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Abstract—Object-branch coverage (OBC) is often used as a
measure of the thoroughness of tests suites, augmenting or
substituting source-code based structural criteria such as branch
coverage and modified condition/decision coverage (MC/DC). In
addition, with the increasing use of third-party components for
which source-code access may be unavailable, robust object-code
coverage criteria are essential to assess how well the components
are exercised during testing. While OBC has the advantage of
being programming language independent and is amenable to
non-intrusive coverage measurement techniques, variations in
compilers, and the optimizations they perform can substantially
change what is seen as an object branch, which itself appears to
be an informally understood concept. To address the need for a
robust object coverage criterion, this paper proposes a rigorous
definition of OBC such that it captures well the semantic of
source code branches for a given instruction set architecture.
We report an empirical assessment of these criteria for the Intel
x86 instruction set on several examples from embedded control
systems software. Preliminary results indicate that object-code
coverage can be made robust to compilation variations and is
comparable in its bug-finding efficacy to source level MC/DC.

I. INTRODUCTION

Object-Branch Coverage (OBC) is a structural coverage
criterion at the object-code level which requires that a test
suite executes both branches of conditional jumps [1]. It is
frequently used as a measure of the thoroughness of tests suites
in safety critical domains [2f], [3]], augmenting or substituting
source-code based structural criteria such as (source code)
branch coverage and modified condition/decision coverage
(MC/DC). OBC may also be used in aeronautics, as DO-
178C [?] standard mandates the test coverage measurement
to be performed on the binary level when traceability to the
source code cannot be established. In addition, with the in-
creasing use of third-party components for which source-code
access may be unavailable [4]], 5], robust object-code coverage
criteria are essential to assess how well the components are
exercised during testing.

While OBC has the advantage of being programming lan-
guage independent and is amenable to non-intrusive coverage
measurement techniques, variations in compilers and the opti-
mizations they perform can substantially change the structure
of the object code, the number of branches, as well as how
branching is implemented; optimizations — depending on the
compiler configuration — can significantly affect the fault
finding capability of test-suites providing OBC coverage.

We have in our work empirically assessed the effect of
different compilers and compiler optimization settings on the
fault-finding effectiveness of OBC. We observed a drop in
mutation score by up to 52% depending on what compiler

optimizations were used; we measured a mutation score of
53% when the code was compiled with no optimization to
a mere 28% with the most aggressive optimization. This
sensitivity to the structure of the generated code has been
recognized in the literature [[6]—[8] and had an effect that
complicates the certification process [7] and may discourage
testers from relying on object-level coverage criteria [8]]. These
limitations of OBC leaves the community without an effective
means of measuring test adequacy over object code.

To address the need for a robust object coverage criterion,
this paper proposes a rigorous definition of OBC (called
Flag-Use Object Branch Coverage); robust in this context
implies a criterion that is effective in fault finding as well
as insensitive to the structure of the object-code code over
which it is measured. Modifications to the existing definitions
of OBC are necessary since compilers perform optimizations
that might, for example, replace a jump instruction with a
conditional move instruction; thus, in effect, eliminating a
branch point. With our definition of Flag-Use Object Branch
Coverage, we aim for a criterion that captures the intuition
behind source code coverage criteria such as branch coverage,
decision coverage, and modified condition/decision coverage,
but is measured over the generated code in the instruction
set for a given architecture (in this paper we work over
the x86 instructions set). Flag-Use Object Branch Coverage
extends OBC to include not only jump instructions, but many
other instructions involved in conditional — thus branching —
behavior.

To provide an initial assessment of our proposed Flag-Use
Object Branch Coverage criterion, we report on an empirical
assessment of OBC and Flag-Use Object Branch Coverage
for the Intel x86 instruction set on a set of five case examples
from the embedded software domain. The preliminary results
indicate that object-code coverage can be made more robust
to compilation variations through a broader definition of what
constitutes a branch at the object-level — Flag-Use Object
Branch Coverage. A comparison with conventional OBC and
MC/DC showed that Flag-Use Object Branch Coverage is
comparable in its fault-finding efficacy to source level MC/DC.
There are, however, additional issues to address, for instance,
Flag-Use Object Branch Coverage is sensitive to the structire
of the object-code — albeit far less so than OBC — and the
fault-finding ability of test suites satisfying Flag-Use Object
Branch Coverage (as well as MC/DC for that matter) is not
as strong as one would like.



II. BACKGROUND
A. Object Code vs. Source Code

Source-level coverage criteria is defined over the structure
of the source code. Branch coverage, for instance, requires a
test suite to exercise each side of the control structures in a
source code, and is usually defined as all-edge coverage of the
control flow graph (CFG) [9]. When a control-flow graph is
constructed in the source-level, each conditional statement in
the source code constitutes a conditional node while each non-
conditional statement constitutes an internal node. Figure [Ia]
shows such CFG, constructed from the C code in Listing E}

Listing 1: Ilustrative example, source code in C

1 static char msg[2][56] = {"pass", "fail"};

2 int pass;

3 if (grade==’d’||grade=="£f") {

4 pass = 0;

5 } else if (grade==’a’ || grade==’b’ ||
grade==’c’) {

6 pass = 1;

7 } else { pass = -1; 1}

8 return pass ? msgl[pass] msg [0];

9 }

The CFG constructed from the source code, however, is
coarse-grained and does not fully represent the details of an
actual control flow in the machine-code level. This is because
of the short-circuit operations supported by C (Section 6.5.13
of the latest C standard [10]) that evaluates second condition
only when the decision outcome cannot be determined by
evaluating the first condition. In effect, it allows a faster
computation for complex boolean decision because the whole
expression need not be evaluated when the outcome is obvious
by evaluating a part of it. On CFG, it has an effect of
splitting a conditional node of a complex boolean expressions
into multiple conditional nodes. CFG edge coverage criterion
applied on object-code CFG is thus stronger than the one
applied on source-code CFG, because the test suite required
by the former subsumes the latter.

If we take short-circuit evaluation into account, the actual
CFG in the machine-code level looks like Figure The if
node in Figure Ta)is broken down into two conditional nodes in
Figure [Tb]such that the second condition is not evaluated when
the first condition evaluates to true. This effect can also be
seen in the corresponding object code in Listing 2] where each
conditional jump instruction (highlighted with shaded marker)
corresponds to the conditional node in Figure

The logic of short-circuit evaluation, however does not
apply when a compiler optimizes, as will be described in the
following subsection.

B. An Illustrative Example

Listing |1| shows a simple function written in C that returns
a string literal based on the given character argument. The
function is designed to return "pass" when the grade is a, b,
or ¢, and return "fail" when it is d or . This code, however,
is faulty for the cases when an invalid input is given. When
grade is e, for example, the local variable pass is assigned

return
msg[0]

(b) CFG of the object code

F
return
msg[0]

(a) CFG of the source code

Fig. 1: Control flow graphs of example code in Listing

to -1 in line 8, which lets the ternary operator to take the true
side, and thus the address of msg[-1] will be returned in line
9. This bug is trivial in structural-testing perspective; satisfying
even the simplest form of source-level coverage criterion can
reveal this fault. Statement coverage will enforce a test suite
to cover every statement and thus will require at least one test
case that exercises pass=-1. Branch coverage will insist on
taking every side of if-else statement and thus shall require a
test case that visits the else part.

Listing 2: x86 code compiled with -00

1 8048439: cmpb $0x64,-0x14 (%ebp)

2 804843d: je 8048445 // grade==’4d’
3 804843f: cmpb $0x66,-0x14 (%ebp)

4 8048443: jne 804844e // grade!=’f’
5 8048445: movl $0x0,-0x4 (%ebp) // pass:=0

6 804844c: jmp 8048470 // jump to return

7 /* else if (grade==’a’||...||grade==’c’) x/
8 804844e: cmpb $0x61,-0x14 (%ebp)

9 8048452: je 8048460 // grade==’a’

10 8048454: cmpb $0x62,-0x14(%ebp)

11 8048458: je 8048460 // grade==’Db’

12 804845a: cmpb $0x63,-0x14 (%ebp)

13 804845e: jne 8048469 // grade!=’c’->else
14 8048460: movl $0x1,-0x4 (%ebp) // pass:=1

15 8048467: jmp 8048470

16 /* else (pass:=-1) x*/

17 8048469: movl $Oxffffffff ,-0x4(%ebp)

18

When it comes to OBC, however, this simple bug may or
may not be caught depending on the compiler optimization
applied when generating the object code. Listing [2] and [3| show
two different versions of the object-code disassembly compiled
with GCC 5.4 on Ubuntu running on Intel x86-64 machine,
where no optimization (-00) is applied on the former and the
size optimization (-0s) is applied on the latter. The first seven-
digit number is the instruction pointer address, the following
string highlighted is the instruction mnemonics, and the rest
are the operands.



TABLE I: Test cases required for each criterion

Test case grade pass Branch MC/DC OBC -00 OBC -0s

th a 1 v v v V4
to b 1 4 v
t3 c 1 v v
t4 d 0 v v v v
ts e -1 v v v
te £ 0 v v
Listing 3: x86 code compiled with -0s
8048456: mov $0x804al0lc,%eax// ’eax:=msg[0]
804845b: mov ‘esp,%hebp
804845d: mov 0x8(%ebp) ,%hedx // Jedx:=grade
/* if (grade == ’d’ || grade == ’f’) x*/
8048460: mov %dl,%cl // ‘hcl:=grade

// ASCII(’d’)=0x64,
// £ 0xfffd="d’,

ASCII(’f’)=0x66,
’d’"0xfffd="d’

NoN-LEEN o NV, I NUSE S T

8048462: and $Oxfffffffd,%ecx

8048465: cmp $0x64,%cl // ’d’, grade
10 8048468: je 804847e // %cl==’d’->return
11 /* else if (grade==’a’||...||grade==’c’) x/
12 /% else x/
13 804846a: sub $0x61,%edx // Jedx=grade-’a’
14 804846d: cmp $0x3,%dl // CF=%edx<371:0
15 8048470: sbb Yeax,heax // jeax:=CF?7-1:0
16 8048472: and $0x2,%eax // leax:=CF72:0
17 8048475: dec Y%eax // %heax:=CF?1:-1

18 /* return pass 7 msgl[pass] msg [0]; =/

19 // ‘eax:=5x%%eax

20 8048476: imul $0x5,%eax,%eax
21 // %eax:=msg+l%eax

22 8048479: add $0x804a0lc,%eax

23 804847e:

It is notable at a first glance that the number of object-code
branches differ dramatically between Listing [2 and [3| — the
former has five branches (je and jne) while the latter only
has one. The first branch in line 3 of Listing [2] is abstracted
using and instruction in line 7 of Listing [3} as a consequence
of the instruction, f becomes d since Oxfffffffd A 0x66
= 0x64, while d remains the same as Oxfffffffd A 0x64
= 0x64. The three jump instructions in line 10, 12, and 14 of
Listing [2] are translated without using any conditional jumps,
which we will not explain for a lack of space.

From the fact that there are significantly less branches in
the optimized code, one can guess that the efficacy of OBC
might not be as good with optimized code compared with
unoptimized code. To see the effect of the optimization on the
fault-finding efficacy of OBC, we illustrated in Table[[| the test
cases that are necessary to satisfy branch coverage, MC/DC,
OBC on -00 code and OBC on -0s code, respectively.

Table [I] enumerates six test cases for each representative
input value. The third column shows the value of the local
variable pass after an execution of each test case. The follow-
ing four columns mark on the minimal set of test cases that
is necessary to satisfy the corresponding coverage criterion.
Our measure of the efficacy of a coverage criterion for this
particular example is whether a criterion selects the test case
that reveals the fault, which is ¢5.

Branch coverage requires either one of {t4,¢s} to cover if
side, one of {t1,t2,t3} to cover the else if side, and t5 to

cover else side. It thus is capable of revealing the bug in line
8 of Listing |I} MC/DC is even stronger than branch coverage
since it requires each condition in decision to exercise both
true and false, and also to show that it independently affects
the decision outcome. As a result, all the six test cases has to
be selected in order to satisfy MC/DC, also revealing the fault
as a result. OBC on -00 code is similar to MC/DC in this case;
because of the conditional jumps that asserts each condition
to take both the outcomes, all six test cases are included.

When OBC is applied on the -0s code, on the other hand,
it only requires two test cases because they suffice to cover the
only conditional jump in line 9 of Listing [3] OBC will require
either one of {t4,t} to cover the true side of the jump, and
one of {t1,ts,13,t5} to cover the false side of the jump. As a
result, one can go away without including ¢5 and still satisfy
OBC on this executable. We believe that this susceptibility is
not desirable as a coverage criterion.

III. FLAG-USE OBJECT BRANCH COVERAGE

As demonstrated in Section OBC based on conditional
jumps alone is susceptible to compiler optimization as the
branches in the source code may be translated to other con-
ditional instructions. For instance, sbb (subtract with borrow)
instruction in line 14 of Listing [3|is a conditional instruction
that depends on the value of carry flag (CF); by default, it
subtracts the second operand from the first operand, but when
the carry flag is set, it subtracts one more. If both these
possibilities must indeed be exercised for meeting a coverage
criterion, then a test case such as ¢5 would be included in every
test suite satisfying that criterion, thereby triggering the fault.
We capture this intuition in the form of a stronger coverage
criterion that we call Flag-use OBC. Informally, flag-use
OBC, requires a test suite to exercise all disntict behaviors
of each conditional instruction that depends on flag usage.

A. Flag-use Object Branch Coverage

Definition 1: Conditional Instruction: Any instruction whose
behavior changes based on its execution context, not including
its direct inputs, is said to be a conditional instruction.

Definition 2: Object Branch Coverage: Object branch Cov-

erage is defined as coverage of conditional behaviors of
instructions at the object-level.
While Definition [ includes instructions such as conditional
branches, it also includes instructions such as the IN instruc-
tion, which is used for reading data from a I/O port. We use
a definition of OBC that is closer to source-like coverage,
and discards binary-level checks that were not added by the
programmer. Hence, we introduce Flag-Use coverage.

Definition 3: Flag-Use Coverage: Flag-Use Coverage is
defined as coverage of conditional behaviors of instructions
that either (1) read non-system flags from the EFLAGS register,
or (2) are conditional branch instructions.

Predicated instructions such as cmovne, and setne are just as
crucial to establishing coverage as conditional branch instruc-
tions like jne. Deﬁnitionis a usable definition of OBC, since
it removes dependence of OBC on system state, and allows



Fig. 2: Instructions that define and use conditions
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coverage obligations to reflect source-like obligations at the
object level. We describe our identification of flag-use X86
instructions in the following subsection.

B. Identifying X86 conditional instructions

As shown in Figure [2] across different X86 instruction
categories, some X86 instructions write to the EFLAGS register,
and other instructions read from it. We identified flag-use
X86 instructions in three steps. First, we obtained a list of
instruction byte sequences that captured the behavior of every
X86 32-bit instruction. Next, we performed automated clas-
sification of the behavior of every instruction byte sequence
as exhibiting conditional behavior or not, and recorded the
source of conditional behavior. Finally, we manually combined
the classification output with the Intel IA-32 Architecture
manual [11]], and obtained a list of instructions along with the
source of each instruction’s conditional behavior. We describe
these three steps as follows:

1) Instruction Set Exploration: We obtained instruction
byte sequences by exploring the X86 instruction set, as per-
formed by the PokeEMU tool described by Martignoni et
al. [[12]]. The PokeEMU framework generates high-coverage
test cases for an emulator and allows those tests to be run
on a different emulator or a real machine for comparison.
Martignoni et al. used the PokeEMU framework to compare
a low fidely emulator (QEMU [13]) with a high fidelity
emulator (Bochs [[14]]). Similar to PokeEMU, we performed
an exploration of the X86 instruction set by symbolically
executing the instruction decoder of Bochs with the first three
bytes of the instruction byte sequence set to be symbolic.
The symbolic execution was performed using FuzzBALL [15]],
a binary symbolic execution tool for machine code. This
gave us a list of 76510 candidate byte sequences which
are valid instructions as per the Bochs instruction decoder.
While some instruction prefixes (such as rep) allow further
exploration of conditional behavior in instructions, other pre-
fixes (such as lock, gs) do not. Using the lock prefix does
not cause any change in instruction behavior in a single-
threaded context. Using segment override prefixes requires
segment registers to be setup correctly before execution of
the instruction without giving the instruction any additional
conditional behavior. we chose to ignore a total of seven
instruction prefixes (lock, cs, ss, ds, es, fs, gs). For every

byte sequence, we first checked if its disassembled string
representation contained any of these seven prefixes as a
substring, and removed corresponding prefix bytes from the
instruction byte sequence, if it did. Removal of the prefix
byte(s) could cause a byte sequence to become equal to a
previously decoded byte sequence. We saved byte sequences
into a hashtable, and discarded a byte sequence if it was
decoded previously. This reduced our 76510 byte sequences
to 45311 unique byte sequences.

IV. EXPERIMENT

In the experiment, we first present a study on the sensitivity
of object-level coverage criteria to the compiler configuration.
We also compare the effectiveness of Flag-Use OBC to the
conventional OBC under the same configuration to show the
gain in fault-finding effectiveness and robustness to compiler
configuration. In summary, we aim to answer the following
research questions:

« RQ1. Does the compiler configuration affect the fault-
finding efficacy of a test suite that satisfies object-level
coverage criteria?

e RQ2. Is a test suite satisfying Flag-Use OBC more
effective and robust to program restructuring than a suite
that satisfies conditional OBC?

« RQ3. Is OBC or Flag-Use OBC more effective than
MC/DC in terms of fault-finding effectiveness?

To answer these research questions, we generate test suites
for each configuration — 1) a choice of compiler, 2) an
optimization option, and 3) a coverage criterion — and compare
the mutation scores among them. Since object-level coverage
criterion base its measure on the object code, the same
program compiled with different compiler or compiler option
requires different test suites to fulfill its coverage obligations.

A. Experiment Setup Overview

We have performed the experiments on five industrial
systems developed by Rockewell Collins (Cruise Controller,
Microwave, and Microwave (C)), University of Minnesota (In-
fusion Pump), and NASA (Docking Approach). All of the case
examples were modeled using Stateflow [16], were translated
to Lustre synchronous programming language [[17] to utilize
our existing automation, and finally translated to C using
Verimag Lustre V6 Tool Chain [18]. Microwave, however, was
also written in C from the same specification with which the
Stateflow version was implemented. We prepared two different
versions of Microwave example to study the effect of structural
difference in the object code introduced by the structural
difference in the source level.

For each system under test, we performed a sequence
of steps illustrated in Figure [3] to compare the fault-finding
effectiveness of each test suite. A brief overview of each step
is as follows:

1) We apply mutation into the source program and generate

250 mutants. (Section [IV-B).

2) We construct a large pool of test cases called master suite,

using various test generation methods (Section [[V-C).
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Fig. 3: Experiment Process

3) We compile the program for each choice of compiler
configuration (Section [TV-D).

4) We execute each test case on the compiled program,
measure OBC, and save the execution trace for a later
mutation analysis (Section [[V-E).

5) The reduction step selects minimal test suites while
preserving the highest achievable coverage of a given
criterion. (Section [[V-C).

6) We measure the mutation score by comparing the execu-
tion trace using output-only oracle.

B. Mutant Generation

For each case example, we created 250 mutants by intro-
ducing a single fault in the correct Lustre implementation. For
Microwave (C) example where the source code is written in
C, we used the same set of mutants generated from Each fault
was seeded by either replacing an operator or variable in the
program, or inserting a new operator. The mutation operators
used this study is typical, and discussed in length by Rajan
et al. [|[19]. We did not bother to remove the equivalent mutants
in this study, since the definitive score does not purpose of the
study is to compare the relative efficacy.

C. Test Generation and Reduction

When comparing the effectiveness of coverage criteria em-
pirically, one should be cautious on controlling variables other
than coverage criterion itself, including test generation method.
If different test generation methods are used while comparing
coverage criteria, the generation method itself can also affect
the efficacy of a test suite, and thus may lead to an invalid
comparison [20]. To avoid this issue, we derive the test suites
for each criterion from the same master suite. We assume
the master suite to be a huge pool of test cases of varying
quality, that master suite alone can achieve a good fault-finding
efficacy and a high coverage for any given coverage criterion.

In practice, we construct the master suite by combining the
test cases generated by two available test generation methods
— random generation and coverage-guided test generation
for MC/DC and source-level branch coverage. For coverage-
guided test generation, we utilized counterexample-based test
generation [21] using model checker, which guarantees that
the test suite achieves the highest achievable branch coverage
and MC/DC coverage in the source level.

To enable comparison among coverage criteria, we reduce
the master suite with respect to each coverage criterion while

maintaining the coverage achieved. We randomly pick a test
case from the master suite, measure the coverage, and add
the picked one only if it improves the coverage. We repeat
this process until the maximum coverage is reached, and the
resultant test suite is thus minimal in size while preserving
the coverage of the master suite. To prevent us from selecting
test cases that are exceptionally good or bad, we construct 40
different test suites per each configuration.

D. Compilation

Several works have shown for MC/DC coverage criterion
that the structure of program can affect the effectiveness of
MC/DC suite dramatically [22], [23]]. The issue remains the
same in the object code level, except that there is another step
that affects the program structure — comiplation. On top of
the structural difference introduced by developers in the source
level, compiler introduces another layer of complexity through
its translation algorithm and transformation mechanisms, or
compiler optimizations.

To see the effect of compiler on the effectiveness, we used
three different optimizing compilers as follows:

e GNU Compiler Collection (GCC) [24] is the standard
compiler adopted by many Unix-like operating systems.

o Clang [25] is a compiler front that uses LLVM as its back
end. It is a more recent compiler than GCC and it claims
to have a better optimizer.

o CompCert [26] is a formally verified optimizing compiler
targeted especially for critical embedded software.

To study the effect of compiler optimization on the ef-
fectiveness, we compare among five of the most common
optimization options: -00, -01, -02, -03, and -0s. The
convention is that -00 does not apply any optimization while
-01 applies all easy-to-apply optimizations, followed by -02
and -03 that optimizes even further, and -0Os that optimizes
for a minimal code size [27]]. Although all the compilers
we compared provides the five optimization levels as an
interface for controlling the optimization levels, the specific
optimizations that each compiler implements are dependent
on compiler. CompCert, for instance, does not apply more
optimizations when -02 or -03 is given.

E. Measuring OBC

We implemented a tool chain using Pin [28], which is a
dynamic instrumentation system that allows users to write
their own tool (called Pintool) to perform a binary analysis
task. Our Pintool instruments tracing code in the instruction-
level granularity for each conditional instruction we identified
in Section When executed with Pin, the Pintool instru-
ments code before or after the execution of each conditional
instruction. This code then prints a trace of branch encoun-
ters where each entry includes instruction pointer addresses,
instruction mnemonic, and the side of the branch taken.
After the coverage trace is obtained, we analyze it against
a disassembly of the object code using a separate tool and
obtain a quantitative measure.



V. RESULT

For each case example described in Section we
measured the mutation score while varying three parameters
of our interest — 1) compiler, 2) optimization level, and 3) the
coverage criterion to guide the test suite construction.

The result is presented in Table [[I| as box-and-whisker plots.
Each row of seven plots corresponds to the same case example,
and each column stands for the coverage criterion applied to
construct the test suites, along with the choice of compiler
used to generate the object code for the object-level coverage
criteria. For each case example and a choice of compiler, we
placed the result of conventional OBC and Flag-Use OBC side
by side for an easier visual comparison between the two.

In each plot, x-axis corresponds to the level of compiler
optimization applied while generating object code, which is
labeled as -00, -01, -02, -03, -0s, respectively. Y-axis shows
the percentage of mutants killed using the output-only oracle,
comparing only the output variables between the original and
the mutant. The median of the data set is depicted as a line
with dots around, and the mean value is represented as dashed
lines. The boxes represent the second and the third interquartile
range (IQR), whiskers show the range of data within 1.5 x
IQR from the upper and lower quartile, and small circles
mark the outliers that lie beyond 1.5 x IQR from the second
and the third quartiles.

As illustrated in Table [l the mutation scores vary from
1% to 72% depending on the case example. Note that the
score itself is not a definitive measure of the efficacy of OBC,
and thus shall not be interpreted as its absolute value for
the following reasons: 1) we did not eliminate the equivalent
mutants, and 2) our use of output-only oracle can diminish the
fault-finding efficacy when a fault inside a program cannot be
observed through output variables. Among the two factors, the
use of output-only oracle resulted in significantly low mutation
scores for some case examples such as Cruise Controller. In
this particular case example, there is only one output variable
of boolean type, that a fault induced by a mutation is extremely
difficult to be detected. Despite this effect, we believe that
the difference induced by compiler configuration is still well
manifested to enable a relative comparison among the groups.

A. RQI: Sensitivity of Object-Level Criteria to Compilation

We hypothesize that a higher compiler optimization will de-
crease the fault-finding effectiveness of an OBC suite because
a higher optimization may not preserve all the conditional
jumps for the sake of saving computational cost. In other
words, we hypothesize that:

H;: The compiler configuration affects the fault-finding
effectiveness of a test suite that satisfies OBC.

A corresponding null hypothesis of H; is as follows:

Hyo: The compiler configuration has no effect on the fault-
finding effectiveness of a test suite that satisfies OBC.

To test this hypothesis, we performed a statistical test
using Welch’s Analysis of Variance (ANOVA) — a statistical
hypothesis test to determine if the differences among group
means are significant while the variance among groups are

heterogeneous. For each combination of case example and the
choice of compiler, we treated the optimization level as an
independent categorical variable and the mutation score as a
dependent variable.

Table [ shows the result of ANOVA F-test from the
data illustrated in Table where the data set is mutation
scores across different compiler optimizations. We report the
F-value along with the p-value, where F-value is the ratio of
between-group variability to the within-group variability. A
corresponding p-value shows the likelihood of such variance
being manifested under the null hypothesis. We reject Hy —
that compiler configuration has no affect on mutation score —
when p-value is less than 0.01 threshold.

As we can observe from the figures in Table I} the statistical
analysis also suggests that Hy does not hold in most cases.
One of the case that most dramatically illustrates the effect of
optimization is Microwave compiled with Clang (Figure (2, 4)
in Table [). The median mutation score dropped from 53%
with -00 to a mere 28% with -03, illustrating the extent the
optimization can affect the efficacy of OBC. This susceptibility
is also captured in the F-test where the F-value is 198.25 with
a corresponding p-value of < 0.01. Flag-Use OBC, on the
other hand, showed a significant improvement both in terms
of the mutation score and the between-group variability, as
can be seen in Figure (2, 5) in Table According to the
F-test, however, the improvement was not significant enough
to conclude that compiler optimization does not affect the
mutation score; the F-value of Flag-Use OBC with the same
case example decreased to 24.03, but the p-value still is lower
than 0.01, which lead us to reject Hy.

Based on the 0.01 threshold of p-value, we reject the null
hypothesis in 11 out of 15 cases for OBC, concluding that
the efficacy of OBC is highly sensitive to compiler configu-
ration. This sensitivity decreased in most cases with Flag-Use
OBC; the F-values — which represent the ratio of between-
group variability to the within-group variability — decreased
significantly in 12 out of 15 cases (highlighted with bold-faced
font). Despite this improvement, however, the variability was
still significant enough to reject Hy in 10 out of 15 cases.
In conclusion, Flag-Use OBC is also sensitive to compiler
configuration, albeit far less so than conventional OBC.

B. RQ2: OBC vs. Flag-Use OBC

Figures in Table |lI| visually compare the trend in mutation
scores between OBC and Flag-Use OBC. It can be seen
throughout most of the cases that Flag-Use OBC outperforms
OBC with a higher average mutation score and a smaller
variance across optimization levels.We further compared the
populations of mutation scores between the two, specifically
to compare the average mutation score — by comparing the
mean — and the variance — by comparing the standard deviation
within group.

Table shows the difference in average mutation scores
and the difference in standard deviation between OBC and
Flag-Use OBC for each configuration of case example, com-
piler, and optimization level. A positive difference in means



TABLE II: Comparisons of fault-finding effectiveness
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TABLE III: Analysis of variance across optimization levels

gi:n o Compiler OBC Flag-Use OBC
P F-value p-value Hgp? F-value p-value Hp?
: GCC 494 < 0.01 reject 5.87 < 0.01 reject
?é‘f“’wa% Clang 3748 < 0.01 reject 2599 < 0.01 reject
CompCert  42.17 < 0.01 reject 1.33  0.27 accept
GCC 101.83 < 0.01 reject 12.65 < 0.01 reject
Microwave Clang 198.25 < 0.01 reject 24.03 < 0.01 reject
CompCert 1.39  0.24 accept 037  0.83 accept
Infusion  9CC 35.84 < 0.01 reject 14.40 < 0.01 reject
Pum Clang 3145 < 0.01 reject 098  0.42 accept
P CompCert 0.17 0.95 accept 0.23 0.92 accept
Dockin GCC 28.96 < 0.01 reject  6.57 < 0.01 reject
A roa%h Clang 128.15 < 0.01 reject  4.75 < 0.01 reject
PP CompCert 1.74  0.15 accept  0.67  0.62 accept
Cruise GCC 126.86 < 0.01 reject 30.37 < 0.01 reject
Controller Clang 204.02 < 0.01 reject 5292 < 0.01 reject
CompCert 1.81 0.13 accept  6.43 < 0.01 reject

TABLE IV: Comparison between Flag-Use OBC and OBC

Average Difference

Case Example Compiler
Mean SD
GCC +0.14 -0.18
Microwave (C) Clang +0.64 +0.05
CompCert +1.08 -0.16
GCC +6.13 -0.51
Microwave Clang +16.21 -3.42
CompCert +2.98 -0.75
GCC +2.26 -0.18
Infusion Pump Clang +2.47 +0.20
CompCert +0.66 +0.07
GCC +0.92 -0.14
Docking Approach ~ Clang +4.08 -0.65
CompCert +0.28 -0.03
GCC +0.78 -0.14
Cruise Controller Clang +2.47 -0.37
CompCert +0.45 -0.04

suggest that Flag-Use OBC is more effective in fault-finding
than OBC. A lower standard deviation is desired on the other
hand, for it shows that Flag-Use OBC is more robust to random
sampling of test cases. Based on the desired characteristics, we
highlighted with bold-face font the cases where Flag-Use OBC
outperformed OBC.

In most cases, Flag-Use OBC outperformed OBC both in
terms of higher fault-finding effectiveness and lower standard
deviation. The gain in effectiveness was more significant with
a higher optimization than with no optimization; in the case
of Microwave example, for instance, the variance of mutation
scores among optimization levels became much less significant
compared to the one of OBC. As summarized in the last two
columns, the mutation score increased on average in all cases,
and the average standard deviation decreased except for a
single case, showing that Flag-Use OBC is more effective
that OBC both in fault-finding and robustness to compiler
configuration.

C. RQ3: Object-level Criteria vs. MC/DC

To answer our final research question, we compared the
efficacy of OBC and Flag-Use OBC to the efficacy of MC/DC,

which is one of the most rigorous source-level coverage cri-
terion required for Level-A critical software by DO-178B [6].
While MC/DC does not depend on the compiler configuration,
object-level coverage criteria does, which makes it difficult
to compare them directly. In this comparison, we simply
treated all the datasets from different compiler configurations
as one, to account for the variations that can be introduced
by compilation. The mean and standard deviation for each
criterion is presented in Table [V] per each case example.

TABLE V: Comparison with MC/DC

Case Example MC/DC  Flag-Use OBC OBC
mean SD mean SD mean SD
Microwave (C) 64.95 2.49 63.57 335 63.19 3.60
Microwave 65.59 3.11 54.67 5.37 4538 1091
Infusion Pump 15.51 1.99 13.17 1.95 1134 261
Docking Approach 17.32 2.36 20.70 1.36 18.93 2.76
Cruise Controller 348 1.09 4.11 131 329 1.79

As discussed in Section Flag-Use OBC performed
better than OBC, approaching closer to the ones of MC/DC.
This improvement is mostly due to the gain in higher op-
timization levels, where Flag-Use OBC was less susceptible
to compiler optimization than OBC. In some cases such as
Docking Approach and Cruise Controller, Flag-Use OBC even
performed better than MC/DC, scoring 3.38% point and 0.63%
point higher than MC/DC, respectively. This result suggests
that although OBC is theoretically weaker than MC/DC, its
empirical efficacy can be stronger than MC/DC. It also sug-
gests that with a more rigorous object-level coverage criterion,
one may achieve a high fault-finding efficacy comparable to
MC/DC in the source-level.

D. Threats to Validity

External Validity: We have performed our experiments on
five case examples of synchronous reactive critical systems,
four of which are written in Lustre and the other in C. We
believe that the case examples are representative in the safety-
critical domain, and therefore, our findings are generalizable
to other systems in the same domain.

We have identified the set of conditional instructions in
Intel IA-64 instruction set, and performed the experiments on
Intel x86 architecture. The performance of Flag-Use OBC may
depend on the instruction set architecture, for each architecture
implements different set of conditional instructions. However,
we believe that using Flag-Use OBC will exhibit a similar
gain irrespective of the architecture, because many modern
instruction set architecture implements conditional behavior
through flag registers.

Internal Validity: We have used random test generation and
coverage-directed test generation to construct the master suite
in our experiments. The same test suite is used to construct
the suites that satisfy object-level criteria, which means that
the master suite does not guarantee the highest achievable
coverage in the object level. It is possible that using a different
test generation technique to achieve the maximum coverage on
the object code may yield a different result.



VI. DISCUSSION
A. What affects the effectiveness of OBC?

Section [V] presented various factors that can affect the fault-
finding efficacy of an object-level coverage criterion, including
the choice of compiler, compiler optimization, and coverage
criterion. This section discusses in more detail the factors that
affected the effectiveness of the object-level criteria.

1) The structure of the source program: In our experiment,
one of the factor that affected the variance of mutation score
among optimizations most significantly is how the original
code was written. The sets of figures for Microwave (C) and
Microwave (Figures in the first and second rows of Table
illustrate such difference where the variance across optimiza-
tions was much higher with the Simulink code than with C
code. The minimum mutation score also differed greatly; it
was as low as 8% with the Simulink version while it was
49% with the C version.

Considering that the two versions are functionally equiva-
lent, this difference is caused soley by the structural difference
in the source code where the translated C code contains
many simple branches which are easy to optimize. When
optimization is applied on machine-translated C code, most
of these branches were optimized to other instructions that
incur lesser overhead. Decrease in the number of conditional
jump leads to a same degree of decrease in the number of
OBC coverage obligation to fulfill, which then compromise
the quality or the test suite that OBC requires, eventually
plummeting the effectiveness of OBC.

However, we cannot draw a definite conclusion that manu-
ally written C code is less susceptible to the compiler config-
uration, for a lack of extensive empirical study. Understanding
such relations requires a thorough study on its own.

2) The number of conditional jumps: To further study the
effect of the number of conditional jumps on mutation score,
we counted the number of conditional jumps in each object
code compiled with different compiler and optimizations. We
illustrated the number of conditional jumps for each case
example in Figure [}

The most noticeable trait from the graphs in Figure [ is a
significant decrease in the number of conditional jumps from -
00 to -01 for the case examples written originally in Simulink.
The decrease was the most significant when the code was
compiled Clang, followed by GCC, while the number stayed
almost constant when compiled with CompCert. This trend
is consistent with our understanding of the three compiles.
CompCert did not optimize as much as others because it is a
certified compiler where all of its optimization passes has to
be proven for correctness. Clang optimized the jumps more
aggressively than GCC possibly due to its more

The trends of decreasing conditional jumps with higher
optimizations are also consistent with the drops in the mutation
scores as described in Table ??. Microwave, for instance,
showed a huge drop in median mutation score from 57% with
-00 and 45% with -01 when compiled with GCC (Figure
(2, 2) in Table |lI] which is consistent with the trend seen in

Figure fa| The difference in median mutation scores between
-00 and -01 was even greater when compiled with Clang,
dropping from 53% to a mere 35%, which is also consistent
with the trend in Figure fa] where the decrease was greater
when compiled with Clang than with GCC.

The number of conditional jumps alone, however, does
not explain all the cases. It does not explain Microwave
C example, for instance, where the number of jumps is
almost constant across optimizations and among compilers.
The mutation score still fluctuated, although in a smaller
magnitude, across compiler optimizations. In some cases, the
median mutation score even increased from -00 to -01 (Figure
(1, 6) in Table [[I)) despite the number of conditional jumps did
not change (Figure @b).

3) Conclusion: Although we have explained several factors
that can affect the variance of fault-finding effectiveness to
some extent, the list is not complete. Many factors play roles
in introducing structural difference in the object code level,
including the structure of the source code, compiler, and
optimizer, each of which adds another layer of complexity
on top of each other.

B. What contributes to the improvement of Flag-Use OBC?

To understand the cause of such the improvement achieved
by Flag-Use OBC which is explained in Section [V-B| we ana-
lyzed the number of flag-use instructions in each binary, which
is illustrated in Figure [5] It is notable that the conditional
instructions we included in Flag-Use OBC are prevalent in the
object code regardless of the compiler used, and in many cases,
the number of those instructions increases with higher opti-
mizations. Our conjecture is that when optimization is enabled,
compilers prefer to use flag-use instructions in the places of
conditional jumps, unless the conditional constructs can be
substituted to cheaper non-conditional instructions. Clang, for
instance, generated the smallest number of conditional jumps,
(Figure [) but generated the greatest number of other flag-use
instructions when optimization is applied (Figure [5).

The compilers’ preference to generate flag-use instructions
is also closely related to the relative gain in mutation score of
Flag-Use OBC. For instance, Docking Approach - Clang case
showed a significant drop in mutation scores with higher opti-
mizations when OBC was used to guide the test construction,
while the scores were more stable when Flag-Use OBC was
used (Figure (4, 4) and (4, 5) in Table . The high variance in
mutation score with OBC is caused by the stark decrease in the
number of conditional jumps as illustrated in Figure Ad] Flag-
Use OBC, on the other hand, could also count on the hundreds
of other flag-use instructions as illustrated in Figure 5d As
a result, Flag-Use OBC could yield higher mutation scores
overall while being more robust to compiler optimizations.

From this observation, we conclude that conditional behav-
ior in the source-level are translated not only to conditional
jumps but also to other flag-use instructions. By covering those
flag-use instructions, Flag-Use OBC could achieve a higher
fault-finding efficacy with a higher robustness to compiler
optimizations.
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VII. RELATED WORKS

The use of object-level coverage criteria was first proposed
by the applicants for DO-178B [6]], to be used in the place of
source-level coverage criteria as an objective of DO-178B. The
issue of using object-level coverage criteria instead of source-
level criteria for measuring the adequacy of test suites in safety
critical systems was discussed in FAQ 42 of DO-248B [29]
(Can structural coverage be demonstrated by analyzing the
object code instead of the source code?) and CAST paper
17 [7], where FAQ 42 of DO-248B states that: DO-178B/ED-
12B determines the conditions for analysis of the source code
for structural coverage, and it does not prevent one from
performing analysis directly on the object code. Although it
had not been as widely adopted as MC/DC [30], OBC remains
as the primary coverage criterion in the object-code level,
especially for the coverage analysis on the object code that
is not directly traceable to the source code (Section 6.4.4.2 of
DO-178B [29]).

It had once been thought in the past that achieving OBC is
sufficient to claim MC/DC [30]] when compiler transformation
is restricted to short-circuit forms. This equivalence, however,
was shown not to hold by Chilenski et al. 1], and subsequent
in-depth studies followed in an attempt to argue an MC/DC
coverage by only performing the object-level coverage anal-
ysis. Bordin et al. [31]] was the first to study this subject,
and they characterized the source code construct for which
OBC implies MC/DC. Comar et al. [32] extended this work
to thoroughly understand the relationship between OBC and
MC/DC. They formalized the coverage obligations of OBC
by casting it to the edge coverage of binary decision diagram
(BDD) and proved the conditions under which OBC implies
MC/DC. Their theoretical comparison, however, is limited
in practice for the following reasons: 1) compiler does not
behave the same as they assumed even when the optimization

is disabled (see Figure @), 2) their findings do not hold
when compiler optimization is enabled, and 3) a theoretical
comparison of coverage criteria cannot alter a probabilistic
comparison [33].

Our questions on the effect of code structure on OBC
was inspired by Rajan et al. [23]] who investigated the effect
of program structure on the efficacy of MC/DC. Our focus
on the effect of compiler optimization is inspired by Hariri
et al. [34] and Bullseye’s statement about the effect of com-
piler optimization on OBC on their website [§]. This work is
also closely related to the empirical comparison performed by
Shams and Edwards [35]] in which they conclude that OBC is
a practical coverage criterion that is comparable to MC/DC.
Their study, however, was performed on smaller case examples
in a different context of assessing student-written tests, while
this work focuses on studying the weakness of OBC and
improving itself.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we showed how the fault-finding efficacy of
OBC is suscpetible to variance in compilers configuration, and
proposed a stronger notion of OBC that takes into account
conditional instructions in the object code. While this improves
the efficacy of branch coverage and is more robust to variations
in complier configurations used to produce the object-code, it
is still sensitive to the structure of object-code. Recent work on
Observable MC/DC [36]] effectively addressed a similar issue
of the susceptibility of MCDC to code structure by requiring
the test cases to propagate the effect of exercising the code-
structure to output variables observable to the test oracle.
We believe that observability at the object-code level can
strengthen Flag-Use OBC and make it robust in the presence
of compiler variations.
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