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A Pursuit-Evasion Toolkit

Narges Noori, Andrew Beveridge and Volkan Isler

Abstract— This tutorial contains tools and techniques for
designing pursuit and evasion strategies. The material targets a
diverse audience including STEM educators as well as robotics
researchers interested in applications of pursuit-evasion games.

We start with a simple “lion and man” game in a square
environment which should be accessible to anyone with a
high-school level background on geometry and trigonometry.
We then visit various versions of this game with increasing
complexity. Rather than surveying specific results for specific
environments, the tutorial highlights broadly applicable tech-
niques and strategies. It also includes exercises for STEM
educators as well as open problems for robotics researchers.

I. I NTRODUCTION

A pursuit-evasion game takes place between two players.
The pursuer is charged with capturing the evader while
the evader tries to avoid getting caught. Many robotics
applications such as search, tracking and surveillance can
be modeled as pursuit-evasion games. Equally importantly,
these games can be modeled as fun mathematics problems to
inspire new-comers to the field of robotics. The authors of the
paper have witnessed this first-hand during summer Research
Experiences for Undergraduates (REU) programs at the
Institute for Mathematics and its Applications (IMA), located
at the University of Minnesota. The subject is accessible,
with many open problems that require creativity, insight and
strong algorithmic thinking. Our summer students digested
the basics of the field and developed results that evolved into
research publications [1], [2].

The purpose of this article is to provide a “toolkit” so
as to make pursuit-evasion games accessible to a broader
audience. We focus on a classical game known as thelion
and man game, where the lion pursues the man, moving with
equal speed. Rather than a traditional survey of literature
on the lion and man game, the paper is organized in a
tutorial fashion. We start from simple motivating examples
whose solutions should be accessible to anyone with a high-
school level background on geometry and trigonometry. Our
journey takes us to open variants such as pursuit-evasion on
surfaces. Along the way, we introduce tactics which can be
used as building blocks in different settings. The material
in the earlier sections of the paper provides a starting point
for STEM educators looking for an engaging robotics prob-
lem accessible to high-school and undergraduate students.
Simultaneously, we provide an introduction for researchers
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who would like to tackle one of the most challenging path
planning problems. We conclude with open problems for the
researchers and exercises to engage students. Let us dive
right in!

A. Overview

The original version of the lion and man game takes place
in a circular arena. Intuitively, the lion should win the game:
if it moves directly toward the man, the man has to step back
in the same direction to maintain the seperation between the
players. He can not do this forever, since he will eventually
hit the boundary. It turns out that the analysis of this simple
“greedy” strategy is not straightforward since the turn angle
can be arbitrarily small. In fact, when time is continuous
and capture requires colocation, man can avoid capture
indefinitely by following a gently spiraling path [3]. To avoid
this pathology, robotics researchers focus on the turn-based
version of the game, where the players move alternately.
We assume that the players have the same maximum step-
size; we employ a unit step size, which is both standard
and convenient. The pursuer captures the evader when their
distance is within than a fixedcapture radiusr. We encounter
r = 0 andr > 0 with equal frequency in the literature, and
we will consider both variants below. Current research in
robotics focuses on games which take place in more complex
environments (e.g., non-convex polygons, environments with
polygonal obstacles) and sometimes consider players subject
to sensing limitations.

We consider the full-visibility version of the game, where
the players know the environment and one another’s locations
at all times. In order to capture the evader, a general pursuit
strategy consists of two main phases. First, the evader is
expelled from a subset of the environment, and this subset
is protected thereafter, meaning that the evader cannot re-
contaminate it without being caught. Second, the protected
subset is gradually grown until the whole environment is
cleared and the evader is captured. These two phases are
referred to asguarding andmaking progress respectively.

As a demonstrative example, suppose that this turn-based
game is played in a square region; the pursuer can observe
the exact location of the evader, and the capture radius is
zero r = 0. A first intuitive idea for guarding is to locate
the pursuer on the line segmentL between two arbitrary
boundary endpoints, and prevent the evader from crossing it.
If we can also pushL towards the evader the progress goal
would be achieved as well.

The pursuer can guardL by positioning itself on the
vertical projectionof the evader ontoL (Figure 1(a)). The
vertical projection has the property that it is closer to all



the points alongL than the evader itself. As a result, if the
evader tries to crossL, the pursuer (which is on the evader’s
projection) will capture it during its next move.

Although the vertical projection idea succeeds in restrict-
ing the evader to one side ofL for the rest of the game,
the pursuer fails to achieve its second goal: shrinking the
evader’s region. Indeed, suppose that the evader takes a full
unit step parallel toL, moving frome1 to e2 with |e1e2| = 1
(Figure 1(b)). Consequently, the evader’s vertical projections
ontoL, denoted byp1 andp2 respectively, satisfy|p1p2| = 1.
Therefore, the pursuer exhausts its movement budget just
to keep up with the evader. Now, if the evader reverses
its direction after each step, the pursuer is forced to move
between the two fixed pointsp1 and p2. Consequently, the
pursuer cannot moveL towards the evader, and the evader
can escape forever.
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Fig. 1. (a) The pursuer can prevent the evader from crossingL by
positioning itself on the vertical projection of the evader. (b) Sincee1e2 is
parallel toL and |e1e2| = 1, we have|p1p2| = 1. Thus, the pursuer is
stuck onL between the two pointsp1 andp2.

There are three approaches to tackle the issue above and
achieve progress.
Approach 1. The Lion’s Strategy:In the first approach,
known as thelion’s strategy, the pursuer can simultaneously
guard and make progress. In this strategy, the pursuer (lion)
starts at an arbitrary centerp0 = c. In round t ≥ 1, the
pursuer makes alion’s move, meaning that it moves from
pt−1 to the point pt ∈ B(pt−1, 1) on the line segment
connectingc to et such thatpt is closest to the evader
(Figure 2). As discussed in Section III, eventually the evader
will be squeezed between the pursuer and the boundary
which results in capture.
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Fig. 2. Lion’s strategy in a square region.

Approach 2. Multiple Guards:In the second approach,
we add a pursuer to guard another line segment. In our square

example, suppose that we have two pursuers, each of which
guards a line by positioning itself on the evader projection.
The first pursuerp1 guards a horizontal line segmentL1,
while the second pursuerp2 guards the vertical line segment
L2 (Figure 3(a)). This traps the evader in one quadrant of
the square. If the evader moves horizontally, thenp1 mimics
this move whilep2 makes one unit of progress by advancing
its guarded line. Likewise, if the evader moves vertically,
thenp2 keeps pace whilep1 advances its guarded line. More
generally, the Pythagorean theorem shows that at least one
of the pursuers can advance its guarded line by

√
2/2 units

in each turn. This means that the evader will be cornered by
the pursuers after a finite number of moves, after which one
of the pursuers has a capture move.

In both of the approaches above, capture is guaranteed for
zero capture radius. Pursuit games with capture radiusr > 0
are also common in the literature. Our third approach takes
advantage of the non-zero capture radius to overcome the
stalemate in Figure 1(b).
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Fig. 3. (a) Two pursuers are guardingL1, L2 by staying on the projection
of the evader. One of them can make progress after each move.(b) A single
pursuer can pushL towards the evader if it stays behind the projection of
the evader.

Approach 3. The Rook’s Strategy:As mentioned above,
this approach requires a non-zero capture radius. To build
intuition, consider a chess endgame for a black rook and
black king versus a solitary white king. Before reading on,
we encourage our readers to develop a strategy for the black
king to win the game.

The rook’s strategy works as follows: One row at a time,
the black rook reduces the area available to the white king.
This is achieved with support of the black king who trails
the projection of the white king onto the row guarded by the
rook. Specifically, suppose the black rook is at rowi, column
1, which guards rowi. The white king is at rowi′ < i and
columnj, and the black king is at rowi+1, columnj − 1.
From this position, the black king trails the white king until
the column separation of the black rook and black king is
at least two (Figure 4(a)). After achieving this separation,
the black player can make progress as follows. If the white
king moves back on to columnj − 1, then the black player
can move the rook to rowi − 1 and push the white king
further down (Figure 4(b))1. If the white king moves away

1This is because the white king cannot move to rowi since the reachable
cells are being guarded by the black king. Furthermore, in the extreme case
wherei′ = i− 1, the white king cannot stay in rowi′ because of the two
column separation between the black king and the black rook.



from the black king, then the black king keeps trailing him.
Eventually, the white king is trapped in a single row, where
black can checkmate.

In rook’s strategy, the pursuer guards a horizontal line
which is analogous to the row guarded by the rook. The
pursuer plays the role of the black king and trails the
projection. Whenever the evader moves “back” toward the
projection, the pursuer can make progress by pushing the line
forward. Eventually, the evader will be squeezed between the
guarded path and the boundary, where it will be caught. In
Section VI, we show how to generalize the rook’s strategy
to general environments.

In the rest of the paper, we present various techniques
to guard a frontier as well as strategies to make progress
by expanding the frontier towards the evader. In Section III
we overview an analysis of the lion’s strategy as well
as an extension of it. In Section IV and Section V we
introduce general projection mappings and their applications
in designing capture strategies. In Section VI we elaborate
on the rook’s strategy and its applications for capturing the
evader. We mostly focus on the full-visibility variants of the
lion-and-man game where the assumption is that the players
know one another’s location at all times. Designing strategies
for limited visibility models is an active research problem.
We will study a limited-visibility version in Section VI as an
application of the rook’s strategy. In Section VII we present
a set of exercises that can be used as handouts to encourage
and warm-up the students. Finally, we conclude the paper
with some open problems in Section VIII.

II. N OTATION

In this section, we present the notation used throughout
the paper. The game environment is denoted byS with
boundary∂S. We refer to the subset ofS that the evader
cannot enter without being captured as thecleared region.
The remaining part ofS is referred to as thecontaminated
region. We refer to a shortest path inS between pointsx and
y by Π(x, y). The shortest distance betweenx andy, i.e. the
length ofΠ(x, y), is denoted byd(x, y). When we require
that a distance is measured within a subset, such as toQ ⊆ S,
we writedQ(x, y). We useB(x, r) = {y ∈ S | d(x, y) ≤ r}
to denote the ball of radiusr centered atx.

III. L ION’ S STRATEGY

The lineage of the lion and man game traces back to
Rado’s classic version from the 1930s [3]. This game takes
place in a circular arena, and both the lion and the man have
equal speed. Lion wins if it becomes colocated wtih the man
in finite time. The lion’s strategy of staying on the man’s
radius was generally accepted in folklore [3]. The capture
time of this turn-based strategy isO(R2) whereR is the
radius of the environment. Sgall [4] uses a similar strategy
to show finite time capture when the game takes place in
the non-negative quadrant of the plane. Alonso et al. [5]
proposed a more sophisticated strategy which guarantees
capture inO(R log R

r ) steps wherer is the capture radius.

Simple trigonometric arguments can be used to show that
the lion’s strategy captures the man. The proof exhibits
the two essential ingredients for verifying that a pursuit
strategy succeeds in finite time. First, we establish anin-
variant that the pursuer(s) maintain throughout the game.
For lion’s strategy, this invariant is thatp was located on
the radius between the center and the evader. Second, we
need ameasure of progressto show that the game ends
in finite time. Letd andd′ denote the distance between the
centerc and the lion before and after a move respectively
(Figure 5(b)). Letα be the angle betweence1 andp1p2. We
haved′2 = (d+ cosα)2 + sin2 α = d2 + 2d cosα+ 1 (Note
that p1p2 = 1). We first show that there exists a pointp2
on ce2 such thatα ≤ π

2
. This is becausee1e2 ≤ 1, and

hencep1q ≤ 1 whereq is a point once2 such thatqp1 is
prependicular toce1 (Figure 5(a)). As a result ofα ≤ π

2
we

haved′2 ≥ d2 + 1. When coupled with the invariant, this
guarantees capture after at mostR2 rounds.
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Fig. 5. In lion’s strategy, the pursuer can increase its distance from the
center by at leastd′ − d ≥ 1

2R
. This is because:(a) The length ofp1q is

less than one. As a result, there exists a pointp2 on ce2 which is closer to
e2 thanq, and moreover is at distance one fromp1. (b) In fact, α < π

2
.

Isler et al. [6] adapted lion’s strategy for pursuit in a simply
connected polygonP . First, the pursuer starts at pointc in
the polygon, which is typically a boundary vertex. Thereafter,
the pursuer always moves onto the shortest path betweenc
and the evader, getting as close toe as possible. Note that this
shortest path could interact with the boundary of the polygon,
in which case it will be a piecewise linear path (Figure 6).
The extended lion’s strategy uses the same invariant (being
on the shortest path betweenc ande) and the same measure
of progress (increasingd(c, p) at a constant rate) as lion’s
strategy. For a polygonP with n vertices and diameter
diam(P ) = maxu,v∈P d(u, v), Isler et al. [6] proved that
the capture time isO(n · diam(P )2). Recently, Beveridge
and Cai [7] gave a streamlined analysis that improves the
capture time bound toO(diam(P )2).

IV. GUARDING SHORTESTPATHS

In this section, we begin our exploration of environments
with obstacles. Obstacles create an advantage for the evader.
For example, a single pursuer cannot catch an evader when
there is one large obstacle in the environment. Indeed, the
evader can start from a point on the boundary of the obstacle
and then loop around the obstacle, moving away from the
pursuer thereafter. In this section, we describe how a shortest
path can be guarded by a pursuer even in the presence of
obstacles. This capability turns out to be a powerful subrou-
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Fig. 4. The rook-and-king chess endgame is shown in (a) and (b). (a) The black rook is one row above the white king. The black king is (at least) two
columns to the right and one row above the black rook, and justto the left of the white king.(b) After the white king moves leftward, the black rook
makes progress. Illustration of the rook strategy whenτ < 1/2 is shown in (c), (d) and (e).(c) If the evader moves to the left, the pursuer moves in the
same direction for one unit.(d) If the evader moves to the right, the pursuer pushesΠ to Π′. When1 − τ ≤ r, the distance betweenΠ andΠ′ is one
unit. (e) When1− τ > r, the distance betweenΠ andΠ′ is 2τ . Here notice that since−τ ≥ −r and1− τ > r we have1− 2τ > 0.
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Fig. 6. Lion’s strategy in a polygon.

tine for solving the lion and man game in environments more
complex than simply-connected polygons.

We say that a pursuerguards a path Π when p can
immediately respond with a capture move whenever the
evader steps onto or acrossΠ.

To begin, let’s return to our square example in Figure 1(a).
Let Π be a horizontal line segment connecting two boundary
points. For any pointe ∈ S, let π(e) be the vertical
projection of e onto Π. Basic geometry shows that ife
moves to a pointe′ then d(π(e), π(e′)) ≤ d(e, e′). This
means that ifp = π(e) then it can move toπ(e′), so the
pursuer can maintain this property indefinitely. Furthermore,
if e steps onto or acrossΠ thenp can respond with capture.
In summary, a pursuer positioned atπ(e) can guardΠ, re-
stricting the evader to a subset of the environment. Moreover,
it is clear that a pursuer can achievep = π(e) in finite time:
start at the left endpoint ofΠ and then walk rightward at full
speed until reachingπ(e).

We are now ready for a formal definition of projection
mappings.

Definition 1 (Projection Map):A projectionπ : S → Q
is a function such that (1) ifx ∈ Q thenπ(x) = x, and (2)
for all x, y ∈ S, we havedQ(π(x), π(y)) ≤ dS(x, y).

Suppose that the pursuer is located atp = π(e) ∈ Q where
π : S → Q is a projection. It can be shown that if the evader
moves frome to e′ then the pursuer can respond by moving
to p′ ∈ Q satisfyingp′ = π(e′). In particular, ife′ ∈ Q then
the pursuer responds by capturing the evader [8].

As with lion’s strategy, this idea can be adapted for a
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Fig. 7. The closest point projection is illustrated in a simply connected
polygon.

simply connected polygonP . Given two boundary points
u, v ∈ ∂P , let Π be the unique shortest path between them.
Define theclosest point projection ρ : S → Π to be the
mapping that takesx ∈ P to the pointy ∈ Π that is closest
to x, see Figure 7. The vertical projection above is just a
special case of the closest point projection. As in the square
region, a pursuer can establish a guarding position onΠ and
maintain it thereafter, trapping the evader in a sub-polygon.
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Fig. 8. Two examples where the closest point mapping is not a projection
mapping. In these examples, the closest point is not unique.(a) In the first
example, sinceQ1 is not convex, there are two points that are closest toe in
Q1 (p1 andp2). (b) In the second example, due to the obstacle inS \Q2,
the pointe has two closest points inQ2 (p3 andp4). Therefore, the evader
can move such that its closest point moves faster. Thus, the pursuer cannot
stay on the closest point of the evader.

The situation changes once we introduce obstacles to the
environment: the closest point mapping becomes ill-defined
when there are obstacles betweene and Π, see Figure 8.
Bhadauria et al. [8] introduce an alternate type of projection
that is less intuitive, yet robust in the presence of obstacles.
Let a, b ∈ ∂S and letΠ be a shortest(a, b)-path, which



we refer to beanchored at a. The path projection of the
point x ∈ S is the pointy ∈ Π such thatd(a, y) = d(a, x).
If d(a, x) > d(a, b), then we simply defineπ(x) = b. See
Figure 9 for an example. The path projection remains unique,
even when there are obstacles in the environment. A pursuer
on the path projectionπ(e) can guardΠ, meaning that
d(π(e), π(e′)) ≤ d(e, e′), and that the pursuer can capture
the evader whenever it crossesΠ [8].

Verifying that a path projection satisfiesd(π(x), π(y)) ≤
d(x, y) is straight-forward, though there are multiple cases
to consider depending on the distance ofx, y ∈ S from
the anchora. The validity of this projection means that a
single pursuer can guard a path and thereby restrict the sub-
environment available to the evader, even in the presence of
obstacles. Next, we show how guarding shortest paths leads
to winning capture strategies in two families of environments.
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Fig. 9. The path projection anchored ata.

A. Applications

Path guarding is a powerful subroutine for designing
pursuit strategies. For example, consider the lion and man
game in a polygonP with obstacles. The shortest path
Π(a, b) between boundary pointsa, b splits P into two
or more regions. GuardingΠ(a, b) confines the evader to
one of these regions (Figure 10(a)). This process suggests
a divide-and-conquer strategy for multiple pursuers where
the pursuers constrain the evader into smaller and smaller
regions and finally capture it. Theshortest path strategyof
Bhadauria et al. [8] exploits this idea and guarantees capture
with only three pursuers in any polygonal environment with
obstacles. (They also provide an alternativeminimal path
strategy that we will discuss in Section V.) Beveridge and
Cai [7] adapted the shortest path strategy to more general
environments in the plane. Klein and Suri [10] showed that
an analogous surround-and-contract pursuit strategy works
on polyhedral surfaces using four pursuers. Recently, Noori
and Isler [9] proved that for positive capture radiusr > 0,
three pursuers are sufficient on polyhedral surfaces. We note
that the classic Aigner and Fromme result that three pursuers
can catch an evader in a planar graph [11] employs a similar
split-and-guard strategy. While Aigner and Fromme do not
use the term “projection,” their pursuit strategy employs path
projections to guard a sequential family of shortest paths on
a graph.

Next, we present a brief description of the above geometric
capture strategies. The main idea is the same for polygons

and polyhedra. The pursuers’ strategy is divided into rounds.
In each round, two pursuers, namelyp1 and p2, guard two
shortest pathsΠ1 andΠ2 respectively by locating themselves
on the path projection of the evader (Figure 10(b)). The
evader is then restricted to a subset of the environment
that is bounded by these two shortest paths and perhaps
part of the boundary of the environment: this subset is the
contaminated region. The third pursuerp3 guards a third
shortest pathΠ3 inside the contaminated region. The path
Π3 splits the contaminated region into two smaller subsets.
The evader is now restricted to one of these subsets. Without
loss of generality, suppose that the evader is betweenΠ1 and
Π3 (Figure 10(b)). Crucially, the pathΠ3 is selected such
that p2 can be released. Therefore, in the next round, the
contaminated region is guarded only byp1 and p3, so p2
can continue the splitting process.

We now describe the splitting step in more details. We
may assume thatΠ1 = Π(a1, b1) andΠ2 = Π(a2, b2) are
internally disjoint paths (otherwise, the evader is actually
trapped in a smaller region). If these paths are completely
disjoint, then eitherΠ(a1, b2) or Π(a2, b1) can be used for
splitting (Figure 10(b)). Next, supposea1 = a2 but b1 6= b2.
In this case, we can pick a pointc along the portion of the
boundary fromb1 to b2 and use the pathΠ(a1, c) to make
progress.

The remaining case is whena1 = a2 and b1 = b2, so
that Π1,Π2 are distinct shortest(a1, b1)-paths. We handle
this case differently in polygons and polyhedra. In polygons,
multiple shortest paths between two pointsa1, b1 occur only
when they both touch obstacles (Figure 10(c)). In this case,
the contaminated region is disconnected and we can make
progress by removing components that do not contain the
evader. In particular, if there is an obstacle that touches
bothΠ1 andΠ2, then the evader is actually trapped by this
obstacle as well, so we can replaceΠ1,Π2 with shorter paths
that only share one endpoint. Finally, if there is an obstacle
that only touchesΠ1, then we can chooseΠ3 6= Π1 to be a
shortest path that circumvents this obstacle.

The situation is more subtle for a polyhedral surface.
Obstacles are not required for multiple shortest paths: the
hills and valleys of the surface contribute a variety of
shortest paths (Figure 10(d)). Without guaranteed obstacles,
the evader can move freely in the region in betweenΠ1

and Π2. This complicates the choice of the splitting path
(Figure 10(d)). In particular, after removingΠ1 andΠ2, the
next shortest path betweena1 and b1 can be infinitesimally
close to eitherΠ1 or Π2. Let us refer this candidate path as
Πmin. If we chooseΠ3 asΠmin, then the splitting procedure
may go on forever and we cannot have finite time capture.
On the other hand, if we choose any other path asΠ3,
then p3 cannot guardΠ3 becauseΠmin is shorter. Klein
and Suri [10] resolve this situation by employing a fourth
pursuer, while Noori and Isler [9] exploit a non-zero capture
radius to achieve capture with three pursuers.

The four-pursuer strategy on polyhedral surfaces proposed
by Klein and Suri [10] takes advantage of the following
observation: When there are distinct shortest pathsΠ1,Π2
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Fig. 10. (a) The shortest pathΠ divides the polygon into at least two regions in which one of them contains the evader.(b) Shortest pathsΠ1, Π2, and
Π3 are shown with dashed lines and∂S is shown with solid lines. After guardingΠ3 by p3, the evader will be restricted to a smaller region.(c) Multiple
shortest paths in polygonal environments are caused by obstacles.(d) On a polyhedron multiple shortest paths are caused by hills and valleys. From [9].

between two pointsa1, b1, there must be at least one vertex
in the region between them. Letv be this vertex. In order
to split the evader region, the third and the fourth pursuers
are assigned to guard the shortest pathsΠ3 = Π(a1, v) and
Π4 = Π(b1, v) respectively (Figure 11(a)). As a result, the
pursuers maintain the invariant that the contaminated region
is guarded by at most three pursuers. The pursuers continue
the strategy until the evader is confined in a single triangular
face. At this point they follow a similar divide and guard
strategy until the length of at least one edge of the triangle
is at most one, in which case one pursuer can sweep the
entire triangle and capture the evader.

The three-pursuer strategy on polyhedral surfaces pro-
posed by Noori and Isler [9] uses the observation that when
the capture radius is non-zero, there is a safe region around
each of the shortest paths guarded by pursuers. This region
is called thecapture region C(Π), and is defined by:

C(Π) = {q ∈ S : ∃p ∈ Π, d(p, q) ≤ r/2}.
The evader cannot enterC(Π) without being captured by

the pursuer that guardsΠ [9]. The intersection points of the
boundary of the two capture regionsC(Π1) andC(Π2) are
used as the endpoints of the splitting pathΠ3 (Figure 11(b)).
With this adaption, the pursuit proceeds as in a polygonal
environment in the plane.

In this section, we have seen that simply by guarding
shortest paths, we can devise successful pursuit strategies
for multiple pursuers. In the next section, we will consider
a more aggressive pursuer that clears territory on its way to
guarding a path.
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Fig. 11. (a) Klein and Suri [10] use a fourth pursuer to handle multiple
shortest path case.(b) Noori and Isler [9], exploit the non-zero capture
radius to define the splitting path and ensure capture with three pursuers.

V. GUARDING M INIMAL PATHS

In this section, we further generalize the projection and
path guarding concepts introduced in Section IV. We start

with a motivating example, shown in Figure 12(a). The path
Π partitionsS into two piecesR andQ: we haveR∩Q = Π
andR ∪Q = S. Note thatΠ is not a shortest(a, b)-path in
S. However, it is a shortest pathin the sub-environmentR.
Therefore, we can define a closest point projectionπ : R →
Π. Now, suppose thate ∈ R and thatp is on the closest
point projectionπ(e). Then p can guardΠ and prevente
from entering the regionQ.

In summary, a path doesn’t have to be a shortest path
to be guardable: it just needs to be a shortest path with
respect to the current evader territory. We call such a path
a minimal path in R, reserving the term “shortest path”
for a global shortest path. Note that attaining position on a
minimal path is trickier than attaining position of a (global)
shortest path. Below, we explain how to attain position when
Q is simply connected, and then give some examples of
pursuit strategies that use minimal paths. We start by defining
a type of projection that will be useful for a pursuer who
hopes to guard a minimal path.

Definition 2: Let Π ⊂ S be a path between boundary
pointsu, v ∈ ∂S that splits the environment into subsetQ,R,
with Q∩R = Π andQ∪R = S. If Π is minimal inR then
the path projection π : S → Q is the piecewise function
that is the identity map onQ and is the path projection from
R to Π on S\Q.

We now put this new projection to work. Consider an
environmentS = Q ∪ R whereΠ = Q ∩ R is a minimal
(a, b) path inR. If Q is simply connected then the pursuer
can establishp = π(e) by performing the Lion’s strategy in
Q (Section III). If e ∈ Q, thene = π(e), sop = π(e) implies
that the evader is caught. Ife /∈ Q, then the pursuer is on
the path projection ofe onto Π. From this point forward,
the pursuer can maintain its position on the projection.
Therefore, it can guardΠ, and prevente from ever returning
to Q. Similar to the shortest path strategy, we can use this
minimal path guarding strategy to devise capture strategies.

We take a moment to compare guarding a shortest path
with guarding a minimal path inR. In the former case, the
pursuer is agnostic of the evader’s location with respect tothe
shortest pathΠ. Once the pursuer has establishedp = π(e),
the evader is trapped on one side ofΠ, but the pursuer has
no influence over which side. Furthermore, both sides ofΠ
may contain obstacles– this has no bearing on the ability of
the pursuer to guard the shortest pathΠ. Now consider a
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Fig. 12. (a) The pathΠ is minimal in R, but not inQ. If e ∈ R and
p = π(e) is on its projection, then the evader is trapped inR. (b) The path
Π3 is the third shortest loop-free(a, b)-path in the visibility graph, but it
is not a minimal path inQ.

pathΠ that is minimal inR, but not minimal in the simply
connectedQ. In the process of attaining a guarding position
on Π, the pursuer also clears the regionQ. In fact, this is a
necessary condition for guardingΠ, since it is only guardable
provided that we know that the evader is inR. Next, we
give two examples where guarding minimal paths leads to
winning pursuit strategies.

A. Applications

For our first application, we return to pursuit in polygonal
environments with obstacles. We have already summarized
the Shortest Path Strategy for this setting (Section IV-A).
Here we consider the second pursuit method of Bhadauria
et al. [8]: the Minimal Path Strategy. Just like the Shortest
Path Strategy, the pursuers take turns, guarding and splitting
the evader region. The difference is how they choose the
paths to guard. The pursuers construct their paths using the
visibility graph G(S) of the environment. The vertices of
this weighted graph correspond to the vertices of the envi-
ronment. Two vertices are adjacent when they are connected
by a line segment that completely lies inside the polygon.
Each edge is assigned a weight equal to the length of the
edge. Paths inG(S) correspond to paths in the original
environmentS. We can use graph algorithms to find our
minimal paths.

We start by choosing boundary pointsa andb. Pursuerp1
guards the shortest(a, b)-pathΠ1, which is minimal inS.
Pursuerp2 guards pathΠ2 corresponding to the next shortest
loop-free (a, b)-path in the visibility graph. Then, pursuer
p3 guards the next shortest loop-free(a, b)-path and so on.
Once the evader is trapped in a simply connected region,
the free pursuer uses lion’s strategy. There is one subtletyto
guarding this sequence of paths. Suppose that pathΠ3 splits
the evader region intoQ andR, where at least one region, say
R, contains an obstacle, see Figure 12(b). By construction,
the pathΠ3 is minimal in R, provided thatΠ2 is already
guarded. IfQ also contains an obstacle thenΠ3 will also be
minimal in Q as long asΠ1 is guarded. In this case,p3 can
simply move to guard this new path. However, whenQ is
simply connected,Π3 will not be a minimal path inQ. In this
case, the pursuerp3 uses lion’s strategy to force the evader
to move outsideQ. Oncep3 reachesΠ3, he simultaneously
guardsΠ3, trapping the evader inR.

(a) Q0 (b) Q1 (c) Q2 (d) Q3

Fig. 13. A leapfrog partitionQ0 ⊂ Q1 ⊂ Q2 ⊂ Q3. RegionQ1 intersects
two more obstacles thanQ0. RegionQ3\Q2 is disconnected. Pursuerp1
clearsQ0, then pursuerp2 clearsQ1\Q0. This releasesp1, who leapfrogs
over p2 to clearQ2\Q1. Finally, p2 leapfrogs overp1 to clearQ3\Q2.

This clear-and-guard strategy is the foundation for a two-
pursuer strategy that is appropriate for certain polygonal
environments with obstacles [2]. Figure 13 shows an example
of such an environment. Suppose that there is a family of
subsetsQ0 ⊂ Q1 ⊂ · · · ⊂ Qk = P where (1)Q0 is simply
connected, (2) there is a projectionπi : Qi+1 → Qi, and
(3) Qi+1\Qi is a collection of simply connected regions.
Then two pursuers can alternately take control of eachQi

by leapfrogging over one another to clear and guard the
next region. See [2] for some sufficient conditions for an
environment to have such a leapfrog decomposition.

VI. ROOK’ S STRATEGY

In Sections IV and V, the guarding pursuer plays a purely
defensive role: his sole objective is to prevent the evader
from entering a subregionQ ⊂ S. Therefore, another (non-
guarding) pursuer must take on the offensive role of reducing
the evader territory. In this section, we introducerook’s
strategy as an alternative to lion’s strategy for actively
chasing the evader. Simply put, rook’s strategy is designed
to simultaneously guard and make progress. We present two
applications where we will see the advantages of choosing
rook’s strategy over lion’s strategy.

First, we adapt the chess strategy introduced in Section I-
A to the lion and man game in a square environment.
Suppose that the pursuer is guarding a straight line segment
Π between two boundary points. As we observed in Section
I, whenr = 0, guardingΠ requiresp = π(e). As a counter-
strategy, the evader can oscillate horizontally between two
points, unit distance apart (Figure 1(b)). In response, the
pursuer must exhaust its movement budget just to keep pace,
so the guarded path never advances. However, when we have
a positive capture radiusr > 0, the pursuer guardsΠ as long
as 0 ≤ d(p, π(e)) < r. We claim that this slack allows the
pursuer to reliably advance the guarded path.

From here forward, we consider a game with positive cap-
ture radiusr > 0 and fix a constant0 < τ ≤ min{r, 1/2}.
Given a projectionπ onto pathΠ, we say thatp is in rook
position when0 ≤ d(p, π(e)) ≤ τ . A pursuer that is within
this horizontal offsetτ is in a quite powerful position, as we
explain below.

Suppose that the pursuer is offsetτ units to the right
of the evader projection (Figure 4(c)). If the evader moves
leftwards one unit, then the pursuer matches pace and
maintains this offset. However if the evader moves rightward,



then the pursuer switches to using a leftward offset instead
(Figure 4(d), (e)). As a result, the pursuer only needs to
move rightward1− 2τ units, which means that it can move
diagonally to achieve at least(1 − (1 − 2τ)2)1/2 > τ units
of upward progress. The key observation is that the evader
must move rightward at some point, since diam(S) is finite,
so the pursuer makes at leastτ units of vertical progress
every diam(S) steps.

It is worth noticing the connection between the lion’s
strategy and the rook’s strategy to see how the pursuer
guards and attacks simultaneously. During lion’s strategy,
the pursuer consistently radiates outwards from its initial
point c. Let pt be the location of the pursuer at timet
and letBt = B(c, dt) wheredt = d(c, pt). Each pursuer
move decreases the evader territory: after timet, the evader
cannot step into the regionBt. Indeed, the pursuer is actually
located on the closest point projection onto∂Bt, and it is
useful to view p as guarding the expanding sequence of
wavefronts ∂B1, ∂B2, . . . , ∂Bt. The rook’s strategy also
controls a sequence of advancing wavefronts. One advantage
of rook’s strategy is that its wavefronts are straight lines
(or piecewise linear paths). This makes it a natural fit for
polygonal and polyhedral environments, where it can lead
to simpler pursuit algorithms than those employing lion’s
strategy.

A. Centered Rook’s Strategy

It may seem that rook’s strategy is only suited for recti-
linear pursuit, since it is crucial that the evader must “turn
around” when it encounters the left or right boundary. We
can make rook’s strategy more powerful by expanding the
wavefronts from a central point similar to the lion’s strategy.
This centered rook’s strategy will guard wavefronts that
bound a family of convex polygons (rather than regions with
curved boundaries). We use the centered rook’s strategy in
Section VI-B below when we consider pursuit-evasion on
convex terrains (surfaces) inR3.

Consider a pursuit-evasion game in a convex polygon
S with capture radiusr > 0. Fix an offset 0 < τ ≤
min{r, 1/2}. Pick a centerc ∈ S and letA be a convex
polygon such thatmaxx∈A d(c, x) = 1. We explain how
p can guard a monotonically increasing family of regions
Ai = {bix | x ∈ A∩S} whereb1 = 1 andbi+1 ≥ bi. We call
bi the radius of the guarded region. We use the closest point
projection (which returns consistent values, even when the
evader circumnavigatesAi). Note that this projection ontoAi

partitionsS into distinct areas, according to the pre-images
of the vertices and sides ofAi, see Figure 14(a).

The pursuer starts atc. On its first move,p moves to
within τ of the closest point projection onA, so that it is
now guardingA1 = A. Now, suppose thatp currently guards
At. We claim that in finite time, the pursuer can increase
the radiusbt of the guarded region by a constant amount.
Suppose that the evader projectionπ(e) is on sideℓ of At,
so the evader is in the pre-image ofℓ. See Figure 14(b).
If the evader never leaves this pre-image, then the pursuer
makes progress as in regular rook’s strategy. Otherwise,
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Fig. 14. The centered rook strategy. (a) The expanding wavefronts, and
the pre-images of the edges and vertices of polygonAt centered atc. (b)
Two progress events are depicted. Suppose that the evader iscurrently at
e1 and the pursuer is guardingW1 on the edgeℓ. If the evader’s projection
stays onℓ the pursuer moves top2 by rook’s strategy. If the evader crosses
the pre-image ofv, the pursuer makes progress by moving top3.

the evader must step into (or through) the pre-image of a
vertex ofAt. As the evader crosses the pre-image of vertex
v, its projection remains fixed onv. This frees up part
of the pursuer’s movement budget for progressing to the
next wavefront (Figure 14(b)). For full details, see [12]. In
Section VI-B we will present an application of the centered
rook strategy in capturing the evader on convex terrains.

B. Application: Convex Terrains

In this section, we adopt the centered rook’s strategy to
pursuit-evasion with capture radiusr > 0 on a piecewise
linear convexterrain S in R

3 [12]. A terrain is a height
map where every point in thexy-plane has a single height
value.

As always, a well-suited projection function is the key
to successful pursuit. The main trick here is to relate the
centered rook’s strategy on the two-dimensional plane to the
game on the surface. To do so, first define the wavefronts
on the surface as follows. A wavefront at heighth is the set
of points on the intersection of the surface with the plane
z = h. Let W be the wavefront that the pursuer is currently
guarding. Next, the wavefront and the players are vertically
projected onto thexy-plane i.e., a pointq = (x, y, z) is
mapped toqi = (x, y, 0), Figure 15(a). Letei andW i be
the vertical image of the evader and the current wavefront
on thexy-plane. Then the projection of the evader ontoW
is the pointπ(e) on the surface such thatπi(e) is the closet
point projection ofei ontoW i, Figure 15(b).
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Fig. 15. (a) Images of the pointe and also the wavefrontW are shown. (b)
The projection ofe ontoW (π(e) = q) is depicted. The pursuer positions
itself at distanceτ from π(e) = q (the distance is measured alongW ).



After defining the projection mapping, the application of
the centered rook’s strategy is straightforward. For guarding
and making progress the pursuer moves such that its vertical
imagepi, on thexy-plane obeys the centered rook’s strategy
in the two-dimensional plane.

C. Application: Line of Sight Visibility in Sweepable Poly-
gons

So far we assumed that both the pursuer and the evader
can observe each others’ location throughout the game and
the pursuer’s only goal is to get within the capture radius
of the evader. The game becomes more complicated when
the information available to the pursuer is limited due to
imperfect sensing capabilities. For example, suppose thatthe
pursuer is equipped with a camera and therefore has line-
of-sight visibility, meaning that it can observe the location
of the evader only when the line segment between them
is completely inside the polygon. (We continue to assume
that the evader has a full map of the environment including
the lion’s position.) In this case, the pursuer must alternate
between searching for the evader (when hidden) and actively
chasing him (when visible). Throughout, the pursuer must
make progress toward capture, and maintain that progress
when transitioning between searching and chasing.

Noori and Isler [13] successfully combined search and
progress strategies in order to capture the evader inmonotone
polygons. A simple polygon is calledmonotonewith respect
to a line L if for any line L′ perpendicular toL the
intersection of the polygon withL′ is connected [14]. In
the proposed strategy in [13], the pursuer makes progress by
chasing the evader with lion’s strategy with the additional
trick of changing the center among multiple points that are
lined up in syzygy. We refer the interested reader to [13] for
the details of the idea which can be added to the toolbox.

Berry et al. [2] describe a line-of-sight pursuit strategy that
uses rook strategy (rather than lion’s strategy). They consider
the game played in strictly sweepable polygons, which are a
generalization of monotone polygons. A polygon isstrictly
sweepable if a straight line can be moved continuously
over the entire polygon (via a sequence of translations and
rotations) such that (1) the intersection of the line and
polygonal area is always a connected line segment, and (2)
no point is swept more than once. In particular, a monotone
polygon is the special case of sweeping the polygon via
a single translation. Crucially, successful pursuit requires
adjustments in the pursuer’s point-of-view during the game.
Rather than using a fixed “horizontal” direction for the rook
moves, we must change the pursuer’s frame of reference to
match the the sweep line as it rotates through the polygon.
We describe this process for a monotone polygon and for
a scallop polygon, where the sweep line rotates through a
fixed center point. We refer the reader to [2] for the general
case, where the sweep line alternates between translations
and rotations about different center points.

The sweepable polygon strategy guards a monotone in-
creasing family of subsets against recontamination. The key
to success is the choice of search path. For a monotone

(a)

C

(b)

Fig. 16. (a) The search path for a monotone polygon. (b) The search path
for a scallop polygon.

polygon, the search path traverses the polygon as horizon-
tally as possible, following the boundary where necessary,
Figure 16(a). Every time that the pursuer touches a new
boundary point, the guarded region is updated. We construct
the search path for the scallop polygon in the same way,
updating our notion of horizontal each time that we pass
a new vertex of the polygon, Figure 16(b). At each vertex,
the pursuer changes its frame of reference, which requires
moving down the sweep line until the new frame of reference
protects the previously guarded region, Figure 17. Crucially,
the pursuer does not commit to the new frame of reference
until this transition is complete. This prevents recontamina-
tion. Rook’s move also requires some adaptations to deal
with hiding and blocking moves by the evader. For more
details, see [2].

p1

e1

e2

e3
x

Fig. 17. Changing frame during the search phase in a scallop polygon.
If e moves out of the green area whilep moves down the search path, the
pursuer immediately switches to the frame of reference (whose vertical is
shown in red) that guards the pointx.

VII. E XERCISES FORSTEM EDUCATORS

In this section, we collect some introductory exercises
for students. Some exercises ask you to work through the
details of claims made in the paper, or apply results from this
paper to examples. Others explore novel formulations. When
appropriate, the most relevant section for the exercise is
specified in the question, or parenthetically. Unless otherwise
stated, these exercises assume that the capture radiusr = 0.

1) Consider the two guard strategy (Approach 2) of
Section I-A in aD ×D square environment.

a) If the pursuers are positioned on the appropriate
projections of the evader, show that one of them
makes at least

√
2/2 progress in each turn.



b) Assuming that the pursuers choose their initial
positions and then the evader chooses his initial
position, find the best upper bound that you
can for the capture time. What pair of initial
configuration and evader strategy achieves this
maximal capture time?

2) Prove that the lion’s strategy inside a circle with radius
R results in capture inR2 steps. (III)

3) Consider a polygonal environment with obstacles, as
in Section IV-A. Suppose thatp1 guards shortest path
Π(a1, b1) and p2 guards shortest pathΠ(a2, b2). If
these paths have common internal vertices, prove that
the evader is actually trapped in a smaller region than
the region bounded byΠ(a1, b1) andΠ(a2, b2).

4) Create the visibility graph for the environment in
Figure 18(a). Use this graph to find the first, second
and third shortest(a, b)-paths. (V-A)

5) Show that both of the environments in Figure 18 are
two-pursuer win. (V-A)

a

b

(a) (b)

Fig. 18. Environments for the exercises. Both are two-pursuer win.

6) Consider a game in a square region with capture radius
r = 1. Suppose that the pursuer is in rook position on
horizonal lineL, meaning thatd(p, π(e)) ≤ 1/2. Prove
that if e moves to a pointe′ that is within

√
3/2 of

line L, then p can respond by capturing the evader.
Conclude that evader cannot cross lineL. (VI)

7) Consider a game with pursuersp1, p2 in a square
region (with capture radiusr = 0). Suppose that the
pursuers are positioned on horizontal lineL at the
points that are±1/2 away fromπ(e). Prove that if
e moves to a pointe′ that is within

√
3/2 of line L,

then one of the pursuers can respond by capturing the
evader. (VI)

8) A pursuer can capture an evader in a simply connected
polygon when the pursuer knows the evader’s location
at all times. Suppose that the pursuer has line-of-
sight visibility. Design an environment and an escape
strategy for the evader so that if the evader knows the
pursuer’s path2, it can escape.

9) On the surface of a sphere, the shortest path between
any two points is the great circle passing through them.

a) Using the great circles passing through the north
pole, devise a capture strategy for the pursuer
when the players are moving on a half-sphere.

b) Design a capture strategy for two pursuers on the
surface of a sphere.

2This is the case when the pursuer’s strategy is deterministic.

10) Add one convex obstacle to a square environment.
a) Provide conditions on the diameter of the obstacle

such that a single pursuer can capture the evader.
b) For a large enough obstacle, design an escape

strategy for the evader.
c) Provide some conditions on the initial locations

of the players such that the pursuer can capture
the evader in the environment from part (b).

VIII. O PEN PROBLEMS AND CONCLUDING REMARKS

The field of pursuit-evasion remains rich with interesting,
thought-provoking questions and open-problems. We con-
clude with a list of open problems related to the lion and
man game.

Throughout this tutorial, we focused on deterministic
strategies for the full-visibility pursuit-evasion problems
where the players can observe the location of their opponent
at all times. In more complicated setups where the pursuer
has limited information about the location of the evader,
randomized strategies can be used to overcome the pursuer’s
lack of information [6], [15]. Application of the randomized
strategies to visibility-based versions of the problem and
realizing their connection to deterministic strategies isan
interesting venue for further research.

While we focused on the turn-based model, the techniques
presented in this paper are applicable to the continuous-time
version. It can be shown that any given turn-based capture
strategy to get within distancer of the evader can be adopted
to a continuous-time capture strategy with capture radiusr+s
wheres is the step size (Lemma 1). Therefore, as long as the
pursuer can change its step-sizes, the capture guarantee for
the continuous time model can get arbitrarily close to the
capture guarantee in the turn-based model3. However, this
argument is not applicable when planning must be performed
in the configuration space. Moreover, the problem is mostly
open in the presence of nonholonomic constraints [16] on
the motion of the players.

We saw that in simply connected polygons one pursuer is
enough for capture while in the presence of obstacles three
pursuers are sufficient and sometimes necessary [8]. An in-
teresting question is to determine the classes of polygons that
are two-pursuer-win [1]. Similarly, while three pursuers are
sufficient for capture on general three-dimensional surfaces,
the set of one-pursuer-win or two-pursuer-win surfaces are
unknown.

Turning to the line-of-sight version of the game, we do not
yet have a full characterization of the class of polygons that
are pursuer-win. An intermediate goal would be to determine
whethersweepable polygonsare pursuer win. In this family
of polygons, the sweep line may visit points more than once.
This relaxation cofounds the notion or progress described
herein for strictly sweepable polygons.

In recent years Unmanned Autonomous Vehicles (UAVs)
have been receiving increasing attention. Interesting variants

3In the turn-based strategy, the time unit∆t can be chosen arbitrarily
small. Consequently, the step-sizes can be arbitrarily small since the
players’ speed is fixed.



of the problem can be designed when the players have
the ability to fly. For example, suppose that the evader
is restricted to move on the ground which is modeled as
a geodesic terrain while the pursuer is able to fly. What
is the outcome of the game subject to limitations on the
highest altitude accessible by the pursuer? Can we provide
guarantees on capture when we have a heterogeneous team
of flying and ground pursuers?

Finally, most of the pursuit-evasion research is focused
on the equal speed assumption. A full characterization of
the game regarding different speeds for the pursuer and the
evader is still unknown [17].

IX. A PPENDIX

Lemma 1: If the pursuer can get within distancer of
the evader in the turn-based model, then it can get within
distancer + s of the evader in the continuous time model
wheres is the step size, i.e. the distance that the players can
travel in one time unit∆t.

Proof: In the continuous time model, the pursuer
considers the continuous movement of the evader at discrete
time steps with its specific time unit∆t. Then it plays the
same turn-based pursuit strategy with respect to the location
of the evader att − ∆t. Notice that the capture condition
in the turn-based version is whether the distance between
the players becomes less thanr. With the aforementioned
modification to the continuous setting, the capture guarantee
is that the pursuer will decrease its distance to the evader to
at mostr + s.
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