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Abstract

Explosive growth in geospatial data and the emergence of new spatial technologies emphasize the need for automated
discovery of spatial knowledge. Spatial data mining is the process of discovering interesting and previously unknown,
but potentially useful patterns from large spatial databases. The complexity of spatial data and intrinsic spatial rela-
tionships limits the usefulness of conventional data mining techniques for extracting spatial patterns. In this chapter,
we explore the emerging field of spatial data mining, focusing on four major topics: prediction and classification,
outlier detection, co-location mining, and clustering. We conclude with a look at future research needs.
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1 Introduction

The explosive growth of spatial data and widespread use of spatial databases [34, 86, 87, 106] have heightened
the need for the automated discovery of spatial knowledge. Spatial data mining [96, 86] is the process of discovering
interesting and previously unknown, but potentially useful patterns from spatial databases. The complexity of spatial
data and intrinsic spatial relationships limits the usefulness of conventional data mining techniques for extracting
spatial patterns. Efficient tools for extracting information from geo-spatial data are crucial to organizations which
make decisions based on large spatial datasets, including NASA, the National Geospatial-Intelligence Agency [55],
the National Cancer Institute [6], and the US Department of Transportation [93]. These organizations are spread
across many application domains such as ecology and environmental management [43, 82, 83, 84], public safety,
transportation [57], Earth science [40], epidemiology [27], crime analysis [58], and climatology [96, 110].

Spatial database research has been an active area for several decades. The results of this research are being used
in a number of areas. To cite a few examples, the filter-and-refine technique used in spatial query processing has
been applied to subsequence mining; multidimensional-index structures are used in computer graphics and image
processing; and space-filling curves used in spatial query processing and data storage are applied in dimension
reduction problems. The value of its contributions no longer in doubt, current research in spatial databases aims to
improve its functionality, extensibility, and performance. The impetus for improving functionality comes from the
needs of numerous existing application such as Geographic Information Systems, Location Based Services [85], sensor
networks [95].

Commercial examples of spatial database management include ESRI’s ArcGIS Geodatabase [11], Oracle Spa-
tial [14], IBM’s DB2 Spatial Extender and Spatial Datablade, and systems such as Microsoft’s SQL Server 2008 [51].
Spatial databases have played a major role in popular applications such as Google Earth [33] and Microsoft’s Virtual
Earth [67]. Research prototype examples of spatial database management systems include spatial datablades with
PostGIS [80], MySQL’s Spatial Extensions [70], Sky Server [2] and spatial extensions. The functionalities provided
by these systems include use of spatial data types such as points, line-segments and polygons, and spatial operations
such as inside, intersection, and distance. Spatial types and operations may be integrated into query languages such
as SQL, which allows spatial querying to be combined with object-relational database management systems [20, 97].
The performance enhancement provided by these systems includes a multi-dimensional spatial index and algorithms
for spatial database modeling such as OGIS [73] and 3D Topological modeling; spatial query processing including
point, regional, range, and nearest neighbor queries; and spatial data methods using a variety of indexes such as quad
trees and grid cells.
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Fig. 1: Illustration of Point Spatial Co-
location Patterns. Shapes represent
different spatial feature types. Spa-
tial features in sets {‘+’, ‘×’} and
{‘o’, ‘*’} tend to be located together

General purpose data mining tools like Clementine from Statis-
tical Package for the Social Sciences (SPSS), Enterprise Miner from
SAS, Data Mining extensions from relational database vendors such
as Oracle and IBM, public domain data mining packages such as
Weka [29], and See5/C5.0 are designed for the purpose of analyzing
transactional data. Although these tools were primarily designed to
identify customer-buying patterns in market basket data, they have
also been used in analyzing scientific and engineering data, astro-
nomical data, multi-media data, genomic data, and web data. How-
ever, extracting interesting and useful patterns from spatial datasets
is more difficult than extracting corresponding patterns from tradi-
tional numeric and categorical data due to the complexity of spatial
data types, spatial relationships, and spatial autocorrelation.

Specific features of geographical data that preclude the use of
general purpose data mining algorithms are: i) the spatial relation-
ships among the variables, ii) the spatial structure of errors, iii) the
presence of mixed distributions as opposed to commonly assumed
normal distributions, iv) observations that are not independent and
identically distributed, v) spatial autocorrelation among the fea-
tures, and vi) non-linear interactions in feature space. Of course,
one can apply conventional data mining algorithms, but these algo-
rithms often perform more poorly on spatial data. A prime example
of spatial patterns is co-occurrence patterns, which represent subsets
of spatial features whose instances are often located in close geographic proximity, (see Figure 1).

We begin this chapter by describing the characteristics of the data inputs of spatial data mining (Section 2) and
by providing an overview of the statistical foundation of spatial data mining (SDM) (Section 3). We then describe
in detail four main output patterns of SDM related to anomalies, clustering, co-location and prediction (Section 4).
Computational issues regarding these patterns are discussed in Section 5. This chapter concludes with an examination
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Tab. 1: Common relationships among non-spatial and spatial data
Non-spatial Relationship Spatial Relationship

Arithmetic Set-oriented: union, intersection, membership, . . .

Ordering Topological: meet, within, overlap, . . .

Isinstance-of Directional: North, NE, left, above, behind, . . .

Subclass-of Metric: e.g., distance, area, perimeter, . . .

Part-of Dynamic: update, create, destroy, . . .

Membership-of Shape-based and visibility

of research needs and future directions in Section 6.

2 Input: Spatial Data

The data inputs of spatial data mining are more complex than the inputs of classical data mining because they
include extended objects such as points, lines, and polygons in vector representation and field data in regular or
irregular tessellation such as raster data. The data inputs of spatial data mining have two distinct types of attributes:
non-spatial attributes and spatial attributes. Non-spatial attributes are used to characterize non-spatial features of
objects, such as name, population, and unemployment rate for a city. They are the same as the attributes used in the
data inputs of classical data mining. Spatial attributes are used to define the spatial location and extent of spatial
objects [15, 32]. The spatial attributes of a spatial object most often include information related to spatial locations,
e.g., longitude, latitude and elevation defined in a spatial reference frame, as well as shape.

Spatial datasets are discrete representations of continuous phenomena. Discretization of continuous space is
necessitated by the nature of digital representation. There are two basic models to represent spatial data, namely,
raster (grid) and vector. Satellite images are good examples of raster data. On the other hand, vector data consists
of points, lines, polygons and their aggregate (or multi-) counter parts. Spatial networks are another important data
type. This distinction is important as many of the techniques that we describe later favor one or more of these data
types. Vector data over a space is a framework to formalize specific relationships among a set of objects. Depending
on the relationships of interest, the space can be modeled many different ways, i.e., as set-based space, topological
space, Euclidean space, metric space and network space [107].

Set-based space uses the basic notion of elements, element-equality, sets, and membership to formalize set relation-
ships such as set-equality, subset, union, cardinality, relation, function, and convexity. Relational and object-relational
databases use this model of space.

Topological space uses the basic notion of a neighborhood and points to formalize extended object relations such
as boundary, interior, open, closed, within, connected, and overlaps, which are invariant under elastic deformation.
Combinatorial topological space formalizes relationships such as Euler’s formula (number of faces + number of vertices
- number of edges = 2 for planar configuration). Network space is a form of topological space in which the connectivity
property among nodes formalizes graph properties such as connectivity, isomorphism, shortest-path, and planarity.

Euclidean coordinatized space uses the notion of a coordinate system to transform spatial properties and relation-
ships into properties of tuples of real numbers. Metric space formalizes distance relationships using positive symmetric
functions that obey the triangle inequality. Many multidimensional applications use Euclidean coordinatized space
with metrics such as distance.

Widely used gazetteers employ spatial referencing with identifiers of a location that can be transformed into
coordinates, such as a postal code (street addresses) or geo-name which is more natural to human understanding.
Time is usually included in the spatial data as a time stamp.

During data input, relationships among non-spatial objects are made explicit through arithmetic relation, order-
ing, instance-of, subclass-of, and membership-of. In contrast, relationships among spatial objects are often implicit,
such as overlap, intersect, and behind. Table 1 gives examples of spatial and non-spatial relationships. One possible
way to deal with implicit spatial relationships is to materialize the relationships into traditional data input columns
and then apply classical data mining techniques such as those described in [81, 103, 4, 5, 44]. However, the mate-
rialization can result in loss of information. Usually, spatial and temporal vagueness, which naturally exists in data
and relationships, creates further modeling and processing difficulty in spatial data mining. Another way to capture
implicit spatial relationships is to develop models or techniques to incorporate spatial information into the spatial
data mining process.

3 Statistical Foundations of Spatial Data Mining
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Fig. 2: A spatial framework and its four-neighborhood contiguity matrix.

The specialty of spatial data mining originates from three central concepts in spatial statistics: spatial autocor-
relation, and spatial non-stationarity [28, 23]. Spatial statistics is a branch of statistics concerned with the analysis
and modeling of spatial data [12]. The field classifies spatial data into three basic types for ease of interpretation: (a)
point referenced data , which is modeled as a fixed collection of spatial locations, S, in a two-dimensional framework
D (e.g. set of police stations in a metropolitan city); (b) areal data, modeled as a finite set of irregular shaped
polygons in a two-dimensional framework D (e.g. set of police districts in a metropolitan city); and (c) point process
data which is modeled as a random collection of spatial events, collectively referred to as the spatial point pattern
over a two-dimensional framework D (e.g. home locations of patients infected by a disease).

Statistical models [22] are often used to represent observations in terms of random variables. These models can
then be used for estimation, description, and prediction based on probability theory. Spatial data can be thought of
as resulting from observations on the stochastic process Z(s) : s ∈ D, where s is a spatial location and D is possibly a
random set in a spatial framework. Here we present three types of spatial statistical problems one might encounter:
point process, lattice, and geostatistics.

Point process: A point process is a model for the spatial distribution of the points in a point pattern. Several
natural processes can be modeled as spatial point patterns, e.g., positions of trees in a forest and locations of bird
habitats in a wetland. Spatial point patterns can be broadly grouped into random or non-random processes. Real
point patterns are often compared with a random pattern (generated by a Poisson process) using the average distance
between a point and its nearest neighbor.

Lattice: A lattice is a model for a gridded space in a spatial framework. Here the lattice refers to a countable
collection of regular or irregular spatial sites related to each other via a neighborhood relationship. Several spatial
statistical analysis, e.g., the spatial autoregressive model and Markov random fields, can be applied on lattice data.

Geostatistics: Geostatistics deals with the analysis of spatial continuity and weak stationarity [22], which is an
inherent characteristics of spatial datasets. Geostatistics provides a set of statistics tools, such as kriging, to the
interpolation of attributes at unsampled locations.

The spatial relationship among locations in a spatial framework is often modeled via a contiguity matrix. A
simple contiguity matrix may represent a neighborhood relationship defined using adjacency or Euclidean distances.
Example definitions of a neighborhood using adjacency include a four-neighborhood and an eight-neighborhood.

Figure 2(a) shows a gridded spatial framework with four locations, A, B, C, and D. A binary matrix representation
of a four-neighborhood relationship is shown in Figure 2(b). The row-normalized representation of this matrix is called
a contiguity matrix, as shown in Figure 2(c). Other contiguity matrices can be designed to model neighborhood
relationship based on distance. The essential idea is to specify the pairs of locations that influence each other along
with the relative intensity of interaction. More general models of spatial relationships using cliques and hypergraphs
are available in the literature [105]. In spatial statistics, correlations among objects (spatial autocorrelation) is
quantified using measures such as Ripley’s K-function and Moran’s I [22].

Spatial Autocorrelation: One of the fundamental assumptions of statistical analysis is that the data samples are
independently generated: like successive tosses of coin, or the rolling of a die. However, in the analysis of spatial
data, the assumption about the independence of samples is generally false. In fact, spatial data tends to be highly
self correlated. For example, people with similar characteristics, occupation and background tend to cluster together
in the same neighborhoods. The economies of a region tend to be similar. Changes in natural resources, wildlife,
and temperature vary gradually over space. The property of like things clustering in space is so fundamental that
geographers have elevated it to the status of the first law of geography: “Everything is related to everything else,
but nearby things are more related than distant things” [100]. For example, Figure 3 shows the value distributions
of an attribute in a spatial framework for an independent identical distribution and a distribution with spatial
autocorrelation.

Spatial Non-Stationarity: Spatial Non-Stationarity refers to the inherent variation in measurements of a relation-
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(a) Attribute with an Independent
Identical Distribution

(b) Attribute with Spatial Autocorre-
lation

Fig. 3: Attribute values in space with independent identical distribution and spatial autocorrelation

ships over space. In fact, spatial context influences the nature of spatial relationships. For example, human behavior
can vary intrinsically over space (e.g., differing cultures). Different jurisdictions tend to produce different laws (e.g.,
speed limit differences between Minnesota and Wisconsin).

Spatial statistics has explored measures such as Ripley’s K Function, Spatial Scan Statistic, Morans I, Local Moran
Index, Getis Ord, Gearys C, etc, to quantify spatial correlation. These statistics have found many applications in
common spatial data mining tasks including spatial co-location, spatial outlier detection and hotspot discovery.

4 Output: Pattern Families

In this section, we present case studies of four important output patterns for spatial data mining: spatial outliers,
co-location patterns, classification and regression models, and spatial clustering.

4.1 Spatial Outlier Detection

Outliers have been informally defined as observations in a data set which appear to be inconsistent with the remainder
of that set of data [13], or which deviate so much from other observations as to arouse suspicions that they were
generated by a different mechanism [38]. The identification of global outliers can lead to the discovery of unexpected
knowledge and has a number of practical applications in areas such as detection of credit card fraud and voting
irregularities. This section focuses on spatial outliers, i.e., observations which appear to be inconsistent with their
neighborhoods [109, 99, 79]. Detecting spatial outliers is useful in many applications of geographic information
systems and spatial databases. These application domains include transportation, ecology, homeland security, public
health, climatology, and location-based services.

A spatial outlier [89] is a spatially referenced object whose non-spatial attribute values differ significantly from
those of other spatially referenced objects in its spatial neighborhood. Informally, a spatial outlier is a local instability
(in values of non-spatial attributes) or a spatially referenced object whose non-spatial attributes are extreme relative to
its neighbors, even though the attributes may not be significantly different from the entire population. For example,
a new house in an old neighborhood of a growing metropolitan area is a spatial outlier based on the non-spatial
attribute house age.

Illustrative Examples and Application Domains: We use an example to illustrate the differences among global and
spatial outlier detection methods. In Figure 4(a), the X-axis is the location of data points in one-dimensional space;
the Y-axis is the attribute value for each data point. Global outlier detection methods ignore the spatial location of
each data point and fit the distribution model to the values of the non-spatial attribute. As shown in Figure 4(b), the
outlier detected using this approach is the data point G, which has an extremely high attribute value 7.9, exceeding
the threshold of µ + 2σ = 4.49 + 2 ∗ 1.61 = 7.71. This test assumes a normal distribution for attribute values. On
the other hand, S is a spatial outlier whose observed value is significantly different than its neighbors P and Q.

Common Methods: Tests to detect spatial outliers separate spatial attributes from non-spatial attributes. Spatial
attributes are used to characterize location, neighborhood, and distance. Non-spatial attribute dimensions are used
to compare a spatially referenced object to its neighbors. Spatial statistics literature provides two kinds of bi-partite
multidimensional tests, namely graphical tests and quantitative tests. Graphical tests, which are based on the
visualization of spatial data, highlight spatial outliers. Example methods include variogram clouds [37] and Moran
scatterplots [65, 22]. A variogram cloud displays data points related by neighborhood relationships. Figure 5(a) shows
a variogram cloud for the example dataset shown in Figure 4(a). This plot shows that two pairs (P, S) and (Q, S) on
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Fig. 4: A Dataset for Outlier Detection.
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Fig. 5: Variogram cloud and moran scatterplot to detect spatial outliers.

the left hand side lie above the main group of pairs and are possibly related to spatial outliers. A Moran scatterplot
shows spatial association or disassociation of spatial close objects. The upper left and lower right quadrants of
Figure 5(b) indicate a spatial association of dissimilar values: low values surrounded by high value neighbors(e.g.,
points P and Q), and high values surrounded by low values (e.g,. point S). Figure 5(b) indicates a spatial association
of dissimilar values: low values surrounded by high value neighbors(e.g., points P and Q), and high values surrounded
by low values (e.g,. point S).

A scatterplot [64] shows attribute values on the X-axis and the average of the attribute values in the neighborhood
on the Y -axis. A least square regression line is used to identify spatial outliers. A scatter sloping upward to the
right indicates a positive spatial autocorrelation (adjacent values tend to be similar); a scatter sloping upward to the
left indicates a negative spatial autocorrelation. The residual is defined as the vertical distance (Y -axis) between a
point P with location (Xp, Yp) to the regression line Y = mX + b, that is, residual ǫ = Yp − (mXp + b). Cases with
standardized residuals, ǫstandard = ǫ−µǫ

σǫ

, greater than 3.0 or less than -3.0 are flagged as possible spatial outliers,
where µǫ and σǫ are the mean and standard deviation of the distribution of the error term ǫ. In Figure 6(a), a
scatterplot shows the attribute values plotted against the average of the attribute values in neighboring areas for the
dataset in Figure 4(a). The point S turns out to be the farthest from the regression line and may be identified as a
spatial outlier.

Spatial statistic S(x) is normally distributed if the attribute value f(x) is normally distributed. A popular test
for detecting spatial outliers for normally distributed f(x) can be described as follows: Spatial statistic Zs(x) =

|S(x)−µs

σs

| > θ. For each location x with an attribute value f(x), the S(x) is the difference between the attribute value

at location x and the average attribute value of x′s neighbors, µs is the mean value of S(x), and σs is the value of the
standard deviation of S(x) over all stations. The choice of θ depends on a specified confidence level. For example, a
confidence level of 95 percent will lead to θ ≈ 2.

Figure 6(b) shows the visualization of the spatial statistic method described above. The X-axis is the location
of data points in one-dimensional space; the Y -axis is the value of spatial statistic Zs(x) for each data point. We can
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Fig. 6: Scatterplot and Spatial Statistic Z
s(x) to detect spatial outliers.

easily observe that point S has a Zs(x) value exceeding 3, and will be detected as a spatial outlier. Note that the
two neighboring points P and Q of S have Zs(x) values close to -2 due to the presence of spatial outliers in their
neighborhoods.

The techniques presented above are based on single attribute. However, multi-attribute based spatial outlier
detection is also possible. For example, average and median attribute value based algorithms are presented in [63].

4.2 Co-location Patterns

Co-location patterns represent subsets of boolean spatial features whose instances are often located in close geographic
proximity. Examples include symbiotic species and crime attractors (e.g. Bars, misdemeanors, etc). Boolean spatial
features describe the presence or absence of geographic object types at different locations in a two-dimensional or
three-dimensional metric space, e.g., the surface of the Earth. Examples of boolean spatial features include plant
species, and crime.

Spatial Co-location: Co-location rules are models to infer the presence of boolean spatial features in the neigh-
borhood of instances of other boolean spatial features. For example, “Nile Crocodiles → Egyptian Plover” predicts
the presence of Egyptian Plover birds in areas with Nile Crocodiles. Figure 1 shows a dataset consisting of instances
of several boolean spatial features, each represented by a distinct shape. A careful review reveals two co-location
patterns, i.e. (‘+’,’×’) and (‘o’,‘*’).

Co-location rule discovery is a process to identify co-location patterns from large spatial datasets with a large
number of boolean features. The spatial co-location rule discovery problem looks similar to, but, in fact, is very
different from the association rule mining problem [5] because of the lack of transactions. In market basket datasets,
transactions represent sets of item types bought together by customers. The support of an association is defined
to be the fraction of transactions containing the association. Association rules are derived from all the associations
with support values larger than a user given threshold. In the spatial co-location rule mining problem, transactions
are often not explicit. The transactions in market basket analysis are independent of each other. Transactions are
disjoint in the sense of not sharing instances of item types. In contrast, the instances of Boolean spatial features are
embedded in a continuous space and share a variety of spatial relationships (e.g. neighbor) with each other.

Common Methods: Spatial co-location rule mining approaches can be grouped into two broad categories: ap-
proaches that use spatial statistics and algorithms that use association rule mining kind of primitives. Spatial
statistics based approaches utilize statistical measures such as cross-K function, mean nearest-neighbor distance, and
spatial autocorrelation. However, these approaches are computationally expensive. Association rule-based approaches
focus on the creation of transactions over space so that an apriori like algorithm [5] can be used. Transactions in space
can use a reference-feature centric [53] approach or a data-partition [69] approach. Figure 7(c) shows two possible
partitions for the dataset of Figure 7(a), along with the supports for co-location (A, B). The reference feature centric
model is based on the choice of a reference spatial feature [53] and is relevant to application domains focusing on a
specific boolean spatial feature, e.g. cancer. The event centric model [88] finds subsets of spatial features likely to
occur in a neighborhood around instances of given subsets of event types (see Figure 7a).

Illustrative Examples and Application Domains: Domain scientists are interested in finding the co-locations of
other task relevant features (e.g. asbestos) to the reference feature. For example, consider the spatial dataset in
Figure 7(a) with three feature types, A, B and C. Each feature type has two instances. The neighbor relationships
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Fig. 7: Example to illustrate different approaches to discovering co-location patterns a) Example dataset.
b) Data partition approach. Support measure is ill-defined and order sensitive c) Reference feature
centric model d) Event centric model

between instances are shown as edges. Co-locations (A,B) and (B, C) may be considered as frequent in this example.
Figure 7(b) shows transactions created by choosing C as the reference feature. Co-location (A,B) will not be found
since it does not involve the reference feature.

4.3 Regression and Classification

Classification and regression are similar types of patterns in data mining. Given a sample set of input-output pairs,
the objective of supervised learning is to find a function that learns from the given input-output pairs, and predicts
an output for any unseen input (but assumed to be generated from the same distribution), such that the predicted
output is as close as possible to the desired output. For example, in remote sensing image classification, the input
attribute space consists of various spectral bands or channels (e.g., blue, green, red, infra-red, thermal, etc.) The
input vectors (xi’s) are reflectance values at the ith location in the image; and the outputs (yi’s) are thematic classes
such as forest, urban, water, and agriculture. Depending on the type of output attribute, two supervised learning
tasks can be distinguished:

The fact that classical data mining techniques ignore spatial autocorrelation and spatial heterogeneity in the
model-building process is one reason why these techniques do a poor job. A second, more subtle but equally important
reason is related to the choice of the objective function to measure classification accuracy. For a two-class problem,
the standard way to measure classification accuracy is to calculate the percentage of correctly classified objects.
However, this measure may not be the most suitable in a spatial context. Spatial accuracy−how far the predictions
are from the actuals−is as important in this application domain due to the effects of the discretization of a continuous
wetland into discrete pixels, as shown in Figure 8. Figure 8(a) shows the actual locations of nests and 8(b) shows
the pixels with actual nests. Note the loss of information during the discretization of continuous space into pixels.
Many nest locations barely fall within the pixels labeled ‘A’ and are quite close to other blank pixels, which represent
’no-nest’. Now consider two predictions shown in Figure 8(c) and 8(d). Domain scientists prefer prediction 8(d)
over 8(c), since the predicted nest locations are closer on average to some actual nest locations. The classification
accuracy measure cannot distinguish between 8(c) and 8(d), and a measure of spatial accuracy is needed to capture
this preference.

A

= nest location

P   = predicted nest in pixel

A  =  actual nest in pixel
P P

A

APP

AA

A

(a)

A

AA

(b) (d)(c)

P
P

Legend

Fig. 8: (a)The actual locations of nests, (b)Pixels with actual nests, (c)Location predicted by a model,
(d)Location predicted by another model. Prediction(d) is spatially more accurate than (c).

• Classification: Here, the input vectors xi are assigned to a few discrete numbers of classes, for example, image
classification [24] yi.

• Regression: In regression, also known as function approximation or prediction, the input-output pairs are
generated from an unknown function of the form y = f(x), where y is continuous. Typically regression is used
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in regression and estimation, for example, crop yield prediction [62], daily temperature prediction, and market
share estimation for a particular product. Regression can also be used in inverse estimation, that is, given that
we have an observed value of y, we want to determine the corresponding x value.

Illustrative Examples and Application Domains: The prediction of events occurring at particular geographic
locations is very important in several application domains such as crime analysis, cellular networks, and natural
disasters. However, prediction and regression with spatial data requires taking into account the varying relationships
among variables, such as autocorrelation.

Common Methods: Several previous studies [47], [94] have shown that the modeling of spatial dependency (often
called context) during the classification process improves overall classification accuracy. Spatial context can be defined
by the relationships between spatially adjacent pixels in a small neighborhood. An example spatial framework and
its four-neighborhood contiguity matrix is shown in Figure 2. In this section we present two spatial data mining
techniques, namely the Logistic Spatial Autoregressive Model (SAR) and Markov Random Fields (MRF).

Logistic Spatial Autoregressive Model(SAR): Logistic SAR decomposes a classifier f̂C into two parts, namely
spatial autoregression and logistic transformation. Spatial dependencies are modeled using the framework of logistic
regression analysis. In the spatial autoregression model, the spatial dependencies of the error term, or, the dependent
variable, are directly modeled in the regression equation [8]. If the dependent values yi are related to each other,
then the regression equation can be modified as

y = ρWy + Xβ + ǫ. (1)

Here W is the neighborhood relationship contiguity matrix and ρ is a parameter that reflects the strength of the
spatial dependencies between the elements of the dependent variable via the logistic function for binary dependent
variables.

Markov Random Field-based Bayesian Classifiers: Maximum likelihood classification (MLC) is one of the most
widely used parametric and supervised classification technique in the field of remote sensing [39, 98]. However, MLC
is a per-pixel based classifier and assumes that samples are independent and identically distributed (i.i.d). Ignoring
spatial autocorrelation results in salt and pepper kind of noise in the classified images. One solution is to use Markov
Random Field (MRF)-based Bayesian classifiers [61] to model spatial context via the a priori term in Bayes’ rule.
This uses a set of random variables whose interdependency relationship is represented by an undirected graph (i.e.,
a symmetric neighborhood matrix). A more detailed theoretical and experimental comparison of these two methods
can be found in [91].

4.4 Spatial Clustering

Spatial clustering is a process of grouping a set of spatial objects into clusters so that objects within a cluster have
high similarity in comparison to one another, but are dissimilar to objects in other clusters.

In spatial statistics, the standard against which spatial point patterns are often compared is a completely spatially
point process, and departures indicate that the pattern is not completely spatially random. Complete spatial random-
ness (CSR) [22] is synonymous with a homogeneous Poisson process. The patterns of the process are independently
and uniformly distributed over space, i.e., the patterns are equally likely to occur anywhere and do not interact with
each other. In contrast, a clustered pattern is distributed dependently and attractively in space.

An illustration of complete spatial random patterns and clustered patterns is given in Figure 9, which shows real-
izations from a completely spatially random process and from a spatial cluster process respectively (each conditioned
to have 85 points in a unit square).

Illustrative Examples and Application Domains: Cluster analysis is used in many spatial and spatiotemporal
application domains such as in remote sensing data analysis as a first step to determine the number and distribution
of spectral classes, in epidemiology for finding unusual groups of health-related events, and in detection of crime hot
spots by police officers.

Notice from Figure 9 (a) that the complete spatial randomness pattern seems to exhibit some clustering. This is
not an unrepresentative realization, but illustrates a well known property of homogeneous Poisson processes: event-
to-nearest-event distances are proportional to χ2

2 random variables, whose densities have a substantial amount of
probability near zero [22]. True clustering, by contrast, is shown in Figure 9 (b).

Common Methods: After verification of the statistical significance of spatial clustering, clustering algorithms are
used to discover clusters of interest. Because of the multitude of clustering algorithms that have been developed, it
is useful to categorize them into groups.

1. Hierarchical clustering methods start with all patterns as a single cluster and successively perform splitting
or merging until a stopping criterion is met. This results in a tree of clusters, called dendograms. The
dendogram can be cut at different levels to yield desired clusters. Hierarchical algorithms can further be
divided into agglomerative and divisive methods. The hierarchical clustering algorithms include balanced
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(a) CSR Pattern (b) Clustered Pattern

Fig. 9: Complete Spatial Random (CSR) and Spatially Clustered Patterns

iterative reducing and clustering using hierarchies (Birch), clustering using inter-connectivity (Chameleon),
clustering using representatives (Cure), and robust clustering using links (Rock). More discussion of these
methods can be found in [19, 111, 50].

2. Partitional clustering algorithms start with each pattern as a single cluster and iteratively reallocate data
points to each cluster until a stopping criterion is met. These methods tend to find clusters of spherical shape.
K-Means and K-Medoids are commonly used partitional algorithms. Squared error is the most frequently used
criterion function in partitional clustering. The recent algorithms in this category include partitioning around
medoids (Pam), clustering large applications (Clara), clustering large applications based on randomized search
(Clarans), and expectation-maximization (EM). Related papers include [41, 72].

3. Density-based clustering algorithms try to find clusters based on the density of data points in a region. These
algorithms treat clusters as dense regions of objects in the data space. The density-based clustering algorithms
include density-based spatial clustering of applications with noise (Dbscan), ordering points to identify cluster-
ing structure (Optics), and density based clustering (Decode). Related research is discussed in [56, 66, 78, 71, 3]

More details on various clustering methods can also be found in a recent survey paper [36]. Many of the clus-
tering algorithms discussed here do not take into account spatial autocorrelation and spatial constraints. However,
algorithms for spatial clustering in the presence of obstacles have been proposed in [101, 112]. These approaches show
improved clustering results and stress the importance of modeling neighborhood relationships in clustering.

4.5 Other Pattern Families: Hotspots

Hotspots are a special kind of clustered pattern. Like general clustered patterns, objects in hotspot regions have
high similarity in comparison to one another, and are quite dissimilar to all the objects outside the hotspot. One
important feature that distinguishes a hotspot from a general cluster is that the objects in the hotspot area are more
active compared to all others (density, appearance, etc). Hotspot discovery/detection in spatial data mining is a
process of identifying spatial regions where more events are likely to happen, or more objects are likely to appear, in
comparison to other areas.

Hotspot detection is mainly used in the analysis of crime and disease data. Crime data analysis [102] aims at
finding areas that have greater than average numbers of criminal or disorderly events, or areas where people have
a higher than average risk of victimization. In cancer/disease data analysis, hotspots of locations where disease are
reported intensively are detected, which may indicate a potential breakout of this disease, or suggest an underlying
cause of the disease. Other domains of application include: transportation (to identify unusual rates of accidents
along highways), and ecological science (to conduct geoinformatic surveillance for geospatial hot-spot detection [46]).

The pattern and shape of spatial hotspot varies. For example, in the crime hotspot detection, the results may be
given in the form of crime hotspot streets, hotspot areas or hotspot cities (see Figure 10).

Common Methods: Hotspot detection methods fall in three main catagories based on the types of hotspot they
are looking for.:

Global Hotspot Detection: The K-means algorithm creates k (user-defined number) clusters by partitioning the
crime point data into groups. The process finds the best positioning of the K centers and then assigns each point to
the center that is nearest.

Hierarchical Hotspot Detection: The Nearest Neighbor Hierarchical (NNH) Clustering [45] algorithm is based on
a nearest neighbor analysis technique. For example, crime incident locations are first grouped into nearest neighbor
clusters containing a minimum number of point locations specified by the user and these first-order clusters are further
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Fig. 10: The hotspots region may be location spots, street segments or block areas.

grouped into larger, second-order clusters, with the process continuing until no more clustering is possible and its
variation.

Risk-adjusted Nearest Neighbor Hierarchical Clustering (RNNH) [59] is a variation of NNH. RNNH function is
to find the concentration of incidents relative to a baseline. It achieves this goal by adjusting the threshold distance
dynamically. The background data is represented as a fine grid using kernel density estimation, and this is used to
adjust the threshold distance for clustering the original point set, on a cell-by-cell basis. It should be noted that with
both NNh and RNNh, not all events are assigned to clusters, and each point is assigned to either one cluster at a
given hierarchical level or none at all.

STAC: The STAC Hot Spot Area function [59] in CrimeStat searches for and identifies the densest clusters of
incidents based on the scatter of points on the map. The STAC Hot Spot Area routine creates a set of real units
from point data . First it identifies the major concentrations of points for a given distribution and it then represents
each dense area by the STAC is a scan-type clustering algorithm in which a circle is repeatedly laid over a grid and
the number of points within the circle is counted.

Local Hotspot Detection: LISA: Local Indicators of Spatial Association [10] statistics assess the local association
between data by comparing local averages to global averages. For this reason they are useful in adding definition to
crime hot spots and placing a spatial limit on those areas of highest crime event concentration

5 Computational Issues

The volume of data, the complexity of spatial data types and relationships, and the need to identify spatial auto-
correlation poses numerous computational challenges to the spatial data mining field. When designing spatial data
mining algorithms one has to take into account several considerations, such as, space partitioning, predicate approx-
imation, multidimensional data structures, etc. Table 2 summarizes how these requirements compare with classical
data mining. Computational issues may arise due to dimensionality, spatial join process required in co-location min-
ing and spatial outlier detection, estimation of SAR model parameters in the presence of large neighborhood matrix
W , etc.

To illustrate these computational challenge, we use the example of a case study with parameter estimation for
the SAR model. The massive sizes of geospatial datasets in many application domains make it important to develop
scalable parameter estimation algorithms of the SAR model solutions for location prediction and classification. As
noted previously, many classical data mining algorithms, such as linear regression, assume that the learning samples
are independently and identically distributed (i.i.d.). This assumption is violated in the case of spatial data due
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Classical Algorithms Algorithmic Strategies for SDM
Divide-and-Conquer Space partitioning
Filter-and-Refine Minimum-Bounding Rectangle (MBR),

Predicate Approximation
Ordering Plane Sweeping, Space Filling Curve
Hierarchical Structures Spatial Index, Tree Matching
Parameter Estimation Parameter estimation with spatial autocorrelation

Tab. 2: Algorithmic Strategies for SDM

to spatial autocorrelation [9] and in such cases classical linear regression yields a weak model with not only low
prediction accuracy [21, 90] but also residual error exhibiting spatial dependence. Modeling spatial dependencies
improves overall classification and prediction accuracies significantly.

However, estimation of SAR model parameters is computationally very expensive because of the need to compute
the determinant of a large matrix in the likelihood function [60, 74, 75, 76, 52]. The Maximum Likelihood function
for SAR parameter estimation contains two terms, a determinant term and an SSE term (Equation 2). The former
involves computation of the determinant of a very large matrix, which is a well-known hard problem in numerical
analysis. To estimate the parameters of a ML-based SAR model solution, the log-likelihood function can be con-
structed, as shown in (2). The estimation procedure involves computation of the logarithm of the determinant of
(log-det) a large matrix, i.e. (I− ρW).

ℓ(ρ|y) =
−2

n
ln |I− ρW|
| {z }

log−det

+ ln((I− ρW)y)T (I− x(xT
x)−1

x
T )T (I− x(xT

x)−1
x

T )((I− ρW)y)
| {z }

SSE

(2)

For example, the exact SAR model parameter estimation for a very small 10,000-point spatial problem can take
tens of minutes on common desktop computers. Computation costs make it difficult to use SAR for important spatial
problems which involve millions of points, despite its promise to improve prediction and classification accuracy.

In the equation, y is the n-by-1 vector of observations on the dependent variable, where n is the number of
observation points; ρ is the spatial autoregression parameter; W is the n-by-n neighborhood matrix that accounts
for the spatial relationships (dependencies) among the spatial data; x is the n-by-k matrix of observations on the
explanatory variable, where k is the number of features; and β is a k-by-1 vector of regression coefficients. Spatial
autocorrelation term ρWy is added to the linear regression model in order to model the strength of the spatial
dependencies among the elements of the dependent variable, y.

6 Future Directions and Research Needs

This section presents the future directions and research needs in spatial data mining. There are several new areas
of research, but the two we will focus on are network-based data mining and spatio-temporal data mining.

6.1 Network Patterns

One of the main challenges in spatial data mining is to account for the network structure in the dataset. For example,
in anomaly detection, spatial techniques do not consider the spatial network structure of the dataset, that is, they
may not be able to model graph properties such as one-ways, connectivities, left-turns, etc. In this section, we present
“Mean Streets”, an interesting spatial data mining problem that has a spatial network as part of its input.

Mean Streets. The problem of identifying Mean Streets is to discover those connected subsets of a spatial net-
work whose attribute values are significantly higher than expected (Figure 11b). Finding mean streets is particularly
important for crime analysis (high-crime-density street discovery) and police work (planning effective and efficient
patrolling strategies). In urban areas, many human activities are centered about spatio-temporal (ST) infrastructure
networks, such as roads and highways, oil/gas pipelines, and utilities (e.g., water, electricity, telephone). Thus, ac-
tivity reports such as crime logs may often use network based location references (e.g., street addresses). In addition,
spatial interaction among activities at nearby locations may be constrained by network connectivity and network
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(a) Input and k-means clustering using Crimes-

tat

(b) Output using Mean Streets

Fig. 11: Crimestat results vs. Mean Streets identified in a US city

distances (e.g., shortest paths along roads or train networks) rather than the geometric distances used in traditional
spatial analysis. Crime prevention may focus on identifying subsets of ST networks with high activity levels, under-
standing underlying causes in terms of network properties, and designing network control policies. Identifying and
quantifying mean streets is a challenging task due to the need to choose the correct statistical model. In addition, the
discovery process in large spatial networks is computationally very expensive due to the difficulty of characterizing
and enumerating the population of streets to define a normal or expected activity level. Preliminary exploration
of descriptive and explanatory models for ST network patterns in [16]. However, further challenges and research is
needed to identify other interesting patterns within network datasets, such as partial segments of roads that are more
interesting than other parts.

6.2 Spatio-temporal Data Mining

Spatio-temporal data is often modeled using events and processes, both of which generally represent change of
some kind. Processes refer to ongoing phenomena that represent activities of one or more types without a specified
endpoint [92, 7, 108]. Events refer to individual occurrences of a process with a specified beginning and end. Event-
types and event-instances are distinguished. For example, a hurricane event-type may occur at many different
locations and times e.g.,Katrina(New Orleans, 2005) and Rita(Houston, 2005). Each event-instance is associated
with a particular occurrence time and location. The ordering may be total if event-instances have disjoint occurrence
times. Otherwise, ordering is based on spatio-temporal semantics such as partial order, and spatio-temporal patterns
can be modeled as partially ordered subsets. These unique characteristics create new and interesting challenges to
discover spatio-temporal patterns. For example, in contrast to spatial outliers, a spatio-temporal outlier is a spatio-
temporal object whose thematic (non-spatial and non-temporal) attributes are significantly different from those of
other objects in its spatial and temporal neighborhoods. A spatio-temporal object is defined as a time-evolving spatial
object whose evolution or history is represented by a set of instances (EQ), where the space stamp is the location
of the object o id at timestamp t. In the remainder of this section, we present research trends in various areas of
spatio-temporal data mining.

1 2 3 4 5 6t =

20 20 20 20 20 20

20 40 20 40 20 20

1 1 1 1 1 1

7 8 9 10

20 20 20 20
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down =

TT  = 1 1 1 1

(a) Example Input
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20 40 20 40 20 20
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down =

TT  = 1 1 1 1

(b) Example Output

Fig. 12: Flow Anomaly Example

Flow Anomalies: Given a percentage-threshold and a set of observations across multiple spatial locations, flow
anomaly discovery aims to identify dominant time intervals where the fraction of time instants of significantly mis-
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matched sensor readings exceed the given percentage-threshold. Figure 12 gives a simple example of flow anomalies
(FA). In figure 12(a), the input to the flow anomaly problem consists of two spatial locations (i.e., an upstream
(up) and downstream (down) sensor), 10 time instants, and the notion of travel time (TT) or flow between the
locations. For simplicity, the TT is set to a constant of 1, but it can be variable. The output contains two FAs; using
the time instants at the upstream sensor, periods 1-3 and 6-9, where the majority of time-points show significant
differences in-between (Figure 12b). Discovering flow anomalies is an important problem in several applications such
as environmental systems, transportation networks, and video surveillance systems. However, mining flow anomalies
is computationally expensive due to the large (potentially infinite) number of time instants across a spatial network
of locations. Traditional outlier detection methods (e.g. t-test) are suited for detecting transient FAs (i.e., time
instants of significant mis-matches across consecutive sensors) but cannot detect persistent FAs (i.e., long variable
time-windows with a high fraction of time instant transient FAs) due to a lack of a predetermined window size.
Spatial outlier detection techniques do not consider the flow (i.e., travel time) between spatial locations and cannot
detect any type of flow anomalies. Preliminary analysis introduced a time-scalable technique called SWEET (Smart
Window Enumeration and Evaluation of persistent-Thresholds) that utilizes several algebraic properties in the flow
anomaly problem to discover these patterns efficiently [49, 30, 26]. However, further research is needed to discover
other types of patterns within this environment.

Teleconnected Flow Anomalies An additional pattern that utilizes flow-anomalies is teleconnected pat-
terns [48]. A teleconnection represents a strong interaction between paired events that are spatially distant from
each other. Identifying teleconnected flow events is computationally hard due to the large number of time instants
of measurement, sensors, and locations. For example, a well-known teleconnected event pair involves the warming
of the eastern pacific region (i.e., El Nino) and unusual weather patterns throughout the world [77]. Recently, a
RAD (Relationship Analysis of Dynamic-neighborhoods) technique has been proposed that models flow networks to
identify teleconnected events [48]. Further research is needed to explore new and interesting patterns that may lie
within the RAD model.

Mixed Drove Co-Occurrence Patterns Another type of dynamic behavior of spatial datasets which might
affect colocation patterns is changing the specification of zone of interest and measure values according to user
preferences. Mixed-drove spatio-temporal co-occurrence patterns (MDCOPs) represent subsets of two or more dif-
ferent object-types whose instances are often located in spatial and temporal proximity. Discovering MDCOPs is
potentially useful in identifying tactics in battlefields and games, understanding predator-prey interactions, and in
transportation (road and network) planning [35, 54]. However, mining MDCOPs is computationally very expensive
because the interest measures are computationally complex, datasets are larger due to the archival history, and the
set of candidate patterns is exponential in the number of object-types. Preliminary work has produced a monotonic
composite interest measure for discovering MDCOPs and novel MDCOP mining algorithms are presented in [18].

Fig. 13: Cascading spatio-temporal patterns from Public Safety

Cascading spatio-temporal patterns Partially ordered subsets of event-types whose instances are located
together and occur in stages are called cascading spatio-temporal patterns (CSTP). Figure 13 shows some interesting
partially-ordered patterns that were discovered from real spatio-temporal crime datasets from the city of Lincoln,
Nebraska [25]. In the domain of public safety, events such as bar closings and football games are considered generators
of crime. Preliminary analysis revealed that football games and bar closing events do indeed generate CSTPs. CSTP
discovery can play an important role in disaster planning, climate change science [1, 31](e.g. understanding the effects
of climate change and global warming) and public health (e.g. tracking the emergence, spread and re-emergence of
multiple infectious diseases [68]). Further research is needed, however, to deal with challenges such as the lack of
computationally efficient, statistically meaningful metrics to quantify interestingness, and the large cardinality of
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candidate pattern sets that are exponential in the number of event types. Existing literature for spatio-temporal data
mining focuses on mining totally ordered sequences or unordered subsets [42, 104, 17].

6.3 Broader Future Directions

In this chapter, we have presented the major research achievements and techniques which have emerged from
spatial data mining, especially for predicting locations and discovering spatial outliers, co-location rules, and spatial
clusters. Current research is mostly concentrated on developing algorithms that model spatial and spatio-temporal
autocorrelations and constraints. Spatio-temporal data mining remains, however, still largely an unexplored territory;
thus we conclude by noting other areas of research that require further investigation, such as the mining of trajectory
and streaming data. New algorithms must be able to scale better to large datasets. Finally, and most urgently,
methods are needed to validate the hypotheses generated by spatial data mining algorithms as well as to ensure that
the knowledge generated is actionable.
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