke 

among patients who are managed by cardiology specialists.163 Our study took into account 

whether patients had seen a cardiology provider in the time period around AF diagnosis, and 

those in the most isolated areas were less likely to have seen a cardiologist. We observed that 

cardiology providers did prescribe DOACs at a higher rate compared to primary care 

providers. However, most patients in our Medicare cohort had seen a cardiology provider 

around that time of AF (80%) and thus adjusting for provider specialty did not influence our 

estimates. Still, due to differences in the initiation of DOACs and the fact that those in 

isolated areas were less likely to see a cardiology provider, educating providers in rural areas 

to prescribe DOACs over warfarin may reduce the burdens of stroke and healthcare utilization 

of older adults in rural areas.  

This study has several limitations which should be considered.  First, this analysis is 

limited to fee-for-service Medicare beneficiaries with a stand-alone Part D plan, and this is a 

subset of all Medicare beneficiaries that is known to have a lower SES and more 

comorbidities than those with supplemental coverage. Therefore, our results may not be 

generalizable to the entire Medicare (65+) population. Second, ICD-9 and ICD-10 codes were 

used to identify AF cases and comorbid conditions and misclassification is possible. Third, 

unmeasured confounding is a known limitation in observational studies using administrative 

claims data. Although we attempted to account for many measured patient characteristics in 

our multivariable model account for differences in rural / urban patients, unmeasured factors 

(eg, socioeconomic status, distance from a clinic) possibly influenced our findings. Lastly, we 

only have information on prescriptions filled by the patients, not on the medication prescribed 

by the provider or compliance with therapy. Despite these limitations, our study has numerous 

key strengths, including a large sample size of Medicare beneficiaries that allowed us to 
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detect differences between groups. Medicare data contains individual zip code, which allowed 

us to compare rural status on a patient level which has not been done in other claims-based 

datasets. Using this large sample of Medicare data allowed us to identify important 

differences between rural and urban populations.  

In conclusion, in this Medicare population with AF, anticoagulation use remains low 

but has increased over time due to the introduction of DOACs. However, those in rural areas 

were less likely to receive a DOAC compared to those in urban areas, with the lowest DOAC 

use occurring in the most isolated areas. Increasing the use of anticoagulants, in general, and 

of DOACs in particular, in AF patients living in rural areas may reduce the burdens of stroke 

and healthcare utilization of older adults in rural areas. 



108 
 
 

Table 14.1. Characteristics at the time of atrial fibrillation diagnosis by urban / rural 
classification for the entire cohort, Medicare, 2011-2016 

 
Urban 

(n=369,357) 

Large Rural 

(n=38,167) 

Small Rural 

(n=21,934) 

Isolated Rural 

(n=17,794) 

Age, years 79.0 ± 8.4 78.6 ± 8.2 78.7 ± 8.1 78.7 ± 8.2 

Female, % 55 56 56 54 

White race, % 84 92 92 94 

Black race, % 7 4 4 2 

Other race, % 9 4 3 3 

CHA2DS2-VASC score 5.0 ± 1.9 4.8 ± 1.8 4.9 ± 1.8 4.8 ± 1.8 

HAS-BLED score 3.1 ± 1.2 3.0 ± 1.1 3.0 ± 1.1 2.9 ± 1.1 

Cardiology involvement 84 77 74 74 

Comorbidities, %     

Hypertension 88 88 88 87 

Diabetes 42 39 40 39 

Myocardial infarction 12 14 15 14 

Heart failure 36 36 38 37 

Ischemic stroke/TIA 35 31 31 30 

Peripheral artery disease 36 31 32 30 

Hemorrhagic stroke 2 2 2 2 

Dementia 9 7 7 6 

Renal Disease 26 24 24 24 

Chronic pulmonary disease 31 35 36 35 

Liver disease 10 8 7 7 

Hematological disorders 26 23 22 20 

Gastrointestinal bleed 35 34 33 32 

Other bleed 48 42 43 41 

Malignancy 21 19 18 19 

Metastatic cancer 4 4 3 4 

Depression 21 21 21 20 

Alcohol abuse 1 1 1 1 

Medications, %     

Digoxin 0.4 0.4 0.4 0.4 

Clopidogrel 14 15 15 14 

Antiplatelet agents 0.3 0.4 0.3 0.5 
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Angiotensin-converting 

enzyme inhibitors 
26 29 29 29 

Angiotensin receptor 

blockers 
15 14 13 12 

Beta-blockers 34 37 38 38 

Calcium channel blockers 28 28 28 26 

Anti-arrhythmic agents 2 2 2 3 

Statins 41 41 41 41 

Diabetes medications 6 7 7 7 

Oral Anticoagulants, %     

Warfarin 23 26 28 29 

Dabigatran 4 4 4 4 

Rivaroxaban 10 9 9 8 

Apixaban 10 9 9 8 

*Values correspond to mean ± standard deviation or percentage.  
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Table 14.2. Anticoagulation Fill Patterns of Matched Atrial Fibrillation Patients by Rural / Urban Classification, Medicare, 2011-2016 

 Total n (%) Isolated Rural  Matched Urban  RRa (95%CI) RRb (95%CI) 

Isolated vs. Urban      
All 52,335 17,782 35,553   
 Any Anticoagulant 25,620 (48%) 8,907 (50%) 16,713 (47%) 1.07 (1.04-1.10) 1.07 (1.04-1.10) 
 DOAC  12,256 (23%) 3,687 (21%) 8,569 (24%) 0.82 (0.78-0.85) 0.82 (0.78-0.85) 
      
Small Rural vs. Urban Total n (%) Small Rural  Matched Urban  RRa (95%CI) RRb (95%CI) 

All 65,748 21,920 43,828   
Any Anticoagulant 31,634 (48%) 10,850 (50%) 20,784 (47%) 1.05 (1.02-1.07) 1.05 (1.02-1.07) 
DOAC 15,483 (24%) 4,768 (22%) 10,715 (24%) 0.86 (0.83-0.89) 0.87 (0.84-0.90) 
      
Large Rural vs. Urban Total n (%) Large Rural  Matched Urban  RRa (95%CI) RRb (95%CI) 

All 114,417 38,149 76,269   
Any Anticoagulant 54,493 (48%) 18,398 (48%) 36,095 (47%) 1.02 (1.00-1.04) 1.02 (1.00-1.04) 
DOAC 26,996 (24%) 8,411 (22%) 18,585 (24%) 0.90 (0.87-0.92) 0.89 (0.87-0.92) 

Relative risk of prescription fills for rural status vs. urban (reference). 
aAdjusted for age, race, sex, CHA2DS2-VASc score, HAS-BLED score, cardiology involvement, hypertension, diabetes, myocardial infarction, 
heart failure, ischemic stroke/transient ischemic attack, hemorrhagic stroke, peripheral artery disease, dementia, renal disease, chronic 
pulmonary disease, liver disease, hematological disorders, gastrointestinal bleeding, other bleeding,  malignancy, metastatic cancer, 
depression, alcohol abuse, and use of digoxin, clopidogrel, antiplatelets, angiotensin-converting enzyme inhibitors, angiotensin receptor 
blockers, beta-blockers, calcium channel blockers, statins and diabetes medications 

bLimited to those with CHA2DS2-VASc score > 2 
CI=confidence interval; DOAC=direct oral anticoagulant; HAS-BLED=hypertension, abnormal renal/liver function, stroke, bleeding history or 
predisposition, elderly (age >65 years), drugs/alcohol concomitantly; RR=relative risk.  
 

 

 



111 
 
 

Figure 14.1. Analysis flowchart of the 20% sample of traditional fee-for-service Medicare Beneficiaries, 2011-2016.  
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Figure 14.2. Temporal trends of anticoagulant initiation for the treatment of atrial fibrillation in Medicare beneficiaries by Urban / Rural 

category, 2011-2016 
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Figure 14.3. Overall temporal trends of oral anticoagulants initiation for the treatment of atrial fibrillation, by CHA2DS2-VASc Score, 

Medicare beneficiaries, pooled 2011-2016. The Y-axis is depicted to 60% and all percentages above that are beneficiaries on no 

anticoagulants. U=urban, L=large rural, S=small rural, I=isolated rural. 
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Table 14.3. Supplementary Table 1. ICD codes used to define pre-defined comorbidities  

Condition ICD-9-CM codes ICD-10-CM codes 

Alcoholism 

265.2, 291.1, 291.2, 291.3, 291.5, 
291.6, 291.7, 291.8, 291.9, 303.0, 
303.9, 305.0, 357.5, 425.5, 535.3, 
571.0, 571.1, 571.2, 571.3, 980, V11.3 

F10, E52, G62.1, I42.6, 
K29.2, K70.0, K70.3, K70.9, 
T51.x, Z50.2, Z71.4, Z72.1 

Chronic 
pulmonary 
disease 

490-492, 494, 496 J40-J44, J47 

Dementia 290, 294.1, 331.2 
F00.x-F03.x, F05.1, G30, 
G31.1 
 

Depression 296.2, 296.3, 296.5, 300.4, 309, 311 F20.4, F31.3, F31.5, F32.x, 
F33.x, F34.1, F41.2, F43.2 

Diabetes 250 
E10.0-E10.9, E11.0-E11.9, 
E12.0-E12.9, E13.0-E13.9, 
E14.0-E14.9 

Gastrointestinal 
bleeding 

455.2, 455.5, 455.8, 456.0, 456.20, 
530.7, 530.82, 531.0, 531.2, 531.4, 
531.6, 532.0, 532.2, 532.4, 532.6, 
533.0, 533.2, 533.4, 533.6, 534.0, 
534.2, 534.4, 534.6, 535.01, 535.11, 
535.21, 535.31, 535.41, 535.51, 
535.61, 537.83, 562.02, 562.03, 
562.12, 562.13, 568.81, 569.3, 569.85, 
578.0, 578.1, 578.9 

K25.0,K25.2, K25.4, K25.6, 
K26.0, K26.2, K26.4, K26.6, 
K27.0, K27.2, K27.4, K27.6, 
K28.0, K28.2, K28.4, K28.6, 
K22.6, K22.8, K92.0, K64.8, 
K64.4, K64.8, K66.1, K62.5, 
K92.1, K92.2, K29.01, 
K29.41, K29.51, K29.61, 
K29.21,  K29.71, K29.91, 
K29.81, K31.811, I85.01, 
I85.11, K57.11, K57.13, 
K57.31, K57.33, K55.21 

Heart failure 
398.91, 402.01, 402.11, 402.91, 
404.01, 404.03, 404.11, 404.13, 
404.91, 404.93, 425.4, 425.9, 428 

I09.9, I11.0, I13.0, I13.2, 
I25.5, I42.0, I42.5-I42.9, 
I43.x, I50.x, P29.0 
 

Hematological 
disorders 
(Coagulopathy, 
anemia) 

280, 281, 286, 287.1, 287.3, 287.4, 
287.5 

D65-D68, D69.1, D69.3-
D69.6 

Hemorrhagic 
stroke 430, 431, 432 I60-I62 

Hypertension 401, 402, 403, 404, 405 I10.x, I11.x-I13.x, I15.x 
Ischemic stroke 
/ TIA 362.34, 433-438 G45-G46, I63-I69, H34.0  

Kidney disease 

403.01, 403.11, 403.91, 404.02, 
404.03, 404.12, 404.13, 404.92, 
404.93, 582, 583.0, 583.1, 583.2, 
583.3, 583.4, 583.5, 583.6, 583.7, 585, 
586, 588.0, V42.0, V45.1, V56 

I12.0, I13.1, N03.2-N03.7, 
N05.2-N05.7, N18.x, N19.x, 
N25.0, Z49.0-Z49.2, Z94.0, 
Z99.2 

Liver disease 
070.22, 070.23, 070.32, 070.33, 
070.44, 070.54, 070.6, 070.9, 456.0, 
456.1, 456.2, 570, 571, 572.2, 572.3, 

B18.x, K70.0-K70.3, K70.9, 
K71.3-K71.5, K71.7, K73.x, 
K74.x, K76.0, K76.2-K76.4, 
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572.4, 572.5, 572.6, 572.7, 572.8, 
573.3, 573.4, 573.8, 573.9, V42.7 

K76.8, K76.9, Z94.4, I85.0, 
I85.9, I86.4, I98.2, K70.4, 
K71.1, K72.1, K72.9, K76.5, 
K76.6, K76.7 

Malignancy  140-172, 174-195, 200-208, 238.6 

C00-C26, C30-C34, C37-
C41, C45-C58, C60-C76, 
C81-C85, C90-C97, C43-C88 
 

Metastatic 
cancer 196-199  C77-C80 

Myocardial 
infarction 410, 412 I21, I22, I25.2 

Other bleeding 
423.0, 459.0, 568.81, 593.81, 599.7, 
623.8, 626.6, 719.1, 784.7, 784.8, 
786.3 

N92.0, N92.1, I62.1, I62.0, 
I62.9, I31.2, K66.1, M25.0, 
R04.0, R04.1, R04.2, D50.0, 
D64.9, R79.1, R31, R58, 
D62 

Peripheral 
artery disease 

093.0, 437.3, 440, 441, 443.x, 471, 
557.1, 557.9, V434 
 

I70, I71, I73.1, I73.8, I73.9, 
I77.1, I79.0, I79.2, K55.1, 
K55.8, K55.9, Z95.8, Z95.9 
 

*ICD-9-CM comorbidity codes were translated to ICD-10-CM codes using cross-walks, with 
review of face-validity 
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Table 14.4. Supplemental Table 2. Characteristics at the Time of Atrial Fibrillation 

Diagnosis by Matched Urban / Rural Classification, Medicare, 2011-2016 

 
Urban 

(n=133,102) 

Large Rural 

(n=38,149) 

Small Rural 

(n=21,920) 

Isolated Rural 

(n=17,782) 

Age, years 78.7 ± 8.2 78.6 ± 8.2 78.7 ± 8.1 78.7 ± 8.2 

Female, % 55 56 56 54 

White race, % 84 92 92 94 

Black race, % 7 4 4 2 

Other race, % 9 4 3 3 

CHA2DS2-VASC score 4.9 ± 1.8 4.8 ± 1.8 4.9 ± 1.8 4.8 ± 1.8 

HAS-BLED score 3.0 ± 1.1 3.0 ± 1.1 3.0 ± 1.1 2.9 ± 1.1 

Cardiology involvement 83 77 74 74 

Comorbidities, %     

Hypertension 88 88 88 87 

Diabetes 41 39 40 39 

Myocardial infarction 11 14 15 14 

Heart failure 34 36 38 37 

Ischemic stroke/TIA 32 31 31 30 

Peripheral artery disease 34 31 32 30 

Hemorrhagic stroke 2 2 2 2 

Dementia 9 7 7 6 

Renal Disease 24 24 24 24 

Chronic pulmonary disease 30 35 36 35 

Liver disease 9 8 7 7 

Hematological disorders 25 23 22 20 

Gastrointestinal bleed 35 34 33 32 

Other bleed 46 42 43 41 

Malignancy 21 19 18 19 

Metastatic cancer 4 4 3 4 

Depression 20 21 21 20 

Alcohol abuse 1 1 1 1 

Medications, %     

Digoxin 0.4 0.4 0.4 0.4 

Clopidogrel 13 15 15 14 

Antiplatelets 0.3 0.4 0.3 0.5 
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Angiotensin-converting 

enzyme inhibitors 
26 29 29 29 

Angiotensin receptor 

blockers 
14 14 13 12 

Beta-blockers 34 37 38 38 

Calcium channel blockers 28 28 28 26 

Anti-arrhythmias 2 2 2 3 

Statins 41 41 41 41 

Diabetes medications 6 7 7 7 

Oral Anticoagulants, %     

Warfarin 23 26 28 29 

Dabigatran 4 4 4 4 

Rivaroxaban 10 9 9 8 

Apixaban 10 9 9 8 

*Values correspond to mean ± standard deviation or percentage.  
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Figure 14.4. Supplemental Figure 1. Overall temporal trends of oral anticoagulant initiation for the treatment of atrial fibrillation in Medicare 

beneficiaries, 2011-2016 
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Figure 14.5. Supplemental Figure 2. Temporal trends of oral anticoagulants initiation for the treatment of atrial fibrillation in Medicare  
beneficiaries by Urban / Rural category in 4 regions of the US, 2011-2016.  
The Y-axis is depicted to 60% and all percentages above that are beneficiaries on no anticoagulants. A line has been inserted at 50% for 
comparison. U=urban, L=large rural, S=small rural, I=isolated rural. 
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15. Manuscript 4 – Atrial fibrillation outcomes in rural vs. urban 
Medicare beneficiaries in the United States 

 

15.1. OVERVIEW 

Background – Rural areas in the US have higher rates of many cardiovascular outcomes and 

mortality compared with urban areas; however, it is unknown whether rural-urban disparities 

exist in atrial fibrillation (AF) outcomes. We used Medicare data to compare the risks of 

adverse events in newly-diagnosed AF patients in rural versus urban areas.  

Methods –We identified 443,703 incident AF events in a 20% sample of fee-for-service 

Medicare beneficiaries from 2011-2016, and collected beneficiary residential zip code and 

covariates at the time of AF diagnosis. We categorized beneficiaries into 4 rural/urban areas 

by linking zip code to rural-urban commuting area codes, resulting in 82% categorized as 

urban, 9% large rural, 5% small rural and 4% isolated. We matched rural with urban 

beneficiaries based on characteristics at the time of AF diagnosis, and used Cox proportional 

hazards models to compare risk of mortality and incident hospitalized cardiovascular 

outcomes. 

Results – Our study included 197,931 (mean age 79 ± 8 years) matched beneficiaries with 

AF.  During a mean follow-up time of 2.1 ± 1.7 years, 2.1% of the cohort had an incident 

stroke, 4.3% had an incident myocardial infarction (MI), 3.5% had incident heart failure (HF), 

and 35% died.  In multivariable adjusted analysis, those in rural areas had a higher risk of 

total mortality; the hazard ratio (95% CI) was 1.04 (95% CI=1.01-1.07) in isolated areas, 1.08 

(1.04-1.10) in small rural areas, and 1.09 (1.07-1.11) in large rural areas compared to those in 

urban areas.  Additionally, the risk of HF and MI in rural areas were 19% and 14% higher, 

respectively, compared to those in urban areas. The risk of mortality differed by rural/urban 

status with regards to sex, age, and race. 

Conclusion – In this Medicare population with AF, those in rural areas had modestly higher 

risk of cardiovascular outcomes and death compared to those in urban areas. Further research 

is needed to identify ways to intervene to reduce adverse outcomes in AF patients in rural 

areas.  

 

15.2. INTRODUCTION 

The prevalence of atrial fibrillation (AF) increases with age, from 0.1% among 

people younger than 55 years, a doubling with each successive decade, and exceeding 20% by 
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age 80 years.2, 3, 40 AF is associated with increased risk of subsequent major cardiovascular 

conditions including stroke,4   myocardial infarction (MI)5, 106 and heart failure (HF).80, 107 

Furthermore, AF independently increases the risk of mortality, with the relative risk being 

highest during the first year after AF manifests.6, 107, 128, 129  

There are nearly 60 million people (19% of the population) living in rural areas 

according to the US Census Bureau. Those in rural areas have higher rates of adverse 

cardiovascular risk factors such as cigarette smoking, hypertension, diabetes, and obesity.26-28 

There are known rural vs. urban disparities in cardiovascular disease (CVD) in the US, such 

as a 40% higher heart disease prevalence in rural areas and higher risk of stroke.29, 30 

However, it is unknown if CVD disparities exist in AF patients living in rural versus urban 

areas of the US. Using a sample of Medicare beneficiaries, which included patient residential 

location, we compared the rates of adverse outcomes in AF patients living in rural vs. urban 

areas of the US from 2011-2016.  

15.3. METHODS 

Study population 

Using a 20% sample of Medicare beneficiaries, we conducted a retrospective 

longitudinal cohort study using claims data from 2011-2016. We limited the cohort to 

beneficiaries receiving fee-for-service Medicare who were 65 years or older living in the US, 

and enrolled in a stand-alone Part D prescription drug plan. We included those continuously 

enrolled in traditional fee-for-service Medicare Parts A/B/D without supplemental coverage 

for at least 90 days during 2011-2016. We required at least the first 90 days of a beneficiaries’ 

follow-up time to be free of AF diagnosis codes and anticoagulation codes. This 90 day run-in 

period was used to capture patient health information and comorbidities. This also allowed us 

to identify incident AF events and to capture the first anticoagulation prescription following 

an AF event. If a beneficiary enrolled in supplemental coverage we censored that individual at 

the time of supplemental enrollment. For this analysis, we required at least a 1-day follow-up 

period after AF diagnosis in order to assess outcomes that occurred beyond an inpatient 

hospitalization or outpatient diagnosis. Additionally, we excluded patients on oral 

anticoagulation prior to their AF event as that could be in indicator this was not an incident 

AF case, or that these agents were prescribed for other conditions (e.g., venous 

thromboembolism). 

The initial sample included 910,649 AF patients aged 65 to 112 years. The exclusion 

flow chart is depicted in Figure 15.1. We excluded those with an AF diagnosis or prescription 

fill for an anticoagulant during the first 90 days of enrollment, and those on anticoagulants 
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prior to their first AF event (n=448,691), those who initiated edoxaban during the study 

period (due to small numbers; n=296), those with less than 1 day of follow-up (16,901), and 

those with a missing zip code or those with a zip code in a US territory (n=878). Our sample 

eligible for matching was 443,703 and for the comparative analyses, 197,931 of those were 

successfully matched.  

Ascertainment of AF Patients 

This analysis included patients age 65+ with at least one inpatient claim for AF or 2 

outpatient claims for AF 7 to 365 days apart. AF claims were identified using International 

Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) diagnosis codes 

427.3, 427.31, and 427.32, and ICD-10-CM codes I48.x in any position, which is a standard 

definition used in claims analysis.45, 212 The validity of ICD-9-CM codes for the identification 

of AF has been well-established with a systematic review of studies showing a positive 

predicted value (PPV) of approximately 90% and a sensitivity of approximately 80%.213  We 

defined the diagnosis date as the earlier of 1) the earliest discharge date for an inpatient 

claims, or 2) the earliest service date of the outpatient or physician claim.  

Defining rural and urban beneficiaries 

We identified beneficiary residential zip code at the time of AF diagnosis. We 

mapped zip codes to Rural-Urban Communing Area (RUCA) codes, which are approximation 

codes developed by the University of Washington Research179 and commonly used to define 

rural and urban areas.180 RUCA codes combine standard Census definitions with area 

commuting behaviors to capture functional and work relationships between regions. We used 

a 4- category classification to access the rurality of beneficiaries:  urban (RUCA codes 1-3, 

4.1, 5.1, 7.1, 8.1, 10.1), large rural (RUCA codes 4.0, 4.2, 5.0, 5.2, 6.0, 6.1), small rural 

(RUCA codes 7.0, 7.2, 7.3, 7.4, 8.0, 8.2, 8.3, 8.4, 9.0, 9.1, 9.2) and isolated (RUCA codes 10, 

10.2, 10.3, 10.4, 10.5, 10.6).  

Ascertainment of outcomes 

We identified the following incident hospitalized outcomes in AF patients from 

inpatient claims using validated algorithms:267, 275, 276 1) ischemic stroke, 2) intracranial 

bleeding, 3) MI, 4) HF, and 5) gastrointestinal (GI) bleeding. Although oral anticoagulation in 

AF reduces the risk of ischemic stroke and systemic thromboembolism, this benefit is 

accompanied by an increased bleeding risk.116-120 Therefore GI bleeding is an important and 

non-trivial outcome to consider. A list of ICD-9-CM and ICD-10-CM codes used to define 

outcomes is provided in Table 15.3 (Supplementary Table 1), and consistent with validated 

algorithms, we identified incident outcomes using codes from the primary position, except for 
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MI, which could be listed in the primary or secondary position.267, 275, 276  Additionally, we 

defined all-cause mortality as an outcome. Medicare links beneficiary records to the National 

Death Index, and we used the date of death obtained from the death certificate.  

Covariates  

We identified pre-determined covariates prevalent at the time of AF diagnosis using 

Medicare inpatient, outpatient, carrier, and pharmacy claims using validated published 

algorithms. 120, 267, 268  Race was self-reported at time of enrollment and we categorized it into 

race categories of white, black, and other/unknown (due to small numbers). We included the 

following comorbidities: prior ischemic stroke/transient ischemic attack(TIA), hemorrhagic 

stroke, heart failure, myocardial infarction, hypertension, diabetes, peripheral arterial disease, 

liver disease, kidney disease, chronic pulmonary disease, malignancies (except malignant skin 

neoplasm), metastatic cancer, history of bleeding, hematological disorders (anemia, 

coagulation defects), dementia, depression, and alcohol abuse.267, 268 ICD codes for the 

comorbidity variables are listed in Table 15.4 (Supplemental Table 2). We captured the 

presence of prescription fills for the following medications: clopidogrel, angiotensin-

converting enzyme inhibitors, angiotensin receptor blockers, beta-blockers, calcium channel 

blockers, anti-arrhythmic agents, and statins. We identified filled prescriptions initiated for 

oral anticoagulation and beneficiaries were assigned to the first anticoagulant filled, if any, 

following their first AF claim. We included prescriptions for warfarin and the direct oral 

anticoagulants (DOACs) consisting of dabigatran, rivaroxaban, and apixaban. We excluded 

initiators of the DOAC edoxaban due to small numbers. We calculated the CHA2DS2-VASc 

score269 at the date of AF and it consisted of congestive heart failure, hypertension, age (1 

point for age 65-74; 2 points for ≥ 75), diabetes, prior stroke or TIA (2 points), vascular 

disease, and female sex. We calculated the HAS-BLED score122 using the variables of 

hypertension, abnormal renal/liver function, stroke, bleeding history or disposition, elderly 

(age>65) and drugs/alcohol concomitantly; the variable International Normalized Ratio (INR) 

normally included in the HAS-BLED score was not available for this cohort. We used 

Medicare carrier claims to identify provider specialty at outpatient visits. We classified 

beneficiaries who saw a cardiology provider within a predetermined period (30 days prior to 

or 90 days after AF diagnosis) as the cardiology group, while patients seen exclusively by 

internal medicine, family practice, medical doctor, or unspecified multispecialty group were 

classified as primary care. Patients seen by a cardiologist were included in the cardiology 

provider group, regardless of a primary care visit.  

Statistical analysis 
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We used multivariable logistic regression to predict the probability of living in each 

rural area (vs the urban area) based on the covariates listed above and created a propensity 

score. To compare the rates of adverse outcomes, we matched beneficiaries based on AF date 

(± 30 days), age (± 1 years), sex, CHA2DS2-VASc score (± 0), and by propensity score (± 

0.004). One beneficiary from each of the 3 rural categories was matched with up to 2 

beneficiaries in the urban category using a greedy matching algorithm. One quarter of a 

standard deviation of the propensity score was used a caliper for matching. Baseline 

characteristics at the time of AF diagnosis were assessed in the 4 matched groups. 

We used Cox proportional hazards models with time to event to assess the risk of 

each of the 6 outcomes in those in rural areas compared to those in urban areas. Time to event 

was calculated as the time in days from AF diagnosis date to each incident outcome, health 

plan disenrollment or enrollment in supplemental insurance, death, or the end of study follow-

up (2016), whichever occurred first. Those with prevalent conditions for each outcome were 

not included in the analysis for the incident outcome. For example, a patient with an ischemic 

stroke prior to AF was not included in the analysis for incident ischemic stroke, but could be 

included in the analysis for incident MI, provided they did not have prevalent MI. Thus, 

outcomes are incident post-AF events. For each outcome, we ran 2 models. Model 1 adjusted 

for age (continuous), race (white, black, other), sex, CHA2DS2-VASc score, HAS-BLED 

score, specialist care (cardiology: yes/no), and the propensity score. In Model 2, we 

additionally adjusted for anticoagulant use (none, warfarin, DOAC) as a time-dependent 

variable.  

We examined effect modification of the rural/urban association by sex, race, and age 

(<79, ≥79) by adding a multiplicative interaction term in the model. We additionally split 

follow-up time into early vs. late (<90 days, ≥90 days) to determine if the rates of outcomes 

occurring soon after AF differed by rurality.  

We ran several sensitivity analyses.  The first was limited to AF patients who qualify 

for oral anticoagulants according to the guidelines (CHA2DS2-VASc scores ≥ 2); due to the 

advanced age and poly-comorbidity of Medicare patients, we had to exclude a small 

percentage (<2% of beneficiaries) from this analysis. We conducted an additional analysis 

requiring a 180-day run-in time instead of 90 days.  

15.4. RESULTS 

After the initial exclusion criteria were applied, our study included 443,703 AF 

patients (mean age 79 ± 8 years), of which 82% lived in an urban area, 9% in a large rural 

area, 5% in a small rural area, and 4% in an isolated rural area. After matching, 197,931 AF 



125 
 
 

patients remained in our analyses. Characteristics of the matched cohort are listed in Table 

15.1.  Beneficiaries were well-matched with similar characteristics across categories, although 

those in isolated rural areas were more likely to be white race, less likely to have cardiology 

involvement, and more likely to be on warfarin compared to those in urban areas.  

The number of adverse outcomes, the unadjusted incidence rate, and the associations 

between rural vs. urban beneficiaries are listed in Table 15.2. During a mean follow-up time 

of 2.1 ± 1.7 years after AF diagnosis, 2.1% of the matched cohort had an incident stroke, 

0.41% had an incident intracranial bleed, 4.3% had an incident MI, 3.5% had incident HF, 

3.5% had an incident GI bleed, and 35% died. Unadjusted incidence rates for mortality were 

higher in rural areas compared to urban; those in rural areas had 6 -16 more deaths per 1000 

person-years compared to those in urban areas. The unadjusted incidence rates were mostly 

similar between rural and urban groups for the other outcomes.  Compared to those in urban 

areas, those in isolated areas had increased relative risks of mortality (HR=1.04, 95% CI = 

1.01-1.07), MI (HR=1.18, 95% CI = 1.09-1.27), and HF (HR=1.18, 95% CI = 1.11-1.25). 

Additional adjustment by time-varying anticoagulant use did not change the associations. 

Those in small rural and large rural areas also had an increased risk of mortality, MI, and HF 

compared to those in urban areas. The risk of mortality was highest in the large rural group 

(HR=1.09 (95% CI: 1.07-1.11) compared to the urban group. The risk of stroke was higher in 

those in small rural areas compared to those in urban areas (HR=1.10, 95% CI =1.02-1.19), 

and this association remained significant after adjustment for anticoagulant use. The risk of 

stroke in the other rural areas was not significantly higher than the urban area. We did not 

detect any rural-urban differences in the risk of intracranial bleeding or GI bleeding.  

Results for each outcome were similar across all rural areas and therefore we 

combined those in the 3 rural areas into 1 group. We then assessed for rural vs. urban 

interactions for each outcome by sex, race, age, and early vs. late follow-up time. Of the 

outcomes, the only interactions that were significant were for mortality, and these are 

depicted in Figure 15.2. The hazard ratio of mortality for rural vs. urban areas was higher in 

men than in women (HR of 1.12 vs. 1.05; p for interaction = 0.0001), higher in those age < 79 

compared to those ≥ 79 (HR of 1.12 vs. 1.05; p for interaction = 0.002), and in those in the 

other race category than in blacks or whites (HR of 1.24 for other, 1.05 for blacks and 1.07 

for whites; p for interaction = 0.003).  

In sensitivity analyses, associations remained nearly identical when we limited the 

analysis to those with a CHA2DS2-VASc scores ≥ 2, and also when we required a 180 day 

run-in period instead of 90 days (results are not shown).   
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15.5. DISCUSSION 

In this retrospective longitudinal cohort of AF Medicare patients, we found that disparities in 

mortality and cardiovascular outcomes exist in rural areas versus urban areas. Specifically, 

the risks of mortality, MI, and HF were higher in rural areas, and the risk of stroke was higher 

for those in in small rural areas compared to urban areas. These associations were modest, 

although across a large population these disparities amounts to a large number of events. 

There were urban-rural differences in mortality where rural men had a higher risk than urban 

men, rural individuals aged 65-79 had a higher risk than urban individuals in the same age 

range, and those with a race other than white or black and living in a rural area had a higher 

risk than those of other race living in urban areas.  

Few research studies have been conducted regarding rural vs. urban disparities in 

outcomes in AF patients in the US. A recent paper found in-hospital mortality of AF patients 

is higher in rural hospitals than in urban hospitals, and these results persisted across sex, race, 

and region.172 However, this study looked at the hospital location rather than the patient 

location, and only focused on in-hospital mortality. Our study did not measure in-hospital 

mortality, but rather we required at least 1 day of follow-up in order to assess outcomes post-

AF diagnosis. Nevertheless, our findings were consistent in that there was a higher risk of 

mortality of AF patients in rural areas compared to urban areas.  Our results for the outcome 

of stroke were similar to a Canadian study that reported patients in rural areas were slightly 

more likely to fill a prescription for warfarin, but they experienced similar stroke and major 

bleeding rates to their urban counterparts.277  

Our study adds to the literature by showing that despite adjustment for 

anticoagulation treatment, cardiology involvement (vs. primary care), and a plethora of co-

morbidities, disparities in outcomes exist in rural compared with urban AF patients. Although 

disparities of CVD exist in the general US population, those disparities are driven mainly by 

race and socioeconomic status.166 We observed those with a race other than white or black 

and living in a rural area had a higher risk than those of other race living in urban areas, and 

efforts to reduce the risk in this population should be a priority.  

This study has several limitations which should be considered.  First, this analysis is 

limited to fee-for-service Medicare beneficiaries with a stand-alone Part D plan, and this is a 

subset of all Medicare beneficiaries that is known to have a lower SES and more 

comorbidities than those with supplemental Part D coverage. Therefore, our results may not 
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be generalizable to the entire Medicare (65+) population. Second, unmeasured confounding is 

a known limitation in observational studies using administrative claims data, although we 

attempted to account for many measured patient characteristics in our multivariable model 

account for differences in rural / urban patients, unmeasured factors (eg, socioeconomic 

status, distance from a clinic) possibly influenced our findings.  To further account for 

confounding, we adjusted for many pre-defined variables and created a propensity score to 

match groups and make them comparable. Therefore, our results only apply to the matched 

population, which may be different from the entire treated population. Third, misclassification 

is possible when using ICD codes. Fourth, we did not have cause of death data and therefore 

deaths specifically from CVD events such as stroke and MI were not counted as CVD events. 

Lastly, we only have information on prescriptions filled by the patients, not on the medication 

prescribed by the provider or compliance with therapy, and we did not report medication 

adherence. Despite these limitations, our study has numerous key strengths. The Medicare 

data contains individual ZIP code, which allows us to compare rural status on a patient level, 

which has not been done in other claims-based datasets. Using this large sample of Medicare 

data allowed us to identify important differences between rural and urban populations. 

In conclusion, in this Medicare population with AF, those in rural areas had modestly 

higher risks of mortality and cardiovascular outcomes compared to those in urban areas. 

Further research is needed to identify ways to intervene to reduce adverse outcomes in AF 

patients in rural areas. 
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Table 15.1. Characteristics at the time of atrial fibrillation diagnosis by urban / rural 
classification for the entire cohort, Medicare, 2011-2016 

 Urban 
(n=124,322) 

Large Rural 
(n=35,983) 

Small Rural 
(n=20,859) 

Isolated Rural 
(n=16,767) 

Age, years 78.8 ± 8.1 78.7 ± 8.2 78.9 ± 8.1 78.8 ± 8.2 
Female, % 55 56 56 54 
White race, % 84 91 92 94 
Black race, % 7 4 4 2 
Other race, % 9 4 4 4 
CHA2DS2-VASC score 4.8 ± 1.8 4.9 ± 1.8 4.9 ± 1.8 4.8 ± 1.8 
HAS-BLED score 2.8 ± 1.1 2.8 ± 1.1 2.8 ± 1.1 2.8 ± 1.1 
Cardiology involvement 85 77 75 74 
Comorbidities, %     
Hypertension 88 88 88 87 
Diabetes 40 39 40 39 
Myocardial infarction 12 13 14 13 
Heart failure 36 36 38 37 
Ischemic stroke/TIA 31 31 31 30 
Peripheral artery disease 32 32 32 30 
Hemorrhagic stroke 2 2 2 2 
Dementia 7 8 7 6 

Renal Disease 24 24 24 24 

Chronic pulmonary disease 34 34 36 34 

Liver disease 8 8 7 7 

Hematological disorders 22 23 22 20 

Gastrointestinal bleed 34 34 33 32 

Other bleed 43 43 43 41 

Malignancy 20 19 19 19 

Metastatic cancer 4 4 4 4 

Depression 20 21 21 20 

Alcohol abuse 1 1 1 1 

Medications, %     

Clopidogrel 14 14 14 14 
Angiotensin-converting 
enzyme inhibitors 27 28 28 28 

Angiotensin receptor blockers 14 14 13 12 

Beta-blockers 35 35 36 36 

Calcium channel blockers 28 28 28 27 

Anti-arrhythmic agents 2 2 2 3 

Statins 41 40 40 40 
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Oral Anticoagulants, %     

Warfarin 19 21 22 24 

Dabigatran 4 4 4 4 

Rivaroxaban 9 8 8 8 

Apixaban 10 9 8 8 
   *Values correspond to mean ± standard deviation or percentage.  
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Table 15.2. Associations of outcomes comparing rural / urban classification of matched atrial fibrillation patients, Medicare, 2011-2016   
Outcomes Isolated (n=16,767) Urban (n=32,909) Hazard Ratio 

(95% CI)a 
Hazard Ratio 
(95% CI)b  # Events IR (95% CI) # Events IR (95% CI) 

Mortality 5875 (35%) 164 (160-168) 11,018 (33%) 158 (155-161) 1.04 (1.01-1.07) 1.04 (1.01-1.07) 
Ischemic stroke 352 (2.2%) 10 (9.1-11) 704 (2.2%) 10 (9.7-11) 1.02 (0.90-1.16) 1.01 (0.89-1.15) 
Intracranial bleeding 70 (0.42%) 2.1 (1.6-2.5) 146 (0.44%) 2.1 (1.8-2.5) 0.98 (0.73-1.31) 0.93 (0.70-1.25) 
Myocardial Infarction  735 (4.5%) 21 (19-22) 1347 (4.2%) 20 (19-21) 1.12 (1.02-1.23) 1.11 (1.01-1.22) 
Heart Failure 607 (3.9%) 18 (17-20) 1005 (3.3%) 16 (14-17) 1.24 (1.12-1.37) 1.20 (1.08-1.33) 
GI bleeding 394 (2.4%) 11 (10-13) 771 (2.4%) 11 (10-12) 1.03 (0.91-1.16) 0.99 (0.88-1.13) 
 
 Small Rural (n=20,859) Urban (n=40,806) Hazard Ratio 

(95% CI)a 
Hazard Ratio 
(95% CI)b  # Events IR (95% CI) # Events IR (95% CI) 

Mortality 7693 (37%) 176 (172-180) 13,873 (34%) 161 (159-164) 1.08 (1.05-1.11) 1.08 (1.05-1.11) 
Ischemic stroke 460 (2.3%) 11 (10-12) 822 (2.1%) 10 (8.9-10) 1.13 (1.01-1.27) 1.13 (1.01-1.27) 
Intracranial bleeding 64 (0.31%) 1.5 (1.1-1.9) 164 (0.40%) 1.9 (1.6-2.2) 0.80 (0.60-1.08) 0.80 (0.60-1.07) 
Myocardial Infarction  901 (4.4%) 22 (20-23) 1714 (4.3%) 21 (20-22) 1.09 (1.01-1.19) 1.10 (1.01-1.19) 
Heart Failure 780 (4.0%) 20 (18-21) 1323 (3.5%) 17 (16-18) 1.21 (1.11-1.33) 1.19 (1.09-1.30) 
GI bleeding 488 (2.4%) 12 (11-13) 952 (2.4%) 11 (10-22) 1.05 (0.94-1.17) 1.03 (0.92-1.15) 
 
 Large Rural (n=35,983) Urban (n=69,633) Hazard Ratio 

(95% CI)a 
Hazard Ratio 
(95% CI)b  # Events IR (95% CI) # Events IR (95% CI) 

Mortality 13,192 (37%) 177 (174-180) 23,569 (34%) 161 (159-163) 1.09 (1.07-1.11) 1.09 (1.07-1.11) 
Ischemic stroke 692 (2.0%) 9.6 (8.9-10) 1417 (2.1%) 9.7 (9.2-10) 0.97 (0.89-1.07) 0.97 (0.89-1.07) 
Intracranial bleeding 155 (0.43%) 2.1 (1.8-2.4) 286 (0.41%) 2.0 (1.7-2.2) 1.09 (0.90-1.33) 1.07 (0.88-1.31) 
Myocardial Infarction  1655 (4.7%) 23 (22-24) 2887 (4.2%) 21 (20-21) 1.17 (1.11-1.25) 1.18 (1.11-1.25) 
Heart Failure 1253 (3.7%) 18 (17-19) 2172 (3.3%) 16 (15-17) 1.17 (1.09-1.26) 1.16 (1.08-1.24) 
GI bleeding 840 (2.4%) 12 (11-12) 1666 (2.4%) 12 (11-12) 1.02 (0.94-1.11) 1.01 (0.93-1.09) 
IR incidence rate, CI confidence interval 
*Incidence rate is per 1000 person-years 
aAdjusted for age, race, sex, CHA2DS2-VASc score, HAS-BLED score, cardiology provider, and propensity score   

bAdditionally adjusted for anticoagulation use as a time-dependent variable 
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Figure 15.1. Analysis flowchart of the 20% sample of traditional fee-for-service Medicare 

Beneficiaries, 2011-2016.  
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Figure 15.2. Hazard ratio of mortality in rural vs. urban areas, stratified by sex, age, and race, 

Medicare, 2011-2016 
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Table 15.3. Supplemental Table 1. ICD codes for outcomes 

Condition  ICD-9-CM codes ICD-10-CM codes 

Ischemic stroke 434, 436 I63, I66, I67.89 

Intracranial bleeding 430, 431 I60, I61 

Myocardial infarction 410 (except 410.x2) I21, I22 (except .A1) 

Heart Failure 402.x1, 404.x1, 404.x3, 428 I11.0, I13.0, I13.2, I50 

Gastrointestinal 

bleeding 

455.2, 455.5, 455.8, 456.0, 

456.20, 530.7, 530.82, 531.0, 

531.2, 531.4, 531.6, 532.0, 

532.2, 532.4, 532.6, 533.0, 

533.2, 533.4, 533.6, 534.0, 

534.2, 534.4, 534.6, 535.01, 

535.11, 535.21, 535.31, 

535.41, 535.51, 535.61, 

537.83, 562.02, 562.03, 

562.12, 562.13, 568.81, 569.3, 

569.85, 578.0, 578.1, 578.9 

K25.0,K25.2, K25.4, K25.6, 

K26.0, K26.2, K26.4, K26.6, 

K27.0, K27.2, K27.4, K27.6, 

K28.0, K28.2, K28.4, K28.6, 

K22.6, K22.8, K92.0, K64.8, 

K64.4, K64.8, K66.1, K62.5, 

K92.1, K92.2, K29.01, 

K29.41, K29.51, K29.61, 

K29.21,  K29.71, K29.91, 

K29.81, K31.811, I85.01, 

I85.11, K57.11, K57.13, 

K57.31, K57.33, K55.21 

Codes required to be in the 1st position, except for MI, where they were required in 1st or 2nd 

position. *ICD-9-CM comorbidity codes were translated to ICD-10-CM codes using cross-

walks, with review of face-validity 
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Table 15.4. Supplementary Table 2. ICD codes used to define pre-defined comorbidities.  

Condition ICD-9-CM codes ICD-10-CM codes 

Alcoholism 

265.2, 291.1, 291.2, 291.3, 
291.5, 291.6, 291.7, 291.8, 
291.9, 303.0, 303.9, 305.0, 
357.5, 425.5, 535.3, 571.0, 
571.1, 571.2, 571.3, 980, 
V11.3 

F10, E52, G62.1, I42.6, 
K29.2, K70.0, K70.3, K70.9, 
T51.x, Z50.2, Z71.4, Z72.1 

Chronic pulmonary 
disease 490-492, 494, 496 J40-J44, J47 

Dementia 290, 294.1, 331.2 
F00.x-F03.x, F05.1, G30, 
G31.1 
 

Depression 296.2, 296.3, 296.5, 300.4, 
309, 311 

F20.4, F31.3, F31.5, F32.x, 
F33.x, F34.1, F41.2, F43.2 

Diabetes 250 
E10.0-E10.9, E11.0-E11.9, 
E12.0-E12.9, E13.0-E13.9, 
E14.0-E14.9 

Gastrointestinal 
bleeding 

455.2, 455.5, 455.8, 456.0, 
456.20, 530.7, 530.82, 531.0, 
531.2, 531.4, 531.6, 532.0, 
532.2, 532.4, 532.6, 533.0, 
533.2, 533.4, 533.6, 534.0, 
534.2, 534.4, 534.6, 535.01, 
535.11, 535.21, 535.31, 
535.41, 535.51, 535.61, 
537.83, 562.02, 562.03, 
562.12, 562.13, 568.81, 
569.3, 569.85, 578.0, 578.1, 
578.9 

K25.0,K25.2, K25.4, K25.6, 
K26.0, K26.2, K26.4, K26.6, 
K27.0, K27.2, K27.4, K27.6, 
K28.0, K28.2, K28.4, K28.6, 
K22.6, K22.8, K92.0, K64.8, 
K64.4, K64.8, K66.1, K62.5, 
K92.1, K92.2, K29.01, 
K29.41, K29.51, K29.61, 
K29.21,  K29.71, K29.91, 
K29.81, K31.811, I85.01, 
I85.11, K57.11, K57.13, 
K57.31, K57.33, K55.21 

Heart failure 

398.91, 402.01, 402.11, 
402.91, 404.01, 404.03, 
404.11, 404.13, 404.91, 
404.93, 425.4, 425.9, 428 

I09.9, I11.0, I13.0, I13.2, 
I25.5, I42.0, I42.5-I42.9, 
I43.x, I50.x, P29.0 
 

Hematological 
disorders 
(Coagulopathy, 
anemia) 

280, 281, 286, 287.1, 287.3, 
287.4, 287.5 

D65-D68, D69.1, D69.3-
D69.6 

Hemorrhagic stroke 430, 431, 432 I60-I62 
Hypertension 401, 402, 403, 404, 405 I10.x, I11.x-I13.x, I15.x 
Ischemic stroke / TIA 362.34, 433-438 G45-G46, I63-I69, H34.0  

Kidney disease 

403.01, 403.11, 403.91, 
404.02, 404.03, 404.12, 
404.13, 404.92, 404.93, 582, 
583.0, 583.1, 583.2, 583.3, 
583.4, 583.5, 583.6, 583.7, 
585, 586, 588.0, V42.0, V45.1, 
V56 

I12.0, I13.1, N03.2-N03.7, 
N05.2-N05.7, N18.x, N19.x, 
N25.0, Z49.0-Z49.2, Z94.0, 
Z99.2 
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Liver disease 

070.22, 070.23, 070.32, 
070.33, 070.44, 070.54, 
070.6, 070.9, 456.0, 456.1, 
456.2, 570, 571, 572.2, 572.3, 
572.4, 572.5, 572.6, 572.7, 
572.8, 573.3, 573.4, 573.8, 
573.9, V42.7 

B18.x, K70.0-K70.3, K70.9, 
K71.3-K71.5, K71.7, K73.x, 
K74.x, K76.0, K76.2-K76.4, 
K76.8, K76.9, Z94.4, I85.0, 
I85.9, I86.4, I98.2, K70.4, 
K71.1, K72.1, K72.9, K76.5, 
K76.6, K76.7 

Malignancy  140-172, 174-195, 200-208, 
238.6 

C00-C26, C30-C34, C37-C41, 
C45-C58, C60-C76, C81-C85, 
C90-C97, C43-C88 
 

Metastatic cancer 196-199  C77-C80 
Myocardial infarction 410, 412 I21, I22, I25.2 

Other bleeding 
423.0, 459.0, 568.81, 593.81, 
599.7, 623.8, 626.6, 719.1, 
784.7, 784.8, 786.3 

N92.0, N92.1, I62.1, I62.0, 
I62.9, I31.2, K66.1, M25.0, 
R04.0, R04.1, R04.2, D50.0, 
D64.9, R79.1, R31, R58, D62 

Peripheral artery 
disease 

093.0, 437.3, 440, 441, 443.x, 
471, 557.1, 557.9, V434 
    

I70, I71, I73.1, I73.8, I73.9, 
I77.1, I79.0, I79.2, K55.1, 
K55.8, K55.9, Z95.8, Z95.9 

*ICD-9-CM comorbidity codes were translated to ICD-10-CM codes using cross-walks, with 

review of face-validity 
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16. SUMMARY 
The overarching aims of this dissertation were to assess the relation of proteomics 

and incident AF, to develop a series of risk prediction scores better calibrated to older adults, 

and to determine if disparities exist in AF treatment and outcomes in rural versus urban areas 

of the US.  

Each of these manuscripts contributed to the AF literature by addressing an important 

knowledge gap of public health significance. In the first manuscript, our objective was to 

make use of the newly-measured proteomic markers in ARIC and assess their relationship to 

incident AF. In this population-based sample of older adults, we found NT-proBNP was the 

protein most strongly associated with incident AF risk. For every doubling of NT-proBNP the 

risk of incident AF was 1.82 times higher (95%CI: 1.68-1.98). In addition to NT-proBNP, 

after further adjustment for eGFR and medication use, we found 16 other proteins remained 

significantly associated with incident AF. Through pathway analysis, we explored 

mechanistic pathways of AF development. Our results offer new observations into the 

biological changes that may precede AF onset and provide insight into mechanistic pathways 

of AF development.  If replicated further, these novel proteins might be worth evaluating for 

possible pharmacologic targets in AF. 

In the second manuscript, our objectives were to improve the discrimination and 

calibration of AF risk prediction models, and in the process, consider novel markers such as 

proteomics for inclusion. Using a population-based sample of older adults, we developed a 

series of models from simple to involved that selected variables predicting incident AF within 

a 5 year period. Our final simple prediction model included 8 clinical variables and had  

moderate discrimination (c-statistic 0.697; 95% CI 0.671-0.723). The addition of blood 

biomarkers plus 16 proteins from proteomic analysis greatly improved the discrimination (c-

statistic 0.795; 95% CI 0.773-0.816) while still showing excellent calibration (χ2 = 7.6; P = 

0.58). Addition of abnormal P wave axis, left atrial diameter, and septal E/e prime moderately 

increased the c-statistic to 0.806 (95% CI: 0.785-0.827) in the full-developed model that 

contained 30 variables total. Our series of developed AF prediction models are better targeted 

and calibrated to older populations. The addition of biomarkers, including proteomics data, 

improved prediction, suggesting it may be worthwhile to explore developing cost-effective 

and time-efficient ways to quantify the predictive protein biomarkers.  

Despite rural disparities of CVD, there is little known regarding the anticoagulation 

rates of AF patients in rural areas, and if there are differences in the rates of adverse outcomes 

of AF patients in rural areas versus urban areas. The objectives of the third and fourth 
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manuscripts were to use Medicare data to fill in these knowledge gaps. In the third 

manuscript, we examined the initiation of anticoagulation use and found the overall 

percentage of AF patients who initiated an anticoagulant rose from 34% in 2011 to 53% in 

2016, driven by the uptake of DOACs. There were clear gradients of anticoagulant use by 

rurality. In a multivariable-adjusted analysis of beneficiaries matched by rural / urban 

category, those in rural areas were more likely to initiate an anticoagulant compared to those 

in urban areas. However, those in rural areas were less likely to receive a DOAC; those in 

isolated areas were 18% less likely (95% CI = 15 to 22%) to initiate a DOAC compared to 

those in urban areas. In the fourth manuscript, we compared the risks of adverse events in 

newly-diagnosed AF patients. We found that those in rural areas had modestly higher risk of 

MI, HF and mortality compared to those in urban areas. Collectively, increasing the 

percentages of DOAC use in AF patients living in rural areas may reduce the burdens of 

stroke and healthcare utilization of older adults in rural areas. Further research is needed to 

identify ways to intervene to reduce adverse outcomes in AF patients in rural areas.  
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