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Abstract 

Kail P Laughlin 

Words: 256  

This thesis examines CubeSat attitude determination using the Earth’s 

magnetic field (EMF) vector aiding a low-cost IMU. CubeSats provide relatively 

cost-effective methods of performing scientific research in orbital environments. 

However, to adequately perform this research, knowledge of the CubeSat’s 

orientation in 3D space (attitude) is often required. To that end, the design of a 

reliable attitude determination (AD) system on-board a CubeSat is a critical aspect 

for many mission designers. As a primary goal of CubeSat design is to ensure 

science objectives are met while minimizing, cost, mass, and volume, this thesis 

investigates a minimal sensor approach to CubeSat AD. Specifically, an inertial 

based AD scheme reliant on the use of an inertial measurement unit (IMU) aided 

only by vector measurements of the Earth’s magnetic field (EMF) is developed. An 

extended Kalman filter (EKF) approach to recursively estimate the attitude on-

orbit using an IMU and a three-axis magnetometer (TAM) is detailed. Additionally, 

we describe a test to assess the stochastic observability of the EKF developed. We 

present simulation results showcasing the performance of the AD system for 

multiple orbital inclinations and initial attitude errors. Moreover, we discuss 

conditions in which the EMF vector can and cannot be effectively utilized as the 

sole aiding measurement, and we evaluate the stochastic observability of the 

linearized discrete time system. We extend the AD system discussed here to two 

current University of Minnesota Small Satellite Research Lab CubeSat designs: 

IMPRESS and EXACT. We describe future work for the implementation of the 

AD system and potential improvements to the EKF design.    
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𝑆𝐹  Matrix of scale factor errors 
𝑠𝑓𝑔𝑖   Scale factor on the 𝑖𝑡ℎ axis of the gyro 

𝑠𝑓̅̅ ̅  Vector of scale factors 

  

𝐹𝑘  Discrete time state mapping matrix 

𝐿𝑘  Discrete time noise mapping matrix 

𝛼, 𝛽, 𝛾  Tuning parameters  

𝐻𝑘  Discrete time measurement matrix 

Φ𝑘  State transition matrix 

Γ𝑘  Linearized discrete time noise mapping  

𝑄𝑘  Discrete time process noise covariance matrix 

𝑄𝑤,𝑘  Modified discrete time process noise covariance matrix 

𝑅𝑘  Discrete time measurement noise covariance matrix 

𝑃  State covariance matrix 
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𝑃−  A priori state covariance matrix 

𝑃+  A posteriori state covariance matrix 

𝐾𝑘  Discrete time Kalman gain matrix 

  

𝑤̅𝑘  Discrete time process noise vector 

𝑣̅𝑘  Discrete time measurement noise vector 

𝑥̅𝑘  Discrete time state vector 

𝑥̂̅𝑘
−  A priori state estimate 

𝑥̂̅𝑘
+  A posteriori state estimate 

𝑦̅𝑘  Discrete time state measurement 
𝜎𝑠𝑓  Standard deviation on gyro scale factor process noise 

𝜎𝐼𝑅𝐵  Standard deviation of gyro in-run bias stability process noise 

𝜎𝑏  
Standard deviation on the additive noise in the gyro in-run 

bias process 
𝜎𝑔  Standard deviation on the gyro output noise 
𝜎𝑚𝑎𝑔  Standard deviation on the magnetometer output noise 

𝜅  Matrix condition number 

  

𝛿𝑧̅𝑆  Extended Kalman filter measurement error vector 

𝛿𝑥̅  Error state vector 

𝛿𝑏̅𝑔  Gyro bias error vector 

𝛿𝑞̅𝑆𝑆̂  
Quaternion error vector between estimate body frame ℱ𝑆̂ and 

true body frame ℱ𝑆 

𝛿𝑠𝑓̅̅ ̅  Scale factor error vector 

𝛿𝜔̅𝑆𝐸   Angular velocity error vector 

𝛿𝜓  Yaw error, 3-2-1 Euler angles 

𝛿𝜃  Pitch error, 3-2-1 Euler angles 

𝛿𝜙  Roll error, 3-2-1 Euler angles 

  

𝑚̅𝑚  EMF vector represented in magnetometer sensor frame 

𝑏̅𝑚
ℎ𝑖   Magnetometer hard iron biases 

𝑛̅𝑚  Magnetometer output noise vector 
𝐶𝑠𝑓,𝑚  Matrix of magnetometer scale factor errors 

𝐶𝑠𝑖  Matrix of magnetometer soft iron biases 

𝒪𝑘   Deterministic observability matrix 

Λ𝑘  Stochastic observability Riccati matrix 

𝑄̅𝑘  Stochastic observability Riccati matrix 
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𝐼𝑆  Moment of inertia tensor of CubeSat, principal axes   

𝑖  Orbital inclination  
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1 Introduction 

1.1 Motivation 

CubeSats provide a cost-effective, standardized platform for the 

development and application of space-science focused missions and research [1]. 

Within the past decade, the CubeSat architecture has been adopted and used 

widely as a testbed by many research institutions and universities [2] [3] [4], due 

to accessibility and relative ease of use. As the use of this architecture expands, so 

do the developments of the integrated systems on-board the CubeSat. Typically, 

these systems consist of the scientific payload coupled with Commercial Off-The-

Shelf (COTS) [5] [6] sensors, actuators, and avionics required to ensure proper 

mission objectives are achieved on-orbit [7]. Effectively designing subsystems while 

simultaneously minimizing mass and cost of each subsystem is often the main 

design challenge that is faced by university-based researchers. One such subsystem, 

the Attitude Determination and Control System (ADCS), is generally one of the 

more massive and costly subsystems as it can include multiple COTS sensors and 

actuators [7]. To this end, optimizing the ADCS for low mass and cost is a key 

trade study within the design of CubeSats.  

 

Figure 1.1 Standard CubeSat designs based around the 1U form factor [1]. 
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The ADCS can be split into two components: (1) attitude determination 

(AD) and (2) the control system (CS). AD is responsible for accurately determining 

an estimate of how the spacecraft is oriented in 3-D space, while the CS is 

responsible for changing that orientation to a desired setpoint. This change in 

orientation is often coined as slew, and the speed at which the maneuver occurs is 

given as slew rate [8]. While not all CubeSats require active control, many need 

some form of attitude knowledge to collect and resolve scientific data. Additionally, 

the accuracy required of this data coupled with operational slew rates drive the 

choice of hardware used within the system. A list of common ADCS hardware (not 

specific to CubeSats) is given in Table 1.1. 

Table 1.1 Common ADCS Hardware 

AD Hardware CS Hardware 

Sun Sensors Thrusters  

Star Trackers Magnetorquers  

Magnetometers Reaction Wheel Assemblies (RWA) 

Inertial Measurement Unit (IMU) Control Moment Gyros (CMGs) 

 

This thesis focuses solely on the AD portion of the ADCS, specifically in the 

development of a minimal sensor approach to determining a CubeSat’s attitude. 

The approach developed here will be utilized on two upcoming CubeSat missions, 

IMPRESS and EXACT, currently being developed by the University of 

Minnesota’s Small Satellite Research Lab. A description of each of these missions 

is given in the following sections. 
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1.1.1 IMPRESS  

IMPRESS (IMpulsive Phase Rapid Energetic Solar Spectrometer) is a 3U 

CubeSat with a sun-pointed spectrometer payload used to characterize hard X-ray 

emission from solar flares with high rate capability and high timing precision. 

IMPRESS is expected to launch in early 2022 and will measure solar flares in the 

rising phase of Solar Cycle 25, investigating the processes by which flares accelerate 

particles to high energies.  

Primary scientific objectives are (1) to investigate flare electron timescales 

by measuring short (<2 second) spikes in hard X-ray time profiles; (2) to 

investigate electron beaming in solar flares via stereoscopic hard X-ray directivity 

measurements; (3) in collaboration with new space-based instruments, to provide 

a complete assessment of flare-accelerated electron distributions from thermal to 

non-thermal energies; (4) to develop and demonstrate a high-energy radiation 

detector that can measure a vast range of brightness’s in solar flares, precipitating 

electron microbursts, and other astrophysical bursts without pileup or saturation.  

A Concept of Operations (CONOPS) diagram for can be seen in Figure 1.2. 

IMPRESS begins its mission with deployment via a standard Poly-Picosatellite 

Orbital Deployer (P-POD) ((1) in Figure 1.2). After P-POD ejection, IMPRESS 

will go through a start-sequence including any detumbling required ((2) in Figure 

1.2), followed by deployment of its solar panels ((3) in Figure 1.2). Radio link and 

sub-system powerup will also begin at this time. An attitude estimate required for 

solar observation will be obtained over the course of multiple orbits (more 

information given in Chapter 3). After an estimate is obtained, solar science will 
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begin ((4) in Figure 1.2), with periodic data downlinking occurring over the mission 

lifecycle ((5) in Figure 1.2).  

 

Figure 1.2 IMPRESS CONOPS. 

 

Once IMPRESS is in its primary mission attitude, the sun vector will be 

kept within a cone of half-angle of 25°. This requirement is discussed further in 

section 1.2. So long as the attitude is maintained within this cone, no control is 

implemented.  

1.1.2 EXACT 

EXACT (Experiment for X-ray Navigation, Characterization and Timing) 

is an identical CubeSat to IMPRESS. However, instead of pointing at the sun it 

will point at the Crab Pulsar within the Crab Nebula. The same payload on 

IMPRESS will be used, in this case, to observe x-ray emissions from the Crab 
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Pulsar. Its primary mission will be to test and validate new techniques for time-

synchronization across spacecraft. Specifically, this will be used to help develop 

and validate a version of X-ray navigation (XNAV) technology. A secondary 

mission of EXACT will be to measure X-ray photon energies and arrival times to 

study electron acceleration in solar flares, similar to IMPRESS.  

 

Figure 1.3 EXACT time synchronization experiment. 

 

Primary mission objectives of EXACT are (1) to accurately time tag 

incoming photons from astrophysical signals in order to get accurate Time 

Difference of Arrival (TDOA) information for use in XNAV calculations; (2) to 

validate the performance of a simple, inexpensive XNAV sensor; and (3) to measure 

its position in orbit so as to provide a reference for TDOA ranging measurements. 

Secondary scientific objectives are also present and are akin to the primary solar 

science objectives of IMPRESS.  
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The time synchronization experiment conducted by EXACT is given in 

Figure 1.3. TDOA ranging measurements are created by differencing the X-ray 

fluxes seen at ground stations and on-orbit. For the secondary scientific mission, 

the CONOPS follows that of IMPRESS given in Figure 1.2.  

1.2 Problem Statement 

As the nominal operational conditions for IMPRESS and EXACT require 

accurate pointing, an active ADCS is required. Specifically, IMPRESS and EXACT 

require celestial body of interest (sun, pulsar) pointing. As such, the primary 

problem is to develop an AD algorithm that meets the AD requirements of each 

mission. 

 

 

Figure 1.4 IMPRESS & EXACT pointing requirements. The target in the case of 

IMPRESS is the sun. In the case of EXACT, it is the Crab Pulsar. 
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Science objectives mandate that the payload of IMPRESS and EXACT be 

pointed within a half cone of 25° as seen in Figure 1.4.  This 25° error requirement 

is split up into two components: knowledge error (given as 𝜖) and control error 

(given as Δ). Knowledge error is error attributed to the AD portion of the ADCS, 

whereas control error is attributed to the CS portion. The combination of these 

two errors make up the total angular error allowed in the ADCS, which must 

remain less than 25°  for science objectives to be met. Specifically, derived 

requirements specify that 𝜖 ≤ 10° and Δ ≤ 15° for both missions. This problem 

statement can be rephrased as follows: Based upon the pointing requirements of 

IMPRESS and EXACT, the problem is to provide an AD solution with 𝜖 ≤ 10° 

during the mission lifespan.  

1.3 Thesis Contribution 

The primary goals of this thesis are to: 

• Analyze the performance of an attitude determination (AD) system 

based on aiding a low-quality inertial measurement unit (IMU) with 

a single-vector measurement of the Earth’s magnetic field (EMF). 

• Analyze the observability of the AD system based on the use of the 

IMU and EMF vector measurements.  

1.4 Thesis Organization 

In Chapter 2, we provide an overview of attitude determination. Specifically, 

we discuss attitude reference frames and parameterizations in addition to the choice 

of notation used. Common AD schemes are described.  
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In Chapter 3, we discuss the concept of vector matching and how it can be 

used as an aiding measurement. For an inertial sensor based AD system, we develop 

an EKF structure that utilizes the EMF. We emphasize the types of sensors 

selected for use in this system along with their noise characteristics. Derivations of 

measurement models for each sensor in addition to the dynamics of the system are 

provided. The general vector matching algorithm (VMA) used in this work is 

outlined, and the factors that affect VMA convergence and performance are 

discussed. 

In Chapter 4, we briefly discuss the concept of state observability. 

Specifically, we discuss two types of observability: Deterministic observability and 

stochastic observability. We elaborate upon a comprehensive test to verify both 

metrics and mention the usefulness of such a test. 

In Chapter 5, we showcase a set of simulations utilizing the models 

developed in Chapter 3, and highlight conditions in which the VMA successfully 

estimates the attitude of the CubeSat. We provide analysis of the results, with 

discussion on the drawbacks of the simulation environment as well as cases in which 

the developed VMA does not converge.  

In Chapter 6, we present conclusions based upon the models developed, their 

use in simulation, and their applicability to IMPRESS, EXACT. We present the 

current design of the ADCS structure for each mission and elaborate upon the 

system architecture. We also perform first approximation analysis of the UMN’s 

HyCUBE (Hypersonic Configurable Unit Ballistic Experiment) CubeSat ADCS, 

currently in development. We conclude the thesis with a list of future work and 

additional developments to the EKF algorithm.  
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2 Attitude Determination Fundamentals 

2.1 Introduction 

Attitude Determination (AD) is the practice of estimating the orientation 

(attitude) of a rigid body in 3-D space with respect to some fixed reference frame 

[8]. By no means a trivial task, AD is only a subset of the broader problem of 

estimating the attitude of a rigid body and then changing that attitude to desired 

orientation. This process is often referred to as attitude determination and control, 

otherwise known as the ADCS on-board a flight vehicle. While the ADCS is an 

important system, this thesis will focus solely on the AD component.  

AD from vector measurements (the so-called Wahba’s Problem, discussed 

in Section 2.5, posed in 1965 [9]) has been studied extensively for the last 60 years. 

The problem states that given multiple vector measurements in the spacecraft body 

frame and their known equivalents in an inertial (non-moving) frame, one can 

estimate the attitude of the spacecraft in a least squares sense. Practical solutions 

to this problem began to be developed in the late 1960’s and 70’s with multiple 

methods such as QUEST and TRIAD [8] [10]. Alternative approaches, such as the 

Kalman filter, also began to be implemented throughout the 70’s and 80’s [11], and 

continue to be prominent in practice [12] [13] [14]. Due to its broad applicability 

and relatively easy interpretation, the Kalman filter has become one of the primary 

methods of state estimation, and is used extensively in many applications [15] [16].  

Within the scope of this thesis, the Kalman filter (and the extended Kalman 

filter) serve as the basis for the AD scheme developed. However, to accurately 

describe and develop this scheme, general knowledge of AD and the methods used 

on-orbit for real-time determination must be discussed. To this end, this chapter 
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discusses what reference frames are, how attitude is parameterized within reference 

frames, and the notation commonly used to describe attitude. Inertial sensor or 

rate gyroscope based AD is highlighted, with focus placed on the inherent 

difficulties in utilizing only inertial AD. We conclude the chapter with a discussion 

of inertial aiding techniques, and the sensors utilized within them.  

2.2 Reference Frames 

A reference frame is a cartesian coordinate system that consists of a set of 

three orthonormal basis vectors [8]. Reference frames often contain physical points 

that allow us to quantify the position of an object with respect to the reference 

frame itself. In terms of AD, there are numerous reference frames that can be 

utilized. A description of many (but not all) of these reference frames follows. It is 

assumed that each frame mentioned below is a right-handed coordinate system.  

2.2.1 Spacecraft Body Frame 

The spacecraft body frame is denoted by 𝓕𝑺 and has a basis of {𝑆1 𝑆2 𝑆3}. 

The origin of the body frame is assumed to be located at the center of mass (COM) 

of the spacecraft, with its basis vectors aligned with the principal moments of 

inertia axes of the spacecraft itself. The convention we adopt is to align the positive 

𝑆3 axis along the normal axis as the scientific payload, 𝑛1, as seen in Figure 2.1. 

This convention is chosen to allow for the payload normal axis to align with a 

principle inertia axis of the satellite. It is important to note that 𝓕𝑺 is affixed to 

the spacecraft, and thus any rotation seen in the frame is equivalent to the rotation 

seen by the spacecraft. 
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Figure 2.1 Spacecraft body frame. 

 

2.2.2 IMU Frame 

The IMU (Inertial Measurement Unit) frame is denoted by 𝓕𝒈 and has the 

basis of {𝑔1 𝑔2 𝑔3}. It is defined as the right-handed axes affixed to IMU sensor 

aboard the spacecraft, with origin located at the COM of the sensor. This sensor 

provides rotational rate information and is an important aspect of inertial sensor 

based AD, discussed later in this chapter. In the cases where 𝓕𝑺 and 𝓕𝒈 are not 

aligned, IMU outputs must be rotated and translated from 𝓕𝒈 to 𝓕𝑺. For example, 

if the IMU outputs a positive angular rate of 𝜔𝑔3 = 2°/𝑠 in the 𝑔3 direction, but 

is aligned such that 𝑔3 is parallel and opposite of 𝑆2 as seen in Figure 2.2, then the 

angular rate seen by the body frame is actually 𝜔𝑆2 = −2°/𝑠. Thus, some angular 

rotation between frames is required. If 𝓕𝑺 and 𝓕𝒈 are aligned, then no rotational 
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correction must be made. The 𝓕𝒈 frame is useful as it allows sensors to be aligned 

in ways that are more practical for hardware implementation, so long as the 

attitude between 𝓕𝒈 and 𝓕𝑺 is known. While not necessarily aligned, it is assumed 

that 𝓕𝒈 is fixed with respect to 𝓕𝑺. 

 

Figure 2.2 IMU frame with respect to spacecraft body frame, aligned (left) and 

unaligned (right) cases. The IMU is the cylindrical shape to which 

{𝑔1 𝑔2 𝑔3} are affixed.  

 

2.2.3 North-East-Down (NED) Frame 

The north-east-down frame (NED) is a reference frame used within inertial 

navigation applications and is often referred to as the navigation frame. It is 

denoted by 𝓕𝑵 and has the basis of {𝑁1 𝑁2 𝑁3}. The origin of the frame is located 

at the COM of the spacecraft, similar to 𝓕𝑺 . The north-east-down naming is 

derived from the fact that 𝑁1 points positive North, 𝑁2 points positive East, and 

𝑁3 points positive down towards the center of the Earth. This is conveyed in Figure 

2.3.  
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Figure 2.3 NED frame. 

 

2.2.4 Earth Centered Earth Fixed (ECEF) Frame 

The Earth Centered Earth Fixed (ECEF) frame is given by 𝓕𝑬𝑭 and has 

the basis of {𝐸𝐹1 𝐸𝐹2 𝐸𝐹3}. The origin of the frame is located at the center of the 

Earth. 𝐸𝐹1 points to the intersection of the prime meridian and the equator, 𝐸𝐹3 

is parallel to Earth’s axis of rotation with the positive direction pointing to Earth’s 

North Pole, and 𝐸𝐹2  completes the orthogonal frame as seen in Figure 2.4. 

Spacecraft position is often measured in latitude, longitude, and altitude (𝜙, 𝜆, and 

ℎ respectively) when using the ECEF frame.  
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Figure 2.4 ECEF frame. 

 

2.2.5 Earth Centered Inertial (ECI) Frame 

The Earth Centered Inertial (ECI) frame is given by 𝓕𝑬 and has the basis 

of {𝐸1 𝐸2 𝐸3}. The origin of this frame is located at the center of the Earth, similar 

to 𝓕𝑬𝑭. In the instance of the ECI frame, the 𝐸1 basis vector is defined to be 

pointing along the line drawn by the vernal equinox on January 1, 2000 at 12:00 

Terrestrial Time [17]. The 𝐸3 direction is aligned with the Earth’s rotation axis 

and is positive in the direction of the North pole. The 𝐸2 direction completes the 

orthogonal system. This ECI frame is often referred to as the J2000 ECI frame [17]. 

A visual representation of this is given in Figure 2.5. Contrary to all previous 

frames listed, the ECI frame is considered an inertial frame and is fixed in space, 

as shown graphically in Figure 2.6. At every instant, {𝐸1 𝐸2 𝐸3} are pointed in the 

same direction in inertial space.  
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Figure 2.5 ECI frame. 

 

Figure 2.6 ECI frame in solar orbit. 

 

2.2.6 Reference Frames Used in This Work 

We will focus on three of the reference frames listed previously: The 

Spacecraft body frame (𝓕𝑺), IMU frame (𝓕𝒈), and the Earth centered inertial frame 
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(𝓕𝑬). The spacecraft frame is used as a body fixed frame required for AD, which 

is discussed further in the following sections. The IMU frame is selected to allow 

flexibility in hardware implementation, and to allow for rotations from the IMU 

sensor output frame to the spacecraft body frame. The ECI frame is selected as an 

inertial frame relative to which Newton’s laws are valid (specifically applied to the 

dynamic relations seen in Chapter 3). Figure 2.7 shows how the frames are related 

to each other. As shown, 𝓕𝑺 can rotate in 3-D space, while 𝓕𝑬 is inertially fixed.  

 

 

Figure 2.7 𝓕𝑺  shown with relation to 𝓕𝑬. 

 

2.3 Attitude Parameterizations 

To quantify the attitude of a CubeSat, a selection of at least two reference 

frames must be made. We select an inertial frame and the other to be some frame 
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attached to the body of the CubeSat itself. Auxiliary frames between these two 

may be used, however for the purposes of this section, it will be assumed that only 

a body frame and inertial frame are selected. As mentioned in the previous section, 

we choose the ECI frame (𝓕𝑬) as our inertial frame and the spacecraft body frame 

(𝓕𝑺) as the body frame.  

With these selections, the attitude of a CubeSat can be defined as the 

angular orientation of 𝓕𝑺 relative to 𝓕𝑬. How to quantify and parameterize this 

angular orientation is dependent upon the user and the application. Three useful 

attitude parameterizations will be covered in the following section: Direction Cosine 

Matrices (DCMs), 3-2-1 Euler Angles, and Quaternions. 

2.3.1 Direction Cosine Matrices (DCMs) 

Consider two frames, 𝓕𝑺 and 𝓕𝑬, initially aligned so that their individual 

basis vectors match, as seen in Figure 2.8. A vector, 𝑣̅, can also be represented in 

both frames, and is given by the blue arrow in Figure 2.8. In this specific instance, 

the vector represented in 𝓕𝑺  denoted by 𝑣̅𝑆  and the vector represented in 𝓕𝑬 

denoted by 𝑣̅𝐸 are equivalent such that 

𝑣̅𝑆 = 𝑣̅𝐸 (2.1) 

with both vectors being equivalent to 𝑣̅. Now consider the scenario in which we 

rotate ℱ𝑆 about its 3-axis by an angle 𝜓, as seen in Figure 2.9. In this instance, 

Equation (2.1) no longer holds, as the bases of each frame are no longer aligned.  
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Figure 2.8 𝓕𝑺 aligned with 𝓕𝑬 with common vector 𝑣̅. 

 

For the general case where rotation occurs about all three axes, the rotation 

can be quantified by a direction cosine matrix (DCM) between the two frames such 

that 

𝑣̅𝑆 = 𝐶𝑆𝐸𝑣̅𝐸 (2.2) 

where 𝐶𝑆𝐸 is the 3 × 3 DCM that transforms a vector represented in 𝓕𝑬 to a vector 

represented in 𝓕𝑺. The subscripts on 𝐶𝑆𝐸 denote the frames of interest, with the 

starting frame as the right-most subscript, and the ending frame as the left-most 

subscript. We will maintain this convention throughout this thesis.  
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Figure 2.9 𝓕𝑺 rotated from 𝓕𝑬 by 𝜓. 

 

The DCM is made up of sines and cosines of the angles between each frame’s 

basis vectors (hence the name), and is given by 

𝐶𝑆𝐸 = [

𝑐11 𝑐12 𝑐13

𝑐21 𝑐22 𝑐23

𝑐31 𝑐32 𝑐33

] (2.3) 

where the columns of the DCM represent the unit vectors of the ending frame’s 

basis axes projected along the starting frame’s basis axes [18]. Specifically, the 

element in the 𝑖𝑡ℎ row and the 𝑗𝑡ℎ column is the cosine of the angle between the 𝑖 

axis of the starting frame and the 𝑗 axis of the ending frame.  
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Figure 2.10 Common axes rotations. 

 The DCM for the rotation shown in Figure 2.9 can be given by  

𝐶𝑆𝐸 = 𝑅3 = [
𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓 0
−𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0

0 0 1

] (2.4) 

where 𝑅3 is known as a 3-Rotation. While this is an extremely useful matrix, it is 

only applicable for single rotations that occur about the 3-axis of the starting frame. 

In the instances of rotations about the 1 and 2 axes, different DCMs must be 

formulated. The matrices for these specific rotations are given below as 

𝑅1 = [
1 0 0
0 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙
0 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

] (2.5) 

𝑅2 = [
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃

0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

] (2.6) 

𝑅3 = [
𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓 0
−𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0

0 0 1

] (2.4) 

where the angles of 𝜙, 𝜃, and 𝜓 correspond to the angles seen in Figure 2.10, with 

𝑅1 being a 1-Rotation,  𝑅2 being a 2-Rotation, and 𝑅3 being a 3-Rotation. 
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Figure 2.11 Euler angle rotation sequence (3-2-1). 

 

 The DCMs seen in Equations (2.4) - (2.6) are only useful for simple rotations 

about a single axis. In reality, frame rotations are rarely this simple. Fortunately, 

any complex rotation can be treated as a sequence of the simple rotations given by 

Equations (2.4) - (2.6). For example, any orientation can be obtained by what is 

commonly known as a “3-2-1” rotation sequence, often labeled as the “yaw-pitch-

roll” rotation sequence [19]. A graphical representation of this is seen in Figure 2.11. 

Mathematically, this is given by multiplying 𝑅3, 𝑅2, and 𝑅1 seen in Equations (2.4) 

– (2.6) in sequence as 

𝐶𝑆𝐸 = 𝑅321 = 𝑅1𝑅2𝑅3 

= [

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓 −𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 + 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜓 −𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 + 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓 −𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃

−𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 + 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃
] (2.7) 

where the angles 𝜓 , 𝜃 , and 𝜙  are the angles for the 3, 2, and 1 rotations, 

respectively. Note that the sequence of multiplication seen in Equation (2.7) is 

opposite the sequence of rotations. 

𝐶𝑆𝐸 is the DCM that maps a vector in the inertial frame 𝓕𝑬 to the spacecraft 

frame 𝓕𝑺, and as such is a valid attitude parameterization. Specifically, we can 
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completely represent the orientation of our CubeSat if 𝐶𝑆𝐸 is known. While 𝐶𝑆𝐸 is 

a unique matrix, the sequence of rotations used are not. 𝐶𝑆𝐸 could have also been 

obtained through “1-2-3”, “3-2-3”, “2-3-2”, or multiple other rotation sequences. This 

implies that the angles 𝜓, 𝜃, and 𝜙, along with the sequence of rotation, are not 

unique. This is important to note when discussing further parameterizations, such 

as Euler Angles. 

2.3.2 Euler Angles (3-2-1 Sequence) 

Euler angles are another method of parameterizing attitude and are useful 

due to their relatively intuitive nature. Euler angles consist of three angles: 𝜓, 

known as yaw, 𝜃, known as pitch, and 𝜙, known as roll. Euler angles themselves 

are also the three specific angles that can be used to make up the DCM as seen in 

Equation (2.7) and Figure 2.11.  

This orientation of one frame relative to another can be obtained through 

multiple rotation sequences, as discussed in the previous section. To elaborate on 

Euler angles, a specific rotation sequence must be defined. For the remainder of 

this thesis, it will be assumed that any Euler angles being discussed are of the 3-2-

1 or yaw-pitch-roll rotation sequence. The set of 3-2-1 Euler angles, Ψ𝑆𝐸, that map 

a vector in 𝓕𝑬 to a vector in 𝓕𝑺 can be defined as  

ΨSE = [
𝜓
𝜃
𝜙

] (2.8) 

given in radians or degrees. In this instance, the Euler angles represent a roadmap 

of rotations that can be used to get to 𝓕𝑺 from 𝓕𝑬, as seen in Figure 2.12, and is 

useful for visualizing the attitude of an object.  
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Figure 2.12 Rotation sequence roadmap for 3-2-1 Euler angle sequence. 

 

 While Euler angles are useful for visualization, they can be challenging in 

numerical implementation. Specifically, for the 3-2-1 sequence at 𝜃 = 90° , a 

numerical singularity occurs within the kinematic equations of motion for Euler 

angles. This singularity is commonly known as “gimbal lock” [20].  

2.3.3 Quaternions 

Quaternions are a widely used alternative to Euler angles, as they do not 

have a kinematic singularity and can be relatively easy to implement numerically. 

The downside to quaternion implementation is their inherent abstract formulation, 

which can be difficult to visualize. In practice, quaternions are often used to 

propagate the attitude dynamics of a system and are then converted to Euler angles 

for visual representation. 

The attitude quaternion can be thought of as an extension of Euler’s 

rotational theorem, which states that any relative orientation between two frames 

can be described by a single rotation, 𝜃𝑒𝑢𝑙, about a fixed vector, 𝑒̅ [8], as seen in 

Figure 2.13. While there are multiple definitions of a quaternion, we will define it 

as a 4 × 1 matrix, consisting of a scalar and vector component. That is, 

𝑞𝑆𝐸 = [
𝑞0

𝑞̅ ] = [

𝑞0

𝑞1

𝑞2

𝑞3

] (2.9) 
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where 𝑞𝑆𝐸 is the attitude quaternion that describes the attitude of 𝓕𝑺 with respect 

to 𝓕𝑬 . Note that the scalar component is given by 𝑞0 , whereas the vector 

component is given by 𝑞̅. Additionally, according to Euler’s theorem, a quaternion 

can be defined such that  

𝑞𝑆𝐸 = [
𝑞0

𝑞̅ ] = [
cos (

𝜃𝑒𝑢𝑙

2
)

‖𝑒̅‖ ∙ 𝑠𝑖𝑛 (
𝜃𝑒𝑢𝑙

2
)

] (2.10) 

where ‖𝑒̅‖ is a normalized rotational axis and 𝜃𝑒𝑢𝑙 is the angle of rotation about 

that axis.  

 

Figure 2.13 Visual representation of Euler's Theorem. 

 

 While DCMs and Euler angles will be utilized within this work, much of the 

numerical analysis contained within the AD algorithms will be performed using 
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quaternions. To this end, a description of a few key mathematical concepts of 

quaternions will be discussed further. For detailed information on quaternion 

mathematics and uses, see [21]. The reader is advised to be careful when utilizing 

quaternions, as the location of the scalar component, 𝑞0, can vary depending on 

the quaternion definition used. In general, quaternion implementation, their 

mathematics, and their meaning can vary depending on the convention used. The 

sections below assume the convention specified in Equation (2.9).  

2.3.3.1 Quaternion Norm 

The norm of a quaternion is given by  

|𝑞| = √𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 (2.11) 

and is required to be equal to 1 to be a valid attitude representation. Specifically, 

 |𝑞| = 1. To ensure this constraint is met in computation where sensor error or 

numerical roundoff can yield quaternions where |𝑞| ≠ 1 , a quaternion can be 

normalized by dividing by its norm such that  

𝑞𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑞

|𝑞|
(2.12) 

where 𝑞𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 represents a valid unit attitude quaternion. 

2.3.3.2 Quaternion Conjugate 

The conjugate of a quaternion is given by 

𝑞∗ = [
𝑞0

−𝑞̅] = [

𝑞0

−𝑞1

−𝑞2

−𝑞3

] (2.13) 
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where we have inverted the vector portion, 𝑞̅. 

2.3.3.3 Quaternion Inverse 

The inverse of a quaternion is given by  

𝑞−1 =
𝑞∗

|𝑞|
(2.14) 

If the quaternion is a unit quaternion, then the inverse is equivalent to the 

conjugate such that 𝑞−1 = 𝑞∗.  

2.3.3.3 Quaternion Multiplication 

The product of two quaternions 𝑞 and 𝑝 is defined as 

𝑞 ⊗ 𝑝 = [
𝑝0𝑞0 − 𝑝̅ ∙ 𝑞̅

𝑝0𝑞̅ + 𝑞0𝑝̅ + 𝑝̅ × 𝑞̅
] (2.15) 

where (∙) is the dot product operator and (×) is the cross-product operator. The 

resultant of the product of two quaternions is also a quaternion. As there is a cross 

product within Equation (2.15), the quaternion product is not commutative, 

implying 

𝑞 ⊗ 𝑝 ≠ 𝑝 ⊗ 𝑞 (2.16) 

However, the quaternion product is associative such that 

(𝑞 ⊗ 𝑝) ⊗ 𝑟 = 𝑝 ⊗ (𝑝 ⊗ 𝑟) (2.17) 

where 𝑞, 𝑝, and 𝑟 are all quaternions. 
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2.3.4 Overview of Notation & Frame Transformations 

The general overview and notation of transforming a vector from one frame 

to another, given by the attitude parameterizations above, is discussed below.  

2.3.4.1 DCM Frame Transformations 

A vector given in frame 𝓕𝑬 denoted by 𝑣̅𝐸 can be transformed to a vector 

given in 𝓕𝑺 via the DCM by 

𝑣̅𝑆 = 𝐶𝑆𝐸𝑣̅𝐸 (2.2) 

where 𝐶𝑆𝐸  denotes the 3 × 3 DCM between frames 𝓕𝑬  and 𝓕𝑺 . We choose the 

convention such that the right subscript of 𝐶𝑆𝐸 indicates the starting frame and 

the left subscript indicates the ending frame.  

2.3.4.2 Euler Angle Frame Transformations (3-2-1) 

Like the frame transformation given by Equation (2.2), the transformation 

of a vector given in frame 𝓕𝑬 denoted by 𝑣̅𝐸 to a vector given in 𝓕𝑺 via the 3-2-1 

Euler angles is given by  

𝑣̅𝑆 = 𝑅321𝑣̅
𝐸 (2.18) 

where 𝑅321 is the 3-2-1 Euler angle DCM given in Equation (2.7). In this instance, 

𝑅321 is equivalent to 𝐶𝑆𝐸.  

2.3.4.3 Quaternion Frame Transformations  

The quaternion representation of the transformation of a vector given in 

frame 𝓕𝑬 denoted by 𝑣̅𝐸 to a vector given in 𝓕𝑺 is given as 
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𝑣̅𝑆 = 𝑞𝑆𝐸 ⊗ [
0

𝑣̅𝐸  
] ⊗ 𝑞𝑆𝐸

−1 (2.19) 

where 𝑞𝑆𝐸 represents the quaternion representation of the attitude between 𝓕𝑬 

and 𝓕𝑺. The ⊗ is the quaternion multiplier as defined in Equation (2.15). Similar 

to the DCM, we define the right subscript on 𝑞𝑆𝐸 to be the starting frame, and 

the left subscript to be the ending frame.  

2.4 Inertial Based Attitude Determination 

In general, no sensor exists to give a direct measurement of the Euler angles 

or quaternion. However, if the kinematics of the spacecraft are known, then attitude 

can be indirectly calculated.  

 

Figure 2.14 Angular rates of a spacecraft. 
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Consider the angular velocity vector of a spacecraft 𝑆 in the body frame 𝓕𝑺 

with respect to an inertial frame 𝓕𝑬 given by  

𝜔̅𝑆𝐸 = [

𝜔𝑆1
𝑆𝐸

𝜔𝑆2
𝑆𝐸

𝜔𝑆3
𝑆𝐸

] (2.20) 

where 𝜔𝑆1
𝑆𝐸, 𝜔𝑆2

𝑆𝐸, and 𝜔𝑆3
𝑆𝐸 correspond to the angular velocities of each body axis 

(𝑆1, 𝑆2, and 𝑆3, respectively) in 𝑟𝑎𝑑/𝑠. The right superscript on 𝜔̅ indicates the 

inertial frame and the left superscript indicates the selected body frame. A visual 

representation of this is given in Figure 2.14. While not derived here, it can be 

shown that the description of the angular velocity 𝜔̅𝑆𝐸 depends on the attitude 

parameterization used [8]. That is, 

𝜔̅𝑆𝐸 = 𝜔̅𝑆𝐸(𝐴, 𝐴̇) (2.21) 

where 𝐴 is a given attitude parameterization and 𝐴̇ is the time rate of change of 

that parameterization. In the instance of the 3-2-1 Euler angle sequence, Equation 

(2.21) can be written as 

𝜔̅𝑆𝐸 = [

𝜓̇ − 𝜙̇ sin 𝜃

𝜙̇ cos 𝜃 sin𝜓 + 𝜃̇ cos𝜓

𝜙̇ cos 𝜃 cos𝜓 − 𝜃̇ sin𝜓

] (2.22) 

where 𝜓̇, 𝜃̇, and 𝜙̇ represent the time rate of change of the 3-2-1 Euler angles. 

Rearranging Equation (2.22) [8], we have 

[

𝜙̇

𝜃̇
𝜓̇

] = [

0 sec 𝜃 sin𝜓 sec 𝜃 cos𝜓
0 cos𝜓 −sin𝜓
1 tan 𝜃 sin𝜓 tan 𝜃 cos𝜓

] 𝜔̅𝑆𝐸 (2.23) 
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which solves for the rate of change of the 3-2-1 Euler angles given 𝜔̅𝑆𝐸 and an 

initial attitude.  If utilizing quaternions, Equation (2.21) can be written as 

[
0

𝜔̅𝑆𝐸] = 2(𝑞̇𝑆𝐸 ⊗ 𝑞𝑆𝐸
−1) (2.24) 

where 𝑞̇𝑆𝐸  represents the time rate of change of the quaternion. Rearranging 

Equation (2.24) gives 

𝑞̇𝑆𝐸 =
1

2
[

0
𝜔̅𝑆𝐸] ⊗ 𝑞𝑆𝐸 (2.25)

which solves for the rate of change of 𝑞𝑆𝐸  given 𝜔̅𝑆𝐸  and an initial attitude 

quaternion. Fortunately, sensors exist to measure the angular velocity of a 

spacecraft. These are typically known as rate gyroscopes or “gyros” and are often 

components of IMUs.  

2.4.1 Inertial AD with Noisy IMUs 

 All sensors have noise that can usually be characterized by a stochastic 

process (see Appendix A for a description of how we define stochastic processes). 

Ideally, an IMU’s output will be equivalent to the true angular rates of the body, 

as given by 

𝜔̅𝑚
𝑆𝐸 = 𝜔̅𝑆𝐸 (2.26) 

where 𝜔̅𝑚
𝑆𝐸 is the measured angular rate vector. In reality, the IMU measurements 

will be corrupted by some form of noise. We typically treat this noise as a stochastic 

process that varies through time. As a first approximation, we can model this 

simplistically by including an additive noise term to the measurement model of 

Equation (2.26) such that 
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𝑛̅𝑔~𝑁(0, 𝜎𝑔
2) 

𝜔̅𝑚
𝑆𝐸 = 𝜔̅𝑆𝐸 + 𝑛̅𝑔 (2.27) 

where 𝑛̅𝑔 is some additive noise with zero mean and variance 𝜎𝑔
2. Replacing 𝜔̅𝑆𝐸 

with 𝜔̅𝑚
𝑆𝐸 as defined above in Equation (2.27) will yield  

[

𝜙̇

𝜃̇
𝜓̇

]

𝑚

= [

0 sec 𝜃𝑚 sin𝜓𝑚 sec 𝜃𝑚 cos𝜓𝑚

0 cos𝜓𝑚 −sin𝜓𝑚

1 tan 𝜃𝑚 sin𝜓𝑚 tan 𝜃𝑚 cos𝜓𝑚

] 𝜔̅𝑚
𝑆𝐸 (2.28)

where [𝜙̇ 𝜃̇ 𝜓̇]
𝑚

𝑇
 are the measured Euler angle rates of the vehicle and 𝜙𝑚 , 𝜃𝑚, and 

𝜓𝑚 are the measured Euler angles. These measured angles are found by integrating 

the noisy Euler angle rates throughout time, which requires an integration of the 

random noise 𝑛̅𝑔 that is attributed to angular rates of the body. This process will 

cause the noise levels to grow at each integration, eventually causing the measured 

Euler angles to drift from the true Euler angles.  

For example, take Figure 2.15 which shows the yaw error, 𝛿𝜓, between the 

true value of 𝜓 and the value calculated by integrating measured angular rates 

from a consumer grade IMU (red line). After only 60 𝑠 of measurements, the error 

has reached 13°. An error in attitude this large is typically unacceptable in most 

practical ADCS applications.  
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Figure 2.15 Yaw error propagation with noisy gyro. 

 

2.4.2 Gyro Measurement Model 

The drift rate or the slope of the red line in Figure 2.15 is dependent on the 

amount and types of noise in the gyro measurements. As such, it is important to 

properly characterize the noise on a rate gyro. While the nature of the noise within 

the measurement model shown in Equation (2.27) is simple, it is not accurate. Not 

only are gyro noise characteristics not purely additive, they are also sometimes 

functions of time. A more general and accurate model for a rate gyroscope can be 

given by 

𝜔̅𝑚
𝑆𝐸 = (13 + 𝑆𝐹)𝜔̅𝑆𝐸 + 𝑏̅(𝑡) + 𝑛̅𝑔 (2.29𝑎) 

𝑏̅(𝑡) = 𝑏̅0 + 𝑏̅1(𝑡) (2.29𝑏) 
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where 𝑆𝐹 reperesents a 3 × 3 diagonal matrix of scale factor errors, 𝑏̅(𝑡) is a 3 × 1 

bias vector that is a function of time, and 𝑛̅𝑔 is a 3 × 1 vector of random, gaussian, 

additive white noise. These types of noise are discussed in the following sub sections. 

For a detailed description of IMU errors, see [22] [23]. Additionally, Appendix C 

overviews how to read IMU specification sheets and details how to quantify some 

of the following values. 

2.4.2.1 Scale Factor Errors 

A scale factor is a multiplicative error term. It is a multiplier on the true 

angular velocity that results in a scaled version being output from the sensor, with 

units typically being % or parts per million (𝑝𝑝𝑚). For example, if there is a 20% 

scale factor error present on one axis of the rate gyro, a true angular velocity of 

5°/𝑠 will result in 6 °/𝑠 being output from the gyro ((1 + 0.2)5°/𝑠 = 6 °/𝑠). Scale 

factors can be represented in a 3 × 3 diagonal scale factor matrix 𝑆𝐹 that is given 

by 

𝑆𝐹 = [

𝑠𝑓𝑔1 0 0

0 𝑠𝑓𝑔2 0

0 0 𝑠𝑓𝑔3

] (2.30) 

where 𝑠𝑓𝑔1, 𝑠𝑓𝑔2, and 𝑠𝑓𝑔3 represent the individual scale factors in each gyro axis. 

A graphical representation of scale factors is seen in Figure 2.16.  
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Figure 2.16 Scale factor errors. 

 

2.4.3.2 Bias and White Noise 

Two types of biases are modeled by Equation (2.29): Constant turn on bias 

(𝑏0) and in-run bias (𝑏1(𝑡)). The constant turn on bias is present every time the 

rate gyro is turned on and may or may not be relatively constant throughout time.  

This bias is sometimes referred to as bias repeatability or null-shift and has the 

units of °/𝑠 or 𝑟𝑎𝑑/𝑠. The in-run bias is not constant and is considered a correlated, 

colored noise process. It can change throughout the duration of sampling and often 

is modeled as a 1st order Gauss-Markov process with correlation time 𝜏𝐺𝑀. More 

discussion of this is held in Chapter 3. The in-run bias is sometimes referred to as 

bias stability and has the units of °/ℎ𝑟, typically. Inertial aiding systems often seek 
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to estimate these biases and calibrate the measurements as time goes on. A 

discussion of this will be included in Section 2.5.  

The noise vector 𝑛̅𝑔 is often treated as random white noise that is added to 

the gyro measurement. It is a Gaussian random variable, with zero-mean, and can 

be referred to as output noise or sometimes angle random walk (ARW). This term 

is arguably the simplest noise term and is purely additive. A visual representation 

of the biases and white noise can be seen in Figure 2.17. The in-run bias and white 

noise combine to add the sharp peaks and troughs seen in the red line in Figure 

2.17, whereas the null-shift has pushed the red line itself above the true angular 

rate by some fixed amount.  

 

 

Figure 2.17 Bias and white noise errors. 
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2.5 Vector Matching & Aided Inertial AD 

In most cases, as seen by Figure 2.15, sole use of a rate gyro in an IMU does 

not allow accurate AD. Instead, IMUs are often used in conjunction with additional 

sensors that supplement the IMU’s inertial measurement with external 

measurements. The external measurements are independent of the integrated noise 

of the gyros and are used to calibrate the gyro measurement. This is performed by 

solving Wahba’s Problem [9], and is sometimes referred to as vector matching.  

Wahba’s problem involves computing a least squares estimate of the DCM 

between two frames based upon a set of vector measurements in one frame and the 

same set of vectors known in another frame. Specifically, if the spacecraft frame 

𝓕𝑺 and ECI frame 𝓕𝑬 are used with a common origin, then Wahba’s problem is: 

Given a set of 𝑛 vectors {𝑢̅𝑚,1
𝑆 , 𝑢̅𝑚,2

𝑆 , … , 𝑢̅𝑚,𝑛
𝑆 } measured in 𝓕𝑺 and the same set of 

vectors known in 𝓕𝑬, {𝑢̅1
𝐸 , 𝑢̅2

𝐸 , … , 𝑢̅𝑛
𝐸}, compute the DCM that minimizes the cost 

function  

𝐽 = ∑‖𝑢̅𝑖
𝑆 − 𝐶𝑆𝐸𝑢̅𝑖

𝐸‖
2

𝑛

𝑖=2

(2.31) 

where 𝐶𝑆𝐸  is constructed using the attitude quaternion that is subject to the 

quaternion norm constraint given by Equation (2.11) such that  

|𝑞𝑆𝐸| = √𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 = 1 (2.32) 

where 𝑞𝑆𝐸 is the attitude quaternion that represents the attitude between 𝓕𝑬 and 

𝓕𝑺.  
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A unique solution to Wahba’s problem requires at least two, non-collinear, 

non-zero sets of vectors be measured and known.  This implies that if two sensors 

on board a spacecraft can provide two non-collinear measurements, and a 

knowledge of what those measurements should be in an inertial frame is also stored 

on board, then an estimate of the attitude can be determined.  

2.5.1 Aiding Sensors 

There are many sensors that can be used to solve Wahba’s problem. Below 

is a list of some common sensors for spacecraft applications. For detailed 

description of these and additional sensors, see Chapter 4 of [8].  

2.5.1.1 Three-axis Magnetometer (TAM) 

A three-axis magnetometer (TAM) is used to obtain a measurement of the 

Earth’s Magnetic Field (EMF) vector seen in the 𝓕𝑺 frame at a given instance in 

time. In most cases the magnetometers used in spacecraft are small, lightweight, 

and inexpensive. However, if being used in an AD vector matching scheme, a well-

modeled magnetic field is required. This requires the storage of the International 

Geomagnetic Reference Field (IGRF) [24] or World Magnetic Model (WMM) [25] 

on board the spacecraft, in addition to position knowledge typically obtained from 

a GPS. Furthermore, this restricts the use to low-Earth orbits, as the EMF is not 

well modeled beyond altitudes of 600 𝑘𝑚. 

While TAMs are very useful, they are also susceptible to high amounts of 

noise, due to external magnetic fields created from ferromagnetic materials, 

payloads, wiring, or actuators. In many applications, these external magnetic fields 

are removed by placing the TAM on a boom far away from the rest of the hardware 
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or electrical components of the spacecraft. However, as CubeSats are already 

constrained on mass and size, a TAM cannot be adequately separated from the 

remainder of the electrical components within the main structure. Thus, a real-

time calibration technique must be used on-orbit to remove any external magnetic 

fields.  

2.5.1.2 Sun Sensors 

Sun sensors provide a measurement of the unit direction vector towards the 

sun. There are two types of sun sensors, coarse sun sensors (CSSs) and fine or 

digital sun sensors (DSSs). The CSS is typically made up of a single or multiple 

photocells or photodiodes, whose electric current outputs are directly proportional 

to the intensity of light that falls on them. DSSs are more intricate and can be 

made up of multiple slits with photosensitive material behind them. Both CSSs 

and DSSs are susceptible to albedo or any additional light that may be found in 

the field of view of the sensor itself, which can cause relatively large error stacking 

[8]. In optimal conditions, the CSS will have an angular resolution error ≤ 3°, 

whereas the DSS will have angular resolution error of 1° or less. Sun sensors are a 

useful sensor for AD but do not always provide an effective measurement (i.e. when 

the Earth eclipses the sun).  

2.5.1.3 Star Trackers 

Star trackers are essentially digital cameras that calculate the unit direction 

vector to a given star based upon an internal star map stored onboard the 

spacecraft, similar to sun sensors. Star trackers also provide vector measurements 

to multiple star systems, allowing the use of only a single star tracker for a complete 

attitude solution. While star trackers are useful and very accurate, they can be 
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highly susceptible to external noise, such as albedo light, and can be extremely 

expensive (~$100,000 ), which causes them to be unsuitable for small scale 

applications such as CubeSats. Moreover, they can often be very power hungry and 

massive [8].  

2.5.2 AD State Filtering 

So far, two methods of AD have been discussed: (1) using a rate gyro in an 

IMU to propagate the dynamics of the vehicle and (2) using aiding sensors to solve 

Wahba’s problem. While the use of an IMU is simple, it cannot be the sole sensor 

as the noise propagation that occurs causes the attitude estimate to drift. 

Conversely, using only aiding sensors can be expensive and inefficient, and requires 

consistent measurement of external phenomena such as the sun’s position vector. 

Additionally, no guarantees have been made on the quality of either method’s 

estimate of the attitude, as all sensors have some form of noise.  

In practice, both IMU and aiding sensors can be used together. Specifically, 

an AD system can combine or blend IMU and aiding sensor measurements to create 

an “optimal” (the definition of optimality can vary) estimate of the spacecraft’s 

attitude, along with some metric of the quality of the estimate itself. The algorithm 

that blends the measurements together is often denoted as a filter, estimator, or 

observer [26]. A specific filter that is often used in estimating the attitude of a 

spacecraft is the Extended Kalman Filter (EKF), which is a non-linear extension 

of the general Kalman Filter (KF). EKFs are extremely useful in state estimation, 

as they combine sensor measurements with a stochastic system based around the 

dynamic and measurement models of the system itself. This allows both an estimate 

and a statistical metric, such as variance, of that estimate to be propagated 
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throughout time based upon a characterization of the noise within the system. 

Detailed information and derivation of both the KF and the EKF can be found in 

Appendix B. It is suggested that the reader familiarizes themselves with the general 

EKF before proceeding to Chapter 3. 

2.6 Summary  

Within this chapter, the concepts related to attitude determination (AD) 

were detailed. Focus was placed on the description of common reference frames 

used within spacecraft AD, along with the selected reference frames used within 

this thesis. Three attitude parameterizations, direction cosine matrices (DCMs), 

Euler angles, and quaternions, were discussed. The choice of quaternion as the main 

attitude parameterization was motivated, and useful quaternion mathematics and 

properties were highlighted. 

Inertial based AD using rate gyroscopes within an inertial measurement unit 

(IMU) was described, along with the inherent problems that come with using an 

IMU as the sole AD sensor. A common gyroscope error model was shown, and the 

types of errors found within this model were explained. Attitude drift due to IMU 

noise was briefly discussed. 

The description of IMU drift caused by noise motivated the discussion of 

inertially aided systems, specifically in the instance of vector matching or solving 

Wahba’s problem. Common aiding sensors, such as three axis magnetometers 

(TAMs), sun sensor, and star trackers, were briefly described. State estimation and 

filtering, motivated by the blending of aiding and IMU sensor outputs, was 
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introduced. Specifically, the concept of Kalman filters (KFs) and extended Kalman 

filters (EKFs) (as shown in [26]) was briefly discussed. 
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3 Magnetometer-Based Single Vector Attitude 

Determination 

3.1 Introduction 

As seen in Chapter 2, the attitude of a spacecraft can be determined by 

using angular rate measurements from an IMU, external vector measurements used 

to solve Wahba’s problem [9], or a combination of the two (filtering) [6] [8] [26]. 

However, within the framework of CubeSats, the architectures of these AD 

techniques are generally limited in cost, mass, and volume, necessitating the general 

use of commercial off-the-shelf (COTS) parts [5] [6]. For example, the choice of 

IMU can be limited to be of consumer grade [27] by cost and is often a micro 

electrical-mechanical system (MEMS) device to minimize volume and mass. 

Unfortunately, consumer grade IMUs are typically plagued by noisy sensor 

measurements [28], and prolonged use can cause attitude estimates to drift as seen 

by Figure 2.15. Conversely, the sole use of external sensors can be infeasible as the 

phenomena that these sensors measure is not always readily available (such as sun 

and star vector measurements). This can reduce the frequency of accurate AD 

solutions obtained which can limit science objectives and mission performance. 

Moreover, external vector measurements can require multiple expensive and 

massive sensors that are still prone to some form of noise corruption. 

Current AD architectures typically solve for attitude in two ways: (1) by 

solving Wahba’s problem analytically, using external vector measurements and 

recursive solvers such as QUEST, and (2) by blending external vector 

measurements with noisy inertial rates from an IMU in a filter format. In the first 

method, no state kinematics are included and as such no gyro measurement is 
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required. In the second method, a gyro is included to smooth estimates and to 

allow for an AD solution in the event that no aiding sensor measurements are 

available. Generally, mission requirements on the accuracy and estimate 

convergence speed, coupled with expected CubeSat operating conditions, can affect 

the choice of which scheme to use. 

Within the past decade, multiple AD systems have been developed for 

CubeSat use. In [29], an attitude determination module is designed that uses sun 

vector measurements and a star tracker to obtain an attitude solution through 

time. While no gyros are included within this scheme, [29] posits that an IMU can 

be easily incorporated. As seen by the Cat-2 mission in [30], QUEST is utilized in 

combination with a low-pass filter to provide an attitude estimate in the absence 

of gyros, or in a low-power configuration. This option uses two vector 

measurements obtained via a TAM and 6 coarse photodiodes. Within [31], Wahba’s 

problem is solved via a singular value decomposition (SVD) method. Angular rates 

themselves are estimated via an extended Kalman filter (EKF) architecture to 

refine the attitude estimates throughout time.  

While not including a rate gyro may reduce the fault modes within an AD 

scheme, as posited by [32], it does not allow for AD solutions in environments 

where external measurements are not readily available (i.e. Earth eclipse of the 

sun). As such, many current CubeSat AD architectures rely on the use of filters to 

blend inertial gyro measurements with external reference measurements. During 

the Cat-2 mission [29], when gyroscope readings are available, a multiplicative 

extended Kalman filter (MEKF) is used to fuse kinematics with the dual vector 

measurements in a filtering methodology. Similarly, in [33], the same MEKF is 

used to estimate attitude on orbit using a TAM and a sun sensor. Within [34], a 



44 

 

hybrid attitude determination approach is performed, utilizing multiple sensors and 

an EKF to estimate the attitude on-orbit. Additionally, the QUEST algorithm is 

implemented prior to EKF use to ensure that attitude estimates do not diverge. 

As seen in [35], a similar approach is taken, utilizing both QUEST and an EKF 

during different flight conditions to obtain an attitude solution. 

 While the use of the EKF is common, it is not without its limitations. 

Namely, the linearization of the state dynamics and measurements does not 

preserve problem constraints, which can lead to estimate divergence. To mitigate 

this, some AD architectures have used the unscented Kalman filter (UKF). Within 

[6], a UKF is used to propagate 13 sigma points of the satellite attitude kinematics 

through time, blending estimates with measurements from a TAM and a sun sensor. 

In [36], a similar UKF architecture is developed, with the inclusion of robustness 

characteristics that reject external perturbations to the measurement models. 

While the UKF maintains problem constraints by not performing a linearization 

at each time update, it requires more computational power to solve for each sigma 

point. Moreover, as state vectors increase in size, computation time increases 

drastically. To reduce computation time, implementation of fast unscented Kalman 

filters are proposed in [37]. However, within this use, attitude is parameterized via 

Euler angles, resulting in a kinematic singularity dependent upon the system 

dynamics.  

Within [38] [39] [40], more novel techniques are used to determine the 

attitude of a spacecraft. In [38], the attitude of a CubeSat is determined via 

processing the angles-of-arrival and angles-of-departure of communications 

measurements from a formation of flying CubeSats. Reference [39] shows that 

CubeSat orbit and attitude determination are performed by optical tracking of 
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pulsing LEDs on-board a CubeSat in flight. Within [40], the attitude of a spinning 

bob is estimated by assuming the angular moment vector is fixed in inertial space, 

and utilizing a TAM to supply external measurement information to determine the 

nutation angle of the vehicle.  

As shown above, there are multiple ways to solve for the attitude of a 

CubeSat. The goal of this chapter is to expand upon the AD method shown in [41], 

in which a MEKF was used with a TAM as the sole aiding sensor. Specifically, this 

chapter discusses the Earth’s magnetic field as a measurement vector and develops 

CubeSat dynamic and measurement models that are used within an EKF 

architecture. This EKF is also used to calibrate the gyroscope on-orbit by 

estimating the attitude of the CubeSat in addition to gyroscope errors as defined 

in Chapter 2. Focus is given to details associated with understanding the selection 

of noise covariance models used within the EKF.  

3.2 Earth Magnetic Field as a Measurement Vector 

In many applications, the Earth’s magnetic field (EMF) vector is used as 

one of the vector measurements required for a solution to Wahba’s problem [33] 

[30] [42]. However, the AD solution developed in this chapter focuses on using the 

EMF vector as the sole aiding measurement. To accurately describe this 

methodology, we need to discuss the EMF and its characteristics. 

The EMF is a 3-D natural phenomenon that is always present around the 

Earth. Depending on the proximity to Earth’s surface, the EMF can resemble a 

magnetic dipole as seen in the top image of Figure 3.1. However, as altitude above 

the surface increases, the EMF reduces in strength by a 1/𝑟3 falloff [8] and can 

vary greatly depending on solar phenomena. As such, the EMF is generally well 
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modeled up to 600 𝑘𝑚 above the Earth’s surface [24] but uncertain at higher 

altitudes. This limits EMF use as an attitude aiding measurement to Low-Earth-

Orbit (LEO). 

 

Figure 3.1 Simplistic visualization of the Earth magnetic field (EMF).  

 

A measurement of the EMF vector can change in magnitude and direction 

depending upon where on the Earth’s surface it is being measured. Consider the 

simplistic EMF seen in Figure 3.1. A measurement of the EMF vector at any point 

along the equator will be horizontal with respect to the Earth’s surface and will be 

pointing towards the North pole. Now consider an EMF vector measurement at 

the North pole itself. The vector measurement will be pointing directly downwards 
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into the Earth’s surface. As we move North from the equator, the local EMF 

vector’s direction will change as a function of how fast we are travelling and the 

altitude at which we make these vector measurements. For example, consider the 

2D case shown in Figure 3.2. If three vehicles make an initial EMF vector 

measurement at 𝑡0 at position 𝑥0, then travel North and then make another EMF 

measurement at time 𝑡1, there will be some angular difference between the initial 

and current EMF vectors denoted by 𝛾. For a given Δ𝑡 = 𝑡1 − 𝑡0, the size of 𝛾 is 

generally dependent on the speed of the vehicles themselves. 

 

 

Figure 3.2 Difference between EMF measurements based on vehicle speeds. 

 

In many applications, such as the one shown in [42], the EMF vector remains 

relatively constant. However, in satellite applications, the EMF vector can change 
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by large amounts over short periods of times due to the orbital nature of the vehicle. 

We can utilize this fact to help solve for the attitude. Recall that a requirement of 

Wahba’s problem is to have two noncollinear vector measurements to resolve the 

attitude of a vehicle unambiguously. However, in this chapter we will try to answer 

the following question:  

If we have knowledge of some initial EMF vector at an initial time, and have 

travelled a sufficient distance such that another EMF vector measurement is 

significantly different than the initial measurement, can we utilize these two vector 

measurements to solve Wahba’s problem?  

Stated differently, does the EMF vector vary enough with time to be used as the 

sole AD aiding vector measurement? This question is the backbone of the AD 

solution presented in [41] and elaborated upon in this thesis. In the CubeSat case, 

the answer is dependent upon four parameters: 

• The speed and altitude of the CubeSat 

• The rotational rates of the CubeSat 

• The inclination of the CubeSat’s orbit 

• The frequency at which measurements occur 

The remainder of this chapter focuses on developing the dynamic and measurement 

models required to utilize this AD scheme in an EKF framework based on single-

vector EMF measurements. A discussion of simulation results and the importance 

of the above parameters is given in Chapter 5.  
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3.3 EKF Architecture 

As attitude dynamics of a spacecraft in orbit are inherently non-linear [8], 

we choose to use an EKF architecture for estimating the attitude. The goal of the 

EKF developed will be to iteratively estimate the attitude quaternion, 𝑞𝑆𝐸 , in 

addition to scale factor and bias errors present on the gyroscope, thereby 

calibrating the gyroscope in-flight.  

Recall that the EKF linearizes the state dynamics about the optimal state 

trajectory at each time step. As such, the EKF is estimating the deviations of the 

state vector about this optimal trajectory, denoted by 𝛿𝑥̅. In the instance of our 

filter, the state error vector can be given by 

𝛿𝑥̅ = 𝑥̅ − 𝑥̂̅ = [𝛿𝑞̅𝑆𝑆̂
𝑇     𝛿𝑏̅𝑔

𝑇    𝛿𝑠𝑓̅̅ ̅𝑇]
𝑇

(3.1) 

where 𝛿𝑞̅𝑆𝑆̂, 𝛿𝑏̅𝑔, and  𝛿𝑠𝑓̅̅ ̅ represent the errors between the true and estimated 

state values. To estimate these parameters, the EKF will require the development 

of sensor models, a dynamic or time update model, and a measurement model. This 

section formulates the linearized error-state version of these required models based 

upon the use of a three-axis rate gyroscope, or “gyro”, and a three-axis 

magnetometer (TAM). For more details on the general EKF, see Appendix B. 

3.3.1 Sensor Models 

3.3.1.1 Gyro Measurement Model 

A gyro measures the angular velocity of the body it is attached to with 

respect to some inertial frame, as seen in Chapter 2. In general, a gyro measurement 

is corrupted by multiple errors that must be accounted for within its measurement 
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model. A model for a gyro measuring angular rates between a body frame 𝓕𝑺 and 

inertial frame 𝓕𝑬 can be given by 

𝐶𝑆𝑔𝜔̅𝑚
𝑔𝐸

(𝑡) = (13 + 𝑆𝐹(𝑡))(𝜔̅𝑆𝐸(𝑡)) + 𝐶𝑆𝑔(𝑏̅𝑔(𝑡) + 𝑛̅𝑔(𝑡)) (3.2) 

where 𝜔̅𝑚
𝑔𝐸

 is the 3 × 1 angular velocity measured in the gyro frame, 𝜔̅𝑆𝐸 is the 

true angular velocity in the body frame, 𝑏̅𝑔(𝑡) is the time varying bias vector, and 

𝑛̅𝑔 is the additive wideband noise vector. 𝑆𝐹(𝑡) represents a matrix of slowly time 

varying scale factor errors such that  

𝑆𝐹(𝑡) = [

𝑠𝑓𝑔1(𝑡) 0 0

0 𝑠𝑓𝑔2(𝑡) 0

0 0 𝑠𝑓𝑔3(𝑡)

] (3.3) 

where 𝑠𝑓𝑔 represent scale factors in each axis of the gyro measurement, resolved in 

the gyro frame 𝓕𝒈. 𝐶𝑆𝑔 is the 3 × 3 DCM that represents any rotation between the 

gyro frame and the body frame. In the instance where the gyro frame axes are 

perfectly aligned with the body frame axes, this matrix is the identity matrix 13 

Similarly, 𝑆𝐹 = 03 when there are no scale factor errors present. 

 A single scale factor error is assumed to vary via a random walk process 

modeled as follows:  

𝑠𝑓̇(𝑡) = 𝑛𝑠𝑓(𝑡) (3.4𝑎) 

𝐸{𝑛𝑠𝑓(𝑡)} = 0 (3.4𝑏) 

𝐸{𝑛𝑠𝑓(𝑡)𝑛𝑠𝑓(𝜏)
𝑇} = 𝜎𝑠𝑓

2 𝛿(𝑡 − 𝜏) (3.4𝑐) 

where 𝜎𝑠𝑓 is the standard deviation of the scale factor white noise and 𝛿(𝑡 − 𝜏) is 

the Dirac delta function.  
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 The time varying bias can be modeled as  

𝑏̅𝑔(𝑡) = 𝑏̅𝑔,0 + 𝑏̅𝑔,1(𝑡) (3.5) 

where 𝑏̅𝑔,0 represents a constant null-shift bias vector and 𝑏̅𝑔,1(𝑡) represents a time 

varying colored noise process, or bias drift rate. The bias drift rate is often modeled 

as a 1st order Gauss-Markov (GM) correlated process. In the instance of a single 

axis gyro, the GM process is given by:  

𝑏𝑔̇(𝑡) = 𝑏𝑔,1
̇ (𝑡) = −

1

𝜏𝐺𝑀
𝑏𝑔,1(𝑡) + 𝑛𝑔

𝑏(𝑡) (3.6𝑎) 

𝐸{𝑏𝑔,1(𝑡)} = 0 (3.6𝑏) 

𝐸{𝑏𝑔,1(𝑡)𝑏𝑔,1(𝜏𝐺𝑀)𝑇} = 𝜎𝐼𝑅𝐵
2 exp [−

𝑡

𝜏𝐺𝑀
] (3.6𝑐) 

𝑄𝑏𝑔,1
=

2𝜎𝐼𝑅𝐵
2

𝜏𝐺𝑀

(3.6𝑑) 

where 𝜎𝐼𝑅𝐵 refers to the standard deviation of the correlated process 𝑏𝑔,1, 𝜏𝐺𝑀 is 

the correlation time of process 𝑏𝑔,1, 𝑛𝑔
𝑏 is the driving process noise, and 𝑄𝑏𝑔,1

 is the 

power spectral density of 𝑛𝑔
𝑏. Consistent with literature in inertial navigation, we 

refer to the standard deviation of this process as 𝜎𝐼𝑅𝐵 where IRB stands In-Run 

bias. The driving process noise 𝑛𝑔
𝑏 is modeled as a zero-mean, Gaussian, white noise 

process such that 

𝐸{𝑛𝑔
𝑏(𝑡)} = 0 (3.7𝑎) 

𝐸{𝑛𝑔
𝑏(𝑡)𝑛𝑔

𝑏(𝜏)𝑇} = 𝜎𝑏
2𝛿(𝑡 − 𝜏) (3.7𝑏) 

where 𝜎𝑏 is the standard deviation of the driving process noise 𝑛𝑔
𝑏. 
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 The additive white noise (also known as wideband or output noise) vector 

given by 𝑛̅𝑔 can be represented by a zero-mean, Gaussian, white noise process. This 

is given for a single gyro by 

𝐸{𝑛𝑔(𝑡)} = 0 (3.8𝑎) 

𝐸{𝑛𝑔(𝑡)𝑛𝑔(𝜏)𝑇} = 𝜎𝑔
2𝛿(𝑡 − 𝜏) (3.8𝑏) 

where 𝜎𝑔 stands for the standard deviation of process 𝑛̅𝑔. This standard deviation 

corresponds to the angular random walk (ARW, in 𝑟𝑎𝑑/√𝑠𝑒𝑐) term often listed on 

specifications sheets.  

 The estimated value of the measured angular velocity can be given by taking 

the expectation of Equation (3.2) such that 

𝐸{𝐶𝑆𝑔𝜔̅𝑚
𝑔𝐸

(𝑡)} = 𝐸{(13 + 𝑆𝐹(𝑡))(𝜔̅𝑆𝐸(𝑡) + 𝐶𝑆𝑔(𝑏̅𝑔(𝑡) + 𝑛̅𝑔(𝑡)))} 

𝐶𝑆𝑔𝜔̅𝑚
𝑔𝐸

(𝑡) = (13 + 𝑆𝐹̂(𝑡)) 𝜔̂̅𝑆𝐸(𝑡) + 𝐶𝑆𝑔𝑏̂̅𝑔(𝑡) 

𝜔̂̅𝑆𝐸(𝑡) = (13 + 𝑆𝐹̂(𝑡))
−1

𝐶𝑆𝑔 (𝜔̅𝑚
𝑔𝐸(𝑡) − 𝑏̂̅𝑔(𝑡)) (3.9𝑎) 

with the true angular velocity given by 

𝜔̅𝑆𝐸(𝑡) = (13 + 𝑆𝐹(𝑡))
−1

𝐶𝑆𝑔 (𝜔̅𝑚
𝑔𝐸(𝑡) − 𝑏̅𝑔(𝑡) − 𝑛̅𝑔(𝑡)) (3.9𝑏) 

where 𝜔̂̅𝑆𝐸 is the estimate of the angular velocity, 𝑏̂̅𝑔(𝑡) is the estimate of the gyro 

bias vector, and  (13 + 𝑆𝐹̂(𝑡))
−1

 is the inverse matrix of the estimated scale factors 

of the form 

(13 + 𝑆𝐹̂(𝑡))
−1

= [

1 + 𝑠𝑓̂𝑔1(𝑡) 0 0

0 1 + 𝑠𝑓̂𝑔2(𝑡) 0

0 0 1 + 𝑠𝑓̂𝑔3(𝑡)

]

−1
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(13 + 𝑆𝐹̂(𝑡))
−1

≈ (13 − 𝑆𝐹̂(𝑡)) = [

1 − 𝑠𝑓̂𝑔1(𝑡) 0 0

0 1 − 𝑠𝑓̂𝑔2(𝑡) 0

0 0 1 − 𝑠𝑓̂𝑔3(𝑡)

] (3.10) 

where we assume  𝑠𝑓̂(𝑡)  are sufficiently small. As both 𝐶𝑆𝑔  and 𝜔̅𝑚
𝑔𝐸

 are 

deterministic (known) parameters, their expected values are simply the values 

themselves.  

 The difference between the true and estimated angular velocity can be 

obtained by substituting Equation (3.2) into Equation (3.9) and simplifying such 

that 

𝛿𝜔̅𝑆𝐸(𝑡) = 𝜔̅𝑆𝐸(𝑡) − 𝜔̂̅𝑆𝐸(𝑡) 

= (13 − 𝑆𝐹(𝑡))𝐶𝑆𝑔𝜔̅𝑚
𝑔𝐸

− (13 − 𝑆𝐹(𝑡))𝐶𝑆𝑔𝑏̅𝑔(𝑡) − (13 − 𝑆𝐹(𝑡))𝐶𝑆𝑔𝑛̅𝑔

− (13 − 𝑆𝐹̂(𝑡)) 𝐶𝑆𝑔𝜔̅𝑚
𝑔𝐸

+ (13 − 𝑆𝐹̂(𝑡)) 𝐶𝑆𝑔 𝑏̂̅𝑔(𝑡)  

= −𝛿𝑆𝐹(𝑡)𝐶𝑆𝑔 − 𝐶𝑆𝑔𝛿𝑏̅𝑔(𝑡) + (𝛿𝑆𝐹(𝑡) + 𝑆𝐹̂(𝑡)) 𝐶𝑆𝑔 (𝛿𝑏̅𝑔(𝑡) + 𝑏̂̅𝑔(𝑡))

− 𝑆𝐹̂(𝑡)𝐶𝑆𝑔 𝑏̂̅(𝑡) − 𝐶𝑆𝑔𝑛̅𝑔 + (𝛿𝑆𝐹(𝑡) + 𝑆𝐹̂(𝑡)) 𝐶𝑆𝑔𝑛̅𝑔(𝑡) 

= −𝛿𝑆𝐹(𝑡)𝐶𝑆𝑔𝜔̅𝑚
𝑔𝐸

− 𝐶𝑆𝑔𝛿𝑏̅𝑔(𝑡) + 𝛿𝑆𝐹(𝑡)𝐶𝑆𝑔𝛿𝑏̅𝑔(𝑡) + 𝛿𝑆𝐹(𝑡)𝐶𝑆𝑔𝑏̂̅𝑔(𝑡)

+ 𝑆𝐹̂(𝑡)𝐶𝑆𝑔𝛿𝑏̅𝑔(𝑡) + 𝑆𝐹̂(𝑡)𝐶𝑆𝑔𝑏̂̅𝑔(𝑡) − 𝑆𝐹̂(𝑡)𝐶𝑆𝑔𝑏̂̅𝑔(𝑡) − 𝐶𝑆𝑔𝑛̅𝑔(𝑡)

+ 𝛿𝑆𝐹(𝑡)𝐶𝑆𝑔𝑛̅𝑔(𝑡) + 𝑆𝐹̂(𝑡)𝐶𝑆𝑔𝑛̅𝑔(𝑡)  

𝛿𝜔̅𝑆𝐸(𝑡) = −𝑑𝑖𝑎𝑔 (𝐶𝑆𝑔 (𝜔̅𝑚
𝑔𝐸(𝑡) − 𝑏̂̅𝑔(𝑡))) 𝛿𝑠𝑓̅̅ ̅(𝑡) − (13 − 𝑆𝐹̂(𝑡)) 𝐶𝑆𝑔𝛿𝑏̅𝑔(𝑡)

− (13 − 𝑆𝐹̂(𝑡)) 𝐶𝑆𝑔𝑛̅𝑔(𝑡) (3.11𝑎)

 

where we have assumed that higher order terms are negligible. The error values of 

the states can be given by  

𝛿𝑆𝐹(𝑡) = 𝑆𝐹(𝑡) − 𝑆𝐹̂(𝑡) (3.11𝑏) 
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𝛿𝑏̅𝑔(𝑡) = 𝑏̅𝑔(𝑡) − 𝑏̂̅𝑔(𝑡) = 𝑏̅𝑔,1(𝑡) (3.11𝑐) 

with the differential matrix of scale factors given by  

𝛿𝑆𝐹(𝑡) = 𝑑𝑖𝑎𝑔 (𝛿𝑠𝑓̅̅ ̅(𝑡)) (3.12𝑎) 

𝛿𝑠𝑓̅̅ ̅(𝑡) = [

𝛿𝑠𝑓𝑔1(𝑡)

𝛿𝑠𝑓𝑔2(𝑡)

𝛿𝑠𝑓𝑔3(𝑡)

] (3.12𝑏) 

The rate of change of a single scale factor differential can be obtained by 

subtracting the expected value of Equation (3.4a) from itself such that 

𝑠𝑓̇̂(𝑡) = 𝐸{𝑠𝑓̇(𝑡)} = 0 (3.13𝑎) 

𝛿𝑠𝑓̇(𝑡) = 𝑠𝑓̇(𝑡) − 𝑠𝑓̇̂(𝑡) = 𝑛𝑠𝑓(𝑡) (3.13𝑏) 

with vector representation given as  

𝛿𝑠𝑓̅̅ ̅̇(𝑡) = 𝑛̅𝑠𝑓(𝑡) (3.14) 

The rate of change of 𝛿𝑏̅𝑔 can similarly be determined by taking the derivative 

with respect to time of Equation (3.11c) 

𝑏̂̅
̇
𝑔(𝑡) = 𝐸 {𝑏̇̅𝑔(𝑡)} = 0 (3.15) 

with 

𝛿𝑏̇̅𝑔(𝑡) =
𝑑

𝑑𝑡
(𝑏̅𝑔(𝑡)) −

𝑑

𝑑𝑡
(𝑏̂̅𝑔(𝑡)) (3.16𝑎) 

𝛿𝑏̇̅𝑔(𝑡) = −
1

𝜏𝐺𝑀
𝑏̅𝑔,1(𝑡) + 𝑛̅𝑔

𝑏(𝑡) = −
1

𝜏𝐺𝑀
𝛿𝑏̅𝑔(𝑡) + 𝑛̅𝑔

𝑏(𝑡) (3.16𝑏) 

where we have made use of the fact that 𝑏̅𝑔,1(𝑡) = 𝛿𝑏̅𝑔(𝑡) and noted that the 

expected value of 𝑏̇̅𝑔 is 0.  
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3.3.1.2 Magnetometer Measurement Model 

 A magnetometer measures the local magnetic field surrounding the body it 

is attached to, as discussed in Chapter 2. A measurement model for the 

magnetometer can be given by [43]  

𝐶𝑆𝑚𝑚̅𝑚
𝑚(𝑡) = 𝐶𝑠𝑓,𝑚(𝑡)𝐶𝑠𝑖(𝑡) (𝑚̅𝑆(𝑡) + 𝑏̅𝑚

ℎ𝑖(𝑡) + 𝑛̅𝑚(𝑡)) (3.17) 

where 𝐶𝑆𝑚  is the 3 × 3  DCM that represents any rotation between the 

magnetometer frame and the spacecraft body frame, 𝑚̅𝑚
𝑚 is the measured magnetic 

field vector in the magnetometer frame, 𝑚̅𝑆 is the true magnetic field vector in the 

body frame, 𝐶𝑠𝑓,𝑚 is the 3 × 3 diagonal matrix of magnetometer scale factor errors 

such that  

𝐶𝑠𝑓,𝑚(𝑡) = [

1 + 𝑠𝑓𝑚1(𝑡) 0 0

0 1 + 𝑠𝑓𝑚2(𝑡) 0

0 0 1 + 𝑠𝑓𝑚3(𝑡)
] (3.18) 

similar to the gyroscope scale factor matrix 𝑆𝐹. The 3 × 3 matrix denoted by 𝐶𝑠𝑖 

is a matrix of “soft-iron” biases due to external fluctuations in the magnetic field, 

𝑏̅𝑚
ℎ𝑖 is the vector of “hard-iron” biases due to the residual magnetic field caused by 

the spacecraft’s electronic components, and 𝑛̅𝑚  is additive gaussian, zero-mean 

white noise to the magnetometer measurements. For the purpose of this thesis, it 

is assumed that all magnetometer measurements have be calibrated such that there 

are no soft-iron, hard-iron, or scale factor errors present. Additionally, it is assumed 

that the magnetometer is perfectly aligned with the body frame. This simplifies 

Equation (3.17) into  

𝑚̅𝑚
𝑆 = 𝑚̅𝑆 + 𝑛̅𝑚(𝑡) (3.19𝑎) 

𝐸{𝑛̅𝑚(𝑡)} = 0 (3.19𝑏) 
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𝐸{𝑛̅𝑚(𝑡)𝑛̅𝑚(𝜏)𝑇} = 𝜎𝑚𝑎𝑔
2 𝛿(𝑡 − 𝜏) (3.19𝑐) 

where 𝜎𝑚𝑎𝑔 is the standard deviation of the wideband magnetometer output noise. 

The scenarios in which Equation (3.19) is an accurate representation are discussed 

further in Chapter 6. 

3.3.2 EKF Time Update 

3.3.2.1 Attitude Kinematics Equations 

The attitude of the system is parameterized via the 4 × 1 quaternion and 

can be propagated through time such that  

𝑞𝑆𝐸(𝑡) = [
𝑞0(𝑡)
𝑞̅(𝑡)

] = [

𝑞0(𝑡)
𝑞1(𝑡)
𝑞2(𝑡)
𝑞3(𝑡)

] (3.20𝑎) 

𝑞̇𝑆𝐸(𝑡) =
1

2
[

0
𝜔̅𝑆𝐸(𝑡)

] ⊗ 𝑞𝑆𝐸(𝑡) (3.20𝑏) 

𝑞̇𝑆𝐸(𝑡) =
1

2
[

0 −𝜔̅𝑆𝐸,𝑇(𝑡)

𝜔̅𝑆𝐸(𝑡) −𝜔̅𝑆𝐸,×(𝑡)
] 𝑞𝑆𝐸(𝑡) =

1

2
Ω(𝜔̅𝑆𝐸(𝑡))𝑞𝑆𝐸(𝑡) (3.20𝑐) 

where 𝜔̅𝑆𝐸,𝑇 refers to the 1 × 3 transpose of the angular velocity vector and 𝜔̅𝑆𝐸,× 

is the skew symmetric matrix of 𝜔̅𝑆𝐸. The additional equation of Equation (3.20c) 

is defined as it is useful for derivation and removes the use of quaternion 

multiplication [44]. For the remainder of this chapter, we will neglect the inclusion 

of (𝑡) to ease notation. Note that depending on convention used, these equations 

will be slightly different.  

We assume that a multiplication of two quaternions, 𝑞𝑔𝑆 and 𝑞𝑆𝐸, follows 

the convention suggested by the multiplication of two DCMs  

𝐶𝑔𝐸(𝑞𝑔𝐸) = 𝐶𝑔𝑆(𝑞𝑔𝑆)𝐶𝑆𝐸(𝑞𝑆𝐸) = 𝐶𝑔𝐸(𝑞𝑔𝑆 ⊗ 𝑞𝑆𝐸) (3.21) 
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where 𝐶𝑔𝐸 represents the DCM from frame 𝓕𝑬 to frame 𝓕𝒈 that is parameterized 

by the multiplication of individual quaternions 𝑞𝑔𝑆 and 𝑞𝑆𝐸. This represents an 

initial rotation to 𝓕𝑺 from 𝓕𝑬 parameterized by 𝑞𝑆𝐸 followed by another rotation 

from 𝓕𝑺 to 𝓕𝒈 parameterized by 𝑞𝑔𝑆.  

 In the instance where a rotation between two frames is small, the quaternion 

and DCM parameterizations of this small angle assumption (SAA) are 

𝑞𝑆𝐴𝐴 ~ [

1
𝛿𝑞1

𝛿𝑞2

𝛿𝑞3

] = [
1
𝛿𝑞̅

] = 𝛿𝑞𝑆𝐴𝐴 (3.22𝑎) 

𝐶𝑆𝐴𝐴(𝑞𝑆𝐴𝐴) ~13 − 2𝛿𝑞̅× (3.22𝑏) 

where the scalar portion of the quaternion is approximately 1 and the vector 

portion resembles some small quaternion vector, denoted by 𝛿𝑞̅. The DCM of this 

small angle assumption, 𝐶𝑆𝐴𝐴  parameterized by the small quaternion 𝑞𝑆𝐴𝐴 , 

resembles the 3 × 3 identity matrix minus the skew symmetric matrix (denoted by 

(∙)×) of the small quaternion vector.  

One of the goals of the EKF is to estimate the attitude of the vehicle, and 

thus estimate the quaternion between the inertial frame and the spacecraft frame. 

This estimate can be quantified by determining a quaternion between the inertial 

frame, 𝓕𝑬, and an estimate body frame, 𝓕𝑺, denoted by 𝑞𝑆̂𝐸. The true quaternion 

can be related to the estimate quaternion via the following relationship [8]  

𝑞𝑆𝐸 = 𝛿𝑞𝑆𝑆̂ ⊗ 𝑞𝑆̂𝐸 (3.23) 

where the true quaternion 𝑞𝑆𝐸  is equivalent to the estimate quaternion, 𝑞𝑆̂𝐸 ,  

multiplied by some small “error” quaternion, 𝛿𝑞𝑆𝑆̂ . Graphically, this can be 

represented by Figure 3.3, in which the true attitude can be obtained by first 
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performing a rotation from 𝓕𝑬  to the estimate body frame 𝓕𝑺 , followed by a 

corrective rotation from the estimate body frame 𝓕𝑺 to the true body frame 𝓕𝑺. 

This corrective rotation can be thought of as a small angular rotation about the 

estimated body frame. 

 The quaternion error can be obtained by rearranging Equation (3.23) to 

obtain the following 

𝛿𝑞𝑆𝑆̂ = 𝑞𝑆𝐸 ⊗ 𝑞𝑆̂𝐸
−1 = 𝑞𝑆𝐸 ⊗ 𝑞𝐸𝑆̂ (3.24) 

where the inverse of 𝑞𝑆̂𝐸 is equivalent to 𝑞𝐸𝑆̂ such that 𝑞𝑆̂𝐸
−1 = 𝑞𝐸𝑆̂. As an aside, the 

quaternion notation used above allows for the interior subscripts of quaternion 

multiplication to be equivalent, resulting in a quaternion that is the 

parameterization of the attitude between the exterior subscripts of the multiplied 

quaternions. In general, it is a method to ensure the quaternion multiplication is 

correct.  
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Figure 3.3 Visual representation of attitude quaternion multiplication. 

 

 The rate of change of the quaternion error 𝛿𝑞𝑆𝑆̂, 𝛿𝑞̇𝑆𝑆̂, can be obtained by 

taking the time derivative of Equation (3.24) such that 

𝛿𝑞̇𝑆𝑆̂ = 𝑞𝑆𝐸 ⊗ 𝑞𝑆̂𝐸
−1̇ = 𝑞̇𝑆𝐸 ⊗ 𝑞𝑆̂𝐸

−1 + 𝑞𝑆𝐸 ⊗ 𝑞̇𝑆̂𝐸
−1 (3.25) 

The rate of change of the estimate quaternion is given by taking the expectation 

of Equation (3.20c) 

𝑞̇𝑆̂𝐸 = 𝐸{𝑞̇𝑆𝐸} = 𝐸 {
1

2
Ω(𝜔̅𝑆𝐸)𝑞𝑆𝐸} =

1

2
Ω(𝜔̂̅𝑆𝐸)𝑞𝑆̂𝐸 (3.26) 

where its inverse can be shown to be [44] 

𝑞̇𝑆̂𝐸
−1 = 𝑞𝑆̂𝐸

−1 ⊗ −
1

2
[

0
𝜔̂̅𝑆𝐸]  = −

1

2
[ 0 −𝜔̂̅𝑆𝐸,𝑇

𝜔̂̅𝑆𝐸 𝜔̂̅𝑆𝐸,× ] 𝑞𝑆̂𝐸
−1 = −

1

2
Β(𝜔̂̅𝑆𝐸)𝑞𝑆̂𝐸

−1 (3.27) 
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Substituting Equations (3.27) and (3.20b) into Equation (3.25), the rate of change 

of the quaternion error is 

𝛿𝑞̇𝑆𝑆̂ =
1

2
[

0
𝜔̅𝑆𝐸] ⊗ 𝑞𝑆𝐸 ⊗ 𝑞𝑆̂𝐸

−1 + 𝑞𝑆𝐸 ⊗ 𝑞𝑆̂𝐸
−1 ⊗ −

1

2
[

0
𝜔̂̅𝑆𝐸] (3.28) 

where we have maintained the quaternion multiplication. Noting that 𝑞𝑆𝐸 ⊗ 𝑞𝑆̂𝐸
−1 =

𝛿𝑞𝑆𝑆̂, we can simplify Equation (3.28) to be  

𝛿𝑞̇𝑆𝑆̂ =
1

2
[

0
𝜔̅𝑆𝐸] ⊗ 𝛿𝑞𝑆𝑆̂ + 𝛿𝑞𝑆𝑆̂ ⊗ −

1

2
[

0
𝜔̂̅𝑆𝐸] (3.29) 

Using the definitions of Ω(∙) and Β(∙), Equation (3.29) can be further simplified to 

be 

𝛿𝑞̇𝑆𝑆̂ =
1

2
(Ω(𝜔̅𝑆𝐸) − Β(𝜔̂̅𝑆𝐸))𝛿𝑞𝑆𝑆̂ (3.30) 

where Ω(𝜔̅𝑆𝐸) and Β(𝜔̂̅𝑆𝐸) are defined in Equations (3.20c) and (3.27) respectively. 

At this point, we have reduced the quaternion error propagation to be a function 

of the estimated and truth angular velocities. If we define the difference between 

the true angular velocity and the estimate angular velocity as 

𝛿𝜔̅𝑆𝐸 = 𝜔̅𝑆𝐸 − 𝜔̂̅𝑆𝐸 (3.31) 

similar to Equation (3.11a), then we can rewrite 𝜔̅𝑆𝐸 as 

𝜔̅𝑆𝐸 = 𝛿𝜔̅𝑆𝐸 + 𝜔̂̅𝑆𝐸 (3.32) 

and substitute Equation (3.32) into Equation (3.30) and simplify to obtain  

𝛿𝑞̇𝑆𝑆̂ =
1

2
[ 0 −𝛿𝜔̅𝑆𝐸,𝑇

𝛿𝜔̅𝑆𝐸 −𝛿𝜔̅𝑆𝐸,×] 𝛿𝑞𝑆𝑆̂ − [
0

𝜔̂̅𝑆𝐸,×] 𝛿𝑞𝑆𝑆̂ (3.33) 
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where we have not made any assumptions on the size of the angular rotation 

parameterized by 𝛿𝑞̇𝑆𝑆̂. Writing Equation (3.33) in terms of 𝛿𝑞̇0,𝑆𝑆̂ and 𝛿𝑞̇̅𝑆𝑆̂, we 

have 

𝛿𝑞̇0,𝑆𝑆̂ = −
1

2
𝛿𝜔̅𝑆𝐸,𝑇𝛿𝑞̅𝑆𝑆̂ (3.34𝑎) 

𝛿𝑞̇̅𝑆𝑆̂ =
1

2
(𝛿𝜔̅𝑆𝐸𝛿𝑞0,𝑆𝑆̂ − (𝛿𝜔̅𝑆𝐸 + 2𝜔̂̅𝑆𝐸)×𝛿𝑞̅𝑆𝑆̂) (3.34𝑏) 

If we assume that the quaternion representation of 𝛿𝑞̇𝑆𝑆̂ denotes a small angle and 

that multiples of higher order terms are negligible, then the SAA can be invoked 

in the format of Equation (3.22a) such that the rate of change of the error 

quaternion can now be written as 

𝛿𝑞̇0,𝑆𝑆̂ ≈ 0 (3.35𝑎) 

𝛿𝑞̇̅𝑆𝑆̂ =
1

2
(𝛿𝜔̅𝑆𝐸) − 𝜔̂̅𝑆𝐸,×𝛿𝑞̅𝑆𝑆̂ (3.35𝑏) 

where 

𝜔̂̅𝑆𝐸 = (13 − 𝑆𝐹̂)𝐶𝑆𝑔 (𝜔̅𝑚
𝑔𝐸

− 𝑏̂̅𝑔) (3.9𝑎) 

𝛿𝜔̅𝑆𝐸 = −𝑑𝑖𝑎𝑔 (𝐶𝑆𝑔 (𝜔̅𝑚
𝑔𝐸

− 𝑏̂̅𝑔)) 𝛿𝑠𝑓̅̅ ̅ − (13 − 𝑆𝐹̂)𝐶𝑆𝑔𝛿𝑏̅𝑔

−(13 − 𝑆𝐹̂(𝑡)) 𝐶𝑆𝑔𝑛̅𝑔 (3.11𝑎)
 

with the assumption that the scale factors are sufficiently small. We note that the 

rate of change of the scalar component is considered to be negligible. The rate of 

change of the vector portion of the quaternion is a function of the array of  scale 

factor differentials, 𝛿𝑆𝐹, the bias vector errors, 𝛿𝑏̅𝑔, measured angular velocity, 

𝜔̅𝑚
𝑔𝐸

, and the estimated angular velocity 𝜔̂̅𝑆𝐸. The equations formulated within this 

section are grouped below for clarity. 



62 

 

𝛿𝑞̇0,𝑆𝑆̂ ≈ 0 (3.35𝑎) 

𝛿𝑞̇̅𝑆𝑆̂ =
1

2
(𝛿𝜔̅𝑆𝐸) − 𝜔̂̅𝑆𝐸,×𝛿𝑞̅𝑆𝑆̂ (3.35𝑏) 

𝑞̇𝑆̂𝐸 =
1

2
[ 0 −𝜔̂̅𝑆𝐸,𝑇

𝜔̂̅𝑆𝐸 −𝜔̂̅𝑆𝐸,×] 𝑞𝑆̂𝐸 =
1

2
Ω(𝜔̂̅𝑆𝐸)𝑞𝑆̂𝐸 (3.26) 

𝛿𝑏̇̅𝑔 = −
1

𝜏𝐺𝑀
𝛿𝑏̅𝑔 + 𝑛̅𝑔

𝑏 (3.16𝑏) 

𝑏̂̅
̇
𝑔 = 0 (3.15) 

𝛿𝑠𝑓̅̅ ̅̇ = 𝑛̅𝑠𝑓 (3.14) 

𝑠𝑓̅̅ ̅̇̂ = 0 (3.13𝑎) 

with the estimated angular velocity given by  

𝜔̂̅𝑆𝐸 = (13 − 𝑆𝐹̂)𝐶𝑆𝑔 (𝜔̅𝑚
𝑔𝐸

− 𝑏̂̅𝑔) (3.9) 

and the inverse scale factor matrix as 

(13 + 𝑆𝐹̂)
−1

≈ (13 − 𝑆𝐹̂) = [

1 − 𝑠𝑓̂𝑔1 0 0

0 1 − 𝑠𝑓̂𝑔2 0

0 0 1 − 𝑠𝑓̂𝑔3

] (3.10) 

3.3.2.2 State Error Covariance Propagation  

To propagate the state covariance on the EKF estimate, the continuous 

time error state equations must be placed into state space format such that 

𝛿𝑥̇̅(𝑡) = 𝐹(𝑡)𝛿𝑥̅(𝑡) + 𝐿(𝑡)𝑛̅(𝑡) (3.36) 

where 

𝛿𝑥̅ = [𝛿𝑞̅𝑆𝑆̂
𝑇     𝛿𝑏̅𝑔

𝑇    𝛿𝑠𝑓̅̅ ̅ ,𝑇]
𝑇

(3.1) 
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with 𝐹(𝑡) and 𝐿(𝑡) representing the continuous time mapping matrices of the 

system. In the instance of our system, we assume that the cumulative process noise 

vector 𝑛̅  is the input. Using the state error equations developed previously, 

Equation (3.36) can be expanded such that 

𝛿𝑥̇̅(𝑡) =

[
 
 
 
 −𝜔̂̅𝑆𝐸,× −

1

2
(13 − 𝑆𝐹̂)𝐶𝑆𝑔

1

2
𝑑𝑖𝑎𝑔 (𝐶𝑆𝑔 (𝜔̅𝑚

𝑔𝐸
− 𝑏̂̅𝑔))

03 −
1

𝜏𝐺𝑀
13 03

03 03 03 ]
 
 
 
 

𝛿𝑥̅(𝑡)  

+[
−

1

2
(13 − 𝑆𝐹̂)𝐶𝑆𝑔 03 03

03 13 03

03 03 13

] [

𝑛̅𝑔

𝑛̅𝑔
𝑏

𝑛̅𝑠𝑓

] (3.37) 

where 03  represents a 3 × 3  matrix of zeros, and 
1

2
𝑑𝑖𝑎𝑔 (𝐶𝑆𝑔 (𝜔̅𝑚

𝑔𝐸
− 𝑏̂̅𝑔))  is a 

diagonalization of the 3 × 1 bias “corrected” angular velocity measurement. While 

the state propagation equation posed here is useful, it is for the continuous time 

case. In practice, implementation on hardware forces the system to be in discrete 

time. For the system given in Equation (3.36), the discrete form can be obtained 

via 

𝛿𝑥̅𝑘 = exp[𝐹(𝑡)(𝑡𝑘 − 𝑡𝑘−1)]𝛿𝑥̅𝑘−1 + ∫ exp[𝐹(𝜏)]𝐿(𝜏)
𝑡𝑘

𝑡𝑘−1

𝑛̅(𝜏)𝑑𝜏 (3.38) 

where 𝑡𝑘 − 𝑡𝑘−1 is the discrete time interval. This can be rewritten in the form of  

𝛿𝑥̅𝑘 = Φ𝑘−1𝛿𝑥̅𝑘−1 + Γ𝑘−1𝑛̅𝑘−1 (3.39) 

where  

Φ𝑘−1 = exp[𝐹(𝑡)(𝑡𝑘 − 𝑡𝑘−1)] (3.40) 
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Γ𝑘−1 = ∫ exp[𝐹(𝜏)]𝑑𝜏𝐿(𝑡𝑘−1)
𝑡𝑘

𝑡𝑘−1

(3.41) 

with the assumption that the noise vector 𝑛̅(𝑡) is constant between the interval of 

(𝑡𝑘, 𝑡𝑘−1).  

 With the above information, the state covariance update can be written as 

a modified form of Equation (B.25) 

𝑃𝑘
− = Φ𝑘−1𝑃𝑘−1

− Φ𝑘−1
𝑇 + 𝑄𝑤,𝑘−1 (3.42) 

with 𝑄𝑤,𝑘−1 representing the modified form of the process noise term in Equation 

(B.25) given by 𝐿𝑘−1𝑄𝑘−1𝐿𝑘−1
𝑇 . This discretization can be obtained via [41] 

𝑄𝑤,𝑘−1 = ∫ Φ(𝑡𝑘−1, 𝜏)𝐿(𝜏)𝑄𝑤(𝜏)𝐿𝑇(𝜏)Φ𝑇(𝑡𝑘−1, 𝜏)𝑑𝜏
𝑡𝑘

𝑡𝑘−1

(3.43) 

where 𝑄𝑤(𝑡)  is the continuous time process noise covariance matrix. This 

covariance matrix is often denoted as the power spectral density (PSD) matrix of 

the process noise vector. Within this work it is defined as the following 9 × 9 matrix 

𝑄𝑤(𝑡) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜎𝑔1

2 0 0 0 0 0 0 0 0

0 𝜎𝑔2
2 0 0 0 0 0 0 0

0 0 𝜎𝑔3
2 0 0 0 0 0 0

0 0 0
2𝜎𝐼𝑅𝐵,1

2

𝜏𝐺𝑀
0 0 0 0 0

0 0 0 0
2𝜎𝐼𝑅𝐵,2

2

𝜏𝐺𝑀
0 0 0 0

0 0 0 0 0
2𝜎𝐼𝑅𝐵,3

2

𝜏𝐺𝑀
0 0 0

0 0 0 0 0 0 𝜎𝑠𝑓1
2 0 0

0 0 0 0 0 0 0 𝜎𝑠𝑓2
2 0

0 0 0 0 0 0 0 0 𝜎𝑠𝑓3
2

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(3.44𝑎) 
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𝑄𝑤(𝑡) = 𝑑𝑖𝑎𝑔 [𝜎𝑔1
2  𝜎𝑔2

2  𝜎𝑔3
2  

2𝜎𝐼𝑅𝐵,1
2

𝜏𝐺𝑀
 
2𝜎𝐼𝑅𝐵,2

2

𝜏𝐺𝑀
 
2𝜎𝐼𝑅𝐵,3

2

𝜏𝐺𝑀
 𝜎𝑠𝑓1

2  𝜎𝑠𝑓2
2  𝜎𝑠𝑓3

2 ] (3.44𝑏) 

where the continuous time process noise covariance matrix is formulated using the 

standard deviations on the output noise (given by ARW on spec sheets), in-run 

bias stability, and scale factor errors of the selected gyro of choice. While this 

matrix may seem straight forward, careful attention must be placed when selecting 

these parameters. The formulation of this matrix, along with the measurement 

noise covariance matrix, will be discussed in detail later within this section.  

3.3.2.3 Time Update Equations  

 Given the above information, the time update equations can be used to 

discretely update the state such that 

𝑆𝐹̂𝑘−1 = 𝑑𝑖𝑎𝑔 ( 𝑠𝑓̅̅ ̅̂
𝑘−1) (3.45𝑎) 

𝜔̂̅𝑘−1
𝑆𝐸 = (13 − 𝑆𝐹̂𝑘−1)𝐶𝑆𝑔 (𝜔̅𝑚,𝑘−1

𝑔𝐸
− 𝑏̂̅𝑔,𝑘−1) (3.45𝑏) 

𝑞𝑆̂𝐸,𝑘 = exp [ 
1

2
𝛺(𝜔̂̅𝑘−1

𝑆𝐸 )(𝑡𝑘 − 𝑡𝑘−1)] 𝑞𝑆̂𝐸,𝑘−1 (3.45𝑐) 

𝑏̂̅𝑔,𝑘 = 𝑏̂̅𝑔,𝑘−1 (3.45𝑑) 

𝑠𝑓̅̅ ̅̂
𝑘 = 𝑠𝑓̅̅ ̅̂

𝑘−1 (3.45𝑒) 

𝑃𝑘
− = Φ𝑘−1𝑃𝑘−1Φ𝑘−1

𝑇 + 𝑄𝑤,𝑘−1 (3.45𝑓) 

Note that the biases and the scale factors remain constant over time updates and 

are updated through the measurement portion of the EKF. Additionally, we use 

the estimated angular velocity, corrected by the current scale factor and bias 

estimates, to propagate the quaternion estimate at each time update. The estimates 
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of the states at this point can be considered the a priori state estimates that will 

eventually be corrected by a measurement update. 

3.3.3 EKF Measurement Update 

3.3.3.1 Measurement Model 

Consider the quaternion error model posed by Equation (3.23) 

𝑞𝑆𝐸 = 𝛿𝑞𝑆𝑆̂ ⊗ 𝑞𝑆̂𝐸 (3.23) 

where the true quaternion is made up of a rotation from the inertial frame 𝓕𝑬 to 

the estimate spacecraft frame 𝓕𝑺  followed by a correction rotation from the 

estimate spacecraft frame to the true spacecraft frame 𝓕𝑺, parameterized by 𝛿𝑞𝑆𝑆̂. 

If we assume that [41]  

• The position of the vehicle in the 𝓕𝑬 frame is known well (i.e. sufficiently 

small position errors are present) 

• The quaternion estimation error can be modeled by 𝛿𝑞𝑆𝑆̂  

• The quaternion error modeled 𝛿𝑞𝑆𝑆̂ is sufficiently small (i.e. we assume the 

SAA) 

then we can rewrite Equation (3.23) in DCM format such that  

𝐶𝑆𝐸 = 𝐶𝑆𝑆̂𝐶𝑆̂𝐸 = [13 − 2𝛿𝑞̅𝑆𝑆̂
× ]𝐶𝑆̂𝐸 (3.46) 

where 𝐶𝑆𝐸 is the 3 × 3 DCM that maps a representation of a vector in 𝓕𝑬 to a 

representation of the same vector in 𝓕𝑺. The DCM denoted by 𝐶𝑆̂𝐸 is the 3 × 3 

DCM that maps a vector representation in 𝓕𝑬 to a representation in the estimated 

body frame 𝓕𝑺.  
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 Now consider the general case in which we have a 3 × 1 measured vector in 

the spacecraft body frame 𝑢̅𝑚
𝑆  and a known model of that vector in the inertial 

frame, 𝑢̅𝐸. The relationship between these vectors can be given as 

𝑢̅𝑚
𝑆 = 𝐶𝑆𝐸𝑢̅𝐸 (3.47) 

If we substitute Equation (3.46) into Equation (3.47), then Equation (3.47) 

becomes 

𝑢̅𝑚
𝑆 = [13 − 2𝛿𝑞̅𝑆𝑆̂

× ]𝐶𝑆̂𝐸𝑢̅𝐸 (3.48𝑎) 

𝑢̅𝑚
𝑆 = 𝐶𝑆̂𝐸𝑢̅𝐸 − 2𝛿𝑞̅𝑆𝑆̂

× 𝐶𝑆̂𝐸𝑢̅𝐸 (3.48𝑏) 

where we can rearrange Equation (3.48b) to be 

𝛿𝑧̅𝑆 = 𝑢̅𝑚
𝑆 − 𝑢̅𝑆̂ = −2𝑢̅𝑆̂,×𝛿𝑞̅𝑆𝑆̂ (3.49) 

with 𝑢̅𝑆̂ = 𝐶𝑆̂𝐸𝑢̅𝐸. The error between the measured vector in the true body frame 

𝓕𝑺 and the modeled vector in the estimate body frame 𝓕𝑺 is given by 𝛿𝑧̅𝑆, and is 

directly related to the error quaternion. Now, assuming that we have a set of 𝑛 

measurement vectors {𝑢̅𝑚,1
𝑆 , 𝑢̅𝑚,2

𝑆 , … , 𝑢̅𝑚,𝑛
𝑆 }  and their known equivalents in the 

inertial frame {𝑢̅1
𝐸 , 𝑢̅2

𝐸 , … , 𝑢̅𝑛
𝐸}, Equation (3.49) can be extended such that  

[
 
 
 
𝛿𝑧1̅

𝑆

𝛿𝑧2̅
𝑆

⋮
𝛿𝑧𝑛̅

𝑆]
 
 
 
=

[
 
 
 
−2(𝐶𝑆̂𝐸𝑢̅1

𝐸)×

−2(𝐶𝑆̂𝐸𝑢̅2
𝐸)×

⋮
−2(𝐶𝑆̂𝐸𝑢̅𝑛

𝐸)×]
 
 
 

𝛿𝑞̅𝑆𝑆̂ = 𝐻𝛿𝑞̅𝑆𝑆̂ (3.50) 

where 𝐻 is the measurement matrix containing the measurement vectors modeled 

in the inertial frame mapped to the estimate body frame via 𝐶𝑆̂𝐸. Note that we 

could have obtained similar but different models based upon which frame we choose 

to linearize in, which is discussed in detail in [41]. Also note that Equation (3.50) 

allows for the inclusion of multiple measurement vectors, yet only one is required 
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at a given measurement update. This formulation allows for additional sensor 

measurements to be easily incorporated into the EKF scheme. 

 In this work, the measurement model takes the form of  

𝛿𝑧̅𝑆 = 𝐻𝑚𝑎𝑔𝛿𝑥̅ (3.51𝑎) 

𝛿𝑧̅𝑆 = 𝑚̅𝑚
𝑆 − 𝑚̅𝑚𝑜𝑑𝑒𝑙𝑒𝑑

𝑆̂ = [−2(𝐶𝑆̂𝐸𝑚̅𝑚𝑜𝑑𝑒𝑙𝑒𝑑
𝐸 )×  03 03]𝛿𝑥̅ (3.51𝑏) 

with  

𝛿𝑥̅ = [𝛿𝑞̅𝑆𝑆̂
𝑇     𝛿𝑏̅𝑔

𝑇    𝛿𝑠𝑓̅̅ ̅ ,𝑇]
𝑇

(3.1) 

where 𝐻𝑚𝑎𝑔 is a 3 × 9 matrix, 𝑚̅𝑚
𝑆  is the EMF measurement in the spacecraft body 

frame, and 𝑚̅𝑚𝑜𝑑𝑒𝑙𝑒𝑑
𝑆̂  is the EMF vector modeled in the inertial frame mapped to 

the estimate body frame via the current estimate of the attitude, parameterized by 

DCM 𝐶𝑆̂𝐸.  The inclusion of the 03 terms are to highlight that while both the gyro 

bias and scale factor errors are states, they are not directly measured by the TAM. 

3.3.3.2 Measurement Update Equations  

 The EKF measurement utilizes the above measurement model iteratively 

such that 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑚𝑎𝑔,𝑘

𝑇 (𝐻𝑚𝑎𝑔,𝑘𝑃𝑘
−𝐻𝑚𝑎𝑔,𝑘

𝑇 + 𝑅𝑘)
−1

(3.52𝑎) 

𝑃𝑘
+ = (19 − 𝐾𝑘𝐻𝑚𝑎𝑔,𝑘)𝑃𝑘

− (3.52𝑏) 

𝛿𝑥̅𝑘 = 𝐾𝑘𝛿𝑧̅𝑆 (3.52𝑐) 

𝛿𝑥̅𝑘 = [𝛿𝑞̅𝑆𝑆̂,𝑘
𝑇   𝛿𝑏̅𝑔,𝑘

𝑇   𝛿𝑠𝑓̅̅ 𝑘̅
𝑇]

𝑇
(3.52𝑑) 

𝑞𝑆̂𝐸,𝑘 = [
1

𝛿𝑞̅𝑆𝑆̂,𝑘
] ⊗ 𝑞𝑆̂𝐸,𝑘−1 (3.52𝑒) 
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𝑞𝑆̂𝐸,𝑘 =
𝑞𝑆̂𝐸,𝑘

|𝑞𝑆̂𝐸,𝑘|
(3.52𝑓) 

𝑏̂̅𝑔,𝑘 = 𝑏̂̅𝑔,𝑘−1 + 𝛿𝑏̅𝑔,𝑘 (3.52𝑔) 

𝑠𝑓̅̅ ̅̂
𝑘 = 𝑠𝑓̅̅ ̅̂

𝑘−1 + 𝛿𝑠𝑓̅̅ 𝑘̅ (3.52ℎ) 

where 𝐾𝑘 is the Kalman gain at the current timestep and 𝑅𝑘 is the measurement 

noise covariance matrix. Note that the EKF here updates the measurements via a 

multiplication of the Kalman gain 𝐾 and the 𝛿𝑧̅𝑆 value, as opposed to a corrective 

addition. The measurement noise covariance is a simpler model than the process 

noise covariance, and can be modeled as  

𝑅𝑘 = 𝑑𝑖𝑎𝑔[𝜎𝑚𝑎𝑔,1
2   𝜎𝑚𝑎𝑔,2

2   𝜎𝑚𝑎𝑔,3
2 ] (3.53) 

where the matrix 𝑅𝑘  is populated with the standard deviations of the 

magnetometer output noise in each axis. This value should maintain the same units 

as the measurement units.  

At each measurement update, the EKF calculates the current error between 

the state trajectory and the estimates via Equation (3.52c). Note that after this 

error vector estimate is calculated, we utilize its individual components to update 

the quaternion, bias, and scale factor estimates through the above equations. The 

quaternion update also requires a re-normalization of the estimate, as seen by 

Equation (3.52f), to ensure it is a proper attitude quaternion with unit norm.  

3.3.4 EKF Performance 

3.3.4.1 Process Noise Covariance  

The process noise covariance is used to quantify any uncertainties in how 

the dynamic model of the system is propagated. As the dynamics of our system are 
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propagated by noisy inertial measurements, the covariance matrix is comprised 

primarily of the noise characteristics of the rate gyro within the IMU. The process 

noise covariance matrix, denoted by 𝑄𝑤(𝑡) as seen in Equation (3.44), is created 

by taking the noise characteristics of the gyro and implementing them into a matrix 

format. Specifically, 𝑄𝑤(𝑡) is dependent upon three gyro parameters: The standard 

deviation of the output noise (or Noise Density/ARW), the standard deviation of 

the in-run bias stability, and the standard deviation on the scale factors. These 

values can generally be taken off a specification sheet for an IMU (see Appendix 

C). 

The units on the covariance matrix should match with the units of the states 

themselves. These units should generally be in 𝑟𝑎𝑑/𝑠 for the output noise and in-

run bias stability standard deviations, and parts-per-million on the scale factor 

errors. However, the in-run bias stability is often given on spec sheets in °/ℎ𝑟, so 

a conversion before filter use must be implemented. Additionally, if noise density 

or ARW are being used instead of output noise, similar conversions must be made.  

While spec sheets often give much needed information regarding the noise 

characteristics, many times important parameters (such as scale factors or 

correlation time) are neglected. With this in mind, a table covering the common 

ranges for these parameters based upon grade is shown in Table C.3. It should be 

noted that this table is created based upon the experiences of the author and can 

vary depending upon the hardware itself. To conclusively obtain results on the 

noise characteristics of a sensor, multiple hardware tests should be performed after 

purchase. Some of these tests are detailed within [23]. 
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3.3.4.2 EKF convergence Speed & Tuning 

Depending on the mission and requirements upon the AD system, the 

convergence speed of the EKF can be a critical design parameter. The convergence 

speed of the EKF architecture is dependent upon 4 factors 

• Initial state covariance matrix, 𝑃0
+ 

• Process noise covariance matrix, 𝑄𝑤(𝑡) 

• Measurement noise covariance matrix, 𝑅𝑘 

• Measurement update frequency 

These are typically the trade spaces that an EKF designer works in. Specifically, 

𝑄𝑤(𝑡) and 𝑅𝑘 are directly affected by the choice of sensor hardware and errors 

present in the system. Initial covariance is dependent upon on how accurate the 

starting estimate of the EKF, and is generally initialized large to represent high 

initial uncertainty (this can be problematic depending on the system, see [26] for 

more details). The measurement update frequency is dependent on the mission 

environment, payload, and sensors used. This is typically a less constraining factor 

than the covariance of the system. 

 In the experience of the author, EKF convergence speed is primarily affected 

by the condition number of 𝑄𝑤(𝑡). Explicitly, this is defined as 

𝜅𝑄𝑤
=

𝜎𝑚𝑎𝑥(𝑄𝑤(𝑡))

𝜎𝑚𝑖𝑛(𝑄𝑤(𝑡))
(3.54) 

where 𝜅𝑄𝑤
 is the condition number, 𝜎𝑚𝑎𝑥(𝑄𝑤(𝑡)) and 𝜎𝑚𝑖𝑛(𝑄𝑤(𝑡)) represent the 

maximum and minimum singular values, respectively, of the process noise 

covariance matrix 𝑄𝑤(𝑡) . The condition number is dependent upon the noise 

characteristics of the sensor, and depending on the size, can lead to poor 
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convergence speed. For example, consider the simple process noise matrix 

(excluding scale factors) given by 

𝑄 = 𝑑𝑖𝑎𝑔[𝜎𝑔
2 𝜎𝑔

2 𝜎𝑔
2  

2𝜎𝐼𝑅𝐵
2

𝜏𝐺𝑀
 
2𝜎𝐼𝑅𝐵

2

𝜏𝐺𝑀
 
2𝜎𝐼𝑅𝐵

2

𝜏𝐺𝑀
 ] 

where 𝜎𝑔 = 0.135°/𝑠, 𝜎𝐼𝑅𝐵 = 2.5𝑒−5 °/𝑠, 𝜏𝐺𝑀 = 30 𝑠. The condition number of this 

matrix is given as 𝜅𝑄𝑤
= 1.3𝑒5. If we were to change the 𝜎𝑔 = 0.005°/𝑠, then we 

can show that the condition number changes to be 𝜅𝑄𝑤
= 981. This drastic change 

can generally signify changes in the convergence speed. Typically, it has been found 

that slower convergence speed is correlated with higher condition number, and 

faster convergence is correlated with lower condition number. Often this was 

dependent on the ratio of the output noise and the in-run bias stability.  

 To increase the convergence speed without changing sensor characteristics, 

a few methods can be implemented. One such method is the incorporation of tuning 

parameters into the noise mapping matrix 𝐿(𝑡) such that  

𝐿(𝑡) =  [
−

1

2
𝛼(13 − 𝑆𝐹̂)𝐶𝑆𝑔 03 03

03 𝛽13 03

03 03 𝛾13

] (3.55) 

where 𝛼, 𝛽, and 𝛾 are the scalar tuning parameters [41]. These parameters control 

the closed loop estimator poles, and as such, the speed of the poles themselves. 

Tuning parameters are typically picked through trial and error approaches and can 

vary greatly depending on the problem in which they are used. As [41] mentions, 

the use of tuning parameters allows for the user to control the speed of the closed 

loop estimator poles. However, there is a trade-off between convergence speed and 

accuracy when using these parameters. As the tuning parameters are increased, the 
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EKF convergence time decreases while the estimate noise increases. Conversely, as 

the tuning parameters are decreased, EKF convergence time increases, while the 

estimate noise decreases. In terms of the condition number, the use of tuning 

parameters changes the condition number of the mapping matrix used in 

discretization, which is similar to directly changing the noise characteristics of the 

system itself by modifying the values contained within 𝑄𝑤(𝑡).  

 An alternative to tuning is to over bound the covariance of the system. This 

involves placing larger values on the noise characteristics within 𝑄𝑤(𝑡) than would 

be present on IMU measurements. In certain applications, this can be an easier and 

more intuitive approach to tuning but can also result in estimate covariance criteria 

not being met. In application, covariance over bounding can be directly performed 

by increasing the standard deviation on the in-run bias of the system. 

In both instances of tuning and covariance over bounding, the system 

characteristics are being modified to enhance certain functionalities. While this is 

beneficial, we run the risk of losing physical interpretation of the system itself by 

modifying parameters. Care should be placed when using the tuning or 

overabounding technique. 

3.3.4.3 Estimate Constraints 

In some applications, there may be additional constraints on the filter states 

that are difficult to model within the EKF structure. For example, it may be known 

that physically, a state must lie within a certain range and cannot exceed a set 

boundary. However, it can be difficult to incorporate this knowledge into the 

derivation of the EKF itself. The general solution to this problem is known as 

constrained Kalman filtering. 
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Assume that the state estimate satisfies some equality constraint 𝐷𝑥̅ = 𝑑̅ or 

some inequality constraint 𝐷𝑥̅ ≤ 𝑑̅ where 𝐷 is a known matrix and 𝑑̅ is a known 

vector. The incorporation of this state constraint can be performed in multiple 

ways [26] [45] [46]. One such technique is the Maximum Probability Method shown 

in [45]. The constrained Kalman filter can be derived by finding a new estimate, 𝑥̃, 

such that  

min
𝑥̃

(𝑥̃ − 𝑥̅̅)𝑇𝑃−1(𝑥̃ − 𝑥̅̅) (3.56) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐷𝑥̃ ≤ 𝑑̅ 

If this minimization is performed after the measurement update of the EKF, then 

the unconstrained state estimate 𝑥̅̅ = 𝑥̂̅𝑘
+, and Equation (3.56) can be expanded to 

be (neglecting constant terms) 

min
𝑥̃

(𝑥̃𝑇𝑃−1𝑥̃ − 2𝑥̂̅𝑘
+,𝑇𝑃−1𝑥̃) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐷𝑥̃ ≤ 𝑑̅ (3.57) 

This minimization is often known as a quadratic program (QP) and can be solved 

multiple ways. The solution to the above QP will produce an 𝑥̃ that is a new 

constrained version of the original state 𝑥̂̅𝑘
+. In essence, the solution to Equation 

(3.57) is now another update used within the EKF and places the states under 

constraints specified by the inequality relationship of 𝐷𝑥̃ ≤ 𝑑̅ . While a new 

constrained covariance can also be determined, it is theorized that the any new or 

updated covariance will be equivalent or smaller than that of the unconstrained 

case [45]. As such, by not updating the covariance, we are maintaining a “worst-

case” covariance, and saving computational power.  
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3.3.5 Vector Matching Algorithm 

The filter developed within this chapter is initialized with some initial state 

estimate and an initial covariance estimate. The relative size of the initial 

covariance is large to indicate uncertainty in the initial state estimate. During time 

updates, the kinematic equations propagate the kinematics of the system at the 

gyro sampling frequency rate. The gyro measurement of the angular velocity is 

corrected based upon the bias and scale factors estimated at the last measurement 

update. When a measurement update occurs, the EKF calculates an error state 

vector between the current nominal trajectory and the current estimate of the state 

and utilizes that to correct the state estimate. To maintain the quaternion unit 

constraint, the new estimate of the quaternion is renormalized. Measurement 

corrections occur at the magnetometer sampling frequency and are dependent upon 

sensor availability. The complete EKF architecture, referred to from here on as 

“Vector Matching Algorithm” or VMA, is summarized below. 

Initialization 

𝑞𝑆̂𝐸,0 = 𝐸{𝑞𝑆𝐸,0} (3.58) 

𝑏̂̅𝑔,0 = 𝐸{𝑏̅𝑔,0} (3.59) 

𝑠𝑓̅̅ ̅̂
0 = 𝐸{𝑠𝑓̅̅ 0̅} (3.60) 

𝑃0
+ = 𝐸{𝛿𝑥̅0𝛿𝑥̅0

𝑇} (3.61) 

Time Update 

𝑆𝐹̂𝑘−1 = 𝑑𝑖𝑎𝑔 ( 𝑠𝑓̅̅ ̅̂
𝑘−1) (3.45𝑎) 

𝜔̂̅𝑘−1
𝑆𝐸 = (13  − 𝑆𝐹̂𝑘−1)𝐶𝑆𝑔 (𝜔̅𝑚,𝑘−1

𝑔𝐸
− 𝑏̂̅𝑔,𝑘−1) (3.45𝑏) 
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𝑞𝑆̂𝐸,𝑘 = exp [ 
1

2
𝛺(𝜔̂̅𝑘−1

𝑆𝐸 )(𝑡𝑘 − 𝑡𝑘−1)] 𝑞𝑆̂𝐸,𝑘−1 (3.45𝑐) 

𝑏̂̅𝑔,𝑘 = 𝑏̂̅𝑔,𝑘−1 (3.45𝑑) 

𝑠𝑓̅̅ ̅̂
𝑘 = 𝑠𝑓̅̅ ̅̂

𝑘−1 (3.45𝑒) 

𝑃𝑘
− = Φ𝑘−1𝑃𝑘−1Φ𝑘−1

𝑇 + 𝑄𝑤,𝑘−1 (3.45𝑓) 

Measurement Update 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑚𝑎𝑔,𝑘

𝑇 (𝐻𝑚𝑎𝑔,𝑘𝑃𝑘
−𝐻𝑚𝑎𝑔,𝑘

𝑇 + 𝑅𝑘)
−1

(3.52𝑎) 

𝑃𝑘
+ = (19 − 𝐾𝑘𝐻𝑚𝑎𝑔,𝑘)𝑃𝑘

− (3.52𝑏) 

𝛿𝑥̅𝑘 = 𝐾𝑘𝛿𝑧̅𝑆 (3.52𝑐) 

𝛿𝑥̅𝑘 = [𝛿𝑞̅𝑆𝑆̂,𝑘
𝑇     𝛿𝑏̅𝑔,𝑘

𝑇     𝛿𝑠𝑓̅̅ 𝑘̅
𝑇]

𝑇
(3.52𝑑) 

𝑞𝑆̂𝐸,𝑘 = [
1

𝛿𝑞̅𝑆𝑆̂,𝑘
] ⊗ 𝑞𝑆̂𝐸,𝑘−1 (3.52𝑒) 

𝑞𝑆̂𝐸,𝑘 =
𝑞𝑆̂𝐸,𝑘

|𝑞𝑆̂𝐸,𝑘|
(3.52𝑓) 

𝑏̂̅𝑔,𝑘 = 𝑏̂̅𝑔,𝑘−1 + 𝛿𝑏̅𝑔,𝑘 (3.52𝑔) 

𝑠𝑓̅̅ ̅̂
𝑘 = 𝑠𝑓̅̅ ̅̂

𝑘−1 + 𝛿𝑠𝑓̅̅ 𝑘̅ (3.52ℎ) 

3.4 Summary  

Within this chapter, we stated the benefits of developing a minimal sensor 

approach to determining the attitude of a CubeSat. Current schemes for CubeSat 

AD were discussed, highlighting the consistent use of multiple sensors to provide a 

dual-vector approach to solving Wahba’s problem. Research around the use of the 
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EMF vector as the sole aiding sensor was mentioned, with a discussion of the 

benefits regarding this AD architecture. 

The EMF was explained, in addition to how it varies as a function of 

location, time, and velocity. It was posited that this phenomenon could be taken 

advantage of by CubeSats as a varying measurement vector used within an EKF 

framework. Situations in which this may be a viable AD solution, specifically 

pertaining to the kinematics of a CubeSat in flight, were mentioned and briefly 

discussed.  

An EKF architecture utilizing a three-axis rate gyroscope and a three-axis 

magnetometer (TAM) was developed, based on previous work in [41]. A gyro sensor 

error model, containing scale factor, bias, and white noise errors was derived. The 

magnetometer model and noise characteristics were briefly described. The attitude 

kinematic equations, parameterized by the quaternion, were developed, and error 

state vector equations for the EKF states of interest were formulated.  

A vector matching measurement model, based on the use of the EMF field 

as the sole measurement, was derived with the quaternion attitude kinematic error. 

The combination of this model and the attitude kinematic error equations 

developed was used to formulate an EKF based vector matching algorithm (VMA). 

General notes on the design parameters, such as sensor noise covariance models, 

were discussed, with an emphasis placed on the pitfalls of poorly designed 

covariance matrices. Additional techniques for increasing EKF convergence speed, 

such as parameter tuning and state constraints, were briefly mentioned.   
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4 State Observability 

The VMA developed in Chapter 3 has the capability to estimate three 

different states: The attitude quaternion error, gyro biases, and gyro scale factor 

errors. However, at this point we have not made any claims about the quality of 

those estimates, and the performance of the VMA itself. Specifically, we have no 

guarantee that the VMA will accurately estimate the states as designed or remain 

stable throughout time. To make this claim, we need to develop additional metrics 

dependent upon the system matrices and how they interact with each other. A 

metric that will help us address the accuracy problem, in part, is the concept of 

observability. Observability can be separated into two types: Deterministic 

observability and stochastic observability. This brief chapter will discuss each of 

these metrics and how they are useful. Additionally, a comprehensive test for the 

state observability of a system is showcased. 

4.1 Deterministic Observability 

Consider the linear, discrete time, stochastic system given by 

𝑥𝑘 = Φ𝑘−1𝑥𝑘−1 + Γ𝑘−1𝑤𝑘−1 (4.1𝑎) 

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘 (4.1𝑏) 

In the framework of our EKF, deterministic observability is a system property that 

is dependent on the state mapping matrix Φ𝑘 and measurement matrix 𝐻𝑘. As 

defined in [26], deterministic observability is 

Definition 4.1  A discrete-time system is observable if for any initial state 𝑥0 and 

some final time k the initial state 𝑥0 can be uniquely determined by knowledge of 

the input 𝑢𝑖 and output 𝑦𝑖 for all 𝑖 ∈ [0, 𝑘]. 
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Concisely, a system is deterministically observable at some time instant if we can 

determine the initial state from knowledge of the inputs and outputs to the system 

at each timestep. With regards to the EKF, a deterministically observable system 

implies a system where all that all measured states can be influenced and corrected 

during the measurement update. If the system is deterministically unobservable, 

then at least one state is not being influenced by the measurement vector and is 

being estimated open-loop [47].  

 A test of whether a system is deterministically observable can be obtained 

by recursively evaluating the observability Gramian, 𝒪𝑁
𝑇𝒪𝑁, defined as [47] 

𝒪𝑁
𝑇𝒪𝑁 = 𝐻0

𝑇𝐻0 + ∑ Φ𝑘−1,0
𝑇 𝐻𝑘

𝑇𝐻𝑘Φ𝑘−1,0

𝑁

𝑘=1

(4.2) 

where 𝑁 is finite number of measurement, 𝐻𝑘 is the measurement matrix at time 

𝑘, and Φ𝑘−1,0 is the state transition matrix from time 0 to time 𝑘 − 1, defined as 

Φ𝑘−1,0 = Φ𝑘−1Φ𝑘−2 …Φ0 (4.3) 

The value 𝒪𝑁 represents the observability matrix created from measurements up 

to measurement 𝑁, defined as  

𝒪𝑁 = [

𝐻0

𝐻1Φ0

⋮
𝐻𝑁Φ𝑁−1,0

] (4.4) 

Deterministic observability can be determined by checking that 𝒪𝑁
𝑇𝒪𝑁 has full rank. 

That is, if  

𝜌(𝒪𝑁
𝑇𝒪𝑁) = 𝑛 (4.5) 
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where 𝑛  is the number of states within the system, then the system is 

deterministically observable. By fulfilling the full rank requirement, we are stating 

that each state can be influenced at the measurement update. 

4.2 Stochastic Observability  

While deterministic observability is a useful metric, it does not incorporate 

noise within the system or initial state covariance. Additionally, Φ𝑘 and 𝐻𝑘 may 

contain external noise, potentially contaminating the rank calculation. In the 

deterministic observability sense, sensor characteristics given by the noise matrices 

𝑄𝑤,𝑘, 𝑅𝑘, and initial state covariance 𝑃0, are not incorporated. Thus, while a system 

may be deterministically observable, the state covariance of the system may grow 

unbounded throughout time, implying uncertainty on the filter estimates. As such, 

deterministic observability is a necessary, but not sufficient, condition for ensuring 

the state estimate covariances are bounded. 

Stochastic observability can be defined as follows [47] 

Definition 4.2 The system in Equation (4.1) is stochastically observable if there 

exists a finite time 𝑡𝑁 such that the state covariance matrix is bounded or less than 

a predefined threshold value, 𝑇𝑣, in the sense that  

𝜎𝑚𝑎𝑥(𝑃𝑘) < 𝑇𝑣                  𝑡𝑘 ≥ 𝑡𝑁 (4.6)  

Where 𝑇𝑣, 𝑡𝑁 < ∞ and 𝜎𝑚𝑎𝑥(∙) refers to the largest singular value of the matrix (∙). 

Concisely, the definition states that if the state covariance is bounded by some 

fixed amount at a finite time, then the system is considered to be stochastically 

observable. If a system is stochastically unobservable, then it is implied that at 

least one state has unbounded covariance that will grow throughout time. 
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 A test to determine the stochastic observability of the system is adapted 

from [47] and summarized below. For details on the specific equations used in 

addition to proofs, see [47]. 

Consider the system of Equation (4.1) and assume the initial covariance is 

selected such that 

𝑃0 = 𝛼1𝑛       𝛼 ∈ ℛ, 𝛼 > 0 (4.7) 

where 1𝑛  is the 𝑛 × 𝑛  identity matrix and 𝛼  is some scalar quantity. The 

covariance propagation equation (discrete Riccati equation) can be written in the 

following form:  

𝑃𝑘 = 𝛼Λ𝑘 + 𝑄̅𝑘 + Δ𝑘(𝛼
−1) (4.8) 

where three terms are present: Λ𝑘, 𝑄̅𝑘, and Δ𝑘. If it can be shown that Λ𝑘, 𝑄̅𝑘, and 

Δ𝑘 remain constant or go to zero as a function of time, then 𝑃𝑘 will also remain 

constant or go to zero as a function of time. As such, the test involves determining 

the size of each term at the measurement update. 

 Under the conditions posed above, if the maximum singular value of Λ𝑘 is 

equal to zero such that 

𝜎𝑚𝑎𝑥(Λ𝑗) = 0 (4.9) 

where 𝑗 < ∞, then it can be shown that 𝜎𝑚𝑎𝑥(Λ𝑘) = 0 for all 𝑘 ≥ 𝑗. Given this 

result, the covariance propagation equation can be reduced to  

𝑃𝑘 = 𝑄̅𝑘 + Δ𝑘(𝛼
−1) (4.10) 

In the instances in which the scalar 𝛼 → ∞, Equation (4.10) reduces further [47] to  

𝑃𝑘 = 𝑄̅𝑘 (4.11) 
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which highlights that the covariance is now only a function of the term 𝑄̅𝑘 at each 

measurement update. To determine if the covariance is bounded, we must 

determine the value of 𝑄̅𝑘 at each measurement. If we can show that 

𝜎𝑚𝑎𝑥(𝑄̅𝑘) ≤ 𝑇𝑣 (4.12) 

where 𝑇𝑣 is some threshold value, then we can show the covariance is similarly 

bounded. The checks provided by Equations (4.9) and (4.12) give a test to assess 

the stochastic observability of the system.  

4.3 Observability Test 

 The combined observability test of the system can be performed via the 

following set of steps: 

At each measurement update: 

1. Compute the observability gramian 𝒪𝑁
𝑇𝒪𝑛 and check its rank, using the current 

state transition matrix Φ𝑘−1,0 and the current measurement matrix 𝐻𝑘 via 

𝒪𝑁
𝑇𝒪𝑁 = 𝐻0

𝑇𝐻0 + ∑ Φ𝑘−1,0
𝑇 𝐻𝑘

𝑇𝐻𝑘Φ𝑘−1,0

𝑁

𝑘=1

(4.2) 

1.1.  If 𝜌(𝒪𝑁
𝑇𝒪𝑁) = 𝑛 

→ 𝑫𝒆𝒕𝒆𝒓𝒎𝒊𝒏𝒊𝒔𝒕𝒊𝒄𝒂𝒍𝒍𝒚 𝑶𝒃𝒔𝒆𝒓𝒗𝒂𝒃𝒍𝒆 

1.1.1. Calculate Λ𝑘 as defined in [47] and compute maximum singular value 

1.1.2. Calculate 𝑄̅𝑘 as defined in [47] and compute its maximum singular 

value 

1.1.3.  If 𝜎𝑚𝑎𝑥(Λ𝑘) = 0 and 𝜎𝑚𝑎𝑥(𝑄̅𝑘) ≤ 𝑇𝑣 

→ 𝑺𝒕𝒐𝒄𝒉𝒂𝒔𝒕𝒊𝒄𝒂𝒍𝒍𝒚 𝑶𝒃𝒔𝒆𝒓𝒗𝒂𝒃𝒍𝒆 
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1.1.4. If 𝜎𝑚𝑎𝑥(Λ𝑘) ≠ 0 or 𝜎𝑚𝑎𝑥(𝑄̅𝑘) ≥ 𝑇𝑣 

→ 𝑺𝒕𝒐𝒄𝒉𝒂𝒔𝒕𝒊𝒄𝒂𝒍𝒍𝒚 𝑼𝒏𝒐𝒃𝒔𝒆𝒓𝒗𝒂𝒃𝒍𝒆 

1.2. If 𝜌(𝒪𝑁
𝑇𝒪𝑁) ≠ 𝑛 

→ 𝑫𝒆𝒕𝒆𝒓𝒎𝒊𝒏𝒊𝒔𝒕𝒊𝒄𝒂𝒍𝒍𝒚 𝑼𝒏𝒐𝒃𝒔𝒆𝒓𝒗𝒂𝒃𝒍𝒆 

→ 𝑺𝒕𝒐𝒄𝒉𝒂𝒔𝒕𝒊𝒄𝒂𝒍𝒍𝒚 𝑼𝒏𝒐𝒃𝒔𝒆𝒓𝒗𝒂𝒃𝒍𝒆 

Note that deterministic observability is a necessary, but not sufficient 

condition to determine the state observability of the system, whereas stochastic 

observability is a sufficient condition for state observability of the system.  

As stated in [47], the test developed above is useful because it can highlight 

requirements for the restructuring of the system. For example, the condition stated 

by Equation (4.12) implies that increases to 𝑃𝑘 due to the system matrices of Γ𝑘, 

𝑄𝑘, Φ𝑘, and 𝑄̅𝑘 are offset due to corrections and contributions from 𝐻𝑘 and 𝑅𝑘. 

Thus, a failure of this test suggests different system parameters (such as sensor 

hardware, sampling frequencies, noise characteristics) may be required. A passing 

of this test implies that the state covariance will be bounded throughout some time 

interval.  

4.4 Summary 

This chapter discussed the concept of state observability via two metrics: 

Deterministic observability and stochastic observability. We briefly discussed the 

value of knowing state observability and posed its usefulness as a metric to 

determine VMA performance. We described the individual parameters that are 

used in testing the observability of a system, and then posed a comprehensive 

observability test that can be used to validate state observability.  
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5 VMA Trade Studies 

5.1 Introduction 

This chapter evaluates multiple flight conditions of IMPRESS and EXACT 

using the VMA developed in Chapter 3. Specifically, the VMA is tested by 

changing the orbital inclination, angular rates, and gyro errors present at each run. 

The simulation structure, orbital conditions, CubeSat inertia parameters, sensors 

used, and noise characteristics are discussed. Focus is placed on describing how 

noise is simulated within the system and how we choose to model the individual 

error statistics. A comprehensive discussion of each simulation scenario will be 

presented, showcasing the convergence speed and estimation accuracy of the states 

of interest. Additionally, the stochastic observability of the system is verified via 

the test discussed in Chapter 4.  

5.2 Simulation Parameters & Structure  

The goal of the simulation is to evaluate the effect of certain noise 

characteristics, orbital conditions, and angular rates of the CubeSat on the attitude 

solution obtained by the VMA. This is done by varying the types of noise present 

on gyro data, initial angular velocity, and orbital inclination while holding other 

parameters constant. Orbital inclination is specifically varied to analyze the rate 

of change of the EMF vector (see Figure 3.1 Simplistic visualization of the Earth 

magnetic field (EMF). Note that no control policies are added to these simulation 

studies. 

Currently, no designs on IMPRESS or EXACT have been finalized, and as 

such, no inertia tensor has been determined. To this end, we maintain a constant 



85 

 

principle axes inertia tensor for these simulations based upon heritage flight 

information of SOCRATES (Signal Opportunity CubeSat Ranging And Timing 

Experiment), the UMN’s previous CubeSat. We choose this tensor as SOCRATES 

was a 3U CubeSat, which is the expected size of each of the upcoming mission’s 

CubeSats. While this is a valid first approximation, it is expected that each mission 

will have varying inertia tensors as more developments occur, and any future 

simulation studies should incorporate these developments. Additionally, note that 

the choice of the principal axis inertia causes oscillatory precession and nutation in 

the 𝜔𝑆1
𝑆𝐸  and 𝜔𝑆2

𝑆𝐸  axes, with constant spin in the 𝜔𝑆3
𝑆𝐸  axis, as no control is 

implemented to damp out angular rates. 

As IMPRESS and EXACT are expected to be deployed from the 

International Space Station (ISS), an orbital parameter baseline can be determined. 

These constant parameters, along with their chosen values, are given in Table 5.1 

and Table 5.2.  

Table 5.1 Common-orbital parameters for all simulations 

Orbital Parameter Value Description 

𝐿𝐿𝐴0 [0.11°    174°    401 𝑘𝑚] 
 Initial Latitude, 

Longitude, Altitude 

𝑣̅0
𝐸 [0    4.9    5.8] 𝑘𝑚/𝑠 

Initial Velocity in ECI 

frame 

𝑇 93 𝑚𝑖𝑛 Orbital Period 

𝑒 0.001 Orbital Eccentricity 

𝜔 0° Argument of Perigee 

𝑅𝐴 0° Right Ascension 

𝑡𝑝𝑒𝑟 0 𝑠 Time of Perigee Passage 
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Table 5.2 Common spacecraft parameters for all simulations 

Spacecraft 

Parameter 
Value Description 

𝑚𝑠 3.33 𝑘𝑔 Spacecraft Mass 

𝐼𝑆 [
0.0508 0 0

0 0.0508 0
0 0 0.0252

] 𝑘𝑔 ∗ 𝑚2 Spacecraft Inertia Tensor 

𝑓𝐼𝑀𝑈 10 𝐻𝑧 Gyro Sampling Frequency 

𝑓𝑇𝐴𝑀 0.1 𝐻𝑧 
Magnetometer Sampling 

Frequency 

𝜎𝐼𝑅𝐵 5.1°/ℎ𝑟 
Gyro In-Run Bias Stability 

STD 

𝜎𝑔 0.135 °/𝑠 Gyro Wideband Noise 

𝜎𝐵𝑅 0.2°/𝑠 
Gyro Bias Repeatability 

STD 

𝜎𝑠𝑓 200 𝑝𝑝𝑚 
Gyro Scale Factor Noise 

STD 

𝜏𝐺𝑀 300 𝑠 Gyro Correlation Time 

𝜎𝑚𝑎𝑔 1 𝑚𝐺𝑎𝑢𝑠𝑠 
Magnetometer Output 

Noise STD 

 

The simulations were run in MATLAB by creating truth data via a 

continuous time integration of the spacecraft attitude dynamics equations (detailed 

description can be seen in Chapter 3 of [8]) using ODE45 with a J2 perturbation 

of 𝐽2 = 1.0826𝐸−3. No control policies or external torques were implemented within 

the simulation. As the desired gyro sample rate for the mission is 10 𝐻𝑧, the step 

size of ODE45 was selected to be 0.1 seconds to match this gyro sample rate. The 

outputs of ODE45 were the CubeSat’s true state, consisting of the position and 

velocity in ECI, CubeSat angular velocity between ECI frame 𝓕𝑬 and spacecraft 
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body frame 𝓕𝑺, and attitude quaternion from 𝓕𝑬 to 𝓕𝑺. This is shown in block 

diagram format in Figure 5.1. 

 

Figure 5.1 Simulation Block Diagram 

 

The position vector was input into an WMM EMF model to obtain the 

magnetic field vector in ECI coordinates at every instant of the simulation. Angular 

velocity and magnetometer data were corrupted using the noise parameters denoted 

in Table 5.2 to give a noisy angular velocity and magnetometer vectors that were 

treated as sensor measurement vectors throughout the timeframe of the simulation. 

Note that sensor parameters seen in Table 5.2 were chosen based off of the 

ADIS16488 IMU/TAM, which is the current IMU/TAM selection for both 

IMPRESS and EXACT. Additionally, magnetometer noise used in the simulation, 

𝜎𝑚𝑎𝑔, was five times larger than the expected TAM output noise as seen on the 

ADIS16488 spec sheet. This was done to try and partially accommodate for a lack 

of TAM calibration in the simulation.  
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After data corruption, the measurement vectors were input into the VMA 

EKF and ran through a simulation time frame of 5 orbits, or approximately 8 hours. 

The VMA was performed with tuning parameters on the noise mapping matrix 

given by 𝛼 = 1, 𝛽 = 5, and 𝛾 = 1. 

As no external torques were input into the system, the angular velocity was 

allowed to oscillate throughout time. Based upon the inertia parameters stated in 

Table 5.2, this caused the angular velocity about the 𝑆3 axis of the spacecraft to 

remain constant over the simulation timeframe. This will be important with regards 

to scale factor estimation which will be discussed in the following sections. 

In the scenarios in which scale factors were estimated, a constrained 

optimization took place in the form of Equation (3.57). Specifically, we solved the 

quadratic program (QP) [45] 

min
𝑥̃𝑠𝑓

(𝑥̃𝑠𝑓
𝑇𝑃𝑠𝑓

−1𝑥̃𝑠𝑓 − 2𝑥̂̅𝑘,𝑠𝑓
+,𝑇 𝑃𝑠𝑓

−1𝑥̃𝑠𝑓) (5.1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     (0.95 − (13 + 𝑆𝐹̂𝑘−1)) ≤ 𝑥̂̅𝑘,𝑠𝑓 ≤ (1.05 − (13 + 𝑆𝐹̂𝑘−1)) 

where 𝑥̃𝑠𝑓  is the constrained scale factor estimate, 𝑥̂̅𝑘,𝑠𝑓
+  is the a posteriori 

unconstrained scale factor estimate after the measurement update, 𝑃𝑠𝑓 is the 3 × 3 

covariance matrix of the scale factor estimates, and  𝑆𝐹̂𝑘−1 is the scale factor matrix 

given by the previous scale factor estimates. This constraint forces the total scale 

factor term given by (13 + 𝑆𝐹̂𝑘) to remain between the values of 0.95 and 1.05. 

This is a reasonable assumption as most gyroscope scale factor errors lie within 

this range. Note that in Equation (5.1) only scale factor estimates are constrained.  

As stated in Chapter 3, the covariance can be updated, however we took the 
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conservative approach and did not update them. This QP was solved utilizing 

MATLAB’s quadprog() function. 

In every simulation, we assess the convergence of the EKF through the error 

Euler angles and the knowledge error, 𝜖 . Recall that IMPRESS and EXACT 

require that 𝜖 be below 10° for science objectives to be met. As the normal vector 

to the detector face lies along the 𝑆3 axis of the body spacecraft frame (see Figure 

2.1), this requirement can be met by ensuring that the angular error between the 

estimated 3-axis, 𝑆̂3, and the true 3-axis, 𝑆3, remains below 10°. This angular error 

can be formulated mathematically by the following 

𝜖 = cos−1(𝐶
𝑆𝑆̂
3,3) ∗

180

𝜋
(5.2) 

where 𝐶
𝑆𝑆̂
3,3 is the (3,3) element of the error DCM representing the attitude between 

the true and estimate body frames, 𝓕𝑺 and 𝓕𝑺. Additionally, we would like to also 

determine some value of covariance for the given angular error 𝜖. This can be 

determined using the covariance law [48] 

𝑃𝜖 = 𝐺𝜖𝑃𝑞𝐺𝜖
𝑇 (5.3) 

where 𝑃𝑞  is the 3 × 3 covariance matrix on the quaternion error 𝛿𝑞̅𝑆𝑆̂ , 𝑃𝜖  is the 

scalar covariance on 𝜖, and 𝐺𝜖 is the Jacobian of 𝜖 with respect to 𝛿𝑞̅𝑆𝑆̂ such that 

𝐺𝜖 = [
𝜕𝜖

𝜕𝑞1
  

𝜕𝜖

𝜕𝑞2
  

𝜕𝜖

𝜕𝑞3
] (5.4) 

Similarly, an expression for the 3-2-1 Euler angles can also be obtained such that  

𝑃𝛹 = 𝐺𝛹𝑃𝑞𝐺𝛹
𝑇 (5.5) 

where 𝑃Ψ is the 3 × 3 covariance matrix on the 3-2-1 Euler angles and 𝐺𝛹 is given 

by 
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𝐺𝛹 =

[
 
 
 
 
 
 
𝜕𝜓

𝜕𝑞1

𝜕𝜓

𝜕𝑞2

𝜕𝜓

𝜕𝑞3

𝜕𝜃

𝜕𝑞1

𝜕𝜃

𝜕𝑞2

𝜕𝜃

𝜕𝑞3

𝜕𝜙

𝜕𝑞1

𝜕𝜙

𝜕𝑞2

𝜕𝜙

𝜕𝑞3]
 
 
 
 
 
 

(5.6) 

It should be noted that the covariances obtained using Equations (5.4) and (5.6) 

are determined under the assumption that 𝛿𝑞𝑆𝑆̂ is small such that Equation (3.21a) 

holds.  

5.3 Simulation Scenarios 

For IMPRESS and EXACT, cases based around a combination of differing 

orbital inclinations and spacecraft angular rates were tested. Additionally, the 

inclusion of scale factor errors within the gyroscope model was also simulated for 

each of these conditions.  

Simulations on the convergence of the VMA EKF estimate were tested with 

30 Monte Carlo runs, each with a period of 5 orbits. In each run, the simulated 

noise characteristics and initial EKF estimates were varied. Specifically, the 

attitude quaternion was not constrained, the in-run bias was randomized based 

upon the characteristics given in Table 5.2, and the bias repeatability was 

randomized to be within the range of −0.4°/𝑠 ≤ 𝑏0 ≤ 0.4°/𝑠.  

For each simulation, two sets of results are presented: results in which scale 

factor errors were not added into the noise of the system (i.e. no scale factor errors 

are present in the noise itself), and results in which scale factor errors were included 

and estimated. In instances where scale factor errors were included and estimated, 

scale factors were randomized to be within the range of −50000 𝑝𝑝𝑚 ≤ 𝑠𝑓̅̅ ̅ ≤

50000 𝑝𝑝𝑚. Unfortunately, the case where scale factor errors were present within 
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the system noise but not estimated, was neglected due to time constraints. The 

author acknowledges that this case study is important and should be included 

within any future work for completeness. 

Angular velocity was varied over three cases: a “tumbling” scenario with 

angular velocities expected after deployment, a nominal spin stabilized scenario, 

and a low angular velocity scenario. Orbital inclination was also varied between 

discrete values of 88°, 50°, and 2°. The combinations of these values provide 9 

unique test cases that each had 30 Monte Carlo runs over 5 orbits. The initial 

covariance was given as  

𝑃0 = 𝑑𝑖𝑎𝑔 [0.32 0.32 0.32  (0.5
°

𝑠
)

2

 (0.5
°

𝑠
)
2

 (0.5
°

𝑠
)
2

 ] (5.7) 

𝑃0 = 𝑑𝑖𝑎𝑔 [0.32 0.32 0.32  (0.5
°

𝑠
)

2

 (0.5
°

𝑠
)

2

 (0.5
°

𝑠
)

2

(0.05)2 (0.05)2 (0.05)2] (5.8) 

where Equation (5.7) is the initial covariance for scenarios in which scale factors 

were not included, and Equation (5.8) is for the cases when they were included and 

estimated. These initial covariances were selected as a form of “worst-case” expected 

on the states themselves but were chosen somewhat arbitrarily.   

 The state observability test as defined in Chapter 4 was performed for each 

run. It was verified that each run was deterministically observable via the 

observability Gramian rank calculation given by Equation (4.2). Stochastic 

observability was tested via the 𝜎𝑚𝑎𝑥(Λ𝑘) and 𝜎𝑚𝑎𝑥(𝑄̅𝑘) metrics of Equations (4.9) 

and (4.12), respectively, with the results presented for each simulation run. Based 

upon the values of these metrics at each time step, in addition to the general trend 
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of 𝜎𝑚𝑎𝑥(𝑄̅𝑘), we state whether or not the system was considered stochastically 

observable.   

 For each simulation, the figures presented showcase 6 out of 30 Monte Carlo 

runs of the VMA over a period of 5 orbits. While it was verified that each Monte 

Carlo run presented similar phenomena, only 6 are displayed to for clarity. State 

attitude estimates parameterized by the 3-2-1 Euler angles, and values for 𝛿𝑏̅𝑔 

and 𝛿𝑠𝑓̅̅ ̅ (when included) are given by the red lines. One STD (1𝜎) bounds on each 

of the state estimates are given by the blue dashed lines within the figures. 

Stochastic observability tests are also given, with the stochastic observability 

metrics of 𝜎𝑚𝑎𝑥(Λ𝑘) and 𝜎𝑚𝑎𝑥(𝑄̅𝑘) being shown. Each of these plots also showcase 

6 out of 30 Monte Carlo runs.  
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5.3.1 High Inclination-orbit, “Tumble” Angular Velocity 

 

 

 

 

 

 

 

Table 5.3 Simulation 1 Parameters 

Parameter Value Description 

𝜔̅0
𝑆𝐸 [1.15    − 2.86    1.71]𝑇 °/𝑠 Initial Angular Velocity 

𝑖 88° Orbital Inclination 

Ψ321 [0°    80°    0°]𝑇 Initial 3-2-1 Euler Angles 

𝑞𝑆𝐸,0 [0.667    0    − 0.745    0]𝑇 
True Initial Attitude 

Quaternion 

𝑏̅0 −0.4°/𝑠 ≤ 𝑏0 ≤ 0.4°/𝑠 Constant Bias Error 

𝑠𝑓̅̅ ̅ −50000 𝑝𝑝𝑚 ≤ 𝑠𝑓̅̅ ̅ ≤ 50000 𝑝𝑝𝑚 Scale Factor Errors 
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Figure 5.2 Pointing error 𝜖 history for high inclination, high 𝜔̅ with no scale 

factor errors (top) and with scale factor errors (bottom). 
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Figure 5.3 Euler angle error 𝛿𝛹321 history for high inclination, high 𝜔̅ with no 

scale factor errors (top) and with scale factor errors (bottom). 
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Figure 5.4 IMU bias error 𝛿𝑏𝑔 history for high inclination, high 𝜔̅, with no scale 

factor errors (top) and with scale factor errors (bottom). 



97 

 

 

Figure 5.5 IMU scale factor error 𝛿𝑠𝑓𝑔 for high inclination, high 𝜔̅ for cases 

where scale factors are included. 
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Figure 5.6 Stochastic observability metrics for high inclination, high 𝜔̅ with no 

scale factor errors (top) and with scale factor errors (bottom). 
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In Figure 5.2 the angular error 𝜖 between 𝑆3 and 𝑆̂3 axes as defined by 

Equation (5.2) is given for a high 𝜔̅𝑆𝐸 scenario at an orbital inclination of 𝑖 = 88°. 

The top plot showcases 𝜖 when no scale factor errors are included within the noise 

of the system, with the bottom plot being for scenarios in which scale factor errors 

are included and estimated. With no scale factors, the 𝜖 estimate converges to 

below a 1𝜎 of 4.5° within one and half hours. When scale factors are included and 

estimated, half of the runs converge to below a  1𝜎 of 5.5° within one and a half 

hours, while the other half diverge and oscillate at a higher value of 𝜖. Additionally, 

the 𝜖 covariance bound has slightly sharper peaks in the instance with scale factors 

than the no scale factor case. A similar phenomenon can be seen in the Euler angle 

plots of Figure 5.3. 

In Figure 5.4, the bias state estimation errors are presented. The 1𝜎 bound 

on the bias errors are approximately 0.007°/𝑠, with estimates converging to below 

that bound within half an hour of initialization. This is similar in the scale factor 

case of the bottom plot, however there is a noticeable increase in estimate 

convergence that occurs in a little under 2 hours. Moreover, there appears to be 

some form of oscillation within the bias estimates throughout the simulation 

timeframe that cause spikes to occur periodically. In the instance of the scale factor 

estimation errors seen in Figure 5.5, we see estimates converging to below a 1𝜎 

bound of 5000 𝑝𝑝𝑚 within half an hour. Similar to the bias estimates, the scale 

factors appear to be oscillating throughout the simulation time frame with no real 

steady state values being obtained.  

The results of a stochastic observability test of the system are presented in 

Figure 5.6 with the two metrics of 𝜎𝑚𝑎𝑥(Λ𝑘)  and 𝜎𝑚𝑎𝑥(𝑄̅𝑘)  for each scenario 

presented. In both instances of scale factor inclusion, the value of 𝜎𝑚𝑎𝑥(Λ𝑘) peaks 
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at the 2nd measurement update at 20 seconds with a value of 86, and then begins 

to reduce to 0 in the following measurements. However, the rate at which this 

convergence happens is slightly slower when scale factors are included, reducing to 

zero at the 5th measurement as opposed to the 3rd in the no scale factor case. In 

either instance, this implies that the state covariance is no longer a function of the 

initial state covariance, 𝑃0, after 5 measurement updates. 

The 𝜎𝑚𝑎𝑥(𝑄̅𝑘) plots within Figure 5.6 showcase the second metric of the 

stochastic observability test. In the instance where no scale factors are included, 

the value of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) seems to converge to an oscillatory trend near one and a half 

hours. This mimics the oscillation seen in state covariance of the Euler angle 

estimates of Figure 5.3. When scale factor errors are included, the values of 

𝜎𝑚𝑎𝑥(𝑄̅𝑘) seem to be more oscillatory and less uniform. Additionally, the steady 

state values appear to be larger when scale factors are included. However, as both 

instances of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) appear to be bounded, the values of 𝜎𝑚𝑎𝑥(Λ𝑘) and 𝜎𝑚𝑎𝑥(𝑄̅𝑘)  

imply that the system is stochastically observable for both cases of scale factor 

inclusion.  
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5.3.2 High Inclination-orbit, Spin Stabilized Angular Velocity 

 

 

 

 

 

 

 

 

Table 5.4 Simulation 2 Parameters 

Parameter Value Description 

𝜔̅0
𝑆𝐸 [0    0    0.57]𝑇 °/𝑠 Initial Angular Velocity 

𝑖 88° Orbital Inclination 

Ψ321 [0°    80°    0°]𝑇 Initial 3-2-1 Euler Angles 

𝑞𝑆𝐸,0 [0.667    0    − 0.745    0]𝑇 
True Initial Attitude 

Quaternion 

𝑏̅0 −0.4°/𝑠 ≤ 𝑏0 ≤ 0.4°/𝑠 Constant Bias Error 

𝑠𝑓̅̅ ̅ −50000 𝑝𝑝𝑚 ≤ 𝑠𝑓̅̅ ̅ ≤ 50000 𝑝𝑝𝑚 Scale Factor Errors 
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Figure 5.7 Pointing error 𝜖 history for high inclination, spin 𝜔̅ with no scale 

factor errors (top) and with scale factor errors (bottom) 
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Figure 5.8 Euler angle error 𝛿𝛹321 history for high inclination, spin 𝜔̅ with no 

scale factor errors (top) and with scale factor errors (bottom). 
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Figure 5.9 IMU bias error 𝛿𝑏𝑔 history for high inclination, spin 𝜔̅ with no scale 

factor errors (top) and with scale factor errors (bottom). 
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Figure 5.10 IMU scale factor error 𝛿𝑠𝑓𝑔 for high inclination, spin 𝜔̅ for cases 

where scale factors are included. 
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Figure 5.11 Stochastic observability metrics for high inclination, spin 𝜔̅ with no 

scale factor errors (top) and with scale factor errors (bottom). 
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In Figure 5.7 the angular error 𝜖 is given for a spin stabilized 𝜔̅𝑆𝐸 scenario 

at an orbital inclination of 𝑖 = 88°. In both cases of scale factor inclusion, the 𝜖 

estimate converges to below a 1𝜎 of 5° within one and half to two hours. A similar 

phenomenon is shown in the Euler angle plots of Figure 5.8. In this figure, it is 

clearly seen that the covariance on the 𝛿𝜓 estimates have less oscillation frequency 

than those of 𝛿𝜙 and 𝛿𝜃. Additionally, it appears that the attitude estimates given 

by the red lines in both Figure 5.7 and Figure 5.8 are larger in the instance when 

scale factor errors are included.  

In Figure 5.9, the bias state estimation errors are presented. Similar to the 

high 𝜔̅𝑆𝐸 case, the 1𝜎 bound on the bias errors are approximately 0.006°/𝑠, with 

estimates converging to below that bound in less than a half hour of initialization. 

In each case of scale factor inclusion, the bias estimates maintain relatively similar 

convergence trend, no longer oscillating in the manner of Figure 5.4 and converging 

to relatively steady values in about two hours.  

In the instance of the scale factor estimation errors seen in Figure 5.10, we 

see each axis estimate converging to a steady state value within half an hour. 

However, in the 𝑆1 and 𝑆2 axes, the covariance appears to be noticeably different 

for each run. Moreover, some covariance bounds appear to be growing throughout 

time in these axes. This is due to the lack of angular velocity in the 𝑆1 and 𝑆2 axes, 

causing the respective scale factors to be unobservable. The 𝑆3 axis of the scale 

factor estimates has a lower covariance bound that appears to be constant. In the 

𝑆1  and 𝑆2  axis, the upper bounds on the covariance appear to be nearing 

45000 𝑝𝑝𝑚, whereas the covariance on the 𝑆3 is bounded near 8500 𝑝𝑝𝑚. 
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The results of a stochastic observability test of the system are presented in 

Figure 5.11. Similar to the high 𝜔̅𝑆𝐸 case, the values of 𝜎𝑚𝑎𝑥(Λ𝑘) for both scale 

factor cases peak at the 2nd measurement update, and then begin to reduce to 0 in 

the following measurements, with slightly different rates. As with Figure 5.6, this 

implies that the state covariance is no longer a function of the initial state 

covariance, 𝑃0.  

The value of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) can be seen in the lower sub-plots of Figure 5.11. 

When no scale factors are included, the value of 𝜎𝑚𝑎𝑥(𝑄̅𝑘)  converges to an 

oscillatory behavior in about two hours. Noticeable peaks and troughs in the value 

of 𝜎𝑚𝑎𝑥(𝑄̅𝑘)  are present throughout the simulation time frame. While the peaks 

seem to be increasing after four hours, the troughs stay at a relatively consistent 

level. Additionally, the peaks begin to reduce again after 8 hours. This trend is 

assumed to be due to the varying EMF vector throughout the orbit, and not due 

to unbounded growth in covariance. As such, the no scale factor case is considered 

stochastically observable. 

In the instance where scale factors are included, the plot of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) has 

significant differences from the no scale factor case. Firstly, the general value of 

𝜎𝑚𝑎𝑥(𝑄̅𝑘) is larger than that of the prior case, indicated higher amounts of noise in 

the system. Secondly, trends are less uniform, and after three hours, the troughs of 

the plot disappear and are replaced by a growing trend line. This can be attributed 

to the growing covariance on the scale factor estimates in the 𝑆1 and 𝑆2 axes. As 

the peaks of the plot appear to follow the same pattern as the no scale factor 

instance, we treat this linear growth as failure to the stochastic observability test, 

indicating this simulation scenario is stochastically unobservable. Detailed 

discussion of this trend can be found at the end of this chapter. 
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5.3.3 High Inclination-orbit, Low Angular Velocity 

 

 

 

 

 

 

 

 

Table 5.5 Simulation 3 Parameters 

Parameter Value Description 

𝜔̅0
𝑆𝐸 [0    0    0.057]𝑇 °/𝑠 Initial Angular Velocity 

𝑖 88° Orbital Inclination 

Ψ321 [0°    80°    0°]𝑇 Initial 3-2-1 Euler Angles 

𝑞𝑆𝐸,0 [0.667    0    − 0.745     0]𝑇 
True Initial Attitude 

Quaternion 

𝑏̅0 −0.4°/𝑠 ≤ 𝑏0 ≤ 0.4°/𝑠 Constant Bias Error 

𝑠𝑓̅̅ ̅ −50000 𝑝𝑝𝑚 ≤ 𝑠𝑓̅̅ ̅ ≤ 50000 𝑝𝑝𝑚 Scale Factor Errors 
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Figure 5.12 Pointing error 𝜖 history for high inclination, low 𝜔̅ with no scale 

factor errors (top) and with scale factor errors (bottom) 
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Figure 5.13 Euler angle error 𝛿𝛹321 history for high inclination, low 𝜔̅ with no 

scale factor errors (top) and with scale factor errors (bottom). 
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Figure 5.14 IMU bias error 𝛿𝑏𝑔 history for high inclination, low 𝜔̅ with no scale 

factor errors (top) and with scale factor errors (bottom). 
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Figure 5.15 IMU scale factor error 𝛿𝑠𝑓𝑔 for high inclination, low 𝜔̅ for cases 

where scale factors are included. 
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Figure 5.16 Stochastic observability metrics for high inclination, low 𝜔̅ with no 

scale factor errors (top) and with scale factor errors (bottom). 
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Figure 5.12 showcases the VMA convergence for the low 𝜔̅𝑆𝐸 case. When no 

scale factor errors are present within the noise of the system, a 5 out of 6 Monte 

Carlo runs converge to below a 1𝜎 bound of 5° in a little over two hours. The 

remaining plot does not converge within simulation timeframe and appears to be 

oscillating with large amplitude. When scale factor estimates are included, 6 out of 

6 runs converge to below a 1𝜎  bound of 5°  within five and half hours of 

initialization. A similar phenomenon is shown in the Euler angle plots of Figure 

5.13.  

The bias estimation errors are shown in Figure 5.14.  Similar to both the 

high and spin stabilized 𝜔̅𝑆𝐸  cases, the 1𝜎  bound on the bias errors are 

approximately 0.007°/𝑠, with estimates converging to below that bound in less 

than a half hour of initialization. A noticeable difference is that the bias covariance 

in Figure 5.14 appears slightly oscillatory when compared to Figure 5.4 and Figure 

5.9. Bias estimates do not appear to converge to a steady state value in the no 

scale factor case, instead oscillating throughout the simulation time frame. In the 

scale factor case, the bias estimates seem to converge to a steady estimate after 

about five and half hours. 

In the instance of the scale factor estimation errors of Figure 5.15, we see 

each axis estimate converging below the 1𝜎  bounds almost immediately. 

Covariance estimates on the 𝑆1  and 𝑆2  axes are climbing throughout the 

simulation time, while the covariance estimate in the 𝑆3 axis converges to a steady 

bound of 20000 𝑝𝑝𝑚. This is a noticeable increase when compared to the covariance 

in the 𝑆3 axis as seen by Figure 5.10.  
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The results of a stochastic observability test are given in Figure 5.16. Similar 

to both the high and spin stabilized 𝜔̅𝑆𝐸 cases, the value of 𝜎𝑚𝑎𝑥(Λ𝑘) peaks at 20 

seconds, and then begins to limit to zero afterwards. The value of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) in the 

instance where no scale factors are included appears to have a lower frequency of 

oscillation than the higher 𝜔̅𝑆𝐸 cases. Additionally, one of the trends does not 

match the others, which is due to the lone estimate that has not converged. In the 

case where scale factor errors are included, the values of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) begin to follow 

the same trend at about five and half hours. Moreover, a linear slope appears near 

the troughs of the trend, similar to the cases of scale factor inclusion for the spin 

stabilized 𝜔̅𝑆𝐸  case. Due to this trend, we treat this simulation scenario as 

stochastically unobservable.  

 

 

  



117 

 

5.3.4 Mid Inclination-orbit, “Tumble” Angular Velocity  

 

 

 

 

 

 

 

 

Table 5.6 Simulation 4 Parameters 

Parameter Value Description 

𝜔̅0
𝑆𝐸 [1.15    − 2.86    1.71]𝑇 °/𝑠 Initial Angular Velocity 

𝑖 50° Orbital Inclination 

Ψ321 [0°    80°    0°]𝑇 Initial 3-2-1 Euler Angles 

𝑞𝑆𝐸,0 [0.667    0    − 0.745     0]𝑇 
True Initial Attitude 

Quaternion 

𝑏̅0 −0.4°/𝑠 ≤ 𝑏0 ≤ 0.4°/𝑠 Constant Bias Error 

𝑠𝑓̅̅ ̅ −50000 𝑝𝑝𝑚 ≤ 𝑠𝑓̅̅ ̅ ≤ 50000 𝑝𝑝𝑚 Scale Factor Errors 
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Figure 5.17 Pointing error 𝜖 history for mid inclination, high 𝜔̅ with no scale 

factor errors (top)  and with scale factor errors (bottom) 
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Figure 5.18 Euler angle error 𝛿𝛹321 history for mid inclination, high 𝜔̅ with no 

scale factor errors (top) and with scale factor errors (bottom). 
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Figure 5.19 IMU bias error 𝛿𝑏𝑔 history for mid inclination, high 𝜔̅ with no scale 

factor errors (top) and with scale factor errors (bottom). 
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Figure 5.20 IMU scale factor error 𝛿𝑠𝑓𝑔 for mid inclination, high 𝜔̅ for cases 

where scale factors are included. 
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Figure 5.21 Stochastic observability metrics for mid inclination, high 𝜔̅ with no 

scale factor errors (top) and with scale factor errors (bottom). 
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In Figure 5.17 the angular error 𝜖 between 𝑆3 and 𝑆̂3 axes as defined by 

Equation (5.2) is given for a high 𝜔̅𝑆𝐸 scenario at an orbital inclination of 𝑖 = 50°. 

The top plot showcases 𝜖 when no scale factor errors are included within the noise 

of the system, with the bottom plot being for scenarios in which scale factor errors 

are included and estimated. With no scale factors, the 𝜖 estimate converges to 

below a 1𝜎 of 4.5° within one and half hours. When scale factors are included and 

estimated, the 𝜖 estimate converges to below a 1𝜎 of 5° − 7° within one and a half 

hours. Specifically, noticeable periodic peaks with amplitude of approximately 7° 

are present in the covariance for the scale factors. A similar phenomenon is seen in 

the Euler angle plots of Figure 5.18 

In Figure 5.19, the bias state estimation errors are presented. The 1𝜎 bound 

on the bias errors are approximately 0.007°/𝑠, with estimates converging to below 

that bound within half an hour of initialization. In both instances of scale factor 

inclusion, it appears that steady state estimates are reached in approximately one 

hour after initialization. In the instance of the scale factor estimation errors seen 

in Figure 5.20, we see estimates converging to below a 1𝜎 bound of 5000 𝑝𝑝𝑚 

within half an hour. Similar to the bias estimates, the scale factors reach steady 

state estimation values after about one hour.  

The results of a stochastic observability test of the system are presented in 

Figure 5.21 with the two metrics of 𝜎𝑚𝑎𝑥(Λ𝑘) and 𝜎𝑚𝑎𝑥(𝑄̅𝑘) for each scenario 

presented. In both instances of scale factor inclusion, the value of 𝜎𝑚𝑎𝑥(Λ𝑘) peaks 

at the 2nd measurement update at 20 seconds with a value of 86, and then begins 

to reduce to 0 in the following measurements, similar to the high inclination cases. 

This implies that the state covariance is no longer a function of the initial state 

covariance, 𝑃0, after 5 measurement updates. 
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The 𝜎𝑚𝑎𝑥(𝑄̅𝑘) plots within Figure 5.21 showcase the second metric of the 

stochastic observability test. In both instances of scale factor inclusion, the value 

of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) seems to converge to an oscillatory trend near one hour. This mimics 

the oscillation seen in state covariance of the Euler angle estimates of Figure 5.18. 

When scale factor errors are included, the values of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) seem to a slightly 

larger amplitude in oscillation. Additionally, the steady state values appear to be 

larger when scale factors are included. However, as both instances of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) 

appear to be bounded, the values of 𝜎𝑚𝑎𝑥(Λ𝑘) and 𝜎𝑚𝑎𝑥(𝑄̅𝑘)  imply that the system 

is stochastically observable for both cases of scale factor inclusion.  
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5.3.5 Mid Inclination-orbit, Spin Stabilized Angular Velocity 

 

 

 

 

 

 

 

 

Table 5.7 Simulation 5 Parameters 

Parameter Value Description 

𝜔̅0
𝑆𝐸 [0    0    0.57]𝑇 °/𝑠 Initial Angular Velocity 

𝑖 50° Orbital Inclination 

Ψ321 [0°    80°    0°]𝑇 Initial 3-2-1 Euler Angles 

𝑞𝑆𝐸,0 [0.667    0    − 0.745    0]𝑇 
True Initial Attitude 

Quaternion 

𝑏̅0 −0.4°/𝑠 ≤ 𝑏0 ≤ 0.4°/𝑠 Constant Bias Error 

𝑠𝑓̅̅ ̅ −50000 𝑝𝑝𝑚 ≤ 𝑠𝑓̅̅ ̅ ≤ 50000 𝑝𝑝𝑚 Scale Factor Errors 
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Figure 5.22 Pointing error 𝜖 history for mid inclination, spin 𝜔̅ with no scale 

factor errors (top)  and with scale factor errors (bottom). 
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Figure 5.23 Euler angle error 𝛿𝛹321 history for mid inclination, spin 𝜔̅ with no 

scale factor errors (top) and with scale factor errors (bottom). 



129 

 

 

Figure 5.24 IMU bias error 𝛿𝑏𝑔 history for mid inclination, spin 𝜔̅ with no scale 

factor errors (top) and with scale factor errors (bottom). 

  



130 

 

 

Figure 5.25 IMU scale factor error 𝛿𝑠𝑓𝑔 for mid inclination, spin 𝜔̅ for cases 

where scale factors are included. 
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Figure 5.26 Stochastic observability metrics for mid inclination, spin 𝜔̅ with no 

scale factor errors (top) and with scale factor errors (bottom). 
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In Figure 5.22 the angular error 𝜖 is given for a spin stabilized 𝜔̅𝑆𝐸 scenario 

at an orbital inclination of 𝑖 = 50°. In both cases of scale factor inclusion, the 𝜖 

estimate converges to below a 1𝜎 of 5° within one and half to two hours. A similar 

phenomenon is shown in the Euler angle plots of Figure 5.23. In this figure, it is 

clearly seen that the covariance on the 𝛿𝜓 estimates have less oscillation frequency 

than those of 𝛿𝜙 and 𝛿𝜃. Attitude estimates in both Figure 5.22 and Figure 5.23 

are of similar scale as opposed to the high inclination spin case seen in Figure 5.7 

and Figure 5.8. 

In Figure 5.24, the bias state estimation errors are presented. Similar to the 

high 𝜔̅𝑆𝐸 case, the 1𝜎 bound on the bias errors are approximately 0.006°/𝑠, with 

estimates converging to below that bound in less than a half hour of initialization. 

In each case of scale factor inclusion, the bias estimates maintain relatively similar 

convergence trend, converging to relatively steady values in about one and a half 

hours.  

In the instance of the scale factor estimation errors seen in Figure 5.25, we 

see each axis estimate converging to a steady state value within half an hour. 

However, in the 𝑆1 and 𝑆2 axes, the covariance appears to be noticeably different 

for each run. Moreover, some covariance bounds appear to be growing throughout 

time in these axes. This is due to the lack of angular velocity in the 𝑆1 and 𝑆2 axes, 

causing the respective scale factors to be unobservable. The 𝑆3 axis of the scale 

factor estimates has a lower covariance bound that appears to be constant. In the 

𝑆1  and 𝑆2  axis, the upper bounds on the covariance appear to be nearing 

45000 𝑝𝑝𝑚, whereas the covariance on the 𝑆3 is bounded near 8500 𝑝𝑝𝑚. 
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The results of a stochastic observability test of the system are presented in 

Figure 5.26. Similar to the high 𝜔̅𝑆𝐸 case, the values of 𝜎𝑚𝑎𝑥(Λ𝑘) for both scale 

factor cases peak at the 2nd measurement update, and then begin to reduce to 0 in 

the following measurements, with slightly different rates, implying that the state 

covariance is no longer a function of the initial state covariance, 𝑃0.  

The value of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) can be seen in the lower sub-plots of Figure 5.26. 

When no scale factors are included, the value of 𝜎𝑚𝑎𝑥(𝑄̅𝑘)  converges to an 

oscillatory behavior in about one and a half hours. Noticeable peaks and troughs 

in the value of 𝜎𝑚𝑎𝑥(𝑄̅𝑘)  are present throughout the simulation time frame. While 

the peaks seem to be increasing after five hours, the troughs stay at a relatively 

consistent level. Additionally, the peaks begin to reduce again after 8 hours. This 

trend is assumed to be due to the varying EMF vector throughout the orbit, and 

not due to unbounded growth in covariance. As such, the no scale factor case is 

considered stochastically observable. 

In the instance where scale factors are included, the plot of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) has 

significant differences from the no scale factor case. Firstly, the general value of 

𝜎𝑚𝑎𝑥(𝑄̅𝑘) is larger than that of the prior case, indicated higher amounts of noise in 

the system. Secondly, trends are less uniform, with a single trend line that remains 

flat at the top of the 𝜎𝑚𝑎𝑥(𝑄̅𝑘) plot. After one and a half hours, some troughs of 

the plot begin to disappear and are replaced by a growing trend line. This can be 

attributed to the growing covariance on the scale factor estimates in the 𝑆1 and 𝑆2 

axes. As the peaks of the plot appear to follow the same pattern as the no scale 

factor instance, we treat this linear growth as failure to the stochastic observability 

test, indicating this simulation scenario is stochastically unobservable.  
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5.3.6 Mid Inclination-orbit, Low Angular Velocity 

 

 

 

 

 

 

 

 

Table 5.8 Simulation 6 Parameters 

Parameter Value Description 

𝜔̅0
𝑆𝐸 [0    0    0.057]𝑇 °/𝑠 Initial Angular Velocity 

𝑖 50° Orbital Inclination 

Ψ321 [0°    80°    0°]𝑇 
Initial 3-2-1 Euler Angles 

𝑞𝑆𝐸,0 [0.667    0    − 0.745    0]𝑇 
True Initial Attitude 

Quaternion 

𝑏̅0 −0.4°/𝑠 ≤ 𝑏0 ≤ 0.4°/𝑠 Constant Bias Error 

𝑠𝑓̅̅ ̅ −50000 𝑝𝑝𝑚 ≤ 𝑠𝑓̅̅ ̅ ≤ 50000 𝑝𝑝𝑚 Scale Factor Errors 
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Figure 5.27 Pointing error 𝜖 history for mid inclination, low 𝜔̅ with no scale 

factor errors (top)  and with scale factor errors (bottom). 
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Figure 5.28 Euler angle error 𝛿𝛹321 history for mid inclination, low 𝜔̅ with no 

scale factor errors (top) and with scale factor errors (bottom). 
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Figure 5.29 IMU bias error 𝛿𝑏𝑔 history for mid inclination, low 𝜔̅, with no scale 

factor errors (top) and with scale factor errors (bottom). 
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Figure 5.30 IMU scale factor error 𝛿𝑠𝑓𝑔 for mid inclination, low 𝜔̅ for cases 

where scale factors are included. 
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Figure 5.31 Stochastic observability metrics for mid inclination, low 𝜔̅ with no 

scale factor errors (top) and with scale factor errors (bottom). 
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Figure 5.27 showcases the VMA convergence for the low 𝜔̅𝑆𝐸 case. When no 

scale factor errors are present within the noise of the system, all runs converge to 

be below or close to below a 1𝜎 bound of 6° in a little over two hours. This is 

slightly better than the scenario presented by the high inclination case of Figure 

5.12. When scale factor estimates are included, all runs converge to below or close 

to below a 1𝜎 bound of 6° within two and half hours of initialization. A similar 

phenomenon is shown in the Euler angle plots of Figure 5.28. General estimates on 

the attitude parameters of 𝜖 and Euler angles are less steady in this low 𝜔̅𝑆𝐸 case 

as opposed to the higher 𝜔̅𝑆𝐸 cases.  

The bias estimation errors are shown in Figure 5.29.  Similar to both the 

high and spin stabilized 𝜔̅𝑆𝐸  cases, the 1𝜎  bound on the bias errors are 

approximately 0.007°/𝑠, with estimates converging to below that bound in less 

than a half hour of initialization. A noticeable difference is that the bias covariance 

in Figure 5.29 appears slightly oscillatory when compared to Figure 5.19 and Figure 

5.24. In both cases, the bias estimates seem to converge to a steady estimate after 

about two hours. 

In the instance of the scale factor estimation errors of Figure 5.30, we see 

each axis estimate converging below the 1𝜎  bounds almost immediately. 

Covariance estimates on the 𝑆1  and 𝑆2  axes are climbing throughout the 

simulation time, while the covariance estimate in the 𝑆3 axis converges to a steady 

bound of 20000 𝑝𝑝𝑚. This is a noticeable increase when compared to the covariance 

in the 𝑆3 axis as seen by Figure 5.25.  

The results of a stochastic observability test are given in Figure 5.31. Similar 

to both the high and spin stabilized 𝜔̅𝑆𝐸 cases, the value of 𝜎𝑚𝑎𝑥(Λ𝑘) peaks at 20 
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seconds, and then begins to limit to zero afterwards. The value of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) appears 

to have a lower frequency of oscillation than the higher 𝜔̅𝑆𝐸 cases. In the case 

where scale factor errors are included, the values of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) begin to have a linear 

slope near the troughs of the trend after 4 hours, similar to the cases of scale factor 

inclusion for the spin stabilized 𝜔̅𝑆𝐸  case. Due to this trend, we treat this 

simulation scenario as stochastically unobservable.  
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5.3.7 Low Inclination-orbit, “Tumble” Angular Velocity 

 

 

 

 

 

 

 

 

Table 5.9 Simulation 7 Parameters 

Parameter Value Description 

𝜔̅0
𝑆𝐸 [1.15    − 2.86    1.71]𝑇 °/𝑠 Initial Angular Velocity 

𝑖 2° Orbital Inclination 

Ψ321 [0°    80°    0°]𝑇 Initial 3-2-1 Euler Angles 

𝑞𝑆𝐸,0 [0.667    0    − 0.745    0]𝑇 
True Initial Attitude 

Quaternion 

𝑏̅0 −0.4°/𝑠 ≤ 𝑏0 ≤ 0.4°/𝑠 Constant Bias Error 

𝑠𝑓̅̅ ̅ −50000 𝑝𝑝𝑚 ≤ 𝑠𝑓̅̅ ̅ ≤ 50000 𝑝𝑝𝑚 Scale Factor Errors 
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Figure 5.32 Pointing error 𝜖 history for low inclination, High 𝜔̅ with no scale 

factor errors (top) and with scale factor errors (bottom). 
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Figure 5.33 Euler angle error 𝛿𝛹321 history for low inclination, high 𝜔̅ with no 

scale factor errors (top) and with scale factor errors (bottom). 
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Figure 5.34 IMU bias error 𝛿𝑏𝑔 history for low inclination, high 𝜔̅ with no scale 

factor errors (top) and with scale factor errors (bottom). 
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Figure 5.35 IMU scale factor error 𝛿𝑠𝑓𝑔 for low inclination, high 𝜔̅ for cases 

where scale factors are included. 
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Figure 5.36 Stochastic observability metrics for low inclination, high 𝜔̅ with no 

scale factor errors (top) and with scale factor errors (bottom). 
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In Figure 5.32 the angular error 𝜖 between 𝑆3 and 𝑆̂3 axes as defined by 

Equation (5.2) is given for a high 𝜔̅𝑆𝐸 scenario at an orbital inclination of 𝑖 = 2°. 

The top plot showcases 𝜖 when no scale factor errors are included within the noise 

of the system, with the bottom plot being for scenarios in which scale factor errors 

are included and estimated. With no scale factors, the 𝜖 estimate converges to 

below or near a 1𝜎 of 6° in a little over two hours. When scale factors are included 

and estimated, the 𝜖 estimate converges to below a 1𝜎 of 6° − 7° in a little over 

four hours. Contrary to the covariance of the previous simulation scenarios, the 

covariance seen in Figure 5.32 has less difference between its peak and trough 

amplitudes. Moreover, the state estimates seem to exceed the covariance bounds 

more frequently than the higher inclination scenarios. A similar phenomenon is 

seen in the Euler angle plots of Figure 5.33. 

In Figure 5.34, the bias state estimation errors are presented. The 1𝜎 bound 

on the bias errors are approximately 0.007°/𝑠, with estimates converging to below 

that bound within half an hour of initialization. In both instances of scale factor 

inclusion, it appears that steady state estimates are reached in approximately one 

hour after initialization. In the instance of the scale factor estimation errors seen 

in Figure 5.35, we see estimates converging to below a 1𝜎 bound of 5000 𝑝𝑝𝑚 

within half an hour. Similar to the bias estimates, the scale factors reach steady 

state estimation values after about one hour.  

The results of a stochastic observability test of the system are presented in 

Figure 5.36 with the two metrics of 𝜎𝑚𝑎𝑥(Λ𝑘) and 𝜎𝑚𝑎𝑥(𝑄̅𝑘) for each scenario 

presented. In both instances of scale factor inclusion, the value of 𝜎𝑚𝑎𝑥(Λ𝑘) peaks 

at the 2nd measurement update at 20 seconds with a value of 86, and then begins 

to reduce to 0 in the following measurements, similar to the high inclination cases. 
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This implies that the state covariance is no longer a function of the initial state 

covariance, 𝑃0, after 5 measurement updates. 

The 𝜎𝑚𝑎𝑥(𝑄̅𝑘) plots within Figure 5.36 showcase the second metric of the 

stochastic observability test. In both instances of scale factor inclusion, the value 

of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) seems to converge to an oscillatory trend near one hour. This mimics 

the oscillation seen in state covariance of the Euler angle estimates of Figure 5.33. 

When scale factor errors are included, the values of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) seem to a slightly 

larger amplitude in oscillation. Additionally, the steady state values appear to be 

larger when scale factors are included. However, as both instances of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) 

appear to be bounded, the values of 𝜎𝑚𝑎𝑥(Λ𝑘) and 𝜎𝑚𝑎𝑥(𝑄̅𝑘)  imply that the system 

is stochastically observable for both cases of scale factor inclusion.  
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5.3.8 Low Inclination-orbit, Spin Stabilized Angular Velocity 

 

 

 

 

 

 

 

 

Table 5.10 Simulation 8 Parameters 

Parameter Value Description 

𝜔̅0
𝑆𝐸 [0    0    0.57]𝑇 °/𝑠 Initial Angular Velocity 

𝑖 2° Orbital Inclination 

Ψ321 [0°    80°    0°]𝑇 Initial 3-2-1 Euler Angles 

𝑞𝑆𝐸,0 [0.667    0    − 0.745    0]𝑇 
True Initial Attitude 

Quaternion 

𝑏̅0 −0.4°/𝑠 ≤ 𝑏0 ≤ 0.4°/𝑠 Constant Bias Error 

𝑠𝑓̅̅ ̅ −50000 𝑝𝑝𝑚 ≤ 𝑠𝑓̅̅ ̅ ≤ 50000 𝑝𝑝𝑚 Scale Factor Errors 
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Figure 5.37 Pointing error 𝜖 history for low inclination, spin 𝜔̅ with no scale 

factor errors (top) and with scale factor errors (bottom). 
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Figure 5.38 Euler angle error 𝛿𝛹321 history for low inclination, spin 𝜔̅ with no 

scale factor errors (top) and with scale factor errors (bottom). 
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Figure 5.39 IMU bias error 𝛿𝑏𝑔 history for low inclination, spin 𝜔̅ with no scale 

factor errors (top) and with scale factor errors (bottom). 
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Figure 5.40 IMU scale factor error 𝛿𝑠𝑓𝑔 for low inclination, spin 𝜔̅ for cases 

where scale factors are included. 
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Figure 5.41 Stochastic observability metrics for low inclination, spin 𝜔̅ with no 

scale factor errors (top) and with scale factor errors (bottom). 
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In Figure 5.37 the angular error 𝜖 is given for a spin stabilized 𝜔̅𝑆𝐸 scenario 

at an orbital inclination of 𝑖 = 2°. In both cases of scale factor inclusion, the 𝜖 

estimate converges to below or near a 1𝜎 of 6° in a little over two hours. A similar 

phenomenon is shown in the Euler angle plots of Figure 5.38. In this figure, it is 

clearly seen that the covariance on the 𝛿𝜓 estimates have less oscillation frequency 

than those of 𝛿𝜙 and 𝛿𝜃. In all cases of the attitude being estimated, at least one 

out of the six Monte Carlo runs has its steady state value exceed the covariance 

bound given by the blue lines, similar to the high 𝜔̅𝑆𝐸 case. This implies that the 

state estimates are less accurate at this orbital inclination. 

In Figure 5.39, the bias state estimation errors are presented. Similar to the 

high 𝜔̅𝑆𝐸 case, the 1𝜎 bound on the bias errors are approximately 0.006°/𝑠, with 

estimates converging to below that bound in less than a half hour of initialization. 

In each case of scale factor inclusion, the bias estimates maintain relatively similar 

convergence trend, converging to relatively steady values in about one hour.  

In the instance of the scale factor estimation errors seen in Figure 5.40, we 

see each axis estimate converging to a steady state value within half an hour. 

However, in the 𝑆1 and 𝑆2 axes, the covariance appears to be noticeably different 

for each run. Moreover, some covariance bounds appear to be growing throughout 

time in these axes. This is due to the lack of angular velocity in the 𝑆1 and 𝑆2 axes, 

causing the respective scale factors to be unobservable. The 𝑆3 axis of the scale 

factor estimates has a lower covariance bound that appears to be constant. In the 

𝑆1  and 𝑆2  axis, the upper bounds on the covariance appear to be nearing 

40000 𝑝𝑝𝑚, whereas the covariance on the 𝑆3 is bounded near 8500 𝑝𝑝𝑚. 
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The results of a stochastic observability test of the system are presented in 

Figure 5.41. Similar to the high 𝜔̅𝑆𝐸 case, the values of 𝜎𝑚𝑎𝑥(Λ𝑘) for both scale 

factor cases peak at the 2nd measurement update, and then begin to reduce to 0 in 

the following measurements, with slightly different rates, implying that the state 

covariance is no longer a function of the initial state covariance, 𝑃0.  

The value of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) can be seen in the lower sub-plots of Figure 5.41. 

When no scale factors are included, the value of 𝜎𝑚𝑎𝑥(𝑄̅𝑘)  converges to an 

oscillatory behavior in about one hours. Noticeable peaks and troughs in the value 

of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) are present throughout the simulation time frame, implying stochastic 

observability. Contrary to the higher inclination spin cases, peaks do not seem to 

be increasing throughout the simulation run, with peaks and troughs staying at a 

relatively consistent level. Additionally, there seems to be larger difference between 

the steady state values of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) when compared to the higher inclination cases.  

In the instance where scale factors are included, the plot of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) has 

slight differences from the no scale factor case. The general value of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) seem 

to be of similar size to the no scale factor case. Moreover, individual trends seem 

similarly sporadic, with the lone exception of a single trend line that remains flat 

at the top of the 𝜎𝑚𝑎𝑥(𝑄̅𝑘) plot. After four hours, some troughs of the plot begin 

to disappear and are replaced by a growing trend line. This can be attributed to 

the growing covariance on the scale factor estimates in the 𝑆1 and 𝑆2 axes. As the 

peaks of the plot appear to follow the same pattern as the no scale factor instance, 

we treat this linear growth as failure to the stochastic observability test, indicating 

this simulation scenario is stochastically unobservable.  
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5.3.9 Low Inclination-orbit, Low Angular Velocity 

 

 

 

 

 

 

 

 

Table 5.11 Simulation 9 Parameters 

Parameter Value Description 

𝜔̅0
𝑆𝐸 [0    0    0.057]𝑇 °/𝑠 Initial Angular Velocity 

𝑖 2° Orbital Inclination 

Ψ321 [0°    80°    0°]𝑇 
Initial 3-2-1 Euler Angles 

𝑞𝑆𝐸,0 [0.667    0    − 0.745    0]𝑇 
True Initial Attitude 

Quaternion 

𝑏̅0 −0.4°/𝑠 ≤ 𝑏0 ≤ 0.4°/𝑠 Constant Bias Error 

𝑠𝑓̅̅ ̅ −50000 𝑝𝑝𝑚 ≤ 𝑠𝑓̅̅ ̅ ≤ 50000 𝑝𝑝𝑚 Scale Factor Errors 
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Figure 5.42 Pointing error 𝜖 history for low inclination, low 𝜔̅ with no scale 

factor errors (top) and with scale factor errors (bottom). 
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Figure 5.43 Euler angle error 𝛿𝛹321 history for low inclination, low 𝜔̅ with no 

scale factor errors (top) and with scale factor errors (bottom). 
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Figure 5.44 IMU bias error 𝛿𝑏𝑔 history for low inclination, low 𝜔̅ with no scale 

factor errors (top) and with scale factor errors (bottom). 
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Figure 5.45 IMU scale factor error 𝛿𝑠𝑓𝑔 for low inclination, low 𝜔̅ for cases 

where scale factors are included. 
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Figure 5.46 Stochastic observability metrics for low inclination, low 𝜔̅ with no 

scale factor errors (top) and with scale factor errors (bottom). 
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Figure 5.42 showcases the VMA convergence for the low 𝜔̅𝑆𝐸 case. When no 

scale factor errors are present within the noise of the system, all runs seemingly 

converge within two and a half hours, but with the majority of attitude estimates 

not bounded by the covariance. Additionally, the 1𝜎 state covariance bounds are 

relatively consistent with max amplitude near 7°. When scale factor estimates are 

included, all runs converge within four hours, similarly with large state estimate 

errors. The covariance bound is also similarly near 7°. Similar phenomena is shown 

in the Euler angle plots of Figure 5.43.  

The bias estimation errors are shown in Figure 5.44.  Similar to both the 

high and spin stabilized 𝜔̅𝑆𝐸  cases, the 1𝜎  bound on the bias errors are 

approximately 0.007°/𝑠, with estimates converging to below that bound in less 

than a half hour of initialization. A noticeable difference is that the bias covariance 

in Figure 5.44 appears slightly oscillatory when compared to higher 𝜔̅𝑆𝐸 cases. In 

both instances of scale factor inclusion, the bias estimates seem to converge to a 

steady estimate after about two hours. 

In the instance of the scale factor estimation errors of Figure 5.45, we see 

each axis estimate converging below the 1𝜎  bounds almost immediately. 

Covariance estimates on the 𝑆1  and 𝑆2  axes are climbing throughout the 

simulation time, while the covariance estimate in the 𝑆3 axis converges to a steady 

bound of 20000 𝑝𝑝𝑚. This is a noticeable increase when compared to the covariance 

in the 𝑆3 axis as seen by Figure 5.40.  

The stochastic observability is given in Figure 5.46. Similar to both the high 

and spin stabilized 𝜔̅𝑆𝐸 cases, the value of 𝜎𝑚𝑎𝑥(Λ𝑘) peaks at 20 seconds, and then 

begins to limit to zero afterwards. The value of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) appears to have a lower 
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frequency of oscillation than the higher 𝜔̅𝑆𝐸  cases, and matches the values 

presented in Figure 5.41. In the case where scale factor errors are included, the 

values of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) begin to have a linear slope near the troughs of the trend after 

4 hours, similar to the cases of scale factor inclusion for the spin stabilized 𝜔̅𝑆𝐸 

case. Due to this trend, we treat this simulation scenario as stochastically 

unobservable.  

5.3.10 General Observations 

For each simulation scenario above, the state covariance on the Euler angles 

was seen to be relatively oscillatory, with peak amplitudes ranging from 3° to 7°, 

depending on the case tested. Firstly, this oscillation is due to the varying dynamics 

of the spacecraft when measuring the EMF vector throughout time, in addition to 

the orbital position. When the EMF vector aligns with a TAM 3-axis, the 

covariance in the spacecraft 3-axis decreases, while it increases in the 2 and 1 axes. 

Conversely, as the EMF vector decreases in magnitude along the 3-axis, the 

covariance increases in the spacecraft 3-axis and decreases in the 2 and 1 axes. This 

phenomenon is shown in the high inclination spin stabilized Euler angle scenario 

of Figure 5.8 where troughs in the covariance of 𝛿𝜓 align with peaks in 𝛿𝜃 and 𝛿𝜋 , 

and vice versa. Additionally, this phenomenon is also prevalent within [41]. 

The frequency of the covariance oscillation varied with orbital inclination 

and spacecraft angular rate, suggesting a dependence on the rate of change of the 

EMF vector, or more specifically, how the magnitude changes with respect to each 

of the TAM axes. Consider the low angular velocity cases of Figure 5.43, Figure 

5.28, and Figure 5.13. In each of these scenarios, the angular velocity is given as 

𝜔̅𝑆𝐸 = [0    0    0.057]𝑇 °/𝑠. It can be seen that the covariance bounds maintain a 

periodic oscillatory behavior but have a much lower frequency than the higher 
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angular velocity cases. However, as 𝑖 increases, the frequency of the covariance also 

increases slightly, implying a slight dependence on-orbital inclination. Now consider 

the spin stabilized scenarios of Figure 5.38, Figure 5.23, and Figure 5.8 where the 

angular velocity vector is given as 𝜔̅𝑆𝐸 = [0 0 0.57]𝑇 °/𝑠, and remains constant 

throughout the 5 orbits in each axis. Within these plots, the covariance on the 𝛿𝜙 

and 𝛿𝜃 appear more oscillatory than that of 𝛿𝜓. This matches with intuition, as 

we are spinning about the 𝑆3  axis and are in a roll condition, allowing the 

magnitude and direction of the EMF vector along the 2 and 1 axes to changes more 

rapidly. Additionally, as we change inclination, the amplitude and general shape 

of the covariance changes. For example, in the low inclination scenario of Figure 

5.43, the covariances on 𝛿𝜙 and 𝛿𝜃 have maximum amplitudes that are maintained 

near 7° and low frequency oscillations. As we move up in inclination, the amplitude 

on 𝛿𝜙 and 𝛿𝜃 decrease, while the amplitude on 𝛿𝜓 increases. This is because the 

local EMF has a higher rate of change in its magnitude and direction as we move 

up through higher latitudes.  

The state covariance of the attitude estimates was also affected by the 

inclusion of scale factor errors into the measurements of the system. In the high 

angular velocity cases, scale factor inclusion increased the covariances on the 𝜖 

estimates, most notably seen in Figure 5.17. This can be simply attributed to the 

fact that there is more noise in the system. However, it can also be noticed in the 

scale factor case of Figure 5.17 that the covariance bound on 𝛿𝜙 and 𝛿𝜃 have 

sharper peaks with higher magnitude than those of 𝛿𝜓. This can be attributed to 

the estimation of the scale factor in the 2 and 1 axes, which correlate to estimates 

on 𝜃  and 𝜙 . Additionally, consider the gyro measurement equation given by 

Equation (3.1) 
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𝐶𝑆𝑔𝜔̅𝑚
𝑔𝐸(𝑡) = (13 + 𝑆𝐹(𝑡))(𝜔̅𝑆𝐸(𝑡)) + 𝐶𝑆𝑔 (𝑏̅𝑔(𝑡) + 𝑛̅𝑔(𝑡)) (3.1) 

In the instance of constant angular velocity vector, Equation (3.1) can be modified 

to be 

𝐶𝑆𝑔𝜔̅𝑚
𝑔𝐸(𝑡) = 𝜔̅𝑆𝐸 + 𝑆𝐹(𝑡)𝜔̅𝑆𝐸 + 𝐶𝑆𝑔𝑏̅𝑔(𝑡) + 𝐶𝑆𝑔𝑛̅𝑔(𝑡) 

𝐶𝑆𝑔𝜔̅𝑚
𝑔𝐸(𝑡) = 𝜔̅𝑆𝐸 + 𝐵̅ + 𝐶𝑆𝑔𝑛̅𝑔(𝑡) (5.6) 

where a new bias is defined by 𝐵̅.  As the rates of change of both the scale factor 

errors and the bias errors are relatively small, 𝐵̅ is effectively constant over time. 

Due to this, the combined effect of the scale factor and bias errors are observable 

as a “virtual bias” [49], whereas the individual contributions are unobservable. 

Additionally, when 𝜔̅𝑆𝐸 = 0, the 𝑆𝐹 estimate will also be unobservable, however 

this is a more limiting case than the one discussed above. 

 In our system, the angular velocity along the 3-axis is constant for all 

simulations, implying that the scale factors and bias in the 3-axis are unobservable 

and cannot be modified individually. Additionally, in the spin stabilized conditions, 

the scale factors in all three axes can no longer be resolved. Consider the high 

angular velocity cases given in Figure 5.33, Figure 5.18, and Figure 5.3. While the 

filter cannot estimate the individual scale factor or bias in the 3-axis, it can estimate 

the combined effect of these errors in addition to their variance. This provides a 

solution; however, it is a less accurate one. Additionally, this method treats the 

scale factor in the 3-axis as a larger bias, allowing for the covariance on that axis 

to not capture the effects of the scale factor itself. This causes lower covariances to 

be reported on the 𝜓 estimates as opposed to the sharper covariances on the 𝜃 and 

𝜙 estimates. Now consider the spin stabilized cases of Figure 5.38, Figure 5.23, and 

Figure 5.8. The scale factors in the 2 and 1 axes are not being estimated, and their 
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covariances appear to be growing unbounded in each case. However, as the 

measured angular velocity in these axes is primarily due to noise, scale factor 

estimates do not largely affect the output, allowing for the filter to still converge. 

 In some instances of the high 𝜔̅𝑆𝐸, it was found that the virtual bias in the 

3-axis could also cause the combined value of (13 + 𝑆𝐹) to be less than 0 in the 2 

and 1 axes, which is highly unlikely. While this proved to not be an issue in the 3-

axis estimate, it affected the 2 and 1 axes estimates at high 𝜔̅𝑆𝐸 and often caused 

a non-nominal state convergence. As such, a state constraint was used in the format 

of Equation (3.56) and the QP discussed in the beginning of this chapter. The effect 

of this constraint, especially in the covariance of the system, was not investigated, 

but would be an interesting and beneficial case of future work. 

 In most scenarios, the attitude estimate converged no matter the inclusion 

of scale factors. However, in the high inclination cases of Figure 5.2 and Figure 5.3, 

the inclusion of scale factors caused the attitude estimate to diverge in half of the 

Monte Carlo runs. As this only occurs for the high inclination, high angular velocity 

case, it seems to imply that this specific combination of the EMF measurement, 

scale factor, and bias estimates caused divergence. If attention is turned to the 

state estimation errors of Figure 5.4 and Figure 5.5, it can be seen that the bias 

and scale factor state error estimates oscillate throughout time, ultimately resulting 

in the bias and scale factor estimates themselves to oscillate through time. It is 

believed that this behavior leads to a divergence in the estimates of 𝜖 to be highly 

oscillatory as seen in Figure 5.2. While the direct cause of this behavior is unknown, 

it is assumed that the tuning parameters used are only valid for the lower 

inclination cases. As such, future works should investigate the design of more robust 

and potentially dynamic tuning parameters. 
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 State observability tests showed two primary results: (1) the state 

covariance of the system, no matter the inclusion of scale factor errors, is no longer 

a function of the initial covariance after 5 measurement updates at 0.1 𝐻𝑧, and (2) 

the state covariance is bounded when no scale factors are included, and unbounded 

in instances when scale factors are unobservable. Specifically, in the instances where 

scale factors were not included, the value of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) maintained a small steady 

state value for all Monte Carlo runs. When scale factors were included, spin 

stabilized and low angular velocity scenarios resulted in a growth of 𝜎𝑚𝑎𝑥(𝑄̅𝑘). As 

shown previously with Equation (5.6), this result matches with the intuition stated 

that the individual scale factor estimates will always be unobservable in instances 

where the angular velocity is 0. This also matches with intuition based upon the 

scale factor covariances in the 2 and 1 axes that seemed to grow unbounded, 

indicating stochastic unobservability.  

While the stochastic observability seemed to provide an interesting and 

valuable metric, there are some areas for concern. In cases where scale factor was 

estimated, not every Monte Carlo run resulted in a similar value of 𝜎𝑚𝑎𝑥(𝑄̅𝑘). This 

can be seen by the case shown in Figure 5.26. In one run, we see a relatively flat 

and constant value of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) at the top of the plot. If this was plotted by itself, 

it would indicate to us that the system is stochastically observable based on our 

current metrics. However, we chose to label the system as stochastically 

unobservable based upon the majority of the other runs that were plotted with a 

continuous upward trend. The difference in trends of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) indicates that we 

may need to be careful about how we define the stochastic observability. Perhaps 

the trends would have leveled out had we run the simulations for longer timespans.  
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The variation of 𝜎𝑚𝑎𝑥(𝑄̅𝑘) can be attributed to the random noise within the 

system matrix of Φ𝑘. Specifically, this noise is due to the fact that we choose to 

linearize our system about the estimated trajectory at each time step (see Equation 

(3.36)), and thus use estimated noisy values of angular velocity and attitude. If we 

were to instead linearize our system about the truth, then we can create a common 

value of Φ𝑘 from run to run. While we do not know the truth trajectory in practice, 

it can be beneficial in simulation to verify the stochastic observability. Future work 

should verify state stochastic observability by analyzing the system when linearized 

about the truth trajectory.  

Based on the results of each simulation scenario, VMA convergence seems 

to be dependent on two factors: (1) the angular velocity of the spacecraft, and (2) 

the orbital inclination. In a more general sense, these factors seem to point to a 

requirement that the local EMF vector must change sufficiently through time, as 

posited in the beginning of Chapter 3. However, it can be seen in Figure 5.42, 

Figure 5.27, and Figure 5.12 that the VMA either did not converge or converged 

slowly and with higher state errors when the angular velocity vector was 𝜔̅𝑆𝐸 =

[0 0 0.057]𝑇 °/𝑠 . When angular velocity was increased to be either 𝜔̅𝑆𝐸 =

[0 0 0.57]𝑇 °/𝑠  or 𝜔̅𝑆𝐸 = [1.15, −2.86, 1.71]𝑇 °/𝑠 , the VMA converged in varying 

amounts of time. This suggests that general convergence is primarily dependent on 

the angular velocity of the spacecraft, 𝜔̅𝑆𝐸, with convergence rate dependent on 

the orbital inclination 𝑖 . This also suggests that the EMF vector changes 

sufficiently in the inertial frame to be generally used as a sole aiding sensor for AD. 
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5.4 Summary 

Within this chapter, we showcased the performance of the VMA over 

multiple CubeSat flight conditions. We discussed mission performance metrics, in 

the form of the angular error between the estimate 3-axis 𝑆̂3 and the true 3-axis 

𝑆3, denoted by 𝜖, and the stochastic observability of the system.  Specifically, we 

investigated these parameters over multiple scenarios ranging from low to high 

orbital inclinations, with varying angular velocities. Moreover, we included 

simulations in which scale factor errors were included within the noise of the system 

and estimated for each of the flight conditions.  

Based upon the results of the VMA simulations, we made conclusions about 

the effectiveness of the EMF vector as an aiding measurement within an EKF 

architecture. Namely, we showed that VMA convergence is highly dependent upon 

the angular rates of a CubeSat, showing that the VMA did not converge or 

converged slowly in low angular velocity (𝜔𝑆𝐸 < 0.57 °/𝑠) conditions. In instances 

where the angular velocity vector was sufficiently large, it was shown that the 

VMA convergence rate depended on-orbital inclination, with convergence occurring 

within 2 hours for inclinations of 𝑖 ≥ 50° . The system was shown to be 

stochastically observable in every instance where scale factors were not included, 

and stochastically unobservable in most cases of scale factor inclusion. 
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6 Conclusions 

6.1 Summary of Results 

This thesis investigated the problem of attitude determination on small 

CubeSats by fusing the information from an IMU and magnetometer triad. A 

MATLAB simulation environment was developed which accounted for the effects 

of orbital inclination, CubeSat angular velocity, and IMU noise characteristics. The 

attitude determination algorithm was a VMA EKF in many ways similar to the 

algorithm in [41]. We developed an updated gyroscope measurement model to 

include scale factor errors and modified the state error vector equations to include 

an estimate of the errors. We simulated multiple scenarios, varying orbital 

inclination, angular velocity, and scale factor estimation to determine the 

conditions in which the VMA effectively and ineffectively estimated the attitude 

of a CubeSat. Additionally, we modified the stochastic observability test derived 

in [47] for implementation in the VMA architecture.  

It was found that general VMA convergence was highly dependent on the 

angular velocity of the CubeSat itself. Moreover, convergence speed was dependent 

on the orbital inclination of the vehicle. In spin stabilized velocity conditions above 

an inclination of 𝑖 = 50°, it was seen that the VMA converged to acceptable error 

levels within one and half to two hours of initialization, starting from random initial 

state conditions. For inclinations close to zero, it was found that convergence 

occurred within five hours of initialization. When angular velocity of the system 

was below a given threshold of 𝜔̅𝑆𝐸 < [0 0 0.57]𝑇 °/𝑠, it was found that convergence 

was not guaranteed within the 5 orbit simulation timeframe.  
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When scale factor errors were added to the system, it was shown that they 

were adequately calibrated out in most test conditions. However, it was also shown 

that in every scenario tested, at least one scale factor was unobservable due to the 

angular velocity of the system. In conditions where angular velocity was constant, 

scale factors could not be differentiated from the gyro bias, causing a “virtual bias” 

to be estimated. In conditions where the angular velocity was zero, the scale factors 

in those axes were also be unobservable. While this proved not to be an issue in 

many cases, it was posited as a potential problem within the high angular velocity, 

high inclination test of Figure 5.3. In this instance, state estimates appeared to 

oscillate throughout the simulation time frame, causing a lack of convergence. 

Another potential contributing factor was suggested to be tuning parameters of the 

system. 

When testing the stochastic observability of the system, it was determined 

that the system was stochastically observable in all instances where scale factors 

were not included. When scale factors were included, the system was shown to be 

stochastically unobservable in most cases. Specifically, the stochastic observability 

criteria of 𝜎𝑚𝑎𝑥(Λ𝑘) = 0 was met in every simulation run, whereas the criteria of 

𝜎𝑚𝑎𝑥(𝑄̅𝑘) < 𝑇𝑣  was not met in instances where at least one component of the 

angular velocity vector was 0, indicating that the state covariance of the system 

would grow unbounded through time.  

In general, two high-level results obtained from the VMA simulations can 

be made: (1) VMA convergence appears to be highly dependent on angular velocity 

of the vehicle, and (2) scale factor additions within the model require angular 

acceleration in each axis to be fully observable. Based on these results, further 

investigation of the VMA should incorporate active control to create angular 
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acceleration in each axis. Additionally, more dynamic, and potentially robust 

tuning parameters should be utilized in future analysis.  

6.2 Effect of IMU Grade on Attitude Estimates 

The vector matching algorithm (VMA) is used to correct the inherent 

attitude drift that arises from integration of a noisy rate gyroscope. In cases where 

the noise content on the gyros is high (consumer grade IMUs), frequent application 

of an external aiding measurement (and thus the use of the VMA) is required to 

correct the gyro attitude estimate. However, in higher grade IMUs, the noise 

content is lower, and inertial attitude estimates may not require as frequent aiding 

vector corrections.  

In an effort to explore the effect of gyro grade on attitude estimates, this 

section describes simulations on the attitude drift for three different IMU grades: 

Consumer, tactical, and navigational. Moreover, we perform analysis on these 

IMUs by simulating a scenario in which only inertial based attitude determination 

is applicable; HyCUBE (Hypersonic Configurable Unit Ballistic Experiment). 

HyCUBE is 3U CubeSat with a multi-sensor payload used to help characterize 

high-speed aerothermodynamics associated with orbital reentry, currently being 

developed by the UMN’s Small Satellite Research Lab. 

A CONOPS for HyCUBE is given in Figure 6.1. The primary scientific 

mission begins with a controlled deorbit from a given nominal attitude condition 

((1) in Figure 6.1). Scientific flow field measurements begin during a period of radio 

blackout as reentry begins ((2) in Figure 6.1). During this time HyCUBE will be 

in a passively stabilized state After data collection has completed, data downlink 

will begin ((3) in Figure 6.1) followed by a hardware burnup ((4) in Figure 6.1).  
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Figure 6.1 HyCUBE CONOPS. 

The ADCS of HyCUBE can be split into two functionalities: A station 

keeping functionality used while on-orbit about the Earth, and an active pointing 

functionality used during atmospheric reentry. The focus of the station keeping 

functionality will be to place HyCUBE into a stable attitude configuration 

conducive to flow-field science prior to reentry. The pointing functionality will be 

used to maintain stability during HyCUBE reentry. Initial analysis suggests that 

the knowledge error must be below 𝜖 ≤ 2° throughout mission duration. 

As the primary focus of HyCUBE is to collect data on the hypersonic flow 

fields, typical ADCS schemes prove challenging to implement due to the intense 

heat and plasma distribution. Many common sensors and actuators (see Table 1.1) 

cannot be effectively used in this regime, requiring the use of pure inertial based 

AD with high-grade gyros.  
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6.2.1 HyCUBE Reentry Simulations 

For HyCUBE, accurate pointing during orbital reentry is a key factor for 

effective data collection. However, reentry prohibits the use of the EMF as a 

measurement (and thus the VMA), due to the intense heat and plasma distribution 

around the exterior of the vehicle. As such, HyCUBE will need to rely solely on 

the use of an IMU and inertial navigation throughout its reentry mission. Based 

on this requirement, simulations were run to determine the inertial drift rate (as 

discussed in Chapter 2) dependent upon the grade of gyro used. Specifically, 

simulations were run based upon external angular velocity and attitude data 

simulated for the reentry conditions of HyCUBE. This data was then corrupted 

with consumer, tactical, and navigational gyro noise characteristics (see Appendix 

C). The noisy IMU data had its covariance and estimated attitude propagated over 

the entirety of the reentry time to determine the amount of drift possible.  

Reentry simulations were run over a period of 1200 𝑠 and assumed perfect 

knowledge of the attitude at the beginning of reentry, with an initial state given 

by the initial quaternion. It was also assumed that any scale factor or null-shift 

bias errors were calibrated out during the orbital portion of the HyCUBE mission. 

Initial state covariance, 𝑃0, was obtained by running the VMA architecture to 

completion with the gyro noise characteristics used in the below tables to obtain a 

steady state covariance matrix at the end of the 5 orbits. This covariance matrix 

was then used as the initial starting covariance at the beginning of orbital reentry. 

The plots below show 30 Monte Carlo runs in which the gyro measurements are 

corrupted by the white noise and in-run biases given in the tables below. 
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6.2.2 Consumer Grade IMU 

Table 6.1 HyCUBE Consumer Grade Gyro Sim Parameters 

Parameter Value Description 

𝜎𝐼𝑅𝐵 180 °/ℎ𝑟 In-Run Bias Stability, STD 

𝜏𝐺𝑀 300 𝑠 
Correlation Time of Gauss-Markov 

Process 

𝜎𝑔 0.05 °/𝑠 Output Noise, STD 

𝛿𝑞𝑆𝑆̂ [1 0 0 0]𝑇 Initial Attitude Error Quaternion 

 

𝑃0 =

[
 
 
 
 
 

0.0019 0.0014 −0.0049 0 0 0
0.0014 0.0016 −0.0045 0 0 0

−0.0049 −0.0045 0.0159 0 0 −0.0001
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −0.0001 0 0 0 ]

 
 
 
 
 

(6.1) 

 

Figure 6.2 Consumer grade gyro drift rate. 



178 

 

 

Figure 6.2 above shows the attitude estimate divergence as a function of 

time for a consumer grade gyro with noise parameters given in Table 6.1. 

Specifically, the plot showcases 𝜖 as defined in Equation (5.2). It can be seen that 

the state attitude estimate begins to diverge immediately, with large divergences 

occurring after about 5 minutes from simulation start. By 6-7 minutes, the value 

of 𝜖 is increasing to 10°, limiting past the covariance bounds specified by the blue 

lines on each plot.  
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6.2.3 Tactical Grade IMU 

Table 6.2 HyCUBE Tactical Grade Gyro Sim Parameters 

Parameter Value Description 

𝜎𝐼𝑅𝐵 0.35 °/ℎ𝑟 In-Run Bias Stability, STD 

𝜏𝐺𝑀 1000 𝑠 
Correlation Time of Gauss-Markov 

Process 

𝜎𝑔 0.0017°/𝑠 Output Noise, STD 

𝛿𝑞𝑆𝑆̂ [1 0 0 0]𝑇 Initial Attitude Error Quaternion 

 

𝑃0 = 1𝐸−3 ∗

[
 
 
 
 
 

0.1117 −0.0328 −0.0881 0 0 0
−0.0328 0.1281 0.1127 0 0 0
−0.0881 0.1127 0.3885 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

(6.2) 

 

Figure 6.3 Tactical grade gyro drift rate. 
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Figure 6.3 above shows the attitude estimate divergence as a function of 

time for a tactical grade gyro with noise parameters given in Table 6.2. Specifically, 

the plot showcases 𝜖 as defined in Equation (5.2). It can be seen that the state 

attitude estimate stays within the covariance bounds throughout the entire 

simulation run, with 𝜖 falling below a 1𝜎 bound of 0.6°.  
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6.2.4 Navigation Grade IMU 

Table 6.3 HyCUBE Navigational Grade Gyro Sim Parameters 

Parameter Value Description 

𝜎𝐼𝑅𝐵 0.0030 °/ℎ𝑟 In-Run Bias Stability, STD 

𝜏𝐺𝑀 3600 𝑠 
Correlation Time of Gauss-Markov 

Process 

𝜎𝑔 8.0𝐸−4 °/𝑠 
Output Noise, STD 

𝛿𝑞𝑆𝑆̂ [1 0 0 0]𝑇 Initial Attitude Error Quaternion 

 

𝑃0 = 1𝐸−3 ∗

[
 
 
 
 
 

0.1568 0.0764 −0.2038 0 0 0
0.0764 0.1685 −0.2201 0 0 0

−0.2038 −0.2201 0.6735 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

(6.3) 

 

Figure 6.4 Navigational grade gyro drift rate. 
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Figure 6.4 above shows the attitude estimate divergence as a function of 

time for a tactical grade gyro with noise parameters given in Table 6.3. Specifically, 

the plot showcases 𝜖 as defined in Equation (5.2). It can be seen that the state 

attitude estimate stays within the covariance bounds throughout the entire 

simulation run, with 𝜖 falling below a 1𝜎 bound of 0.4°. This is similar to the 

tactical grade gyroscope scenario. 

6.2.5 General Analysis of the HyCUBE Simulations 

The covariance bounds seen in Figure 6.4, Figure 6.3, and Figure 6.2 

highlight a similar oscillatory nature to the one seen in the VMA simulations. While 

there are no EMF measurements occurring in the HyCUBE case, this oscillation 

can be described as remnants of the state covariance obtained during the on-orbit 

period of HyCUBE’s mission. Specifically, as the initial covariance was calculated 

from running the VMA and taking the final state covariance after 8 hours, an 

oscillatory behavior remains. As the inertial measurements begin to drift due to 

noise, this covariance bounds also begin to increase.  

Accurate hypersonic data collection requires that the value of 𝜖 remain 

below 2° over the data collection period occurring between 10 and 15 minutes after 

orbital reentry begins.  Based upon the drift rates seen in Figure 6.4, Figure 6.3, 

and Figure 6.2, this limits the choice of IMU to be of tactical grade or higher. With 

cost also playing a role in the decision, the most economic choice that meets 

HyCUBE requirements would be a tactical grade IMU.  

If we extend these results to the VMA, we can extrapolate that the use of 

higher grade IMUs would reduce the frequency of EMF measurements required, in 

addition to the general covariance bounds on the attitude estimates. However, 
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tactical and navigational grade IMUs typically cost on the order of $5,000 −

$100,000, which is beyond the cost limitations of CubeSats. As such, these IMUs 

are better suited for missions in which typical aiding schemes cannot be employed, 

such as HyCUBE. 

6.3 IMPRESS and EXACT ADCS Structure 

As the results of Chapter 5 show, the VMA AD solution converges to below 

the knowledge requirement of 𝜖 = 10° in most cases and converges within 2 hours. 

As the phenomena of interest for both IMPRESS and EXACT occur over the 

periods of days or weeks, AD convergence time is not a constricting factor. As such, 

the VMA developed can be used as the AD solution for both IMPRESS and 

EXACT on-orbit. With this in mind, the following section will describe a high-level 

overview of the currently planned ADCS of each CubeSat.  

6.3.1 IMPRESS & EXACT ADCS 

As the operational slew rates of the missions are not significantly large, the 

length of time required to operate the ADCS is not heavily constrained. In terms 

of the AD, this means that VMA convergence times of 2 hours are acceptable for 

mission science. While this is acceptable, we would also like to ensure VMA 

convergence occurs as fast as possible on-orbit, necessitating the use of a relatively 

high inclination-orbital condition with a spin stabilized angular velocity. As an 

aside, science objectives limit the spin stabilized angular velocity to be 𝜔̅𝑆𝐸,3 <

5°/𝑠 . Thus, the choice of an ISS orbit is conducive to both cost and VMA 

convergence, as many CubeSat missions use the P-POD deployers on board the 

ISS at an inclination of 𝑖 ≈ 50°. Additionally, a spin stabilized condition of 𝜔̅𝑆𝐸 =
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[0 0 0.57]𝑇 °/𝑠  is shown to aid VMA convergence and also meets the science 

requirement.  

While the control system (CS) is not the focus of this work, we will discuss 

it briefly here as motivation for some of the selected parameters. Firstly, as ADCS 

time is not greatly constrained, the use of low-bandwidth actuation techniques is 

allowable. Specifically, based on UMN heritage and cost-effectiveness, current 

actuation plans include the use of tri-axial magnetorquers as the sole control 

technique. While this provides cost and mass effectiveness, it also requires that 

determination and control be performed separately, as any change in the local EMF 

vector due to the magnetorquers would interfere with accurate VMA performance. 

Due to this, the sampling rate of the TAM was selected to be 0.1 𝐻𝑧, allowing for 

10 second intervals between magnetometer sampling, leaving ample room in 

between magnetometer samples for the magnetorquers to actuate. This 

determination/control duty cycle is discussed in detail within [50].  

With regards to IMU quality, simulations run within Chapter 5 utilize noise 

characteristics from the Analog Devices ADIS16488A IMU, which is considered a 

high-end consumer grade IMU. The ADIS IMU chosen as it allowed for an 

acceptable 1𝜎 covariance bound on 𝜖 estimates, falling below the requirement of 

𝜖 = 10° . Additionally, the ADIS IMU contains a TAM within it, minimizing 

hardware complexities of the AD. For future missions, the simulations of Chapter 

5 should be run again with varying IMU characteristics based upon mission needs. 
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Figure 6.5 IMPRESS & EXACT ADCS Block Diagram 

 

Figure 6.5 is a block diagram of the planned ADCS for both IMPRESS & 

EXACT. On-orbit, a Global Positioning System (GPS) will give local position, 

velocity, and timing information at a given frequency throughout the mission. This 

data is used to determine the modeled EMF vector throughout time. This vector, 

coupled with angular velocities measured from the IMU and calibrated EMF 

measurements from a TAM, are the inputs to the VMA developed in Chapter 3. 

The output of the VMA in the form of the estimate attitude quaternion 𝑞̂𝑆𝐸 is then 

compared with the desired quaternion 𝑞𝑆𝐸 . The difference between these two 

quaternions, parameterized by Δ𝑞𝑆𝐸, is then given as the input into a PID controller. 

This PID controller calculates the magnetorquer actuation required to bring Δ𝑞𝑆𝐸 

to zero, and then performs the actuation giving a new attitude in orbit. This new 

attitude is then input into the VMA, coupled with the most recent sensor 

measurements, to obtain the newest estimate of the state. This cycle continuously 

operates as we propagate through time. 
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6.4 Future Work 

There are many additional paths that can be pursued in an effort to increase 

the validity and accuracy of the VMA developed and extended upon within this 

work. A key grouping of these paths, in the opinion of the author, are listed and 

discussed below. 

6.4.1 Updated Scale Factor Models 

The scale factor model developed within this work assumed that scale factors 

vary slowly with time due to Gaussian white noise. However, scale factors and 

other gyro noise parameters, are often considered to be functions of temperature, 

with set characteristics within a given temperature range. While the incorporation 

of temperature could prove to be a challenging non-linear inclusion, further work 

could utilize a higher order scale factor propagation model to increase accuracy. 

Specifically, a 1st order Gauss-Markov process could be used, similar to the in-run 

bias stability, such that 

𝑠𝑓̅̅ ̅̇(𝑡) = −
1

𝜏𝑠𝑓
𝑠𝑓(𝑡) + 𝑛̅𝑠𝑓

𝑠𝑓(𝑡) (6.4) 

where 𝜏𝑠𝑓 represents a correlation time associated with the scale factor random 

process 𝑠𝑓(𝑡) , and 𝑛̅𝑠𝑓
𝑠𝑓

(𝑡)  is the additive wideband noise to the scale factor 

propagation. While this may increase the validity of the scale factor model, it also 

brings about the addition of 𝜏𝑠𝑓 that must be selected. As a first approximation, 

this value could be assumed to be large such that 𝜏𝑠𝑓 > 1000 𝑠, implying the 

propagation of the scale factor is predominantly attributed to the additive 

wideband noise.  
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6.4.2 Real-Time Magnetometer Calibration 

The noisy EMF data used within this work assumed that noise was purely 

white and Gaussian throughout all time. In reality, the TAM on-orbit is subject to 

many variations, as discussed in Section 2.5.1.1. To remove these external sources 

of noise, the TAM must either be placed far away from the electrical components 

of the satellite or must be calibrated in flight. As we are already constrained in size 

and volume, a real-time magnetometer calibration must occur on-orbit to ensure 

TAM measurements are valid for use within the VMA. A potential first approach 

may be to investigate the real-time magnetometer calibration discussed within [51] 

[52], which does not require any attitude information and uses an iterative approach 

to determine any present biases.  

6.4.3 Increased “Truth” Data Fidelity 

Truth data used within the VMA simulations is created by using ODE45 to 

propagate the satellite attitude dynamics throughout time. While the equations 

used are accurate, they do not include the effects of external torques. Namely, any 

gravity gradient torques, residual magnetic moments, aerodynamic torques, and 

solar radiation torques are not included within the simulation. Further work could 

include these additional torques by modifying the angular velocity propagation 

equation such that 

𝜔̇̅𝑆𝐸 = 𝐼𝑆(−𝜔̅𝑆𝐸,×𝐼𝑆𝜔̅
𝑆𝐸 + 𝜏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙)

−1 (6.5) 

where 𝐼𝑆  is the 3 × 3 moment of inertia tensor and 𝜏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  is the sum of any 

external torques within the system. 

 Additionally, rudimentary control torques could also be incorporated into 

the system to allow the controlled variation of the angular velocity vector 𝜔̅𝑆𝐸, 
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which would allow the investigation of certain calibration maneuvers required for 

accurate scale factor observability.  

6.4.4 Inclusion of Spacecraft Dynamics in VMA 

In [41], the angular momentum vector was an estimated parameter included 

in the state vector. This allowed for a mathematical constraint to be placed upon 

the vehicles attitude throughout time. However, this required that the angular 

momentum vector change throughout time to be meaningful. While the work in 

[41] derived the accurate state error equations to estimate the angular momentum, 

the Stanford Gravity Probe B (in which the data was collected from) had its 

angular momentum vector relatively fixed in space.  

To determine the validity of including the attitude dynamics, additional 

rotation maneuvers must take place throughout the VMA timeframe. Further work 

could rederive the attitude dynamics equations seen in [41] with the inclusion of 

scale factor errors, and then run further simulations to verify the effectiveness of 

including the attitude dynamics equations. 

6.4.5 Covariance Pre-Conditioning 

As discussed within Chapter 3, the accurate selection of noise covariance 

parameters is often a challenging task. Generally, the size and scaling of the 

covariance matrices, can change the convergence characteristics of EKF. A common 

parameter that often affects EKF convergence and accuracy is the condition 

number, 𝜅 , of the matrix 𝑄𝑤 . When this number is sufficiently large, EKF 

convergence tends to deteriorate. From a theoretical viewpoint, the EKF should 

not be dependent at all on the condition number. However, numerically, high 

condition numbers on matrices can often lead to poor or slow iterative results. A 
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common work around to this challenge is to incorporate tuning parameters into 

the system. By manipulating the tuning parameters as discussed in Section 3.3.4.2, 

we effectively vary the condition number of the state transition matrices of the 

system and change the rate of convergence. 

While this is a solution to the problem at hand, it removes the physical 

interpretation of the EKF that we formulate by using the covariance matrices. 

Namely, we no longer have a clear mapping between how the noise of the system 

affects the convergence and accuracy of the EKF itself. As such, it may be beneficial 

to find another approach to tuning that does not change the state matrices. A 

potential solution to this could be formed by utilizing matrix pre-conditioning. The 

process of pre-conditioning effectively applies a transformation to a matrix that 

places it into a form more suitable for numeric solvers. While we still have some 

form of transformation, the use of pre-conditioners provides a reverse mapping from 

the transformed state back to the original state matrices. In practice, a pre-

conditioner could be used to transform the EKF state matrices, perform our 

updates, and then transform results back to allow for better numerical solving. 

6.4.6 VMA Failure Criteria 

The VMA as designed converged in most cases but had issues when being 

implemented in a low angular velocity environments. While this may align with 

the intuitive idea that the EMF vector has not varied sufficiently between 

measurements, no failure criteria that state this observation have been defined. 

Additionally, no qualitative metric for why the VMA has not converged is 

developed or utilized. Future work could develop a numerical metric that is a 

function of the EMF vector model and the angular rate of the spacecraft to provide 
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a “yes/no” criteria for VMA convergence over time. This may require additional 

investigation into the EMF and a determination of what parameters are satisfied 

in VMA convergence, and what parameters are not satisfied in VMA divergence. 

6.4.7 AD Testing Environment 

While the VMA results shown within this work suggest that the EMF vector 

can be used as a sole aiding measurement, the simulation environment contains 

inaccuracies and may not represent reality. As such, adequate physical testing of 

the AD system developed is required. To this end, a comprehensive testing 

procedure based upon the hardware used, expected noise parameters, and expected 

operational scenarios on-orbit must be developed. Additionally, the environment 

in which to perform these tests must be created or identified. Further work could 

attempt to build a testing environment within the UMN SmallSat lab to ensure 

accurate AD testing. In general, the testing of the VMA described here would 

require a form a magnetic isolation (i.e. Helmholtz Cage). This could be utilized to 

create an artificial EMF vector that could be measured by a hardware-in-the-loop 

test environment. With these measurements, the VMA could be run on hardware 

and tested to ensure accurate convergence, while removing the need to create 

physical rotations of the CubeSat hardware. As a starting point, an initial VMA 

hardware test plan is included within Appendix D. 
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Noise and Random Variables 

It may seem as though the AD problem has been solved; all we need is to 

measure the angular rates in the body frame (commonly done with a rate gyroscope 

in an IMU) and the numerically integrate Equations (2.23) or (2.25) over time to 

obtain the attitude throughout the mission. However, there is one major challenge: 

no measurement is perfect (i.e. without noise). Sensor noise causes the solutions 

obtained by integration of Equations (2.23) or (2.25) to be erroneous. In Appendix 

A, we describe how noise within a system is characterized. As a note, much of the 

resulting discussion is adapted from Chapter 2 of [26].  

A.1 Random Variables 

Noise is often considered to be a continuous random variable (RV). An RV, 

as defined by [26], is a mapping from a set of experimental outcomes to a set of 

real numbers. An example of an RV is the roll of a die. The roll of the die can take 

the value of any number in the range of 1 through 6, and the process of rolling the 

die is an RV. The outcome of the roll of the die is known as a realization of the 

RV and is certain. Additionally, the chance that a realization of a RV will be 

equivalent to some value in the designated range is known as the probability. For 

example, the probability that a roll of a dice will result in 2 is 1/6, meaning there 

is a 1 out of 6 chance that the die will land on 2.  

A.2 Probability Distribution Function (PDF) 

Consider an RV, 𝑋. An RV 𝑋 has the property of a probability distribution 

function (PDF) given by 𝐹𝑋(𝑋) and is defined as  

𝐹𝑋(𝑋) = 𝑃(𝑋 ≤ 𝑥) (𝐴. 1) 



199 

 

where 𝑃(𝑋 ≤ 𝑥) is the probability that a realization of 𝑋  will be less than or 

equivalent to a constant non-random value 𝑥 . The PDF itself provides the 

probabilities of all different outcomes of a given experiment. 

A.3 Probability Density Function (pdf) 

The derivative of Equation (A.1) with respect to 𝑥  is known as the 

probability density function (pdf), which specifies the likelihood a realization of 𝑋 

will be equivalent to 𝑥 and is given by 

𝑓𝑋(𝑥) =
𝑑𝐹𝑋(𝑥)

𝑑𝑥
(𝐴. 2) 

Based on this definition, useful properties of the pdf can be defined. Namely, the 

pdf is always larger or equivalent to 0, the integral of the pdf from −∞ to ∞ is 

equivalent to 1, and the probability of a value 𝑥 being within the range [𝑎, 𝑏] is 

given by the integral of the pdf from 𝑎  to 𝑏 .  These properties are defined 

mathematically below as 

𝑓𝑋(𝑥) ≥ 0 (𝐴. 3𝑎) 

∫ 𝑓𝑋(𝑥)𝑑𝑥 = 1
∞

−∞

(𝐴. 3𝑏) 

𝑃(𝑎 < 𝑥 ≤ 𝑏) = ∫ 𝑓𝑋(𝑥)𝑑𝑥
𝑏

𝑎

(𝐴. 3𝑐) 

The definitions provided by Equation (A.3) allows a useful interpretation; The 

probability that a constant value 𝑥 will be an outcome of an experiment over all 

possible values from −∞ to ∞ is 1 or 100% probable. Given a pdf for a certain 

random process, the probabilities of certain outcomes of the process can be easily 

determined. 
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A.4 Expected Value 

 The expected value of an RV 𝑋 can be defined as the average outcome over 

many experiments. This is also known as the mean or average of the RV. The 

expected value is defined as  

𝐸{𝑋} = 𝑿 =
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
∗ (𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠) (𝐴. 4) 

where 𝑿 is another definition for the mean. The expectation can also be described 

for functions of random variables. Consider the function of a random variable 𝑔(𝑋). 

The expectation of this can be given as  

𝐸{𝑔(𝑋)} = ∫ 𝑔(𝑋)𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

(𝐴. 5) 

where 𝑓𝑋(𝑥) is the pdf of 𝑋.  

A.5 Variance and Covariance 

The variance of an RV is a measure of how much an RV is expected to vary 

from its mean, which in turn is a measure of how uncertain an RV is. Typically, a 

lower variance implies realizations of the RV will be closer to its mean or expected 

value. The variance is given as 

𝜎𝑋
2 = 𝐸{(𝑋 − 𝑿)2} 

= ∫ (𝑋 − 𝑿)2𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

(𝐴. 6) 

where 𝜎𝑋
2 is the variance of the RV 𝑋 and 𝑿 is the mean of the RV 𝑋.  

 For a vector of multiple random variables denoted as 𝑋̅ = [𝑋1 𝑋2 …𝑋𝑛]𝑇, the 

variance of each RV within 𝑋̅ is placed in a covariance matrix, 𝑅, defined as  

𝑅 = 𝐸{(𝑋̅ − 𝑿̅)(𝑋̅ − 𝑿̅)𝑇} 
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= ∫ (𝑋̅ − 𝑿̅)(𝑋̅ − 𝑿̅)𝑇𝑓𝑋̅(𝑥)𝑑𝑥
∞

−∞

 

= [
𝜎11

2 ⋯ 𝜎1𝑛
2

⋮ ⋱ ⋮
𝜎𝑛1

2 ⋯ 𝜎𝑛𝑛
2

] (𝐴. 7) 

where 𝑿̅ = [𝑿̅1 𝑿̅2 …𝑿̅𝑛]𝑇 denotes the vector containing the mean of each RV. The 

matrix 𝑅 will contain the variance of each individual RV within its diagonals and 

correlated variances between each RV within 𝑋̅ given by 𝜎𝑖𝑗
2  in the off diagonals. If 

the RVs within the RV vector 𝑋̅  are independent [26], then the off-diagonal 

variances in 𝑅 will go to zero such that  

𝑅 = [
𝜎11

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑛𝑛

2
] (𝐴. 8) 

The covariance matrix is a positive semidefinite matrix.  

A.6 Standard Deviation 

 The standard deviation of an RV 𝑋 is given by 𝜎𝑋 and is the square root of 

the variance 𝜎𝑋
2. In general, we use the notation of  

𝑋~(𝑿, 𝜎𝑋
2) (𝐴. 9) 

to indicate that 𝑋 is a RV with a mean denoted by 𝑿 and variance given by 𝜎𝑋
2.  

A.7 Gaussian/Normal RVs 

If the pdf of an RV can be described by the function  

𝑓𝑋(𝑥) =
1

𝜎𝑋√2𝜋
exp [−

(𝑥 − 𝑿)2

2𝜎𝑋
2 ] (𝐴. 10) 

then it is said to be a Gaussian or Normal RV. This is notated by 

𝑋~𝑁(𝑿, 𝜎𝑋
2) (𝐴. 11) 
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which is similar to Equation (A.9). The pdf of a Gaussian or normal RV is known 

as a “bell curve” and is shown in Figure A.1. This figure is the pdf of a Gaussian 

RV with mean of 𝑿 = 0 and 𝜎𝑋
2 = 1.  

 

Figure A.1 Gaussian distribution of RV X. 

 

A.8 Stochastic Processes and White Noise 

A stochastic or random process is a RV 𝑋(𝑡) that is a function of time. The 

definitions found in the prior parts of this section can also be extended to stochastic 

processes, with the PDF, pdf, expectation, and covariance now being functions of 

time.  

If it is assumed that an RV 𝑋(𝑡1) is independent from the RV 𝑋(𝑡2) for all 

𝑡1 ≠ 𝑡2, then the stochastic process 𝑋(𝑡) is called white noise. While it is possible 

that the stochastic process is correlated throughout time (known as colored noise), 
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we will restrict discussion to white noise. For further description of these 

phenomenon, see Chapter 2 of [26].  

Throughout this thesis, the term “noise” will be used frequently. Unless 

otherwise stated, we assume any noise discussed will be Gaussian white noise as 

defined by Equation (A.11). Moreover, we assume the noise is a stochastic process 

with zero-mean and variance denoted by 𝜎2. Additional notation will be applied 

based upon what sensor or system noise is attributed to.  
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   Kalman Filtering 

B.1 The Kalman Filter (KF) 

The system that the KF operates on can be broken up into two components: 

a dynamic “time-update” model that encompasses how the dynamics of the system 

change throughout time, and a measurement model that encompasses how a sensor 

measures the states of interest. The noise within the system can be modelled as 

some process noise that is attributed to inaccuracies within the dynamic model, 

and some measurement noise attributed to noise found in the sensors. Given these 

models and characteristics on the noise, the goal of the KF is to determine an 

estimate of the state vector 𝑥̂̅𝑘 at each timestep.  

Suppose a linear discrete-time system in state space form is given as  

𝑥̅𝑘 = 𝐹𝑘−1𝑥̅𝑘−1 + 𝐿𝑘−1𝑢̅𝑘−1 + 𝑤̅𝑘−1 (𝐵. 1𝑎) 

𝑦̅𝑘 = 𝐻𝑘𝑥̅𝑘 + 𝑣̅𝑘 (𝐵. 1𝑏) 

where 𝑥̅𝑘 and 𝑦̅𝑘 are the 𝑛 × 1 state vector and 𝑛 × 1 measurement of the state 

vector at timestep 𝑘, respectively. Additionally, 𝑥̅𝑘−1 is the state vector at timestep 

𝑘 − 1 , 𝑢̅𝑘−1  is the vector of inputs to the system at 𝑘 − 1 , 𝑤𝑘−1  is the noise 

associated with the dynamic process of 𝑥̅𝑘 at 𝑘 − 1, 𝐹𝑘−1 and 𝐿𝑘−1 are the discrete 

time state space matrices that map the state and the inputs at timestep 𝑘 − 1 to 

time 𝑘, respectively, 𝐻𝑘 is the measurement matrix that maps the state vector at 

time 𝑘  to a measurement made at time 𝑘 , and 𝑣̅𝑘  is the measurement noise 

associated with the measurement process. As the filter will be ultimately 
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implemented on hardware, a discrete time system is used as opposed to a 

continuous time system. 

 The discrete equations of Equation (B.1) break the system into the dynamics 

and measurement components, respectively.  However, the noise vectors 𝑤̅𝑘−1 and 

𝑣̅𝑘−1 are generally unknown. Fortunately, the characteristics of the noise can be 

assumed based upon discussion seen in Appendix A. Assume that both noise 

vectors can be modeled as stochastic processes such that 

𝑤̅𝑘~(0, 𝑄𝑘) (𝐵. 2𝑎) 

𝑄𝑘 = 𝐸{𝑤̅𝑘𝑤̅𝑘
𝑇} (𝐵. 2𝑏) 

𝑣̅𝑘~(0, 𝑅𝑘) (𝐵. 2𝑐) 

𝑅𝑘 = 𝐸{𝑣̅𝑘𝑣̅𝑘
𝑇} (𝐵. 2𝑑) 

𝐸{𝑣̅𝑘𝑤̅𝑘
𝑇} = 0 (𝐵. 2𝑒) 

where 𝑄𝑘 and 𝑅𝑘 are the 𝑛 × 𝑛 covariance matrices attributed to the process and 

measurement noise, respectively.  

 Knowing the information contained in Equations (B.1) and (B.2), the KF 

utilizes a weighted linear least squares approach [26] to obtain an optimal estimate 

of the state vector such that 

𝑥̂̅𝑘 = 𝐸{𝑥̅𝑘} = 𝒙̅𝒌 (𝐵. 3) 

where 𝑥̂̅𝑘 is the KF optimal estimate and is equivalent to the mean of the state 

vector. Different filtering techniques can have different definitions for optimal. It 
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will be assumed that any further discussion of “optimal” will refer to the definition 

of Equation (B.3).  

 This estimate can be split into two different types: a priori and a posteriori. 

The a priori estimate is defined as 

𝑥̂̅𝑘
− = 𝐸{𝑥̅𝑘|𝑦̅1, 𝑦̅2, … , 𝑦̅𝑘−1} (𝐵. 4) 

where the “-“ sign in the superscript implies that the estimate was conditioned on 

all measurements before, but not including, time 𝑘. The a posteriori estimate is 

defined by  

𝑥̂̅𝑘
+ = 𝐸{𝑥̅𝑘|𝑦̅1, 𝑦̅2, … , 𝑦̅𝑘} (𝐵. 5) 

where the “+” sign in the superscript implies that the estimate was conditioned on 

all measurements up to the current time 𝑘.  

Both 𝑥̂̅𝑘
− and 𝑥̂̅𝑘

+ are estimates of the same quantity, but are dependent on 

if the estimate was formed by a propagating the state dynamics (𝑥̂̅𝑘
− ) or by using 

a sensor measurement (𝑥̂̅𝑘
+). Generally, the time update portion of the KF will 

calculate a less accurate a priori estimate of the state, where measurement updates 

will calculate a more accurate 𝑎 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖 estimate. This is on the assumption 

that the noise content of measurement sensors is less than that of the dynamic 

process of the system. The general structure of the KF is discussed below. 

B.2 KF Initialization 

We assume that we have access to some initial state vector, 𝑥̅0
+, and initial 

state covariance, 𝑃0
+ , at 𝑘 = 0. While no measurements have yet occurred, we 

assume that the initial estimate and covariance are as accurate as possible and are 
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a posteriori, hence the “+” superscript. Thus, the initial a posteriori state estimate 

and covariance are given by 

𝑥̂̅0
+ = 𝐸{𝑥̅0} (𝐵. 6𝑎) 

𝑃0
+ = 𝐸{(𝑥̅0 − 𝑥̂̅0

+)(𝑥̅0 − 𝑥̂̅0
+)𝑇} (𝐵. 6𝑏) 

where the covariance is on the estimation error between the estimate 𝑥̂̅0
+ and the 

truth state 𝑥̅0. Note that the placement of 𝑥̂̅0
+ in Equation (B.6b) implies that we 

assume our initial estimate is equivalent to the mean of the state vector such that 

𝑥̂̅0
+ = 𝒙̅𝟎. In the KF, the covariance is directly used as a metric to quantify the 

estimation error.  

B.3 KF Time Update 

The time update portion of the KF propagates the state estimate and 

covariance using the dynamic model for the system. The state evolution of the 

estimate can be determined by taking the expected value of the true state evolution 

given by Equation (B.1a) such that 

𝑥̂̅1
− = 𝐸{𝑥̅1} = 𝐸{𝐹0𝑥̅0 + 𝐿0𝑢̅0 + 𝑤̅0} 

= 𝐸{𝐹0𝑥̅0} + 𝐸{𝐿0𝑢̅0} + 𝐸{𝑤̅0} 

𝑥̂̅1
− = 𝐹0𝑥̂̅0

+ + 𝐿0𝑢̅0 (𝐵. 7) 

where 𝐸{𝑤̅0} = 0 as it is assumed to be zero-mean. Note that the input vector 𝑢̅0 

is not an estimate as it is assumed that we always know the inputs to system. The 

covariance can be propagated by substituting Equation (B.1a) evaluated at 𝑘 = 0 

into Equation (B.6) and taking the expected value 
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𝑃1
− = 𝐸{(𝑥̅1 − 𝑥̂̅1

−)(𝑥̅1 − 𝑥̂̅1
−)𝑇} 

= 𝐸{(𝐹0𝑥̅0 + 𝐿0𝑢̅0 − 𝑤̅0 − 𝐹0𝑥̂̅0
+ − 𝐿0𝑢̅0)(𝐹0𝑥̅0 + 𝐿0𝑢̅0 − 𝑤̅0 − 𝐹0𝑥̂̅0

+ − 𝐿0𝑢̅0)
𝑇} 

= 𝐸{(𝐹0(𝑥̅0 − 𝑥̂̅0
+) − 𝑤̅0)(𝐹0(𝑥̅0 − 𝑥̂̅0

+) − 𝑤̅0)
𝑇} 

= 𝐸{𝐹0(𝑥̅0 − 𝑥̂̅0
+)(𝑥̅0 − 𝑥̂̅0

+)𝑇𝐹0
𝑇 + 𝑤̅0𝑤̅0

𝑇 + 𝐹0(𝑥̅0 − 𝑥̂̅0
+)𝑤̅0

𝑇 + 𝑤̅0(𝑥̅0 − 𝑥̂̅0
+)𝐹0

𝑇 

= 𝐸{𝐹0(𝑥̅0 − 𝑥̂̅0
+)(𝑥̅0 − 𝑥̂̅0

+)𝑇𝐹0
𝑇} + 𝐸{𝑤̅0𝑤̅0

𝑇} 

𝑃1
− = 𝐹0𝑃0

+𝐹0
𝑇 + 𝑄0 (𝐵. 8) 

Where the covariance updates as a function of the process noise at the previous 

timestep 𝑄0 and the mapping matrix 𝐹0. While Equations (B.7) and (B.8) are 

specific for the first time update, they can be extended to include all time updates 

such that 

𝑥̂̅𝑘
− = 𝐹𝑘−1𝑥̂̅𝑘−1

− + 𝐿𝑘−1𝑢̅𝑘−1 (𝐵. 9) 

𝑃𝑘
− = 𝐹𝑘−1𝑃𝑘−1

− 𝐹𝑘−1
𝑇 + 𝑄𝑘 (𝐵. 10) 

where 𝑥̂̅𝑘
− and 𝑃𝑘

− are the a priori state estimate and state covariance. Note that 

the prior estimate is no longer a posteriori and it is assumed that multiple time 

updates have occurred since the last measurement update.  

B.4 KF Measurement Update 

The measurements are incorporated by utilizing a recursive least squares 

approach. Consider a measurement that occurs immediately after the time updates 

given by Equations (B.7) and (B.8) at 𝑘 = 1 such that 

𝑦̅1 = 𝐻1𝑥̅1 + 𝑣̅1 (𝐵. 11) 
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Where 𝑦̅1  is the measurement at 𝑘 = 1 . Note that while we may know the 

measurement matrix 𝐻1, we do not know the true state 𝑥̅1 nor the noise vector 𝑣̅1. 

A Kalman gain 𝐾1, is then calculated by 

𝐾1 = 𝑃1
−𝐻1

𝑇(𝐻1𝑃1
−𝐻1

𝑇 + 𝑅1)
−1 (𝐵. 12) 

where 𝑃1
− is the a priori covariance update seen in Equation (B.8) and 𝑅1 is the 

measurement noise covariance matrix for the given measurement. The state 

estimate and covariance are updated to create the a posteriori values via 

𝑥̂̅1
+ = 𝑥̂̅1

− + 𝐾1(𝑦̅1 − 𝐻1𝑥̂̅1
−) (𝐵. 13) 

𝑃1
+ = (1𝑛 − 𝐾1𝐻1)𝑃1

− (𝐵. 14) 

where 1𝑛  is the 𝑛 × 𝑛  identity matrix. Extending Equations (B.12) - (B.14) 

through all time, we have 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)
−1 (𝐵. 15) 

𝑥̂̅𝑘
+ = 𝑥̂̅𝑘

− + 𝐾𝑘(𝑦̅𝑘 − 𝐻𝑘 𝑥̂̅𝑘
−) (𝐵. 16) 

𝑃𝑘
+ = (1𝑛 − 𝐾𝑘𝐻𝑘)𝑃𝑘

− (𝐵. 17) 

At this point, the a priori state estimate has been “corrected” by the measurement 

update via the Kalman gain. Generally, the KF decides how much weight to place 

on the measurement by looking at the measurement covariance matrix 𝑅1. For 

example, if 𝑅1 is large, the value of 𝐾1 will be small (by inspection of Equation 

(B.13)), and the measurement will not change the a priori estimate 𝑥̂̅1
− by much. 

Conversely, if 𝑅1 is small, then 𝐾1 will be large and the measurement will “correct” 

the a priori estimate by a noticeable amount. It is this phenomenon that highlights 
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the value of the KF, as it weights the measurement and dynamics against each 

other continuously based upon the covariances 𝑄𝑘 and 𝑅𝑘.  

B.5 KF “Timeline” 

The KF equations are summarized here for clarity.  

Time Update: 

𝑥̂̅𝑘
− = 𝐹𝑘−1𝑥̂̅𝑘−1

− + 𝐿𝑘−1𝑢̅𝑘−1 (𝐵. 9) 

𝑃𝑘
− = 𝐹𝑘−1𝑃𝑘−1

− 𝐹𝑘−1
𝑇 + 𝑄𝑘 (𝐵. 10) 

Measurement Update: 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)
−1 (𝐵. 15) 

𝑥̂̅𝑘
+ = 𝑥̂̅𝑘

− + 𝐾𝑘(𝑦̅𝑘 − 𝐻𝑘 𝑥̂̅𝑘
−) (𝐵. 16) 

𝑃𝑘
+ = (1𝑛 − 𝐾𝑘𝐻𝑘)𝑃𝑘

− (𝐵. 17) 

 

Figure B.1 KF timeline. 

 

In general, there can be multiple time updates that occur before a 

measurement update does. The frequency of the time updates and the measurement 
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updates is dependent on the problem and the sensors used. A KF “timeline” 

detailing the KF algorithm as it propagates the state and covariance through time 

with one measurement update per time update is given by Figure B.1. 

B.6 The Extended Kalman Filter (EKF) 

While the KF is an extremely useful tool, it has made some assumptions 

about the linearity of the system. Namely, the KF assumes that a linear state space 

representation can be formed as seen in Equation (B.1), and that the stochastic 

noise of the system maintains its form as it is propagated through the time and 

measurement update equations. While these assumptions hold for some systems, 

there are arguably more systems in which these assumptions are invalid. 

Consider the simple, scalar, discrete time non-linear system denoted by the 

following 

𝑥𝑘 = 𝑥𝑘−1
2 + 𝑤𝑘−1 = 𝑓(𝑥𝑘−1, 𝑤𝑘−1) (𝐵. 18𝑎) 

𝑦𝑘 = ℎ(𝑥𝑘−1, 𝑣𝑘−1) (𝐵. 18𝑏) 

𝑤𝑘~𝑁(0, 𝜎𝑤
2) (𝐵. 18𝑐) 

𝑣𝑘~𝑁(0, 𝜎𝑣
2) (𝐵. 18𝑑) 

where 𝑥𝑘 is the scalar state, 𝑦𝑘 is the scalar measurement of the state, 𝑤𝑘−1 is the 

stochastic process noise attributed to the dynamics, and 𝑣𝑘−1 is the stochastic 

process noise attributed to the measurement itself. It is assumed that the noise of 

the system is gaussian with zero mean and variances given by 𝜎𝑤
2  and 𝜎𝑣

2.  

 Now, consider the gaussian process noise of 𝑤𝑘. In the instance of the KF, 

the process noise is updated by passing the pdf of the noise through the linear state 

dynamics of the system. The output of this is another gaussian pdf. However, a 
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gaussian pdf input into non-linear state dynamics will not result in another gaussian 

pdf being output. Figure B.2 highlights this phenomenon, with the left plot 

resembling linear system dynamics denoted by 𝐹𝑘 and the right plot resembling 

non-linear dynamics modeled by 𝑓(𝑥𝑘−1, 𝑤𝑘−1). As seen on the left, the resultant 

pdf is still gaussian with some new mean denoted by the black dashed line. However, 

on the right plot, the non-linear dynamics have now changed the pdf to no longer 

be gaussian and have caused the estimated mean to longer be the truth. It is this 

phenomenon that highlights that the KF must be modified. 

 

Figure B.2 A pdf propagated through a linear system (left) vs. nonlinear system 

(right). 

  

Enter the extended Kalman filter (EKF). The EKF handles the non-linear 

system dynamics by linearizing the state dynamics about a nominal state trajectory 

or operating condition. Generally, this nominal state trajectory is unknown, but 

the EKF uses its own estimate as the nominal state trajectory. Specifically, the 

EKF linearizes the non-linear system about its previous estimate at each time step. 
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The linearization is a Taylor series expansion about the state estimate as time goes 

on and is elaborated on below. 

  Let the true, non-linear, discrete time state dynamics be modeled by  

𝑥̅𝑘 = 𝑓𝑘−1(𝑥̅𝑘−1, 𝑢̅𝑘−1, 𝑤̅𝑘−1) (𝐵. 19𝑎) 

𝑦̅𝑘 = ℎ𝑘(𝑥̅𝑘, 𝑣̅𝑘) (𝐵. 19𝑏) 

𝑤̅𝑘~(0, 𝑄𝑘) (𝐵. 19𝑐) 

𝑣̅𝑘~(0, 𝑅𝑘) (𝐵. 19𝑑) 

where 𝑓𝑘−1(. ) and ℎ𝑘(. ) are non-linear functions of the state and measurement 

dynamics. Like the KF definition, we assume the noise on the system is zero-mean 

with variance modeled by covariance matrices 𝑄𝑘  and 𝑅𝑘 . A Taylor series 

expansion on Equation (B.19a) is performed around the operating condition of 

𝑥̅𝑘−1 = 𝑥̂̅𝑘−1
+  and 𝑤̅𝑘−1 = 0 to obtain  

𝑥̅𝑘 = 𝑓𝑘−1(𝑥̂̅𝑘−1, 𝑢̅𝑘−1, 0) +
𝜕𝑓𝑘−1

𝜕𝑥̅
│𝑥̂̅𝑘−1

(𝑥̅𝑘−1 − 𝑥̂̅𝑘−1
+ ) + 

𝜕𝑓𝑘−1

𝜕𝑤̅
│𝑥̂̅𝑘−1

𝑤̅𝑘−1 

= 𝑓𝑘−1(𝑥̂̅𝑘−1, 𝑢̅𝑘−1, 0) + 𝐹𝑘−1(𝑥̅𝑘−1 − 𝑥̂̅𝑘−1
+ ) + 𝐿𝑘−1𝑤̅𝑘−1 

= 𝐹𝑘−1𝑥̅𝑘−1 + [𝑓𝑘−1(𝑥̂̅𝑘−1
+ , 𝑢̅𝑘−1, 0) − 𝐹𝑘−1𝑥̂̅𝑘−1

+ ] + 𝐿𝑘−1𝑤̅𝑘−1 

𝑥̅𝑘 = 𝐹𝑘−1𝑥̅𝑘−1 + 𝑢̃𝑘−1 + 𝑤̃𝑘−1 (𝐵. 20) 

where we have neglected 2nd order and higher terms in the assumption that they 

are small and negligible. Note that Equation (B.20) is very similar to the KF 

equation for the state dynamics given by Equation (B.1a). In the EKF instance, 

the state mapping matrices 𝐹𝑘−1 and 𝐿𝑘−1 are formed by computing the Jacobian 

of the non-linear state matrices with respect to the state and noise vectors at each 
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timestep. These matrices, along with the noise signal and known input signal are 

defined below as 

𝐹𝑘−1 =
𝜕𝑓𝑘−1

𝜕𝑥̅
│𝑥̂̅𝑘−1

(𝐵. 21𝑎) 

𝐿𝑘−1 =
𝜕𝑓𝑘−1

𝜕𝑤̅
│𝑥̂̅𝑘−1

(𝐵. 21𝑏) 

𝑢̃𝑘 = 𝑓𝑘(𝑥̂̅𝑘
+, 𝑢̅𝑘0) − 𝐹𝑘 𝑥̂̅𝑘

+ (𝐵. 21𝑐) 

𝑤̃𝑘~(0, 𝐿𝑘𝑄𝑘𝐿𝑘
𝑇) (𝐵. 21𝑑) 

where the process noise covariance has now been modified by matrix 𝐿𝑘 . The 

measurement equation is also linearized via Taylor series approximation around 

𝑥̅𝑘 = 𝑥̂̅𝑘
− and 𝑣̅𝑘 = 0  

𝑦̅𝑘 = ℎ𝑘(𝑥̂̅𝑘
−, 0) +

𝜕ℎ𝑘

𝜕𝑥̅
│𝑥̂̅𝑘

−(𝑥̅𝑘 − 𝑥̂̅𝑘
−) +

𝜕ℎ𝑘

𝜕𝑣̅
│𝑥̂̅𝑘

−𝑣̅𝑘 

= ℎ𝑘(𝑥̂̅𝑘, 0) + 𝐻𝑘(𝑥̅𝑘 − 𝑥̂̅𝑘
−) + 𝑀𝑘𝑣̅𝑘 

= 𝐻𝑘𝑥̅𝑘 + [ℎ𝑘(𝑥̂̅𝑘
−, 0) − 𝐻𝑘 𝑥̂̅𝑘

−] + 𝑀𝑘𝑣̅𝑘 

𝑦̅𝑘 = 𝐻𝑘𝑥̅𝑘 + 𝑧𝑘̅ + 𝑣̃𝑘 (𝐵. 22) 

again neglecting 2nd order and higher terms. Similar to Equation (B.20), 𝐻𝑘 and 

𝑀𝑘 are Jacobians computed at each timestep. These, along with the noise and 

known signal 𝑧𝑘̅ are defined below as 

𝐻𝑘 =
𝜕ℎ𝑘

𝜕𝑥̅
│𝑥̂̅𝑘

− (𝐵. 23𝑎) 

𝑀𝑘 =
𝜕ℎ𝑘

𝜕𝑣̅
│𝑥̂̅𝑘

− (𝐵. 23𝑏) 

𝑧𝑘̅ = ℎ𝑘(𝑥̂̅𝑘
−, 0) − 𝐻𝑘 𝑥̂̅𝑘

− (𝐵. 23𝑐) 

𝑣̅𝑘~(0,𝑀𝑘𝑅𝑘𝑀𝑘
𝑇) (𝐵. 23𝑑) 
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where the measurement noise covariance has now been modified by matrix 𝑀𝑘. 

Now, Equations (B.20) and (B.22) are linear state space realizations of Equation 

(B.19), which means that the KF formulation and equations can be used.  

B.7 EKF Initialization 

It is again assumed that we have access to some initial state vector, 𝑥̅0 and initial 

state covariance, 𝑃0
+ , at 𝑘 = 0 . The initial a posteriori state estimate and 

covariance are given by 

𝑥̂̅0
+ = 𝐸{𝑥̅0} (𝐵. 6𝑎) 

𝑃0
+ = 𝐸{(𝑥̅0 − 𝑥̂̅0

+)(𝑥̅0 − 𝑥̂̅0
+)𝑇} (𝐵. 6𝑏) 

which is the identical initialization to the KF. 

B.8 EKF Time Update 

At the time update, we update the state by pushing our estimate through 

the non-linear dynamics such that  

𝑥̂̅𝑘 = 𝑓𝑘−1(𝑥̂̅𝑘−1
− , 𝑢̅𝑘−1, 0) (𝐵. 24) 

where it is assumed that the inputs to the system are known. This expression can 

be found similarly to how (2.50) was calculated. After the 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 state estimate 

has been determined, the partial derivative matrices 𝐹𝑘−1 and 𝐿𝑘−1 are computed 

such that 

𝐹𝑘−1 =
𝜕𝑓𝑘−1

𝜕𝑥̅
│𝑥̂̅𝑘−1

− (𝐵. 21𝑎) 

𝐿𝑘−1 =
𝜕𝑓𝑘−1

𝜕𝑤̅
│𝑥̂̅𝑘−1

− (𝐵. 21𝑏) 
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The 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 covariance is computed by 

𝑃𝑘
− = 𝐹𝑘−1𝑃𝑘−1

− 𝐹𝑘−1
𝑇 + 𝐿𝑘−1𝑄𝑘−1𝐿𝑘−1

𝑇 (𝐵. 25) 

where it is assumed that multiple time updates have occurred since the last 

measurement update. If one measurement update occurs for every time update, the 

covariance in Equation (B.25) would be replaced by 𝑃𝑘−1
+ .  

B.9 EKF Measurement Update 

 The EKF measurement update begins by calculating the partial derivative 

matrices of Equation (B.23) such that 

𝐻𝑘 =
𝜕ℎ𝑘

𝜕𝑥̅
│𝑥̂̅𝑘

− (𝐵. 23𝑎) 

𝑀𝑘 =
𝜕ℎ𝑘

𝜕𝑣̅
│𝑥̂̅𝑘

− (𝐵. 23𝑏) 

where the matrices are calculated based upon the a priori state estimate 

determined in Equation (B.24). The measurement update occurs by then 

calculating the Kalman gain, a posteriori state estimate, and updated covariance 

such that 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑀𝑘𝑅𝑘𝑀𝑘
𝑇)−1 (𝐵. 26) 

𝑥̂̅𝑘
+ = 𝑥̅𝑘

− + 𝐾𝑘[𝑦̅𝑘 − ℎ𝑘(𝑥̂̅𝑘
−, 0)] (𝐵. 27) 

𝑃𝑘
+ = (1𝑛 − 𝐾𝑘𝐻𝑘)𝑃𝑘

− (𝐵. 28) 

where 1𝑛 is the 𝑛 × 𝑛 identity matrix. As is seen by the time and measurement 

update equations, they are similar to the KF with slight modifications made to the 

noise covariance matrices of the system.  
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B.10 EKF “Timeline” 

The EKF equations are summarized here for clarity.  

Time Update: 

𝐹𝑘−1 =
𝜕𝑓𝑘−1

𝜕𝑥̅
│𝑥̂̅𝑘−1

(𝐵. 21𝑎) 

𝐿𝑘−1 =
𝜕𝑓𝑘−1

𝜕𝑤̅
│𝑥̂̅𝑘−1

(𝐵. 21𝑏) 

𝑥̂̅𝑘 = 𝑓𝑘−1(𝑥̂̅𝑘−1
− , 𝑢̅𝑘−1, 0) (𝐵. 24) 

𝑃𝑘
− = 𝐹𝑘−1𝑃𝑘−1

− 𝐹𝑘−1
𝑇 + 𝐿𝑘−1𝑄𝑘−1𝐿𝑘−1

𝑇 (𝐵. 25) 

Measurement Update: 

𝐻𝑘 =
𝜕ℎ𝑘

𝜕𝑥̅
│𝑥̂̅𝑘

− (𝐵. 23𝑎) 

𝑀𝑘 =
𝜕ℎ𝑘

𝜕𝑣̅
│𝑥̂̅𝑘

− (𝐵. 23𝑏) 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑀𝑘𝑅𝑘𝑀𝑘
𝑇)−1 (𝐵. 26) 

𝑥̂̅𝑘
+ = 𝑥̅𝑘

− + 𝐾𝑘[𝑦̅𝑘 − ℎ𝑘(𝑥̂̅𝑘
−, 0)] (𝐵. 27) 

𝑃𝑘
+ = (1𝑛 − 𝐾𝑘𝐻𝑘)𝑃𝑘

− (𝐵. 28) 

Like the KF, there can be multiple time updates that occur before a measurement 

update does. The frequency of the time updates and the measurement updates is 

dependent on the problem and the sensors used. An EKF “timeline” detailing the 

EKF algorithm as it propagates the state and covariance through time with one 

measurement update per time update is given by Figure B.3. 
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Figure B.3 EKF timeline. 

 

B.11 Notes on the KF and EKF 

Assuming that the goal of the KF and EKF is to minimize the error 

between the true state and the estimate, a few notable results are present. 

• The KF is the best linear solution, assuming system noise is Gaussian, 

zero-mean, and white [26]. 

• If the system is observable, the KF has guaranteed convergence 

results. 

• The EKF has wide applicability but is not necessarily the most 

optimal solution. 

• EKF convergence is highly dependent on initial conditions (i.e. state 

covariance, noise). 

o EKF convergence is a highly researched topic [53] [54].  

• The EKF is one type of non-linear estimator and may not be 

applicable depending on the problem (See UKFs, EnKFs). 

• In some cases, noise is considered to be an input to the systems of 

Equations (B.1a) and (B.20). In these scenarios, the input vector 𝑢̅ 

is replaced by the noise vectors of the system 𝑛̅.  
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IMU/Gyro Specification Sheets & IMU Classification 

Specific noise characteristics like those listed in Section 2.4.3 can be found 

within IMU specification sheets. However, in the experience of the author, reading 

IMU specification or “spec” sheets has proved challenging and frustrating at times, 

as there are no standards for what should and should not be reported. Additionally, 

the testing parameters used to determine gyro specifications are often lacking 

within the spec sheets themselves. To enlighten readers as to how to navigate these 

documents, this appendix will attempt to describe the common parameters found 

on spec sheets along with their general naming conventions. Section C.1 discusses 

how to read IMU spec sheets and how to obtain useful parameters. Section C.2 

introduces the use of these parameters in the essence of filtering. Section C.3 briefly 

describes IMU grades. The types of noise listed within this appendix are also 

organized in Table C.1 for brevity. A general caveat is that this information is 

based off the experience of the author.  

C.1 Reading IMU Spec Sheets 

In general, spec sheets provide numerical values on the standard deviation 

(STD) of the important parameters. These are generally created by obtaining 

multiple, long-timescale, measurements of the sensor outputs and then performing 

statistical analysis on those measurements. As a rule of thumb, spec sheet 

parameters can be used in filter development and trade studies but should be 

determined experimentally by the user after hardware has been obtained.  
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Table C.1 Common Gyroscope Parameters 

Parameter, STD Units Common Naming 

𝑠𝑓, 𝜎𝑠𝑓 %,𝑝𝑝𝑚 
Gyro Scale Factor, Scale 

Factor 

𝑏0, 𝜎𝑏0
 °/𝑠, °/ℎ𝑟 

Bias Repeatability, Null-

shift, Turn-on Bias 

𝑏1, 𝜎𝑏1
 °/ℎ𝑟 

In-Run Bias, Bias 

Stability, Gauss-Markov 

Noise 

𝐴𝑅𝑊, 𝜎𝐴𝑅𝑊 °/√ℎ𝑟 
Angle Random Walk, 

Random Walk 

𝑊,𝜎𝑔 °/𝑠 𝑟𝑚𝑠 
Output noise, Wideband 

noise 

𝑁, 𝜎𝑁 °/𝑠𝑒𝑐/√𝐻𝑧 
Noise Density, Rate 

Noise Density 

 

Take for example the spec sheet for an Analog Devices ADIS16488A IMU 

given in [55]. Page 4 of the spec sheet includes specifications on the gyroscopes, 

accelerometers, and magnetometer found within the IMU itself, along with the 

testing conditions used in obtaining the values. Within the gyroscope section of 

Table 1, there are multiple parameters listed. While all of them are relevant, the 

primary ones for general AD filter design are the bias repeatability, the in-run bias 

stability, angular random walk (ARW), and output noise. Unfortunately, there is 

no value listed on scale factors. This parameter is typically lacking and must be 

determined by user calibration.  

Both the bias repeatability and in-run bias stability values are listed as one 

standard deviation values (given as “1𝜎” in the second column of the spec sheet), 

with values of ± 0.2°/𝑠𝑒𝑐 and 5.1°/ℎ𝑟, respectively. This implies that the constant 
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turn-on bias is repeatable to within ±0.2°/𝑠 and that the in-run bias will be 5.1°/ℎ𝑟  

approximately 66% of time. If the STD value listed was instead “2𝜎”, then the 

constant turn-on bias is repeatable to within ±0.2°/𝑠 and the in-run bias will be 

5.1°/ℎ𝑟 approximately 95% of the time. The sigma values essentially indicate a 

bound on the expected measurements. If no sigma value is listed along with the 

parameter, it is safe and conservative to assume it is a 1𝜎 value.  

C.2 Using Spec Sheet Information 

Often, spec sheet information can be utilized within an AD simulation to 

help model the expected noise characteristics within a system. To effectively 

perform this modeling, the parameters seen within Table C.1 are typically required. 

If the in-run bias is modeled as a 1st order Gauss-Markov process, a 

correlation time constant 𝜏𝐺𝑀 will be required for accurate modeling. However, 

most specification sheets do not provide this value. In general, this value can be 

approximated based upon experience or can be calculated using autocorrelation 

techniques as seen in [23]. Additionally, a grouping of approximate 𝜏𝐺𝑀 values is 

shown in Table C.3. 

The ARW and output noise values are slightly more dubious, as they are 

sometimes used interchangeably. Some spec sheets will list one or the other, both, 

or neither. In the instance of neither being on a spec sheet, “Noise Density” will 

typically be the value that is closest in similarity, with units being °/𝑠/√𝐻𝑧. ARW 

typically has units of °/√ℎ𝑟, and output noise will have units of °/𝑠𝑒𝑐 𝑟𝑚𝑠.  

ARW is a measure of how much the sensor output randomly deviates 

throughout time and is representative of the expected white noise on a gyro output. 
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Similar to the bias, this value is often listed as a 1𝜎 STD. This phenomenon is 

prevalent in all gyros and is a function of the gyro’s internal sampling rate, which 

is why there are √ℎ𝑟 units attached to it. To make use of this value, the ARW 

term must be divided by 60 to place it into the units of °/√𝑠𝑒𝑐. Due to the nature 

of how the ARW term is obtained (see IEEE Std. 952-1997 C.1.1), the units of 

°/√𝑠𝑒𝑐 are actually equivalent to °/𝑠𝑒𝑐, allowing for the use of the ARW as the 

driving white noise term in filter design. In the experience of the Author, both the 

ARW metric (with proper unit conversions) and the output noise metric can be 

used to simulate white noise within the EKF system. However, the use of output 

noise can cause the covariance to overbound the estimates (as seen by the results 

of Chapter 5). For a more accurate and less noisy solution, the ARW metric should 

be used to drive the gyro white noise.  

In general, all the parameters listed above can vary drastically with 

temperature. While this may not initially seem as a troublesome issue, it can have 

lasting effects on the AD system depending on the flight environment that the IMU 

will see (For example, Earth reentry vehicles). To this end, it is important to know 

the temperature range in which the bias values are accurately modeled. In the 

instance of the ADIS16488A, the temperature range is listed as −40°𝐶 ≤ 𝑇 ≤ 85°𝐶, 

meaning that the parameters listed within the spec sheet should be accurate for 

environmental temperatures within this operating range. Temperatures exceeding 

this range will need to be further tested and calibrated to determine their noise 

characteristics. 
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C.3 IMU Grades 

IMUs can be classified in three groups: Consumer (industrial), tactical, and 

navigational grade IMUs [27]. Specifically, depending on the in-run bias stability, 

an IMU will fall into one of the three categories. This is shown in Table C.2, which 

shows that the gyroscope quality typically sought in CubeSat applications is given 

by consumer grade IMUs. Additional information on the typical noise 

characteristics for each grade (based on author experience), is given in Table C.3. 

 

Table C.2 IMU Grades 

Gyroscope 

Grade 
Uses Cost 

Consumer Small UAVs, CubeSats < $2,000 

Tactical Commercial UAVs, Robotics 
$2,000
− $100,000 

Navigational 
Ships, Commercial Aircraft, Cruise 

Missiles 
≥ $100,000 

 

Table C.3 Common IMU Parameter Values 

Gyroscope 

Grade 
ARW In-Run Bias, 𝝉𝑮𝑴 Scale Factor 

Consumer > 0.5 °/√ℎ𝑟  > 10°/ℎ𝑟, 100 𝑠 5% − 10% 

Tactical 0.2°/√ℎ𝑟  − 0.05°/√ℎ𝑟 
10°/ℎ𝑟 − 0.1°/ℎ𝑟, 

300 𝑠 

2% − 5% 

Navigational < 0.05 °/√ℎ𝑟 < 0.1°/ℎ𝑟, 1200 𝑠 < 2% 
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AD Testing Environment & Plan 

To utilize the VMA developed in [41] and expanded upon within this thesis, 

additional hardware testing and validation must be performed. The goal of this 

appendix is to provide a baseline test plan for any implementation of the VMA on-

board a CubeSat. Note that the testing of an active control system will not be 

discussed here. 

Section D.1 will discuss the general requirements for testing an AD 

algorithm based on magnetic field measurements. Section D.2 will cover the 

objectives of specific VMA testing, with a brief discussion of testing facilities that 

meet these objectives. Section D.3 will provide an initial test plan format, with 

specific test cases and test expectations.  

D.1 CubeSat AD Testing 

To effectively test the AD on-board a CubeSat, the AD hardware must be 

placed in an environment that represents the orbital conditions (low friction, 

varying EMF vector) as accurately as possible. Additionally, the phenomena that 

the AD sensors measure must be accurately represented within the environment 

itself. In the case of the VMA, the phenomena required would be the local EMF 

vector as seen by the CubeSat and spacecraft rotational rates.  

To simulate these phenomena, a Helmholtz cage and air bearing table can 

be used in union, as seen in Figure D.1 Diagram of Helmholtz cage & air bearing 

table.. A Helmholtz cage is a large structure that applies electric current through 

its structure to create a uniform magnetic field in a defined space, while the air 

bearing table is a low-friction platform used to apply kinematic rotation to the 
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vehicle. The coupling of these two devices can be used to emulate the CubeSat’s 

kinematics and orbital environment. Specifically, the Helmholtz cage can be used 

to simulate the local EMF vector in an inertial frame 𝓕𝑬 seen by a CubeSat on-

orbit, while the air bearing simulates the rotational rates 𝜔̅𝑆𝐸 of the CubeSat itself. 

 

Figure D.1 Diagram of Helmholtz cage & air bearing table. 

 

While the use of both a Helmholtz cage and air bearing table provide an 

adequate testing environment, there are limitations with respect to vehicle 

kinematics. For example, only rotations about a single axis are handled by the air 

bearing table. Moreover, air bearing tables do not negate any aerodynamic friction 

seen by the vehicle while rotating. In practice, AD tests utilizing this setup 

typically verify single-axis rotational dynamics by aligning the CubeSat’s principal 

axis with the air bearing table’s rotation axis, and then compile these individual 

results to try to understand 3 degree of freedom behavior. 
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There are two types of tests present when testing the VMA: Tests in which 

the CubeSat rotates within the EMF by use of an air bearing table, and tests where 

the EMF rotates about the CubeSat (due to lack of air bearing table). In the first 

type, an air bearing table can provide single axis kinematic rotations which can be 

measured with the IMU, while the magnetic field vector in the inertial ECI frame 

𝓕𝑬 is emulated with the Helmholtz cage. The combination of this data provides 

the full set of measurements required for the VMA.  

In the second type of test, no air bearing table is present, requiring the 

magnetic field vector to account for the angular velocities of the CubeSat. 

Specifically, the magnetic field vector supplied by the Helmholtz cage must be the 

magnetic field vector in the spacecraft frame 𝓕𝑺 to account for the simulated 

rotation of the CubeSat. Additionally, simulated IMU data must also be utilized 

to propagate time dynamics of the system and to determine expected TAM 

measurements within the body frame. Before this type of test is performed, it 

should be verified that the Helmholtz cage used can sufficiently vary the output 

EMF vector in a way that emulates rotational rates of the CubeSat.  

While the first testing scenario provides actual measurement data for both 

sensors, it does not allow for 3 degree of freedom motion, limiting tests to single 

axis rotation cases. This is not an issue with the second testing type, however the 

test fidelity is lower than that of the air bearing case, as simulated IMU data is 

used as opposed to measured data. To validate the VMA robustly, it is advised 

that a combination of the two test types is used.  
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D.2 AD Testing Objectives 

The primary objective of testing the AD is to validate the use of the EMF 

vector as the sole aiding measurement within the VMA architecture. To adequately 

meet this objective, 4 sub-objectives must be met: 

1. Characterize the noise parameters on selected IMU hardware 

2. Characterize the noise parameters on selected TAM hardware 

3. Verify the use of real-time magnetometer calibration software 

4. Validate the simulation test cases shown within this thesis 

Sub-objectives 1 and 2 must be performed to determine the standard deviations of 

noise parameters seen on the chosen IMU and TAM, including any scale factor and 

bias errors. By performing these characterizations, updated and more realistic noise 

values can be utilized within the VMA simulations as opposed to the values taken 

from spec sheets. Sub-objective 3 must be performed to ensure that any external 

magnetic field variations due to the CubeSat hardware or solar phenomena are 

effectively removed before use within the AD algorithm. Sub-objective 4 is broader 

and is meant to validate the success and failure criteria given within Chapter 5 of 

this thesis. Specifically, sub-objective 4 should be met by validating each simulation 

condition presented within a varying EMF and angular velocity environment. 

While the concept of testing the AD in the above cases is relatively simple, 

some institutions do not have an adequate testing environment. Moreover, the 

development of this testing environment is not trivial. As such, it may be beneficial 

to leverage external testing facilities. A list of these potential facilities is given 

below: 

• Space Dynamics Laboratory (SDL), Utah State University 



228 

 

• Georgia Tech Space Systems Design Lab 

• Michigan eXploration Lab, University of Michigan 

• Laboratory for Advanced Space Systems at Illinois (LASSI), 

University of Illinois 

• Spacecraft Development Laboratory, Moorhead State University 

The SDL is directly tied to the University Nanosatellite Program (UNP), which is 

a stakeholder in many CubeSat projects. Due to this, the use of the SDL facilities 

may be the easiest and most cost-effective choice for testing. 

D.3 Initial AD Testing Plan 

The remainder of this appendix will overview an initial test plan for the AD 

of a CubeSat utilizing the VMA shown within this thesis. This section lays out the 

advised AD tests, along with their objectives and requirements. It should be noted 

that the plan presented serves as a testing baseline, and the user is advised to 

adapt these tests as they see fit. Additionally, the amount and length of data 

collected may be modified as well. Before testing occurs, the analysis techniques 

should be validated.  

Test #1: Characterize IMU noise  

As detailed within Chapter 2 and Appendix C of this thesis, the IMU noise 

characteristics are comprised of 4 errors: turn-on bias or null-shift, in-run bias, 

scale factors, and white noise. While the noise characteristics for these values may 

be given on a specification sheet for the hardware, it is wise to verify them through 

additional testing.  

Test Objectives:  
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• Obtain standard deviations on the values 𝑏̅0, 𝑏̅𝑔(𝑡), 𝑠𝑓̅̅ ̅, 𝑛̅𝑔(𝑡) 

• Obtain a value on the Gauss-Markov correlation time for the in-run bias, 

𝜏𝐺𝑀 

Test Requirements: 

• IMU hardware containing rate gyroscope 

• IMU specification sheet and user manual 

• Electrostatic discharge protection (ESD) equipment 

• Data collection device (i.e. laptop) 

• Connection between IMU and data collection device 

Test Procedure: 

 Ensure testing environment is free from external vibrations or low frequency 

noise (i.e. fans, loud equipment, etc.). Equip ESD apparel and connect self to 

ground to assure hardware safety. Turn on and connect IMU hardware to data 

collection device as recommended by the hardware manufacturer. With the IMU 

static (non-rotating) collect output data over a span of at least 1 hour. Perform 

this data collection 3-5 times. The sampling frequency of the IMU should resemble 

the frequency anticipated on-orbit (i.e. 10 Hz for work presented in this thesis). 

After a sufficient amount of data is collected, begin data collection on non-static 

cases. Specifically, perform angular rotations of the IMU through fixed angles. This 

link (Analog Devices “A Simple Calibration for MEMS Gyroscopes”) gives a 

thorough description of a simple test bench for these fixed rotations. This process 

should be repeated at least 10 times. 

With static data, look at the first few seconds. Take the mean of this data to 

obtain bias offset. This should be collected for each run. Perform standard deviation 

https://www.analog.com/media/en/technical-documentation/technical-articles/GyroCalibration_EDN_EU_7_2010.pdf
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and mean analysis of the turn-on bias over each run to determine the average value 

and standard deviation of the turn on bias, 𝑏̅0 and 𝜎𝑏0
. Over the entire time length 

of data, take the standard deviation to determine 𝜎𝑔. Perform Allan variance and 

autocorrelation processes, as shown in [23], on the static data to determine the 

values of 𝜎𝐼𝑅𝐵 and 𝜏𝐺𝑀. As a note, these analyses are not necessarily trivial, and 

should be developed in detail before actual testing implementation. With non-static 

data, perform the analysis given in the above link on each case. This should result 

in the scale factor seen in each axis.  

Test #2: Characterize TAM noise 

 While the TAM may be susceptible to multiple errors similar to the IMU, 

we assume that these errors can be adequately removed through the real-time 

calibration software. With this assumption, an initial baseline test can simply 

determine the relative output noise of the sensor and any turn on biases present. 

Note that additional tests on the other errors may be required depending on the 

quality of the selected calibration software. 

Test Objectives:  

• Obtain standard deviations on the values of 𝑏̅𝑚𝑎𝑔, 𝑛̅𝑚𝑎𝑔(𝑡) 

Test Requirements: 

• TAM hardware 

• TAM specification sheet and user manual 

• Secondary magnetic field measurement device  

o Note: this device should be calibrated and have higher resolution than 

the TAM, if possible 
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• Electrostatic discharge protection (ESD) equipment 

• Data collection device (i.e. laptop) 

• Connection between TAM and data collection device 

• Helmholtz Cage and Operation Information 

Test Procedure: 

NOTE: Additional testing steps and procedures may be in place depending on the 

testing facility. 

 Ensure testing environment is free from external vibrations or low frequency 

noise (i.e. fans, loud equipment, etc.). Equip ESD apparel and connect self to 

ground to assure hardware safety. Remove any electronics or devices that may 

interfere with the magnetic field measurements before proceeding. Place the TAM 

within the Helmholtz cage. With the Helmholtz cage and TAM turned off, measure 

the ambient magnetic field at the TAM location with the secondary magnetic 

measurement device. Turn on the Helmholtz cage and zero the ambient magnetic 

field. Ensure this magnetic field is as close to zero as possible.  Turn on and connect 

the TAM hardware to data collection device as recommended by the hardware 

manufacturer. With the TAM static (non-rotating) collect output data over a span 

of at least 1 hour (this is arbitrarily picked and may be modified). Perform this 

data collection 3-5 times. The output frequency of the TAM should resemble the 

frequency anticipated on-orbit (i.e. 0.1 Hz for work performed in this thesis). 

With static data, look at the first few seconds. Take the mean of this data to 

obtain bias offset. This should be collected for each run. Perform standard deviation 

and mean analysis of the turn on biases to determine the average value and 

standard deviation of the turn on bias, 𝑏̅𝑚𝑎𝑔  and 𝜎𝑏0,𝑚𝑎𝑔 . Take the standard 
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deviation of the entire time length of data to obtain the output noise standard 

deviation 𝜎𝑚𝑎𝑔.  

Test #3: Verify Helmholtz cage can vary magnetic field sufficiently 

To accurately test the VMA, it must be ensured that the Helmholtz cage 

can vary the magnetic field at a sufficient enough rate to capture any satellite 

kinematics. This can be tested by verifying a desired, sufficiently time varying EMF 

vector can be input to the Helmholtz cage infrastructure. 

Test Objectives:  

• Measure the time history of the Helmholtz cage’s output EMF vector and 

verify it matches the input time history 

Test Requirements: 

• TAM hardware 

• TAM specification sheet and user manual 

• Secondary magnetic field measurement device  

o Note: this device should be calibrated and have higher resolution than 

the TAM, if possible 

• Electrostatic discharge protection (ESD) equipment 

• Data collection device (i.e. laptop) 

• Connection between IMU and data collection device 

• Helmholtz Cage and Operation Information 

Test Procedure: 

NOTE: Additional testing steps and procedures may be in place depending on the 

testing facility. 
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 Ensure testing environment is free from external vibrations or low frequency 

noise (i.e. fans, loud equipment, etc.).  Equip ESD apparel and connect self to 

ground to assure hardware safety. Remove any electronics or devices that may 

interfere with the magnetic field measurements before proceeding. Place the TAM 

within the Helmholtz cage. With the Helmholtz cage and TAM turned off, measure 

the ambient magnetic field at the TAM location with the secondary magnetic 

measurement device. Turn on the Helmholtz cage and zero the ambient magnetic 

field. Ensure this magnetic field is as close to zero as possible.  Turn on and connect 

the TAM hardware to data collection device as recommended by the hardware 

manufacturer. Input a time varying desired EMF vector over the course of 

approximately 10 minutes. This input EMF vector should resemble the changing 

EMF vector seen in the body frame of the spacecraft. Compare the output 

measurements collected by the TAM or secondary measurement device to the input 

EMF vector. Verify that they resemble each other within case-specific tolerance. 

Test #4: Verify real-time TAM calibration  

Before magnetic field measurements can be used within the VMA, they must 

be calibrated to remove any hard iron and soft iron biases present. This can be 

done via a real-time calibration technique that occurs on-orbit. The methodology 

of the calibration technique is not discussed here and must be determined before 

the VMA is used on-orbit. Instead, a potential testing technique for the calibration 

is discussed. Note that this test may vary greatly depending on the calibration used.  

The time required for calibration will be dependent on the calibration 

technique used. In some cases, calibration may require multiple orbits of data 

collection, which could take up to 3 hours. As this time is a variable, it will be 
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referred to as 𝑡𝑐𝑎𝑙 for the remainder of this section. Accordingly, tests will need to 

occur over the length of time dictated by 𝑡𝑐𝑎𝑙, which can be roughly determined 

through simulation. 

Test Objectives:  

• Ensure the calibration technique used adequately removes external noise on 

the EMF measurements 

• Determine experimental 𝑡𝑐𝑎𝑙 required to have EMF measurements  

Test Requirements: 

• TAM hardware within completed engineering flight unit of CubeSat 

• TAM specification sheet and user manual 

• Secondary magnetic field measurement device  

o Note: this device should be calibrated and have higher resolution than 

the TAM, if possible 

• Electrostatic discharge (ESD) equipment 

• Data collection device (i.e. laptop) 

• Connection between IMU and TAM and data collection device 

• Helmholtz Cage and Operation Information 

Test Procedure: 

NOTE: Additional testing steps and procedures may be in place depending on the 

testing facility. 

 Ensure testing environment is free from external vibrations or low frequency 

noise (i.e. fans, loud equipment, etc.).  Equip ESD apparel and connect self to 

ground to assure hardware safety. Remove any electronics or devices that may 
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interfere with the magnetic field measurements before proceeding. Place the 

CubeSat engineering flight unit (with TAM included, referred to as EFU from here) 

within the Helmholtz cage. With the Helmholtz cage and EFU unpowered, measure 

the ambient magnetic field at the EFU location with the secondary magnetic 

measurement device. Turn on the Helmholtz cage and zero the ambient magnetic 

field. Ensure this magnetic field is as close to zero as possible.  Turn on and connect 

the EFU to the data collection device. Input a time varying desired EMF vector 

over the course of approximately 𝑡𝑐𝑎𝑙 + 10  𝑚𝑖𝑛𝑢𝑡𝑒𝑠. This input EMF vector should 

resemble the changing EMF vector seen in the body frame of the spacecraft and 

should allow enough time for calibration to occur. Compare the TAM output after 

calibration to the magnetic field output by the Helmholtz cage (via measurements 

from the secondary measurement device). Verify they resemble each other. 

Compare the output of the calibration to the desired EMF vector input into the 

Helmholtz cage. 

Test #5: Validate AD performance  

To validate the VMA performance, tests should occur for each simulation 

condition presented within this thesis, in addition to any further conditions the 

user may formulate. Note that if the sensor characterization Tests #1 and #2 were 

not performed within a few days prior to Test #5, they should be reperformed to 

ensure sensor characterization has remained relatively constant. For each condition, 

a set of data containing the EMF vector represented in both the inertial and 

spacecraft frames, 𝓕𝑬 and 𝓕𝑺, along with the noisy angular velocity data, should 

be provided so as to allow desired kinematic and EMF time histories. This data 

can be obtained by running the simulation environment used within this thesis (see 

Appendix E). The structure of the tests will depend on whether or not an air 
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bearing table is present. In the event that one is not present, the air bearing tests 

described within this section should simply be neglected. As a note, the procedures 

listed below should be completed for each condition presented within Chapter 5.  

 

Test Objectives:  

• Verify VMA performance 

Test Requirements: 

• TAM hardware within completed EFU of CubeSat 

• TAM specification sheet and user manual 

• IMU hardware within completed EFU of CubeSat 

• IMU specification sheet and user manual 

• Secondary magnetic field measurement device  

o Note: this device should be calibrated and have higher resolution than 

the TAM, if possible 

• Electrostatic discharge (ESD) equipment 

• Data collection device (i.e. laptop, RF transmitter, etc.) 

• Connection between IMU and data collection device 

• Helmholtz Cage and Operation Information 

• Air bearing table (optional) 

Test Procedure, No Air Bearing Table: 

NOTE: Additional testing steps and procedures may be in place depending on the 

testing facility. 
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 Ensure testing environment is free from external vibrations or low frequency 

noise (i.e. fans, loud equipment, etc.).  Equip ESD apparel and connect self to 

ground to assure hardware safety. Remove any electronics or devices that may 

interfere with the magnetic field measurements before proceeding. Place the 

CubeSat EFU within the Helmholtz cage. With the Helmholtz cage and EFU 

unpowered, measure the ambient magnetic field at the EFU location with the 

secondary magnetic measurement device. Turn on the Helmholtz cage and zero the 

ambient magnetic field. Ensure this magnetic field is as close to zero as possible.  

Connect and turn on the EFU to the data collection device. Input a time varying 

desired EMF vector (as represented in the spacecraft frame 𝓕𝑺) over the course of 

approximately 𝑡𝑐𝑎𝑙 + 2 ℎ𝑜𝑢𝑟𝑠. Note that this time may vary depending on the 

simulation case tested.  

The input EMF vector should resemble the changing EMF vector seen in 

the body frame of the spacecraft, 𝓕𝑺,  and should allow enough time for calibration 

to occur. Additionally, the IMU simulated data should be used as kinematic inputs 

to the VMA during the test. After the test is completed, validate the VMA 

performance by looking at the time history of state error covariance, 𝑃, and states 

themselves, 𝛿𝑥̅.   

Test Procedure, With Air Bearing Table: 

NOTE: Additional testing steps and procedures may be in place depending on the 

testing facility. 

 Ensure testing environment is free from external vibrations or low frequency 

noise (i.e. fans, loud equipment, etc.).  Equip ESD apparel and connect self to 

ground to assure hardware safety. Remove any electronics or devices that may 
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interfere with the magnetic field measurements before proceeding. Attach the 

CubeSat EFU to the air bearing table within the Helmholtz cage. Ensure the 

desired EFU axis of spin is parallel to the air bearing table’s spin axis, in addition 

to having the centroid of the EFU aligned with the table’s spin axis. Moreover, it 

is important to ensure the TAM has as little translational motion as possible within 

the Helmholtz cage. With the Helmholtz cage, air bearing table, and EFU 

unpowered, measure the ambient magnetic field at the EFU location with the 

secondary magnetic measurement device. Turn on the Helmholtz cage and zero the 

ambient magnetic field. Ensure this magnetic field is as close to zero as possible.  

Connect and turn on the EFU to the data collection device. Input a time varying 

desired EMF vector (represented in the ECI frame 𝓕𝑬 ) over the course of 

approximately 𝑡𝑐𝑎𝑙 + 2 ℎ𝑜𝑢𝑟𝑠 and begin rotational kinematics by powering on air 

bearing table. Note that this time may vary depending on the simulation case 

tested.  

The input EMF vector should resemble the changing EMF vector seen in 

the ECI frame, 𝓕𝑬,  and should allow enough time for calibration to occur. The 

IMU should be measuring rotational rates provided by the air bearing table. After 

the test is completed, validate the VMA performance by looking at the time history 

of state error covariance, 𝑃, and states themselves, 𝛿𝑥̅.  

 Additionally, the user may want to verify performance via the knowledge 

error 𝜖. While this is possible, it should be noted that a form of “truth” attitude 

data is required to obtain this metric. In the instance where an air bearing table is 

included, the truth attitude would need to be obtained by propagating the 

rotational rates reported by the air bearing table itself. Note that these values are 

not exact, and in this instance the 𝜖 metric may be of lower fidelity.    
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VMA Simulation Environment Operation 

This appendix details the operation and flow of the MATLAB simulation 

environment used to obtain the results presented within this thesis. Code is located 

within the UMN GitHub repository https://github.umn.edu/laugh055/KPL_EKF 

and the author’s personal GitHub repository https://github.com/Kail-L/Vector-

Matching-Algorithm. For specific questions, please direct them to the UMN Small 

Satellite Research Lab at smallsat@umn.edu. 

Note that much of the simulation software presented here utilizes 

MATLAB’s Aerospace toolbox. While this appendix details the high-level approach 

of the code, there should also be adequate comments on all functions seen in the 

above link. 

E.1 Simulation Flow 

Figure E.1 depicts the general flow of the simulation environment. The right 

side of the diagram showcases the main MATLAB scripts and functions used. The 

left side describes the high-level overview of the scripts and functions themselves. 

Before simulations begin, the user must define the parameters of importance for 

the simulation, namely the sensor noise characteristics, spacecraft parameters, and 

simulation timespan. These are all found within the constants_struct.m 

script, which serves to define the important constants and parameters used within 

the simulation environment. These values are placed within a structure labeled 

const that is called periodically throughout the simulation.  

To run the simulation, the user needs to go to the SatAttEst.m script 

and hit “Run” within the MATLAB Editor toolbar. At this point, nothing else is 

https://github.umn.edu/laugh055/KPL_EKF
https://github.com/Kail-L/Vector-Matching-Algorithm
https://github.com/Kail-L/Vector-Matching-Algorithm
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required from the user. A general overview of sim parameters (orbit, noise 

characteristics, sim run time, etc.) are printed on the command line after the 

simulation has started. Simulation runtime is dependent upon the number of orbits 

simulated and whether or not Monte Carlo runs are being implemented. For the 

results presented in this thesis, simulation took on average 45-60 minutes for 30 

Monte Carlo runs. For single runs, the time frame is typically 2-3 minutes.  

 

Figure E.1 Simulation Flow Diagram 

 

While it was not shown within this thesis, the simulation environment has 

the capability to run the VMA using both a TAM and sun sensor as two separate 

measurements. To perform this, simply change the const.UseSun flag within 

the constants_struct.m structure.  



241 

 

E.1.1 User Initialization  

The user initializes the simulation by modifying parameters within the 

constants_struct.m script and by running SatAttEst.m. The 

constants_struct.m script is split into 6 sections: 

• Orbital Parameters 

• Spacecraft Parameters 

• Sim Initialization Parameters 

• EKF Initialization Parameters 

• Sensor Parameters 

• Plotting & Visualizer Parameters 

The orbital parameters section defines all relevant orbital parameters used within 

the sim, such as initial position, gravitational constants, inclination, eccentricity, 

and others.  

 The spacecraft parameters section covers the general mass, inertia, and size 

of the CubeSat, along with whether or not to use Stanford Gravity Probe B data. 

Note, the data that this functionality requires is not included within the Github 

repository and is only available through communication with Dr. Demoz Gebre-

Egziabher.  

 Sim initialization parameters defines the number of orbits to simulate as 

well as the number of Monte Carlo runs to perform, in addition to simulation start 

time in UTC. Other parameters of importance are flags that set what EMF model 

to use in simulating truth data, in addition to starting angular velocity and attitude 

in terms of Euler angles.  
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 EKF initialization parameters set the EKF’s initial estimate, in addition to 

how that estimate is created via a set of initial quaternion flags.  The quaternion 

can be initialized in 4 ways: By using the true attitude quaternion at time zero, 

using a randomized quaternion that is below a maximum 𝜖 error threshold, using 

a completely random quaternion that places 𝜖 between 0° and 180°, or using a set 

of error Euler angles. Additionally, this section specifies the tuning parameters used 

within the sim, in addition to whether or not to constrain scale factor estimates, 

or to even estimate them at all.  

 Sensor parameters defines the sampling frequencies on all sensors used. It is 

advised that the magnetometer sample rate and sun sensor sample rate are set to 

be equivalent if sun sensor is included in simulation, as there are potential timing 

bugs within the code.  

 This section also defines the noise characteristics of the system. In the 

opinion of the author, this section is arguably the one that is modified the most. 

Note that there are flags that determine what types of noise are added to the 

system for both the TAM and IMU.  

 The plotting and visualizer parameters section allows for the user to define 

the size of the 𝜎 bounds plotted, as well as where to save plots. Additionally, a flag 

to create a video of the EKF is also present, however the user is advised that this 

functionality takes long amounts of time create.  

E.1.2 Create Truth Data 

After the user has initialized the simulation and ran SatAttEst.m, the 

simulation truth data is created. This is started by defining the initial states to be 
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integrated by MATLAB’s ode45() function. In the instance of this simulation, 

the integration initial state vector is given as  

𝐼𝐶 = [𝑟̅0
𝑆𝐸     𝑣̅0

𝑆𝐸     𝑞0,0    𝑞̅0    𝜔̅0
𝑆𝐸]

𝑇
(𝐸. 1) 

where 𝑟̅0
𝑆𝐸 and 𝑣̅0

𝑆𝐸 define the initial position and velocity that are output from 

findRandV(), 𝑞0,0 and 𝑞̅0 define the initial quaternion defined by the user, and 

𝜔̅0
𝑆𝐸 defines the initial angular velocity also defined by the user. This state vector 

is then integrated through time using ode45()and a function handle that contains 

the differential equations for each state given in Equation (E.1). Within this sim, 

the differential equations are contained within ODEs.m. If it is desired to increase 

the simulation fidelity (i.e. modify equations of motion for the satellite to include 

disturbance torques), then this script would be the one to modify.  

 Based upon the simulation timeframe, ode45() will output a time history 

of the state vector described by Equation (E.1) that is interpreted as the truth 

data for the simulation. After the integrator is run, we parse the truth data into a 

manageable format through the use of the post_processing.m script. This 

script places the angular rate and quaternion data into a useable format, in addition 

to obtaining the truth EMF and sun position vectors in the spacecraft frame based 

upon MATLAB’s WMM and solar ephemeris data. As a note to the user, 

MATLAB’s ephemeris data is not included in the base package and must be 

downloaded to the simulation’s file path from MATLAB’s website.  

 The required data to run the EKF should be stored in the workspace after 

the post processing script is run, however it can also be saved by uncommenting a 

block of code at the end of post_processing.m.  

https://www.mathworks.com/help/aerotbx/ug/wrldmagm.html
https://www.mathworks.com/matlabcentral/fileexchange/46671-ephemeris-data-for-aerospace-toolbox
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E.1.3 Estimate Attitude 

After post_processing.m is run, the script VMA_EKF.m or 

VMA_EKF_MC.m is run, depending on if Monte Carlo is desired or not. Both 

functions run the EKF developed in Chapter 3 and are close to identical, other 

than modifications made to implement variation in parameters from run to run. 

At the beginning of the script, parameters are taken from the constants structure 

and redefined with shorter variable names. Additionally, empty storage matrices 

for parameters of interest are created to aid in computational speed. 

Based upon the noise characteristics specified by the user, in addition to the 

types of noise expected, both truth angular rates and EMF values are corrupted 

through the individual functions emulateGyro() and emulateMag(). Any 

updates to the measurement models for the IMU or the TAM should also be made 

to the code within these functions. While it is missing in this work, a magnetometer 

calibration scheme should also be implemented in the same area of code that these 

functions are called. After the EKF is run for the desired timespan, the 

observability test detailed in Chapter 4 is run via VMA_SO_Test.m.  

After the majority of VMA_EKF.m or VMA_EKF_MC.m is run, figures 

detailing the VMA performance are created. Many of these are the same as the 

ones presented within Chapter 5, however there are additional figures depending 

on whether or not Monte Carlo analysis is taking place. To modify the plotting 

parameters, change the code at the end of the script as desired.  
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