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A Pursuit-Evasion Toolkit

Narges Noori, Andrew Beveridge and Volkan Isler

Abstract— This tutorial contains tools and techniques for who would like to tackle one of the most challenging path
designing pursuit and evasion strategies. The material tajets a  planning problems. We conclude with open problems for the

diverse audience including STEM educators as well as robais  egaarchers and exercises to engage students. Let us dive
researchers interested in applications of pursuit-evasio games. right in!

We start with a simple “lion and man” game in a square
environment which should be accessible to anyone with a A O .
high-school level background on geometry and trigonometry - Lverview

We then visit various versions of this game with increasing The original version of the lion and man game takes place
complexity. Rather than surveying specific results for spaic i, 5 circular arena. Intuitively, the lion should win the gam
environments, the tutorial highlights broadly applicable tech- if it moves directly toward the man, the man has to step back
nigues and strategies. It also includes exercises for STEM | - . oD )

educators as well as open problems for robotics researchers N the same direction to maintain the seperation between the
players. He can not do this forever, since he will eventually
hit the boundary. It turns out that the analysis of this senpl
“greedy” strategy is not straightforward since the turnlang

A pursuit-evasion game takes place between two playergan pe arbitrarily small. In fact, when time is continuous
The pursuer is charged with capturing the evader whilgng capture requires colocation, man can avoid capture
the evader tries to avoid getting caught. Many roboticggefinitely by following a gently spiraling path [3]. To aidb
applications such as search, tracking and surveillance Cgig pathology, robotics researchers focus on the turedas
be modeled as pursuit-evasion games. Equally importantlysrsion of the game, where the players move alternately.
these games can be modeled as fun mathematics problem$j® assume that the players have the same maximum step-
inspire new-comers to the field of robotics. The authors ef thgjze: we employ a unit step size, which is both standard
paper have witnessed this first-hand during summer Reseakghy convenient. The pursuer captures the evader when their
Experiences for Undergraduates (REU) programs at thfstance is within than a fixechpture radius-. We encounter
Institute for Mathematics and its Applications (IMA), Ided . — ) and» > 0 with equal frequency in the literature, and
at the University of Minnesota. The subject is accessiblgye will consider both variants below. Current research in
with many open problems that require creativity, insighl angpotics focuses on games which take place in more complex
strong algorithmic thinking. Our summer students digestegyironments (e.g., non-convex polygons, environmertts wi
the basics of the field and developed results that evolved inbolygonal obstacles) and sometimes consider players&ubje
research publications. [1], [.2]. . . . to sensing limitations.

The purpose of this article is to provide a “toolkit” SO \ye consider the full-visibility version of the game, where
as to make pursuit-evasion games accessible to a broaggs players know the environment and one another’s locgtion
audience. We focus on a classical game known aditine gt 5|l times. In order to capture the evader, a general pursui
and man gamewhere the lion pursues the man, moving Withstrategy consists of two main phases. First, the evader is
equal speed. Rather than a traditional survey of literatuggpelled from a subset of the environment, and this subset
on the lion and man game, the paper is organized in j& protected thereafter, meaning that the evader cannot re-
tutorial fashion. We start from simple motivating exampleg,gntaminate it without being caught. Second, the protected
whose solutions should be accessible to anyone with a higfpset is gradually grown until the whole environment is
school level background on geometry and trigonometry. OWjeared and the evader is captured. These two phases are
journey takes us to open variants such as pursuit-evasion erred to aguarding andmaking progressrespectively.
surfaces. Along the way, we introduce tactics which can be pg 5 demonstrative example, suppose that this turn-based
used as building blocks in different settings. The materif&jame is played in a square region; the pursuer can observe
in the earlier sections of the paper provides a startingtpoighe exact location of the evader, and the capture radius is
for STEM educators looking for an engaging robotics probzerg - — (. A first intuitive idea for guarding is to locate
Ie_m accessible to high-s_chool gnd unde_rgraduate studenise pursuer on the line segment between two arbitrary
Simultaneously, we provide an introduction for researsherooundary endpoints, and prevent the evader from crossing it

Narges Noori and Volkan Isler are with the Department of Cotep If we can also pusli towards the evader the progress goal
Science and Engineering, University of Minnesota. Andreevedidge would be achieved as well.

is with the Department of Mathematics, Statistics and Cadempisci- The pursuer can guard, by positioning itself on the
ence at Macalester College. Emailnoori, islef@cs.umn.edu, abev-

erid@macalester.edu. This work is supported in part by N$&ntg Vert?cal proj-ecti.onof the evader ontd. (Fig.ur.e 1(a)). The
#1111638 and #0917676. vertical projection has the property that it is closer to all
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the points alongl than the evader itself. As a result, if theexample, suppose that we have two pursuers, each of which
evader tries to cross, the pursuer (which is on the evader'sguards a line by positioning itself on the evader projection
projection) will capture it during its next move. The first pursuep; guards a horizontal line segment,

Although the vertical projection idea succeeds in restrictwhile the second pursugr guards the vertical line segment
ing the evader to one side df for the rest of the game, L, (Figure 3(a)). This traps the evader in one quadrant of
the pursuer fails to achieve its second goal: shrinking thihe square. If the evader moves horizontally, themmimics
evader's region. Indeed, suppose that the evader take$ a this move whilep, makes one unit of progress by advancing
unit step parallel td’, moving frome; to e; with |ejeo| =1  its guarded line. Likewise, if the evader moves vertically,
(Figure 1(b)). Consequently, the evader’s vertical priages  thenp, keeps pace while; advances its guarded line. More
onto L, denoted by, andp, respectively, satisfijp;pa| = 1.  generally, the Pythagorean theorem shows that at least one
Therefore, the pursuer exhausts its movement budget jusitthe pursuers can advance its guarded line/&y2 units
to keep up with the evader. Now, if the evader reversds each turn. This means that the evader will be cornered by
its direction after each step, the pursuer is forced to mowhe pursuers after a finite number of moves, after which one
between the two fixed points; and p.. Consequently, the of the pursuers has a capture move.
pursuer cannot mové towards the evader, and the evader In both of the approaches above, capture is guaranteed for
can escape forever. zero capture radius. Pursuit games with capture radiug)

are also common in the literature. Our third approach takes

. advantage of the non-zero capture radius to overcome the
€ €1 c2 stalemate in Figure 1(b).
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Fig. 1. (a) The pursuer can prevent the evader from crossindy

positioning itself on the vertical projection of the evadgr) Sinceejes is

parallel to L and |ejez| = 1, we have|p1p2| = 1. Thus, the pursuer is (@) (b)

stuck onL between the two pointg; andpa.
Fig. 3. (a) Two pursuers are guardinfy;, L2 by staying on the projection
of the evader. One of them can make progress after each ifimv&.single
pursuer can puslhy, towards the evader if it stays behind the projection of

There are three approaches to tackle the issue above dffevader

achieve progress.

Approach 1. The Lion’s Strategytn the first approach, Approach 3. The Rook’s Strateggs mentioned above,
known as thdion’s strategy, the pursuer can simultaneouslythis approach requires a non-zero capture radius. To build
guard and make progress. In this strategy, the pursuel) (liomtuition, consider a chess endgame for a black rook and
starts at an arbitrary centef = c. In roundt > 1, the black king versus a solitary white king. Before reading on,
pursuer makes #on’'s move, meaning that it moves from we encourage our readers to develop a strategy for the black
p'~! to the pointp! € B(p'~!,1) on the line segment king to win the game.

connectingc to ¢! such thatp® is closest to the evader Therook’s strategy works as follows: One row at a time,
(Figure 2). As discussed in Section Ill, eventually the @rad the black rook reduces the area available to the white king.
will be squeezed between the pursuer and the boundafhis is achieved with support of the black king who trails
which results in capture. the projection of the white king onto the row guarded by the
rook. Specifically, suppose the black rook is at rgwolumn

1, which guards rowi. The white king is at row’ < 7 and
columnj, and the black king is at row+ 1, columnj — 1.
From this position, the black king trails the white king uinti
the column separation of the black rook and black king is
at least two (Figure 4(a)). After achieving this separation
the black player can make progress as follows. If the white
king moves back on to columj— 1, then the black player
can move the rook to row — 1 and push the white king
further down (Figure 4(bf) If the white king moves away

Fig. 2. Lion’s strategy in a square region.

1This is because the white king cannot move to riosince the reachable
. cells are being guarded by the black king. Furthermore, énetktreme case
Approach 2. Multlple Guardsin the second approach, wherei’ = i — 1, the white king cannot stay in roé/ because of the two

we add a pursuer to guard another line segment. In our squab&imn separation between the black king and the black rook.



from the black king, then the black king keeps trailing him. Simple trigonometric arguments can be used to show that
Eventually, the white king is trapped in a single row, wher¢he lion’s strategy captures the man. The proof exhibits
black can checkmate. the two essential ingredients for verifying that a pursuit
In rook’s strategy, the pursuer guards a horizontal linstrategy succeeds in finite time. First, we establishiran
which is analogous to the row guarded by the rook. Theariant that the pursuer(s) maintain throughout the game.
pursuer plays the role of the black king and trails thd-or lion's strategy, this invariant is that was located on
projection. Whenever the evader moves “back” toward ththe radius between the center and the evader. Second, we
projection, the pursuer can make progress by pushing tee lineed ameasure of progressto show that the game ends
forward. Eventually, the evader will be squeezed between tlin finite time. Letd andd’ denote the distance between the
guarded path and the boundary, where it will be caught. Ieenterc and the lion before and after a move respectively
Section VI, we show how to generalize the rook’s strateg¢Figure 5(b)). Let be the angle betweere; andp;p,. We
to general environments. haved? = (d + cosa)? +sin® a = d? + 2d cosa + 1 (Note
In the rest of the paper, we present various techniquélat p;p. = 1). We first show that there exists a point
to guard a frontier as well as strategies to make progree$ ces such thata < 7 . This is because;ex < 1, and
by expanding the frontier towards the evader. In Section Ifiencep;g < 1 whereq is a point oncep such thatgp, is
we overview an analysis of the lion's strategy as welprependicular tae; (Figure 5(a)). As a result of < 5 we
as an extension of it. In Section IV and Section V wehaved? > d* + 1. When coupled with the invariant, this
introduce general projection mappings and their appbicati guarantees capture after at magt rounds.
in designing capture strategies. In Section VI we elaborate

on the rook’s strategy and its applications for capturing th e Do 2

evader. We mostly focus on the full-visibility variants diet q q

lion-and-man game where the assumption is that the players e
, . . . . . el 1

know one another’s location at all times. Designing strigteg

for limited visibility models is an active research problem b P e d p1

We will study a limited-visibility version in Section VI aa @ (®)
application of the rook’s strategy. In Section VII we presen

a set of exercises that can be used as handouts to encourdge>: n lion's strategy, the pursuer can increase itsadis¢ from the
ce%ter by at least’ — d > % This is because(a) The length ofpiq is

ar‘d warm-up the StUdentS_- Fma”}’v we conclude the papgEs than one. As a result, there exists a ppinbn ceo which is closer to
with some open problems in Section VIII. e2 thang, and moreover is at distance one frgm. (b) In fact, a < 3.

Il. NOTATION ) o
Isler et al. [6] adapted lion’s strategy for pursuitin a siynp

In this section, we present the notation used throughodbnnected polygorP. First, the pursuer starts at poiatin
the paper. The game environment is denotedsbyith  the polygon, which is typically a boundary vertex. Theregft
boundarydS. We refer to the subset of that the evader the pursuer always moves onto the shortest path between
cannot enter without being captured as theared region.  and the evader, getting as close-tas possible. Note that this
The remaining part of is referred to as theontaminated  shortest path could interact with the boundary of the patygo
region. We refer to a shortest pathdnbetween points:and  jn which case it will be a piecewise linear path (Figure 6).
y by l(z, y). The shortest distance betweemndy, i.e. the  The extended lion’s strategy uses the same invariant (being
length of II(z, y), is denoted byi(z,y). When we require on the shortest path betweerande) and the same measure
that a distance is measured within a Subset, SUCh@g;OS, of progress (increasing(qp) at a constant rate) as lion’s
we write dg(z,y). We useB(z,r) = {y € S | d(z,y) <r} strategy. For a polygor® with n vertices and diameter

to denote the ball of radius centered atr. diam(P) = max, .ep d(u,v), Isler et al. [6] proved that
’ the capture time iO(n - diam(P)?). Recently, Beveridge
Ill. LION’S STRATEGY and Cai [7] gave a streamlined analysis that improves the

The lineage of the lion and man game traces back teapture time bound t®(diam(P)?).
Rado’s classic version from the 1930s [3]. This game takes
place in a circular arena, and both the lion and the man have
equal speed. Lion wins if it becomes colocated wtih the man In this section, we begin our exploration of environments
in finite time. The lion’s strategy of staying on the man’swith obstacles. Obstacles create an advantage for the evade
radius was generally accepted in folklore [3]. The capturEBor example, a single pursuer cannot catch an evader when
time of this turn-based strategy &(R?) where R is the there is one large obstacle in the environment. Indeed, the
radius of the environment. Sgall [4] uses a similar strateggvader can start from a point on the boundary of the obstacle
to show finite time capture when the game takes place Bnd then loop around the obstacle, moving away from the
the non-negative quadrant of the plane. Alonso et al. [Jjursuer thereafter. In this section, we describe how a sbiort
proposed a more sophisticated strategy which guarantgesth can be guarded by a pursuer even in the presence of
capture inO(R log %) steps where is the capture radius. obstacles. This capability turns out to be a powerful subrou

IV. GUARDING SHORTESTPATHS
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Fig. 4. The rook-and-king chess endgame is shown in (a) and&pThe black rook is one row above the white king. The black kimdait least) two
columns to the right and one row above the black rook, andtfushe left of the white king(b) After the white king moves leftward, the black rook
makes progress. lllustration of the rook strategy whea 1/2 is shown in (c), (d) and (e)c) If the evader moves to the left, the pursuer moves in the
same direction for one unifd) If the evader moves to the right, the pursuer pusiHe® IT'. When1 — 7 < r, the distance betweeH andII’ is one
unit. (¢) When1 — = > r, the distance betweeH andII’ is 27. Here notice that since-r > —r and1 — 7 > r we havel — 27 > 0.

Fig. 7. The closest point projection is illustrated in a siynponnected
polygon.

Fig. 6. Lion’s strategy in a polygon.

tine for solving the lion and man game in environments moraMPly connected polygorP. Given two boundary points
complex than simply-connected polygons. u,v € OP, let I be the unique shortest path between them.

We say that a pursueguards a path Il when p can Define theclosest point projectionp : S — II to be the

immediately respond with a capture move whenever tH@2PPIng that takes € P to the pointy < II that is closest
evader steps onto or acroBs to x, see Figure 7. The vertical projection above is just a
To begin, let's return to our square example in Figure 1(a§_pe_C|aI case of the closest pomt prOJec'qon. As_ in the sguar
Let I be a horizontal line segment connecting two boundarf9ioN: @ pursuer can establish a guarding positiofland
points. For any pointe € S, let w(¢) be the vertical maintain it thereafter, trapping the evader in a sub-patygo
projection of ¢ onto II. Basic geometry shows that
moves to a point’ then d(w(e),w(e’)) < d(e,e’). This Do
means that ifp = w(e) then it can move tar(e’), so the

pursuer can maintain this property indefinitely. Furthero €e e .
if e steps onto or acrodd thenp can respond with capture. AA
In summary, a pursuer positioned 7ate) can guardlI, re- P3 Q, D1

stricting the evader to a subset of the environment. Moneove . b
it is clear that a pursuer can achigve= 7(e) in finite time: @ (®)

start at the left endpoint dfl and then walk rightward at full Fig. 8. Two examples where the closest point mapping is nabjgtion
speed until reaching(e). mapping. In these examples, the closest point is not uni@)én the first

Wi dv f f | definiti f iacti example, sinc&); is not convex, there are two points that are closestito
€ aré now ready ror a formal demnniion ot projec IOan (p1 andp2). (b) In the second example, due to the obstacl& Q-2

mappings. the pointe has two closest points i@2 (p3 andps). Therefore, the evader

Definition 1 (Projection Map):A projectionw : S — () can move such that its closest point moves faster. Thus, uteigr cannot
is a function such that (1) i € @ thenn(z) = z, and (2) stay on the closest point of the evader.
for all z,y € S, we havedqg(r(z), 7(y)) < ds(z,y).

Suppose that the pursuer is locateg at 7w(e) € @ where The situation changes once we introduce obstacles to the
m:S — @ is a projection. It can be shown that if the evadeenvironment: the closest point mapping becomes ill-defined
moves frome to ¢’ then the pursuer can respond by movingvhen there are obstacles betweemnd II, see Figure 8.
to p’ € Q satisfyingp’ = w(¢’). In particular, ife’ € @ then Bhadauria et al. [8] introduce an alternate type of proecti
the pursuer responds by capturing the evader [8]. that is less intuitive, yet robust in the presence of obstacl

As with lion’s strategy, this idea can be adapted for det a,b € 9S and letIl be a shortesta, b)-path, which



we refer to beanchored at a. The path projection of the and polyhedra. The pursuers’ strategy is divided into reund
pointz € S is the pointy € II such thatd(a,y) = d(a,x). In each round, two pursuers, namely and p2, guard two

If d(a,z) > d(a,b), then we simply definer(z) = b. See shortest pathB; andIl, respectively by locating themselves
Figure 9 for an example. The path projection remains uniquen the path projection of the evader (Figure 10(b)). The
even when there are obstacles in the environment. A pursumrader is then restricted to a subset of the environment
on the path projectionr(e) can guardll, meaning that that is bounded by these two shortest paths and perhaps
d(m(e),n(e")) < d(e,e’), and that the pursuer can capturepart of the boundary of the environment: this subset is the
the evader whenever it crossHs[8]. contaminated region. The third pursugy guards a third

Verifying that a path projection satisfie§n(x),7(y)) < shortest patHIs inside the contaminated region. The path
d(x,y) is straight-forward, though there are multiple case$ls splits the contaminated region into two smaller subsets.
to consider depending on the distancexgfy € S from The evader is now restricted to one of these subsets. Without
the anchora. The validity of this projection means that aloss of generality, suppose that the evader is bet@geand
single pursuer can guard a path and thereby restrict the sulb; (Figure 10(b)). Crucially, the pathl; is selected such
environment available to the evader, even in the presencetbft p, can be released. Therefore, in the next round, the
obstacles. Next, we show how guarding shortest paths leacisntaminated region is guarded only by and p3, SO p-
to winning capture strategies in two families of environitsen can continue the splitting process.

We now describe the splitting step in more details. We
may assume thall; = II(a1,b1) and Iy = II(ag, bs) are
internally disjoint paths (otherwise, the evader is adyual
trapped in a smaller region). If these paths are completely
disjoint, then eithefdI(aq,bs) or II(az,b1) can be used for
splitting (Figure 10(b)). Next, supposg = as butb; # b,.

In this case, we can pick a pointalong the portion of the
boundary fromb, to b, and use the pathi(aq,c) to make

progress.
The remaining case is whesy, = as andb; = bs, SO
Fig. 9. The path projection anchored at that IT;, IT, are distinct shortesfaq, b1)-paths. We handle

this case differently in polygons and polyhedra. In polygjon
o multiple shortest paths between two poinisb; occur only
A. Applications when they both touch obstacles (Figure 10(c)). In this case,
Path guarding is a powerful subroutine for designinghe contaminated region is disconnected and we can make
pursuit strategies. For example, consider the lion and mamogress by removing components that do not contain the
game in a polygonP with obstacles. The shortest pathevader. In particular, if there is an obstacle that touches
II(a,b) between boundary pointa,b splits P into two bothII; andIl,, then the evader is actually trapped by this
or more regions. Guardingl(a,b) confines the evader to obstacle as well, so we can repldée, II, with shorter paths
one of these regions (Figure 10(a)). This process suggetitsit only share one endpoint. Finally, if there is an obstacl
a divide-and-conquer strategy for multiple pursuers wheribat only touchegl,, then we can choosi; # II; to be a
the pursuers constrain the evader into smaller and smallgnortest path that circumvents this obstacle.
regions and finally capture it. Trehortest path strategyof The situation is more subtle for a polyhedral surface.
Bhadauria et al. [8] exploits this idea and guarantees captuObstacles are not required for multiple shortest paths: the
with only three pursuers in any polygonal environment withhills and valleys of the surface contribute a variety of
obstacles. (They also provide an alternatm@imal path  shortest paths (Figure 10(d)). Without guaranteed obedacl
strategy that we will discuss in Section V.) Beveridge andthe evader can move freely in the region in betwdén
Cai [7] adapted the shortest path strategy to more generaid II,. This complicates the choice of the splitting path
environments in the plane. Klein and Suri [10] showed thafFigure 10(d)). In particular, after removidd, andIl,, the
an analogous surround-and-contract pursuit strategy svorRext shortest path between andb; can be infinitesimally
on polyhedral surfaces using four pursuers. Recently, Noatlose to eithedI; or II,. Let us refer this candidate path as
and Isler [9] proved that for positive capture radius> 0, Ili,. If we choosdl; asIl,,;,, then the splitting procedure
three pursuers are sufficient on polyhedral surfaces. We nahay go on forever and we cannot have finite time capture.
that the classic Aigner and Fromme result that three pussuedn the other hand, if we choose any other pathlIhs
can catch an evader in a planar graph [11] employs a similtiten p; cannot guardll; becausell,,;, is shorter. Klein
split-and-guard strategy. While Aigner and Fromme do naind Suri [10] resolve this situation by employing a fourth
use the term “projection,” their pursuit strategy emplogghp pursuer, while Noori and Isler [9] exploit a non-zero captur
projections to guard a sequential family of shortest paths aadius to achieve capture with three pursuers.
a graph. The four-pursuer strategy on polyhedral surfaces proposed
Next, we present a brief description of the above geometrlty Klein and Suri [10] takes advantage of the following
capture strategies. The main idea is the same for polygoabservation: When there are distinct shortest paihsll,



(a) (b) (©) (d)

Fig. 10. (a) The shortest patfil divides the polygon into at least two regions in which oneha contains the evadd€b) Shortest path$l;, IT», and
113 are shown with dashed lines afd is shown with solid lines. After guardinfis by ps, the evader will be restricted to a smaller regi¢c). Multiple
shortest paths in polygonal environments are caused byaest(d) On a polyhedron multiple shortest paths are caused by hitisvalleys. From [9].

between two pointg,, b1, there must be at least one vertexwith a motivating example, shown in Figure 12(a). The path

in the region between them. Letbe this vertex. In order II partitionsS into two piecesk and@: we haveRNQ = II

to split the evader region, the third and the fourth pursueend R U @ = S. Note thatll is not a shortesta, b)-path in

are assigned to guard the shortest paihs= II(a;,v) and S. However, it is a shortest path the sub-environmeng.

11, = II(b1,v) respectively (Figure 11(a)). As a result, theTherefore, we can define a closest point projectiank —

pursuers maintain the invariant that the contaminatedregiII. Now, suppose that € R and thatp is on the closest

is guarded by at most three pursuers. The pursuers continqueint projectionr(e). Thenp can guardll and prevent

the strategy until the evader is confined in a single triamgul from entering the regio”d).

face. At this pOint they follow a similar divide and guard In Summary’ a path doesn’t have to be a Shortest path

strategy until the length of at least one edge of the trianglg be guardable: it just needs to be a shortest path with

is at most one, in which case one pursuer can sweep th&pect to the current evader territory. We call such a path

entire triangle and capture the evader. a minimal path in R, reserving the term “shortest path”
The three-pursuer strategy on polyhedral surfaces presr a global shortest path. Note that attaining position on a

posed by Noori and Isler [9] uses the observation that whefinimal path is trickier than attaining position of a (gltjpa

the capture radius is non-zero, there is a safe region arougfortest path. Below, we explain how to attain position when

each of the shortest paths guarded by pursuers. This regignis simply connected, and then give some examples of

is called thecapture region C(II), and is defined by: pursuit strategies that use minimal paths. We start by ahfini

C(Il)={qgeS:Ipell, dpq) <r/2}. a type of projection. that will be useful for a pursuer who
hopes to guard a minimal path.

The evader cannot entér(Il) without being captured by pofinition 2: Let I C S be a path between boundary
the pursuer that guards$ [9]. The intersection points of the pointsu, v € A that splits the environment into subsgtR
boundary of the two capture regiod¥Il;) and C(Il,) are with Qrva —TMandQUR = S. If I is minimal in R theﬁ
used as the endpoints of the splitting paihi (Figure 11(b)). the path projection = : S — @ is the piecewise function

With this adgption, the pursuit proceeds as in a polygonﬁllat is the identity map o and is the path projection from
environment in the plane. Rto Tl onS\Q

In this section, we have seen that simply by guarding , L i
shortest paths, we can devise successful pursuit strategieWe now put this new E)]rOjectlon to WOI’!(. Con_S|_der|an
for multiple pursuers. In the next section, we will consideENVIronments = Q U 1t wherell = @ N R is a minima

a more aggressive pursuer that clears territory on its way {g-?) Path in 2. If Q is simply connected then the pursuer
guarding a path. can establisty = 7(e) by performing the Lion’s strategy in

Q (Section Ill). Ife € Q, thene = w(e), sop = «(e) implies
that the evader is caught. ¢ ¢ @, then the pursuer is on
the path projection ot onto I1. From this point forward,
the pursuer can maintain its position on the projection.
Therefore, it can guartl, and prevent from ever returning

to Q. Similar to the shortest path strategy, we can use this
minimal path guarding strategy to devise capture strasegie

We take a moment to compare guarding a shortest path
F:]g- 11. (a)hKIein f;ndNSur! [10(], lﬁe a ;ourth ?U_rsier to handle multiplewith guarding a minimal path iR. In the former case, the
Shorest paih cosdt) Noor and ket 9 xplf he nor2ero SABTE pursuer is agnostic of the evader's location with respetitéo

shortest patil. Once the pursuer has establisheg 7(e),

the evader is trapped on one sideldf but the pursuer has
V. GUARDING MINIMAL PATHS no influence over which side. Furthermore, both side$of

In this section, we further generalize the projection andhay contain obstacles— this has no bearing on the ability of
path guarding concepts introduced in Section IV. We stathe pursuer to guard the shortest path Now consider a

IT;
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Fig. 13. Aleapfrog partitiorQo C Q1 C Q2 C Q3. Region@; intersects
two more obstacles tha@o. RegionQ3\Q2 is disconnected. Pursugi

Fig. 12. (a) The pathII is minimal in R, but not inQ. If e € R and  clearsQo, then pursuep; clearsQ:1\Qo. This releasep,, who leapfrogs
p = m(e) is on its projection, then the evader is trappedRin(b) The path ~ OVerp to clearQ2\Q1. Finally, p2 leapfrogs ovep; to clearQs\Q2.
113 is the third shortest loop-fre@u, b)-path in the visibility graph, but it
is not a minimal path irQ.
This clear-and-guard strategy is the foundation for a two-
pursuer strategy that is appropriate for certain polygonal

pathII that is minimal inR, but not minimal in the simply - gpyironments with obstacles [2]. Figure 13 shows an example
connectedy. In the process of attaining a guarding positionyt ,ch an environment. Suppose that there is a family of

on II, the pursuer also clears the regi@n In fact, this is a subsets)y € Q1 C --- C Qi = P where (1)Qq is simply
necessary condition for guardiif since it is only guardable .4 qected (2) there is a projection : Q:+1 — Q;, and

p_rovided that we know that the_evadgr_isRl Next, we (3) Qi+1\Q; is a collection of simply connected regions.
give two examples where guarding minimal paths leads ®pen two pursuers can alternately take control of e@ch

winning pursuit strategies. by leapfrogging over one another to clear and guard the
next region. See [2] for some sufficient conditions for an

environment to have such a leapfrog decomposition.
For our first application, we return to pursuit in polygonal

environments with obstacles. We have already summarized VI. ROOK’S STRATEGY
the Shortest Path Strategy for this setting (Section IV-A). In Sections IV and V, the guarding pursuer plays a purely
Here we consider the second pursuit method of Bhadaurigfensive role: his sole objective is to prevent the evader
et al. [8]: the Minimal Path Strategy. Just like the Shortedrom entering a subregio® c S. Therefore, another (non-
Path Strategy, the pursuers take turns, guarding andirsglitt guarding) pursuer must take on the offensive role of redycin
the evader region. The difference is how they choose tltee evader territory. In this section, we introdumeok’s
paths to guard. The pursuers construct their paths using thgategy as an alternative to lion's strategy for actively
visibility graph G(S) of the environment. The vertices of chasing the evader. Simply put, rook’s strategy is designed
this weighted graph correspond to the vertices of the envie simultaneously guard and make progress. We present two
ronment. Two vertices are adjacent when they are connectapplications where we will see the advantages of choosing
by a line segment that completely lies inside the polygomook’s strategy over lion’s strategy.
Each edge is assigned a weight equal to the length of theFirst, we adapt the chess strategy introduced in Section I-
edge. Paths inG(S) correspond to paths in the original A to the lion and man game in a square environment.
environmentS. We can use graph algorithms to find ourSuppose that the pursuer is guarding a straight line segment
minimal paths. IT between two boundary points. As we observed in Section
We start by choosing boundary pointandb. Pursuerp; |, whenr = 0, guardingll requiresp = 7(e). As a counter-
guards the shortest, b)-path IT;, which is minimal inS.  strategy, the evader can oscillate horizontally betweem tw
Pursuemp, guards pathil, corresponding to the next shortestpoints, unit distance apart (Figure 1(b)). In response, the
loop-free (a, b)-path in the visibility graph. Then, pursuer pursuer must exhaust its movement budget just to keep pace,
ps guards the next shortest loop-frée b)-path and so on. so the guarded path never advances. However, when we have
Once the evader is trapped in a simply connected regioa,positive capture radius> 0, the pursuer guards as long
the free pursuer uses lion’s strategy. There is one sulitetyas0 < d(p,w(e)) < r. We claim that this slack allows the
guarding this sequence of paths. Suppose thatIpatbplits  pursuer to reliably advance the guarded path.
the evader region int® andR, where at least one region, say From here forward, we consider a game with positive cap-
R, contains an obstacle, see Figure 12(b). By constructioture radiusr > 0 and fix a constan® < 7 < min{r, 1/2}.
the pathIlz is minimal in R, provided thatll, is already Given a projectionr onto pathIl, we say thap is in rook
guarded. IfQ also contains an obstacle thE3 will also be position when0 < d(p, w(e)) < 7. A pursuer that is within
minimal in Q as long adI; is guarded. In this cas@sz can this horizontal offset is in a quite powerful position, as we
simply move to guard this new path. However, wh@nis  explain below.
simply connected]3 will not be a minimal path irQ. In this Suppose that the pursuer is offsetunits to the right
case, the pursuer; uses lion’s strategy to force the evadernf the evader projection (Figure 4(c)). If the evader moves
to move outside). Onceps reachedlIs, he simultaneously leftwards one unit, then the pursuer matches pace and
guardslls, trapping the evader itk. maintains this offset. However if the evader moves rightyar

A. Applications



then the pursuer switches to using a leftward offset instead
(Figure 4(d), (e)). As a result, the pursuer only needs to
move rightwardl — 27 units, which means that it can move
diagonally to achieve at leagt — (1 — 27)%)/2 > 7 units
of upward progress. The key observation is that the evade
must move rightward at some point, since di&his finite,
so the pursuer makes at leastunits of vertical progress
every dianiS) steps. @) ()
It is worth noticing the connection between the lion’s

) ig. 14. The centered rook strategy. (a) The expanding wanesf, and
strategy and the rook’s strategy to see how the pursuté:g pre-images of the edges and vertices of polydencentered at. (b)

guards and attac!(s SimunanleOUSl)’- During lion’s _Strat.ngwo progress events are depicted. Suppose that the evadarrently at

the pursuer consistently radiates outwards from its initige: and the pursuer is guardirigy on the edge. If the evader's projection

point c. Let pt be the location of the pursuer at tinte stays or}e the pursuer moves tpy by rook’s strategy. If th_e evader crosses
! ‘ ‘ h the pre-image ob, the pursuer makes progress by movingto

and let B* = B(c,d") whered® = d(c,p"). Each pursuer

move decreases the evader territory: after timihe evader

cannot step into the regiaB’. Indeed, the pursuer is actually he evader must step into (or through) the pre-image of a
located on the closest point projection od®*, and it is yertex of 4,. As the evader crosses the pre-image of vertex
useful to viewp as guarding the expanding sequence of jts projection remains fixed om. This frees up part
wavefronts 9B',0B?,...,0B". The rook's strategy also of the pursuer's movement budget for progressing to the
controls a sequence of advancing wavefronts. One advantagg wavefront (Figure 14(b)). For full details, see [12]. |

of rook’s strategy is that its wavefronts are straight linegection vI-B we will present an application of the centered

polygonal and polyhedral environments, where it can lead

to simpler pursuit algorithms than those employing lion'$3. Application: Convex Terrains

strategy. In this section, we adopt the centered rook’s strategy to
pursuit-evasion with capture radius> 0 on a piecewise
linear convexterrain S in R3 [12]. A terrain is a height

It may seem that rook’s strategy is onIy suited for reCtimap where every point in thﬁy-p|ane has a Sing|e he|ght
linear pursuit, since it is crucial that the evader mustritur yaye.
around” when it encounters the left or right boundary. We As always, a well-suited projection function is the key
can make rook’s strategy more powerful by expanding thg successful pursuit. The main trick here is to relate the
wavefronts from a central point similar to the lion’s stgjte centered rook’s strategy on the two-dimensional plane¢o th
This centered rook’s strategy will guard wavefronts that game on the surface. To do so, first define the wavefronts
bound a family of convex polygons (rather than regions witlyn the surface as follows. A wavefront at heighis the set
curved boundaries). We use the centered rook’s strategy éf points on the intersection of the surface with the plane
Section VI-B below when we consider pursuit-evasion on — j,_ Let IV be the wavefront that the pursuer is currently
convex terrains (surfaces) R°. guarding. Next, the wavefront and the players are verijcall

Consider a pursuit-evasion game in a convex polygoprojected onto thery-plane i.e., a poiny = (z,y,2) is
S with capture radiusr > 0. Fix an offset0 < 7 < mapped tog’ = (z,y,0), Figure 15(a). Let’ and W’ be
min{r, 1/2}. Pick a centerc € S and letA be a convex the vertical image of the evader and the current wavefront
polygon such thatnax,ca d(c,z) = 1. We explain how on thezy-plane. Then the projection of the evader ofito
p can guard a monotonically increasing family of regionss the pointr(e) on the surface such that (e) is the closet
A; = {bix | * € ANS} whereb, = 1 andb; 1 > b;. We call  point projection ofe? onto W, Figure 15(b).
b; theradius of the guarded region. We use the closest point

v 4 N

A. Centered Rook’s Strategy

projection (which returns consistent values, even when the
evader circumnavigates;). Note that this projection ontd;
partitionsS into distinct areas, according to the pre-images
of the vertices and sides of;, see Figure 14(a).

The pursuer starts at. On its first move,p moves to
within 7 of the closest point projection oA, so that it is
now guardingd; = A. Now, suppose that currently guards
A;. We claim that in finite time, the pursuer can increase
the radiusb; of the guarded region by a constant amount. @ ®)
Suppose that the evader projectiofe) is on side? of A,
so the evader is in the pre-image 6f See Figure 14(b). Fig. 15. (a) Images of the pointand also the wavefrorid” are shown. (b)
If the evader never leaves this pre-image, then the purs_qglgfp;?’;‘;tt';?cgef%”rf:‘(/e)(”:(i; (Th‘é) (;issfaipc'gt‘fsd}nzgilfr‘éﬁ‘;‘fgh%of't'ons
makes progress as in regular rook’s strategy. Otherwise,




After defining the projection mapping, the application of
the centered rook’s strategy is straightforward. For guard
and making progress the pursuer moves such that its vertic

al
imagep*, on thexy-plane obeys the centered rook’s strategy
in the two-dimensional plane.
C. Application: Line of Sight Visibility in Sweepable Poly-
gons

So far we assumed that both the pursuer and the evader @) (b)
can observe each others’ location throughout the game apg. 16. (a) The search path for a monotone polygon. (b) Theckepath
the pursuer’s only goal is to get within the capture radiu®r a scallop polygon.
of the evader. The game becomes more complicated when
the information available to the pursuer is limited due to
imperfect sensing capabilities. For example, supposehieat qyqon, the search path traverses the polygon as horizon-
pursuer is equipped with a camera and therefore has lingyy a5 possible, following the boundary where necessary,
of-sight visibility, meaning that |_t can observe the looati Figure 16(a). Every time that the pursuer touches a new
of the evader only when the line segment between theghyndary point, the guarded region is updated. We construct
is completely inside the polygon. (We continue to assum@e search path for the scallop polygon in the same way,
that the evader has a full map of the environment includingpd{mng our notion of horizontal each time that we pass
the lion’s positiqn.) In this case, the pursuer must altmr_1aa new vertex of the polygon, Figure 16(b). At each vertex,
between searching for the evader (when hidden) and activelye pursuer changes its frame of reference, which requires
chasing him (when visible). Throughout, the pursuer mushsying down the sweep line until the new frame of reference
make progress toward capture, and maintain that progresgyiects the previously guarded region, Figure 17. Criygial
when transitioning between searching and chasing. the pursuer does not commit to the new frame of reference
Noori and Isler [13] successfully combined search angjnjj this transition is complete. This prevents recontzani
progress strategies in order to capture the evad@inotone  tjon, Rook’s move also requires some adaptations to deal

polygonsA simple polygon is callednonotonewith respect  yjith hiding and blocking moves by the evader. For more
to a line L if for any line L’ perpendicular toL the {etajls see [2].

intersection of the polygon withl’ is connected [14]. In

the proposed strategy in [13], the pursuer makes progress by

chasing the evader with lion’s strategy with the additional

trick of changing the center among multiple points that are

lined up in syzygy. We refer the interested reader to [13] for

the details of the idea which can be added to the toolbox.
Berry et al. [2] describe a line-of-sight pursuit stratelystt

uses rook strategy (rather than lion’s strategy). They icens

the game played in strictly sweepable polygons, which are a

generalization of monotone polygons. A polygorstsictly

sweepableif a straight line can be moved continuouslyFig. 17. Changing frame during the search phase in a scabtyggn.

over the entire polygon (via a sequence of translations arfde moves out of the green area whilemoves down the search path, the

rotations) such _ that (1) the intersecti(_)n of the line an@ﬁ;ﬁ;‘ﬂﬂgj‘;‘iﬁfguzxgﬁz ;%-tg}e frame of reference gaheertical is

polygonal area is always a connected line segment, and (2)

no point is swept more than once. In particular, a monotone

polygon is the special case of sweeping the polygon via VIl. EXERCISES FORSTEM EDUCATORS

a single translation. Crucially, successful pursuit reegli

adjustments in the pursuer’s point-of-view during the gam In this section, we coII.ect some introductory exercises
Rather than using a fixed “horizontal” direction for the rook?" Students. Some exercises ask you to work through the

moves, we must change the pursuer’s frame of reference qstails of claims made in the paper, or apply reSU'FS from thi
match the the sweep line as it rotates through the polygoﬂ‘?‘per to. examples. Others explore nqvel formulations. Whe_n
We describe this process for a monotone polygon and f prplprla.te, the mo;t relevant secu_on for the exercise is
a scallop polygon where the sweep line rotates through aispecmed in the que;tlon, or parenthetically. Unless (Wim
fixed center point. We refer the reader to [2] for the generaﬁtamd’ these exercises assume that the capture ragius
case, where the sweep line alternates between translationd) Consider the two guard strategy (Approach 2) of

and rotations about different center points. Section I-A in aD x D square environment.
The sweepable polygon strategy guards a monotone in- a) If the pursuers are positioned on the appropriate
creasing family of subsets against recontamination. Tlye ke projections of the evader, show that one of them

to success is the choice of search path. For a monotone makes at least/2/2 progress in each turn.



2)

3)

4)

5)

Fig.

6)

7

8)

9)

b) Assuming that the pursuers choose their initial 10) Add one convex obstacle to a square environment.

positions and then the evader chooses his initial a) Provide conditions on the diameter of the obstacle

position, find the best upper bound that you such that a single pursuer can capture the evader.

can for the capture time. What pair of initial b) For a large enough obstacle, design an escape

configuration and evader strategy achieves this strategy for the evader.

maximal capture time? c) Provide some conditions on the initial locations
Prove that the lion’s strategy inside a circle with radius of the players such that the pursuer can capture
R results in capture il? steps. (l1I) the evader in the environment from part (b).

_Con5|d_er a polygonal environment with obstacles, aSVI1I. OPENPROBLEMS AND CONCLUDING REMARKS

in Section IV-A. Suppose that; guards shortest path ) ] ) o o ]
(a1, b1) and p, guards shortest pathl(as,bs). If The field of pursuit-evasion remains rich with interesting,
these paths have common internal vertices, prove th{fought-provoking questions and open-problems. We con-
the evader is actually trapped in a smaller region thaflude with a list of open problems related to the lion and
the region bounded b¥i(a;,b;) andIl(as, by). man game. _ , o
Create the visibility graph for the environment in Throughout this tutorial, we focused on deterministic

Figure 18(a). Use this graph to find the first, secongtrategies for the full-visibility pursuit-evasion prebhs
and third shortesta, b)-paths. (V-A) where the players can observe the location of their opponent

Show that both of the environments in Figure 18 aré@t aII.times. .In more.complicated setups_ where the pursuer
two-pursuer win. (V-A) has I|m!ted mformquon about the location of the evader,
randomized strategies can be used to overcome the pursuer’s
lack of information [6], [15]. Application of the randomide
strategies to visibility-based versions of the problem and
‘ realizing their connection to deterministic strategiesars
interesting venue for further research.

A

a While we focused on the turn-based model, the techniques
@) (b) presented in this paper are applicablg to the continuoos-ti

version. It can be shown that any given turn-based capture
18.  Environments for the exercises. Both are two-persun. strategy to get within distaneeof the evader can be adopted

to a continuous-time capture strategy with capture racius

Consider a game in a square region with capture radivgheres is the step size (Lemma 1). Therefore, as long as the
r = 1. Suppose that the pursuer is in rook position opursuer can change its step-sigehe capture guarantee for
horizonal lineL, meaning thatl(p, 7(e)) < 1/2. Prove the continuous time model can get arbitrarily close to the
that if e moves to a point’ that is within/3/2 of  capture guarantee in the turn-based madelowever, this
line L, thenp can respond by capturing the evaderargument is not applicable when planning must be performed
Conclude that evader cannot cross libe(VI) in the configuration space. Moreover, the problem is mostly
Consider a game with pursuefs,p. in a square open in the presence of nonholonomic constraints [16] on
region (with capture radius = 0). Suppose that the the motion of the players.
pursuers are positioned on horizontal lideat the We saw that in simply connected polygons one pursuer is
points that aret1/2 away fromx(e). Prove that if enough for capture while in the presence of obstacles three
e moves to a point’ that is within/3/2 of line L, pursuers are sufficient and sometimes necessary [8]. An in-
then one of the pursuers can respond by capturing theresting question is to determine the classes of polyduts t
evader. (VI) are two-pursuer-win [1]. Similarly, while three pursuers a
A pursuer can capture an evader in a simply connectetfficient for capture on general three-dimensional sedac
polygon when the pursuer knows the evader’s locatiothe set of one-pursuer-win or two-pursuer-win surfaces are
at all times. Suppose that the pursuer has line-ofinknown.
sight visibility. Design an environment and an escape Turning to the line-of-sight version of the game, we do not
strategy for the evader so that if the evader knows thget have a full characterization of the class of polygons tha
pursuer’s path it can escape. are pursuer-win. An intermediate goal would be to determine
On the surface of a sphere, the shortest path betweahethersweepable polygonsre pursuer win. In this family
any two points is the great circle passing through themof polygons, the sweep line may visit points more than once.

a) Using the great circles passing through the northhis relaxation cofounds the notion or progress described

pole, devise a capture strategy for the pursueterein for strictly sweepable polygons.
when the players are moving on a half-sphere. In recent years Unmanned Autonomous Vehicles (UAVs)

b) Design a capture strategy for two pursuers on theave been receiving increasing attention. Interestingmts

surface of a sphere. 3In the turn-based strategy, the time ugit can be chosen arbitrarily

small. Consequently, the step-sizecan be arbitrarily small since the

2This is the case when the pursuer’s strategy is deterninisti players’ speed is fixed.



of the problem can be designed when the players hayss]
the ability to fly. For example, suppose that the evader
is restricted to move on the ground which is modeled ag,
a geodesic terrain while the pursuer is able to fly. What
is the outcome of the game subject to limitations on th&-3l
highest altitude accessible by the pursuer? Can we provide

——, “Lion and man with visibility in monotone polygoris,The
International Journal of Robotics Reseayalol. 33, no. 1, pp. 155—-
181, 2014.

] M. De Berg, O. Cheong, and M. van Kreveldpmputational Geom-

etry: Algorithms and Applications Springer, 2008.

M. Adler, H. Racke, N. Sivadasan, C. Sohler, and B. Kidg,
“Randomized pursuit-evasion in graph&€bmbinatorics, Probability
and Computingvol. 12, no. 03, pp. 225-244, 2003.

guarantees on capture when we have a heterogeneous tg¢eanz. Li and J. F. CannyNonholonomic motion planning Springer

of flying and ground pursuers?

Finally, most of the pursuit-evasion research is focuse%n
on the equal speed assumption. A full characterization of
the game regarding different speeds for the pursuer and the
evader is still unknown [17].

IX. APPENDIX

Lemma 1:If the pursuer can get within distance of
the evader in the turn-based model, then it can get within
distancer + s of the evader in the continuous time model
wheres is the step size, i.e. the distance that the players can
travel in one time unitAt¢.

Proof: In the continuous time model, the pursuer
considers the continuous movement of the evader at discrete
time steps with its specific time unik¢. Then it plays the
same turn-based pursuit strategy with respect to the tmtati
of the evader at — At. Notice that the capture condition
in the turn-based version is whether the distance between
the players becomes less thanWith the aforementioned
modification to the continuous setting, the capture guaent
is that the pursuer will decrease its distance to the evader t
at mostr + s. |
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