
Conservative Signed/Unsigned Type Inference for Binaries using Minimum Cut

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 Keller Hall

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 14-006

Conservative Signed/Unsigned Type Inference for Binaries using

Minimum Cut

Qiuchen Yan and Stephen McCamant

January 29, 2014

Conservative Signed/Unsigned Type
Inference for Binaries using Minimum Cut

Qiuchen Yan Stephen McCamant

University of Minnesota Department of Computer Science and Engineering

yanxx297@umn.edu, mccamant@cs.umn.edu

Abstract

Recovering variable types or other structural information from bi-
naries is useful for reverse engineering in security, and to facilitate
other kinds of analysis on binaries. However such reverse engineer-
ing tasks often lack precise problem definitions; some information
is lost during compilation, and existing tools can exhibit a variety
of errors. As a step in the direction of more principled reverse engi-
neering algorithms, we isolate a sub-task of type inference, namely
determining whether each integer variable is declared as signed or
unsigned. The difficulty of this task arises from the fact that signed-
ness information in a binary, when present at all, is associated with
operations rather than with data locations. We propose a graph-
based algorithm in which variables represent nodes and edges con-
nect variables with the same signedness. In a program without casts
or conversions, signed and unsigned variables would form distinct
connected components, but when casts are present, signed and un-
signed variables will be connected. Reasoning that developers pre-
fer source code without casts, we compute a minimum cut between
signed and unsigned variables, which corresponds to a minimal set
of casts required for a legal typing. We evaluate this algorithm by
erasing signedness information from debugging symbols, and test-
ing how well our tool can recover it. Applying an intra-procedural
version of the algorithm to the GNU Coreutils, we we observe that
many variables are unconstrained as to signedness, but that it al-
most all cases our tool recovers either the type from the original
source, or a type that yields the same program behavior.

Categories and Subject Descriptors D.2.7 [Distribution, Mainte-
nance, and Enhancement]: Restructuring, reverse engineering, and
reengineering

General Terms Security, Verification

Keywords binary type inference, minimum s-t cut

1. Introduction

On one hand, the compilation process is clearly one that loses infor-
mation: obviously comments and variable names are not reflected
in the binary version of a compiled program, and as shown in an
example below, there are also more subtle ways in which differ-
ence source programs can compile to the same binary program. On
the other hand, compilation preserves all of the most important in-
formation about a program inasmuch as the compiled program can
still execute correctly. This tension is part of why the abstract ques-
tion of decompilation, whether it is possible to automatically invert
the transformation performed by a compiler, has been intriguing for
decades.

There are also important practical uses for recovering informa-
tion from binary software. Many kinds of program analysis perform
better and/or give more accurate results when applied to source

code, because of its additional structure: recovering that structure
would allow binary analysis to gain the same benefits. Also reverse
engineering has a number of applications in software security and
software engineering, such as understanding malicious software in
order to defend against it, third party analysis of vulnerabilities
in commercial software, and reverse engineering for interoperabil-
ity. The most popular reverse-engineering tool used in security, the
Hex-Rays decompiler integrated with the IDA Pro disassembler,
can recognize a large number of idioms produced by common com-
pilers, but it is a best-effort tool designed to be used by an expert
analyst: it provides no guarantees that the code it generates will
even compile.

It has proven difficult to construct general-purpose decompilers
that translate a compiled binary back into equivalent source code.
Likely one reason is that a number of different kinds of information
need to be recovered to produce correct source code, and each
might be useful for recovering the others. Most tools, including
Hex-Rays, take a “best effort” approach in which each part of the
system attempts to produce results that are most likely to reflect
the original program, but there is no clear criterion for whether a
particular structural result is correct or incorrect. Compared to the
clearly defined concepts of soundness and behavior preservation
used in forward compilers, the lack of a clear correctness criterion
also makes it difficult to design and evaluate reverse engineering
systems.

Given this situation, a natural direction forward is to decompose
the decompilation problem into more limited forms of reverse en-
gineering for binaries, in order to perform more principled research
on these sub-problems on their own. Some work in this direction
has been performed recently by the BAP group at CMU, with their
TIE system for type inference [11] and recent work on control-flow
structure recovery [15]. However in our view the TIE system still
attempts to solve too many problems at once, leaving the correct-
ness of its results difficult to analyze. It is a good start that the TIE
paper identifies the goal of its type inference results being conser-
vative, which is to say that it may return a range of possible re-
sult types which should always include the correct type. However
the TIE system does not achieve this property in an unconditional
sense, just a best-effort one. For instance the static version of TIE
produces a conservative type for 93% of variables in a set of exam-
ple programs. (The more recent paper [15] also identifies errors in
the results of TIE as a major limitation of the combined system.)

In this work we take a further narrowing of the type-inference
problem: we build a system to infer, for variables of integer type,
whether they should be declared as signed or unsigned. Though
this problem might initially appear much simpler than full type in-
ference, it already exemplifies many of the reasons reverse engi-
neering tools are difficult to design and evaluate. Signedness is not
directly present in the binary the same way it is in source code, and

Tech. Report: Signed/Unsigned Type Inference for Binaries 1 2014/1/17

there may not be any single “correct” assignment of sign types for
a given binary.

In this setting we propose a novel algorithm for inferring signed-
ness types in the presence of signedness conversions that are not
directly visible in the binary. (In the original source code these may
have been either explicit casts or implicit conversions, usually with
no difference in the binary, so our tool treats them in the same way.
For brevity we sometimes use the term “casts” to refer both the ex-
plicit casts and implicit conversions.) We infer pairs of variables
that are likely to have the same signedness type because there is
data flow between them, and variables that are likely to be signed
or unsigned based on an operation performed on them. Represent-
ing these constraints as a graph, we then find a minimum cut, a set
of edges of minimal cardinality whose removal divides the graph
into disconnected “signed” and “unsigned” subgraphs. The edges
in the cut correspond to locations where conversions are required
to make a legal typing: the choice of edges in the cut will not in
general be unique, but a minimum cut corresponds to a typing with
the smallest number of conversions, which is likely to correspond
to programmer intent.

Given that a typing solution is not unique, it is not sufficient
to check the correctness of our typing against the types found in
the program source code. In fact our results appear relatively poor
when judged in this way: many inferred types do not match the
source code, and our tool also finds that many variables could
equally well be signed or unsigned, whereas the C language forces
every variable’s signedness type to be declared. However we argue
that a better notion of correctness is whether the new signedness
types lead to a C program whose behavior is the same as the orig-
inal C program when compiled. We have not fully automated this
definition, but check behavior preservation for a random sample of
our tool’s results, and observe that in the vast majority of cases in
which our tool infers a different type than in the original source
code, changing the type would not change the program’s behavior.
There are some cases in which the types inferred by our tool do
not lead to the correct program behavior, but analyzing them we
believe they suggest directions in which the tool can be improved
in order to give results that are appropriately conservative.

The remainder of this report is organized as follows. Section 2
gives a further overview of the type inference problem we tackle
and our evaluation strategies. Section 3 then describes our type
inference approach in more technical detail, and Section 4 gives
some implementation choices. Section 5 gives the results of our
empirical experiments, and Section 6 compares our work with
other research with similar techniques or goals. Finally Section 7
describes some directions for future work and Section 8 concludes.

2. Problem Overview

In this section, we give a more specific description of the signed-
ness inference problem we address, in particular the aspects of the
problem that influence our approach.

Debug information and erasure One challenge in researching
reverse engineering is dependencies between recovering different
kinds of program structure. It would be convenient for one reverse
engineering phase to make use of information recovered by another
phase, but since no high-quality open-source decompilation system
is available, one might seem faced with the need to develop a
complex system from scratch. However, it is not our ambition
in this project to build an end-to-end decompilation system, so
we take a simpler approach: we use existing information derived
from the program source code as a scaffold. Our ultimate goal
would be a decompilation system that requires only unadorned
binary code as input. But our prototype system takes advantage of
debugging information produced by a compiler, which contains the

int f_s(int x, int y,
int z, int c) {

int s = 0;
int b = 1;
int i = 0;
for (; i != c; i++) {

b <<= 1;
if (x & b)

s++;
y -= 1;
z *= 2;
z |= 1;
z = -z;
s += z;

}
return s*y;

}

#define uint unsigned int
uint f_u(uint x,uint y,

uint z,uint c) {
uint s = 0;
uint b = 1;
uint i = 0;
for (; i != c; i++) {

b <<= 1;
if (x & b)

s++;
y -= 1;
z *= 2;
z |= 1;
z = -z;
s += z;

}
return s*y;

}

Figure 1. Two C functions, one (left) using signed integers and one
(right) using unsigned integers, which nonetheless have exactly the
same behavior. (For instance, they generate identical binary code
with Ubuntu GCC 4.6.3 in 32-bit mode.) The reason is that all of
the operators used in this contrived function have the same behavior
whether their arguments are signed or unsigned.

very information we are trying to recover: in particular, debugging
information includes a list of the variables in a program along with
their types.

For evaluation purposes, our tool in effect erases (really, ig-
nores) the information we are trying to recover, here the signed
or unsigned status of integer variables. We can then compared our
inferred results to the types in the debug information derived from
the source code, for evaluation purposes. (Though as we will see
later, a simple comparison is not the best evaluation.) Because of
the narrow focus of our current research, we allow our tool to make
broad use of other kinds of debugging information, include all type
information other that signedness. This is essentially a best-case
scenario in that it assumes our analysis could be a final phase: in
assembling an end-to-end decompiler, one would need to choose a
dependency-respecting order among recovery phases, or use an it-
erative approach. We leave these broader questions for future work.

Binary-invisible casts and conversions Source-code signedness
types are underdetermined by a compiled binary: there will in gen-
eral be a number of different assignments of signed and unsigned
types that produce the same binary. This occurs because in a binary,
the signed versus unsigned distinction is associated with certain op-
erators, but not with other operators and not directly with variables
(storage locations). One way in which the types are underdeter-
mined illustrated in Figure 1: many operators represent the same
bit operation on signed and unsigned values. (Here and throughout
we assume that signed integers are two’s-complement, as is stan-
dard on all modern processors.) So for instance there is typically
no distinction between a “signed add” and an “unsigned add” at the
binary level.

Of course, the reason C has separate signed and unsigned types
is that for a number of other operations, the signed and unsigned
versions are different. But this distinction is based on the opera-
tions themselves, and C also allows signed values to be converted
to unsigned values and vice-versa, either automatically when val-
ues of different types are used in a binary operator, or explicitly
via a cast operation. Because signed and unsigned values are inter-
changeable at the binary level, a conversion between a signed and

Tech. Report: Signed/Unsigned Type Inference for Binaries 2 2014/1/17

int64_t f_s(int c) {
int m = 500000000;
int sum = 3*m;
int i;
for (i = 1; i <= c; i++) {

int denom = i * (2*i + 1) * (i + 1);
sum += m / denom;
m = -m;

}
return (int64_t)sum * 200000000;

}

typedef unsigned int uint;
uint64_t f_u(uint c) {

uint m = 500000000;
uint sum = 3*m;
uint i;
for (i = 1; (int)i <= (int)c; i++) {

uint denom = i * (2*i + 1) * (i + 1);
sum += (int)m / (int)denom;
m = -m;

}
return (int64_t)(int)sum * 200000000;

}

Figure 2. Two C functions, one (left) in which all of the variables are declared as signed integers, and one (right) in which they are all
declared as unsigned integers, which nonetheless have exactly the same behavior. (The binaries produced by Ubuntu GCC 4.6.3 in 32-bit
mode are identical except for the use of stack slots and registers.) Even though the comparison, division, and widening operators are sensitive
to the difference between signed and unsigned values, the right function uses casts to invoke the same signed operations as the left function.

unsigned value of the same size will have no direct runtime effect.
This leads to a more complex way in which the source types are un-
derdetermined by the binary: the binary is determined by the types
of variables and the conversions, but the conversions are not visible
in the binary. This effect is illustrated with the programs of Fig-
ure 2: a program with signed types is equivalent (in behavior and
binary code) to a program with unsigned types and casts.

Casts as a cut Given that there may be many possible sets of
source types that correspond to the same binary, a type-inference
system like ours must make a choice between them. For some
applications, any legal type assignment may be equally good, but
when possible, we would prefer to use types that match the choices
a human program would make and maximize the readability of the
generated source code. For signedness conversions, we propose
that programmers prefer to minimize the number of casts and
implicit conversions present in their programs: intuitively, good
style suggests that variables should have the type that best matches
the way they are used.

In particular, we observe that this matching between variables
and uses leads to a flow-like relationship of signedness types across
many variables that are connected by being used together in oper-
ations. Based on this intuition, we propose to assign types based
on a graph model, where edges in the graph capture the constraints
that certain variables should likely have the same signedness type.
We give more details on our algorithm for constructing a graph and
computing a typing based on a minimum cut in the next section.

Behavior comparison for evaluation Because there is not a
unique correct assignment of signedness types given a binary, it
would not be sufficient to evaluate our algorithm simply by check-
ing whether it gives the same types that were present in the original
source code. Instead, we argue that a better definition of correct-
ness for inferred types is that they should lead to a program that has
exactly the same behavior as the original program. Of course a dis-
advantage of the definition is that is harder to check. For now we
have conservatively approximated this definition by recompiling
programs with modified types and examining the resulting bina-
ries. If two different source programs yield the same binary output
(for any choice of compiler or optimization flags, assuming the
compiler is correct), then those two source programs are equiva-
lent. If two binaries are not byte-for-byte identical, we examine
them by hand, to see whether we can understand the differences as
being caused by rearrangement of code, differing register alloca-
tions, or other changes that do not affect behavior. If the differences
are too complex to understand manually, we will conservatively not

conclude that the binaries are equivalent. Because modifying the
source code to change types and comparing the resulting binaries
are both currently manual steps, we will perform this kind of eval-
uation for just a random subset of our results.

3. Approach Details

Next we give more details on our technical approach and algorith-
mic choices.

3.1 Machine-independent IR

Building a binary analysis tool that operates directly on a particular
instruction set has two major disadvantages. First, such an analysis
supports just one architecture, and must be completely rewritten
to support another architecture. Second, such an analysis requires
some separate code for each possible instruction: since for instance
the x86 instruction set has on the order of 1000 instructions, this
makes the implementation complex.

To reduce these issues, we structure our analysis instead around
a machine-independent intermediate representation (IR) language
as its representation of binary code. This intermediate language has
a smaller number of basic constructs, so typically a single instruc-
tion will be transformed into a sequence of IR statements. However
because the IR constructs are fewer in number and more orthogo-
nal, the code for performing analysis over the IR is simpler. The
IR is also not specific to a particular instruction set, which should
reduce the effort needed to port the analysis to another architec-
ture. However we have not attempted to make our system fully
machine-independent yet: for instance, in some instances the algo-
rithm matches patterns of expressions within the IR that correspond
to particular x86 instructions.

3.2 Variable recovery

Variable recovery is the step of binary reverse engineering that
identifies which storage locations (for instance, in registers, on the
stack, or elsewhere in memory) correspond to source-level vari-
ables. Variable recovery is logically a prerequisite to type inference,
since the variables are the entities that are assigned types. We avoid
the need to perform variable recovery from scratch by using the
variables recorded in debugging information, but our system must
still perform some analysis to match variables from the debugging
information with the binary operation performed upon them. We
also perform SSA conversion on registers to separate distinctly-
typed uses of a register as an unnamed temporary, which are not

Tech. Report: Signed/Unsigned Type Inference for Binaries 3 2014/1/17

S

s2s1 s3

a1 a2 a3

b1 b2

u1 u2

U

∞
∞

∞

∞

∞

unsigned f(int arg1, int arg2, int
arg3) {

int s1 = arg1 / 2;
int s2 = arg2 / 2;
int s3 = arg3 / 2;

int a1 = s1;
int a2 = s2;
int a3 = s3;

int b1 = a1 + a2 + a3;
int b2 = a1 ^ a2 ^ a3;

unsigned u1 = (unsigned)b1;
unsigned u2 = (unsigned)b2;

u1 /= 2;
u2 /= 2;
return u1 + u2;

}

unsigned f(int arg1, int arg2, int
arg3) {

int s1 = arg1 / 2;
int s2 = arg2 / 2;
int s3 = arg3 / 2;

unsigned a1 = (unsigned)s1;
unsigned a2 = (unsigned)s2;
unsigned a3 = (unsigned)s3;

unsigned b1 = a1 + a2 + a3;
unsigned b2 = a1 ^ a2 ^ a3;

unsigned u1 = b1;
unsigned u2 = b2;

u1 /= 2;
u2 /= 2;
return u1 + u2;

}

Figure 3. Example of a minimum cut. The two programs on the right are two possible interpretations of the same binary code. We can
be sure that the variables s1 through s3 are signed, and that u1 and u2 are unsigned, and that a signed-to-unsigned conversion must occur
somewhere in the data flow between them. But the intermediate a and b variables could be either signed or unsigned. The graph on the left
shows how we use a minimum cut approach to assign types with a small number of casts. Variables known to be signed are connected with
infinite-weight edges to the special node S (short for “signed”), and likewise for unsigned variables and U. All other edges have weight 1.
Assigning signedness types to the variables splits the graph into two components connected to S and U; edges between the components form
a cut, and correspond to casts or conversions. The dashed edges and dotted edges correspond to two different possible such cuts. Our system
chooses the dashed edges, a minimum-weight cut, leading to the types shown in the left-hand code example.

recorded in the debugging information. More details of these algo-
rithms are in Section 4.

3.3 Graph construction and cut selection

Recall that our goal is intuitively to assign signedness types in a
way that minimizes the number of casts and implicit conversions
required. We implement this principle by selecting types with an
algorithm based on a minimum cut in a graph. Specifically, we con-
struct a graph with a node for each integer variable in the program,
and an edge connecting two nodes if those variables might be ex-
pected to have the same signedness type (such as because they were
used together in an operation). We also add a distinguished node
“signed” to the graph, and connect it with infinite weight edges to
the nodes for variables we are confident should be signed; and like-
wise for “unsigned”. Nodes that are connected to the “signed” node
in this graph might be expected to have a signed type, and likewise
for nodes connected to the “unsigned” node being unsigned. The
simplest situation occurs when the graph has two connected com-
ponents, one containing the “signed” node and the other containing
the “unsigned” node: then the contents of these components are
signed (resp. unsigned). There may also be nodes that are not con-
nected to either “signed” or “unsigned”: for these our algorithm has
no basis on which to assign them either type.

However it can also occur, and in fact it often does in prac-
tice, that the “signed” and “unsigned” nodes lie in a single con-
nected component. In this case we must divide this component in
two pieces to assign types to the variables in it. An example of this
situation is shown in Figure 3. More formally, this division corre-
sponds to an s-t cut: a subset C of nodes in the component such that
the “signed” node is in C and the “unsigned” node is in the com-
plement of C. We can also identify the cut with the set of edges that
connect a node in C to a node not in C: these are the edges that must
be “cut” to separate the components. These cut edges correspond

to locations in the program where a cast or implicit conversion will
be required to get a correct type assignment. Since our goal is to
minimize the number of such casts and conversions needed, our al-
gorithm finds a cut such that the sum of the weights of the cut edges
is minimized: a minimum (s-t) cut for short. We assign effectively
infinite weights to the edges connecting directly to the “signed” and
“unsigned” nodes, and all other edges we give a unit weight. Con-
veniently, our system can efficiently compute a minimum cut using
an algorithm for maximum flow and the classic max-flow/min-cut
duality. (We observe though that the choice of a minimum cut may
still not be unique.)

3.4 Intra- vs. interprocedural analysis and libraries

We recall the standard terminology that a program analysis is in-
traprocedural if it analyzes each function in isolation, versus inter-
procedural if functions are considered together. The graph-based
algorithm described above could potentially be either intra- or in-
terprocedural: an interprocedural version would build a single large
graph and add edges connecting actual arguments to formal param-
eters. An interprocedural analysis would be eventually preferable,
since it would give more accurate results and the performance cost
of computing a cut on a larger graph would probably not be pro-
hibitive. However at the moment our implementation is intraproce-
dural.

A related design point is how to deal with functions whose im-
plementation is outside the scope of analysis: for instance func-
tions from the standard library (or if libraries are included in the
program, system calls). Our analysis would be able to give more
precise results if it were aware of the type constraints arising from
these external functions: for instance based on debugging symbols
or a manually assembled interface specification. But our current
implementation treats the types of arguments to external functions
as unconstrained.

Tech. Report: Signed/Unsigned Type Inference for Binaries 4 2014/1/17

4. Implementation

Our implementation can be roughly divided into two parts: vari-
able recovery and type inference. Since variable recovery is not
our main focus, we access debug information directly in order to
identify each variable. Simultaneously, we translate binaries to the
Vine IR, and match the debugging information for each variable
to memory accesses in the Vine IR. Finally, we construct graphs
which represent constraints based on the Vine IR, and solve them
by computing maximum flow. Currently we have implemented a
intra-procedural type inference tool: each subroutine is analyzed
separately and standard (C) library functions are ignored.

4.1 Variable recovery

For this part, we use Libdwarf [2] to read debugging information.
For each variable, we store its name, location, type, and length. The
location and length are used (in most cases) to match a variable in
the debugging information with an accessed memory block. The
type is also used to decide whether two pointers have the same
type.

In order to map from debugging information to memory ac-
cesses in the Vine IR, we adopt different approaches for different
kinds of variables. For static or global variables, we identify the
variable by its (fixed, absolute) address. For local variables, we also
identify variables by their location, but the location is the sum of a
register that is a pointer to the stack (%esp or %ebp) plus a constant
offset.

The mapping process in the presence of pointers is more com-
plex, since we must propagate type information across dereferences
to categorize memory accessed via pointer (for instance, because it
is heap-allocated). For each statement in the Vine IR, we check
whether it is in the following format:

register1 = register0? + mem[register2 + constant1?]

Items with a question mark superscript may be absent. For each
statement in this format, we check whether register2 + constant1
is the location of a pointer variable. If the answer is yes, then
register1 contains the value of this pointer, and a subsequent access
of the form mem[register1 + constant2] represents the memory
block pointed by this pointer. Note that the contents of this memory
block may also be a pointer.

4.2 Type inference

To increase the accuracy of the analysis (for instance, because a sin-
gle register may hold values of different types at different points),
we convert the Vine IR to SSA (static single-assignment) form be-
fore doing analysis. We implemented Cooper et al.’s algorithm [5]
to compute dominance frontiers. After that, we look for operations
that reveal whether their operands are signed or unsigned. Based on
the Vine IR and those operations, we build a graph for each func-
tion. The graph contains a “signed” node and an “unsigned” node,
which are connected to the operands of signed (respectively un-
signed) operations. Finally, we compute the minimum cut between
the signed node and the unsigned node if they are in the same com-
ponent. We regard all variables in the same component as the signed
or unsigned node as signed or unsigned variables respectively.

4.2.1 Signed/Unsigned operations

The signed and unsigned operations we have found are as follows.
Note that our implementation is based on operations in the Vine IR,
but for simplicity of notation we give our examples in the original
x86 assembly format.

- Conditional jump
For each conditional jump in the Vine IR, we check its type and
connect both of its operands to either the signed node or the

unsigned node according to the following table, if it makes an
ordered comparison.

signed unsigned

> jg ja
≥ jge jae
< jl jb
≤ jle jbe

- Right shift
We connect a variable to the “signed” node if it is right shifted
using arithmetic right shift. Otherwise, we connect this variable
to the unsigned node. For example, if we see

sar $0x8,%eax

then an edge should be added between %eax’s node and the
“signed” node. On the other hand,

shr $0x8,%eax

indicates that %eax should be connected to the “unsigned”
node.

- Modulo and divide
These two operations are always executed together, since
divl/idivl do both of them at once. Operands of signed di-
vide/modulo operations are connected to the signed node, while
those of unsigned divide/modulo are connected to the unsigned
node. For example, if we see

mov 0x8(%ebp),%eax
mov %eax,%edx
sar $0x1f,%edx
idivl 0xc(%ebp)

then we connect %eax and the variable mapped to 0xc(%ebp)
to the signed node. On the other hand, those two operands are
connected to the unsigned node in the following example.

mov 0x8(%ebp),%eax
mov $0x0,%edx
divl 0xc(%ebp)

4.2.2 Graph

We build a graph for each function in a program. There are three
types of nodes in addition to the “signed”/“unsigned” nodes: regis-
ter nodes, variable nodes and operation nodes. Both register nodes
and operation nodes come from the Vine IR. Register nodes corre-
spond to registers in SSA-form Vine IR, while variable nodes cor-
respond to variables in the debugging information. Operation nodes
also come from Vine IR. They connect operand(s) and a result to-
gether. In addition, if an expression is assigned to a variable/regis-
ter, the node corresponding to this expression will be connected to
the node of this variable/register. Our system uses the Boost Graph
Library [16] to construct graphs.

In order to compute the minimum cut between signed and un-
signed nodes, we choose the Boykov-Kolmogorov maximum flow
algorithm [3] to compute the maximum flow between the “signed”
and “unsigned” nodes and the capacity of each edge. Given each
capacity, we travel from the “signed” node in a depth-first manner,
and decrease the capacity of each traversed edge by 1. We stop if
there are no reachable edges whose capacity is larger than 0. Every
edge has a initial capability of 1, except edges directly connected to
the “signed” or “unsigned” node. These have a effectively infinity
initial capacity (currently 232) so that they are not cut.

5. Evaluation

To evaluate our tool, we tested it on 106 programs from the GNU
Coreutils, and analyzed the results in detail. To begin with, we
count the number of variables whose inferred type matches their

Tech. Report: Signed/Unsigned Type Inference for Binaries 5 2014/1/17

declared type. The percentage of matched variables among all test
samples is given in the following below. However, matching should
not be the only criterion, since two source programs can be compile
to equivalent binaries even if some variables have different types.
Thus we have also proposed a behavioral equivalence criterion,
which we describe and then give results using sampling.

5.1 Matching rate

Averaged over all 106 GNU Coreutils, the overall matching rate is
rather low, approximately 9.26%. More detail is given in the follow-
ing confusion matrix. Each cell contains the number of variables
whose inference result falls into one of the six conditions.
`
`
`
`
`
`
`

`
`

`
declared

inferred
signed unknown unsigned

signed 911 45218 1874

unsigned 8666 46460 239

As can be seen, most non-matching variables are unknown vari-
ables, those whose nodes are neither in the signed component nor
in the unsigned component. Considering that there are many short
functions without signed/unsigned operations, the main cause of
the high unknown rate is likely our lack of interprocedural analy-
sis. Therefore, as described in Section 3.4, we also expect to have
a much lower unknown percentage after we add interprocedural
analysis to our tool.

5.2 Behavior difference

Matching rate is an imperfect evaluation criterion, so we supple-
ment it with an evaluation based on behavior difference. Below we
describe our new criterion and then give the results.

5.2.1 Definition of behavior difference

We say that two binaries (or two functions, etc.) have the same be-
havior if they always return the same values given an arbitrary input
within their input value domain. It is natural to use program be-
havior as a criterion for reverse-engineering both because the pro-
gram’s behavior is often what we are most interested in understand-
ing, and because behavior is what is guaranteed to be preserved by
compilation, so it may be all we can recover.

A simple way to see that it can be impossible to recover exactly
the original source code is to observe that two different source code
programs can be compiled to exactly the same binary. Under this
condition, nothing can be done to figure out which one is the “real”
source code of this binary if only the binary is given. Some more
complex examples involving casts appear above as Figures 1, 2,
and 3, but as a small example involving only a single conversion,
the two following functions, which differ just in the type for the
first argument, will compile to the same binary.

int
func(int a,

unsigned b)
{

int c = a/b;
return c;

}

int
func(unsigned a,

unsigned b)
{

int c = a/b;
return c;

}

5.2.2 Experiment and result

Our ultimate goal would be to produce source code which when
compiled gives a binary with the same behavior as the original
binary. But we do not yet have a tool capable of doing this, so
we start by evaluating a simpler question: for which of the integer
variables in a program does the signedness type of the variable

affect the program behavior? In particular we are interested about
this question for variables for which our tool did not infer the
same type as originally declared in the source code. If our inferred
type causes the program to have different behavior, it is clearly
wrong. But if changing the type does not affect behavior it may
be understandable that our tool could not recover the original type.

Thus to test whether there is any behavior difference between
inferred and original source code, we modify the type of a variable
whose inference result does not match its original type, recompile
the modified source code, and compare the behavior of the resulting
binary with the original binary. Currently the approach we use for
behavior comparison is to manually compare the x86 instructions.
If the instructions are exactly the same, or if a different variable
type only leads to superficial differences that will never change
the behavior, we can conclude that this difference between the
inference result and the original code is not a failure of our tool.
In order to decrease complexity, we only modify the type of one
variable in each experiment, and compare the function containing
this variable.

Among a sample of 200 randomly selected variables for which
our tool gives a non-matching result (“unknown” or different from
the original source), 192 have the same behavior compared with
the original binary. Thus we get 96% as an approximate propor-
tion of variables without behavior change among all non-matching
variables, with a 95% confidence interval of plus/minus 2.72%. For
comparison, we also evaluated a random sample of 100 variables
whose inference result matches the original type. 26% of them trig-
ger behavior difference if modified, with a 95% confidence interval
of plus/minus 8.4%.

Because our aim is to produce a conservative tool, we would
like to track down the causes of all of the incorrect results produced
by our system, to determine whether they result from implementa-
tion mistakes or more fundamental problems. To this end we have
begun examining the 8 cases mentioned above in which our tool
gives the opposite type as the original source code and the differ-
ence is behaviorally significant. As of this writing our analysis is
not complete, but we have classified 4 of the behavior differences
as related to signed versus unsigned comparison, 3 as related to
zero-extending versus sign-extending moves, and 1 arising from
sign-extension in an argument to a second function. Some of the
errors potentially result from missing rules for conditional move
instructions and widening conversions. In fact we have noticed that
two of the erroneous results are resolved if our tool treats com-
parisons with a variable with a constant as revealing the signedness
type of the variable. The most interesting error case results in a sign
extension in a 64-bit value represented in two 32-bit registers: the
compiled code copies the low word into the high word and then per-
forms an arithmetic shift right by 31. This conceptually 64-bit value
is then passed as an argument to umoddi3, a special function used
by GCC to implement unsigned 64-bit modulus computations. This
example might be helped by idiom recognition of the double-word
sign extension, or interprocedural treatment of the helper function.

6. Related Work

There are several decompilers that attempt to recover source code
or human readable pseudo-source-code based on static analy-
sis. Hex-Rays [10] is a commercial product, used alongside the
well-known IDA Pro disassembler, which has seen significant
adoption by security analysts. No detailed description of Hex-
Rays’s algorithms is available; a whitepaper [9] does not mention
signedness types. No open-source tool is as practically capable
as Hex-Rays; the best known open-source decompiler is probably
Boomerang [8], which has a sophisticated design based on SSA [7]
but has recently not been very actively maintained. Van Emmerik’s
thesis [7] gives a data-flow algorithm for type inference, whose

Tech. Report: Signed/Unsigned Type Inference for Binaries 6 2014/1/17

type lattice includes a distinction between signed and unsigned
types.

Other systems use techniques similar to decompilation but are
intended only to produce an intermediate representation for further
analysis. The goal of SecondWrite [1] is to translate an input binary
into a high-level version of the LLVM IR (for instance for use in
binary rewriting). A recent paper [6] describes a data type detection
algorithm for SecondWrite, but does not mention signedness types.
Techniques based on dynamic analysis have also proved effective
for security applications: REWARDS [12] and Howard [17] both
focus on data structures, and have been applied in vulnerability
detection and buffer overflow defense [18] respectively.

TIE [11] is another recently proposed binary type inference sys-
tem, and perhaps has the most similar goals to our present work.
TIE’s authors stress the importance of principled design and con-
servative results in type inference. TIE’s analysis is constraint-
based and builds type constraints based on how values are used. As
TIE attempts to infer types almost as general as the C type system, it
requires a complex constraint language and a multi-stage constraint
solving process. The evaluation in the TIE paper compares it with
Hex-Rays and finds that TIE has higher accuracy and is closer to
being conservative. We concur with TIE’s identification of conser-
vativeness as a design principle, but would go further in designing
algorithms that should be completely conservative, so that every
instance of a non-conservative result is a bug to track down and
fix. TIE’s complex constraint system makes it more challenging to
understand the sources of errors, but it seems that that TIE’s con-
straint generation rules are too aggressive in some circumstances.
One example is that TIE has a rule inferring that the operand of a
unary negation is signed: but unary negation on an unsigned value
is perfectly legal in C. In analyzing one incorrect bound produced
by TIE, the authors note a function that uses a signed integer to
store the result of strlen, which is unsigned, what they refer to as
a “typing error” in the original program. Though this assignment
might be a bug (perhaps leading to later incorrect behavior if the
string was more than 2GB long), it is completely legal as either an
implicit conversion or an explicit cast in C, and it might not be a
bug if another invariant ensures that the string in question is not too
long.

Though it is not a complete tool in itself, the BitBlaze Vine
library [19] provides an intermediate language for operating on
machine code as well as a number of analysis algorithms that work
on that language. In the present project we use the first stage of
Vine’s translation, though since we chose to implement our tool in
C++ we did not make use of any of Vine’s OCaml algorithms. The
TIE tool is based on a similar system named BAP (Binary Analysis
Platform) which is a successor to Vine.

Ours is not the first system to use maximum-flow/minimum-
cut techniques in program analysis. Several systems have used
maximum-flow/minimum-cut techniques for information flow anal-
ysis. Flowcheck [13] computes quantitative information flow as a
maximum flow of bits of information from secret inputs to public
outputs; the corresponding minimum cut is a bottleneck that cap-
tures the location of information leakage. Swift [4] is an approach
to building web applications secure by construction that finds the
most efficient way to divide an application into client-side and
server-side computations by finding a minimum cut between the
two corresponding to network communications. Somewhat further
afield, Terauchi [20] uses linear programming (of which maximum
flow is a special case) to infer types that show a multi-threaded
program is race-free.

7. Future Work

Our experimental results so far are already encouraging, but there
are several directions for future research which could improve our

understanding of the problem and improve or extend our system’s
capabilities. We mentioned extended the analysis to be interproce-
dural above in Section 3.4. Some other directions:

Automating source-code experiments The first limiting factor in
our behavior comparison experiments is the process of modifying
program source code to have different signedness types, which
is currently manual. The syntax of C type declarations is simple
enough that it might be possible to find and replace integer types
with simple text pattern matching. Or, another approach would be
to use a library such as CIL [14] that can parse and rewrite C source
code. Especially in the first case, when we would be modifying
source code before the C preprocessor, the mapping from source
type declarations to types in the debugging information might not
be one-to-one, but at a minimum we could determine it by trial
compilation.

Automating behavior comparison The other limiting factor in
our current type-changing experiments is the process of comparing
whether two binaries have the same behavior. Of course determin-
ing that two binaries are byte-for-byte identical can easily be done
automatically, and we could extend this strategy by experimenting
with different compilers or different options in the hopes of maxi-
mizing the chances we will obtain exactly identical binaries. But in
other cases we clearly need to be able to automatically determine
whether two related binaries have the same behavior when their in-
structions are similar but not the same. Checking equivalence is a
complex topic on its own, but in this context we would probably
concentrate on those kinds of instruction differences we observe
most often in compiler output: for instance, differing stack layouts
and register assignments.

Evaluating alternative cuts Another natural though inherently
subjective area for evaluation is our proposal to choose signed-
ness types corresponding to a minimum cut. How closely does
this match the typing decisions made by programmers in practice?
We can ask numerically how close the types chosen by develop-
ers come to our standard by measuring the number of casts and
conversions they require. But it would also be interesting to exam-
ine the differences between the types chosen by developers and the
types with the minimum number of casts. We could think of our
system as proposing a refactoring to the existing code that changes
the types of variables and reduces the total number of casts: is this
refactoring desirable, for instance making the code more clear?

Comparison with other reverse-engineering tools A final stan-
dard way of evaluating our system would be to compare its results
with those of similar tools. Three natural tools to compare to, as
already discussed, would be the TIE system, the Boomerang de-
compiler, and the Hex-Rays decompiler. We chose the GNU Core-
utils as test cases in part because they were also used in the TIE
paper [11] to compare TIE with Hex-Rays, so we know both these
tools could handle these examples as well. However because our
current system represents only a subset of TIE’s functionality, not
much comparison can be drawn from looking just at the published
results in the TIE paper. It would probably be best to test all the sys-
tems in a new unified framework. The TIE system does not appear
to be available for general download, but we have not yet asked
its authors whether they might make it available for this limited
purpose; Hex-Rays is a commercial product available to anyone,
though it is somewhat expensive.

Distinguishing pointers from integers Beyond the type inference
for signedness which has been our concern in this report, another
related kind of type inference that might use the same techniques
is inferring whether a word value is an integer or a pointer. Like
the signedness question, the pointer-integer distinction does not
appear directly at the binary level: registers or memory locations

Tech. Report: Signed/Unsigned Type Inference for Binaries 7 2014/1/17

are sequences of bits that can be used in any operation. Inferring
pointer versus integer types can also be seen as equivalent to decid-
ing where to place conversions between integer types and pointer
types. However the constraints that arise from data flow involving
pointers and integers are different: whereas signed and unsigned
values do not interact (without conversions), pointers and integers
mix in addition and subtraction. This suggests that a richer kind of
constraint solving than minimum cut would be required.

8. Conclusion

We have presented a new approach for determining whether integer
typed variables in a binary program compiled from C source code
have a signed or unsigned type. Our system determines constraints
from analyzing x86 instructions transformed into a simplified IR,
and constructs a graph representation in which nodes representing
variables are connected if they likely have the same signedness
type. In general it is not possible to recover exactly the types used
in the original source, but by computing a minimum cut on the
constraint graph we can find a type assignment that requires as
few casts and conversions as possible. We evaluated our approach
on over 100 binaries from the GNU Coreutils, including a manual
analysis for 300 variables of how the behavior of the code changes
if the variable is changed from signed to unsigned or vice-versa. In
almost all cases, our tool infers either the type used in the original
source code, or a type that gives the same program behavior.

References

[1] K. Anand, M. Smithson, A. Kotha, K. Elwazeer, and R. Barua. De-
compilation to compiler high IR in a binary rewriter. http://www.
ece.umd.edu/~barua/high-IR-technical-report10.pdf,
Nov. 2010.

[2] D. Anderson. libdwarf - DWARF debugging information. http:
//sourceforge.net/projects/libdwarf/, July 2013.

[3] Y. Boykov and V. Kolmogorov. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. IEEE

Trans. Pattern Anal. Mach. Intell., 26(9):1124–1137, Sept. 2004. .

[4] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and
X. Zheng. Secure web applications via automatic partitioning. In
Proceedings of Twenty-first ACM SIGOPS Symposium on Operating

Systems Principles, SOSP ’07, pages 31–44. ACM, 2007. ISBN 978-
1-59593-591-5. . URL http://doi.acm.org/10.1145/1294261.
1294265.

[5] K. D. Cooper, T. J. Harvey, and K. Kennedy. A simple, fast dominance
algorithm. Technical Report TR-06-33870, Rice University Computer
Science, 2001.

[6] K. ElWazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua. Scal-
able variable and data type detection in a binary rewriter. In Proceed-

ings of the 34th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI ’13, pages 51–60. ACM,
2013. ISBN 978-1-4503-2014-6. . URL http://doi.acm.org/
10.1145/2491956.2462165.

[7] M. J. V. Emmerik. Static Single Assignment for Decompilation. PhD
thesis, University of Queensland, May 2007.

[8] M. V. Emmerik, G. Krol, T. Waddington, and M. Gothe. Boomerang
decompiler. http://boomerang.sourceforge.net/, Oct. 2012.

[9] I. Guilfanov. Decompilers and beyond. Technical report, Hex-
Rays SA, 2008. https://www.hex-rays.com/products/ida/
support/ppt/decompilers_and_beyond_white_paper.pdf.

[10] Hex-Rays SA. Hex-Rays decompiler. https://www.hex-rays.
com/products/decompiler/, Dec. 2013.

[11] J. Lee, T. Avgerinos, and D. Brumley. TIE: Principled reverse engi-
neering of types in binary programs. In Proceedings of the 18th An-

nual Network and Distributed Systems Security Symposium (NDSS),
San Diego, CA, USA, Feb. 2011.

[12] Z. Lin, X. Zhang, and D. Xu. Automatic reverse engineering of data
structures from binary execution. In Proceedings of the 17th Annual

Network and Distributed System Security Symposium (NDSS), San
Diego, CA, USA, Feb.–Mar. 2010.

[13] S. McCamant and M. D. Ernst. Quantitative information flow as
network flow capacity. In Proceedings of the 2008 ACM SIGPLAN

Conference on Programming Language Design and Implementation,
PLDI ’08, pages 193–205. ACM, 2008. ISBN 978-1-59593-860-2. .
URL http://doi.acm.org/10.1145/1375581.1375606.

[14] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: In-
termediate language and tools for analysis and transformation of C
programs. In Compiler Construction (ETAPS/CC), pages 213–228,
Grenoble, France, Apr. 2002.

[15] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley. Native x86 de-
compilation using semantics-preserving structural analysis and iter-
ative control-flow structuring. In 22nd USENIX Security Symposium,
Washington, DC, USA, Aug. 2013.

[16] J. G. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph Library:

User Guide and Reference Manual. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2002. ISBN 0-201-72914-8.

[17] A. Slowinska, T. Stancescu, and H. Bos. Howard: a dynamic excavator
for reverse engineering data structures. In Proceedings of NDSS 2011,
San Diego, CA, 2011.

[18] A. Slowinska, T. Stancescu, and H. Bos. Body armor for binaries:
Preventing buffer overflows without recompilation. In Proceedings

of the 2012 USENIX Conference on Annual Technical Conference,
USENIX ATC’12, pages 11–11. USENIX Association, 2012. URL
http://dl.acm.org/citation.cfm?id=2342821.2342832.

[19] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena. BitBlaze: A new
approach to computer security via binary analysis. In Proceedings

of the 4th International Conference on Information Systems Security.

Keynote invited paper., Hyderabad, India, Dec. 2008.

[20] T. Terauchi. Checking race freedom via linear programming. In
Programming Language Design and Implementation (PLDI), pages
1–10, Tucson, AZ, USA, June 2008.

Tech. Report: Signed/Unsigned Type Inference for Binaries 8 2014/1/17

