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Abstract—Graphs are an important tool for modeling data in
many diverse domains. Recent increases in sensor technology
and deployment, the adoption of online services, and the scale of
VLSI circuits has caused the size of these graphs to skyrocket.
Finding clusters of highly connected vertices within these graphs
is a critical part of their analysis.

In this paper we apply the multilevel paradigm to the modular-
ity graph clustering problem. We improve upon the state of the
art by introducing new efficient methods for coarsening graphs,
creating initial clusterings, and performing local refinement on
the resulting clusterings. We establish that for a graph with n

vertices and m edges, these algorithms have an O(m+n) runtime
complexity and an O(m + n) space complexity, and show that
in practice they are extremely fast. We present shared-memory
parallel formulations of these algorithms to take full advantage
of modern architectures. Finally, we present the product of
this research, the clustering tool Nerstrand

1. In serial mode,
Nerstrand runs in a fraction of the time of current methods and
produces results of equal quality. When run in parallel mode,
Nerstrand exhibits significant speedup with less than one percent
degradation of clustering quality. Nerstrand works well on large
graphs, clustering a graph with over 105 million vertices and 3.3
billion edges in 90 seconds.

I. INTRODUCTION

Graphs are an important tool for representing data in many

diverse domains. Graph clustering is a technique for analyzing

the structure of a graph by identifying groups of highly

connected vertices. Discovering this structure is an important

task in social network, biological network, and web analysis.

In recent years, the scale of these graphs has increased

to millions of vertices and billions of edges, making this

discovery increasingly difficult and costly.

Modularity [1] is one of the most widely used metrics

for determining the quality of non-overlapping graph clus-

terings, especially in the network analysis community. The

problem of finding a clustering with maximal modularity is

NP-Complete [2]. As a result many polynomial time heuristic

algorithms have been developed [3], [4], [5], [6], [7], [8].

Among these algorithms, approaches resembling the multilevel

paradigm as used in graph partitioning have been shown to

produce high quality clustering solutions and scale to large

graphs [9], [10], [11].

However, most of these approaches adhere closely to the

agglomerative method of merging pairs of clusters iteratively.

1The Nerstrand software is available at http://cs.umn.edu/∼lasalle/nerstrand

This can lead to skewed cluster sizes as well as require

excessive amounts of computation time. While methods for

prioritizing cluster merges have been proposed to reduce

skewed cluster sizes, these approaches are inherently serial.

The use of post-clustering refinement has not been present in

most of these approaches, and there is currently no parallel

formulation for modularity refinement.

In this paper we present multilevel algorithms for generating

high quality modularity-based graph clusterings. The contribu-

tions of our work are:

• A method for efficiently contracting a graph for the

modularity objective.

• An robust method for generating clusterings of a con-

tracted graph.

• A modified version of k-way boundary refinement for the

modularity objective.

• Shared-memory parallel formulations of these algorithms.

We show that for a graph with n vertices and m edges, these

algorithms in have an O(m+ n) time and O(m+ n) space

complexities. To validate our contributions, we compare our

implementation of these algorithms, Nerstrand, against the

serial clustering tool Louvain [9] and the parallel clustering

tool community-el [11], and show that Nerstrand produces

clusterings of equal or greater modularity and is 2.7–44.9
times faster. We also compare the quality of clusterings

generated by the serial version of Nerstrand against the

results of the 10th DIMACS Implementation Challenge [12]

on graph partitioning and graph clustering. The modularity of

clusterings produced by Nerstrand are equal to or within only

a few percentage points of the best clusterings reported in

the competition while requiring several orders of magnitude

less time. The parallel version of Nerstrand is scalable and

extremely fast, clustering a graph with over 105 million

vertices and 3.3 billion edges in 90 seconds using 16 cores.

This paper is organized into the following sections. In

Section II we define the notation used throughout this paper.

In Section III we give an overview of current graph clustering

methods for maximizing modularity. In Section IV we give

an overview of the multilevel paradigm and its use in the

graph partitioning problem and more recently in the graph

clustering problem. The descriptions of the serial algorithms

we developed are presented in Section V, and the descriptions

of their parallel counter parts are presented in Section VI. In
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Section VII we describe the conditions of our experiments.

This is followed by the results of our experiments in Sections

VIII and IX, in which we evaluate the quality and speed of

the presented algorithms. Finally in Section X, we review the

findings of this paper.

II. DEFINITIONS & NOTATION

A simple undirected graph G = (V,E) consists of a set of

vertices V and a set of edges E, where each edge e = {v, u}
is composed of an unordered a pair of vertices (i.e., v, u ∈ V ).

The number of vertices is denoted by the scalar n = |V |, and

the number of edges is denoted similarly as m = |E|. Each

edge e ∈ E can have a positive weight associated with it that

is denoted by θ(e). If there are no weights associated with the

edges, then their weights are assumed to be one.

Given a vertex v ∈ V , its set of adjacent vertices (connected

by an edge) is denoted by Γ(v) and is referred to as the

neighborhood of v. For an unweighted graph, d(v) denotes

the number of edges incident to v (e.g., d(v) = |Γ(v)|), and

for the case of weighted edges, d(v) denotes the total weight

of its incident edges (e.g., d(v) =
∑

u∈Γ(v) θ({v, u})).
A clustering C of G is described by the division of V into k

non-empty and disjoint subsets C = {C1, C2, . . . , Ck}, which

are referred to as clusters. The sum of vertex degrees within

a cluster is denoted as d(Ci) (i.e., d(Ci) =
∑

v∈Ci
d(v)). The

internal degree dint(Ci) of a cluster Ci is the number of edges

(or sum of the edge weight) that connect vertices in Ci to

other vertices within Ci. The external degree dext(Ci) of a

cluster Ci is the number of edges (or sum of the edge weight)

that connect vertices in Ci to vertices in other clusters. The

neighborhood of a cluster Vi, that is all clusters connected to

Ci by at least one edge, is denoted by Γ(Ci). The number of

edges connecting the cluster Ci to Cj is denoted as dCj
(Ci).

Since G is an undirected graph, dCj
(Ci) = dCi

(Cj). Similarly,

the number of edges (or total edge weight) connecting a vertex

v to the cluster Ci is denoted as dCi
(v) (i.e., dCi

(v) =
∑

u∈Ci∩Γ(v) θ({v, u}). To aid in the discussion of moving

vertices between clusters, we will denote the cluster Ci with

the vertex v removed, as Ci − {v}, and the cluster Cj with

the vertex v added as Cj + {v}.

The metric of graph modularity, and the focus of this paper,

was introduced by Newman and Girvan [1], and has become

ubiquitous in recent graph clustering/community detection

literature. Modularity measures the difference between the

expected number of intra-cluster edges and the actual number

of intra-cluster edges. Denoted by Q, the modularity of a

clustering C is expressed as

Q =
1

d(V )

(

∑

Ci∈C

dint(Ci)−
d(Ci)

2

d(V )

)

, (1)

where d(V ) is the total degree of the entire graph (i.e.,

d(V ) =
∑

v∈V d(v)). From this, we can see the modularity

QCi
contributed by cluster Ci is

QCi
=

1

d(V )

(

dint(Ci)−
d(Ci)

2

d(V )

)

. (2)

The value of Q ranges from −0.5, where are of the edges

in the graph are inter-cluster edges, and approaches 1.0 if all

edges in the graph are intra-cluster edges and there is a large

number of clusters. Note that this metric does not use the

number of vertices within a cluster, but rather only the edges.

Subsequently, vertices of degree zero, can arbitrarily be placed

in any cluster without changing the modularity.

III. MODULARITY BASED GRAPH CLUSTERING

Since its introduction a decade ago by Newman [1], a large

number of approaches for maximizing the modularity of a

clustering have been developed. Fortunato [13] provides an

overview of modularity and methods for its maximization.

The majority of approaches fall into the category of agglom-

erative clustering. In agglomerative clustering, each vertex is

placed in its own cluster, and pairs of clusters are iteratively

merged together if it increases the modularity of the clustering.

When there exists no pair of clusters whose merging would

result in an increase in modularity, the process stops, and the

clustering is returned.

The greedy agglomerative method introduced by Clauset

et al. [4], is the most well-known of the these approaches,

due to its ability to find good clusterings in relatively little

time. Its low runtime is the result of exploiting the sparse

structure of the graph to limit the number of merges it needs

to consider and the number of updates that it needs to perform

during agglomeration. The quality of the clusterings it finds

is the result of recording the modularity after each merge,

and continuing to perform cluster merges until there is only

a single cluster, and then reverting to the state with the

maximum modularity. The structure used to maintain this state

information is a binary tree in which each node represents a

cluster, and the children of a node are the clusters which were

merged to form the node. They established an upper bound on

the complexity of this algorithm of O(mh log n), where h is

the height of the tree recording cluster merges. If this tree is

fairly balanced, h will be close to log n.

It was noted that this algorithm tends to discover several

super-clusters, composed of most of the vertices in the graph.

Wakita and Tsurumi [14] showed that these super clusters are

the result of one or a few large clusters successively merging

with small clusters, causing h to approach n, which results in a

running time near O(mn). They also showed that the creation

of these super-clusters can be of detriment to the modularity of

the clustering. They addressed this by presenting an algorithm

that favors merging clusters of similar size, which helps to

prevent this unbalanced merging.

The Louvain method [9] finds a set of cluster merges

through an iterative process. It does this by initializing every

vertex to its own cluster as is done in agglomerative methods,

and then for each vertex, checks to see if moving it to a

different cluster will improve modularity. It moves vertices

this way in passes, until a pass results in no moves being

made. Then, a new graph is generated where each vertex is

a cluster of vertices from the previous graph. This process is

repeated until a graph is generated in which no vertices change

clusters. This is currently one of the fastest modularity based

clustering methods available [15].

There is a small number of parallel algorithms for mod-

ularity based graph clustering. Reidy et al. [11] generate
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2) Two-Hop Matching: To address these matchings of small

size in MAT, we developed a variation of matching that uses

secondary two-hop matching (M2M). In this scheme when

all of the neighbors of v are matched, v matches with an

unmatched neighbor of one of its neighbors. That is, v matches

with a vertex w ∈ Γ(u), where u ∈ Γ(v). There is no

prioritization in finding w and instead the first unmatched

w is used. This is due to computational cost that would be

associated with performing a complete scan of all two-hop

neighbors. To ensure we do not decrease the quality of the

matching, we limit two hop matching to only vertices with

low degree.

3) First Choice Grouping: The third option we explored

for aggregating power-law graphs was to allow more than two

vertices to be grouped together into a coarse vertex. The first

choice grouping (FCG) scheme is based on the FirstChoice

aggregation scheme originally used for contracting hyper-

graphs [24] and later applied to contracting simple graphs for

the graph partitioning problem [25]. Our formulation for this

paper differs from these earlier methods in that we not only

consider the weight of the edge, but the current state of vertex

groupings and the associated modularity gain.

When searching for a vertex or vertices to aggregate the

vertex v with, all of the neighbors u ∈ Γ(v) are considered re-

gardless of whether they have been matched/grouped already.

If u is ungrouped, then its priority for grouping is determined

using equation (3). If u belongs to the group g, then the priority

for adding v to that group is determined similarly, except the

edges from g to v need to be summed, and d(g) needs to be

tracked.

B. Initial Clustering

Once coarsening is finished, we are left with the coars-

est graph Gs, and need to create the clustering C =
{C1, C2, . . . , Ck}, and a vector mapping vertices to clusters

P , where |P | = |V | and 1 ≤ P (v) ≤ k, ∀v ∈ V . We call

this process initial clustering. Initial clustering is done with a

direct clustering scheme, that is, a non-multilevel scheme that

operates directly on Gs.

In Gs, each vertex is the result of collapsing together

clusters of fine vertices during coarsening. For this reason,

we can use a relatively simple initial clustering scheme. Our

initial clustering scheme works by initializing each vertex to

its own cluster as in agglomerative clustering, we then apply

refinement as described in Section V-C2. This is similar to a

single level of the Louvain [9].

C. Uncoarsening

In the uncoarsening phase, we take the clustering of the

coarsest graph, Gs, and use it as an estimate for a good

clustering of the finer Gs−1. We then improve it for Gs−1

finding a local maxima of modularity. This is repeated until

the clustering is applied to, and improved for G0. The process

of applying the clustering of Gi to Gi−1 is referred to as

projection. The process of improving the clustering for Gi−1

is referred to as refinement.

1) Projection: Projection in Nerstrand is done by propa-

gating cluster information from the coarse vertices in Gi+1

to the fine vertices in Gi. By keeping track of what fine

vertices compose a coarse vertex, we can project a clustering

of Gi+1 to Gi, by assigning each fine vertex in Gi to the same

cluster that its coarse vertex is assigned. Since we keep track

of collapsed edge weight for each coarse vertex, and use them

in computing cluster degrees, the modularity of the clustering

does not change in projection.

2) Refinement: We developed two modularity based refine-

ment methods: Random Boundary Refinement, and Greedy

Boundary Refinement. These two methods differ only in

the order in which they consider vertices for moving. Both

methods visit only vertices that are connected via an edge

to one or more vertices which reside in different clusters.

These vertices are referred to as boundary vertices. Similarly,

when considering moving a vertex, we only evaluate the gain

associated with moving it to a cluster to which it is connected.

It is possible that moving a vertex to a cluster to which is

not connected or moving a vertex that is not a boundary vertex

could result in a positive gain in modularity. For this to occur,

when moving the vertex v ∈ Ci to the cluster Cj to which it

has no connection, the difference in the degree of Ci and the

degree Cj must make up a larger fraction of the total edge

weight in the graph than the fraction of v’s edge weight that

connects to Ci:

d(Ci − {v}) + d(Cj)

d(V )
>

dCi
(v)

d(v)
.

We observed that when considering all vertices for movement

to all clusters resulted in only a 0.06% gain in modularity,

while taking over 16 times as long. Furthermore, Brandes et

al. [2] showed that a clustering with maximum modularity

does not include non-contiguous clusters.

The gain by moving a vertex from cluster Vi to cluster Vj

is given by the combined change in the cluster modularities:

∆Q = (QCi−{v} +QCj+{v})− (QCi
+QCj

).

Note that if it leads to a positive gain in modularity, clusters

can be completely emptied and removed during refinement.

If at least one vertex was moved while visiting all of

the boundary vertices, another pass is performed. Refinement

stops when no vertices are moved in a pass, or when a

maximum number of passes has been made.

Random Boundary Refinement visits the boundary vertices

in random order. This has two advantages. The first is that

we can visit all of the boundary vertices in linear time. The

second is that it is stochastic, and we can perform it multiple

times using the same input clustering with different random

seeds to explore the solution space.

Greedy Boundary Refinement inserts the boundary vertices

into a priority queue. Each vertex is then extracted from this

priority and considered for moving to a different cluster. As

the state of the clustering changes, the priority of the vertices

remaining in the priority queue is updated. This ensures that

we continually make the best available move for the current

clustering state.



5

To accurately prioritize vertices for movement between

clusters based on modularity gain, we would need to use:

∆Q = (QCi−{v} −QCi
) + argmax

j

(QCj+{v} −QCj
). (4)

This however, is an expensive priority to maintain as the

argmax part of the equation will change each time a vertex is

moved to or from one of the clusters to which v is connected.

We decided instead to use a heuristic for the priority. This

heuristic uses the modularity gain associated with removing

the vertex from its current cluster only (the left side of equation

(4)). Using this priority, boundary vertices are inserted into a

priority queue. Vertices are then extracted from the priority

queue and the modularity gains associated with moving the

front vertex are evaluated fully. In our experiments we did not

observe an increase in the modularity of clusterings if we kept

it up to date.

D. Complexity Analysis

The overall complexity for the serial algorithms in Ner-

strand is the sum of its three phases. Adding the complexity

of these phases: coarsening (O(m + n), Section V-D2), ini-

tial clustering (O(m + n), Section V-D3), and uncoarsening

(O(m+n) for RBR and O(m log n) for GBR, Section V-D4),

we get an overall computational complexity of O(m + n)
(and O(m log n) if GBR is used). The space complexity is

determined by the combined size of the generated graphs,

which we show to be O(m+ n) in Section V-D1.

1) Upper Bound on Total Vertices and Edges: The total

number of vertices and edges in the entire series of graphs

G0, . . . , Gs, determines the input size for many of the al-

gorithms in Nerstrand. If only a single edge is collapsed

between successive graphs such that |ni+1| = |ni| − 1 and

|mi+1| = |mi| − 1, the total number of vertices and edges

processed would be n2 and m2 respectively giving a memory

and computational complexity of at least O(m2 + n2). We

address this issue by stopping coarsening when the rate of

contraction slows beyond |Gi| > α|Gi−1| where 0 < α < 1.0.

Here |G| represents the size of the graph, this can be in

terms of the number of vertices, the number of edges, or a

combination of the two. The total number of vertices and edges

processed can then be represented as the sum of a geometric

series:
s
∑

i=0

|Gi| =

s
∑

i=0

|G0|α
i = |G0|

1− αs+1

1− α
, (5)

and since a graph must contain at least one vertex (and for

our purposes at least one edge) we can place on upper bound

on s of logα(1/|G0|). Plugging this in for s in equation (5)

we get

|G0|
1− α

logα( 1

|G0|
)α

1− α
= |G0|

1− α
|G0|

1− α
<

|G0|

1− α
.

Since α is a constant, we can see then that the total number

of vertices is O(n) and the total number of edges is O(m).
Our choice of α not only changes the constants involved in

these complexities, but also the size of Gs, which affects

the quality of the clustering and the amount of computation

required during initial clustering.

2) Coarsening Complexity: In the standard matching aggre-

gation scheme (MAT), each vertex v chooses the unmatched

neighbor that maximizes equation (3). This requires each

vertex to scan through all of its edges, which makes this an

O(m+ n) operation.

In the two-hop matching aggregation scheme (M2M), each

vertex v chooses one of its unmatched neighbors to match

with, or one of its neighbor’s unmatched neighbors. When

unrestricted, in a worse case scenario this would result in the

scanning of the edges of all of v’s neighbors, d(Γ(v)), which

would make this an O(m2) operation. To keep the complexity

to O(m + n), we limit the total number of neighbor’s edges

scanned by v to a constant number (we use 32), before it is

matched with itself.

In the first choice grouping aggregation scheme (FCG), each

vertex v chooses one of its neighbors with which to match.

The degree of groupings are updated incrementally as they are

formed in O(1) time, which allows determining the degree of

a grouping g in O(1) time. As v scans through its edges to

determine with whom to match, it sums up the weight of edges

connected to grouping using a hash table, which takes O(1)
time per edge. This allows us to look up dv(g) in O(1). As a

result, FCG can be done in O(m+ n).
To construct Gi+1 based on the aggregation of Gi, we iterate

over the set of vertices Vi in Gi. When we encounter a vertex

v ∈ Vi that is matched with a vertex u ∈ Vi with a lower

label (or with itself), we construct the new vertex c ∈ Vi+1.

We merge the adjacency lists of v and u via a hash table

using the corresponding coarse vertex numbers as keys. This

allows us to combine edges to a vertex w ∈ Γ(v),∈ Γ(u) as

well as edges to vertices x and y that have been aggregated

together. This translates to operating on each vertex in the

graph and inserting each edge into a hash table which is an

O(1) operation, which also gives us a complexity of O(m+n)
for contracting a graph with n vertices and m edges. Thus,

coarsening Gi to Gi+1 requires O(mi +ni) time, and storing

Gi+1 requires O(mi+1 + ni+1) space. Using the result from

Section V-D1, we can then say that the coarsening phase takes

O(m+ n) time.

3) Initial Clustering Complexity: In order to analyze the

complexity in the context of initial clustering, let ns = |Vs|
and ms = |Es| represent the number of vertices and number

of edges in Gs, respectively. Assigning clusters to all vertices

requires O(ns) time and O(ns) space, since this only requires

giving each vertex a label. Performing a pass of Random

Boundary Refinement on the ns clusters then takes O(ns+ms)
time as described in Section V-D4. A constant number of

clusterings are created, and since at initial clustering ns ≤ n
and ms ≤ m, initial clustering has a computational complexity

of O(n+m).
4) Uncoarsening Complexity: As projection is a simple

lookup in two arrays for each vertex in the fine graph Gi,

projection is an O(ni) operation per graph. Since we know

that there are O(n) vertices total in all of the graphs of the

multilevel hierarchy, we know that the total complexity of

projection is O(n).
In Random Boundary Refinement, the list of boundary

vertices can be permuted in O(ni) time. Each vertex v is
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A matching vector M stores information about the other

vertices that are part of a coarse vertex via symmetric match-

ings. So if the vertex v is matched with the vertex u, then

M(v) = u, and M(u) = v. For a given vertex v, let

M(v) = u, where u is the next vertex that has been matched

with v. In the example given by Figure 2, two pairs of vertices

are matched, and one vertex is matched with itself. Vertices 1
and 5 are matched, so M(1) = 5 and M(5) = 1, vertices 3
and 4 are matched, so M(3) = 4 and M(4) = 3, and vertex

2 is matched with itself, so M(2) = 2.

A broken matching is where M(v) = u, but M(u) 6= v,

which can be caused if one thread is tries to match v with

u, and another thread tries to match w with u and overwrites

M(u) with w. After threads finish matching their vertices,

they re-iterate over them and for any vertex v for which

M(M(v)) 6= v, the vertex is matched with itself, M(v) = v.

This technique for performing parallel matching was first

proposed by Catalyürek et al. [30], and can be directly applied

to the MAT and M2M schemes.

This however, does not apply to aggregation schemes where

more than two vertices can be aggregated together at once, as

is the case with FCG. To address this, we developed a method

for parallel grouping vertices in an unprotected fashion. First

we generalize M from being a matching vector to that of a

grouping vector, where aggregated vertices in M form a cycle

of arbitrary length. If a grouping contains the vertices v, u,

and w, then M(v) = u, M(u) = w, and M(w) = v.

At the start of the aggregation step, all vertices are initially

matched with themselves, M(v) = v. Then, to add the vertex

v to the vertex u’s grouping, we set M(v) = M(u), and

M(u) = v. This means that a valid grouping vector M
will contain only cycles. However, performing updates to

this vector without synchronization allows for broken cycles.

Because M is initialized to be all length one cycles, and every

write to M is a valid vertex number, we know that every

index in M is a valid vertex number, and thus a valid index

in M . Then, for every vertex v, the linked list created by

following the indices M(v),M(M(v)), . . . ,M(u), must be

non-terminating, so we know that v must either be part of a

cycle, or part of a tail connected to a cycle. For architectures

in which the writing of words is not atomic (i.e., two threads

writing to the same location could result in valid vertex number

being written), a simple validity check can be added.

In order to cleanup these tails, the following method is used

which does not require synchronization. Each thread marks all

of its vertices as not finalized. Then for each vertex v that a

thread owns that is not marked as finalized, the indices in M
are followed until a cycle is found. If v is part of that cycle,

and v is the owner of the cycle (we use the lowest vertex

number in the cycle as the owner), then all vertices in the

cycle are marked as finalized. If v is not part that cycle, it

is matched with itself. This leaves us with a valid M vector

where every vertex is part of a cycle (including cycles of length

one). To avoid creating large cycles, during aggregation the

size of groups of vertices are tracked, and vertices are only

allowed to join groups smaller than a maximum size (we use

1024).

C. Initial Clustering

For a moderate number of threads, the initial clustering

stage lends itself well to parallelization, where each thread

creates one or more of the initial clusterings, and a reduction

operation is performed at the end to choose the best one. That

is, each thread performs Random Boundary Refinement on the

coarse graph with each vertex initialized to a cluster. The only

concern for parallelization here is effectively using the cache

hierarchy to reduce the total memory bandwidth required. For

large numbers of threads and sufficiently large coarse graphs,

the threads work cooperatively to create each initial clustering

using the parallel formulation of refinement described below

in Section VI-D.

D. Uncoarsening

Projection is also an inherently parallel process, as each

thread can independently perform cluster projection on the

vertices it owns. Conversely, refinement is an inherently serial

process.

Because the gains associated with moving a vertex v from

the cluster Ci to the cluster Cj depends on the degree informa-

tion Ci and Cj , we cannot guarantee that moving vertices in

parallel will result in a positive net gain in modularity. Having

the owning thread lock the pair of clusters Ci and Cj before

moving the vertex v would allow us to guarantee we only make

positive gain moves, but this would greatly limit the amount

of parallelism.

Instead, each thread then makes a private copy of the global

clustering state. This private copy is updated by the thread

as it moves the vertices that it owns. Because each thread is

unaware of the moves being made by other threads, a move

that it sees a positive gain move, may actually result in a loss

of modularity.

After all threads have made their desired moves, the global

clustering state is updated. Each thread then makes a pass over

its selected set of moves, a roll-back pass, where it re-evaluates

each of its moves in reverse order. If, with the updated cluster

information, the move no longer results in a positive gain, the

move is rolled back. Note that this does not guarantee that

no negative gain moves will be made, as rolling back moves

in parallel has the same issue as making the initial moves

in parallel. To guarantee no modularity loss, the roll-back

pass would need to be repeated until no moves were rolled

back, and all remaining moves would have been determined

positive gain moves based on up-to-date cluster degrees. We

opted to use only a single pass to keep the cost of refinement

down as we found it sufficient to prevent the majority of

negative gain moves. After all of the threads have rolled

back undesirable moves, the global clustering information is

updated, and another iteration is started.

The clusters in which the neighbors of v reside affects how

the internal and external cluster degrees are effected by moving

the vertex v. When performing refinement serially, this is not

an issue, as only one vertex moves at a time, and cluster

degrees can be updated directly.

Consider the edge {v, u} and the incident vertices v ∈ Ci

and u ∈ Cj . If the vertex v is moved to Cj and the vertex
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u is moved to Ck concurrently, if the thread that owns v
directly updates the cluster degrees, then 2θ{v, u} to be added

to dint(Cj), when the edge is actually between Cj and Ck.

Note that if v and u are owned by the same thread, this is not

an issue as v and u will not be moved concurrently.

To solve this problem, we developed a method for handling

cluster degree updates that is order independent. Our new

method of processing cluster degree updates splits the updates

into two distinct parts: move updates made by the moving

vertex v, and neighbor updates made by each neighbor of

v. Neighbor updates can be classified as local, where the

moving thread also owns the neighbor, and as remote, where

the neighbor is owned by a different thread. Move updates

and local neighbor updates are applied to the private copies

of the cluster degrees as moves are made. Remote neighbor

updates are applied afterwards as part of the global clustering

state update.

For the move update, the thread that owns the moving vertex

v updates its local cluster degrees. For updating the source

cluster Ci’s internal degree

∆dint(Ci) = −dCi
(v),

Ci’s external degree

∆dext(Ci) =
dext(v)− dCi

(v)

2
,

the destination cluster Cj’s internal degree

∆dint(Cj) = dCj
(v), (6)

and Cj’s external degree

∆dext(Cj) =
dext(v) + dCi

(v)− dCj
(v)

2
.

For the neighbor update, the thread that owns the adjacent

vertex u to the moving vertex v performs updates associated

with the edge {v, u}. The source cluster Ci’s internal degree

is changed by

∆dint(Ci) =

{

−θ({v, u}) if u ∈ Ci

0 else
,

and its external degree is changed by

∆dext(Ci) =

{

θ({v, u})/2 if u ∈ Ci

−θ({v, u})/2 else
.

The destination cluster Cj’s internal degree is changed by

∆dint(Cj) =

{

θ({v, u}) if u ∈ Cj

0 else
, (7)

and its external degree is changed by

∆dext(Cj) =

{

−θ({v, u})/2 if u ∈ Cj

θ({v, u})/2 else
.

By splitting the updates like this, they can be applied inde-

pendent of the order in which the vertices were moved.

Applying this to our previous example where the vertex v
is moved to Cj and the vertex u is moved to Ck concurrently,

these order independent updates result in the correct cluster

degree changes. First, θ{v, u} would get added to dint(Cj)
as part of the move update via equation (6), and then the

TABLE I
GRAPHS USED IN EXPERIMENTS

Graph # Vertices # Edges

cit-Patents[31] 3,774,768 16,518,947

soc-pokec[32] 1,632,803 22,301,964

soc-LiveJournal1[33] 4,846,609 42,851,237

europe.osm[12] 50,912,018 54,054,660

com-orkut[34] 3,072,441 117,185,083

uk-2002[12] 18,520,486 261,787,258

com-friendster[34] 65,608,366 1,806,067,135

uk-2007-05[12] 105,896,555 3,301,876,564

neighbor update performed after u has moved to Ck then

removes θ{v, u} from dint(Cj) via equation (7). This has the

correct net effect of leaving dint(Cj) unchanged with respect

to the edge {v, u}.

To visit vertices in order of their potential gain for per-

forming Greedy Boundary Refinement in parallel, each thread

maintains a priority queue containing the boundary vertices

which it owns. This means vertices are not strictly visited in

descending order of their priority across threads. As shown

by our experiments in Section IX-A, this has minimal effect

on the modularity. For Random Boundary Refinement, each

thread visits the boundary vertices it owns in random order.

VII. EXPERIMENTAL METHODOLOGY

The experiments that follow were run on a HP ProLiant

BL280c G6 with 2x 8-core Xeon E5-2670 @ 2.6 GHz system

with 256GB of memory. We used GCC 4.7 and the accompa-

nying libgomp that conforms to the OpenMP 3.1 specification.

Unless otherwise noted, all runs were repeated 25 times with

different random seeds to get the geometric mean, minimum,

or maximum time and modularity.

We used three different codes for the experiments. The

serial and parallel algorithms presented in the previous sec-

tions are implemented in Nerstrand, available at http://cs.

umn.edu/∼lasalle/nerstrand. When run with a single thread,

a separate set of functions implementing the serial algorithms

are executed. For simplicity, we will refer to single threaded

executions of Nerstrand as s-Nerstrand, and the multi-threaded

executions as mt-Nerstrand.

We compare s-Nerstrand against what is currently the

fastest [15] available method for modularity maximization

on large graphs, Louvain [9]. We used version 0.2 which is

available from https://sites.google.com/site/findcommunities/.

We also compare mt-Nerstrand against the parallel cluster-

ing tool community-el [11] using version 0.7, available at

http://www.cc.gatech.edu/∼jriedy/community-detection/.

Table I shows the graphs primarily used for evaluation in

Sections VIII and IX. Some of these are directed graphs, but

for these experiments we created undirected versions to be

compatible with the modularity objective. Where we present

the average modularity or average time across these graphs,

we use the geometric mean to calculate the average.

We also used graphs from the 10th DIMACS Implemen-

tation Challenge [12]. This challenge consisted of two parts,

graph partitioning and graph clustering. Participants submitted

algorithms and subsequent implementations to compete in
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10. We have included the results from Louvain and community-

el for comparison. When run with 16 threads, mt-Nerstrand

shows only minor degradation in cluster quality compared to

its serial counter part, averaging 99.5% the modularity of s-

Nerstrand. This is 4.8% higher modularity than clusterings

produced by Louvain, and 89% higher than those produced

by community-el using 16 threads. The reason mt-Nerstrand

is able to produce clusterings with modularity similar to that

of s-Nerstrand is that the quality of the coarsening and initial

clustering phases is unaffected by the number of threads. It

is not until the refinement step that we see a difference. This

is the result of moves being made with stale cluster states.

However, our results show that this has an extremely small

effect on the quality.

B. Scaling

The runtimes of mt-Nerstrand and community-el using vary-

ing numbers of threads are shown in Table IV, along with those

of the serial codes s-Nerstrand and Louvain. As can be seen, in

both serial and parallel modes, Nerstrand produces clusterings

extremely fast on all eight graphs, compared to Louvain and

community-el.

The geometric mean of the speedups achieved by mt-

Nerstrand with respect to s-Nerstrand for 16 threads was 6.2.

The highest achieved speedup was 8.91 on the largest social

network graph, com-friendster, and the lowest speedup of 5.15
was on the patent citation network, cit-Patents, which is also

the smallest graph. We did not see as high of a speedup on this

graph as a result of refinement performing extra work when

done in parallel. For this graph, over twice as many refinement

passes were made when using 16 threads as compared to when

run serially.

The large amount of time taken by community-el on the uk-

2002 and uk-2007-05 graphs can be explained by the presence

of extremely high-degree vertices connected to mostly vertices

of degree one. The aggregation in community-el is done via

matching, and as a result takes several orders of magnitude

more steps to contract these graphs than the other six.

The high performance of mt-Nerstrand comes from being

based on the already fast algorithms of s-Nerstrand. During

coarsening, one the most time intensive steps of the multilevel

paradigm, mt-Nerstrand is able to use the same algorithm as

s-Nerstrand, and scales well due to the unprotected grouping

introduced in Section VI-B. The initial coarsening phase of

s-Nerstrand is inherently parallel, and scales well when all

of the threads can fit their data into the cache. Our parallel

formulation of k-way boundary refinement with the order-

independent updates described in Section VI-D, allows us to

achieve high modularity in a scalably parallel fashion.

X. CONCLUSION

In this paper we presented several approaches to solving the

issues associated with adapting the multilevel paradigm for

maximizing modularity in serial and in parallel. We adapted

the FirstChoice aggregation scheme from graph partitioning,

such that is able to maximize modularity. We showed that this

aggregation scheme works well for the modularity objective

both in terms of quality and in terms of speed. We introduced

a robust and fast method for generating clusterings of a

contracted graph. We also introduced a modified version of

the k-way boundary refinement for the modularity objective.

We showed the combined computation complexity of these

algorithms is O(m + n). We then presented shared-memory

parallel versions of these algorithms, which use sparse syn-

chronization. This included a means of performing group-

based aggregation effectively in parallel, and introducing an

order independent method for updating cluster information

during refinement without the use exclusive locks.

We presented these solutions in the form of the multi-

threaded graph clustering tool Nerstrand, which is capable of

producing high quality clusterings of large graphs extremely

fast. We evaluated this tool on graph with millions vertices and

billions of edges. Our tool finds clusterings of equal or better

modularity than current speed oriented methods. Nerstrand

is fast, finding these clusterings 2.7-44.9 times faster than

competing methods.
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