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Abstract—This paper addresses a fundamental search problem
in which a searcher subject to time and energy constraints tries to
find a mobile target. The target’s motion is modeled as a random
walk on a discrete set of points on the line: at each time step the
target chooses one of the adjacent nodes at random and moves
there. We study two detection models. In the no-crossing model,
the searcher detects the target if they are on the same node or if
they take the same edge at the same time. In the crossing model,
detection happens only if they land on the same node at the same
time.

For the no-crossing model, where move and stay actions may
have different costs, we present an optimal search strategy under
energy and time constraints. For the crossing model, we formulate
the problem of designing an optimal strategy as a Partially
Observable Markov Decision Process (POMDP) and solve it using
methods which reduce the state space representation of the belief.
The POMDP solution reveals structural properties of the optimal
solution. We use this structure to design an efficient strategy and
analytically study its performance.

Finally, we present preliminary experimental results to demon-
strate the applicability of our model to our tracking system which
is used for finding radio-tagged invasive fish.

I. INTRODUCTION

One-sided probabilistic search for a mobile target is a fun-
damental problem which has been studied by various research
communities since 1940s [2], [3]. In robotics, monitoring
natural environments for the purpose of biology research,
finding intruders or locating lost hikers or runaway robots,
and search-and-rescue missions are applications that can be
modeled as one-sided search problems.

In one-sided probabilistic search problems, the goal is to
design search strategies with provable performance guarantees
to find a target. The target cannot observe the searcher and
does not actively evade detection. Instead, the target’s motion
is modeled as a stochastic process. The simplest setting is
when the target moves in discrete time steps in a discrete world
consisting of only two cells according to a Markovian motion
model [4]. It turns out that even this simple variant, which is
referred to as the two-cell problem, is challenging. Pollock [4]
uses dynamic programming to derive search strategies that
minimize the expected number of looks to detect the target, or
maximize the detection probability within a given number of
looks for special cases of the two-cell problem. Wilson [5]
provide a necessary and sufficient condition on the initial
distribution of the target’s position such that a search plan
with finite expected capture time exists. Dobbie [6] studies
the continuous time motion model and solves for optimal
strategies that minimize the expected time to detection, or
maximize the probability of detection in a given time in the

hope to derive formulations that are easier to generalize to
more than two cells. Kan [7] also attempted to generalize
the problem to N cells by characterizing optimal strategies
for special cases, for example when the cells form a clique
and the target moves between all cells with equal probability.
In fact, it has been shown that the problem of detecting a
target, stationary or mobile, in a grid world within a fixed
time horizon is NP-complete [8]. As a result, approximation
methods have also been studied to tackle the problem. In this
regard, branch-and-bound methods [9], [10] and POMDP for-
mulations [11], [12] are popular. For example, Lau et al. [13]
use a branch-and-bound framework to find an upper bound on
detection probability for relatively small environments with
around 20 nodes. Hollinger et al. [11] formulate the problem
of maximizing the expected probability of finding the target at
the earliest possible time by multiple searchers as a POMDP
and use the sub-modularity of the joint discounted reward
function to provide a constant factor approximation sequential
allocation algorithm.

In this paper, we study the problem of finding a target which
is moving according to a simple random walk on a linear
graph. The target moves to neighboring nodes, i.e. to the left
or right, with a given probability (Fig. 1(a)). The searcher can
choose to stay on its current node, or move to the right or
to the left. Furthermore, we consider the effect of imposing
time or energy constraints for the searcher. Surprisingly, this
one-dimensional search problem is open despite its practical
applications and fundamental importance.

We study the problem under two detection criteria that we
refer to as the no-crossing and crossing conditions. In the no-
crossing model, the target is detected if it is on the same node
or the same edge as the searcher. One immediate consideration
for the no-crossing scenario is that in this model, the searcher
can find the target simply by moving from one end to another.
However, in real applications, such a solution is not always
applicable due to limited battery life. As a result, it becomes
crucial to design efficient search strategies by considering
the energy consumption of the searcher. The crossing model
where detection occurs only on a discrete set of nodes is more
challenging. This is because if the players cross each other
by taking the same edge in opposite directions at the same
time, the target is not detected (Fig. 1(b)). Consequently, as
the searcher sweeps the line the target might be on both sides
of the searcher.

This paper is built upon our two earlier conference publica-
tions [14] and [1] where we study the crossing model. In [14]
we proposed a class of randomized strategies. Within this class



2

q

q q p

p

p

(a)

p

(b)

Fig. 1. (a) Target’s motion model is a simple random walk: with probability
p it moves one step to the left, and with probability q = 1− p it moves one
step to the right. (b) A crossing event is illustrated: at time t, the searcher is
at node i, the target is at node i + 1, and they move toward each other by
taking the same edge in opposite directions.

we analytically solved for the optimal strategy that maximizes
the capture probability subject to energy constraints. Here,
the searcher incurs different energy costs for different actions.
In [1] we studied deterministic strategies for the case where
all actions have the same cost. We formulated the problem of
computing the optimal search strategy as finding the optimal
solution of a Partially Observable Markov Decision Process
(POMDP) [15]. Since the state space of the proposed POMDP
is large, we proposed a method based on binning the belief
with non-uniform bins and then approximating the belief
in each bin with a uniform distribution. We show that the
solutions of this POMDP exhibit an interesting structure.

This paper includes and improves on these results as fol-
lows. We study both the crossing and the no-crossing models.
For the no-crossing model, we present an analytical solution
for finding the optimal search strategy subject to energy and
time constraints, where different costs are associated to move
and stay actions. For the crossing model, we present the
formulation of the problem as a Mixed Observability Markov
Decision Process (MOMDP) [12]. We show that the solutions
follow the same structure as our approximate POMDP scheme
in [1]. We provide a closed form solution for the optimal free
parameters in the structure. Finally, we provide preliminary
experimental results to show that our models are useful in an
environmental monitoring application to search for invasive
carp.

The paper is organized as follows. We present an overview
of related work in Section II. The search problems we study
are formalized in Section III. The capture strategies for the
no-crossing model are studied in Section IV, and the crossing
model is investigated in Section V. We discuss the applicability
of our model in Section VI where we present our experimental
results. Finally, we provide concluding remarks in Section VII.

II. RELATED WORK

We already reviewed the one-sided search problem in Sec-
tion I. In this section, we focus on the literature related to
random walks. Random motions, both as discrete random
walks and continuous diffusive motions, have been extensively
studied as models of unknown animals motions or complex
physical processes [16]. In particular they are widely used in
the literature to simplify pursuit-evasion games and absorption
(or search) processes. A large number of interesting properties
closely related to searching missions are collected in [17]
including: first passage probability (the probability for the
random walker of visiting for the first time a given point
at a given time), survival probability (the probability that

the random walk has not been found at a given time) and
mean capture time (the expected time to be found). Various
characteristics of random walks in general graphs have been
studied in [18]. Examples are hitting time, which is the
expected number of steps before a node is visited, and cover
time, which is the expected number of steps to visit every node
at least once.

Although one-dimensional random walks might seem too
simple, they present several interesting behaviors and prop-
erties and are still source of open problems. The survival
probability of a particle that performs a random walk on
a chain where traps are uniformly distributed with known
concentration is studied in [19] and an asymptotically exact
solution is provided. In [20], the authors study the survival
probability of a prey on a line which is chased by more than
one diffusive predator. The same problem but in a semi-infinite
line where the boundary represents a haven for the prey is
presented in [21]. Contrary to our paper, none of these works
have addressed the capture problem restricted to constraints
on the energy of the system, or on the maximum time for the
chase.

In [23], the authors use random walks to tackle the coales-
cence problem, where the robots do not have any knowledge
about the environment or positions of other robots. Each robot
performs an independent random search and when two robots
meet, they coalesce into a cluster which then moves as a
single random walk. In [24] a group of patrolling robots
are uniformly distributed around a circular fence in order
to detect an adversary intruder. The robots are performing
simple random walks and the goal is to optimize the motion
probability that maximizes the detection probability.

It should also be noted that in our model, the searcher does
not observe the target. If the target is adversarial and observes
the searcher (a common assumption in game theoretic formu-
lations), it is easy to see that capture can not be guaranteed
in the crossing model and the entire line must be swept to
guarantee capture in the no-crossing model. If the target can
not observe the searcher, the resulting pursuit-evasion game
is known as the Princess and Monster Game. In this game,
the players are in a dark room (i.e. they can not observe each
other unless the monster captures the princess.) This game was
proposed by Isaacs [25] and solved by Gal [26] who presented
a randomized strategy to find the evader in time proportional
to the area of the environment. When the game takes place on
a graph, it is known as the hunter and rabbit game. Adler et
al. showed that the hunter can capture the rabbit in O(n log n)
time in a graph with n vertices [27]. Isler et al. studied this
game when the players have local visibility [28]. The pursuit
strategy proposed in [29] ensures capturing a target performing
a random walk on the plane by a pursuer who can observe it
at all times. Finally, in [30] the expected times required for
capturing an adversarial robber and a drunk one (performing
a random walk) is compared. Upper and lower bounds are
derived for the ratio between these two values when the search
is done on special graph structures.
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III. PROBLEM STATEMENT

In this section, we present the general formulation of the
search problem. The environment is a set of discrete locations
{0, 1, . . . , N} equally distanced along a line segment. The
searcher and the target move in turns, in discrete time steps
and with equal speed. The target starts from an unknown node,
and afterwards, it performs a simple random walk as follows:
from location 0 < i < N , with probability q it moves one unit
to the right, and with the remaining probability p = 1 − q it
moves one unit to the left1. In addition, the boundary points
0 and N are reflective (see Fig. 1(a)).

The searcher, on the other hand, starts from the left-most
node x(0) = 0. At each time step, it can decide to move to
the right, to the left or stay at its current node. Throughout the
paper, we refer to these actions as R,L, S respectively. The
searcher’s strategy Γ is defined as a sequence of these actions
a ∈ {R,L, S}. An example strategy can be Γ = (RiSjLl)∗

which is move to the right for i steps, then stay for j steps,
move to the left for l steps, and repeat forever.

We consider two different definitions for capture based on
the searcher’s sensing capabilities:

• no-crossing: the searcher can sense the target if they
occupy the same node at the same time, and also if
they cross each other by moving along the same edge in
opposite directions. Note that in this case, if the searcher
has energy/time sufficient to sweep the entire line, the
target will be captured with probability one.

• crossing: the searcher is able to sense the target only on a
node. As a result, crossing on edges, by which we mean
taking the same edge in opposite directions, will not lead
to capture (see Fig. 1(b)).

As we will see later, the searcher’s belief about the target’s
location exhibit very different behavior for these two models.

The searcher starts with an initial energy budget E0. For
each action a, the searcher pays a cost which represents the
energy required to perform the action. Let us denote the total
energy change associated with action a by cost(a). For the no-
crossing model (Section IV) we allow different cost values for
move and stay actions, and for the crossing model (Section V)
we consider the special case where all actions have the same
cost. In addition to the energy constraint, we consider also a
maximum time T to complete the task. The objective of the
searcher is to design a capture strategy that maximizes the
probability of capture given the initial energy budget E0, the
costs for performing each action, and the maximum search
time T :

max
Γ

Pc(Γ = a1a2 · · · ak) s.t. (1)

0 ≤ E(t) = E0 +

k∑
i=1

cost(ai) (2)

k ≤ T , (3)

1Throughout the paper, we mainly focus on the case of a symmetric random
walk, i.e. q = p = 0.5, but most of our results can be easily extended to
other values of p and q as well as to the case of a non-zero probability of
staying at the current node (i.e. when 1− q − p 6= 0).

where Γ = a1a2 · · · ak is the searcher’s strategy and Pc(Γ)
denotes the corresponding probability of capture. In the fol-
lowing we first study the problem of designing Γ for no-
crossing model in Section IV and then in Section V we
investigate the crossing model.

IV. SEARCH STRATEGIES FOR THE NO-CROSSING MODEL

In this section, we focus on the no-crossing case. Disregard-
ing any constraint on time or energy, the most intuitive strategy
would be to simply sweep the entire segment without stopping,
i.e. the RN strategy. The corresponding probability of capture
would be trivially one and, as we will show, the mean capture
time is O(N2 ). However, the optimal strategy is not trivial
when either the limited energy budget or restricted search time
do not allow a complete sweep of the line segment. In fact, we
show that by optimally combining the number of move and
stay actions, the searcher can exploit the diffusive properties of
the target and significantly increase the probability of capture.
In what follows, we provide an analytical solution for this
problem.

Let us start our analysis considering the energy constraint.
In our model the searcher spends a certain amount of energy
cm to move, and a lower energy cs to maintain its position,
i.e. cost(L) = cost(R) = −cm and cost(S) = −cs on all
nodes along the line, with cm ≥ cs > 0. The problem we
wish to solve is: what fraction of energy should be employed
in waiting for the target to hit the searcher itself by staying in
the same node. The second non-trivial challenge here is how
to distribute these wait actions during the mission. We address
the second challenge using the following proposition:

Proposition IV.1. Let Γ1,Γ2 be two different searcher strate-
gies and x1(t), x2(t) the location of the searcher at time t
when executing Γ1 and Γ2 respectively. Then:

x1(t) ≥ x2(t) ∀t ⇒ Pc(Γ1) ≥ Pc(Γ2) ,

where Pc(Γi) is the capture probability executing the strategy
Γi.

This proposition can be justified observing that the searcher
captures the target if they cross each other. Therefore, any
target captured by the strategy Γ2 is captured also by the
strategy Γ1 with probability one.

Proposition IV.1 has two immediate consequences: 1) the
left action is never useful and 2) given a set of NR movements
and NS stay actions, the best strategy is to move NR steps to
the right and then spend NS time steps waiting at x = NR.
In other words, given NR and NS the sequence of actions is
fixed, i.e. RNRSNS . Therefore, the energy constraint (2) can
be expressed as a function of the total number of movements
NR and stationary keeping actions NS :

cmNR + csNS = E0 . (4)

Once that the structure of the strategy is fixed, the only
optimization variable is the final searcher position NR, since
we can express NS in terms of NR and E0 using (4). The
next step is to obtain an analytical expression of the capture
probability Pc as a function of NR. The capture probability
can be expressed as:
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Pc = Pm + (1− Pm)Ps , (5)

where Pm is the probability that the target is captured while
the searcher is moving to the right (at t ≤ NR), and Ps is
the capture probability as the searcher is waiting at the node
NR for the remaining NS time steps. We analyze these two
components separately: waiting at a given node and moving
in one direction.

Static Searcher: We now focus on computing the capture
probability while the searcher is staying at a given node (Ps).
Instead of directly computing Ps, we consider the survival
probability P̃s of a random walker moving in a bounded
environment with an absorbing boundary at x = 0. The
probability Ps is simply Ps = 1 − P̃s. Even though the
exact analytical expression is very complicated (see [17] for
the result in a circular environment), it can be shown that
the leading term in P̃s(t) decays exponentially in time, i.e.
P̃s(t) = e−t/τ . Moreover, the characteristic time of decay τ
can be approximated with the expected capture time tn, which
is defined as the expected time for the random walk to reach
x = 0 starting from the initial position x = n ([17], Chapter
2). This quantity can be expressed recursively as follows:

tn = p(tn−1 +1)+s(tn+1)+q(tn+1 +1) , n = 1, ..., N−1 ,

where the time-step is one and s = 1− p− q. The boundary
conditions are t0 = 0, and dtn

dn |n=N = 0 which correspond to
absorption at x = 0 and reflection at x = N respectively. For
a symmetric random walk the previous equation becomes:

tn = p(tn−1 + 1) + (1− 2p)(tn + 1) + p(tn+1 + 1) . (6)

The solution of the previous recursive relation is:

tn = A+Bn− 1

2p
n2 ,

where n is the initial target position and A,B are constants
imposed by the boundary conditions. In our case the solution
becomes:

tn =
n

2p
(2N − n) .

Since we do not know the initial target position, we compute
the expected value t〈n〉 assuming a uniform probability distri-
bution for the initial location of the target. The result is:

t〈n〉 =
N2

2p
− 1

2p

2N2 + 3N + 1

6
=

4N2 − 3N − 1

12p
.

Substituting p = 1
2 , the leading term of the capture probability

becomes

Ps(t) = 1− P̃s(t) ≈ e
− 6t

4N2−3N−1 . (7)

The approximation in (7) is compared with the average capture
probabilities obtained from simulation2 in Fig. 2(a). As shown
in this figure, our expression closely approximates the capture
probability Ps.

Moving Searcher: We now present our approximation for
the probability of capturing the target while the searcher is

2All the results obtained by simulations are averaged on 104 trials.
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Fig. 2. Comparison between the capture probabilities obtained from sim-
ulation (red dashed line) and our analytical approximation (blue line), for a
segment composed of N=50 nodes. (a) for Ps using (7), and (b) for Pm using
(8).

moving to the right, i.e. Pm. In this case, the survival proba-
bility of the random walk strongly depends on the searcher’s
motion. Let Xp(t) = tα be the searcher’s equation of motion,
whenever α > 1/2 the target motion can be considered sub-
dominant. In our case, α = 1 and the target is almost static
from the searcher point of view. A first consequence of this
phenomenon is that the mean capture time is linear in the
initial target position, instead of quadratic as in the case of
a stationary searcher. In particular, similar to (6), it can be
shown that:

tn = p(tn−2 + 1) + (1− 2p)(tn−1 + 1) + p(tn + 1) ,

which has the solution:

tn = A+B

(
p

p− 1

)n
+ n .

Therefore, the expected value t〈n〉 is linear in N . Another con-
sequence is that the capture probability can be approximated
with the probability that at time t = 0 the target is within the
region that will be swept. As a result, we can approximate Pm
by:

Pm ≈
NR
N

. (8)

The comparison between the approximation in (8) and the
capture probabilities obtained from simulation is shown in
Fig. 2(b).

Now that we have approximations for Ps and Pm, we are
ready to find the value of NR that maximizes the total capture
probability Pc (5). Using (7) and (8), we have:

Pc ≈ NR

N
+

(
1− NR

N

)(
1− e

NS
t〈n〉

)
(9)

=
NR

N
+

(
1− NR

N

)(
1− e

− 6(E0−cmNR)

cs[4(N−NR)2−3(N−NR)−1]

)

Note that NR ≤ Nmax
R = E0

cm
. Also, Pc is continuous in the

closed and bounded interval [0, Nmax
R ]. Therefore, Pc admits

a maximum value.
The total capture probability Pc computed by our approx-

imation in (9) is compared with the values obtained from
simulation in Fig. 3(a)-3(c). In this scenario there are N = 50
nodes on the line, the initial energy budget is fixed to E0 = 50,
and the cost for moving is cm = 2. Three different values of
the cost cs are considered. We see that with these values the
solution of the optimization problem is not trivial and the best
final searcher position NR∗ is 0 < NR

∗ < Nmax
R .
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Fig. 3. Comparison between the approximations of the total capture prob-
abilities (blue line) with the behaviors obtained in simulation (red dots) in
function of the swept region NR. The values considered are N = 50,
E0 = 50, cm = 2 and cs = 0.03, 0.05, 0.07 for (a), (b) and (c) respectively.
(d) Behavior of the capture probability for the two limit cases: cs → 0 (in
green, with dots) and cs ∼ cm (in blue line). The other parameters are fixed
to: N = 50, E0 = 20, cm = 2.

Fig. 3(d), shows the optimal strategy obtained from (9) for
the two limit cases. In the first case, moving is too expensive,
i.e. cs

cm
→ 0. Here, the best strategy is simply wait in the

initial position, so NR
∗ = 0. In the second case, moving

and station keeping have the same cost, i.e. cs ∼ cm. The
best choice for this case is to keep moving without any stops,
which corresponds to NR∗ = Nmax

R . These two cases are in
agreement with our intuition about the best strategy.

Time Constraint: So far, we studied the problem con-
sidering only a constraint on the total available energy. Let
us now assume to have also the constraint (3) on the time
to terminate the mission. Therefore, in addition to (4), the
following constraint has to be satisfied:

NR +NS ≤ T . (10)

To find the optimal value of NR under this new constraint
we consider three different cases (recall that cm ≥ cs > 0):

• T > Nmax
S = E0

cs
: The search time T is greater than

the maximum duration of the task allowed by the energy
constraint. In other words the time constraint (10) is not
active and the solution is the same as the one presented
for the energy constraint.

• T < Nmax
R = E0

cm
: The available search time T does

not allow the searcher to consume all the energy budget.
Therefore, waiting at a node will hurt the capture prob-
ability (this is a consequence of Proposition IV.1). Thus,
the solution here is spending the search time only for
moving to the right without any stop actions.

• Nmax
R < T < Nmax

S : This is the most interesting
case and we show that this case can be translated to a
constraint on NR. Indeed, there exists a N̂R < Nmax

R

such that{
N̂R +NS = T

cmN̂R + csNS = E0

⇒ N̂R =
E0 − csT
cm − cs

.

Therefore, for all values of NR that are less than N̂R the
searcher will not be able to use all the available energy.
In other words, each time that NR is decreased by one
unit, NS can be increased only by one unit because of the
time constraint. Thus, for NR < N̂R the actual cost of
staying becomes equal to the cost of moving. However,
we know that in this case employing energy to wait will
decrease the capture probability (Proposition IV.1). As a
result, we can state that:

P (NR) < P (N̂R) , ∀NR < N̂R .

In terms of the optimization problem, the previous result
simply restricts the search domain from [0, Nmax

R ] to
[N̂R, N

max
R ].

V. SEARCH STRATEGIES FOR THE CROSSING MODEL

In this section, we study the crossing case, i.e. when capture
is possible only if the searcher and the target are at the same
node at the same time. Traveling along the same edge as the
target does not count as capture in this model. As a result,
at any time the target can be on both sides of the searcher.
This makes the problem of analyzing the capture probability
challenging even when the search strategy is given. We start
by presenting a method for computing the capture probability
of a given strategy in Section V-A. The calculation is later
used to compare the performance of the proposed search
strategies. To find the optimal search strategy, we formulate
the problem as a POMDP in Section V-B. As it is well-
known, the POMDP can be converted to a MDP by considering
the searcher’s belief, i.e. the probability distribution that the
target is on each node, as the states. The resulting state space
is large: it is exponential in the number of nodes. To deal
with curse of dimensionality, we present two approximation
methods. We refer to the first method as the belief-binning
method. In this method, the intuition is that the shape of
the belief at farther points is less important for the searcher
in picking the best action at its current position. This is
because by the time that the searcher reaches those points,
the shape of the belief will change. In the second method,
the problem is formulated as a Mixed Observability MDP
(MOMDP) [12] where the fully observable variables of the
state are separated from the partially observable ones. In both
methods, the planning is done in a lower dimensional space.
The two methods approach the problem differently and provide
approximate solutions. However, both of them reveal a similar
structure in their solutions (Section V-C). We analyze the
performance of the strategies in this particular structure in
closed form (Theorem V.1). We present the details of this
analysis in the Appendix. We use this analysis to find the
best set of parameters within the structure, and propose our
final solution which is given in Table III.

Throughout this section, we focus on the special case in
which the cost of station-keeping is equal to the cost of
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moving, allowing further reduction of the state space by
avoiding energy level discretization. Essentially, both moving
and station-keeping actions require a unitary cost both in time
and energy, and so the initial energy budget E0 translates
into a time budget T . In summary, instead of the optimization
problem (1)-(3), in this section, our goal is designing a capture
strategy of length T that maximizes the probability of capture:

max
S

Pc(Γ = a1a2 · · · ak) s.t. k = T . (11)

A. Capture Probability of a Given Strategy

To compare different search strategies given the crossing
model, we first show how the probability of capture for a
given strategy can be computed. Let us denote the searcher’s
location at time t by s(t) and the target’s location by e(t).
The target is initially at e(0). The searcher is performing the
strategy Γ given as a sequence of actions R, L and S. Fig. 4
shows an illustrative example of the location of the searcher
for a specific strategy, and the target for a specific random
walk path as a function of time.

We are interested in computing the probability of capturing
the target at time t denoted by Pc(t). The capture events are
those that the searcher and the target are at the same position at
the same time. Thus, we must consider the target’s paths that
end up at s(t) at time t, i.e. e(t) = s(t). Counting the events
that the target starts at e(0) and reaches s(t) at t is not too
difficult. However, we cannot simply sum up the probability
of these events to obtain Pc because they include overlapping
capture events with e(k) = s(k) for multiple values of k ≤ t.
First, we must only count the events such that the target has
not been captured sooner than t. Second, since crossing is
allowed, path interactions such as the one marked by the arrow
in Fig. 4 do not count as capture. In order to tackle these two
challenges, we look at the searcher’s path s(t) as a piecewise
constant function. That is, s(t) is composed of a set of time
intervals [tk, tk+1) such that s(t) is constant in [tk, tk+1) and
has the value sk (the searcher is staying at sk in [tk, tk+1)).
In Fig. 4 the searcher is at sk−1 in the time interval [tk−1, tk).

In order to compute Pc(t), we take a divide and conquer
approach to recursively compute the target paths that yield
capture at time t but are safe before t. By safe we mean that
the target has not been captured before time t. To do so, we
consider the intervals before t. Each time-interval acts as the
basis in our divide and conquer method, and we can employ
them to overcome the two issues mentioned above as follows.
Since in each interval s(t) is constant we do not have the
crossing events such as the one marked by the arrow in Fig. 4.
We also can enumerate the target paths that co-locate the target
and the searcher for the first time at t by counting the target
paths that are completely to the left or to the right of si during
[ti, ti+1) for ti < t. This enables us to compute the capture
events using recursive equations as follows. Let us introduce
the following probabilities:
• Psafe(x, t): the probability that the target safely arrives

at location x at time t. Here safe refers to the fact that
the target has not been captured before time t.

• Psafe(x1, tk, x2, tk+1− 1): assuming that the target is at
x1 at time tk, Psafe(x1, tk, x2, tk+1−1) is the probability

location (x)

x
crossing event

y

e(0)

time

sk−1

sk

tk−1

2

0

N

tk tk+1t

Fig. 4. The position of the players as a function of time. The target’s path is
shown in dashed lines. The time marked by the arrow is not capture because
crossing is allowed.

that it safely reaches x2 at time tk+1− 1. Notice that the
target has to stay either to the left, or to the right of sk
during [tk, tk+1) in order to avoid capture and remain
safe. Referring to Fig. 4, the target paths must be either
below or above sk at [tk, tk+1). Note that this function is
different from the previous one in the sense that it counts
the safe events in a single interval [tk, tk+1).

• F (x1, x2, t): the probability that for the first time the
target reaches at x2 after t time steps starting from x1

(first passage probability).
• G(x1, x2, t): the probability that the target starts at lo-

cation x1 and reaches at x2 after t time steps (not
necessarily for the first time).

Our goal is to compute Pc(t), the probability of capturing
the target at time t. First, we consider the time interval
[tk, tk+1) that t belongs to. See Fig. 4. Let x be the target’s
position at time tk − 1. The searcher is at sk−1 at [tk−1, tk).
The capture events can be described as follows: The target
safely arrives at x at time tk − 1, i.e. Psafe(x, tk − 1) and
then, from x it reaches sk for the first time after t − tk + 1
time steps:

Pc(t) =
∑
x

Psafe(x, tk − 1)F (x, sk, t− tk + 1) .

The safe events Psafe(x, tk − 1) can be obtained from the
following recursive equations:

Psafe(x, tk − 1) =
∑
y

Psafe(y, tk−1, x, tk − 1)Psafe(y, tk−1)

The probability function Psafe(x1, tk−1, x2, tk − 1) is com-
puted as follows:

Psafe(x1, tk−1, x2, tk − 1) = G(x1, x2, tk − 1− tk−1)

−
tk−1−tk−1∑

t=0

(F (x1, sk−1, t)G(sk−1, x2, tk − 1− tk−1 − t))

In other words, the events that the target crosses sk−1 (second
term in r.h.s. of the equation above) are excluded from the
total number of events (first term in r.h.s. of the equation
above). Notice that the searcher is at sk−1 in the time interval
[tk−1, tk).

Finally, computing G(x1, x2, t) and F (x1, x2, t) is straight-
forward and we refer the interested reader to [17] for the
corresponding equations.
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B. Partially Observable Markov Decision Process

In this section we present the formulation of the problem
in (11) as a Markov Decision Process (MDP) [31]. We start
by a brief overview of MDPs. An MDP is described by a
tuple (S,A,O, T ,R) where S is the set of possible states,
A is the set of actions, T is the probability of transitioning
between the states as a result of performing each action, and
R is the reward collected for each transition. Here T and R
are represented as matrices.

The states of the MDP could be defined as (s, e) where
s is the position of the searcher and e is the position of the
target. However, we cannot use this setup for the states of
the MDP since the location of the target is not observable
to the searcher. The searcher’s only observation is that it has
not captured the target yet. Therefore, our problem is in fact
a Partially Observable Markov Decision Processes (POMDP).
However, we can convert it to an MDP by defining the states
as the searcher’s belief about the target’s location [15]. The
goal is to find the policy that maximizes the reward collected
by the searcher upon execution of the policy. The following
are the sets which define our MDP (Fig. 5):

• The states are defined as (B,E, s) where B is the belief
of the searcher about the position of the target, E is the
current energy of the searcher and s is the current position
of the searcher. Here B is represented as the probability
vector B = [p0, p1, ..., pN ] where pi is the probability that
the target is at position i given that it is not captured yet.
A set of terminal states is given by {scapture, sno−energy}
where scapture denotes the capture state, and sno−energy
denotes the state in which the robot runs out of energy.

• The set of actions that the searcher can perform in each
state are: stay at its current position, move one step to
the left, or one step to the right.

• The transition probability matrix with entries P (si, sj , a)
that represent the probability that the searcher transitions
to state sj by performing action a in state si.

• The reward matrix which represents the transition reward
from state si to state sj after performing action a.

In the following, we describe the details of the state space
and the proper definition of the reward function. We leave
the calculation of the probability transition matrix since it is
straightforward.

Method 1: The belief-binning approximation method
Initially, the searcher starts from the location x = 0. The
searcher begins its mission with no information about the

capturesc
P (R, capture)

P (L, capture)

P (S, capture)

1− P (R, capture)

1− P (L, capture)

1− P (S, capture)

Fig. 5. MDP state transitions. In the current state sc, by performing a ∈
{R,L, S}, with probability P (a, capture) the searcher captures the target
and with the remaining probability the next state will be sn.

Fig. 6. Blue is the actual belief and red is its approximation by bins. The
searcher is at x = 14.

position of the target (except that the target is not captured yet).
Therefore, the initial belief vector is the uniform probability
distribution over [0, N ].

Note that the number of states will be exponential in the
number of discrete levels used for representing the probability
vector B = [p0, p1, ..., pN ] (with the exponent equal to N ,
the size of the environment). To deal with this problem, one
method is to approximate the belief by a specific function
which can be represented by a small number of parameters.
However, this approach cannot be applied to the crossing case
directly, because here the belief is not a smooth function. A
sample of the searcher’s belief is shown in Fig. 6.

Intuitively, the value of the belief at the nodes that are far
away from the searcher’s current position is not effecting the
best action. Based on this observation, we represent the belief
by bins with exponentially increasing width as follows. There
are two bins with width 2i that start at nodes s+2i and s−2i

respectively (0 ≤ i ≤ log(N)). The approximate belief in
each bin is uniform. To compute its value we first compute
the cumulative belief in each bin and then we take the average
of this cumulative value in the corresponding bin. Finally, we
assign the closest discretization level to the average value as
the bin value. An example is shown in Fig. 6.

The reward matrix: As expressed in (1), we are looking for
the strategy that maximizes the probability of capture. In order
to associate the value of MDP states with the probability of
capture, the reward function is defined as follows. The transi-
tion reward from all states (except scapture and sno−energy) to
the capture state scapture is one. All other transition rewards
are zero. The state values of the aforementioned MDP is an
approximation of the probability of capture. Therefore, the
strategy that maximizes the state values, i.e. the solution to
the MDP, is in fact the one that maximizes the probability of
capturing the target.

The solution technique: Finally, we use finite-horizon MDP
implementation available in INRA MDP MATLAB Tool-
box [32] which uses backward induction algorithm. The num-
ber of stages is set to T , the time constraint. The terminal
reward is set to zero for all states except scapture which is set
to one.

Method 2: The MOMDP approximation method
An alternative approach to tackle the large state space of our
problem is to formulate the problem as a Mixed Observability
MDP [12]. In this formulation, the state components that are
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Fig. 7. Cumulative probability of capture obtained from Section V-A. Here
N = 40.

fully observable are separated from the ones that are partially
observable. As a result, the belief is maintained on a smaller
set of variables, and the size of the state space can be reduced
significantly.

More specifically, a MOMDP is specified as a tuple
(X ,Y,A,O, Tx, Ty,Z,R) where X represents the set of
fully observable components, Y represents the set of partially
observable components, and A,O are the set of actions and
observations respectively. The function Z(o, s, a), similar to
POMDPs, gives the conditional probability of observing o
after performing action o and moving to the state s. The
function Tx(x, y, a, x′) represents the probability that after
taking action a in state (x, y) the fully observable state com-
ponent x makes a transition to the new value x′. Similarly, the
function Ty(x, y, a, y′) gives the probability that the partially
observable component has the new value y′. The belief is then
represented as (x, by) where by is the belief defined only for
the y component.

Adopting the MOMDP formulation to our problem, the
searcher’s position and also the time budget are fully observ-
able while the target’s location is partially observable. We use
the Approximate POMDP Planning (APPL) toolkit which is
available at [33]. The APPL toolkit combines MOMDP with
SARSOP which is a point-based POMDP algorithm [12]. In
this approach a set of points are sampled from the belief space
and these samples are used as an approximate representation
of belief. Exploiting these samples, a belief tree is maintained
with the initial belief as the root node, and the subtrees that
will never be visited by the optimal policy are pruned out.
In order to estimate the optimal value function V ∗ a piece-
wise linear lower bound V and also an upper bound V are
maintained. To improve these bounds, the algorithm applies
Bellman backup operation until convergence is achieved.

C. Simulation Results

We are now ready to solve for the search strategies using
the proposed formulations. We consider three cases: 1) T is
enough for at least two sweeps of the line, i.e. T > 2N ;
2) T ≤ 1.5N ; 3) 1.5N < T ≤ 2N . In the first case,
we present intuitive strategies and show that they guarantee
a high probability of capture. In the remaining cases, we
provide the strategies obtained from the MDP formulations.
The simulations for the MDP formulations are done on a Dell

Poweredge 6950 machine with 14GB memory. In the belief-
binning approach, we used 50 levels for discretizing each bin.
Thus, if there are n bins, the number of possible states would
be 50n. In the MOMDP method, we let the solver run until
a target precision3 less than 0.001 is reached or a timeout
happens after 3 hours of execution.

When Time is Enough for Two Sweeps
In this case, the searcher has enough time for at least two
sweeps T > 2N . We start by considering the case that T =
2N + 1. One intuitive strategy is to sweep the whole line
twice. However, if the searcher moves all the time, the parity
of its distance to the target will never change, unless the target
does a stay action at one of the boundary points (Fig. 1(a)).
This is because, at other points, the target always moves one
step to the right or to the left, and thus its distance to the
searcher changes by two. Therefore, we add a wait step in
order to increase the probability of capture in the event that
the target starts from an odd node. We call this strategy the
Sweep strategy: the searcher moves all the way to the right,
waits for one step at the last point N and then moves back to
the left toward the first node (RNSLN ...).

We also analyze a second strategy, which we call
StopAndGo: the searcher moves for one step, then waits for
one step and so on (RSRS...).

The probability of capture for these two strategies is com-
puted using the analysis in Section V-A. Fig. 7 depicts the
cumulative probability of capture for N = 40. As shown in
this figure, these strategies achieve a very high probability of
capture: 0.95 and 0.90 for Sweep and StopAndGo respectively.
Since the highest possible performance for the probability of
capture is one, we choose the Sweep strategy as our best
strategy for this case. Notice that for larger values of T > 2N
we can repeat the proposed strategy until time exceeds T .

When Time is less than 1.5 sweeps
In this case T ≤ 1.5N . The strategies found by the two
approximation methods for N = 20 and N = 31 are shown
in Table I and Table II respectively.

A first interesting result is that, as shown in these tables,
the solutions have a common property: the stay actions are
uniformly distributed among the right actions. In other words,
the strategies are of the form (RkS)m. Let us refer to this class
of strategies as the uniform strategies. Table I and Table II also
present the best uniform strategy for the same values of N and
T which are obtained by changing the number of rights k in
each group of (RkS) and computing the probability of capture
using the analysis in Section V-A. Observe that the uniform
strategy is very close to the solutions found by the two MDP
methods.

To compare the belief-binning and the MOMDP perfor-
mance, observe that for N = 20 in Table I the solutions
of belief-binning method are all better than the MOMDP in
terms of capture probability. This is true also in Table II for
for N = 31 and T = 14, 24. However, for T = 35, 44 the
MOMDP solution outperforms the belief-binning strategies
which is due to the error corresponding to the resolution in

3Target precision is a function of |V − V | for the set of samples in the
SARSOP method.



9

T = 9 T = 14 T = 19 T = 24 T = 29

Belief-binning strategy RSR2SR3S (RS)2R3S(R2S)2 (R3S)4R2S R2SR3S R2SR3S(R2S)3

(R2S)3(R3S)2 (RS)2R3SR2SRS
Belief-binning capture probability 0.2966 0.4201 0.5711 0.6991 0.8020

Uniform strategy (R3S)2R (R3S)3R2 (R5S)3R (R3S)6 (R2S)9S2

Uniform capture probability 0.2971 0.4294 0.5642 0.7095 0.8031
MOMDP strategy (R2S)2RSL R2SR3S(R2S)2L R2S(R3S)3R2SL R2S(R3S)4R2S2L (R2S)6(R3S)2S2L

MOMDP capture probability 0.2179 0.3787 0.5323 0.6633 0.7873
TABLE I

THE MDP SOLUTIONS FOR N = 20.

T = 14 T = 24 T = 35 T = 44

Belief-binning strategy (R2S)3R4S R3SR5SR3SR6SR2S R30S5 RS3R19SR3SR2S(RS)2

Belief-binning capture probability 0.2830 0.4625 0.58 0.675
Uniform strategy (R3S)3R2 (R3S)6 (R4S)7 (R2S)14R2

Uniform capture probability 0.2818 0.4656 0.6638 0.787
MOMDP strategy R2SR3S(R2S)2L R2S(R3S)4R2S2L R2S(R3S)2(R4S)3R5S3L RS(R2S)10R6SR2S2L

MOMDP capture probability 0.2421 0.4219 0.6333 0.7651
TABLE II

THE MDP SOLUTIONS FOR N = 31.

binning levels. On the other hand, the MOMDP solutions
exhibit the uniform structure in all instances which makes
MOMDP a more suitable approach for larger values of N
and T 4.

Next, we focus on the problem of finding a good uniform
strategy. In fact, we would like to find the correct number
of right actions before each stay action and optimize k. In
order to find the best k, we take the following approach. We
first derive closed form equations to approximate the capture
probability of (RkS)m. Our approximation is applicable for
k ≥ 3. Therefore, we use it to find the best k ≥ 3. We
then compare this best solution with k ∈ {1, 2} both in
simulations and also using our analysis (Section V-A). From
this comparison, we conclude our proposed optimal strategy
of the form (RkS)m.

The following theorem, presents the aforementioned closed
form. We present the details of the proof in the appendix.

Theorem V.1. The probability of capture for the strategy
(RkS)M where T = M(k+1) and 3 ≤ k can be approximated
as:

Pc ≈

{
M(k+2)

2N = T+M
2N if Mk < N

T+M−1
2N if Mk = N

(12)

Therefore, for a given T the capture probability is maximum
when M takes its largest possible value. That is the optimum
number of rights in each group of RkS is k = 3 when k ≥ 3.

Next, let us compare the performance of k = 3 with
k ∈ {1, 2}. Fig. 8 shows this comparison for the following
strategies: (RS)35 and N = 35, (R2S)17 and N = 34,
(R3S)12. This comparison suggests that the performance of
(R2S)m is comparable to the other uniform strategies and
sometimes it is the best. Thus, we pick (R2S)m as our
proposed strategy when T < 1.5N .

When Time is greater than 1.5 sweeps
Let us now investigate the case that 1.5N ≤ T < 2N . We

4Note that the APPL toolkit can handle instances where N < 100 and
T < 40.
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Fig. 8. Comparison of uniform strategies (RkS)m. Here N = km to prevent
extra R at the end of the strategy.

compare four strategies. The first one is the Sweep strategy
we introduced earlier. Then, we define the following strategies:
• (R2S)

N
2 (L2S)m: repeat the pattern R2S until the

searcher is at node N , then repeat the pattern L2S for
the rest.

• (R3S)kLm: repeat the pattern (R3S) until the searcher
is at node N , then move back to the left.

• RightLeftRight: move to the right for 3N
4 , then turn

back and move to the left for N
2 , and then move to the

right for the rest of time-steps.
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Fig. 9. Comparison of four strategies when 1.5N < T for N = 72 obtained
from simulation.
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As shown in Fig. 9 for N = 72, the performance of
(R2S)

N
2 (L2S)m is better for T < 120, and then afterwards

the Sweep strategy becomes better. It is worth emphasizing
that both are above 0.81 after time 120. We observed the same
behavior for N = 30 and N = 54. Thus, we declare both of
them as our candidate strategies for the case that 1.7N < T .
When 1.5N < T < 1.7N , we consider (R2S)

N
2 (L2S)m our

best strategy.
A summary of the best strategies found for different cases

is depicted in Table III.

Best Strategy
2N < T Sweep

1.7N < T ≤ 2N Sweep

1.5N < T ≤ 1.7N (R2S)
N
2 (L2S)m

T ≤ 1.5N (R2S)m

TABLE III
SUMMARY OF THE PROPOSED BEST STRATEGIES FOR DIFFERENT CASES.

VI. EXPERIMENTAL RESULTS

The proposed search strategies can be employed in many
robotics applications e.g. border patrolling. Our motivating
application is our ongoing project on an environmental mon-
itoring problem: finding radio-tagged common carp. In the
absence of any information about the movement of the fish,
one can model the fish as an adversary target or a random
moving target. We study the former model in [34] while in this
paper we consider the latter model, i.e. the random walking
motion model. We conduct our experiments in Minnesota
lakes instead of rivers for the following reasons. In addition
to safety reasons for our autonomous robots, we expect that
considering a 1D search path is a reasonable assumption for
this application because these fish tend to move near the shore
(where there is more vegetation) most of the time [35]. See
Fig. 11 for an illustration.

In this section, we present preliminary results which are
mainly focused on modeling. First, we provide evidence that
taking measurements on a discrete set of nodes produces reli-
able detection. In particular, as the robot stops and turns off its
motor, the noise interference which is a main reason for false
positives is reduced. It must be noted that an important feature
of our system is the directional sensitivity of the antenna. That
is, our sensor must be aligned with the target for maximum
signal strength received from the target. As a first approach,
we chose to rotate the antenna and take measurements at
multiple orientations when the robot is stopped. This simplifies
the modeling as we no longer need to model the antenna
orientation. We present results from the summer months using
Autonomous Surface Vehicles (ASV) and winter months using

Fig. 11. The target is performing a random walk on a corridor of width
equal to the sensing range (red dotted path). The searcher moves on the
corresponding line segment (blue path).

an Autonomous Ground Vehicle (AGV). In practice, the AGV
will be used over frozen lakes, while the ASV is used in
the summer. Finally, it must be noted that in the case of
ASVs the ratio of movement cost to stationary keeping cost
is cm/cs = 5.7/0.2 while in the case of AGVs the stationary
keeping has zero cost.

A. ASV: System Description

Our first system, shown in Fig. 10(a), consists of two
Autonomous Surface Vehicles (ASVs) carrying radio tracking
equipment. The ASVs are built on boats manufactured by
OceanScience [36] and were originally designed for remote
operation. We added autonomous navigation with on-board
GPS, digital compass and laptop, wireless communication via
ad-hoc networking and remote override capabilities [37].

For our experiments, one of the ASVs was designated as
the searcher robot and the other used as the random-walking
target. The searcher robot (the red boat in Fig. 10(a)) was
equipped with a directional antenna (Fig. 10(b)), real time
spectrum analyzer, and a laptop to process and track signals.
The target robot (yellow in Fig. 10(a)) had a radio tag attached
to a tow line. The radio tags transmit a low-power, uncoded
pulse on a unique frequency approximately once per second.
The antenna is directionally sensitive. To detect nearby tags,
the antenna must be aligned with the tag. Our experiments are
performed in Lake Staring, Minnesota.

B. ASV: Experiment Details

In the following experiment, the searcher sweeps an L-
shaped corridor of length 320m as shown in Fig. 10(c). For
safety reasons, we use this short length in order to keep the
ASVs within the communication range.

The searcher sweeps the path from the first node to the
last node such that after uniform time intervals it turns off its
motor and takes measurements by rotating the antenna. This
will give us a comparison between the signal strength during
motion versus waiting, and ultimately the effect of the noise
interference from motor. In the following plots, we use the
propeller speed as an indicator of the time intervals that the
boat has turned off its motor.

Fourteen radio frequencies (corresponding to known tags
which were not included in the trials) were monitored for
transmissions, while the target transmitted only at frequency
49611 Mhz. Notice that in a realistic search for a target, the
target frequency is unknown. Therefore, we need a comparison
between the true and a noise frequency that we know it is not
present in the trial.

To determine detection, we use the following method. For
each frequency that the antenna is listening to, let m and
σ be the corresponding mean and variance for the signal
strength respectively. Also, let f be the current signal strength.
Consider the following criterion for all frequencies:

f −m
σ

(13)

There will be four cases:
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(a) (b) (c) (d)

Fig. 10. (a) Two ASVs used in field experiments. The tracking equipment are installed on the boat that acts as the searcher. (b) The directional antenna used
for sensing the target. (c) The experiment area which includes 9 nodes with distance 40m (total length is 320m) along an L-shaped path. (d) The Husky
A100 as our AGV.

1) One particular frequency has a sharp rise in f−m
σ while

others do not. We declare detection for this frequency.
2) All frequencies have a sharp rise in f−m

σ . This case is a
false positive because in a realistic situation we cannot
differentiate between a possible detection from a nearby
tag and the background noise.

3) No frequencies have a rise in f−m
σ . Then, that is a non-

detection.
4) There is no rise in f−m

σ , but the tag is close-by. Then,
this is a false negative. Since the antenna is directional,
false negatives are caused by mis-aligned antenna.

Fig. 12 depicts the signal strength for the frequencies
associated with target (tag number 49611) and tag number
49124 that is not present in the trial. First, observe that the
signal strength for both frequencies drops considerably as the
robot stops and turns off its motor (zero speed intervals in
Fig. 12).

Second, notice the peak in the strength for 49124 KHz
marked by t6. Observe that according to criterion in (13)
we would declare a detection which is clearly wrong as no
transmitters for 49124 KHz were present. Also, this makes
the target detection at time t4 an uncertain detection. This
instance is in favor of our crossing model. That is, we must
turn off the motor on a discrete set of nodes in order to reduce
the noise interference from motor and avoid false positives.
Similar false positives and negatives were observed to occur
on both the ASV and AGV platforms.
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Fig. 12. The Signal Strength (SS) for the target tag (49611 KHz) and 49124
KHz that is not present in the trial. Also, the distance between the searcher and
the target are shown. Notice that we have false negative at [t2, t3] although the
target is close to the searcher (around 15m). One reason for a false negative
could be mis-alignment between the antenna and the tag.

C. AGV: System Description

As our Automatic Ground Vehicle (AGV), we used the
Husky A100 built by Clearpath Robotics [38] which is a six
wheel, two motor, differential drive machine. Fig. 10(d) shows
the Husky equipped with the antenna.

D. AGV: Experiment Details

In this experiment, the searcher and the target move along
a corridor of length 120m while they have an offset of 20m.

The target, carries the tag marked by 49631. Similar to
the ASV case, the searcher sweeps the corridor from left to
right. During this sweep, the searcher stops after uniform time
intervals which are indicated by zero speed of the vehicle.
Fig. 13(a) illustrates the location of the searcher and the target
along the line as well as the waiting intervals of the searcher.
Here, the searcher’s strategy is an example of our proposed
R2SR2S... strategy.

Fig. 13(b) depicts the signal strength received by the
searcher from the tag as well as the frequency associated
with tag number 49134 which is not present in the trial. First,
observe the peaks in the signal strength from the target tag.
Here, according to the distances in Fig. 13, the peaks at t3, t4
and [t6, t7] are true detections. Notice that the searcher does
not miss the target at the particular crossing event at [t6, t7].
Also, the detection at t5, despite the large distance (73m), is
because of complete alignment between the antenna and the
target.

Observe from Fig. 13(b) the two highlighted peaks in the
signal strength at [t1, t2] and t3. Notice that the peaks for
both frequencies are of similar maximum value and are both
higher than their corresponding mean level (which is also
highlighted). Therefore, according to our criterion f−m

σ (13),
we would declare detection for these frequencies at t3 and
[t1, t2] respectively. However, the detection for 49134 would
be a false detection since no transmissions on this frequency
were used in the trial. Notice that this false detection is
received while the vehicle is moving and its motors are on. On
the other hand, the peak from the target frequency corresponds
to a true detection since the searcher and the target are very
close (see Fig. 13). Moreover, the measurement is taken while
the searcher’s motors are off. To summarize, this example
supports our discrete crossing model. That is, the searcher has
to stop in order to take reliable measurements.



12

−120

−100

−80

−60

−40

−20

0

 

 
Velocity*50−60
Target (T)
Searcher (S)

t
3

t
4

t
5 t

6
t
7t

2
t
1

t
0

T

T

T T

T

T

S

S

S S

S

S S

S

S

T

T

T

(a) (b)

Fig. 13. (a) The target’s and the searcher’s location along the corridor versus time. Here, the searcher and the target are denoted by T and S respectively.
(b) The Signal Strength (SS) for target tag (49631 KHz) and an example frequency (49134 KHz) that does not correspond to a nearby tag. The mean level
(m) for both frequencies is highlighted by the middle ellipse. The highlighted peak for 49134 is a false positive detection of tag 49134.

VII. CONCLUSION

In this paper, we studied the problem of searching for a one-
dimensional random walker on a discrete line segment. The
goal is to design search strategies that maximize the proba-
bility of capturing the target subject to constraints on energy
and time. We considered two different capture models and
obtained corresponding optimal and near-optimal strategies.
In the no-crossing case, when the target will be captured if it
crosses the searcher, we present closed-form solutions for the
optimal strategy. In the crossing case, using the structure of the
MDP solutions we focus on a set of strategies which we call
the uniform strategies characterized by groups of right actions
interleaved with stay actions, i.e. (RkS)m. We derive the best
strategy in this class and show that (R2S)m is performing
close to the strategies found by the MDP methods.

Finally we presented our preliminary experiments for appli-
cation of our results to a practical problem, where the main
objective is to find radio-tagged fish in a lake by using an
autonomous surface/ground vehicle. After the description of
the robotic system and its sensor model, we presented results
from field experiments carried out in a Minnesota lake.

One immediate line of research for future work is to design
search strategies for two-dimensional environments, where the
target performs a random walk on a grid. Here, curse of
dimensionality is a bigger challenge than the one-dimensional
case. One interesting idea is to restrict the class of search
strategies to those that sweep an entire column or row and
thus the strategy can be specified as a set of columns and rows
and the order to visit them. As a result the problem can be
viewed as a one-dimensional search, as studied in this paper,
by simply projecting the belief distribution in the grid along
a given column (row). In this simplification, the connection
between the one-dimensional and the two-dimensional belief
distributions, search strategies and performance evaluation
must be established.

Another interesting direction is to extend the experimental
results for detecting radio-tagged fish. One approach is to
define a more accurate model of the system. For example, the
antenna might miss a tag (false negative) or it may report a tag

mistakenly (false positive). In addition, the antenna is direc-
tional and so its detection region is more accurately modeled
by an oval and not a circle. Another approach is designing
strategies that are more robust to the conditions at the specific
lake environment (such as wind) or the uncertainties in the
platform (such as the sensor, the signal strength of the radio
tags, and the underlying controller of ASVs).
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APPENDIX

Proof of Theorem V.1. We first show that (12) is valid for 7 ≤
k. For 3 ≤ k ≤ 7, we compare the capture probability obtained
from (12) with the one obtained from simulations. Since the
approximation error is small, we conclude that (12) is valid
for 3 ≤ k.

Our proof has two parts. First, we prove a structure on the
belief. Second, using this structure we compute the capture
probability.

Structure on the belief: Let s denote the current location of
the searcher. By taking an inductive approach we show that
after performing (RkS)m, the belief has the form:

Bel(s− 2 : N) = [p, 0, 0, p0, 2p0, 2p0, ..., 2p0] (14)

Equation (14) can be derived in two steps. First, it can be
shown that the belief after (RkS)jRi (1 ≤ i ≤ k) is of the
following form:

[
p

2i(1− ip0)
,

2i+1 − 2− i
2i

pi, 0,
2i+1 − 1

2i
pi, 2pi, 2pi, ..., 2pi]

(15)

where pi = p0
1−i.p0 . For 6 ≤ i the belief function in (15)

converges to:

Bel(s− 2 : N) = [0, 2pi, 0, 2pi, 2pi, 2pi, ..., 2pi]
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Next, consider the last action in the sequence (RkS)m, which
is the stay action. The belief function after this stay action will
be: Bel(s− 2 : N) = [p′, 0, 0, p′0, 2p

′
0, 2p

′
0, ..., 2p

′
0] where:

p′0 =
pk

1− 2pk
=

p0

1− (k + 2)p0
(16)

Therefore, the belief function after performing (RkS)m+1

has the same form as in (14). Finally, for the base case of our
inductive argument, it can be shown that after RkS and for
k ≥ 4 we have:

Bel(s− 2 : N) ≈ [b, 0, 0, bk+1, 2bk+1, 2bk+1, ..., 2bk+1]

which has the same format as in (14). Note that here:

bk+1 =
b0

1− (k + 1)b0
(17)

Capture probability: Next, let Pc(i,m) denote the probabil-
ity of capture after performing the ith action in the mth group
of (RkS) given that there was no capture beforehand. Also,
let P̄m denote the probability of not capturing the target after
performing (RkS)m. From (14) and (15), it is easy to see that
the capture probability is pi−1 for performing the ith right
action, and 2pk for performing the stay action. Therefore:

Pc(i,m+ 1) = P̄m ×

{∏i−2
j=0(1− pj)pi−1, if i ≤ k∏k−1
j=0 (1− pj)2pk, if i = k + 1

Since
∏i
j=0(1− pj) = 1− (i+ 1)p0 we get:

Pc(i,m+ 1) = P̄m ×

{
pm0 , if i ≤ k
2pm0 , if i = k + 1

(18)

where pm0 is the belief function parameter after (RkS)m. Next,
notice that: P̄m+1 = P̄m(1 − (k + 2)pm0 ) Also from (16) we
have:

pm+1
0 =

pm0
1− (k + 2)pm0

(19)

As a result, we have:

Pcapture(i,m+2) = P̄m+1 ×

{
pm+1

0 , if i ≤ k
2pm+1

0 , if i = k + 1

= P̄m ×

{
pm0 , if i ≤ k
2pm0 , if i = k + 1

(20)

which is the same as (18). In other words, the conditional
capture probabilities for doing right actions is the same, and
for the stay action is twice.

Next, the total capture probability is obtained as the sum
of the probability gathered in the first group of (RkS), and
the probability gathered in the next ones. The former is k+2

2N ,
while the latter is (M − 1)(k + 2)P̄1 × p1

0 and p1
0 is obtained

from (17). This proves the value for the total probability of
capture.

In order to assess the approximation error, we compared the
estimated value with the actual one obtained from simulating
the random walk and the strategy (RkS)M for various values
of M and k. The approximation error, i.e. estimate−actual

actual is
below 10% for 3 ≤ k and below 2% for 7 ≤ k.
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