
Technical Report

Department of Computer Science
and Engineering

University of Minnesota
4-192 Keller Hall

200 Union Street SE
Minneapolis, MN 55455-0159 USA

TR 17-005

 
  Investigation of a Transactional Model for Incremental Parallel Computing in

Dynamic Graphs 

Anand Tripathi, Rahul R. Sharma, Manu Khandelwal, Tanmay Mehta, Varun
Pandey, Charandeep Parisineti

May 25, 2017

Revised



Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


Investigation of a Transactional Model for
Incremental Parallel Computing in Dynamic Graphs

Anand Tripathi, Rahul R. Sharma, Manu Khandelwal,
Tanmay Mehta, Varun Pandey, Charandeep Parisineti

Department of Computer Science & Engineering
University of Minnesota, Minneapolis MN 55455

Abstract—In many applications involving dynamic graph
structures one may be interested in continuously observing
certain properties of interest. We present here the result of
our investigation of utilizing a transactional model of parallel
programming for supporting continuous queries on dynamic
and evolving graph structures. The goal of our work is to
continuously monitor a graph data structure as it is updated to
check for the properties of interest. One approach for continuous
monitoring is to re-execute the graph analytics program on the
entire graph structure after it is updated. However, this approach
can lead to high computation cost and latency in case of large
graphs. An alternate approach is to execute the analytics program
only initially, and then perform incremental computations for
supporting continuous queries as the graph data is modified.
In our model, the graph updates are performed as transactions,
which trigger execution of a set of transactional tasks to perform
computations for a continuous query. In our testbed system, the
graph data is stored in the RAM of cluster nodes, and continuous
queries involve parallel execution of transactional tasks on cluster
nodes. Using a set of graph problems we illustrate this approach
and its performance benefits for supporting continuous queries
in dynamic graph data structure.

I. INTRODUCTION

In applications with dynamic and evolving graph structures,
one may require continuous monitoring of certain properties
of interest. For example, in a dynamically evolving graph,
one may want to continuously determine the shortest path
of any node to the source node, continuously find the k-
nearest neighbors of one or more nodes in the graph, or
continuously determine the maximal clique to which a given
node belongs. Another example is to continuously monitor if
two nodes belong to the same connected component in a graph.
The primary focus of our work is on utilizing a transactional
model of parallel computing for supporting continuous queries
on dynamic graph structures. In dynamic graph structures,
one approach for continuous monitoring is to re-execute the
graph analytics program for the given property of interest on
the entire graph structure after it is updated. For large-scale
graph structures this approach can become expensive in terms
of computation time and resource consumption. An alternate
approach is to execute the analytics program only initially,
and then perform incremental computations for supporting
continuous queries as the graph data is modified.

We present here the result of our investigation of utilizing
a transactional model of parallel programming for supporting
continuous queries on large graphs using incremental compu-

tations. In this model, tasks for vertex-centric computations
are executed in parallel as serializable transactions. The trans-
actional model adopted here is supported by a parallel pro-
gramming framework called Beehive [15]. Beehive executes
on a cluster of computers, and the graph data is stored in
the RAM of cluster nodes. Parallel computations on graph
data are performed using transactional tasks. We utilize the
Beehive system in our investigation for supporting continuous
queries in dynamic graph structures through incremental com-
putations facilitated by the transactional parallel computing
model. In our approach, the updates to the graph structure are
performed as transactions, which trigger execution of a set of
transactional tasks to perform continuous query computations.
Using a set of graph problems we illustrate the performance
benefits of this approach. In our approach, graph updates can
be applied concurrently with the execution of the incremental
recomputation tasks for continuous query. Furthermore, in this
approach the graph updates can also be applied in a batch
mode, if necessary, before initiating recomputation tasks.

Several frameworks and systems are currently used for
performing graph data analytics on computing clusters. Dis-
tributed GraphLab [12] uses a transactional model of com-
putations with locking based concurrency control for task
executions. Distributed GraphLab does not support problems
with dynamic graph structures. Pregel [13] and Giraph [2]
are specifically intended for graph data analysis. They are
based on the Bulk Synchronous Parallel (BSP) model [16]
of computing. The Galois system [14] supports speculative
execution of computations for graph data analytics on shared
memory multiprocessor systems.

The problems in supporting incremental computations in
dynamic graph structures has been investigated in the past
by many other researchers [8], [4], [6], [9], [1], [10]. Incre-
mental computation problem for the PageRank [5] problem
is presented in [8], and Incoop [4] addresses these for the
MapReduce model. In [6], [17] this problem is addressed
in the context of the BSP model of parallel programming.
The approach in GraphInc [6] is for supporting incremental
computations in the BSP model by saving the state of the pre-
ceding graph computation and applying incremental changes
on the saved state. The updates and BSP-based incremental
recomputations are performed in batch mode. Techniques for
query processing on dynamic and time-evolving graphs are
presented in [9], [10].



The primary focus and contributions of this paper are on the
use of a transactional parallel computing model for supporting
continuous queries using incremental computations in dynamic
graph structures. We show here that this model provides simple
programming abstractions for parallel programming and sup-
ports incremental computations in dynamic graph structures.
In this model, incremental computations can progress concur-
rently with a continuous stream of graph updates. When a
stream of updates is applied to the graph structure and when
all of the recomputation tasks have finished execution, the
Beehive system detects the quiescent state. After the quiescent
state is reached, updated results for the continuous queries can
then be returned as event notifications to the user-applications.

We use five graph problems to illustrate our approach. In
our approach, for a given property of interest, one has to
first develop a computation model to solve the problem using
transactional tasks in a static graph structure. For supporting
continuous queries, the next step is to identify the update
transactions which modify the graph in a dynamic setting.
For each type of the update transaction, one then needs to
identify the conditions under which the computed results for
the property of interest may get invalidated and what kind
of recomputation tasks need to be triggered to obtain the
query results for the modified graph structure. To illustrate
this approach, we use here five graph problems: single-source
shortest path, k-nearest neighbors, graph coloring, finding
maximal size cliques, and finding connected components in
a graph. We conducted our experiments using the most recent
version of Beehive, which is more than 10 times faster than
the system described in [15].

Section II presents an overview of the transactional model
of parallel computing supported by the Beehive framework
and utilized in this work for supporting continuous queries in
dynamic graph structures. Section III describes the approach to
solve the five graph problems using the transactional parallel
programming model. Section IV presents our approach for
performing parallel incremental computations for supporting
continuous queries. We use the five graph problems noted
above to illustrate our approach. Using these problems, in
Section VI we present the results of our performance eval-
uation experiments to show the benefits of supporting contin-
uous queries through incremental computations. Section VII
summarizes the results of our investigation and presents the
conclusions.

II. TRANSACTIONAL MODEL OF PARALLEL
PROGRAMMING

A parallel program is composed of a set of vertex-centric
computation tasks. A task performs computation on some
specified node, and it can also read or update other nodes in
the graph. A task may create new tasks on its completion.
The central concept is to execute the computation tasks
as serializable transactions [3], satisfying the properties of
atomicity and isolation. We refer to these computations as
transactional tasks. Multiple tasks can be executed in parallel.
Each such task is required to be well-formed in the sense that

its atomic computation step transforms the graph data from
one consistent state to another. The successful completion of a
transactional task execution may result in modifying the graph
data and creation of new tasks.

The transactional programming model noted above is sup-
ported in the Beehive [15] framework. Beehive provides the
abstraction of a global object storage system, which stores the
graph data in the RAM of the cluster nodes. This global stor-
age system provides key-value based data management with
location-transparent access, eliminating any explicit message-
passing. A parallel program can modify the graph structure
at runtime to add/remove nodes and edges, or modify their
attributes. Such updates can be performed as transactional
tasks. The base Node class contains a core set of data items
such as the node-id and information about the edges to its
neighbor nodes. A node object is read or written using its
node-id as the access key. An application can extend this class
as needed.

A distributed task-pool [7] in the system maintains a set of
tasks to be executed. On each Beehive cluster computer node,
a pool of worker threads is maintained. A worker thread picks
a task from the task-pool and performs its computation as a
transaction. A task is removed from the task-pool upon its
successful execution.

The model for transactional task execution is based on
optimistic concurrency control techniques [11]. This is a
lock-free model of execution, and a transaction reads only
committed data. Under the optimistic execution model, tasks
can be executed in parallel. The optimistic execution of a
transactional task involves the following four phases: read
phase, compute phase, validation phase, and update phase.

The task execution begins by first obtaining a start times-
tamp for the transaction. This is a logical timestamp, and it
indicates the sequence number of the latest committed trans-
action such that the updates of all committed transactions with
timestamps up to that value have been written to the global
storage. A transactional task is committed in the validation
phase only if it does not conflict with any other concurrently
committed transactional tasks. The conflicts are defined based
on the notion of read-write or write-write conflicts [3]. If two
concurrent transactional tasks conflict, then one of them is
guaranteed to complete execution while the other is aborted.
The aborted task is re-executed again later. On successful
validation, the transaction is assigned a commit timestamp. On
committing, the transactional task writes the buffered updates
to the global storage and any new tasks created by it are added
to the task-pool.

Each cluster node runs a Workpool server, which imple-
ments a task-pool. The set of Workpool servers executing
on the cluster nodes collectively support distribution and
scheduling of tasks in the cluster. The getTask method of the
local Workpool is called by a worker thread to fetch a task
for execution. The programming framework provides the base
Task class which contains some basic information about the
task, such as its taskId, nodeId of the target node for which the
task is intended, and an affinity specification to provide hints



for putting the task in the task-pool of a particular node in the
cluster. A parallel program can extend this class to include any
other data to be passed as a parameter to the task computation.

The Workpool server provides three operations to the ap-
plication programs for adding new tasks to the task-pool.
The method addTask(T) puts task T in the local task-pool
or selects a location according to the specified affinity level.
The broadcast(T) method creates a copy of the given task in
the task-pool on each of the cluster nodes. This primitive is
generally used for executing some initialization task at each
of the cluster nodes. The third method for adding tasks to
the task-pool is the reportCompletion method, which is called
by a transactional task when it is committing. One of the
parameters of this method is a set of new tasks created by
the task computation. These new tasks are distributed across
the cluster nodes according to the affinity level specified in
each task and a configurable distribution policy.

The termination of a parallel program execution is detected
by the Beehive run-time system when the following three
conditions hold at all computing nodes in the cluster: (1)
all worker threads are idle, (2) there are no pending tasks
in all of the Workpools, and (3) there are no messages
in the communication network. The framework detects the
termination and communicates it to the application program.
The application can then initiate a new computation phase, if
needed.

III. PARALLEL PROGRAMMING OF GRAPH PROBLEMS

The Beehive framework provides the abstract Worker class,
as shown in Figure 1. It fetches a task from the local task-pool,
implemented by the Workpool server, by calling its getTask
method. The worker then calls beginTransaction primitive to
execute the task computation as a transaction. It passes the task
to the doTask method for execution. This is an abstract method
in the base Worker class, and its implementation should be
provided by a problem-specific concrete worker class. This
method performs the computation and updates the read/write
sets of the transaction. It also returns a set of new tasks to be
added to the task-pool.

After the execution of the doTask method, the worker
thread performs transaction validation by invoking the validate
method of the validator object, which represents the interface
to the global validation service. The read-set and the write-
set are passed as parameters to the validation function. On
successful validation, the task is removed from the task-pool
by invoking the reportCompletion method of the Workpool
server. The set of updated objects (write-set) and the set
of new tasks are passed as parameters to this method. If
validation fails, the worker thread re-executes the task as a
new transaction.

We now illustrate the transaction-based parallel program-
ming model using the three graph problems: the single-
source shortest path problem, the k-nearest neighbors for all
vertices in a graph, graph vertex coloring, finding maximal size
cliques, and finding connected components in a graph. Later
we use these problems for developing incremental computation

techniques to support continuous queries in dynamic graph
structures.

public class Worker extends Thread {
Set<Node> readSet, writeSet;
Set<Task> newTasks;
public void run() {
while(true) {
Task task = Workpool.getTask();
finished = false;
while (!finished) {
tnxnId = beginTransaction();
readSet = new Set(); //read objects
writeSet = new Set(); //updated objects
newTasks = new Set<Task>(); //new tasks
doTask(task);
status = validator.validate(txnId, readSet,

writeSet);
if (status == commit) {
Workpool.reportCompletion(txnId, writeSet,

newTasks);
finished = true;
}
else { abortTransaction( txnID );

sleep( delayInterval );
}
}
}
}
abstract void doTask(Task t) {
// Application defined implementation
}
}

Fig. 1. Base Class for Worker

A. Single-Source Shortest Path (SSSP) Problem

This program computes the shortest distance path from a
given source node to each of the other nodes in an undirected
graph. Each node maintains its currently known distance to the
source node, and the id of the predecessor node on the shortest
path to the source. When the currently known distance of a
node to the source node decreases, new tasks are created for
each of its neighbor nodes. Initially, a start-up task is executed
at the source node to create a task for each of its neighbors. A
task in this program contains the following additional fields:
senderId containing the id of the node whose distance has
changed, and distance indicating the new distance of this
node from the source. Figure 2 shows the implementation of
the doTask method in the worker class for this problem. We
include one additional optimization to reduce generation of
redundant tasks. We outline it below but omit these details
from the code shown Figure 2. We do not generate a task for
a node if we find that the new task execution at the target node
will not reduce its distance to the source. For this purpose, each
node also maintains information about the currently known
distances of its neighbors to the source node. This information
is updated when a task is received from a neighbor.

B. K-Nearest Neighbors (KNN) Computation

For a given undirected graph, the k-nearest neighbors pro-
gram computes for each node the list of its k nearest nodes
and their distances. Each node maintains a sorted list of
its currently known k-nearest neighbors. This list is sorted



public class SPWorker extends Worker {
public void doTask(Task task) {

compute( task );
}
public void compute (SPTask task) {

String nodeId = task.nodeId;
String senderId = task.senderId;
Node u = storage.getNode(nodeId);
Edge e = u.neighbors.get( senderId );
if (u.distance > t.distance + e.length) {

writeSet.add( u );
u.distance = t.distance + e.length;
u.predecessor = t.senderId;
Set<String> nbrIds = u.neighbor.keys();
foreach (String nbr in nbrIds) {

SPTask t = new SPTask();
t.nodeId = nbr; // target node
t.senderId = u.nodeId;
t.distance = u.distance;
newTasks.add( t );

}
}

}
}

Fig. 2. Worker for the Single-Source Shortest Path Problem

in the ascending order of the neighbors’ distances from the
node. We refer to it as the KSet of that node. In the KSet
of a node, for each member we maintain “via” information
which points to the node’s direct neighbor on the path to that
member. Whenever, the KSet of a node gets modified, a new
transactional computation task of type KNNTask is created for
each of its direct neighbors to recompute their KSets. This
task contains the id of the “sender” node whose KSet was
modified and the new value of the sender’s KSet. Figure 3
shows the structure of the KNN worker thread which executes
the KNNTasks. Initially, one task is generated for each node,
which computes its initial list of k-nearest nodes based on the
distances to the direct neighbors and it then creates a KNNTask
for each of its neighbors.

public class KNNWorker extends Worker {
int K = k ; //paramemer for k-neighbors
public void doTask(Task task) {

compute( task );
}

public boolean compute(KNNTask task){
String nodeId = task.nodeId;
String src = task.senderId;
Node u = storage.getNode(nodeId);
int d = u.neighbors.get(senderId).length;

boolean change = merge(u.KSet,task.KSet,d,src);
if( change ){

writeSet.add(u);
Set<String> nbrIds = u.neighbor.keys();
foreach (String nbr in nbrIds) {

KNNTask t = new KNNTask();
t.nodeId = nbr; // target node
t.senderId = u.nodeId;
t.KSet = u.KSet;
newTasks.add( t );

}
}

}
Fig. 3. Worker for the KNN Problem

The computation for a KNNTask involves updating the target

private boolean merge(KSet local, KSet remote,
int d, String sender) {

boolean change = false;
foreach (key in remote.keys() ) {

if (key present in local) {
int current = local.get(key).distance;
int distViaSender = remote.get(key).distance+d;
if (current > distViaSender)

local.get(key).distance = distViaSender;
local.get(key).via = sender;
change = true;

}
else if (local.size() < K) {

local.addElement(key, distViaSender)
local.get(key).via = sender;
change = true;

}
else if (distViaSender<local.last().distance){

local.removeLast();
local.addElement(key, distViaSender)
local.get(key).via = sender;
change = true;

}
}
return change;

}
Fig. 4. Updating KSets in the KNN Problem

node’s KSet based on the KSet of the sender node contained
in the task, and taking into consideration the distance between
the sender node and the target node. This computation is
performed by the merge method shown in Figure 4. In this
method, local refers to the KSet of the target node and remote
refers to the KSet of the ‘sender’ node. It updates the target
node’s KSet. It returns false if there is no change to the target’s
KSet, otherwise it returns true. If the execution of the merge
results in updating the KSet of the target node, new tasks are
created for its direct neighbors. Each task contains the target
node’s id as the ‘sender’ and the updated KSet of the target,
and a list containing the ids and the distances of its k-nearest
nodes.

C. Graph Coloring Problem

In the graph coloring problem, the color of a node is
indicated by a positive integer, with 0 indicating that the node
is not colored. The goal of this problem is to color each node
of the graph with the smallest available color such that this
color is different from the color of any of its neighbor nodes. In
the beginning, none of the nodes are colored. A task is created
for each graph node and added to the task-pool to color the
node such that the color assigned to the node is different from
those of its neighbors. Figure 5 shows the GraphColorWorker
class defined for the graph coloring problem. It implements the
doTask method, which reads the colors of the neighbor nodes,
and assigns to the target node the smallest number color not
used by any of its neighbors. The write-set contains the task’s
target node, and the read-set contains all the neighbors. In this
problem, no new task is created by the transactional task as
we create a coloring task for each node when the program
execution is started.



public class GraphColorWorker extends Worker {
public void doTask(Task task) {

compute( task );
}
public void compute(Task task) {

Node u = storage.getNode( task.nodeId );
// u is target node to be colored
// Read all neighbor nodes of u
Set<Node> Nbrs = getNeighbors( u );
Vector<Integer> NbrColors = getNbrColors(NBrs);
Collections.sort( NbrColors );
int targetColor = 1;
// Find smallest unassigned neighbor color
foreach (Integer color in NbrColors) {

if (color > targetColor ) {
break;

} else if (color == targetColor) {
targetColor++;

}
}
u.color = targetColor;
writeSet.add(u);//add node u to write-set
readSet.add(Nbrs);//add neighbors to read-set
//No new task is created in this example

}
}

Fig. 5. Worker for the Graph Coloring Problem

D. Maximal Clique Computation

In this problem, for each node in the graph we want to
find the maximal size cliques to which that node belongs.
In order to compute the maximal clique for a node, say u,
we need to first compute for each of its neighbors, say v,
all 3-size cliques (henceforth referred as triples) to which v
belongs. The computation of maximal clique of node u then
involves collecting the triple sets from all its neighbors. It
then checks for the existence of all cliques of size 4 involving
u, using the logic as noted below. Suppose that for node
u we have computed its triple set as {(u, v, w), (u, v, x),
(u,w, x)}, and if we find in any of its neighbors’ triple-sets
a member {(v, w, x)}, then we can infer that we have a 4-
size clique involving (u, v, w, x). If any such clique is found,
then after the computation has identified all cliques of size 4
to which u belongs, it proceeds to identify cliques of size 5
for u, following similar steps as noted above. This iterative
step continues to find all cliques of size (k+1) if it succeeds
in finding any clique of size k. This iterative step terminates
if the computation fails to find any clique of the next higher
size.

Figure 6 shows the Worker thread class for this problem.
The maximal clique program execution is structured into two
phases. In the first phase, called “ComputeTriple”, for each
node we execute a task to compute its set of triples. In
the second phase, called “ComputeCliques”, for each node
maximal size cliques are computed. In the first phase, a
task is created for each node in the graph to execute the
computeTriples method for that node, as shown in Figure 6.
The “phase” of each of these tasks is set to “ComputeTriple”.
It reads all the neighbor nodes of the target node N , using
the getNeighbors method. Then for each node P in the target
node’s neighbor-list, it finds all common neighbors. If a target
node N (whose node-id is n) and its neighbor P (whose node-
id is p) have a common neighbor with node-id q, then the

public class CliqueWorker extends Worker {
public void doTask(Task task) {
String nodeId = task.nodeId;
Node N = storage.getNode(nodeId);
if (task.phase == "ComputeTriple") {

computeTriples(N);
}
else if (task.phase == "ComputeCliques") {

computeCliques(N);
}
}
public computeTriples(Node N) {
Vector<Node> nbrs = getNeighbors(N);
Set nbrIds = getNeighborIds(N);
String n = N.nodeId;
//for each neighbor, find common neighbors
foreach ( P in nbrs ) {
Set pNbrs = getNeighborIds(P);
String p = P.nodeId;
Set commonNbrs = pNbrs.retainAll(nbrIds);
foreach ( q in commonNbrs ) {

N.myTriples.add("n,p,q");
}

}
writeSet.add(N);
readSet.add(nbrs);

}
public void computeCliques (Node N){
Vector<Node> nbrs = getNeighbors(N);
foreach ( m in nbrs ) {
tripleSet[m.nodeId] = m.myTriples;

}
int k = 4; //next clique size to check
while (k != 0) {
HashSet kCliques = findCliques(k);
if (kCliques.size() != 0) {

N.myCliques[k] = kCliques;
k = k+1;

} else k = 0;
}
writeSet.add(N);
readSet.add(nbrs);

}
}

Fig. 6. Worker for the Maximal Clique Problem

triple (n,p,q) is recorded in node N ’s myTriples set. In the
second phase, a task is created for each node to compute
its maximal size cliques. The phase of this task is set to
“ComputeCliques”. This task computation is performed by the
computeCliques method. This method first reads the myTriples
of all the neighbors of the target node, and then it iteratively
checks for the existence of cliques for size 4 and higher values.
The detail of the findCliques method is omitted.

E. Connected Components (CC) Problem

This problem computes the sets of all nodes that are con-
nected directly or indirectly to each other in the graph. Each
such group of connected nodes form a connected component.
Each node maintains the information about the label of the
connected component to which it belongs. All the host ma-
chines maintain a set of labelled and unlabeled nodes present
locally in their storage system at all times. Initially, each host
selects a seed node from its set of unlabeled nodes, labels
the seed node with its own node id and starts labelling all its
neighbor nodes to the same label. In order to label the neighbor



public class CCWorker extends Worker {
public void doTask(Task task) {

if(task.subphase == "label-nodes")
compute( task );

else if(task.subphase == "merge-labels")
relabel( task );

}
public void compute(Task task) {
// u is target node to be labeled
Node u = storage.getNode( task.nodeId );
if(task.hasNoLabel())

u.label=u.nodeId;
else if(u.hasNoLabel())

u.label=task.label;
else if(u.label!=task.label)

recordClash(task.label, u.label);
//add node u to write-set
writeSet.add(u);
// Read all neighbor nodes of u
Set<String> nbrIds = u.getNbrIds();
foreach (String nbr in nbrIds) {

Task t = new CCTask();
t.subphase=1;
t.nodeId = nbr; // target node
t.label = u.label;
newTasks.add( t );

}
}
public void relabel(Task task) {
// u is target node to be relabeled
Node u = storage.getNode( task.nodeId );
u.label=task.label;
//add node u to write-set
writeSet.add(u);

}
}

Fig. 7. Worker for the Connected Components Problem

nodes, it creates transactional tasks (containing its own label)
for each of its neighbors. On receiving a transactional task,
the target node labels itself with the label present in the task
and creates tasks for all of its neighbors to label them with its
own label. In this way, all the nodes that are reachable from
a seed node get labeled with the label of that seed node. For
each connected component, its label corresponds to the node
id of one of its member nodes. This property may be essential
in various applications that will make use of the results of
connected components computation.

Since any connected component can include nodes that are
spread across several host machines, it is possible that seed
nodes selected at different hosts may correspond to the same
connected component. In this case, the tasks created to label
the neighbor nodes may try to label a neighbor which was
already labeled by a task originating from a different seed
node. This essentially means that both the labels correspond
to the same connected component. All such label-clashes
corresponding to the same connected component form an
equivalence set, and all the nodes in this connected component
can be labeled with the smallest label from this label-clash
equivalence set. Therefore, whenever a task tries to label an
already labeled node with a different label, we store this
information as a label-clash in the storage system globally
and the task terminates without changing the label of the target
node.

After all the above mentioned transactional tasks have
completed their execution, the master thread reads the global

Host 1 Host 2 Host 3

Task

Task
Task

Task

Task

SeedSeedSeed

Fig. 8. Selection of seed and the label-nodes sub-phase

1�2

2�3

3�4

1:{1,2,3,4,5}

11:{11,12,13}

 4�5

11�12

12�13

Fig. 9. Merging of equivalence sets

label-clashes registered. The master forms the equivalence sets
of all the labels that clash with each other. A relabel task is
created for each of these nodes to relabel them to the smallest
label from their label-clash set. In this way, all the nodes
corresponding to the same connected component gets labeled
with the same label. The information of all the locally present
labeled nodes maintained by the host is used to create local
relabel transactional tasks to relabel the required nodes present
in the storage system of each host.

In this way, the process of labeling any connected compo-
nent consists of two sub-phases (a) label nodes phase, and
(b) merge-labels phase. In the merge-label phase equivalence
sets are derived from all label-clash sets and all nodes in a
connected component are assigned a single label. Figure 8 and
Figure 9 show examples of these two phases. Figure 7 shows
the CCWorker class defined for the connected component
problem. It implements the doTask method, that contains the
logic for the two sub-phases discussed above. These two
phases are repeatedly executed until all nodes are labeled. To
speed up the entire process, multiple seed nodes are selected
per host in every cycle, instead of only one.

IV. CONTINUOUS QUERIES IN DYNAMIC GRAPH
STRUCTURES

We now illustrate how the transactional programming model
of Beehive can be used for supporting continuous queries
through incremental computation in dynamic graph structures.
The goal is to eliminate the need of executing an analytics
program again to get the new results for a query when only a
small number of updates are made to the graph structure. Re-
executing the program again after a small number of updates
can be potentially inefficient and expensive for large graphs.
Our approach is to reduce this computation cost by applying
the changes in the graph directly on the graph data state
resulting from the initial execution of the analytics program
and perform only the necessary incremental computations. Our
work is driven by the requirement of supporting concurrent
execution of a stream of graph updates with the incremental
recomputation operations for a continuous query. The graph
updates can also be applied in a batch mode, if necessary,
before initiating recomputation tasks.



A. Model for Incremental Computations

In our approach, the graph data structure is updated using
the same transactional task execution model which we use
for performing parallel computations for the initial analytics
program for the problem. In this model, the commitment of a
transactional task can result in creation of new transactional
tasks, called cascaded tasks, in addition to modifying the graph
structure. For a given problem, we refer to the transactional
tasks executed in the initial computation for the problem as
the initial computation tasks. The tasks that are created to
perform incremental re-computations are called incremental
computation tasks.

When the initial query program for a given graph problem
terminates, the system reaches a quiescent state and there are
no more tasks in the system. The resulting state of the graph
data satisfies certain properties related to the requirements of
the problem solution. In designing the logic for incremental
computations, one need to analyze how a given update trans-
action on the graph affects the properties of the result state
for the problem. An update can perturb the quiescent state
by invalidating these properties for some of the nodes in the
graph. In such cases, updating the graph data would require
some incremental computation tasks to be executed to preserve
the required properties, and these tasks may be different from
the initial computation tasks. We need to determine whether
the nature of the tasks required for incremental computations
are identical to the basic computation tasks. It is generally
easier to identify the logic for incremental computation when
the properties to be maintained for a given problem are local to
each of the nodes, i.e. the property is defined for a node based
on its own state and that of its neighbors. We illustrate this be-
low using five graph problems: finding shortest path from any
node to the source node, computing k-nearest neighbors for a
node, graph vertex coloring, finding the maximal size cliques
a node belongs to, and finding the connected components of
a graph. We consider here three types of update operations
on graph structure: addition of new edges, deletion of existing
edges, and updating properties of some existing edges in the
graph. Addition and deletion of nodes can be emulated using
multiple edge addition transactions and multiple edge deletion
transactions respectively. So, we omit further discussion of
addition and deletion of nodes in the graph for the five graph
problems noted above.

B. Continuous Queries for Single Source Shortest Path

We now develop a solution for incremental computations of
continuous queries for the SSSP problem when graph updates
are applied after the initial execution of the program for this
problem. After executing the SSSP program using the task
computation logic shown in Figure 2, we obtain for each
node in the graph its shortest distance from the source and
the id of its predecessor node on path to the source. We
consider the following types of updates to a graph after the
SSSP execution: adding edges, deleting edges, and updating
edges. For supporting incremental computations we define two
new task classes: UpdateGraphTask and RecomputeSPTask.

The task class UpdateGraphTask performs the update graph
transaction that will modify the structure of the graph and
create RecomputeSPTask. RecomputeSPTask will perform in-
cremental computations at a node, and it may create other
RecomputeSPTasks.

1) Addition of Edges : In the update transaction for adding
a new edge between a pair of nodes, we update the neighbor
list of the two nodes and check (for both the nodes) if the
shortest path for the node has decreased further by addition
of this new edge. This is determined by using equation 1 for
each of the neighbor node ‘nbr’ of the given node ‘n’ with
edge length ‘l’:

dist(nbr) + l < dist(n) (1)

The performAddEdge operation is shown in Figure 10 be-
low. Addition of a new edge requires no further computations
if the new edge creates a path that has a greater length than
the existing shortest path of the node. So, we need to perform
only one task in this scenario. If the shortest path for the node
decreases, then we send tasks to all of its neighbor nodes,
except the predecessor, informing them that the shortest path
for this node has decreased further. This new task for the
neighbor nodes is exactly the same as the tasks in the basic
computations (shown in Figure 2) for the SSSP problem.

public void performAddEdge(SPNode tgtNode,
UpdateGraph t){
String nbrId = getNeighbor(t);
int edgelength = getEdgeLength(t);
SPNode nbrNode = storage.getNode(nbrId);
addEdge(tgtNode,nbrNode,edgelength);
addEdge(nbrNode,tgtNode,edgelength);
writeSet.add(tgtNode);
writeSet.add(nbrNodes);
if (nbrNode.distance+edgelength

<tgtNode.distance ){
SPTask newTask = new SPTask(tgtNode);
tasksCreated.add(newTask);

}
else if (tgtNode.distance+edgelength

<nbrNode.distance) ){
SPTask newTask = new SPTask(nbrNode);
tasksCreated.add(newTask);

}
}

Fig. 10. Transaction to add a new edge

2) Updating of Edge Lengths : When we update the
length of an existing edge between a pair of nodes, we update
the neighbor list of the two nodes and check (for both the
nodes) if the edge is a predecessor edge or not, and if the
edge length has increased or decreased. If the updated edge
corresponds to a non-predecessor edge and the edge length has
increased, then the updated edge cannot improve the shortest
path distance of any node. So, we do not require any further
computations in such a case. If the updated edge corresponds
to a decrease in edge length or the edge is a predecessor edge
for a node, then we have the following two possible cases to
consider.

Case 1: The shortest path distance of one of the two
nodes has decreased by updating the edge. This case can



Predecessor edge

Non−predecessor edge

Create Recomputation Task

n2n1

n3

n4

e

X

Legend:

Fig. 11. Recomputation tasks when a predecessor edge is deleted or its length
is increased

happen when the length of an edge is decreased. The update
transaction determines the new distance and predecessor for
the affected node. In this case, a task is sent to all of its
neighbor nodes, except for the new predecessor, informing
them that the shortest path for this node has decreased further.
This new task for the neighbor nodes is identical in nature to
the basic SSSP task.

Case 2: Updated edge is a predecessor edge and its length
has increased. In this case, the shortest path distance will
increase for the node for which this edge is the predecessor
edge. We refer to this node as the target node. This scenario
is illustrated in Figure 11. The update transaction reads the
shortest path distances of all its non-predecessor neighbor
nodes. It then computes the target node’s shortest path distance
and the new predecessor, using equation 1. After computing
the shortest path distance for the target node, the update
transaction creates RecomputeSPTasks for all its neighbor
nodes that have the target node as their predecessor, so that
they can recompute their own shortest path distance. Note that
we do not need to create RecomputeSPTasks for the neighbors
that do not have the target node as their predecessor because
they have a “shortest path” to the source through some other
node.

3) Deletion of Edges : The transaction for deleting an
existing edge between a pair of nodes removes the edge from
the neighbor lists of the two nodes and checks if the edge
was a predecessor edge for any of them. If the updated edge
corresponds to a non-predecessor edge, then we do not require
any recomputations, as deleting a non-predecessor edge cannot
affect the shortest path distance for any of the nodes.

This scenario is illustrated in Figure 11. If the deleted edge
is a predecessor edge for any of the two nodes, then the
scenario is similar to Case 2 in the Update Edge transaction,
with the only change that the edge is deleted instead of being
updated. In this case, the shortest path of the target node
will increase from its previously known value. The update
transaction reads the distance values of all the neighbor nodes
of the target node that do not have the target node as their
predecessor. It then computes, for the target node, the shortest
path distance and a new predecessor using equation 1. If there
are no such nodes, then the distance of this node from source
node is set to infinity and its predecessor is set to unknown.
The update transaction then creates a RecomputeSPTask for
each of its neighbor nodes that have the target node as the

predecessor, so that they can recompute their shortest path
distance.

C. Continuous Queries for K-Nearest Neighbors

We now consider the problem of supporting continuous
queries for the KNN problem using the incremental computa-
tion approach. We develop a solution for continuous queries
when graph updates are applied after an initial execution of the
basic algorithm for this problem, presented in Section III-B.
After executing the KNN program on a given input graph
data using the task computation logic shown in Figure 3 and
Figure 4, we obtain for each node in the graph a set of k-
nearest neighbors. We consider the following types of updates
to a graph after the execution of the initial program for the
KNN computation: adding edges, deleting edges, and updating
edges in the graph.

private void addEdge(KNNNode x, KNNNode y, int w){
//add an edge of length w between nodes x and y
insertEdge(x,y,w);
insertEdge(y,x,w);
writeSet.add(x);
writeSet.add(y);

//do steps for x
flag = false;
if(x.KSet.contains(y)){
if(x.KSet.get(y).distance > w){

x.KSet.replaceElement(y,w);
x.KSet.get(y).via = y;
flag = true;

}
}
else if(x.KSet.last().distance > w){
x.KSet.addElement(y,w);
x.KSet.get(y).via = y;
flag = true;

}

if(flag == true){ //KSet has changed
for(KNNNode nbr : x.neighbors){

KNNTask task = new KNNTask(nbr,x,x.KSet);
newTasks.add(task);

}
}

//do the same steps for y as done for x

}
Fig. 12. KKN Computation for Add Edge Transaction

1) Addition of Edges : The update transaction for adding a
new edge between a pair of nodes, say m and n is executed as
a transactional task. Figure 12 shows the operations performed
by an Add Edge transaction. The task performs the following
actions. For node m, if n is in the KSet and the distance for
n in the KSet is greater than the length of the new edge, then
we update the distance of node n as well as ‘via’ to point
to n. Otherwise, if the size of the KSet is less than k, then
we add n to it. Else, if the new edge has its length smaller
than the highest distance value among the k-nearest neighbors
then we update the KSet by adding n to it. In case the KSet
has changed, we propagate the change by creating a KNNTask
for each neighbor of m. The above computations are similarly



public void deleteEdge(m, n){
//delete the edge between nodes m and n
deleteEdge(m,n);
deleteEdge(n,m);
writeSet.add(m);
writeSet.add(n);

if(m.KSet contains n){
Step 1: Remove from KSet all entries s.t.(via=n)

Add these node-ids to m.deleteSet

Step 2: Add all m’s neighbors in m.KSet to fill
the vacancies.

Step 3:
3.1) Get KSets from all neighbours of m

(except the neighbor who sent this task)
3.2) From the KSets of all its neighbors remove

all entries having via = m
3.3) Merge each nbr’s KSet obtained from 3.2

into m.KSet

Step 4: If m.KSet is modified, create
KNNRecomputeTask for all its neighbors,
passing m.KSet and m.deleteSet as
parameters to it.

}

if(n.KSet contains m){
//do the same steps as for m

}
}

Fig. 13. KNN computation for Delete Edge Transaction

public void recompute(nbr, m.KSet, m.deleteSet){
nbr.deleteSet = {}
Step 1: From nbr’s KSet remove all the elements

that have (via=m) and are also
present in m.deleteSet
add these elements to nbr.deleteSet;

Step 2: Add all nbr’s neighbors in nbr.KSet to
fill the vacancies.

Step 3: foreach of nbr’s neighbor w, except m:
merge(nbr.KSet, w.KSet);

Step 4: Create recompute tasks for all neighbors
if(nbr.KSet is modified){

for(u in nbr.neighbors){
if (nbr.deleteSet.size()==0) {

KNNTask newTask = KNNTask(u, nbr.KSet);
} else {

KNNRecomputeTask newTask =
new KNNRecomputeTask(neighbor, nbr.KSet,

nbr.deleteSet);
}
tasksCreated.add(newTask);

}
}

}
Fig. 14. KNN Recomputation Task

executed for the node n, in the same transaction. In this case
the tasks executed for incremental computations are of the
same type as executed during the initial computation.

2) Deletion of Edges : In the update transaction to delete
an existing edge between a pair of nodes, we execute the
steps shown in Figure 13 on both the nodes as a transactional
task. We use the graph shown in Figure 15 as an example to

u

m qp

t

n

r s

1

1

1

3

533

Fig. 15. An example of Delete Edge operation

illustrate the steps involved in this transaction and the resulting
incremental computations. In this illustration the value of k
used is 4. Suppose an edge between m and n is deleted as
shown in Figure 15. The initial states of the KSets of m and
one of it’s neighbor p are shown in Figure 16. The KSet of m
needs to be updated because of the deletion of its edge to n.
We delete all entries from m’s KSet which are going through
n (as shown in step 1 in Figure 17), since these entries are no
longer valid. Hence, the entries of n and u will be removed
from m’s KSet. We record all deleted entries from m’s KSet
in the deleteSet. Then, to fill in the vacancies in the KSet, we
first add the neighbors of m to its KSet, as shown in step 2 of
Figure 17. Then we get the KSet from all the neighbors of m,
and delete from it all the entries going through m. We then
merge it with m’s KSet. Figure 18 illustrates this for merging
of neighbor p’s KSet. After this step all the entries in m’s KSet
are correct and no further computations are needed for m. But
now we need to propagate m’s new KSet to all its neighbors
to update their KSet. For this we create a KNNRecomputeTask
for each of m’s neighbors. Each of these tasks contain m’s
KSet and its deleteSet.

The steps executed by a KNNRecomputeTask are shown in
Figure 14. In Figure 19, we illustrate the execution of the
KNNRecomputeTask at one of m’s neighbor, say node p. In
the recompute method, we first delete all entries in p’s KSet
which are present in the deleteSet passed from m and if p has a
route to those nodes through m. These entries are now invalid.
In a new deleteSet, we keep track of the nodes deleted from
p’s KSet. On node p we now execute computations similar to
those done on node m. We first add the neighbors of p in its
KSet to fill any vacancies created due to deletions of elements
in the above step. Then we fetch the KSet from all of p’s
neighbors and merge them with p’s KSet.

If node p’s KSet gets modified, then we need to initiate
incremental recomputation tasks on all its neighbors other
than m, following the steps shown in Figure 14. The nature
of the tasks to be created depends on whether the deleteSet
of p is empty or not. If the deleteSet is empty, then we
need to create tasks of type KNNTask for the neighbors, as
is done in the initial computation logic. Otherwise, tasks of
type KNNRecomputeTask are created, which contain the KSet
and deleteSet of node p

3) Update of Edges : If the update operation on an edge
decreases its length, the recomputation operation is similar to
that for adding a new edge between the two nodes. On the



node distance via node distance via

m

n

u

2

1

3

3

m

m

m

t t

p

q

u

n

1

1

2

3

p

n

n

q

KSet of p KSet of m

Intital State

Fig. 16. KNN Edge Delete Example: initial state

node distance vianode distance via

KSet of m

p

3

1

5

qq

r3r

p

3 qq

1p

KSet of m

DeletSet = {n, u}

s s

p

Step 1 Step 2

Fig. 17. KNN Edge Delete Example: step 1

other hand, if the update operation on an edge increases its
length, then the operation performed is similar to the delete
edge operation discussed earlier to recompute the k-nearest
neighbors.

D. Incremental Computation for Graph Coloring Problem

We now consider how to design incremental computation
tasks for the graph coloring problem. We develop a solution
for incremental computations when graph updates are applied
after an initial execution of the basic algorithm for this
problem, shown in Figure 5. After executing the graph coloring
program on a given input graph, we obtain, for each node in
the graph, its unique smallest color such that no two neighbor
nodes have the same color. We consider the following types
of updates to a graph after the initial execution of the graph
coloring program: adding edges, deleting edges, adding nodes
and deleting nodes in the graph. Updating the edges or nodes
have no significance for the graph coloring problem. Here,
we consider a modified version of graph coloring problem
where only the constraint of “distinct color” for neighboring
nodes in the graph is considered. The initial computation
preserves the constraint of smallest unused color for each node,
but the incremental computations disregard this constraint for
delete edge and delete node operations in order to simplify
the incremental computation task and provide insights into
some of the scenarios where incremental computations may
not provide high gain.

1) Addition of Edges : In the update transaction for adding
a new edge between a pair of nodes, we update the neighbor
list of the two nodes and check if both the nodes have the same
color. If the two nodes have different color, then we do not
need to perform any further computation. But if the two nodes
have the same color, we need to assign a new color to one of
the two nodes such that no other neighbor has the same color
as this node. We consider only one of the two nodes, called

node distance via node distance via node distance via

m

n

1

3

m

KSet of p KSet of m

merge

q

p 1

q

s

3

3 r

p

s5

X

X

X

New KSet of m

q

r

q

p 1

3

3

p

r

p

m2

3 mu

4tt

r

t

Step 3: merging of m’s KSet with  neighbors’ KSets

Fig. 18. KNN Edge Delete Example: step 3

node distance via node distance via node distance via

m 1

3

m

t

KSet of p

merge

X

X

X
t

q

r

q

p 1

3

3

p

r

pt 4

New KSet of m

DeleteSet = {n, u}
New KSet of p

m m

t

q

t

r 4

4

1

3

m

m

DeleteSet = {n, u}

Recomputation of p’s KSset based om modifed KSet of m

Fig. 19. KNN Edge Delete Example: step 4

the “target node”, and obtain the color of all of its neighbors.
We arrange the colors fetched in increasing order and from
the list of all available colors, we select the smallest unused
color for the target node.

2) Deletion of Edges : In the update transaction of deleting
an existing edge between a pair of nodes, we only remove the
edge from the neighbor lists of the two nodes. We do not
perform any other computation since the two nodes already
have distinct colors, and we have relaxed the requirement of
using the smallest unused color from the set of neighbors.
This scenario may be favorable in applications where only the
”distinct color” property is of significance. Also, note that this
is one such situation where we do not require any cascaded
sequence of recomputation tasks.

3) Addition of Nodes : In the Add Node update transaction,
we update the neighbor list of all the neighbor nodes for the
newly added node and compute for this node the smallest color
not used by any of the neighbor nodes.

4) Deletion of Nodes: For the Delete Node update trans-
action, we update the neighbor list of all the neighbor nodes to
indicate that the node to be deleted is no longer a neighbor. We
also clear its color and then remove this node from the graph.
Similar to the delete edge scenario, here too we only consider
the constraint of distinct color for neighbor nodes. Since all
the nodes already had distinct color, deleting a neighbor node
will not affect their distinct color property. So, no further
computation is required.

E. Continuous Queries for Maximal Cliques

We now consider the problem of designing incremental
computation tasks for supporting continuous queries for the
maximal clique problem in dynamic graphs. We consider
the following types of updates to the graph after the initial
maximal clique computation: adding edges and deleting edges.
Updating of edge lengths has no impact on the maximal clique
computation. We develop a solution for continuous queries



when graph updates are applied after an initial execution of
the basic algorithm. After performing the incremental changes
in the graph, we once again compute the maximal clique for
the nodes using computeCliques() procedure discussed earlier.

Addition of an edge can result in creation of new triples
in the graph, and similarly the deletion of an edge can cause
some previously existing triples to be removed. We maintain
a consistent state of the myTriples set for each of the nodes
affected by an update transaction. The maximal clique of
a node can change only if the myTriples set of that node
is modified. This property forms the basis for performing
incremental computations for a continuous query to detect any
changes in the maximal size cliques of a node. An application
may want to continuously watch a set of nodes for changes in
their maximal clique sets. For each such node, it would set a
flag in the node to indicate if continuous query computations
should be initiated for it when its myTriple set gets modified.
The incremental computation for a continuous query for such
a node is triggered by creating a new task to recompute its
new maximal size cliques.

1) Addition of Edges : The procedure to perform the Add
Edge transaction is shown in Figure 20. The update transaction
for adding a new edge between a pair of nodes, say u and v, is
executed as a transactional task which performs the following
operations. For node u, we add an edge to v in u’s neighbors
set. Similarly, for node v, we add an edge to u in v’s neighbors
set. After the two edges are added, we find the common
neighbors of node u and v. If the two nodes share a common
neighbor, say q, then they will form a new triple in the graph,
and this new triple will be added to the myTriple set of nodes
u, v and q. We add u, v and all their common neighbors to
the write-set as part of this transactional task. We create a new
task for each such node whose myTriple set gets modified. The
phase of these tasks is set to “ComputeCliques”.

2) Deletion of Edges : In the update transaction for delet-
ing an existing edge between a pair of nodes, say u and v,
we execute a transactional task that performs the following
operation. For node u, we delete the edge to v from u’s
neighbors set. Similarly, for node v, we delete the edge to
u from v’s neighbors set. After the two edges are deleted,
we find the common neighbors of node u and v. If the two
nodes shared a common neighbor, say q, then they earlier
had formed a triple in the graph, and this old triple should
be deleted from the myTriples sets of nodes u, v and q. We
add u, v and all their common neighbors to the write-set as a
part of this transactional task. Similar to the case of addition
of edges, we perform the maximal clique computation only
for those nodes for which myTriples set gets modified as a
result of deletion of some edges from the graph. A new task
is created for each such node to recompute its maximal size
cliques. The phase of these tasks is set to “ComputeCliques”.
The deleteEdge method is very similar to the addEdge method
shown in Figure 20, except that instead of adding triples to
the myTriple sets of the affected nodes, it removes triples for
those sets.

public addEdge(Node U, Node V) {
Set uNbrIds = getNeighborIds(U);
Set vNbrIds = getNeighborIds(V);
String u = U.nodeId;
String v = V.nodeId;
U.neighbors.put( new Edge(v) );
V.neighbors.put( new Edge(u) );
writeSet.add(U);
writeSet.add(V);
Set commonNbrs = uNbrIds.retainAll(vNbrIds);
Set taskTargets = new Set();
foreach (q in commonNbrs) {

Node Q = storage.getNode(q);
U.myTriples.add("u,v,q");
V.myTriples.add("u,v,q");
Q.myTriples.add("u,v,q");
if (U.watchFlag) {taskTargets.add(u);}
if (V.watchFlag) {taskTargets.add(v);}
if (Q.watchFlag) {taskTargets.add(q);}
writeSet.add(Q);

}
foreach (p in taskTargets) {

Task t = new CliqueTask(p);
t.phase = "ComputeClique";
newTasks.add(t);

}
}

Fig. 20. Maximal Clique Computation for Add Edge Task

F. Incremental Computation for the Connected Components
Problem

We now consider the problem of designing incremental
computation tasks for the connected components problem.
We develop a solution for incremental computations when
graph updates are applied after an initial execution of the
basic algorithm for this problem, presented in Section II.
After executing the connected components program on a given
input graph data using the transactional task computation
shown in Figure 7, we obtain for each node in the graph
the label of the connected component to which it belongs.
We consider the following types of updates to a graph after
the initial execution: adding edges and deleting edges. Here,
updating edge properties or updating other attributes of a
node does not affect the connected component to which it
belongs. Moreover, the operations of adding (deleting) nodes
from the graph can be simulated by multiple add (delete) edge
operations. Therefore, these operations are omitted from the
below discussion.

After the initial execution of the connected component
program, updates to the graph are applied in phases. In an
update phase any number of add or delete edge operations
can be performed in parallel. After the update phase, a merge-
label phase is executed, as in the initial computation.

For supporting incremental computations we define two
new task classes. The task class RecomputeTask is defined for
performing incremental computations at a node. The task type
UpdateGraph is used for performing the update transactions
for the above operations, by calling the update method shown
in Figure 22. The doTask method of the Worker thread
executes the appropriate functions for these tasks as shown
below in Figure 21.



public class CCWorker extends Worker {
public doTask(Task task) {
String taskClass = getTaskClass(task);
switch (taskClass) {

case "UpdateGraph":
update(task); break;

case "RecomputeTask":
recompute(task); break;

case "CCTask":
if(task.subphase == "label-nodes")

compute( task );
else if(task.subphase == "merge-labels")

relabel( task );
break;

}
}

}

Fig. 21. doTask method of CCWorker for incremental computations

public void update(Task task){
Node tgtNode = storage.getNode(t.nodeId);
UpdateGraph t = (UpdateGraph)task;
switch(t.opname){
case CCTask.addEdge:

performAddEdge(tgtNode,t);
break;

case CCTask.deleteEdge:
performDeleteEdge(tgtNode,t);
break;

}
}

Fig. 22. Update method of CCWorker for incremental computations

1) Addition of Edges : In the transaction for adding a
new edge between a pair of graph nodes, if the labels of
these nodes differ then a label-clash is registered in the global
storage. If the labels of the two nodes considered above are the
same, then no further relabeling is required as the connected
components in the graph do not change. In the next sub-
phase, the master will merge the label-clash equivalence sets
and relabel the required nodes. The merging of label-clash
equivalence sets and the execution of the relabel tasks are
exactly the same as in the initial computation. In this way,
finally all the nodes belonging to the same component will
have the same label. This preserves the invariant property that
all nodes of the same connected component have the same
label, and the system returns back to a quiescent state. In
an update phase, multiple add edge transactions can run in
parallel. The add edge operation is shown in Figure 24 and
the logic for the add edge operation is illustrated in Figure 23.
The add edge operation shown in Figure 24 will register a
label-clash (10,70) in the global storage.

2) Deletion of Edges : The transaction for deleting an
existing edge between a pair of nodes removes the edge from
the neighbor-list of the two nodes and may break the connected
components into two parts if this is the only edge that
connects the two components together. Consider the example
in Figure 26 where the edge between nodes 9 and 10 is deleted
first. It initiates recomputation tasks at these nodes. These
tasks, represented by T(9) and T(10), are initiated at nodes
9 and 10, respectively. Here, T(10) would relabel all nodes
from 10 through 13 with label 10. Each task specifies the new

public void performAddEdge(Node tgtNode,
UpdateGraph t){
Node nbrNode = storage.getNode(t.nbrId);
addEdge(tgtNode,nbrNode);
addEdge(nbrNode,tgtNode);
recordClash(tgtNode.label, nbrNode.label);
writeSet.add(tgtNode);
writeSet.add(nbrNodes);

}
Fig. 23. CC Transaction for edge addition

label and the expected original label at the target node. If it
reaches a node whose label differs from the expected label, a
label-clash is registered.

For each of the two nodes, if the node id of the node is
different from its existing label, then its node id is taken as its
new label, and RecomputeTasks are created for all its neighbors
to relabel them. Otherwise, no relabeling is performed on that
node. If the delete edge operation does not disconnect the
component, then the RecomputeTasks starting from the two
nodes of the deleted edge will lead to a label-clash. The label-
clash is registered in the global storage, and the master would
then merge the equivalence sets and relabel the nodes in the
merge-label phase, as in the initial computation. The delete
edge operation is shown in Figure 26.

The operation of deletion of a single edge at a time is
simple. Several challenges arise when multiple delete edge
operations run concurrently. When two delete edge operations
delete the edges of the same component, both initiate Recom-
puteTask on the two nodes of the deleted edge. It is possible
that a RecomputeTask from a later edge-delete operation is
executed at a node earlier than the RecomputeTask initiated by
a preceding delete-edge operation. When the RecomputeTask
of the later edge-delete operation executes before a preceding
RecomputeTask (called straggler) that has still not executed,
that straggler would declare an incorrect label clash. Consider
the example of Figure 26 further with the deletion of edge
between nodes 10 and 11. This is illustrated in Figure 27. This
results in creation of recomputation task T(11) at node 11, and
propagating to node 12. Suppose that task T(11) is executed
at node 12 before the arrival of task T(10). It relabels node 12
to label 11. Task T(10) would find the label of node 12 as 11
instead of expected label 6, and it would declare an incorrect
label-clash (10, 11), and propagation of the relabeling task
would terminate. This false label-clash would lead to incorrect

New edge.

Label Clash: 10�11

2030 10 70

10 10 11

75

11

11

1110

12

11label

node

Fig. 24. Addition of Edge in Connected Components problem

2030 10 70

10 10 70

75

75

11

1110

12

11

Equivalent sets

10�11

70�75

label

node

Fig. 25. Concurrent Addition and Deletion of Edges



Deleted edge

98 10 11

6 9 6

12

6

T(9) T(10)

13

610label

node

Fig. 26. Deletion of Edge in Connected Components problem

98 10 11

9 9 11

12

11

13

6
T(11) T(11)

T(10)

10

6

9

6

9

6

10

6

10

11

6

10

11

6

label

node

history

Fig. 27. Concurrent Deletion of Multiple Edges

declaration of the two disconnected components as connected.

public void performDeleteEdge(Node tgtNode,
UpdateGraph t){

Node nbrNode = storage.getNode(t.nbrid);
removeEdge(tgtNode,nbrNode);
removeEdge(nbrNode,tgtNode);
writeSet.add(tgtNode);
writeSet.add(nbrNodes);

if(nbrNode.hasReportedLabelClash() ||
tgtNode.hasReportedLabelClash()){
clearGlobalLabelClash(tgtNode,nbrNode);
nbrNode.deleteLabelClashWithNbr(tgtNode);
nbrNode.manageInvalidSet(tgtNode);
tgtNode.deleteLabelClashWithNbr(nbrNode);
tgtNode.manageInvalidSet(nbrNode);

}
if(tgtNode.nodeId != tgtNode.label){
tgtNode.updateHistory();
Set<String> nbrIds = tgtNode.getNbrIds();
foreach (String nbr in nbrIds) {

Task tnew = new RecomputeTask(nbr);
tnew.label = tgtNode.label;
tnew.history = tgtNode.history;
newTasks.add( tnew );

}
}
if(nbrNode.nodeId != nbrNode.label){
nbrNode.updateHistory(t);
Set<String> nbrIds = nbrNode.getNbrIds();
foreach (String nbr in nbrIds) {

Task tnew = new RecomputeTask(nbr,
tgtNode, nbrNode);
tnew.label = nbrNode.label;
tnew.history = nbrNode.history;
newTasks.add( tnew );

}
}

} Fig. 28. CC Transaction for edge deletion

There are still other problems that arise when multiple add
edge and delete edge operations are executed concurrently.
Consider the example in Figure 24 where the edge between
nodes 10 and 70 is added. This results in a label-clash
(10,70). Now consider that in the same update phase, the same
edge between 10 and 70 is deleted along with another edge
between node 75 and 11, concurrently (refer to Figure 25).
RecomputeTasks will start at nodes 70 and 75. Node 70 is
relabeled to label 70 and node 75 is relabeled to 75. The
RecomputeTasks will register a label-clash (70,75). Now in
the merge-label phase, the master will merge the labels 10

and 11 and it would result in the nodes 30, 20 and 10 being
incorrectly declared as a part of the same component as nodes
11 and 12.

public void recompute(Task tsk){
Node u = storage.getNode( task.nodeId );
if(sender is in InvalidNeighbors set OR

u’s label is same as task’s label){
//do nothing
//task is from a node which is no longer
//a neighbor or there is no label change

}
else if(task’s history doesn’t have u’s label){

//label not present in task history
//it is a label-clash
1. record the clash (tsk.label, u.label)
2. add entry (tsk.label, u.label) in

u’s clash-set for the sender node.
3. Add u to write set.

}
else if(u’s history doesn’t have task’s label){

// not a straggler task
1. update u’s label to the task’s label
2. merge task’s history into u’s history.
3. add u to write set.
4. for each neighbor create a new recompute

task and pass u’s label and u’s history with
the new task.

}
else{

//it’s a straggler. Do nothing.
}

}
Fig. 29. CC Transaction for recompute

To solve all such problems, some extra information needs to
be stored at the nodes of the graph to support concurrent delete
and add edge edge operations. We maintain three data items
with each node: (1) a set called InvalidNeighbors contains the
nodes that are no longer neighbors because of edge deletions,
(2) a set called clash-set records label-clashes detected at this
node, and this set is maintained per neighbor basis, and (3) a
set named history consisting of all labels assigned to the node
in the current update phase. If a node is in the InvalidNeighbor
set, then there cannot be a clash-set present for it. When
a neighbor is added to the InvalidNeighbor set on an edge
deletion, the entries for it in the clash-set are cleared and
they are also removed from the global label-clash registry.
When any task originating from a node in the InvalidNeighbor
set is received, it is simply discarded. Additionally, each
recomputation task created by a node for its neighbors contains
its history. When such a task updates a node’s label, the node’s
history is updated to include the history contained in the task.
A node’s history can be used to discard a straggler task. If
the current label is not present in the history contained in the
task, we declare a label-clash (as opposed to declaring a label
clash when the node’s label was equal to the expected label
for deleting a single edge). Otherwise, if the label contained
in the task is present in the node’s history, then it is a straggler
task and it is discarded. Otherwise the label and the history
is updated by task execution and new recomputation tasks are
propagated to the neighbors. This is the crux of our approach
which allows execution of multiple edge-add and edge-delete
operations to run in parallel.



In the example shown in Figure 27, when node 11 sends
task T(11) to node 12, it will include its history containing {6,
10, 11} in the task. Execution of this task at 12, will update
the node’s history to the task’s history. When the straggler task
T(10) arrives at 12, it finds that the its label 10 is present in
the node’s history, and therefore that task would be discarded.
This avoids incorrect declaration (10,11) as label-clash by the
straggler task.

In reference to the problem discussed in example shown in
Figure 25, when the edge between the nodes 10 and 70 is
deleted, then at node 10, 70 is added to its InvalidNeighbor
set and 70’s clash record (10,11) is removed from the clash-
set of node 10 as well as from the global label-clash registry.
Similar computations would take place at node 70. Hence, now
the master will not merge the labels (10,11) in the merge-
label phase. This prevents incorrect label-clash declaration.
Figure 28 shows the logic for deleting the edges and initi-
ating the recomputation tasks. Figure 29 shows the logic for
executing the recomputation tasks (RecomputeTask).

The overhead of storing extra information at the graph nodes
is small as this information needs to be retained only up to the
next sub-phase when all the tasks created due to the current
seed node(s) have completed, and the add and delete edge
operations, if any, have also completed. During the merge-
label phase, this information is cleared from all the nodes.
For better performance, the host machines locally store all this
information for the nodes present in their storage system and
clear this information when the current sub-phase completes.

V. PERFORMANCE EVALUATIONS

We conducted experiments using the five graph problems
described above to evaluate the performance benefits of sup-
porting continuous queries through incremental computations
using the transactional programming model of Beehive. Our
goal was to determine the relative latencies in performing
continuous queries when the input graph data was updated
after the execution of the initial analytics program for these
problems. A set of update transactions were applied to the
graph data after the initial program execution. We measured
the time for the system to reach the quiescent state from
the point when these update transactions were initiated. The
evaluation measure used was the incremental computation
time expressed as a percentage of the initial execution time.
We measured this for different types of update operations
independently, and for different load of the update transactions.

We conducted these experiments on a cluster computer
where each node had 8 CPU cores of 2.8 GHz and 22 GB main
memory, connected with 40-gigabit network. We conducted
evaluations using graphs with number of nodes 100K, 200K,
400K, 800K, 1million, and 2 million. In our experiments we
used graphs which had random connectivity, with average node
degree of 67. In these graphs the edge lengths were uniformly
distributed between 1 and 100.

For the SSSP problem, we used five types of update
transactions: Add Edge, Update Edge, Delete Edge, Add Node,
and Delete Node, where the nodes and edges were randomly

selected. We measured the time for the system to reach the
quiescent state from the point when these update transactions
were initiated. The time required for incremental computations
were separately measured for each of these types. For each of
these update types, we injected transactions to change close
to 1% of the graph structure. For example, in the experiment
for the Add Edge, Delete Edge, and Update Edge updates, the
number of edges added, deleted, or updated was 1% of the
number of edges in the input graph. Similarly the number of
nodes added or deleted, for the Add Node and Delete Node
updates, were 1% of the nodes in the input graph.

Fig. 36. Initial execution times of the maximal clique program for different
graphs

Figure 30 shows the execution time for the SSSP problem,
for the four graphs of different sizes noted above. Figure 31
shows the incremental execution time for different types of
update operations, expressed as a percentage of the initial ex-
ecution time for these four graphs. From these experiments we
observe that the incremental execution cost for the operations
to add and update edges is less than 1% of the initial execution
times, and for the delete edge operations it is around 2%.
Similarly we observe that the incremental execution cost for
the add node operations is in the range of 5-8%, and for the
delete node operations it is around 4-5%. The node operations
are slightly more expensive as we have several add/delete edge
operations associated with them. For this problem we find that
there are clear benefits of using the incremental computation
approach.

For the KNN problem, we used three types of update
transactions: Add Edge, Update Edge, and Delete Edge. For
each of these update types, we conducted experiments with
the number of update transactions set close to 0.1%, 0.5%,
1%, and 5% of the number of nodes in the graph. For
example, in the experiments for 1% update transactions, the
number of edges added, deleted, or updated was 1% of the
number of nodes in the input graph. The edges in these update
transactions were randomly selected.

Figure 32 shows the initial execution time for the KNN
problem, for graphs with number of nodes 100K, 200K, and
400K. Figure 33 shows for each of these three graphs the
latencies in performing continuous queries using incremen-
tal computations for the Add Edge operations with differ-
ent number of update transactions. In this graph, latency
is expressed as a percentage of the initial execution time.
Similarly Figure 34 and Figure 35 show latencies for the



Fig. 30. Initial execution times of the SSSP program for different
graphs

Fig. 31. Incremental computation times as percentage of initial execu-
tion times for different update transactions for SSSP

Fig. 32. Initial execution times of the KNN program for different graphs Fig. 33. Query latencies as percentage of initial execution times for
Add Edge transactions for KNN

Fig. 34. Query latencies as percentage of initial execution times for
Delete Edge transactions for KNN

Fig. 35. Query latencies as percentage of initial execution times for
Update Edge transactions for KNN

Delete Edge and Update Edge operations, respectively. From
these experiments we observe that the incremental execution
cost for the operations to add, delete and update edges is less
than 1% of the initial execution times, even after making 5%
updates in the graph. Thus, processing of continuous query
is less expensive than executing the entire analytics program
again. We see that as the percentage of updates in the graph
increases, the continuous query cost as a percentage of initial
execution time also increases. As the graph gets larger, the
continuous query cost as a percentage of initial execution
time decreases. Hence, we see that there are clear benefits
of using the incremental computation approach in supporting
continuous queries in large graphs.

For the maximal clique problem, we conducted experiments

using graphs of 100K, 200K, 400K, and 800K nodes. We
measured the time for incremental recomputations for Add
Edge and Delete Edge update transactions. In our experiments,
the watch-list contained all nodes present in the graph. The
experiments for these two update types were conducted sepa-
rately. For each of these type, we measured the latencies for
different volumes of updates, which were set to 1%, 5%, and
10% of the size of the graph in terms of the number of nodes.
For this problem we observe that the incremental computation
cost tends to be high. For example, for 1% update volume
the incremental execution cost was around 5% of the initial
execution cost. It should be noted here that for this problem the
initial execution cost itself is relatively smaller as compared
to the other problems.



Fig. 37. Maximal clique query latencies as percentage of initial
execution times for Add Edge transactions

Fig. 38. Maximal clique query latencies as percentage of initial
execution times for Delete Edge transactions

Fig. 39. Initial execution times of Graph Color-
ing program for different graphs

Fig. 40. Initial execution times of the Connected
Components program for different graphs

Fig. 41. Change in incremental execution time
with increase in percentage of nodes changed
for Addition of Edges in Connected Components
problem for 1 million node graph

Fig. 42. Incremental computation times as per-
centage of initial execution times for different
update transactions for Graph Coloring

Fig. 43. Incremental computation times as per-
centage of initial execution times for different
update transactions for Connected Components

Fig. 44. Change in incremental execution time
with increase in percentage of nodes changed for
Deletion of Edges in Connected Components for
1 million node graph

VI. PERFORMANCE EVALUATIONS

Using the Beehive framework we conducted experiments
to evaluate the performance benefits of the incremental com-
putation techniques using the two problems presented in
Section IV. Our goal was to determine the utility of performing
incremental computations when the input graph data is updated
after an initial execution of the parallel program for a given
problem. We measured the execution time required by incre-
mental computations when a set of updates were performed.
The evaluation measure used was the incremental computation
time expressed as a percentage of the initial execution time.
We measured this for different types of update operations,
to determine which kinds of update operations can benefit
from incremental computations. Our evaluations show that
the benefit of using incremental computations depends on
the nature of the graph problem, cost of the initial execution
of the parallel program for this problem, type of the update

operations, and the number of update operations.

We conducted these experiments on a cluster of 16 com-
puters where each node had 8 CPU cores of 2.8 GHz and
22 GB main memory, connected with 40-gigabit network. We
conducted evaluations using several graphs with the number
of nodes 100K, 200K, 400K, 800K, 1 million, 2 million and 4
million. In our experiments we used graphs which had random
connectivity, with average node degree of 67.

For the graph coloring problem, we used four types of
update transactions: Add Edge, Delete Edge, Add Node, and
Delete Node, where the nodes and edges were randomly
selected. We measured the time for the system to reach the
quiescent state from the point when these update transactions
were initiated. The time required for incremental computations
were separately measured for each of these types. Figure 39
shows the execution time for the graph coloring problem
for the graphs with 100K, 200K, 400K and 800K nodes.



For this problem, we consider only the add/delete edge and
add/delete node operations because the update edge operations
do not affect the result state of the initial computation. In
this problem, the number of tasks executed in the initial
computation is exactly equal to the number of nodes in the
graph, as only one task is created for each node to determine
its color, as shown in Figure 5. In contrast, in the connected
components problem, tasks are dynamically created and the
number of tasks that get executed and committed tends to be
about an order of magnitude larger than the number of nodes
in the graph.

For each of these update types, we injected transactions to
update the graph structure for two scenarios: (a) number of
update operations equal to 1% of the total number of nodes in
the graph, and (b) number of update operations equal to 1%
of the total number of edges in the graph. It should be noted
that (b) is an extreme case of incremental changes as each
node has an average degree of 67 due to which the number of
nodes updated is extremely high in (b) in comparison to (a).
We evaluated the relative performance of these two scenarios.

Figure 42 shows, for the graph coloring problem, the incre-
mental execution time for different types of update operations,
expressed as a percentage of the initial execution time. In
case of the 100K node graph, scenario (a) involved addition
(deletion) of 1000 edges, whereas for scenario (b) this number
was 33621. Since the initial computation had only 100K task
computations, addition (deletion) of 1% of edges led to almost
33% of the initial computation load. This is reflected in the
data presented in Figure 42 where we observe that for scenario
(a), the incremental computation costs are around 1-2% of the
initial computation time, whereas for the scenario (b) this cost
is around 40-45%. The incremental computation cost for the
add node operations is about 5-7% of the initial computation,
and for the delete node operations it is 11-18%. The values
obtained above for the add/delete edge operations in scenario
(a) and (b) shows that the execution time for incremental
computations is very small for small changes in the graph,
but the execution time becomes larger for large changes.

For the connected components problem, we used two types
of update transactions: Add Edge and Delete Edge. For each
of these update types, we added transactions to update 1%
of the total number of connected components in the graph.
Figure 40 shows the initial execution time for the connected
components problem for graphs of sizes ranging from 100K to
2 million nodes. In these graphs, each connected component
contains exactly 100 nodes. Therefore, the number of con-
nected components present in the graph increases with increase
in the number of nodes. Figure 43 shows the execution time
for incremental computations for different types of update
operations, expressed as a percentage of the initial execution
time. From these experiments we observe that the incremental
execution cost for the operations to add edges is less than
1% of the initial execution times, and for the delete edge
operations it is between 1% and 3%.

In another experiment for the connected components prob-
lem, we performed a fixed number of changes (0.01% of the

number of nodes) in a 1 million node graph and observed
the effect of increasing the cluster size of the connected
components in this graph from 100 nodes/cluster to 1000, 5000
and 10000 nodes/cluster. Then, we increased the fixed number
of changes from 0.01% of the number of nodes to 0.1%
and 1% of the number of nodes in the graph and performed
the same experiment. When the number of add/delete edge
operations are constant for a given size graph, the graph with
large number of smaller clusters will involve changes in less
number of nodes compared to the graph with small number
of large clusters. For example, if we perform add/delete edge
operations on 100 random nodes in the graph, then in the
graph with 100 nodes/cluster, the number of nodes affected
will be 10000 (1% of all nodes); whereas in the graph with
5000 nodes/cluster, the number of nodes affected will be
500000 (50% of all nodes), much higher than the previous
case. Therefore, the same number of operations become much
more expensive when the graph with the same number of
nodes has small number of very large clusters. Figure 41
and Figure 44 show the execution time for incremental com-
putations expressed as a percentage of the initial execution
time for add-edge and delete-edge operations, respectively.
As the number of nodes affected by the add/delete edge
operation increases and becomes comparable to (or almost
equal to) the number of nodes in the graph, the execution time
for incremental computations become as high as the initial
computations, and re-executing the graph analytics problem
would be a better alternative. But, if these changes affect only a
very small number of connected components, then incremental
computations can greatly save execution time.

Based on our experiments with the above two graph
problems,we make the following observations. The benefits
of performing incremental computations depend on several
factors, including: (1) the cost and complexity of the initial
computation; (2) cost and complexity of performing the incre-
mental computations for a specific type of update operation,
which may depend on the structure of the input graph; and, (3)
ratio of the above two measures, (1) and (2), in conjunction
with the number of different types of update operations. In
cases where the cost of performing incremental computations
becomes comparable to the cost of the initial computations,
it could be preferable to re-execute the analytics program. On
the other hand, one can benefit from the use of incremental
computation approach in most of the other situations.

Based on the experiments described above we make the
following observations. The benefits of supporting continuous
queries using incremental computations depend on several
factors. First is the cost and complexity of the baseline an-
alytics program for the property of interest. Second is the cost
and complexity of performing the incremental computations
for a query for a specific type of update operation. Third is
the volume of update operations. In cases where the cost of
performing incremental computation becomes comparable to
the cost of the initial computations, it could be preferable to
re-execute the analytics program to get the query results. In
cases when the volume of update operations is low, continuous



queries can be effectively supported through the incremental
computation approach.

VII. CONCLUSION

We have shown here how the transactional model for
parallel computing can be used for supporting continuous
queries in dynamic graph structures by utilizing incremental
computations. This model allows such incremental
computations to execute concurrently with graph updates,
thus making it suitable for performing continuous queries
on dynamic and evolving graph structures. The transactional
approach for incremental computing presented here is simple
to use. Using five graph problems we have illustrated here
the approach for developing transactional tasks to perform
incremental computations for continuous queries under
different types of updates in dynamic graph structures.
Using the transactional computing model supported by the
Beehive framework, we have demonstrated the feasibility and
benefits of utilizing this approach for eliminating the need of
re-executing an analytics program in dynamic graph structures
when the number of updates and the associated incremental
computation costs are low. The benefits of incremental
computations depend on several factors which include how
the cost of executing the incremental computations compares
with the execution of the basic analytics program based
on the nature and the number of update operations. For
small number of update in a graph structure, the incremental
computation approach provides high benefits.

Acknowledgements: This work was supported by NSF Award 1319333
and computing resources were provided by the Minnesota Supercomputing
Institute.

REFERENCES

[1] Umut A. Acar and Yan Chen. Streaming big data with self-adjusting
computation. In Proceedings of the 2013 Workshop on Data Driven
Functional Programming, pages 15–18, New York, NY, USA, 2013.
ACM.

[2] Apache. Giraph. Available at http://giraph.apache.org/.
[3] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Con-

currency control and recovery in database systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1987.

[4] Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A. Acar,
and Rafael Pasquin. Incoop: Mapreduce for incremental computations.
In Proceedings of the 2Nd ACM Symposium on Cloud Computing, SOCC
’11, New York, NY, USA, 2011. ACM.

[5] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. In Proc. of WWW’98, 1998.

[6] Zhuhua Cai, Dionysios Logothetis, and Georgos Siganos. Facilitating
real-time graph mining. In Proceedings of the Fourth International
Workshop on Cloud Data Management, New York, NY, USA, 2012.
ACM.

[7] Nicholas Carriero and David Gelernter. How to write parallel programs:
a guide to the perplexed. ACM Comput. Surv., 21:323–357, September
1989.

[8] Prasanna Desikan, Nishith Pathak, Jaideep Srivastava, and Vipin Kumar.
Incremental page rank computation on evolving graphs. In Special
Interest Tracks and Posters of the 14th International Conference on
World Wide Web, WWW ’05, New York, NY, USA, 2005. ACM.

[9] A. Fard, A. Abdolrashidi, L. Ramaswamy, and J. A. Miller. Towards
efficient query processing on massive time-evolving graphs. In Pro-
ceedings of the 2012 8th International Conference on Collaborative
Computing: Networking, Applications and Worksharing (Collaborate-
Com 2012), COLLABORATECOM ’12, Washington, DC, USA, 2012.
IEEE Computer Society.

[10] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica.
Time-evolving graph processing at scale. In Proceedings of the Fourth
International Workshop on Graph Data Management Experiences and
Systems, GRADES ’16, New York, NY, USA, 2016. ACM.

[11] H. T. Kung and John T. Robinson. On optimistic methods for concur-
rency control. ACM Trans. Database Syst., 6:213–226, June 1981.

[12] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph M. Hellerstein. Graphlab: A new framework for
parallel machine learning. In Proceedings of Conference on Uncertainty
in Artifical Intelligence (UAI), 2010.

[13] G. Malewicz, M. H. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: a system for large-scale graph processing. In
Proc. of ACM SIGMOD ’10, pages 135–146, 2010.

[14] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight
infrastructure for graph analytics. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, SOSP ’13, pages
456–471, New York, NY, USA, 2013. ACM.

[15] Anand Tripathi, Vinit Padhye, and Tara Sasank Sunkara. Beehive: A
Framework for Graph Data Analytics on Cloud Computing Platform .
In Seventh International Workshop on Parallel Programming Models and
Systems Software for High-End Computing (P2S2), held in conjunction
with ICPP’2014, 2014.

[16] Leslie G. Valiant. A bridging model for parallel computation. Commu-
nications of the ACM, 33(8):103–111, August 1990.

[17] Charith Wickramaarachchi, Charalampos Chelmis, and Viktor K.
Prasanna. Empowering fast incremental computation over large scale
dynamic graphs. In Proceedings of the 2015 IEEE International
Parallel and Distributed Processing Symposium Workshop, IPDPSW
’15, Washington, DC, USA, 2015. IEEE Computer Society.


