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Abstract When a battery-powered roba neeals to operate
for along period df time, optimizingits energy consumption
bewmes criticd. Driving motors are a major source of
power consumption for mobile robas. In this paper, we
study the problem of finding ogtima paths and velocity
profiles for car-like robas o as to minimize the energy
consumed during motion.

We start with an establi shed model for energy consump-
tion of DC motors. We first study the problem of finding the
energy optimal velocity profiles, given a path for the roba.
We present closed form solutions for the unconstrained case
andfor the case where there is abound onmaximum veloc-
ity. We then study a general problem of finding an energy
optimal path alongwith a velocity profile, given a starting
and gal position and arientation for the roba. Along the
path, theinstantaneousvel ocity of theroba may be bounced
as afunction o its turning radius, which in turn affeds the
energy consumption. Unlike minimum length paths, mini-
mum energy paths may contain circular segments of varying
radii. We show how to efficiently construct a graph which
generalizes Dubins' paths by including segments with ar-
bitrary radii. Our algorithm uses the dosed-form solution
for the optimal velocity profiles as a subroutine to find the
minimum energy trajedories, up to afine discretizaion. We
investigate the structure of energy-optimal paths and high-
light instances where these paths deviate from the minimum
length Dubins' curves. In addition, we present a cdibration
methodto find energy model parameters. Finally, we present

A preliminary version o this paper withou the path planning sedion
appeaed in[19].
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results from experiments condwcted ona austom-built robat
for following ogimal velocity profiles.
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1 Introduction

Energy optimizaion is a fundamental requirement to
adhieve long term autonomous deployments of mobhile
robas. One of the main batlenedsfor robasis the limited
lifetime of on-board batteries. To extendthe system lifetime,
it is criticd to optimize the energy consumption o the
roba, in addition to harvesting additional energy. Motion
is a major source of energy consumption. In this work, we
studythe problem of minimizingthe energy consumption by
optimizingthe motion o the robats.

In particular, we focus on car-like robas powered by
Dired Current (DC) motors. It iswell-known that the energy
consumption o a DC motor depends on its anguar speed
and accéeration [1]. The anguar speed and accéeration
of the driving DC motor in turn controls the trandational
velocity and accéeration of a ca-like roba. We study the
problem of computinga path andthe aorrespondng velocity
profile of arobat so that it consumes a minimum amourt of
energy to travel.

The dasscd problem of optimizing the path and
velocity profiles for mobil e robas whil e satisfying velocity
and/or accéeration constraints is known as kinodyramic
planning [5]. The pioneeing work for finding minimum
length paths for a forward-only car-like roba was dore
by Dubins [6]. Reed and Shepps [17] extended this work
for a ca that can goforward and badkward. Balkcom and
Mason[2] used an optimal control formulationto derive the
time optimal trgjedories for bounded velocity diff erential
drives. Recantly, Chitsaz d al. [3] used similar techniques
to give the complete charaderization for minimum whed
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rotation pathsfor differential drive robas. Aswe will show,
the minimum length or time paths are nat the same &s the
minimum energy paths. Figure 1 shows one such instance
where the energy optimal path deviates from the minimum
length (Dubins) paths.

Energy-Optimal Path

- - - Dubins Path
Min. Energy Path

— A ———— e
(0.0.15,0) @.2.15m

Fig. 1 The minimum length path consists of 3 circular segments,
whereas the minimum energy path consists of a straight line segment
and 5circular segments of varying radii. The optimal velocity profile
alongthe path is given by the mlor in the hea map aongthe path. The
straight line and circular segments with higher turning radius alow
the robat to move & a higher speed and thus for a lesser time leading
to lower energy consumption (despite being longer). We explore this
trade-off between velocity, turning radius, path length and energy in

this paper.

Existing literature of finding minimum energy paths
for robas includes the work of Sun and Reif [18] who
consider the problem of computing the optimal path for
robas traversing a terrain. Under the asaumption that the
friction coefficients are known aaossthe terrain, they show
how to compute a path that requires minimum energy to
overcomefrictional forces. Thiswork generatesthe path bu
does naot yield an optimal velocity and accéeration profile.
Furthermore, the paths found are piecavise linea which
canna be diredly applied for car-like robas.

With recent advancements in hylrid and eledric
vehicles techndogy, power management and optimization
has recaved considerable interest in the automotive
sedor (see eg. [9]). Reseach studies in this area target
power optimizaion based on the users input and driving
profiles. However, there has been little work on finding
energy efficient trgedories for vehicles that navigate
autonamously. Energy optimal trajedory planning has also
been studied for robaic manipulators. Gregory et al. [8]
studied the problem of finding energy-optimal control inpus
for a manipulator with two revolute joints to follow a
prescribed path. Wigstrom et a. [21] studied the problem
of scheduling jobs for possbly multiple industrial robats,
where eab job requires the roba to ogtimize its control
profile with resped to energy and follow a prescribed path.

Our work differs from this literature in that we use the
kinematic and energy model for a ca-likerobat. In addition,
we focus on simultaneously computing the energy optimal
path and velocity profile dongthis path.

In order to compute velocity profiles, the power
consumption needs to be modeled. Mel et al. [16] model
the power consumption as a sixth-degree polynomial of
the roba’s geed using experimentaly colleded data
However, their model does not incorporate accéeration.
More importantly, they use this model to compare velocity
profiles but do nd address the problem of computing an
optimal profile.

Kim and Kim [13] find the optimal velocity profile for
a roba moving on a straight line, when the total time to
travel is fixed. However, this olution daes not incorporate
any bound onmaximum velocity of the robd. In [12],
they propose arotational tragjectory planner that minimizes
the energy consumption. They do nd present a systematic
method to combine the solutions for trandational and
rotational tragjedories. Thus, it is not clea if this approac
yields an optimal solution. Wang et al. [20] studied the
problem of finding a minimum energy trapezidal velocity
profile. As we will show shortly, trapezoidal profile itself
is not optimal in terms of total energy consumption. In
addition, they do nd consider any upper bound onthe
velocity of the roba. Further, their technique is only
applicable for turn-in-placemove-forward type of motion
for differential drives, andis not experimentally verified.

In this paper, we study the problem of computing peths
and velocity profiles for forward-only ca-like roba that
minimizes the energy consumption in a flat, obstade-free
environment. First, we focus on the cae of finding the
energy optimal velocity profile when the path is given.
Depending on the goplicaion, a high-level planner can
spedfy the exad path to befoll owed bythe roba. However,
often the velocity along the path is free to be abitrarily
set. For such situations, we present a dosed form solution
for the velocity and acceeration profile that minimizes the
energy consumption, based on ou model. Next, we consider
the problem of computing the minimum energy path itself,
given astart and gl positionand arientation (pose) for the
roba.

Dubins [6] first showed that the minimum length paths
between two paoses for car-like robas consists of at most
three segments. Furthermore, ead segment is one of three
types. straight line, left turn with minimum turning radius,
and right turn with minimum turning radius. As we discuss
in detail in this paper, for minimum energy paths there is
atrade-off between the length of the paths, turning radius,
frictional forces, velocity and accéeration d the roba.
Unli ke minimum length paths, a minimum energy path may
contain segments with varying turning radius (Figure 1).
To acoommodate this, we present a graph (termed Energy
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Roadmap) which generalizes the notion d Dubins paths
by including turns with arbitrary radii on a discrete set of
pases. The Energy Roadmap also incorporates the dosed-
form solution for optimal velocity profiles. We show how
to buld this gructure dficiently, and present details of
an implementation. Finally, we investigate the structure of
minimum energy paths found sing ou agorithm, and
highlight instances when these paths deviate from the
Dubins' paths.

Therest of the paper is organized asfoll ows: The energy
model and the formal problem statement are presented in
Sedion 2 We derive the optimal velocity profiles with and
without a maximum velocity boundfor a path with single
segment in Sedions 3 and 4 respedively and for multiple
segments in Sedion 5 The gplication o these results
to simultaneously compute the minimum energy path and
velocity profiles is presented in Sedion 6. Experiments on
our custom-roba are presented in Sedion 7 along with a
cdibration procedure for estimating the parameters of the
energy model in Sedion 7.1. We conclude with adiscusson
onthe utility of our resultsin Sedion 8

2 Problem Formulation

First consider the problem of computingthe optimal velocity
profile when given a path T on which the roba will
move. The instantaneous position o the roba along 1 is
represented by a single variable of time x(t). The linea
velocity and acceeration d the roba aong this path are
represented by v(t) and a(t) respedively. We define the
state of the robat by X (t) = [x(t), v(t)]". The state transition
equation can be written as,

) — KO _ v
0= i) =) @
where a(t) isthe control inpu.

We first describe the energy consumption model for the
roba, beforeformally stating the problem.

2.1 Energy Model

Consider a roba with ca-like steging, with forward,
tranglational velocity provided by a DC motor. We use the
model described in [1] for energy consumptionin a brushed
DC motor. Thisdetail ed model takesinto acourt the energy
disspated in the resistive winding, the energy required to
overcome internal and load friction and the medhanicd
power delivered to the output shaft. The instantaneous
currenti(t) in the motorsis given by,

da(t)
dt

() = = [T+ T+ Dyo(t) + (G + 1) @)

T

andthe voltage e(t) aaossthe motor is given by,
e(t) =i(t) R+ Kew(t) (3)

where w(t) isthe anguar velocity of the motor, Kg and Ky
are badk-eledromotive force and torque mnstants, Tr and
T areinternal andload frictional torques, D+ isthe internal
damping, and Jy and J_ are motor and load moments of
inertia.

Since linea velocity of the roba and anguar velocity
of the motor for a ca-like roba are propartional to eadh
other, we can rewrite Equations 2 and 3to yield the energy
consumptionfor travelingfromt = 0tot = tf as,

E— /Otf [et)i(t)]at.
— /: [claz(t) + VA (t) 4 cav(t)

+ -+ salt) + cov(t)alt) d. @)

where constants cy,...,Cg are combinations of the motor
parameters, and v(t) and a(t) are the linea velocity and
acceeration o the roba obtained from w(t) and the radius
of the whed. When the initial and final velocity values
are the same for 1, the net contribwtion by the terms
correspondngto cs and ¢ is zero and can be ignared [1].
Hence, we can rewrite the energy model as,

E= / K [claz(t) +CVA(t) + Cavi(t) + c4] dt. (5)
0

The mnstants ¢y, ...,c4 depend onthe motor parameters
which in turn depend onthe roba design and the surface
on which the roba is moving. These parameters can
be obtained using the cdibration procedure presented in
Sedion 7.1.

The roba’s wheds may dlip when it is making a
sharp turn at a high speed. The maximum speed with
which the roba can move dong 1 is a function o the
instantaneous turning radius, the inertia of the roba and the
frictional forces with the surface We asaume the maximum
centrifugal force withou dlipping can be spedfied by a
parameter Fyax. Thusthe maximum safe trandational speed
without dlipping will be,

n(t) =/ T ©

wherer(t) is turning radius and mis the massof the robat.
Any other function of the form vin(t) = f(r(t)) can be eaily
incorporated in our algorithm.
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2.2 Problem Statement

Let D be the total length of 7. The energy consumption for
a velocity profile v(t) traversing T is given by Equation 5
Thefina timet; can befixed or kept free The roba starts
from and returnsto rest over 1. This gives us the following
boundry condtions,

v(0) =0, v(tf) =0, x(0) =0, x(tf) =D (7)

We study four problemsof increasing generality. For the
first threeproblems, the objediveisto find avelocity profile
v(t) to minimize E, subjed to the constraints given below:

Problem 1 1 consists of a single segment. There is no
bound onthe maximum velocity of the robd, i.e., v(t) >
0 for 0 <t <ts. Find the optimal velocity profile v*(t)
minimizing Equation 5 subjed to state transition and
boundry constraints given by Equations1 & 7.

Problem 2 1 consists of a single segment. The maximum
velocity of the roba over 1 is boundd by constant
Vm, 1.e, 0<v(t) <vy for 0<t<t:;. Find the optimal
velocity profile v*(t) minimizing Equation 5subjed to state
transition and boundry constraints given by Equations 1 &
7.

Problem 3 1 consists of N segments composed of straight
lines and curves. There is a separate velocity bound for
eath segment i given by vm(i). vm(i) is constant over
the i!" segment. Let D(i) be the distance to travel for
eahh 1 <i < N. Find the optimal velocity profile v*(t)
minimizing Equation 5 subjed to state transition and
boundry constraints given by Equations1 & 7.

Finally, we consider the problem of computing the path
T itself. T is pedfied by the steging control input ¢(t) and
the translational velocity v(t). Theroba startsat and returns
to rest. We do nd consider the aost of steeing, and assume
for simplicity that the roba can instantaneously switch
the steaing inpu. However, our algorithm (spedficdly the
Energy Roadmap presented in Sedion 6) may be modified
to include these onstraints. We aaume that there ae
no obtstades in the environment. Many sampling-based
planning algorithms that consider obstades often require a
subroutine that computesthe optimal cost and path between
two posesin an obstade-free eavironment (see eg. [11,15]).
Hence, we focus onthe fundamental case of finding energy-
optimal paths without considering otstades.

Problem 4 Given start and gaal poses, compute apath t
and a velocity profile dongthis path for a ca-like roba to
minimize Equation 5. The velocity at all times must obey
the constraint given by Equation 6. The roba starts at and
returnsto rest.

The solutions for Problems 1, 2, 3 & 4 are presented
in Sedions 3, 4, 5 & 6 respedively. Problems 1 & 2 form
spedal cases of the last two problems and provide insight
into the structure of general optimal velocity profiles. We
use the solutions of thefirst two problemsas subroutinesfor
solving Problems 3 & 4.

3 Optimal Velocity Profilewithout Bounds

In this sdion, we present the solutionto Problem 1, when
the path T consists of asingle sedionwith no bound orthe
maximum velocity of the roba. We first state the necessary
condtions and present the dosed form solution for the
optimal velocity profile. Then, we discuss and provide
insights for the structure of the optimal profile. Finaly,
we mmpare the optimal profile with the commonly-used
trapezoidal velocity profile.

3.1 Solutionto Problem 1

When there is no bound onthe maximum velocity, the
Hamiltonian [14] for this problem can be obtained as,

H(X(t),a(t), A (t),t) = cra’(t) +cav?(t) + cav(t)

+ Cat+Ar(t)v(t) +A2(t)a(t) )
where A;(t) and A,(t) are the Lagrange multipliers and
accéerationa(t) isthe control.

The threenecessary condtionsfor a*(t) to optimizethe
Hamiltonian for al timet € [O,t¢] are given as,

oH . oH oH

N A (t)__d_X’ = 7a ©)
Applying these necessary condtions, we can solve

the resulting partial differential equations for the optimal

control and statesto get,

X (t) =

a(t) = ks ! — ke (10)
V(t) = s18 + e — (°3+83) (11)
2c;

ey SIE€Y e M (ogt s
X (1) = 2 - 2 —( o )t+s4. (12)

[C
wherek = C—2 ands,...,S4 are constants.
1

We can solve for sp,...,S in terms of the final time t¢

by substituting the boundary condtionsgiven in Equation 7
for v¥(t) and x*(t). We obtain,

o Dk

o kty e (kty—2)+ 2
=56, s3=201(s1+5)—Cs
i
-

N (13
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By substitutingin Equations 10-12 we obtain,

N kit —t) _ gkt
a(t)_D<C_1><ktf+ek‘f(ktf—2)+2>’

B (144 — (et 1 gdy)
=0 c_1< Kty + €91 (ke — 2) + )

n (U gy (1) k(e 4 1)
Xm_D( ktg + €4 (ktf —2) +2 )

(14

Since the final time is freg it can be solved for using the
additional boundry condtion (known as the transversality
condtion) given by,

a’(tr),A"(tr),ts) =0. (15

Substituting Equations 10-12 and 13abowve resultsin,

H(X*(ts),

(Dg—i+2)(1_e“f)+\/Ei‘l‘ktf(nek‘f)_o, (16)

which is an equationin asingle variable t; (all other terms
are mnstant) and can be solved using any solvers. (We
used MATLAB’s solve function). Alternatively, if the final
time is fixed, we can diredly substitute this given value in
Equation 14to find v*(t).

Optimal Velocity Profile

1.5F

Velocity in m/s

0.5r

O0 5 10 15 20 25 30
Time in secs

Fig. 2 The optimal velocity profile v*(t) for a distance D = 50m
usingcy, .. .,c4 obtained duing cdibrationin Sedion 7.1. The optimal
profile consists of symmetric exporential curves, reating a maximum
velocity at t =tf/2.

Figure 2 shows the optimal velocity profile obtained for
traveling a distance of 50m using Equation 14 It can be
observed that the profile consists of symmetric accéeration
and decderation curves with an almost-constant velocity
region in the midde. From Equations 14 and 16 we can
show that the pesk velocity is readed at t = t¢/2 and is

Optimal Control

0.5

Acceleration in m/s?
o

-0.5}

0 5 10 15 20 25 30
Time in secs
Fig. 3 Optimal Control a*(t) obtained for traveling a distance of

D = 50m correspondng to the optimal velocity profile shown in Figure
2.

Kt
e2'f —1
given by, v* (%) = %p
Ve ()
optimal control profile a*(t) is hown in Figure 3. The
acceeration profile is a smooth exporentially deaeasing

function. The accéeration is amost zero in the midde
region (exadly zeroatt =t¢/2).

The oorrespondng

3.2 Structure of the Optimal Profile

The optimal velocity profile shows smilar structure when
the distanceto travel D varies. Figure 4 shows the optimal
velocity profiles for traveling four different distances. The
optimal profile reates the same pe&k velocity and daes not
gofaster even if the distanceto travel increases.

Optimal Velocity Profile

=
2]
T

Velocity in m/s
=

o
o

0 . . . . .
0 10 20 30 40 50
Time in secs

Fig. 4 Optimal Velocity v*(t) profiles obtained for traveling dstances
D =5,35,70,100m follow asimil ar structure.
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From the st function (Equation 5), we seethat both
higher velociti es (throughterms ¢, and c3) and longer times
(throughc,) are penalized by higher energy cost. Hence, this
pe&k velocity value represents the energy trade-off between
moving faster (and consequently for a leser time) and
movingslower (andfor longer times). The followinglemma
sheds light on this underlying structure for the optimal
velocity profiles.

Lemma 1 Consider an arbitrary vedocity profile \t) trave -

ing a dstanceD. Let the total energy consumption o v(t) be

E. If thegiven profile dosses % between timest; andt; 1,
2

we anreplacethis edion o v(t), ti <t <tj,1 by aconstant

. . C . .
veocity sedion o v; = C—4, so that the resulting ve ocity

2
profile covers the same distance and consumes energy less

thanv(t).

3.3 Comparisonswith trapezoidal velocity profile

Optimal vs. Optimal Trapezoidal

2r o
1.5¢
2
S
£
2
2 40
o
K3}
>
0.5-
0 5 10 15 20 25 30 35
Time in secs

Fig. 5 Optimal trapezoidal profile computed using the same energy
function shown together with the general optimal profile for traveling
D = 50m. The general optima profile we compute gains higher
savings with resped to the trapezoida profile while accéerating and
decderating. Thisyields higher energy savings when thetotal distance
to travel is less a scenario commonly seen when the roba has to
frequently start and stop.

A trapezoidal velocity profile is commonly used for
its ease of implementation. A trapezidal velocity profile
(see Figure 5) consists of a constant accéeration sedion,
followed by a mnstant velocity sedion, followed by a
constant decderation sedion. In [20], Wang et al. computed
the optimal trapezoidal velocity profile for traveling a given
distance D. However, their result is only applicable in the
case when there is no bound orthe maximum velocity of
the roba. Figure 5 shows the general optimal profile and

optimal trapezoidal profile computed for travelingadistance
of D = 50m, with nomaximum velocity constraints.

The general optimal profile we compute gains higher
savings with resped to the trapezida profile while
acceerating and decderating. For example, the optimal
profile yields 1.94% savings when traveling 1Im, while
the savings drop to 0.32% when D = 100m for the
parameters cdculated on ou custom robd. In situations
where the robat hasto frequently stop, foll owingan optimal
profile would result in more energy savings and a longer
lifetime. In addition, these figures are highly system-
spedfic. The velocity profile computed in this work is
guaranteed to minimize the energy consumption for the
stated assumptions.

4 General Solution Incorporating Maximum Velocity
Bound

The optimal profile given in Sedion 3 daes not satisfy any
bound onthe maximum velocity imposed by the physicd
limitations of the roba. In this £dion, we solve for the
optimal velocity profile for Problem 2, with abound onthe
maximum velocity v(t) < vy, We now derive the analyticd
solution for Problem 2 by first discussng the possble
structures of an optimal profile. Depending onthe value of
Vm and D, the optimal velocity profile can belongto one of
the following two cases.

4.1 Unconstrained optimal profile does naot violate bound
V(t) < vm

In the case that the optimal velocity profile computed in
Sedion 3 daes not exceal the boundvy, then this profile
isavalid solutionfor the constrained case too. Thishappens

when v, > %. Additionally, in the case when the distance
2

to travel D is gnall, the optimal velocity profile may not

%. We can observe this

C2
situationin Figure 4 when D = 5m.

have enoughtime to read v, or

4.2 Unconstrained optimal profile violates the bound
V(t) < vm

If the unconstrained optimal profile violates the bound
Vm, the constrained optimal velocity profile will consist of
unconstrained U (v(t) < viy) and constrained arcs C (v(t) =
Vm) joined together at corner points. We show that there
existsan optimal profile with aU — C — U sequence (or one
of its degenerate cases {U — C,C — U,C}) having corner
pointsat timest =t; andt =t; —t, (degeneracy occurswhen
either or bath of t; andt, equal to 0).
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By definition, there caina be anay U —-U or C —
C sequence, as these do nd include any corner paints.
Combining this observation with the following lemma, we
show that the constrained velocity profile is limited to a
U — C — U sequenceor one of its degenerate case.

Lemma 2 The optimal veocity profile cannd consist any
sequenceof theformC — U —C.

The proof follows a process smilar to that in Lemma 1.
We show that any C — U — C sequence can bereplacal by a
single C segment to reducethe energy consumption.

We now show how to oltain the solution for this case
in closed form. Spedficdly, we show how to oltain v*(t)
for the unconstrained and constrained arcs and compute the
corner pointst; andts.

We begin by writing the velocity constraint in the form
of state inequality S= (v(t) — vm) < 0. We oconwert the
state inequality S into a control equality S and interior
point constraint G by differentiating S once, lealing to
S = y(t) = u and G = &(V(t) — Vim). The Hamiltonian
is augmented with the control equality constraint between
[t1,t; —to] andis given by H = H + u(t)a(t). Here, u(t) is
the sladk variable sssciated with the cntrol constraint and
H is given by Equation 8

We use the three necessry condtions given in
Equation 9to oltain the optimal profile in the time interval
[0,t1] and [tf —tp,t;]. On the mnstraint boundy, i.e.,
t € [t1,tf — t], the following recessry condtions must
hold [10],

OH . oH oH

X*(t)za—)\ A)=gx 0=— a7

Additionally, onthetwo corners(t =t;, t =t; —tp), the
foll owing condti ons must hold for the optimal solution,

-
HE) =M+ | G A=A - |37
H((t —t2) ") = H((tr —t2) )
At —t2)") = A((tr —t2)7) (18)
Using the condtions given above, we can solve for the
optimal control and velocity profilein terms of the constants

for the off-boundary exporential curves, andtimest;,, t, and
t¢. The optimal velocity profilein this caseis given by,

s (6 + @Y — (14-&2)),
0o<t<tyy
Vi(t) = 4 Vim, th<t<ti—t, (19
S (e*k(tf*tfﬁz) +et-t (14 e2kt2)) ,
tr —to <t <tj.

1

We can oltain the values of these constants and times
using the initial and final condtions, the transversality

condtion gven in Equation 15 and the interior point
congtraint v*(t) = v, t <t<tf—tyas,

Vm

ENCEE
Caq
— +V
1 C2—|- m

tl - t2 = E |n &47_\/
C2 m
The final time can then be cdculated by uwsing the total

distance to travel and the distances traveled in the two
exporentia curves.

(20)

X (tf —to) — X*(t
tr =t1+to+ (tr —t) (l) (21)

Vm

Optimal Velocity Profile

aan

0 5 10 15 20 25 30
Time in secs

Velocity in m/s

Fig. 6 Optimal Velocity (v*(t)) profile obtained for maximum velocity
bound vy, = 1m/s. The mnstrained velocity profile onsists of
exporential acceeration and decderation curves with the constraint
boundxry in the midde. This profile is not the same & that obtained
from unconstrained solution by setting velocity to v, wherever it
excedls.

Figure 6 shows the optimal velocity profile obtained
for traveling a distance of 25m with the maximum velocity
boundset to v, = 1m/s. Observe that the optimal velocity
profile foll ows an exporential curvetill it hits the boundary
at t; = 4.06s and then stays on the constraint boundry,
before following a symmetric exporential curve to zero.
However, this profile is not the same &s that obtained from
the unconstrained solution by setting velocity equal to vy
wherever it exceeads. This unconstrained optimal velocity
profile obtained from Sedion 3is also shown in Figure 6.
The aorrespondng ogtimal control a(t) is howninFigure7.
The accéeration is zero when v(t) is on the constraint
boundiry, and foll ows exporential curves otherwise.
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Optimal Control

0.5

Acceleration in m/s?
o

-0.5¢

0 5 10 15 20 25
Time in secs
Fig. 7 Optimal control for the case with bound ormaximum velocity.
Note that the control is zero whenever the velocity is on the constraint
boundxry (seeFigure 6).

5 Optimal Profile over Multiple Segments

In many applicaions, a high level task planner is used to
find the exad path to be followed by the robat. However,
the velocity profile of the roba alongthis path is freeto be
optimized. We use the solution from the preceding sedions
to solve for the problem of finding the optimal velocity
profile when the given path consists of N segments (see
Figure 13). We restrict our attention to the case when the
paths are composed of straight-line segments and constant
curvature turns with possbly different turning radii. For
ead segment, we ae given maximum all owable velocity for
the roba vm(i) (see Equation 6) and the distance to travel
D(i), L<i<N.

The robat initially starts at and returns to rest, however
theinitial andfinal velocity for the intermediate segmentsis
not constrained to zero. Let vp(i) and v¢ (i) betheinitial and
final velocitiesfor ssgmenti. Thus, vp(1) = 0andvs (N) =0.
The velocities vp(i) and v (i) can be non-zero for al other
intermediate segments. If we know the v (i) and v¢ (i) that
the optimal uses, we can find the entire velocity profile.

5.1 Velocity profile subroutines

While solving for the optimal profilesin Sedions 3 and 4,
we oonsidered only zero initial and final velocity boundary
condtions. Here, we extend this result for possbly non
zero Vg and v as initial and final velocities, and use this
extension as a subroutine for solving Problem 3. Note that
in Problem 3, the first and the last segments have zeoinitia
andfinal velociti esrespedively, and hencethe energy model
(which ignaresthe terms cs and ¢ because they cancd-out)
remainsvalid (seeprodf in appendix).

For segments with no bound orthe maximum velocity,
by following aprocess $milar to that described in Sedion 3

we get,

(Vo—vi)(1—e M —kts) + Dk(1—e M)
(2 —ktf) +e M (24 kts) —4
(Vo — Vi) (1— € +kt) — Dk(1—€)
g (2—ktf) +e (24 kty) -4
$3 = 2C1(S1+2) — C3— Vo,
S1-%

M=

The resulting profiles can be obtained by substituting the
abowein Equations 10-12.

Similarly for segments with a maximum velocity bound
Vim, the optimal velocity profile is given by,

(22)

St (ekt + ) (14 ezktl)) + Vo,
0o<t<ty
V() = q Vi, h<t<ti -t
S (e—km —t-20) 4 kit (14 e2kt2)) v,
tr —tr <t <ts.
(23
where,
g —  Vm—Vo) _ Vm—Vr
(-7 (&= —17
1 Cq+ CQV%1 — 2CoVoVm
t1=—1In
k Cq — CpV3,
2(CoVim(C4 — C2VgVim) (Vin — Vo)) 2
Cq — CpVZ, ’
1 Cq+ Cerzn — CaxViVm
to=—1In
k Cq — CpV2,
1
2(CaVin(Ca — CaVt V) (Vin — V) o
Cq — CpV2, ’

Figure 8 shows the optimal velocity profile obtained for
traveling a distance of 30m, with velocity bound vy, =
0.4m/s and initial and final velocities vo = 0.3m/s and
vi = 0.1m/s respedively. Note that the accéeration and
decderationtimes are different in this case.

Thefoll owingtheorem summarizestheresultsfor all the
cases considered.

Theorem 1 The optimal vdocity profile that minimizes the
energy consumption gven by Equaion 5for a segment with
distanceD isgiven by,

— Equaions 13 and 14when there is no maximumveocity

bound @ if v, > ?, andinitial and find vedociti esfor

2
the segment are both zero. The final time t¢ is obtained

from Equation 15
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Fig. 8 Optimal velocity profile with vo = 0.3m/s, vy, = 0.4m/s and
vi = 0.1m/sfor traveling 30m.

0.5m, 0.2m/s

6m, 0.8m/s 6m, 0.8m/s

\;\L/7hn04mk

Fig. 9 Typicd path for aroba composed of two straight li ne segments
and two turns of different radii. Segments have different maximum
all owabl e velociti es, depending ontheir radii.

— Equaions22 and 14when there is no maximum veocity

. C I .
bound @ if v, > C—4, and & least oneof initial or final
2

veocities for the segment is non-zero. The final time t;
is obtained from Equation 15
— Equaions 19 and 20when the maximum ve ocity bound
“ and initial and find vdocities are both

C2
zero for the segment. The final time t is obtained from

Equation 21
— Equaions 23 and 24when the maximum ve ocity bound

Vi <

C _— ) _
Vi < C—4, and initial or fina veocity is nonzero

2
for the segment. The final time t; is obtained from

Equation 21 The initial and find vedocity for the first
andlast segment respedivey is zro.

We can use the separate ceses of this theorem as
subroutines to compute the optimal velocity profile for
multi ple segments using dyremic programming. Note that
the last case is only valid when the initial and final velocity
of thefirst andthe last segment is zero (i.e., the net effed of
Cs and cg is zero).

5.2 Dynamic Programming

Let Viax = max{vm(1),vn(2),...,Vm(i),...,vm(N)}. We
then discretize the velocity space & the segment boundary

into M + 1 equal partitions vi¥ = Mvmax,Og k<M. Let

C(v¥,i) be the cost to read velocity v at the it segment
boundry. Let E(vp,vm,Vt) be afunction which gives the
energy consumption for an optimal velocity profile in a
segment starting with vp and ending with v¢, using the
solution in Theorem 1. If either vg > v OF V¢ > vy, then
the functionreturns the st as E (vg, Vim, Vi) = .

We can then use the following reaurrence for the ith
segment boundary:

c(v¥,i)= min

() 5 _ (i) N yk)
ogng(C(v Jd=1)+ENVY vn(i),v )),

1<k<M.

Since the roba initially starts from rest, we have the
following,

c.0) = {o k=0,
o 1<k<M.

The solution can be obtained by badctradking from

C(V(9,N) and finding optimal segment boundry velocity

values. The optimal velocity profile can then be constructed

using these optimal boundry velocity values to find

individual segment profiles using Theorem 1.

Optimal Velocity Profile

o
&)
T

Velocity in m/s
o
=

0 5 T 15 20 25

Time in secs
Fig. 10 Optima velocity profile with different bounds for different
segments. The given path consists of 4 segments with bound
vm = {0.8,0.2,0.8,0.4}m/sand dstancesD = {6,0.5,6,1}m

Figure 10 shows the optimal velocity profile obtained
for a path consisting o 4 segments. The velocity bounds
for these segments are vin = {0.8,0.2,0.8,0.4}m/s and the
distances D = {6,0.5,6,1}m respedively. By discretizing
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velocity at the junction boundries, we obtain the set of
transition velociti es using the reaurrence given above &,

Vo(1) = v¢(4) = Om/s
Vi (2) = vo(3) = 0.2m/s,

vi(1) =vo(2) = 0.2m/s,
vi(3) =wo(4) = 0.4m/s.

The profiles between the boundiries are computed using
Theorem 1.

For building the table C, we consider ead discretized
velocity vV at transition boundries. This discretization can
be aroided when a segment is wfficiently long so that the
roba can acceerate (or decderate) to the boundfor the
next segment. In this case agrealy approach which chooses
the transition velocity at the it segment boundary using the
following rule suffices:

0, i=0,
V(i) = < min{vm(i —1),vm(i)}, 0<i<N,
0 i =N.

3

We can then use Theorem 1 to compute velocity profilesfor
ead segmenti usingvo(i) = v(i — 1) and v (i) = v(i).
Using a procedure similar to that in Lemma 1 we can
show that at any segment boundxry, if a velocity profile
decderates further than min{vm(i),vm(i+ 1)}, it consumes
more energy than ancther profile that only decderates up
to min{vm(i),vm(i+1)}. It can aso be shown that the
complete velocity profile obtained by combining profiles
for ead segment is optimal, when eat distance D(i) is
large. However, when the distances are small, this drategy
forces the velocity profile to achieve v; (i) = v(i) lealing
to higher energy consumption. The optimal solution onthe
other hand will reat a much lower value for vi(i). The
dynamic programming solution presented here covers this
possbility by incorporating al boundry velocity values.

6 Energy Optimal Paths

In this :dion, we study the problem of finding an energy
optimal path and a velocity profile dong this path, given a
start and gaal poses for a ca-like roba (refer Problem 4).
Dubins [6] first showed that the minimum length curves
between two poses consists of at most three segments.
Each segment is either a left or a right turn of minimum
turning radius or a straight line path, and no dher type.
The maximum feasible speed alonga aurve depends on the
turning radius of the roba (Equation 6€). In the dsence
of any constraints on the maximum speed, we know from
the discusson in Sedion 3that the energy consumptionis
a monaonicdly increasing function o the length of the
paths. This auggests that for a ca-like roba cgpable of

. /C - . .
traveling at more than C—4 at the minimum turning radius,
2

the minimum length paths are dso the minimum energy
paths. The optimal profile for such pathswill be thase given
in Sedion 3

In general, computing the energy optimal paths canna
be dewmuped from finding the velocity profiles. The
structure of the minimum energy paths will depend on
the trade-off between turning radii r(t), maximum feasible
spedl as afunction o turning radii vin(t), the length of the
path and the energy parameters. While finding the general
solution, where the turning radius varies continuously in
time seams difficult, we find an approximate solution by
restricting the roba to move dong a sequence of constant
curvature paths.

To find such a path, we build a weighted graph (which
we term as the Energy Roadmap) G(V,E), where eat
vertex represents a discretized pose and velocity, i.e. V =
{(xy,0,v)}1. We ald an edge between two vertices v; =
(%, ¥i,6,vi) and v; = (Xj,yj,6j,vj) if (i) there eists a
(direded) circular arc (or straight line) from (x,yi, &) to
(Xj,Yj, 6j), and(ii) v; andv; areboth lessthan or equal to the
maximum feasible speed alongthis circular arc. The weight
onthe edgefromyv; tov; is st to the energy for the minimum
energy velocity profile dongthis circular arc with start and
end speeds =t to v; and vj. The energy is computed using
the result in Theorem 1.

The minimum energy path from the start and gcal vertex
can then be computed by any shortest path algorithm on G,
e.g. A* seach. The shortest (minimum energy) path will
be asequence of poses and dscretized velocities; the entire
roba path can be obtained by conneding the sequence of
pases with circular arcs or straight line segments and the
optimal profile dongthe path can be obtained by applying
Theorem 1 to the correspondng sequenceof velocities.

Paths from (0.0,0)

Fig. 11 In the Energy Roadmap we conred any two discretized poses
by a drcular path, if it exists. (8) All possble drcular paths garting
from (0,0,0). Theminimum turningradiusis st to 1m. A total of 2254
paths exists from (0, 0, 0) using side resolution of 0.1mand arientation
resolution o & (b) Paths gartingfrom (0,0,0) reading all discretized
verticeswith (x, 3, 0). There existsaunique drcular path starting from
agiven pose reading a given position.

1 Inthis edion, x refers to the X-coordinate of therobd;, and nd the
parametric position o the roba along a path as used in the preceding
sedions.
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In the Energy Roadmap, athough the poses are
discretized, we dlow conreding any two poses with a
circular arc (Figure 11). Note that we do nd impaose ay
grid conredivity or fixed radius turns. Further, althoughwe
discretize velocities at a pose, we use the optimal energy
profiles leveraging Theorem 1 to interpolate the velocity
between two vertices (as oppased to enforcing any fixed
profile).

The complete dgorithmispresentedin Algorithm 1. The

main subroutinesGetMinEnergy andGetMinEnergyProfile

are gpplicaionsof Theorem 1. ThesubroutineGetPath finds
the direded circular arc or straight line path. The rest of the
subroutines are obvious from their names.

(l’z’, Yi, 9z’)

N /—f//(xjvijej)

Fig. 12 There eists only one drcle passng throughapase (X, Vi, 6)
and a pasition (x;,y;). All other circular arcs (shown dashed) passng
throughthe same pair of pointswill naot have atangent aligned along 6
at (x,Y;). Hence in bulding the Energy Roadmap, instead of searching
over al pairs of poses (0(|X|?-|©|?)), we seach over pairs of poses
and pasitions (0(|X|?- |O])).

If |X], |©], |V| are the number of discretized pasitions,
orientations and velocities respedively, then the Energy
Roadmap has |V| = |X|-|©]- |V] vertices. Chedking for a
feasible path between every pair of vertices would require
0(1X]?|©|?|V|?) chedks. Instead we can reduce the number
of checksto ¢'(|X|?|@|) by observing that there is exadly
one drcular arc or line from a given pose (x,Vi,6) to a
position (xj,yj) as shown in Figure 12. Hence, we only
chedk ead pose with every other paosition for a feasible
path (Lines 4—6in Algorithm 1). Looking upa vertex from
a pose or position while alding the elge (FindVertex in
Lines 12—13 can be dorein constant time by maintaininga
map of pointers.

6.1 Implementation

We implemented? the dgorithm in C++. We used the GNU
Scientific Library [7] to perform numericd integration
in computing energy and for solving the transversality
condtion gven in Equation 15 To find the Dubins

2 Code is available to download from http://rsn.cs.umn.edu/
index.php/Downloads

paths, we used the Open Motion Planning Library [4].
Our implementation makes the following ogimizaions to
reducethe runtime and storage requirements:

— In general, the number of edges in G can he
O(IX[2|@||V|?). For a fine discretizaion, the storage
can become prohibitively high. We reduce the storage
requirement to ¢(|X||©||V|?) by observing that the
paths between two poses are invariant to rotation and
trandation in the plane. Hence, instead of computing
and storing edges between al possble pairs of vertices,
we initialy creae alookuptable consisting of outgoing
edges from (0,0,60,vp), for al 6 € © and vp € V to
al other vertices. Whil e finding the shortest path using
A* seach, eat time anew vertex, say (x,y,6,v), is
discovered, we first transform all other vertices in the
relative mordinate frame centered at (Xx,y). We can
then extrad its neighbas by looking up the relative
coordinates in the table. This approach trades the
running time of the search phase with the running time
for buil ding the Energy Roadmap (Lines 4-18 and the
storage required for the Energy Roadmap.

— To further speed upthe A* seach, we use alower bound
on the energy as a heuristic function. For any vertex
(%,Yi, 6,vi), alower bound onthe energy to read the
god (%,¥t, 6,v) can be computed asc4% where d is
the Euclidean distance between (x;,yi) and (%, yt).

A discretization of 0.1m, Zrrad and 0.5m/s was used for
finding minimum energy trajedories. Energy parameters
C1,...,Cq Were set to 1, Fpax = 0.05, m= 1 and minimum
turning radius was <t to 1m for ead instance The graph,
thus creaed consisted of 6.4M vertices. The lookuptable
to store potential edges (as described abowe) used 10GB
memory. Computing the minimum energy path typicaly
took under 15mins on a 3.0GHz computer. To find the
optimal velocity profile dongthe Dubins' path aresolution
of 0.02m/swas used for dynamic programming.

6.2 Comparisonwith Dubins' Paths

Figure 13 shows the energy-optimal paths and velocity
profiles obtained using Algorithm 1 for four start and gcal
poses. These four instances are representative of the trade-
off between the turning radius, maximum velocity and
energy. Figure 13(a) shows an instance where the Dubins
path consisted of three @nseautive drcular segments of
minimum turning radius. The maximum all owable speeds
aong turns of minimum radii using Equation 6 was
0.22m/s. Hence, the optimal velocity profile dong the
Dubins' path (right column) was forced to move & a slower
sped, for alonger time consequently payingahigher energy
cost. On the other hand, the optimal path consisted of a
straight line segment and turns with greaer turning radii,
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alowingtheroba to move & ahigher velocity. Theresulting
path, althoughlonger than the Dubins path, takes a lesser
amourt of timeto travel and pays alower energy cost.

Figure 13(b) shows an instance where the minimum
energy path does not contain a straight line segment,
whereas the Dubins' path does. Both paths begin and end
with circular segments of minimum turning radius. The
minimum energy path, however, spends lessr time on the
minimum turning radius ssgments and switches to segments
with higher turning radius (consequently lower energy) in
the midde. We can observe that one of the charaderistics
of minimum energy paths is to avoid turns with minimum
turning radius. Figure 13(c) shows an instance where the
minimum energy path does not contain any segment of
minimum turning radius.

We observed that as the length of the minimum radius
turns becomes smaller than length of the straight line
segment of the Dubins path, the energy overhead of
travelingat slower speedsdeaeases. Figure 13(d) showsone
such instance

It must be noted that these observations are afunction
of the system parameters. For example, if the roba is
cgpable of moving at very high speeds at minimum turning
radius, then the minimum energy path will coincidewith the
minimum length paths. Nevertheless Algorithm 1 will find
the minimum energy path, subjed to the discretizaion.

7 Calibration and Experiments

To test the validity of our results, we performed experiments
using ou custom roba. Wefirst describe asimple procedure
to findthe energy model (Equation 5) of theroba for agiven
flat surface

7.1 Calibration

Fig. 14 Left: Custom-built roba used in ou experiments. Right:
Attopilot voltage and current measurement circuit from SparkFun
Eledronics.

We use a wstom-built roba (see Figure 14) for
experiments. Two DC motors with their output shafts

Algorithm 1: Minimum Energy Trajedories
Input: s;t: Start and gaal pose
Data: X, 0,V discretized pasitions, orientations, speeds
Output: {@(t),v(t)}: Steaing angle and trandational velocity
profiles.
1 P+~ {(leX,06c0)}
2V« {(pePveV)}

/* discretized poses */
/* vertices */

3E«0
/* There exists exactly one circle/line through
given pose & position */

4 forall thepe Pdo

5 forall thel € X do

6 (8,len,rad) < GetPath (p,l)

7 if 8 € © then

8 Vm < GetMaxVel (rad)

9 forall thevg € V AND vy < v, do
10 forall thevi € V AND v; <vpydo
11 E < GetMinEnergy (len,vo, Vs, Vi)
12 Vi + FindVertex (P, Vo)
13 Vj < FindVertex (1,8, V)
14 E < EUEdge (v;,V},E)
15 end
16 end
17 end
18 end
19 end

20 S« FindVertex (S,0)

21 t + FindVertex (t,0)

22 Path«A* Search (V,E,st)

23 @(t) < GetSteering (Path)

24 V(t) <GetMinEnergyProfile (Path)
25 return {¢(t),v(t)}

couped together through a geabox drive the roba. The
roba has ca-like steeing controlled by a servo motor
through a fixed steeiing rod (unlike Ackermann steering).
We use separate batteries to drive the DC motors and pover
the rest of the dedronicsontherobat.

Our method uilizes a smple aurrent and vdtage
measurement circuit (Figure 14) conreded between the
output of the motor and the motor driver circuit. This
circuit measuresthe aurrent flowing throughand the voltage
aaossthe motor. An opticad encoder installed on ore of the
roba’swhedsmeasuresitslinea velocity. In the cdibration
procedure described next, we fix the steering o the roba so
that it drivesin astraight line.

We can write Equations 2 and 3as,

i(t) = by + bpv(t) + bea(t),
e(t) = bs -+ bsv(t) + bgal(t) (25)

where b,,...,bg are linea combinations of the interna
parameters of the motors. The cdibration procedure to
obhtain the energy parameters consists of the foll owing steps:

STEP 1: Drive the roba at a constant velocity (Vsg)
for some time interval (we used 10s in our cdibration
experiments). Log the aurrent and vdtage acossthe motor.
Repea for diff erent vy Valuesrangingfrom the minimumto
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(8 Energy-Optimal trajedory (39.4J,7.6m). Dubins path with energy-optimal velocity profile (40.13,6.9m). The Dubins path
consists of C-C-C segments, whereas the minimum energy path foundconsists of 1 straight line and 5circular segments.
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(b) Energy-Optima trajecory (19.1J,3.7m). Dubins' path with energy-optimal velocity profile (20.7J,3.6m). The Dubins path
consists of C-S-C segments, whereas the minimum energy path foundconsists of 4 circular segments.
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(c) Energy-Optimal trajedory (17.4J,4.7m). Dubins path with energy-optimal velocity profile (17.83,4.6m). The Dubins path
consists of C-S-C segments, whereas the minimum energy path foundconsists of 1 straight lineinitialy and 3circular segments.

Energy-Optimal Path Energy-Optimal Velocity Profile Optimal Velocity Profile on Dubins Path
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(d) Energy-Optimal trajedory (26.29J,6.55m). Dubins' path with energy-optimal velocity profile (26.353,6.59m). The Dubins' path
consists of C-S-C segments, whereas the minimum energy path foundconsists of 1 straight line and 5Scircular segments.

Fig. 13 The left column shows the energy-optimal paths found wsing Algorithm 1. The wlor profile dongthe path indicaes the optimal velocity
profile, aso shawn in the midde alumn. The dashed path is the minimum length Dubins' paths. The energy-optimal velocity profiles alongthe
Dubins' paths (using the dynamic programming presented in Sedion 5 are shown in theright column. Energy parameterscy,...,cs were set to 1,
Finax = 0.05, m= 1 and minimum turning radius was st to Im for ead instance. A discretization o 0.1m, £ rad and 0.5m/s was used for finding

minimum energy trajedories. Resolution o 0.02m/s was used for dynamic programming.
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Calibration Current vs. Velocity
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Fig. 15 Figuresobtained during cdibration onthe corridor surface Left toright: (a) Theroba initialy accéerates from rest to various st velocity
vaues. We compute the average aurrent and vdtage for the region where the roba moves at v (STEP 1). (b) Current consumption as a linea
function o the velocity, when the motor is nat accéerating (STEP 2). (c) Voltage goplied to the motor as a linea function o the velocity, when
the motor is nat acceerating (STEP 2). (d) Calibration procedure to determine the parameter c; in the energy model. We accéerate the roba with
various st accéeration values agy Whileloggng current and vdtage values (STEPS3 and 4).

the maximum adhievablevelocity for theroba. Figure 15(a)
shows some of the acual profilesobtained duringcdibration
for vsg from 0.5m/sto 2.5m/s.

STEP 2: Compute the average aurrent and vdtage for
ead of the abowetrials disregardingthe initial acceeration
phase. Using Equation 25 we can find the parameters by,
by, bs and bs using least-squares linea fitting to the data
(seeFigure 15(b and c)).

STEP 3: To find the remaining two terms bz and bg in
the model, program the roba to drive from rest at various
set acceeration values ag to read some velocity value (we
used 1.6m/sfor our system, seeFigure 15(d)).

STEP 4: Compute the values of bz and bg by
substituting as and by, by, b, and bs values obtained above
in Equation 25andtaking the average of all the readings.

STEP 5: Finally, cdculate the required parameters
C1,...,C4 in Equation 5 wing ¢; = bgbg, ¢, = bybs,
C3 = bibs + bobg, andcy = bybg.

Table 1 Energy model parameters (39 units) obtained using the
cdibration procedure.

Surface cy (o) C3 C4

Corridor 17.75 116 1046 470

Concrete 5.47 Q77 1010 424
Grass 8.10 528 2801 2507

Using the &owe procedure, we cdibrated ou roba
on three surfaces: indoas on a crridor and oudoars on
concrete and gass The corridor surfacewas flat whereas
the two outdoar surfaces had ureven terrain, the grassy area
more so. Figure 15 shows plots for the complete cdibration
procedure with the corridor surface Figure 16 shows the
current and vdtage plots for the grass sirface The aurrent
consumption and vdtage required for driving the roba are
higher for grass than for the corridor surface Since the
surfaces outdoars are uneven, the plots contain more noise

than thase for corridor. The model parameters computed for
all surfacesare shown in Table 1.

7.2 Experiments

We conducted experimentsonthe smoath corridor surfaceto
experimentally validate the optimal velocity profiles found
in Sedion 5and compared with two other profiles. We first
computed the analyticd solution for the velocity profile to
travel the given distance We then sampled this profile &
10Hz and stored the valuesin alook-uptable.

Figure 17 shows the optimal profile computed using the
dynamic programmingsolution presented in Sedion 5, for a
given path three segments with distances D = {10,3,10}m
and maximum velocity constraints as vim = {1,0.2,1}m/s.
The computed velocity profile is shown as a dashed curve.
Thetotal energy consumed over the entire profile was 595J.
The adual profile exeauted has amall deviations arising
due to ndse and dsturbances on the surface In this work,
we pre-compute the optimal trgjedory for the roba. A
useful extension to this could be to design an optimal
velocity feedbadk controller which minimizes the energy
consumption.

We mmpare the energy consumption o our optimal
profile with two commonly-used trapezoidal profiles. We
chose the maximum speeds for these profiles as 1m/s and

Current vs. Velocity

Voltage vs. Velocity

Voltage in volts
a

3,

0.8 16 18 2 0.8

12 14 12 14
Velocity in mis Velocity in m/s

Fig. 16 Current and vdtage a a function o velocity, for the grass
surface outdoas. Since the surface outdoass is nat flat, the plots
contain more noise than the corridor surface(Figure 15(b) & (c))
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Fig. 17 Optima velocity profile exeauted by the roba for mul-
tiple segments. The dashed curve shows the optimal profile com-
puted using the dynamic programming solution for segments with
D = {10,3,10}mand maximum vel ocity constraints vy, = 1,0.2, 1m/s.

2m/s, so that the robat coversthe same distancetaking more
and less time than the optimal respedively. We perform
these comparisonsfor D = 20mand D = 45m.

Optimal profile Faster and slower profiles

....... — Actual
18 d S~ |- - - Computed

N
&

H
N
I

-
@

b4
Velocity in mis

Velocity in m/s
s o
s

°
=
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Fig. 18 Left: Optima velocity profile exeauted by the roba for
traveling 20m in 184s while consuming 296 energy. The optimal
profile is own as dashed. Right: Sub-optima velocity profiles
exeauted by the roba for traveling 20m at maximum set vel ociti es of
1m/sand 2m/s. The energy consumption for these profilesis 303J and
319.

Figure 18 shows the optimal, slower and faster velocity
profiles exeauted by the roba in the corridor. The optimal
profile computed is also shown in Figure 18 as dashed.
Table 2 shows the comparison o the energy consumption
for al the trials condicted. As we can observe, the optimal
profile consumes leser energy than the two sub-optimal
profiles. Also, the energy savings beame more significant
asthe distancetraveled increases.

Table 2 Energy consumption duing experiments

D (m) Eon(J) Esow(J) Efas (J)
20 296 303 319
45 656 694 696

8 Conclusion

In this work, we studied the problem of computing
trajedoriesfor a ca-like roba so asto minimizethe energy
consumed while traveling ona flat surface We separately
considered the problem of computing the energy optimal
velocity profiles, and that of simultaneously computing the
energy optimal paths and velocity profiles. We presented
closed form solutions for the velocity profiles for two
cases. no constraints on the roba’s geeal, and a single
upper-bound on the speed. For the general problem
of computing bdh paths and trgjecories, a discretized
graph seach agorithm that leverages our closed form
solution for optimal velocity profiles was presented. Using
an implementation o this agorithm, we investigated
the structure exhibited by minimum energy paths and
highlighted instances when these paths differ from the
minimum length (Dubins) paths. Extensions to trajedory
planning in the presence of obstades using sampling-based
plannersis an avenue of future work.

In addition, we presented a cdibration procedure for
obtaining robad’s internal parameters related to energy
consumption. We demonstrated the utility of the cdibration
procedure and the dgorithms presented in the paper with
experiments performed ona austom-built roba.
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A Proof: Unconstrained Solution

The state transition equation can be written as,
oy | XO| V()
XV = [vm} - [a(t)

The objedive is to find a velocity profile v¥(t) which minimizes the
total energy required for motion gven by the foll owing cost functional,

(26)

= /Otf [c1a2(t) +C2V2(t)+03V(t)+c4] dt, @7

where the final time t; is kept a free variable. The initial boundary
condtions are given as,

v(0) =0, (29)
and the final boundxry condtions are given as,

X(tf) =D, v(tf)=0. (29

Hamiltonian
The hamiltonian H (X, A, u,t) isdefined as,

H(X, A, U,t) = I+ Az (t)X(t) + Az (t)v(t), (30)

where A1(t) and Ax(t) are the Lagrange multipliers, also cdled the
co-state variables which include the state transition equations as a
constraint to the objedive.

When thereisno bound orthe maximum vel ocity, the Hamiltonian
for this problem can be obtained using Equations 26 and 27as,
H(X(t),a(t),A(t),t) = cra?(t) + coV(t) + cav(t)

+a+ As(t)V(t) + A2 (D)alt) (3D)
where the accéeration a(t) isthe control.

The three necessry condtions for a*(t) to optimize the
Hamiltonian [14] for all timet € [0,t¢] are given as,

oH .« JoH
“a MU=
By substituting we get,
v(t)
a(t)
0,

_OH

X*(t) =

(32

X(t

vt

/\.1(t

/\.2(t 2coV(t) +Ca+ A,
A2(t) = —2c1a(t),

- Aa(t) = —2cav(t).

)
)

)
)
)
)
)
)

Using the last two equetions, we ca write,

—2c1V(t) = 2coV(t) + C3 + A1,
2c1V(t) + 2cov(t) + c3+ A1 = 0.

We can solve for this mnd ader differential equationto yield,

V(1) = i 4 spe - (°32Jg1‘°’3) (39

where k = E—i ands; — 4 are onstantsand A = s3.

Applying the state transition eguations, we can get the optimal
control and states given as,

a'(t) = ks —kspe M (34
K= - (S @)
k k 2c1 '

We can solvefor s; — 54 interms of thefinal timet; by substituting
the boundary condtions given in Equations 28 and 29 for v*(t) and
x*(t). We obtain,

_ Dk
T Ky (ki —2) 42
=516,
S3 = 2c1(s1 +2) — C3,
S-S
-
By substituting in Equations 34-35 we obtain,

e Co e(ktf —t) —e(kt)
=P (c_1> (ktf -+ (kg _2)+2> ’

o [G [l — (V1)
W(t)D\/C:< kte + € (ktp —2) +2 >’
X (t) = D (et gty (& — 1) ke( 4-1)

a Kty + €47 (ktr —2) + 2 ’

St =— (36)

@7




Energy-Optimal Trajedory Planning for Car-Like Robds 17
Since the final time is freg it can be solved for using the alditional First, consider the energy consumption Ej» for v(t),

boundry condtion (known as the transversality condtion) given by, .lz

HOC (t),a (t),A" (b)) = O. 39) Epp= /[1 [claz(t)+c2v2(t)+c4 dt + cadyo. (42
Substituting Equations 34-35 and 36above resutsin, I\cljow let us consider E},. The time taken in this case would be
(Dg+2)(1_éqf)+\/zjiktf(l+e'qf)zo’ (39) tczvi:.Themergyconsumptionis

which is an equetion in single variable t; and can be solved using
existing solvers. (We used MATLAB’s solve function). Alternatively,
if the final time s fixed, we can diredly substitute this given value in
Equation 37to find v*(t).

B Proof for Lemma 1

Proof Consider any velocity profile v(t) shown in Figure 19. Let D

and E bethetotal distance mvered and energy consumed by v(t). This

profile aosses % between times [t1,t2] and [ts,t4]. Let di2 and dag
2

be the distances covered by v(t) in these sedions. The total energy
consumption o v(t) is given by,

E = Eo1+ E12+ E23+ Ez4+ Egs, (40

where E;; refers to the energy consumption to cover the distance d;j.

Velocity

0 '21 tlz tI3 t4 t5

Time

Fig. 19 Sedionsof thisvelocity profile aossng (ve = , / %) between
2

[t1,t2] and [ts,ts] can be replaced by constant velocity (vc) sedions
resulting in avelocity profile that consumes lesser energy to travel the
same distance

We oonstruct ancther velocity profile V(t) by repladng the
sedions [t1,t] and [ts,t4] by constant velocity ve = % sedions for
V ¢

time % and % respedively. The total distance traveled by V/(t) is

C C
D, same & v(t). The total energy consumption of V' (t) isgiven by,
E' = Eo1+ Efp+ Ex3+ Eg4 + Ess, (41)

since V (t) is the same & v(t) everywhere except t € [ty,to] and t €
[t37t4]'

We now show that E' < E by proving bah Ej, < Ey» and E}, <
E3z4. This result can then be generalized to velocity profiles with any
number of crossng sedionsin either diredions.

te
Ej,= /[ [cla2 (t) 4+ V2 (t) + cav(t) + 04] dt,
J11
d
= CoVeO12+ C3di2+C4 % . 43
C

The distance d;» can also be written as,
t2
dip = /l v(t)dt]. (44)
s
Substituting Equation 44in 43 we obtain,

[k 2v(t)
ELr,=0 Vev(t)dt + cadiz+Ca dt. (45
&1

t Ve

Using Equations 42 and 45 we ca write,

2
Eip— EiZ = C1/ az(t)dt
Jtg

c [t C.
+ 22 [ ve(t) = v(t)] {i‘ —v(t)vc} dt
Ve Jty C2
o E12—Ep >0,

. C .
sincev(t) <vg < C—4. For the sedion between t3 andts, we can show
\ c2

that Ez4 — Eé4 > 0.
In generd we can replace ay number of such sedions crossng

1/% to yield ancther velocity profile with lower energy covering

2

the same distance moving at , /%. Hence, once the velocity profile
2

hits %, there is no reason to deviate from this value except at the
2
boundxry (initial and final condti ons). O

C Proof: Constrained Solution

We begin by writing the velocity constraint in the form of state
inequality S= (v(t) — vim) < 0. The state inequality Sis converted into
a oontrol equality andinterior point constraint by differentiating Sonce
leadingto,

SV =v(t) =u.
V(t1) = Vim (46)

Along the unconstrained arc, the state transition is governed by
Equation 26 On the constrained arc, the state transitioniis given by,

o8-l

The Hamiltonian is augmented with the control equality constraint
in[t1,tf —t2] andisgiven by,

H = c1a?(t) + coV2(t) + Cav(t) + ¢4
+A1(t)v(t) +A2(t)alt) + p(t)a(t) (49
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where u isthe slad variable asociated with the control constraint. In
theinterval [0,t;] and [ts —t2,t¢], the Hamiltonian is given by,
H = cia?(t) + V2 (t) + cav(t)

+Ca+ A1(t)v(t) + Az(t)a(t) (49
The interior point constraint is given by,
G = &(t)(v(t) — Vin). (50

clo<t<t

Using the necessary conditi onA = — dd—j we get,

M =0,

AM=S3.
and,

sl (51

A2 = —[2CoV(t) +C3+ 5] (52
Applying the third necessary condtion, 0= 2—2 we get,

0=2cia(t) + Az(t),

Aa(t) = —2ca(t).
Differentiating the ebove ejuation we get,
Aa(t) = —21(t).
From Equation 52we can write,

2¢;V(t) = 2cv(t) + C3+ Sa,

C3+$S3
— =0.
2c,

The solutionfor the bowe differential equationisgiven as,

V() — g—iv(t)

V(t) = sid et - BT
2c,
a(t) = sike! — ske ™
N _ C3+
XH(t) = %e’“— %e K 32C1$Gt+s4
AL(t) =sg,
Az (t) = —2cia(t)

Usinginitial condtions x(0) = 0 and v(0) = vo, we get,
N

= T

% _ste-w.

2c
Putting these together we get,

Vi(t) = s+ e M — (51 + 5 — W),

)

)=%e'“*% ’k‘f(swstVo)tf¥,
)

)

where s, and s, are two constants left to be evaluated.

C2t; —tr <t <tg

In this sdion, the system is governed by the same state equation as
intheinterval 0 <t <t;. Hence we get a similar form for the optimal
state and control given by,

Cg+§3
2c ’

Vi(t) =sje et pgelre M -
a'(t) = gke Ml — gkelre M,

X (t) = %e‘k‘fé<I - %ek‘fe‘kt - %t—ksﬁ,
AL(t) =s3,
A (0) = —2ca° (t).

where s, ... s, are the new constants to be solved for. Using the final
condtion, x(t;) = D, we get

k k 2c
_ S| S Gt
§4 =D k k 2cy t
Using the secondfinal condtion, v(t) = vi we get,
_ _BtSs
Vi=8+5, 2

S =201(8 +8 Vi) —C3.

The equations can then be written as,

Vi(t) = e K 1 et (6 5 —vy),
a'(t) = spke KU gkt

Af(t) =2c1(s; + 5~ Vi) — G,

A3 (1) = —2cia(t).

C.3 Corner condtions

We car now use the corner condtions to determine the unknavn
constants s, %, S;,S,. The corner condtions datethat A ((tf —tz) 1) =

A((ts —t2)7) andv((ty —t2) ") = v((ts —t2)7) and p((ts —t2)*) =0,
H(ty) =H(t;).
ats —t2) =0,
=g 2,
Usingthe other corner condtionv((t; —t2)*) = v((t; —t2) ™) we have,
V(tf —t2) = Vi,
S +5e? — () + 5 2 —vp) =i,

Vm — Vf

ENC T

Using similar arguments at the other corner t = t; we get thefina form
for the optimal velocity profile as,

s (ekt +e@1-b (14 ezml)) + Vo,
0<t<ty
Vi (t) = { Vi, tp <t<ti—tz
S (e*k(‘f*t*aZ) 4+t _ (1+ezk‘2)) + Vs,
tr —tr <t <ts.



Energy-Optimal Trajedory Planning for Car-Like Robds

19

where,

_ (vm—wvo)
Sl* (é(tlfl)zﬁ
_ Vm — Vs
527 (ektz_l)zs

Using the transversality condtion H(tf) = 0, we can determine the
timest; andt, as,

1 < C4 + CoV2, — 2CoVoVim
k

tp==1In
1 C4702V%]

1
2(CVim(C4 — C2VoVm) (Vim — Vo)) 2
Cs— V3, ’

‘ 1In<c4+czv,2n—ca2vam
2=rIN| —————————
k C4702V%1

1 (53
2(C2Vm(C4 — C2VVm) (Vm — V1)) 2
C4— CoV2, '

and the final time can then be cdculated by wsing the total distanceto
travel andthedistancestraveled inthe two exporential curves. Itiseasy
to seethat if vp or v isequal to vy, thent; = 0 or t, = O respedively.

D Proof for Lemma 2

Proof Consider any velocity profile oconsisting @ a C—-U-C
sequence @vering dstanceD. We can replacethisC — U — C sequence
with asingle C sedion, so that the resulting velocity profile covers the
same distance and consumes energy lessthan the original profile.

Let v(t) be any velocity profile that contains a C—U—-C
sequence. That is, v(t) =vm(t) for to <t <t; and t, <t <tz and
V(t) < vm between t; <t <tp. The energy consumption o this profile
for traveling a distance D = dp1 + d12+ do3 is E = Egy + E12+ Eo3,
where E; is the energy spent in traveling dij for v(t). We oonstruct
anather velocity profile that isidenticd to v(t) in [to,t1] and [t2, t3] but
covers the sedion dj a v(t) = vy. The energy consumption for this
new profile differs only in the d;» sedion.

By following a process $milar to that in Lemma 1, we can show
that E;, < Eqz leadingto E’ < E. Hence any C — U — C sequence can
be replacal by a single C segment to reduce the energy consumption.
Hence, the optimal velocity profile will never consist of aC—-U—C
seguence ]

E Proof of Energy Model for Non-zero I nitial and Final
Velocities

Lemma 3 Let T be a path with N segments darting and returning
to rest, i.e,, vo(1) = 0 and v¢(N) = 0. Let Eg4(i) and Esg(i) be the
minimum energy obtained for the it" segment using Equations 5 and 4
respedivdy. Then >i E14(i) = >i Ei6(i).

Proof First, consider the energy oltained using Equation 4. For ead
segment, we have

Exs(i) = /Otf [exa(t) + eV (t) + cav(t)
+ s+ csalt) +c6v(t)a(t)] dt
_ /0 ! [claz(t) + 02 (t) + cav(t) +c4] dt

+ ./Otf [c5a(t) + CGV(t)a(t)] dt

= Ei(i) + ER(i).

Now we have,

ZEle(i) = ZEllé(iHZEir’g(i)
= ZE%é(i)
= ZEM(i).

The second statement follows snce §;EZS(i) = 0 when vo(0) =
vi(N) = 0 as given by [1]. That is, the net effed of cs and cs is zero
when the roba starts and returns to rest. O



