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Haluk Bayram, Joshua Vander Hook, Volkan Isler

Abstract— We consider the problem of gathering bearing
data in order to localize targets. We start with a commonly used
notion of uncertainty based on Geometric Dilution of Precision
(GDOP) and study the following bi-criteria problem. Given a
set of potential target locations and an uncertainty level U,
compute an ordered set of measurement locations for a single
robot which (i) minimizes the total cost given by the travel time
plus the time spent in taking measurements, and (ii) ensures
that the uncertainty in estimating the target’s location is at
most U regardless of the targets’ locations. We present an
approximation algorithm and prove that its cost is at most 28.9
times the optimal cost while guaranteeing that the uncertainty
is at most 5.5U. In addition to theoretical analysis, we validate
the results in simulation and experiments performed with a
directional antenna used for tracking invasive fish.

I. INTRODUCTION

This paper considers the problem of controlling a mobile
robot whose task is to cover an environment so as to
estimate locations of one or more targets dispersed across
the environment. We focus on a novel version of this general
coverage problem in which the robot can collect only bearing
measurements. Therefore, it must collect multiple measure-
ments and estimate the targets’ positions. The problem we
study is to compute a coverage path as well as sensing
locations along the path as shown in Figure 1. The goal
is to guarantee that the uncertainty in each position estimate
does not exceed a given bound while minimizing the data
collection time.

Fig. 1. Gathering Bearing Data: Shaded areas are the input regions which
need to be searched. The goal is to compute measurement locations (squares)
and a tour (dashed line) along them so that no matter where the targets are,
the uncertainty in localizing them is small.

Robot coverage is a fundamental robotics problem which
has been studied extensively [1]. In the traditional coverage
problem, in order to cover a point, it suffices to “sense” it
by visiting a point within the sensing range. However, if
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Fig. 2. Robotic systems for finding and tracking radio-tagged invasive fish.

the robot can take only bearing measurements, at least two
measurements must be taken. The uncertainty in localizing a
target at location z is a function of not only distance but also
the angle £ syxso where s; and sy are the two measurement
locations [2].

There are very few coverage results under the bearing-
only sensing model. In [3], a greedy algorithm is developed
to localize a target with a single mobile bearing-only sensor.
A lower bound on the optimal localization time was derived,
and used to bound the performance of the algorithm with
respect to this bound. In [4], a similar algorithm was used to
locate a dense cluster of targets. The targets were assumed to
be close to each other and no guarantee of the time required
to locate the targets was provided. Borri et. al [5] consider
a mobile robot collecting measurements from a fixed set
of possible locations in a bounded environment. We relax
these restrictions to optimize the tour directly and consider
localization of multiple targets.

The work in [6] studied the problem of placing stationary
bearing sensors. Specifically, the authors studied the problem
of placing a minimum number of sensors to guarantee that
the uncertainty everywhere in the workspace is below a given
threshold U*. They presented an algorithm which places 3k
sensors and achieves 5.5U* uncertainty everywhere in the
workspace where k is the optimal solution.

This work is motivated by our efforts to track radio-tagged
carp in Minnesota lakes [7]. We use robotic boats in the
summer and ground vehicles in the winter when the lakes are
frozen (Figure 2). Both vehicles are equipped with directional
antennas which are rotated to obtain bearing measurements.
The fish loiter for extended periods of time, and their motion
is relatively small compared to the sensing range. This
is especially true in the winter when they aggregate [8].
Therefore they can be treated as stationary targets. The
algorithm presented in this paper would be applicable in
other settings for example for localizing unknown signal



sources [9], [10], [11].

In this paper, we study the problem for the case of a single,
mobile bearing-only sensor trying to locate targets dispersed
across an arbitrary but bounded subset of the plane. We
proceed as follows. In Section II, we provide the basics of
bearing-based target localization and present the uncertainty
measure used throughout the paper. In Section III, we present
the data gathering strategy and analyze its performance. In
Section IV, the uncertainty measure and sensor placement
algorithm are validated in simulation. Next, in Section V,
we test the placement algorithm and sensor noise model in
real-world field experiments.

II. PRELIMINARIES

A. Uncertainty Model

Triangulation is commonly used in estimating the location
of a target from two bearing measurements. The accuracy of
the estimation depends on the target-sensor geometry and the
environment. A common method to measure the uncertainty
of the estimate is to use the geometric dilution of precision
(GDOP). Consider two measurements from locations s; and
sy for a target at location w. It is well known that the
uncertainty is proportional to:

d(s1,w)d(s2,w)
|sind s1wsa|

U(s1,82,w) o< (1)
where d(s;,w) denotes the distance between robot s; and
target location w. See e.g. [2].

The GDOP function can be extended to obtain the un-
certainty in estimating the target’s position for a given
noise level in the bearing measurements by using the Fisher
Information Matrix (FIM) [12]. Let Iy denote the FIM for a
given target-measurement geometry. The square roots of the
eigenvalues of I, ! denote the lengths of the axes of the target
covariance. The determinant of the FIM can be regarded as
a computable measure of the area of the ellipse. Given two
bearing measurements for a target w, the determinant of the
FIM is given as [12]:
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where o is the standard deviation of the noise in the bearing
measurements. Since the determinant is the product of the
eigenvalues, taking the reciprocal of both sides, followed by
taking their square root yields:
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If we multiply both sides by , the left hand side will give
the area of the uncertainty ellipse, whose axes are of length

1/4+/A1 and 1/4/As. Hence, for a given noise level o, the
uncertainty becomes

d
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B. Problem Statement

Let 7 C R? be a given set of candidate target locations.
T can be an arbitrary, potentially disconnected, subset. In
the fish tracking application, 7 can be the entire lake or a
collection of regions where the fish are likely to be. A single
robot equipped with a bearing sensor is charged with taking
sensor measurements. The noise in bearing measurements is
assumed to be mutually independent and normally distributed
with zero mean and o2 variance. Each measurement takes 7
time units which can be zero.

A data gathering tour S is a set of ordered measurement
locations S = {s1, s2, ... S, }. The cost of S is given by

n—1

cost(S) = Z d(si, 8it1) +nt 5)
i=0

The first term in Eq. 5 corresponds to time spent in
traveling whereas the second term corresponds to the total
measurement time. To simplify the notation, we define
8o = 8. For any given point z, we define U, (S, w) as
ming ¢es Us(s,s',w) — i.e. the uncertainty achieved by the
best pair in S.

In this paper, we study the following problem:

Problem 1: Given an environment 7, initial position sq
and measurement error variance o2, compute a data gathering
tour S such that cost(.S) is minimized, and for each location
w € T, there exist s;,s; € S such that U,(s;, s;,w) is less
than a given threshold U*.

Our main result is an algorithm which computes a tour
whose cost is at most 28.9 times the optimal cost while
guaranteeing that the localization uncertainty is at most
5.5U~. In obtaining this result, we use the following results
from previous work which will be used in the analysis.

The sensor placement scheme in [6] proceeds as follows:
Given the environment 7~ C R2, an uncertainty threshold U™,
and a bearing noise variance o2, Algorithm 1 determines the
locations of the sensors. Throughout the paper, let D(z,a)
be a disk centered at x with radius a.

The authors then show the following result:

Lemma 1 ([6]): For any © € T and any y € D(z,2R),
U(S(z),y) is less than 5.5U*.

The second result we will use is related to a variant of the
well-known Traveling Salesperson Problem (TSP) known as
TSP with Neighborhoods (TSPN). In a geometric version of
TSPN, we are given n uniform disks. The goal is to compute
the shortest tour which visits at least one point in each disk.

Lemma 2 ([13] ): Let D be a set of n disjoint disks with
radius R. Any tour 7 of D satisfies |7| > §aR where a =
0.4786 and n > 3.



Algorithm 1 PlaceSensors
Input: 7, U* and o2
1: R+ \/U*/(7o?)
2: R« QR/\E/ZI
38«0
4 D0
5: while 7 # () do
6:  Pick an arbitrary point x in T
7. D(z, R) < a disk with radius R around z
8
9

C(z, R') « a circle centered at x with radius R’

:  s;+ apoint on C at angle (i — 1)27/3,i=1,2,3
1. S(x) < {s1, 52,83}
11: D+« DUD(z,R)
122 S+ SUS(z)
132 T+ T\D(z,2R)
14: end while
QOutput: S and D

III. GATHERING BEARING DATA

Our algorithm GatherData proceeds as follows: Given the
environment 7 and the uncertainty threshold U*, we first run
the Algorithm PlaceSensors (Algorithm 1) to obtain sensor
locations given by S = US(z) where x € T. GatherData
computes a TSP tour of these points and outputs them in the
order given by the tour.

In general, picking sensing locations independent of the
tour can yield arbitrarily bad results. We show that by picking
the sensor locations carefully, we can bound the deviation
from the optimal tour.

Let OPT be the optimal solution for gathering data under
the cost function given in Equation 5. We show that the cost
of the resulting tour is within a constant factor of the cost
of OPT. For analysis purposes, we split the cost term into
travel time and measurement time and use the subscripts d
for travel (distance) and m for measurement time. That is,
OPTy denotes the cost incurred by OPT for traveling, and
OPT,, is the time spent in taking measurements.

The key observation is the following:

Proposition 1: Let D be the set of disks generated by
PlaceSensors. OPT must take at least one measurement
from each disk in D.

Proof: Suppose the statement is false and that there
is an optimal solution in which all measurements are taken
outside of a particular disk generated by PlaceSensors. Let
w be the center of this disk. Note that w € 7. Let s; and
so be the two locations in OPT associated with w. We have

ds (s ), T Jao?) T8,
|sind sywss| |sind sywss|
> J/U*/(n02)\/U*/(10?)m0?
—U*

which contradicts the fact that OPT satisfies the desired level
of uncertainty for location w. [ ]
Proposition 1 yields the following corollary.

Fig. 3. A simulated example tour generated by the algorithm. The four
areas are known to contain targets, and a sensing tour is computed to
localize all the targets. Theorem 1 shows that the tour of the measurement
locations is near optimal, and Lemma 1 shows that any target in the area
will be localized to desired uncertainty. The green crosses are computed
measurement locations, the yellow path is the tour, and the red crosses are
the target locations.

Fig. 4. A TSPN tour can be converted to a TSP tour visiting the sensing
locations as shown in the figure. Every time we visit a disk, we take a
detour and visit the three sensor locations associated with it.

Corollary 1: Let D be the set of disks generated by
PlaceSensors. OPT is a TSPN tour for D.

Theorem 1: Let SOL be the cost of the tour generated
by GatherData. SOL < (1 + %)OPT = 28.90PT where
B = 6.6687, a = 0.4786 and OPT is the optimal data
gathering tour.

Proof: Let TSPN be the optimal TSPN tour visiting
disks in D. Since O PT also visits these disks (Proposition 1)
we have

OPT; > TSPN (6)
> gaR 7

where n is the number of disjoint disks with radius R and
the second inequality follows from Lemma 2.

Let SOL; denote the cost of the optimal TSP tour
generated by our algorithm in terms of distance. Now, we
have

SOLy <TSPN +npR )

Here SR is the cost of going from the boundary of a disk
to the first sensor location and then to the second, third and



coming back. Fig. 4 depicts the maximum distance for this
process. This occurs when the TSPN visits a point equidistant
from two sensor locations. Hence, the total distance SR will
be

BR = 23R +2\/3R2/1+ (R— R [2)° ©)

where R’ = 2R/ /4. After substituting R’ into Eq. 9, we
get 5 = 6.668.

The reason why the inequality in Eq. 8 holds is that
starting from any TSPN solution for D, we can obtain a TSP
tour of the sensing locations in SOL as follows: when a disk
is visited, visit the the three sensor locations associated with
this disk. Since SOL, is the cost of the optimal TSP tour of
these locations, it is a lower bound on the cost of any TSP
tour.

Now, substituting Eq. 6 and Eq. 7 into Eq. 8, we obtain

SOL; < TSPN +nBR
< OPTd-‘r%OPTd
(6%
2
< (1+£)0PTd
(0%

Hence 1+ % is the approximation ratio when only consid-
ering the distance factor in the cost function.

We now bound the measurement time. Since the disks are
disjoint and OPT must take at least one measurement in
each disk as stated in Proposition 1, its measurement time is
at least n7. Since the measurement time for our algorithm
is 3nT, we obtain:

SOL,, <30PT,, (10)
Therefore we have the total cost as
SOL = SOLg+ SOL,, < (1+ %)OPTd + 30PT,,
< (1+ %)OPT
and the result follows. [ ]

IV. SIMULATIONS

In this section we validate the sensor model and the
subroutine PlaceSensors in simulations. For this purpose, we
evaluate simulated instances for varying bearing noise o =
{n/36,7/18,7/12,7/9} radians and uncertainty thresholds
U* = {4,8,16,32,64,128}. In each simulation, a tar-
get location is chosen uniformly at random within the
measurement area defined by a circle with radius 2R =
24/U*/(mwc?). The sensors are placed according to Place-
Sensors. Each sensor obtains a single noisy measurement.
An iterative batch estimator is used to find the maximum
likelihood estimate of the target’s location. The estimation
process is described in [14] (See Chapter 3 for an accessible
introduction).

This process is repeated 1000 times. For each scenario, we
compute the mean area and estimation error. The uncertainty
area is calculated as w+/det(X), for covariance 3, which is
the area of the uncertainty ellipse.

A sample scenario with U* = 32 and 0 = 7/12 is shown
in Fig. 5(a). Each sensor location is shown as a blue solid
circle. A black square denotes true target position and a red
cross is the estimate. The uncertainty area is shown by a red
ellipse. For this scenario, Fig. 5(b) shows the uncertainty
ellipses for 1000 random target locations with U* = 32
and ¢ = 7/12. Only 4 samples out of 1000 exceed the
threshold value of 5.5U* = 177. In those four samples, high
measurement noise had placed the target estimate outside
of the circle. Thus, the estimated uncertainty for the target
hypothesis was large.

Number of Occurrences

0 50 200 250
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Area of uncertainty cllipse

(b)

Fig. 5. (a) A sample scenario with U* = 32 and ¢ = =/12.
Each measurement location is shown by blue solid circle. Black squares
denote true target positions. Red crosses are the positions of the estimates.
Uncertainty areas is shown as red ellipses. (b) Number of occurrences of
areas of the uncertainty ellipses for 1000 random target locations with
U* =32 and o = w/12.
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Fig. 6. (a) Average uncertainty area and (b) average estimation error for

varying the uncertainty threshold U* and the measurement noise o.

Statistical results are as shown in Fig. 6(a) and 6(b). It is
observed that for a given uncertainty threshold U™, the result-
ing average uncertainty area becomes almost constant with
increasing noise. The average uncertainty area is far below
the threshold 5.5U*, which verifies Lemma 1. According to
Fig. 6(b), estimation error gets more noise-sensitive when
the uncertainty threshold increases. For instance, while the
slope of the average estimation error is approximately 2 when
U* = 4, the slope is 4 for U* = 128.

V. FIELD EXPERIMENTS

A. Sensing Model Validation

Our study is motivated by a real-world application: track-
ing radio-tagged invasive fish with a radio antenna system.
As mentioned, the fish in question tend to aggregate in
stationary groups. Thus, the goal of our field test is to verify
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(a) A radio transmitter. (b) The field experimental setup.

Fig. 7. (a) A tag sends an uncoded transmission on a specific frequency
once per second. (b) The antenna is shown in the foreground, and radio
transmitters were placed in the field nearby. A direction-sensitive antenna
is rotated to estimate the bearing to the transmitting radio tag. The signal
strength is strongest when the plane of the antenna loop is roughly aligned
with the tag.

# of occurrences

Fig. 8. Number of occurrences of areas of the uncertainty ellipses for the
experiment results with U* = 2.5 and o = 7/18.

the radio tags shown in Figure 7(a) can be located using
estimates of bearings constructed from three radio antennas.
The sensor, a direction-sensitive radio antenna connected to a
pan-tilt servo, was developed for the robotic system described
in [7] and is shown detached from the system in Figure 7(b).

First, we did systematic experiments in a grassy field so as
to evaluate the overall performance of the approach. For this
purpose, we divide the environment equally into square cells
with edges of 5-meter length as shown in Figure 9, hence
we have 25 locations for radio tags. 7 tags with different
frequencies are placed at each corner of the cells. We have
assumed the measurement noise of o = 7/18 rad, which is
consistent with the previous work in [3], and the uncertainty
U is set to 2.5. Using Lemma 1, the radius of the circle
on which three sensors are located is calculated as R’ = 6
meters, the radius of the measurement area within which the
uncertainty is less than 5.5U is equal to 2R = 10 meters.
Three measurements are taken for each radio tag from three
sensor locations on a circle of radius R’ = 6 meters.

The estimated target positions are plotted in Figure 9
along with the measured ground-truth locations. The sensor
locations are shown as blue circles, target estimates are black
x’s. For each target position inside the circle with radius

Y (meters)
o

X (meters)

Fig. 9. Actual and estimated positions for the field experiment results.
Each measurement location is shown by a blue solid circle. Red squares
show true target positions and black crosses show estimate positions.

Fig. 10. Lake experiment: gathering bearing data on a windy day.

R = 10 meters, the uncertainty U is less than 5.5U*.

B. Lake Experiments

We report results from a set of tests conducted on two
different days at Lake Staring in MN, USA. The robot
(OceanScience QBoat) shown in Figure 10 was used in
the experiments. The boat was augmented with an on-board
laptop and motor control board for autonomous navigation,
and a pan-tilt servo, antenna, and real-time spectral analyzer
to produce bearing measurements. It is 2 meters in length
and has an average speed of 1 meter per second.

The tags were deployed at a known location within a
measurement area. Due to the wind affecting the boat’s nav-
igation and cloud cover affecting GPS signals, the uncertain-
ties on the localization will increase. Hence, the uncertainty
threshold U* was set to 4.5 in the first day experiment.
Under these conditions, the radius of the measurement area
is equal to 14 meters. Figure 11 shows one of the trials.
In these experiments, the boat started navigating to its
measurement locations (square symbols) from the location
shown as the star. The cross symbol represents the estimated
target position and the diamond symbol shows the true target
location. The uncertainty U is about 19.3, which is less than
5.5U%.

We have also conducted experiments with two measure-
ment regions on the second day. This day was even windier
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Fig. 11. Actual and estimated positions for a lake experiment result. The
measurement locations are denoted by square. While the diamond denotes
true target position, the cross estimate position.

Fig. 12.  Two measurement regions. Green and red squares denote the
desired and actual measurement locations, respectively. While green stars
denote true target positions, red stars estimate position. The boat began
from the location labeled with the yellow diamond and followed the yellow
trajectory. The boundary of the measurement regions is denoted by dashed
line.

(Figure 10 shows a snapshot). Therefore, the measurement
noise o was changed from 7 /18 to 7w/12 and the uncertainty
threshold U™ was set to 20. One of these experiments can be
seen in Figure 12. The targets were localized with an error
of approximately 6 meters.

In conclusion, the simulation results indicate that the
proposed approach enables us to analyze the relationship
between the bearing noise ¢ and uncertainty threshold U™*.
Given a fixed U™, the estimation performance is robust to
the change in the bearing noise. The practical applicability
of the proposed approach has been also tested in a series of

experiments with an autonomous boat. The experiments have
demonstrated the effectiveness of the proposed approach
even under other uncertainties such as wind and GPS errors.

VI. CONCLUSION

This paper considered the problem of gathering bearing
data with a mobile robot so as to estimate the positions
of targets located in a given environment. We presented a
constant factor approximation algorithm which guarantees
that the cost of gathering data is within factor 28.9 of the
optimal solution and the uncertainty is within a factor 5.5.
These two factors can be traded off to guarantee, for example,
the same level of uncertainty with the optimal solution at
the expense of increased cost. We leave the analysis of this
trade-off for future work.

In the field experiments, an autonomous boat was able
to localize the transmitting radio tag within a desired un-
certainty. Our future work also includes data gathering with
multiple robots.

REFERENCES

[1] E. Galceran and M. Carreras, “A survey on coverage path planning
for robotics,” Robotics and Autonomous Systems, vol. 61, no. 12, pp.
1258 — 1276, 2013.

[2] A. Kelly, “Precision dilution in triangulation based mobile robot
position estimation,” in Proceedings of the International Conference
on Intelligent Autonomous Systems, Amsterdam, 2003.

[3] J. Vander Hook, P. Tokekar, and V. Isler, “Cautious greedy strategy
for bearing-only active localization: Analysis and field experiments,”
Journal of Field Robotics, vol. 31, no. 2, pp. 296-318, 2014.

[4] J. Vander Hook, P. Tokekar, E. Branson, P. G. Bajer, P. W. Sorensen,
and V. Isler, “Local-search strategy for active localization of multiple
invasive fish,” in Experimental Robotics, B. Siciliano and O. Khatib,
Eds., vol. 88. Springer Tracs in Advanced Robotics, 2013, pp. 859—
873.

[5] A. Borri, S. D. Bopardikar, J. P. Hespanha, and M. D. Di Benedetto,
“Hide-and-Seek with Directional Sensing,” in Proceedings of the 18th
IFAC World Congress, Milan, Italy, 2011, pp. 9343-9348.

[6] O. Tekdas and V. Isler, “Sensor placement for triangulation-based
localization,” Automation Science and Engineering, IEEE Transactions
on, vol. 7, no. 3, pp. 681-685, July 2010.

[71 P. Tokekar, E. Branson, J. Vander Hook, and V. Isler, “Tracking
aquadic invaders: Autonomous robots for monitoring invasive fish,”
IEEE Robotics and Automation Magazine, vol. 20, no. 3, pp. 33-41,
September 2013.

[8] P. G. Bajer, H. Lim, M. J. Travaline, B. D. Miller, and P. W. Sorensen,
“Cognitive aspects of food searching behavior in free-ranging wild
common carp,” Environmental Biology of Fishes, vol. 88, no. 3, pp.
295-300, 2010.

[9]1 B. A. E. Frew, C. Dixon and T. Brown, “Radio source localization by
a cooperating uav team,” in Infotech@Aerospace, 2005, pp. 1-11.

[10] K. Mcgill and S. Taylor, “Robot algorithms for localization of multiple
emission sources,” ACM Comput. Surv., vol. 43, no. 3, pp. 15:1-15:25,
2011.

[11] D. Song, C.-Y. Kim, and J. Yi, “Simultaneous localization of multiple
unknown and transient radio sources using a mobile robot,” Robotics,
IEEE Transactions on, vol. 28, no. 3, pp. 668—680, June 2012.

[12] A. N. Bishop, B. Fidan, B. D. Anderson, K. Dogancay, and P. N.
Pathirana, “Optimality analysis of sensor-target localization geome-
tries,” Automatica, vol. 46, no. 3, pp. 479492, 2010.

[13] O. Tekdas, D. Bhadauria, and V. Isler, “Efficient data collection
from wireless nodes under the two-ring communication model,” The
International Journal of Robotics Research, vol. 31, no. 6, pp. 774—
784, 2012.

[14] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, Estimation with Appli-
cations to Tracking and Navigation. New York, USA: John Wiley &
Sons, Inc., 2001.



	15-014-cover
	15-014

