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ABSTRACT
Large quantities of data are generated continuously over
time and from disparate sources such as users, devices, and
sensors located around the globe. This results in the need
for efficient geo-distributed streaming analytics to extract
timely information. A typical analytics service in these set-
tings uses a simple hub-and-spoke model, comprising a sin-
gle central data warehouse and multiple edges connected
by a wide-area network (WAN). A key decision for a geo-
distributed streaming service is how much of the computa-
tion should be performed at the edge versus the center. In
this paper, we examine this question in the context of win-
dowed grouped aggregation, an important and widely used
primitive in streaming queries. Our work is focused on de-
signing aggregation algorithms to optimize two key metrics
of any geo-distributed streaming analytics service: WAN
traffic and staleness (the delay in getting the result). Toward
this end, we present a family of optimal offline algorithms
that jointly minimize both staleness and traffic. Using this
as a foundation, we develop practical online aggregation al-
gorithms based on the observation that grouped aggregation
can be modeled as a caching problem where the cache size
varies over time. This key insight allows us to exploit well
known caching techniques in our design of online aggrega-
tion algorithms. We demonstrate the practicality of these
algorithms through an implementation in Apache Storm, de-
ployed on the PlanetLab testbed. The results of our experi-
ments, driven by workloads derived from anonymized traces
of a popular web analytics service offered by a large com-
mercial CDN, show that our online aggregation algorithms
perform close to the optimal algorithms for a variety of sys-
tem configurations, stream arrival rates, and query types.

1. INTRODUCTION
Data analytics is undergoing a revolution: both the volume
and velocity of analytics data are increasing at a rapid rate.
Across a large number of application domains that include
web analytics, social analytics, scientific computing, and en-
ergy analytics, large quantities of data are generated contin-
uously over time in the form of posts, tweets, logs, sensor
readings, etc. A modern analytics service must provide real-
time analysis of these data streams to extract meaningful
and timely information for the user. As a result, there has
been a growing interest in streaming analytics with recent
development of several distributed analytics platforms [2, 8,
26].

In many streaming analytics domains, data is often derived
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Figure 1: The distributed model for a typical ana-
lytics service comprises a single center and multiple
edges, connected by a wide-area network.

from disparate sources that include users, devices, and sen-
sors located around the globe. As a result, the distributed
infrastructure of a typical analytics service (e.g., Google An-
alytics, Akamai Media Analytics, etc.) has a hub-and-spoke
model (see Figure 1). The data sources generate and send a
stream of data to“edge”servers near them. The edge servers
are geographically distributed and process the incoming data
and send it to a central location that can process the data
further, store the summaries, and present those summaries
in visual form to the user of the analytics service. While
the central location that acts as a hub is often located in
a well-provisioned data center, the resources are typically
limited at the edge locations. In particular, the available
WAN bandwidth between the edge and the center might be
limited.

A traditional approach to analytics processing is the cen-
tralized model where no processing is performed at the edges
and all the data is sent to a dedicated centralized location.
However, such an approach is often inadequate or subopti-
mal, since it can strain the scarce WAN bandwidth available
between the edge and the center, cause longer delays due to
the high volumes of unaggregated data to be sent over the
network, and does not make use of the available compute
and storage resources at the edge. An alternative is a decen-
tralized approach [21] that utilizes the edge for much of the
processing in order to minimize the amount of WAN traf-
fic. In this paper, we argue that analytics processing must
utilize both edge and central resources in a carefully coordi-
nated manner in order to achieve the stringent requirements
of an analytics service in terms of both network traffic and
user-perceived delay.



An important primitive in any analytics system is grouped
aggregation. Grouped aggregation is used to combine and
summarize large quantities of data from one or more data
streams. As a result, it is provided as a key operator in most
data analytics frameworks, such as the Reduce operation in
MapReduce, or GroupBy in SQL and LINQ. A common
variant of the primitive in stream computing is windowed
grouped aggregation where data produced within finite speci-
fied time windows must be summarized. Windowed grouped
aggregation is one of the most frequently used primitives
in an analytics service and underlies queries that aggregate
a metric of interest over a time window. For instance, a
web analytics user may wish to compute the total visits to
his/her web site broken down by country and aggregated
on an hourly basis to gauge the current content popularity.
Similarly, a network operator may want to compute the av-
erage load in different parts of the network every 5 minutes
to identify hotspots. In these cases, the user would define a
standing windowed grouped aggregation query that gener-
ates results periodically for each time window (every hour,
5 minutes, etc.).

Our work is focused on designing algorithms for perform-
ing windowed grouped aggregation in order to optimize the
two key metrics of any geo-distributed streaming analyt-
ics service: WAN traffic and staleness (the delay in getting
the result for a time window). While much of the existing
work on decentralized analytics [21, 23] has focused primar-
ily on optimizing a single metric (e.g., network traffic), it
is important to examine both traffic and staleness together
to achieve both cost savings as well as higher information
quality. The key decision that our algorithms make is how
much of the data aggregation should be performed at the edge
versus the center. To understand the challenge, consider two
alternate approaches to grouped aggregation: pure stream-
ing, where all data is immediately sent from the edge to
the center without any edge processing; and pure batching,
where all data during a time window is aggregated at the
edge, with only the aggregated results being sent to the cen-
ter at the end of the window. Pure batching results in a
greater level of edge aggregation, resulting in a reduction in
the edge-to-center WAN traffic compared to pure streaming.
However, the edge must wait longer to collect more data for
aggregation, risking the possibility of the aggregates reach-
ing the center late, resulting in greater staleness. We have
shown [12] that the decision about how much aggregation to
be performed at the edge cannot be made statically; rather it
depends on several factors such as the query type, network
constraints, data arrival rates, etc. Further, these factors
vary significantly over time (see Figure 3(b)), requiring the
design of algorithms that can adapt to changing factors in a
dynamic fashion.

Research Contributions
• To our knowledge, we provide the first algorithms and
analysis for optimizing grouped aggregation, a key primitive,
in a wide-area streaming analytics service. In particular,
we show that simpler approaches such as pure streaming or
batching do not jointly optimize traffic and staleness, and
are hence suboptimal.

• We present a family of optimal offline algorithms that
jointly minimize both staleness and traffic. Using this as

a foundation, we develop practical online aggregation algo-
rithms that emulate the offline optimal algorithms.

•We observe that grouped aggregation can be modeled as a
caching problem where the cache size varies over time. This
key insight allows us to exploit well-known caching algo-
rithms in our design of online aggregation algorithms.

•We demonstrate the practicality of these algorithms through
an implementation in Apache Storm [2], deployed on the
PlanetLab [1] testbed. Our experiments are driven by work-
loads derived from anonymized traces of a popular web an-
alytics service offered by Akamai [17], a large content deliv-
ery network. The results of our experiments show that our
online aggregation algorithms simultaneously achieve traffic
within 2.0% of optimal while reducing staleness by 65% rel-
ative to batching. We also show that our algorithms are ro-
bust to a variety of system configurations (number of edges),
stream arrival rates, and query types.

2. PROBLEM FORMULATION

System Model. We consider the typical hub-and-spoke ar-
chitecture of an analytics system with a center and multiple
edges (see Figure 1). Data streams are first sent from each
source to a proximal edge. The edges collect and (poten-
tially, partially) aggregate the data. The aggregated data
can then be sent from the edges to the center where more
aggregation could happen. The final aggregated results are
available at the center. Users of the analytics service query
the center to visualize the data. To perform grouped aggre-
gation, each edge runs a local aggregation algorithm: it acts
independently to decide when and how much to aggregate
the incoming data.

Data Streams and Grouped Aggregation. A data stream
comprises records of the form (k, v) where k is the key and
v is the value of the record. Data records of a stream arrive
at the edge over time. Each key k can be multi-dimensional,
with each dimension corresponding to a data attribute. A
group is a set of records that have the same key.

Windowed grouped aggregation over a time window [t, t+W ),
where W is the window size, is defined as follows from
an input/output perspective. The input is the set of data
records that arrive within the time window. The output
is determined by first placing the data records into groups
where each group is a set of records with the same key. For
each group {(k, vi)}, 1 ≤ i ≤ n, that correspond to the n
records in the time window that have key k, an aggregate
value v̂ = v1 ⊕ v2 · · · ⊕ vn is computed, where ⊕ is any
associative binary operator1. Examples of aggregates in-
clude sums, histograms, and approximate data types such as
Bloom filters. Customarily, the timeline is subdivided into
non-overlapping intervals of size W and windowed group ag-
gregation is computed on each such window2. Note that the
aggregate record is typically of the same size as an incoming

1More formally, any binary operator that forms a semigroup
can be used.
2Such non-overlapping time windows are often called tum-
bling windows in analytics terminology.



data record. Thus, grouped aggregation results in a reduc-
tion in the amount of data.

To compute windowed grouped aggregation, we consider ag-
gregation at the edge as well as the center. The data records
that arrive at the edge can be partially aggregated locally
at the edge, so that the edge can maintain a set of partial
aggregates, one for each distinct key k. The edge may trans-
mit, or flush these aggregates to the center; we refer to these
flushed records as updates. The center can further apply the
aggregation operator ⊕ on incoming updates as needed in
order to generate the final aggregate result. We assume that
the computational overhead of the aggregation operator ⊕
is a small constant compared to the network overhead of
transmitting an update.

Optimization Metrics. Our goal is to simultaneously min-
imize two metrics: staleness, a key measure of information
quality; and network traffic, a key measure of cost. Stale-
ness is defined as the smallest time s such that the results of
grouped aggregation for time window [t, t+W ) are available
at the center at time t+W +s, as illustrated in Figure 2. In
our model, staleness is simply the time elapsed from when
the time window completes to when the last update for that
time window reaches the center and is included in the final
aggregate. Roughly, staleness is the delay measured from
when all the data has arrived to when an analytics user
views the results of her grouped aggregation query. The
network traffic is measured by the number of updates sent
over the network from the edge to the center.

t t+W

time

window
begins

window
ends

t+W+s

results
available

staleness

Figure 2: Staleness s is defined as the delay between
the end of the window and final results becoming
available at the center.

Algorithms for Grouped Aggregation. An aggregation
algorithm runs on the edge and takes as input the sequence
of arrivals for data records in a given time window [t, t+W ).
The algorithm produces as output a sequence of updates
that are sent to the center. For each distinct key k with nk
arrivals in the time window, suppose that the ith data record
(k, vi,k) arrives at time ai,k, where t ≤ ai,k < t + W and
1 ≤ i ≤ nk. For each key k, the output of the aggregation
algorithm is a sequence of mk updates where the ith update
(k, v̂i,k) departs for the center at time di,k, 1 ≤ i ≤ mk. The
updates must have the following properties:

• Each update for each key k aggregates all values for that
key in the current time window that have not been previ-
ously aggregated.

• Each key k that has nk > 0 arrivals must have mk > 0
updates such that dmk,k ≥ ank,k. That is, each key with
an arrival must have at least one update and the last up-
date must depart after the final arrival so that all the values
received for the key have been aggregated.

The goal of the aggregation algorithm is to minimize traffic
which is simply the total number of updates, i.e.,

∑
kmk.

The other simultaneous goal is to minimize staleness which
is the time for the final update to reach the center, i.e.,
the update with the largest value for dmk,k, to reach the
center3.

3. DATASET AND WORKLOAD
To derive a realistic workload for evaluating our aggrega-
tion algorithms, we have used anonymized workload traces
obtained from a real-life analytics service4 offered by Akamai
which operates a large content delivery network. The down-
load analytics service is used by content providers to track
important metrics about who is downloading their content,
from where is it being downloaded, what was the perfor-
mance experienced by the users, how many downloads com-
pleted, etc. The data source is a software called download
manager that is installed on mobile devices, laptops, and
desktops of millions of users around the world. The down-
load manager is used to download software updates, security
patches, music, games, and other content. The download
managers installed on users’ devices around the world send
information about the downloads to the widely-deployed
edge servers using “beacons”5. Each download results in
one or more beacons being sent to an edge server containing
information pertaining to that download. The beacons con-
tain anonymized information about the time the download
was initiated, url, content size, number of bytes downloaded,
user’s ip, user’s network, user’s geography, server’s network
and server’s geography. Throughout this paper, we use the
anonymized beacon logs from Akamai’s download analytics
service for the month of December, 2010. Note that we nor-
malize derived values from the data set such as data sizes,
traffic sizes, and time durations, for confidentiality reasons.

Throughout our evaluation, we compute grouped aggrega-
tion for three commonly-used queries in the download ana-
lytics service. Queries that are issued in the download an-
alytics service that use the grouped aggregation primitive
can be roughly classified according to query size that is de-
fined to be the number of distinct keys that are possible for
that query. We choose three representative queries for dif-
ferent size categories (see Table 1). The small query groups
by two dimensions with the key consisting of the tuple of
content provider id and the user’s last mile bandwidth clas-
sified into four buckets. The medium query groups by three
dimensions with the key consisting of the triple of the con-
tent provider id, user’s last mile bandwidth, and the user’s
country code. The large query groups by a different set
of three dimensions with the key consisting of the triple of
the content provider id, the user’s country code, and the url
accessed. Note that the last dimension—url—can take on
hundreds of thousands of distinct values, resulting in a very
large query size.

The total arrival rate of data records across all keys for all

3We implicitly assume a FIFO ordering of data records over
the network, as is typically the case with protocols like TCP.
4http://www.akamai.com/dl/feature\_sheets/Akamai\
_Download\_Analytics.pdf
5A beacon is simply an http GET issued by the download
manager for a small GIF containing the reported values in
its url query string.



Table 1: Queries used throughout the paper.
Name Key Value (aggregate type) Description Query Size
Small (cpid, bw) bytes downloaded (integer sum) Total bytes downloaded by content

provider by last-mile bandwidth.
O(102) keys

Medium (cpid, bw, country_code) bytes downloaded (first 5 mo-
ments)

Mean and standard deviation of to-
tal bytes per download by content
provider by bandwidth by country.

O(104) keys

Large (cpid, bw, url) client ip (HyperLogLog) Approximate number of unique
clients by content provider by bw
by url.

O(106) keys
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(a) CDF of the frequency per key at a single edge
for the three queries.
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(b) The unique key arrival rate for three differ-
ent queries in a real-world web analytics service,
normalized to the maximum rate for the large
query.

Figure 3: Akamai Web download service data set characteristics.

three queries is the same, since each arriving beacon con-
tributes a data record for each query. However, the three
queries have a different distribution of those arrivals across
the possible keys as shown in Figure 3(a). Recall that the
large query has a large number of possible keys. About 56%
of the keys for the large query arrived only once in the trace
whereas the same percentage of keys for the medium and
small query is 29% and 15% respectively. The median ar-
rival rate per key was four (resp., nine) times larger for the
medium (resp., small) query in comparison with the large
query. Figure 3(b) shows the number of unique keys arriv-
ing per hour at an edge server for the three queries. The
figure shows the hourly and daily variations and also the
variation across the three queries.

4. MINIMIZING WAN TRAFFIC AND STAL-
ENESS

We now explore how to simultaneously minimize both traf-
fic and staleness. We show that if the entire sequence of
updates is known beforehand, then it is indeed possible to
simultaneously achieve the optimal value for both traffic and
staleness. While this offline solution is not implementable,
it serves as a baseline to which any online algorithm can
be compared. Further, it characterizes the optimal solution
that helps us evolve the more sophisticated online algorithms
that we present in Section 5.

Lemma 1 (Traffic optimality). In each time win-
dow, an algorithm is traffic-optimal iff it flushes exactly one
update to the center for each distinct key that arrived in the
window.

Proof. Any algorithm must flush at least one update

for each distinct key that had arrivals in the time window.
Suppose for contradiction that the algorithm flushes more
than one update for a key. All flushes except the final one
can be omitted, thereby decreasing the traffic, which is a
contradiction.

Intuitively, this lemma states that multiple records for each
key within a window can be aggregated and sent as a single
update to minimize traffic. Note that a pure batching algo-
rithm satisfies the above lemma, and hence is traffic-optimal,
but may not be staleness-optimal.

Lemma 2 (Staleness optimality). Let the optimal stal-
eness for a time window [T −W,T ) be S. For any T −W ≤
t < T , let N(t) be the union of the set of keys that have out-
standing updates (those not sent to the center yet) at time
t and the set of keys that arrive in [t, T ). For a staleness-
optimal algorithm the following holds:

|N(t)| ≤
∫ T+S

t

b(τ)dτ,∀T −W ≤ t < T, (1)

where b(τ) is the instantaneous bandwidth at time τ . Fur-
ther, if S > 0 there exists a critical time t∗ such that the
above Inequality 1 is satisfied with an equality.

Proof. Inequality 1 holds since N(t) records need to be
flushed in interval [t, T ) and the maximum number of up-

dates that can be sent before T + S is
∫ T+S

t
b(τ)dτ . If

S > 0, then let t∗ be the time of arrival of the last key

in the time window. If |N(t∗)| <
∫ T+S

t∗ b(τ)dτ , for some

S′ < S, |N(t∗)| =
∫ T+S′

t∗ b(τ)dτ , since there are no new ar-
rivals after t∗. Thus, all updates for keys in N(t∗) can be



transmitted by time T + S′, decreasing the staleness to S′,
which is a contradiction. Hence, at time t∗ Inequality 1 is
satisfied with an equality.

Intuitively, this lemma specifies that for a given arrival se-
quence, a staleness-optimal algorithm must send out pend-
ing updates to the center at a sufficient rate (dependent
on the network bandwidth) to have them reach the center
within the minimum feasible staleness bound.

Note that a pure streaming algorithm satisfies the above
lemma, if the network has sufficient capacity to stream all
the arrivals without causing network queues to build up. It,
however, need not satisfy Lemma 1 if some of the groups
have multiple arrivals within the window, and hence may
not be traffic-optimal.

We now present optimal offline algorithms that minimize
both traffic and staleness, provided the entire sequence of key
updates is known to our aggregation algorithm beforehand.

Theorem 3 (Eager Optimal Algorithm). There ex-
ists an optimal offline algorithm that schedules its flushes
eagerly; i.e., it flushes exactly one update for each distinct
key immediately after the last arrival for that key within the
time window.

Proof. Since the proposed algorithm flushes only a sin-
gle update for each distinct key that arrived within the win-
dow, it is traffic-optimal as per Lemma 1. Clearly, any ag-
gregation algorithm must flush an update for a key after the
last arrival for that key, since the update must include the
data contained in that last arrival in the final aggregate for
that window. Suppose there exists a key where the last ar-
rival was at time t but the update to the center was sent at
t+ δ, for some δ > 0. Modifying that schedule such that the
update is flushed at time t instead of t + δ cannot increase
staleness. Thus, there exists an eager schedule that achieves
the same staleness.

Intuitively, this algorithm is traffic-optimal since it sends
only one update per key, and is also staleness-optimal since it
sends each update without any additional delay. We call the
optimal offline algorithm described above the eager optimal
algorithm due to the fact that it eagerly flushes updates for
each distinct key immediately after the final arrival to that
key. This eager algorithm is just one possible algorithm to
achieve both minimum traffic and staleness. It might well
be possible to delay flushes for some groups and still achieve
optimal traffic and staleness. An extreme version of such a
scheduler is the lazy optimal algorithm that flushes updates
at the last possible time that would still provide the optimal
value of staleness and is described below.

1) Let keys ki, 1 ≤ i ≤ n have their last arrival at times
li, 1 ≤ i ≤ n respectively. Order the n keys that require
flushing in the given window in the increasing order of their
last update, i.e., the keys are ordered such that l1 ≤ l2 ≤
· · · ln.

2) Compute the minimum possible staleness S using the
eager optimal algorithm.

Update Flush Time

K
e

y
 I

D

lazy

eager

Figure 4: The lazy and eager algorithms define the
extremes of a family of optimal algorithms.

3) As the base case, schedule the flush for the last key kn at
time S − δn, where δn is the time required to transmit the
update for kn. That is, the last update is scheduled such
that it arrives at the center with staleness exactly equal to
S.

4) Now, iteratively schedule ki, assuming all keys kj , j > i
have already been scheduled. The update for ki is scheduled
at time ti+1 − δi, where δi is the time required to transmit
the update for ki. That is, the update for ki is scheduled
such that update for ki+1 is scheduled immediately after the
update of ki completes.

Theorem 4 (Lazy Optimal Algorithm). The lazy al-
gorithm above is both traffic- and staleness-optimal.

Proof. By construction.

Further, consider a family of offline algorithms A, where an
algorithm A ∈ A schedules its update for key ki at time ti
such that ei ≤ ti ≤ li, where ei and li are the update times
for key ki in the eager and lazy schedules respectively. The
following clearly holds.

Theorem 5 (Family of Offline Optimal Algorithms).
Any algorithm A ∈ A is both traffic- and staleness-optimal.

Figure 4 illustrates this concept. If each key is evicted from
the cache no earlier than the eager eviction time (the left
curve) and no later than the lazy eviction time (the right
curve), then both staleness and traffic will be optimal.

5. PRACTICAL ONLINE ALGORITHMS
In this section, we explore practical online algorithms for
grouped aggregation, that strive to minimize both traffic
and staleness. To ease the design of such online algorithms,
we first frame the edge aggregation problem as an equiva-
lent caching problem. This formulation has two advantages.
First, it allows us to decompose the problem into two sub-
problems: determining the cache size, and defining a cache
eviction policy. Second, as we will show, while the first sub-
problem can be solved by using insights gained from the
optimal offline algorithms, the second subproblem lends it-
self to using the enormous prior work on cache replacement
policies [19].
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Figure 5: Eager online algorithms.

Concretely, we frame the grouped aggregation problem as a
caching problem by treating the set of aggregates {(ki, v̂i)}
maintained at the edge as a cache. A novel aspect of our for-
mulation is that the size of this cache changes dynamically.
Concretely, the cache works as follows:

• Cache insertion occurs upon the arrival of a record (k, v).
If an aggregate with key k and value ve exists in the cache
(a “cache hit”), the cached value for key k is updated as
v⊕ve where ⊕ is the binary aggregation operator defined in
Section 2. If no aggregate exists with key k (a “cache miss”),
then (k, v) is added to the cache.

• Cache eviction occurs as the result of a cache miss when
the cache is already full, or due to a decrease in the cache
size. When an aggregate is evicted, it is flushed downstream
and cleared from the cache.

Given the above definition of cache mechanics, we can ex-
press any grouped aggregation algorithm as an equivalent
caching algorithm where the key updates flushed by the
aggregation algorithm correspond to key evictions of the
caching algorithm. More formally:

Theorem 6. An aggregation algorithm A corresponds to
a caching algorithm C such that:

1. At any time step, C maintains a cache size that equals
the number of pending aggregates (those not sent to the
center yet) for A, and

2. if A flushes an update for a key in a time step, C evicts
the same key from its cache in that time step.

Thus, any aggregation algorithm can be viewed as a caching
algorithm with two policies: one for cache sizing and the
other for cache replacement. In practice, we can define an
online caching algorithm by defining online cache size and
cache eviction policies. While the cache size policy deter-
mines when to send out updates, the cache eviction policy
identifies which updates to send out at these times. Here we
develop policies by attempting to emulate the behavior of
the offline optimal algorithms using online information. We

explore such online algorithms and the resulting tradeoffs in
the rest of this section.

To evaluate the relative merits of these algorithms, we im-
plement a simple simulator in Python. Our simulator mod-
els each algorithm as a function that maps from arrival se-
quences to update sequences. Traffic is simply the length of
the update sequence, while staleness is evaluated by model-
ing the network as single-server queueing system with deter-
ministic service times, and arrival times determined by the
update sequence. Note that we have deliberately employed a
simplified simulation, as the focus here is not on understand-
ing performance in absolute terms, but rather to compare
the tradeoffs between different algorithms. We use these in-
sights to develop practical algorithms that we implement in
Apache Storm and deploy on PlanetLab (Section 6).

Because we aim to emulate the offline optimal algorithms, it
is useful to first study how these algorithms vary the cache
size over the course of the window. Figure 6 shows, for
three windows, the size of the cache for both eager and lazy
optimal algorithms, for the large and small queries. Note
that, for each query, cache sizes are normalized relative to
the largest for that query.
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Figure 6: Cache size over time for eager and lazy
offline optimal algorithms. Sizes are normalized rel-
ative to the largest size for the given query.



Several observations arise from this figure. First, we see that
the eager algorithm maintains a smaller cache size than the
lazy algorithm, as lazy retains some keys long after their last
arrival. Second, the shape of the cache size under the eager
algorithm is approximately symmetric about the center of
the window, while the lazy algorithm allows the cache to
grow until close to the end of the window, after which the
size declines rapidly, at a nearly constant rate. Third, the
time at which the lazy algorithm begins decreasing the cache
sizes occurs earlier in the window for the larger query.

Armed with this high-level understanding of cache size be-
havior, we can begin developing practical online algorithms
to emulate the offline optimal algorithms.

Note that throughout the remainder of this section, we present
results for the large query due to space constraints, but sim-
ilar trends also apply to the small and medium queries.

5.1 Emulating the Eager Optimal Algorithm
5.1.1 Cache Size

To emulate the cache size corresponding to that for an ea-
ger offline optimal algorithm, we observe that, at any given
time instant, an aggregate for key ki is cached only if: in the
window, (i) there has already been an arrival for ki, and (ii)
another arrival for ki is yet to occur. We attempt to com-
pute the number of such keys using two broad approaches:
analytical and empirical.

In our analytical approach, the eager optimal cache size at
a time instant can be estimated by computing the expected
number of keys at that instant for which the above condi-
tions hold. To compute this value, we model the arrival
process of records for each key ki as a Poisson process with
mean arrival rate λi. Then the probability pi(t) that the
key ki should be cached at a time instant t within a window

[T, T +W ) is given by pi (t) = 1− t̂Wλi −
(
1− t̂

)Wλi , where

t̂ = (t− T )/W .6

We consider two different models to estimate the arrival pro-
cesses for different keys. The first model is a Uniform ana-
lytical model, which assumes that key popularities are uni-
formly distributed, and each key has the same mean arrival
rate λ. Then, if the total number of keys arriving during the
window is k, the expected number of cached keys at time t

is simply k ·
(

1− t̂Wλ −
(
1− t̂

)Wλ
)

.

However, as Figure 3(a) in Section 3 demonstrated, key pop-
ularities in reality may be far from uniform. A more accu-
rate model is the Nonuniform analytical model, that as-
sumes each key ki has its own mean arrival rate λi, so that
the expected number of cached keys at time t is given by∑k
i=1 pi

(
t̂
)
.

An online algorithm built around these models requires pre-
dicting the number of unique keys k arriving during a win-
dow as well as their arrival rates λi. In our evaluation, we
use a simple prediction: assume that the current window re-
sembles the prior window, and derive these parameters from

6Note that Wλi > 0 since we are considering only keys with
more than 0 arrivals, and that t̂ < 1 since T ≤ t < T +W .

the arrival history in the prior window.

Our empirical approach, referred to as Eager Empirical, also
uses the history from the prior window as follows: apply the
eager offline optimal algorithm to the arrival sequence from
the previous window, and use the resulting cache size at time
t−W as the prediction for cache size at time t.

Figure 5(a) plots the predicted cache size using these poli-
cies, along with the eager optimal cache size as a baseline.
We observe that the Uniform model, unsurprisingly, is less
accurate than the Nonuniform model. Specifically, it overes-
timates the cache size, as it incorrectly assumes that arrivals
are uniformly distributed across many keys, rather than fo-
cused on a relatively small subset of relatively popular keys.
Further, we see that the Eager Empirical model and the
Nonuniform model both provide reasonably accurate pre-
dictions, but are prone to errors as the arrival rate changes
from window to window.

5.1.2 Cache Eviction
Having determined the cache size, the next issue is which
keys to evict when needed. We know that an optimal al-
gorithm will only evict keys without future arrivals. How-
ever, determining such keys accurately requires knowledge
of the future. Instead, to implement a practical online pol-
icy, we consider two popular practical eviction algorithms—
namely least-recently used (LRU), and least-frequently used
(LFU)—and examine their interaction with the above cache
size policies.

Figures 5(b) and 5(c) show the traffic and staleness, respec-
tively, for different combinations of these cache size and
cache eviction policies. Here, we simulate the case where
network capacity is roughly five times that needed to sup-
port the full range of algorithms from pure batching to pure
streaming. In these figures, traffic is normalized relative to
the traffic generated by an optimal algorithm, while stale-
ness is normalized by the window length.

From these figures, we see that the Eager Empirical and
Nonuniform models yield similar traffic, though their stale-
ness varies. It is worth noting that although the difference in
staleness appears large in relative terms, the absolute values
are still extremely low relative to the window length (less
than 0.0015%), and are very close to optimal. We also see
that LFU is the more effective eviction policy for this trace.

The more interesting result, however, is that the Uniform
model, which produces the worst estimate of cache size, ac-
tually yields the best traffic: only about 9.6% higher than
optimal, while achieving the same staleness as optimal. The
reason is that, the more aggressive the cache size policy is
in evicting keys prior to the end of the window, the more
pressure it places on an imperfect cache eviction algorithm
to predict which key is least likely to arrive again.

On the other hand, when combined with the most accurate
model of eager optimal cache size (Nonuniform), even the
best practical eviction policy (LFU) generates 28% more
traffic than optimal. This result indicates that leaving more
headroom in the cache size (as done by Uniform) provides
more robustness to errors by an online cache eviction policy.
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Figure 7: Lazy online algorithms.

5.2 Emulating the Lazy Optimal Algorithm

5.2.1 Cache Size
To emulate the lazy optimal offline algorithm (Section 4),
we estimate the cache size by working backwards from the
end of the window, determining how large the cache should
be such that it can be drained by the end of the window (or
as soon as possible thereafter) by fully utilizing the network
capacity. This estimation must account for the fact that new
arrivals will still occur during the remainder of the window,
and each of those that is a cache miss will lead to an addi-
tional update in the future. This leads to a cache size c(t) at
time t defined as: c(t) = max

(
b̄ · (T − t)−M(t), 0

)
, where

b̄ denotes the average available network bandwidth for the
remainder of the window, T the end of the time window,
and M(t) the total number of cache misses that will occur
during the remainder of the window.

Based on the above cache size function, an online algorithm
needs to estimate the average bandwidth b̄ and the num-
ber of cache misses M(t) for the remainder of the window.
We begin by focusing on the estimation of M(t). We con-
sider the bandwidth estimation problem in more detail in
Section 5.3, and assume a perfect knowledge of b̄ here. To
estimate M(t), we consider the following approaches. First,
we can use a Pessimistic policy, where we assume that all
remaining arrivals in the window will be cache misses. Con-

cretely, we estimate M(t) =
∫ T
t
a(τ) dτ where a(t) is the

arrival rate at time t. In practice, this requires the predic-
tion of the future arrival rate a(t). In our evaluation, we
simply assume that the future arrival rate is equal to the
average arrival rate so far in the window.

Another alternative is to use an Optimistic policy, which
assumes that the current cache miss rate will continue for
the remainder of the window. In other words, M(t) =∫ T
t
m(τ)a(τ) dτ where m(t) is the miss rate at time t. In our

evaluation, we predict the arrival rate in the same manner
as for the Pessimistic policy, and we use an exponentially
weighted moving average for computing the recent cache
miss rate.

A third approach is the Lazy Empirical policy, which is anal-
ogous to the Eager Empirical approach. It estimates the
cache size by emulating the lazy offline optimal algorithm

on the arrivals for the prior window.

Figure 7(a) shows the cache size produced by each of these
policies. We see that both the Lazy Empirical and Opti-
mistic models closely capture the behavior of the optimal
algorithm in dynamically decreasing the cache size near the
end of the window. The Pessimistic algorithm, by assuming
that all future arrivals will be cache misses, decays the cache
size more rapidly than the other algorithms.

5.2.2 Cache Eviction
We explore the same eviction algorithms here, namely LRU
and LFU, as we did in Section 5.1.

Figures 7(b) and 7(c) show the traffic and staleness, respec-
tively, generated by different combinations of these cache
size and cache eviction policies. We see that LFU again
slightly outperforms LRU. More importantly, we see that,
regardless of which cache size policy we use, these lazy ap-
proaches outperform the best online eager algorithm in terms
of traffic. Even the worst lazy online algorithm produces
traffic less than 4% above optimal.

The results for staleness, however, show a significant differ-
ence between the different policies. We see that by assuming
that all future arrivals will be cache misses, the Pessimistic
policy achieves enough tolerance in the cache size estima-
tion, avoiding overloading the network towards the end of
the window, and leading to low staleness.

Based on the results so far, we see that accurately model-
ing the optimal cache size does not yield the best results in
practice. Instead, our algorithms should be lazy, deferring
updates until later in the window, and in choosing how long
to defer, they should be pessimistic in their assumptions
about future arrivals.

5.3 The Hybrid Algorithm
In the discussion of the lazy online algorithm above, we as-
sumed perfect knowledge of the future network bandwidth
b̄. In practice, however, if the actual network capacity turns
out to be lower than the predicted value, then too much traf-
fic may back up close to the end of the window, potentially
resulting in high staleness.
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Figure 8 shows how staleness increases as the result of over-
predicting network capacity. Note that the predicted ca-
pacity remains constant, while we vary the actual network
capacity. The top-most curve corresponds to a lazy online
algorithm (Pessimistic + LFU) which is susceptible to very
high staleness if it overpredicts network capacity (up to 9.9%
of the window length for 100% overprediction).

To avoid this problem, recall Theorem 5, where we observed
that the eager and lazy optimal algorithms are merely two
extremes in a family of optimal algorithms. Further, our
results from Sections 5.1 and 5.2 showed that it is useful
to add headroom to the accurate cache size estimates: to-
wards a larger (resp., smaller) cache size in case of the eager
(resp., lazy) algorithm. These insights indicate that a more
effective cache size estimate should lie somewhere between
the estimates for the eager and lazy algorithms. Hence, we
propose a Hybrid algorithm that computes cache size as a
linear combination of eager and lazy cache sizes. Concretely,
a Hybrid algorithm with a laziness parameter α—denoted
by Hybrid(α)—estimates the cache size c(t) at time t as:
c(t) = α · cl(t) + (1 − α) · ce(t), where cl(t) and ce(t) are
the lazy and eager cache size estimates, respectively. In our
evaluation, we use the Nonuniform model for the eager and
the Optimistic model for the lazy cache size estimation re-
spectively, as these most accurately capture the cache sizes
of their respective optimal baselines.

Observing Figure 8 again, we see that as we decrease the
laziness parameter (α) below about 0.5, and use a more ea-
ger approach, the risk of bandwidth misprediction is largely
mitigated, and the staleness even under significant band-
width overprediction remains small.

Note that since predicted network capacity is constant in
this figure, traffic is fixed for each algorithm irrespective of
the bandwidth prediction error. Figure 9 shows that as we
use a more eager hybrid algorithm, traffic increases. This
illustrates a tradeoff between traffic and staleness in terms of
achieving robustness to network bandwidth overprediction.
A reasonable compromise seems to be a low α value, say
0.25. Using this algorithm, traffic is less than 6.0% above
optimal, and even when network capacity is overpredicted by
100%, staleness remains below 0.19% of the window length.

Overall, we find that a purely eager online algorithm is
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Figure 9: Average traffic for hybrid algorithms with
several values of the laziness parameter α. Traffic is
normalized relative to an optimal algorithm.

susceptible to errors by practical eviction policies, while a
purely lazy online algorithm is susceptible to errors in band-
width prediction. A hybrid algorithm that combines these
two approaches provides a good compromise by being more
robust to errors in both arrival process and bandwidth esti-
mation.

5.4 Comparison to Optimal and Other Online
Algorithms

Finally, we compare our hybrid online aggregation algorithm
against the simple aggregation algorithms of pure streaming
and pure batching, as well as an offline optimal algorithm.
So far, we have focused on a network regime of relatively
high network capacity. To fully understand the tradeoffs of
these algorithms, we now simulate these algorithms across
a wide range of network capacities, ranging from highly
constrained (less than 20% greater than optimal traffic) to
highly unconstrained (about 5x more than that needed to
support pure streaming).

Figures 10(a) and 10(b) show traffic and staleness, respec-
tively, for the four algorithms over this range of network
capacities. In terms of traffic, we see that our Hybrid(0.25)
algorithm comes close to the optimal traffic, especially at
higher network capacities. Traffic in the highly constrained
regime is not as close to optimal, but still provides a sig-
nificant improvement over that from pure streaming. The
reason for this trend is that, as the network becomes more
constrained, the envelope between lazy and eager algorithms
shrinks, so that the hybrid algorithm has lower room for er-
ror. Note that batching is traffic-optimal, as discussed in
Section 4.

In terms of staleness, we see that streaming goes from be-
ing nearly staleness-optimal for high network capacity to the
worst when the capacity goes below a certain point. This
is because under a highly constrained network, the exces-
sive traffic from streaming leads to large (even unbounded)
network queuing delays. The staleness for batching, on the
other hand, goes from being the worst for high network ca-
pacity to close to optimal for low bandwidth. This is because
it always defers communication until the end of the window,
which can lead to high delay when network is not a bottle-
neck but prevents queue buildups under severe bandwidth
constraints. Our Hybrid algorithm follows the same trend
as the optimal, performing close to optimal irrespective of
the network capacity.



0 2 4 6 8 10 12 14 16 18
Normalized Network Capacity

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

A
ve

ra
ge

Tr
af

fic
Optimal
Streaming
Batching
Hyb. (0.25)

(a) Traffic (normalized relative to an optimal al-
gorithm)

0 2 4 6 8 10 12 14 16 18
Normalized Network Capacity

10−6
10−5
10−4
10−3
10−2
10−1

100
101
102
103
104
105

N
or

m
al

iz
ed

95
th

-P
er

ce
nt

ile
St

al
en

es
s

Optimal
Streaming
Batching
Hyb. (0.25)

(b) Staleness (normalized by window length). Y-
axis is log-scale.

Figure 10: Traffic and staleness for different algorithms over a range of network capacities.

6. IMPLEMENTATION
We demonstrate the practicality of our algorithms and ulti-
mately their performance by implementing them in Apache
Storm [2]. Our prototype uses a distinct Storm cluster at
each edge, as well as at the center, in order to distribute the
work of aggregation. We choose this multi-cluster approach
rather than attempting to deploy a single geo-distributed
Storm cluster for two main reasons. First, a single global
Storm cluster would require a custom task scheduler in order
to control task placement. Second, and much more critically,
Storm was designed and has been optimized for high perfor-
mance within a single datacenter; it would not be reasonable
to expect it to perform well in a geo-distributed setting char-
acterized by high latency and high degrees of compute and
bandwidth heterogeneity.

Figure 11 shows the overall architecture, including the edge
and center Storm topologies. We briefly discuss each com-
ponent in the order of data flow from edge to center.

Center

SocketReceiver Reorderer StatsCollector
EdgeSummer
EdgeSummer
EdgeSummer
Aggregator

Edge

Replayer Reorderer

Logs

EdgeSummer
EdgeSummer
EdgeSummer
Aggregator

SocketSender

Figure 11: Aggregation is distributed over Apache
Storm clusters at each edge as well as at the center.

6.1 Edge
Data enters our prototype through the Replayer spout. One
instance of this spout runs within each edge, and it is respon-
sible for replaying timestamped logs from a file, reproducing
the original pattern of interarrival times. In order to allow us
to explore different stream arrival rates, the Replayer takes
a speedupFactor parameter, which dictates how much to
speed up or slow down the log replay.

Each line of the logs is parsed using a query-specific pars-
ing function, which produces a triple of (timestamp, key,

value). We leverage Twitter’s Algebird7 library to general-
ize over a broad class of aggregations, so the only restriction
on value types is that they must have an Algebird Semigroup

instance. This is already satisfied for many practical aggre-
gations (e.g., integer sum, unique count via HyperLogLog,
etc.), and implementing a custom Semigroup is straightfor-
ward. The Replayer emits these records downstream, and
also periodically emits punctuation messages. Carrying only
a timestmap, these punctuation messages simply denote that
no messages with earlier timestamps will be sent in the fu-
ture. The frequency of these punctuations is user-specified,
though it is required that one be sent to mark the end of
each time window.

The next step in the dataflow is the Aggregator bolt, for
which one or more tasks run at each cluster. Each task is
responsible for aggregating a hash-partitioned subset of the
key space, and applying a cache size and eviction policy to
determine when to transfer partial aggregates to the center.
Each task maintains an in-memory key-value map, and uses
the Algebird library to aggregate values for a given key. We
generalize over a broad range of eviction policies by ordering
keys using a priority queue with an efficient changePriority
implementation, and consulting this priority queue to deter-
mine the next victim key when it becomes necessary. By
defining priority as a function of key, value, existing priority
(if any) and the time that the key was last updated in the
map, we can capture a broad range of algorithms including
LRU and LFU.

The Aggregator also maintains a cache size function, which
maps from time within the window to a cache size. This
function can be changed at runtime in order to support im-
plementing arbitrary dynamic sizing policies. Specifically, a
concrete Aggregator instance can install callback functions
to be invoked upon the arrival of records or punctuations.
This mechanism can be used, for example, to update the
cache size function based on arrival rate and miss rate as
in our Lazy Pessimistic algorithm, or to record the arrival
history for one window and use this history to compute the
size function for the next window, as in the Eager Empirical
algorithm. For our experiments, we use this mechanism to
implement a cache size policy that learns the eager optimal
eviction schedule after processing the log trace once.

7https://github.com/twitter/algebird



The Aggregator tasks send their output to a single instance
of the Reorderer bolt. This bolt is responsible for delaying
records as needed in order to maintain punctuation seman-
tics. Data then flows into the SocketSender bolt, which
connects to the central cluster at startup, and has the re-
sponsibility of serializing and transmitting partial aggregates
downstream to the center using TCP sockets. This Socket-
Sender also maintains an estimate of network bandwidth to
the center, and periodically emits these estimates upstream
to Aggregator instances for use in defining their cache size
functions. Our bandwidth estimation is based on simple
measurements of the rate at which messages can be sent
over the network. For a more reliable prediction, we could
employ lower-level techniques [7], or even external monitor-
ing services [24].

6.2 Center
At the center, data follows largely the reverse order. First,
the SocketReceiver spout is responsible for deserializing
partial aggregates and punctuations and emitting them down-
stream into a Reorderer, where the streams from multiple
edges are synchronized. From there, records flow into the
central Aggregator, each task of which is responsible for per-
forming the final aggregation over a hash-partitioned subset
of the key space. Upon completing aggregation for a win-
dow, these central Aggregator tasks emit summary metrics
including traffic and staleness, and these metrics are sum-
marized by the final StatsCollector bolt.

Note that our prototype achieves at-most-once delivery se-
mantics. Storm’s acking mechanisms can be used to im-
plement at-least-once semantics, and exactly-once seman-
tics can be achieved by employing additional checks to filter
duplicate updates, though we have not implemented these
measures.

7. EXPERIMENTAL EVALUATION
To evaluate the performance of our algorithms in a real geo-
distributed setting, we deploy our Apache Storm architec-
ture on the PlanetLab testbed. Our PlanetLab deployment
uses a total of eleven nodes (64 total cores) spanning seven
sites. Central aggregation is performed using a Storm clus-
ter at a single node at princeton.edu8. Edge locations
include csuohio.edu, uwaterloo.ca, yale.edu, washing-

ton.edu, ucla.edu, and wisc.edu. Bandwidth from edge
to center varies from as low as 4.5Mbps (csuohio.edu) to as
high as 150Mbps (yale.edu), based on iperf. To simulate
streaming data, each edge replays a geographic partition of
the CDN log data described in Section 3. To explore the
performance of our algorithms under a range of workloads,
we use the three diverse queries described in Table 1, and
we replay the logs at both low and high (8x faster than low)
rates. Note that for confidentiality purposes, we do not dis-
close the actual replay rates, and we present staleness and
traffic results normalized relative to the window length and
optimal traffic, respectively.

8We originally employed multiple nodes at the center, but
were forced to confine our central aggregation to a single
node due to PlanetLab’s restrictive limitations on daily net-
work bandwidth usage that was quickly exhausted by the
communication between Storm workers.

7.1 Aggregation using a Single Edge
Although our work is motivated by the general case of mul-
tiple edges, our algorithms were developed based on an in-
depth study of the interaction between a single edge and
center. We therefore begin by studying the real-world per-
formance of our hybrid algorithm when applied at a single
edge. Following the rationale from Section 5.3, we choose a
laziness parameter of α = 0.25 for this initial experiment,
though we will study the tradeoffs of different parameter
values shortly.

Compared to the extremes of pure batching and pure stream-
ing, as well as an optimal algorithm based on a priori knowl-
edge of the data stream, our algorithm performs quite well.
Figures 12(a) and 12(b) show that our hybrid algorithm very
effectively exploits the opportunity to reduce bandwidth rel-
ative to streaming, yielding traffic less than 2% higher than
the optimal algorithm. At the same time, our hybrid algo-
rithm is able to reduce staleness by 65% relative to a pure
batching algorithm.

7.2 Scaling to Multiple Edges
Now, in order to understand how well our algorithm scales
beyond a single edge, we partition the log data over three
geo-distributed edges. We replay the logs at both low and
high rates, and for each of the large, medium, and small

queries9. As Figures 13(a) and 13(b) demonstrate, our hy-
brid algorithm performs well throughout. It is worth noting
that the edges apply their cache size and cache eviction poli-
cies based purely on local information, without knowledge of
the decisions made by the other edges, except indirectly via
the effect that those decisions have on the available network
bandwidth to the edge.

Performance is generally more favorable for our algorithm
for the large and medium queries than for the small query.
The reason is that, for these larger queries, while edge aggre-
gation reduces communication volume, there is still a great
deal of data to transfer from the edges to the center. Stal-
eness is quite sensitive to precisely when these partial ag-
gregates are transferred, and our algorithms work well in
scheduling this communication. For the small query, on the
other hand, edge aggregation is extremely effective in re-
ducing data volumes, so much so that there is little risk in
delaying communication until the end of the window. For
queries that aggregate extremely well, batching is a promis-
ing algorithm, and we do not necessarily outperform batch-
ing. The advantage of our algorithm over batching is there-
fore its broader applicability: the Hybrid algorithm performs
roughly as well as batching for small queries, and signifi-
cantly outperforms it for large queries.

We continue by further partitioning the log data across a
total of six geo-distributed edges. Given the higher aggre-
gate compute and network capacity of this deployment, we
focus on the large query at both low and high arrival rates.
From Figure 14(a), we can again observe that our hybrid al-
gorithm yields near-optimal traffic. We can also observe an
important effect of stream arrival rate: all else equal, a high

9We do not present the results for large-high because the
amount of traffic generated in these experiments could not
be sustained within the PlanetLab bandwidth limits.
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Figure 12: Performance for batching, streaming, optimal, and our hybrid algorithm for the large query with
a low stream arrival rate using a one-edge Apache Storm deployment on PlanetLab.
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Figure 13: Performance for batching, streaming, optimal, and our hybrid algorithm for a range of queries
and stream arrival rates using a three-edge Apache Storm deployment on PlanetLab.

stream arrival rate lends itself to more thorough aggregation
at the edge. This is evident in the higher normalized traffic
for streaming with the high arrival rate than with the low
arrival rate.

In terms of staleness, Figure 14(b) shows that our algorithm
performs well for the high arrival rate, where the network
capacity is more highly constrained, and staleness is there-
fore more sensitive to the particular scheduling algorithm.
At the low arrival rate, we see that our hybrid algorithm
performs slightly worse than batching, though in absolute
terms this difference is quite small. Our hybrid algorithm
generates higher staleness than streaming, but does so at a
much lower traffic cost. Just as with the three-edge case,
we again see that, where a large opportunity exists, our al-
gorithm exploits it, and where an extreme algorithm such
as batching already suffices, our algorithm remains compet-
itive.

7.3 Effect of Laziness Parameter
In Section 5.3, we observed that a purely eager algorithm is
vulnerable to mispredicting which keys will receive further
arrivals, while a purely lazy algorithm is vulnerable to over-
predicting network bandwidth. This motivated our hybrid
algorithm, which uses a linear combination of eager and lazy
cache size functions. We explore the real-world tradeoffs of
using a more or less lazy algorithm by running experiments
with the large query at a low replay rate over three edges

with laziness parameter α ranging from 0 through 1.0 by
steps of 0.25. As expected based on our simulation results,
Figure 15(a) shows that α has little effect on traffic when
it exceeds about 0.25. Somewhere below this value, the im-
perfections of practical cache eviction algorithms (LRU in
our implementation) begin to manifest. More specifically,
at α = 0, the hybrid algorithm reduces to a purely eager
algorithm, which makes eviction decisions well ahead of the
end of the window, and often chooses the wrong victim.
By introducing even a small amount of laziness, say with
α = 0.25, this effect is largely mitigated.

Figure 15(b) shows the opposite side of this tradeoff: a lazier
algorithm runs a higher risk of deferring communication too
long, in turn leading to higher staleness. Based on staleness
alone, a more eager algorithm is better. Based on the shape
of these trends, we have chosen to use α = 0.25 through-
out our experiments, but this may not be the optimal value.
Further study would be necessary to determine an optimal
value of α, and this optimal choice may in fact depend on
the relative importance of minimizing staleness versus min-
imizing traffic.

8. RELATED WORK
Aggregation: Aggregation is a key operator in analytics,
and grouped aggregation is supported by many data-parallel
programming models [8, 11, 25]. Larson et al. [15] explore
the benefits of performing partial aggregation prior to a join
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Figure 14: Performance for batching, streaming, optimal, and our hybrid algorithm for the large query with
low and high stream arrival rates using a six-edge Apache Storm deployment on PlanetLab.

0 0.25 0.5 0.75 1

α

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

M
ea

n
Tr

af
fic

(a) Mean traffic (normalized relative to an opti-
mal algorithm).

0 0.25 0.5 0.75 1

α

0.000

0.005

0.010

0.015

0.020

0.025

N
or

m
al

iz
ed

M
ed

ia
n

St
al

en
es

s
(b) Median staleness (normalized by window
length).

Figure 15: Effect of laziness parameter α using a three-edge Apache Storm deployment on PlanetLab with
query large.

operation, much as we do prior to network transmission.
While they also recognize similarities to caching, they con-
sider only a fixed-size cache, whereas our approach uses a
dynamically varying cache size. In sensor networks, aggre-
gation is often performed over a hierarchical topology to
improve energy efficiency and network longevity [16, 22],
whereas we focus on cost (traffic) and information quality
(staleness). Amur et al. [6] study grouped aggregation, fo-
cusing on the design and implementation of efficient data
structures for batch and streaming computation. They dis-
cuss tradeoffs between eager and lazy aggregation, but do
not consider the effect on staleness, a key performance met-
ric in our work.

Streaming systems: Numerous streaming systems [5, 9,
20, 26] have been proposed in recent years. These systems
provide many useful ideas for new analytics systems to build
upon, but they do not fully explore the challenges that we’ve
described here, in particular how to achieve high quality
results (low staleness) at low cost (low traffic).

Wide-area computing: Wide-area computing has received
increased research attention in recent years, due in part to
the widening gap between data processing and communica-
tion costs. Much of this attention has been paid to batch
computing [13, 23]. Relatively little work on streaming com-
putation [3] has focused on wide-area deployments, or associ-
ated questions such as where to place computation. Pietzuch
et al. [18] optimize operator placement in geo-distributed
settings to balance between system-level bandwidth usage

and latency. Hwang et al. [14] rely on replication across
the wide area in order to achieve fault tolerance and re-
duce straggler effects. JetStream [21] considers wide-area
streaming computation, but unlike our work, assumes that
it is always better to push more computation to the edge.

Optimization tradeoffs: LazyBase [10] provides a mecha-
nism to trade off increased staleness for faster query response
in the case of ad-hoc queries. BlinkDB [4] and JetStream [21]
provide mechanisms to trade off accuracy with response time
and bandwidth utilization, respectively. We focus on jointly
optimizing both network traffic and staleness.

9. CONCLUSION
In this paper, we focused on optimizing the important primi-
tive of windowed grouped aggregation in a wide-area stream-
ing analytics setting on two key metrics: WAN traffic and
staleness. We presented a family of optimal offline algo-
rithms that jointly minimize both staleness and traffic. Us-
ing this as a foundation, we developed practical online ag-
gregation algorithms based on the observation that grouped
aggregation can be modeled as a caching problem where the
cache size varies over time. We explored a range of online
algorithms ranging from eager to lazy in terms of how soon
they send out updates. We found that a hybrid online algo-
rithm works best in practice, as it is robust to a wide range
of network constraints and estimation errors. We demon-
strated the practicality of our algorithms through an im-
plementation in Apache Storm, deployed on the PlanetLab
testbed. The results of our experiments, driven by workloads



derived from anonymized traces of Akamai’s web analytics
service, showed that our online aggregation algorithms per-
form close to the optimal algorithms for a variety of system
configurations, stream arrival rates, and query types.
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