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Abstract When a battery-powered robot needs to operate
for along period of time, optimizingitsenergyconsumption
becomes critical. Driving motors are a major source of
power consumption for mobile robots. In this paper, we
study the problem of finding optimal paths and velocity
profiles for car-like robots so as to minimize the energy
consumed duringmotion.

We start with an established model for energy consump-
tion of DC motors. Wefirst study theproblem of findingthe
energy optimal velocity profiles, given a path for the robot.
Wepresent closed form solutionsfor theunconstrained case
and for the case where there isa bound onmaximum veloc-
ity. We then study a general problem of finding an energy
optimal path along with a velocity profile, given a starting
and goal position and orientation for the robot. Along the
path, theinstantaneousvelocity of therobot may bebounded
as a function of its turning radius, which in turn affects the
energy consumption. Unlike minimum length paths, mini-
mum energy pathsmay contain circular segmentsof varying
radii . We show how to efficiently construct a graph which
generalizes Dubins’ paths by including segments with ar-
bitrary radii . Our algorithm uses the closed-form solution
for the optimal velocity profiles as a subroutine to find the
minimum energy trajectories, up to afinediscretization. We
investigate the structure of energy-optimal paths and high-
light instanceswhere thesepathsdeviatefrom theminimum
length Dubins’ curves. In addition, we present a calibration
methodto findenergymodel parameters. Finally, wepresent

A preliminary version of this paper without the path planning section
appeared in [19].
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results from experimentsconducted ona custom-built robot
for following optimal velocity profiles.
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1 Introduction

Energy optimization is a fundamental requirement to
achieve long term autonomous deployments of mobile
robots. Oneof themain bottlenecksfor robots is the limited
li fetimeof on-board batteries. To extendthesystem li fetime,
it is critical to optimize the energy consumption of the
robot, in addition to harvesting additional energy. Motion
is a major sourceof energy consumption. In this work, we
studytheproblemof minimizingthe energyconsumption by
optimizingthemotion of the robots.

In particular, we focus on car-like robots powered by
Direct Current (DC) motors. It iswell -knownthat the energy
consumption of a DC motor depends on its angular speed
and acceleration [1]. The angular speed and acceleration
of the driving DC motor in turn controls the translational
velocity and acceleration of a car-like robot. We study the
problemof computingapath andthe corresponding velocity
profileof a robot so that it consumesa minimum amount of
energy to travel.

The classical problem of optimizing the path and
velocity profiles for mobile robotswhile satisfying velocity
and/or acceleration constraints is known as kinodynamic
planning [5]. The pioneering work for finding minimum
length paths for a forward-only car-like robot was done
by Dubins [6]. Reed and Shepps [17] extended this work
for a car that can go forward and backward. Balkcom and
Mason[2] used an optimal control formulationto derivethe
time optimal trajectories for bounded velocity differential
drives. Recently, Chitsaz et al. [3] used similar techniques
to give the complete characterization for minimum wheel
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rotation pathsfor differential driverobots. Aswe will show,
the minimum length or time paths are not the same as the
minimum energy paths. Figure 1 shows one such instance
where the energy optimal path deviates from the minimum
length (Dubins’) paths.

Energy−Optimal Path

(0.0,1.5,0) (1.2,1.5,π)

 

 

Dubins Path
Min. Energy Path

Fig. 1 The minimum length path consists of 3 circular segments,
whereas the minimum energy path consists of a straight line segment
and 5 circular segments of varying radii . The optimal velocity profile
alongthepath isgiven by the color in theheat map alongthepath. The
straight line and circular segments with higher turning radius allow
the robot to move at a higher speed and thus for a lesser time leading
to lower energy consumption (despite being longer). We explore this
trade-off between velocity, turning radius, path length and energy in
thispaper.

Existing literature of finding minimum energy paths
for robots includes the work of Sun and Reif [18] who
consider the problem of computing the optimal path for
robots traversing a terrain. Under the assumption that the
frictioncoefficientsare known acrossthe terrain, they show
how to compute a path that requires minimum energy to
overcomefrictional forces. Thiswork generatesthepath but
does not yield an optimal velocity and acceleration profile.
Furthermore, the paths found are piecewise linear which
cannot bedirectly applied for car-like robots.

With recent advancements in hybrid and electric
vehicles technology, power management and optimization
has received considerable interest in the automotive
sector (see e.g. [9]). Research studies in this area target
power optimization based on the users’ input and driving
profiles. However, there has been littl e work on finding
energy efficient trajectories for vehicles that navigate
autonomously. Energy optimal trajectory planning has also
been studied for robotic manipulators. Gregory et al. [8]
studied theproblemof findingenergy-optimal control inputs
for a manipulator with two revolute joints to follow a
prescribed path. Wigstrom et al. [21] studied the problem
of scheduling jobs for possibly multiple industrial robots,
where each job requires the robot to optimize its control
profile with respect to energy and follow a prescribed path.

Our work differs from this literature in that we use the
kinematic andenergymodel for a car-likerobot. In addition,
we focus on simultaneously computing the energy optimal
path and velocity profile alongthispath.

In order to compute velocity profiles, the power
consumption needs to be modeled. Mei et al. [16] model
the power consumption as a sixth-degree polynomial of
the robot’s speed using experimentally collected data.
However, their model does not incorporate acceleration.
More importantly, they use this model to compare velocity
profiles but do not address the problem of computing an
optimal profile.

Kim and Kim [13] find the optimal velocity profile for
a robot moving on a straight line, when the total time to
travel is fixed. However, this solution does not incorporate
any bound onmaximum velocity of the robot. In [12],
they propose arotational trajectory planner that minimizes
the energy consumption. They do not present a systematic
method to combine the solutions for translational and
rotational trajectories. Thus, it is not clear if this approach
yields an optimal solution. Wang et al. [20] studied the
problem of finding a minimum energy trapezoidal velocity
profile. As we will show shortly, trapezoidal profile itself
is not optimal in terms of total energy consumption. In
addition, they do not consider any upper bound onthe
velocity of the robot. Further, their technique is only
applicable for turn-in-place-move-forward type of motion
for differential drives, and is not experimentally verified.

In this paper, we study the problem of computing paths
and velocity profiles for forward-only car-like robot that
minimizes the energy consumption in a flat, obstacle-free
environment. First, we focus on the case of finding the
energy optimal velocity profile when the path is given.
Depending on the application, a high-level planner can
specify the exact path to befollowed bytherobot. However,
often the velocity along the path is free to be arbitrarily
set. For such situations, we present a closed form solution
for the velocity and acceleration profile that minimizes the
energyconsumption, based on our model. Next, we consider
the problem of computing the minimum energy path itself,
given a start and goal positionand orientation(pose) for the
robot.

Dubins [6] first showed that the minimum length paths
between two poses for car-like robots consists of at most
threesegments. Furthermore, each segment is one of three
types: straight line, left turn with minimum turning radius,
and right turn with minimum turning radius. As we discuss
in detail i n this paper, for minimum energy paths there is
a trade-off between the length of the paths, turning radius,
frictional forces, velocity and acceleration of the robot.
Unlikeminimum length paths, aminimum energy path may
contain segments with varying turning radius (Figure 1).
To accommodate this, we present a graph (termed Energy
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Roadmap) which generalizes the notion of Dubins’ paths
by including turns with arbitrary radii on a discrete set of
poses. The Energy Roadmap also incorporates the closed-
form solution for optimal velocity profiles. We show how
to build this structure efficiently, and present details of
an implementation. Finally, we investigate the structure of
minimum energy paths found using our algorithm, and
highlight instances when these paths deviate from the
Dubins’ paths.

Therest of thepaper isorganizedasfollows: The energy
model and the formal problem statement are presented in
Section 2. We derive the optimal velocity profiles with and
without a maximum velocity boundfor a path with single
segment in Sections 3 and 4 respectively and for multiple
segments in Section 5. The application of these results
to simultaneously compute the minimum energy path and
velocity profiles is presented in Section 6. Experiments on
our custom-robot are presented in Section 7 along with a
calibration procedure for estimating the parameters of the
energy model in Section 7.1. We concludewith adiscussion
on theutilit y of our results in Section 8.

2 Problem Formulation

First consider theproblemof computingtheoptimal velocity
profile when given a path τ on which the robot will
move. The instantaneous position of the robot along τ is
represented by a single variable of time x(t). The linear
velocity and acceleration of the robot along this path are
represented by v(t) and a(t) respectively. We define the
stateof therobot by X(t) = [x(t),v(t)]T . Thestate transition
equationcan bewritten as,

Ẋ(t) =

[

ẋ(t)
v̇(t)

]

=

[

v(t)
a(t)

]

(1)

wherea(t) is the control input.
We first describe the energy consumptionmodel for the

robot, beforeformally stating the problem.

2.1 Energy Model

Consider a robot with car-like steering, with forward,
translational velocity provided by a DC motor. We use the
model described in [1] for energy consumptionin abrushed
DC motor. Thisdetailed model takesinto account the energy
dissipated in the resistive winding, the energy required to
overcome internal and load friction and the mechanical
power delivered to the output shaft. The instantaneous
current i(t) in themotors isgiven by,

i(t) =
1

KT

[

TF +TL +D f ω(t)+ (JM + JL)
dω(t)

dt

]

(2)

and thevoltagee(t) acrossthemotor isgiven by,

e(t) = i(t)R+KEω(t) (3)

where ω(t) is the angular velocity of the motor, KE and KT

are back-electromotive force and torque constants, TF and
TL are internal and load frictional torques, D f is the internal
damping, and JM and JL are motor and load moments of
inertia.

Since linear velocity of the robot and angular velocity
of the motor for a car-like robot are proportional to each
other, we can rewrite Equations 2 and 3to yield the energy
consumptionfor traveling from t = 0 to t = t f as,

E =

∫

0

t f [

e(t)i(t)
]

dt.

=

∫

0

t f [

c1a2(t)+ c2v
2(t)+ c3v(t)

+ c4+ c5a(t)+ c6v(t)a(t)
]

dt. (4)

where constants c1, . . . ,c6 are combinations of the motor
parameters, and v(t) and a(t) are the linear velocity and
acceleration of the robot obtained from ω(t) and the radius
of the wheel. When the initial and final velocity values
are the same for τ, the net contribution by the terms
corresponding to c5 and c6 is zero and can be ignored [1].
Hence, we can rewrite the energy model as,

E =
∫

0

t f [

c1a2(t)+ c2v
2(t)+ c3v(t)+ c4

]

dt. (5)

The constants c1, . . . ,c4 depend on the motor parameters
which in turn depend on the robot design and the surface
on which the robot is moving. These parameters can
be obtained using the calibration procedure presented in
Section 7.1.

The robot’s wheels may slip when it is making a
sharp turn at a high speed. The maximum speed with
which the robot can move along τ is a function of the
instantaneousturningradius, the inertiaof the robot and the
frictional forceswith the surface. We assume the maximum
centrifugal force without slipping can be specified by a
parameter Fmax. Thusthemaximum safe translational speed
without slippingwill be,

vm(t) =

√

Fmaxr(t)
m

, (6)

where r(t) is turning radius and m is the massof the robot.
Any other function of theform vm(t) = f (r(t)) can be easily
incorporated in our algorithm.
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2.2 Problem Statement

Let D be the total length of τ. The energy consumption for
a velocity profile v(t) traversing τ is given by Equation 5.
The final time t f can be fixed or kept free. The robot starts
from and returns to rest over τ. This gives us the following
boundary conditions,

v(0) = 0, v(t f ) = 0, x(0) = 0, x(t f ) = D (7)

Westudyfour problemsof increasing generality. For the
first threeproblems, theobjectiveis to findavelocity profile
v(t) to minimizeE, subject to the constraintsgiven below:

Problem 1 τ consists of a single segment. There is no
bound onthe maximum velocity of the robot, i.e., v(t) ≥
0 for 0≤ t ≤ t f . Find the optimal velocity profile v∗(t)
minimizing Equation 5 subject to state transition and
boundary constraintsgiven byEquations1 & 7.

Problem 2 τ consists of a single segment. The maximum
velocity of the robot over τ is bounded by constant
vm, i.e., 0≤ v(t)≤ vm for 0≤ t ≤ t f . Find the optimal
velocity profilev∗(t) minimizingEquation 5subject to state
transitionand boundary constraintsgiven by Equations1 &
7.

Problem 3 τ consists of N segments composed of straight
lines and curves. There is a separate velocity bound for
each segment i given by vm(i). vm(i) is constant over
the ith segment. Let D(i) be the distance to travel for
each 1 ≤ i ≤ N. Find the optimal velocity profile v∗(t)
minimizing Equation 5 subject to state transition and
boundary constraintsgiven byEquations1 & 7.

Finally, we consider the problem of computing the path
τ itself. τ is specified by the steering control input φ(t) and
thetranslational velocity v(t). Therobot startsat andreturns
to rest. We do not consider the cost of steering, and assume
for simplicity that the robot can instantaneously switch
the steering input. However, our algorithm (specifically the
Energy Roadmap presented in Section 6) may be modified
to include these constraints. We assume that there are
no obstacles in the environment. Many sampling-based
planning algorithms that consider obstacles often require a
subroutinethat computestheoptimal cost and path between
two posesin an obstacle-free environment (see e.g. [11,15]).
Hence, we focusonthefundamental caseof findingenergy-
optimal pathswithout considering obstacles.

Problem 4 Given start and goal poses, compute apath τ
and a velocity profile alongthis path for a car-like robot to
minimize Equation 5. The velocity at all ti mes must obey
the constraint given by Equation 6. The robot starts at and
returnsto rest.

The solutions for Problems 1, 2, 3 & 4 are presented
in Sections 3, 4, 5 & 6 respectively. Problems 1 & 2 form
special cases of the last two problems and provide insight
into the structure of general optimal velocity profiles. We
usethesolutionsof thefirst two problemsas subroutinesfor
solvingProblems3 & 4.

3 Optimal Velocity Profilewithout Bounds

In this section, we present the solution to Problem 1, when
thepath τ consistsof asinglesectionwith no bound onthe
maximum velocity of the robot. We first state the necessary
conditions and present the closed form solution for the
optimal velocity profile. Then, we discuss and provide
insights for the structure of the optimal profile. Finally,
we compare the optimal profile with the commonly-used
trapezoidal velocity profile.

3.1 Solution to Problem 1

When there is no bound onthe maximum velocity, the
Hamiltonian [14] for thisproblem can beobtained as,

H(X(t),a(t),λ(t), t) = c1a2(t)+ c2v
2(t)+ c3v(t)

+ c4+λ1(t)v(t)+λ2(t)a(t) (8)

where λ1(t) and λ2(t) are the Lagrange multipliers and
accelerationa(t) is the control.

The threenecessary conditions for a∗(t) to optimizethe
Hamiltonian for all ti me t ∈ [0, t f ] aregiven as,

Ẋ∗(t) =
∂H
∂λ

, λ̇ ∗(t) =−
∂H
∂X

, 0=
∂H
∂a

(9)

Applying these necessary conditions, we can solve
the resulting partial differential equations for the optimal
control andstates to get,

a∗(t) = ks1ekt − ks2e−kt (10)

v∗(t) = s1ekt + s2e−kt −

(

c3+ s3

2c1

)

(11)

x∗(t) =
s1ekt

k
−

s2e−kt

k
−

(

c3+ s3

2c1

)

t + s4. (12)

wherek=
√

c2

c1
ands1, . . . ,s4 are constants.

We can solve for s1, . . . ,s4 in terms of the final time t f

by substituting the boundary conditionsgiven in Equation 7
for v∗(t) andx∗(t). We obtain,

s1 =−
Dk

kt f +ekt f (kt f −2)+2
,

s2 = s1ekt f , s3 = 2c1(s1+ s2)− c3

s4 =−
s1− s2

k
. (13)
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By substituting in Equations10-12we obtain,

a∗(t) = D

(

c2

c1

)

(

ek(t f−t)−ekt

kt f +ekt f (kt f −2)+2

)

,

v∗(t) = D

√

c2

c1

(

(1+ekt f − (ek(t f−t)+ekt))

kt f +ekt f (kt f −2)+2

)

,

x∗(t) = D

(

(ek(t f−t)−ekt)− (ekt f −1)+ kt(ekt f +1)

kt f +ekt f (kt f −2)+2

)

.

(14)

Since the final time is free, it can be solved for using the
additional boundary condition (known as the transversality
condition) given by,

H(X∗(t f ),a
∗(t f ),λ ∗(t f ), t f ) = 0. (15)

SubstitutingEquations10-12and 13aboveresults in,

(D
c2

c1
+2)(1−ekt f )+

√

c4

c1
kt f (1+ekt f ) = 0, (16)

which is an equation in a single variable t f (all other terms
are constant) and can be solved using any solvers. (We
used MATLAB’ssolve function). Alternatively, if thefinal
time is fixed, we can directly substitute this given value in
Equation 14to findv∗(t).
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Fig. 2 The optimal velocity profile v∗(t) for a distance D = 50m
usingc1, . . . ,c4 obtained duringcalibration in Section 7.1. Theoptimal
profile consistsof symmetric exponential curves, reachingamaximum
velocity at t = t f /2.

Figure 2 shows the optimal velocity profileobtained for
traveling a distance of 50m using Equation 14. It can be
observed that the profile consists of symmetric acceleration
and deceleration curves with an almost-constant velocity
region in the middle. From Equations 14 and 16, we can
show that the peak velocity is reached at t = t f /2 and is
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Fig. 3 Optimal Control a∗(t) obtained for traveling a distance of
D= 50mcorresponding to theoptimal velocity profileshown in Figure
2.

given by, v∗
( t f

2

)

=

√

c4

c2

(

e
k
2 t f −1

)

(

e
k
2 t f +1

) . The corresponding

optimal control profile a∗(t) is shown in Figure 3. The
acceleration profile is a smooth exponentially decreasing
function. The acceleration is almost zero in the middle
region(exactly zero at t = t f /2).

3.2 Structureof theOptimal Profile

The optimal velocity profile shows similar structure when
the distance to travel D varies. Figure 4 shows the optimal
velocity profiles for traveling four different distances. The
optimal profile reaches thesame peak velocity and doesnot
go faster even if the distanceto travel increases.
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Fig. 4 Optimal Velocity v∗(t) profiles obtained for traveling distances
D = 5,35,70,100m follow asimilar structure.
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From the cost function (Equation 5), we see that both
higher velocities(throughtermsc2 andc3) and longer times
(throughc4) arepenalized by higher energycost. Hence, this
peak velocity value represents the energy trade-off between
moving faster (and consequently for a lesser time) and
movingslower (andfor longer times). Thefollowinglemma
sheds light on this underlying structure for the optimal
velocity profiles.

Lemma 1 Consider an arbitrary velocityprofile v(t) travel-
ing a distanceD. Let thetotal energy consumption of v(t) be

E. If thegiven profile crosses
√

c4

c2
between timesti andti+1,

we canreplacethis section of v(t), ti ≤ t ≤ ti+1 by a constant

velocity section of vc =

√

c4

c2
, so that the resulting velocity

profile covers the same distance andconsumes energy less
thanv(t).

3.3 Comparisonswith trapezoidal velocity profile
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Fig. 5 Optimal trapezoidal profile computed using the same energy
function shown together with the general optimal profile for traveling
D = 50m. The general optimal profile we compute gains higher
savings with respect to the trapezoidal profile while accelerating and
decelerating. Thisyieldshigher energy savingswhen thetotal distance
to travel is less, a scenario commonly seen when the robot has to
frequently start andstop.

A trapezoidal velocity profile is commonly used for
its ease of implementation. A trapezoidal velocity profile
(see Figure 5) consists of a constant acceleration section,
followed by a constant velocity section, followed by a
constant decelerationsection. In [20], Wanget al. computed
the optimal trapezoidal velocity profile for travelinga given
distance D. However, their result is only applicable in the
case when there is no bound onthe maximum velocity of
the robot. Figure 5 shows the general optimal profile and

optimal trapezoidal profile computedfor travelingadistance
of D = 50m, with nomaximum velocity constraints.

The general optimal profile we compute gains higher
savings with respect to the trapezoidal profile while
accelerating and decelerating. For example, the optimal
profile yields 1.94% savings when traveling 1m, while
the savings drop to 0.32% when D = 100m for the
parameters calculated on our custom robot. In situations
wheretherobot hasto frequently stop, followingan optimal
profile would result in more energy savings and a longer
li fetime. In addition, these figures are highly system-
specific. The velocity profile computed in this work is
guaranteed to minimize the energy consumption for the
stated assumptions.

4 General Solution Incorporating Maximum Velocity
Bound

The optimal profile given in Section 3 does not satisfy any
bound onthe maximum velocity imposed by the physical
limitations of the robot. In this section, we solve for the
optimal velocity profile for Problem 2, with a bound onthe
maximum velocity v(t) ≤ vm. We now derive the analytical
solution for Problem 2 by first discussing the possible
structures of an optimal profile. Depending onthe value of
vm and D, the optimal velocity profile can belongto one of
the followingtwo cases.

4.1 Unconstrained optimal profiledoesnot violatebound
v(t)≤ vm

In the case that the optimal velocity profile computed in
Section 3 does not exceed the boundvm, then this profile
isavalid solutionfor the constrained casetoo. Thishappens

whenvm≥

√

c4

c2
. Additionally, in the casewhen thedistance

to travel D is small , the optimal velocity profile may not

have enoughtime to reach vm or
√

c4

c2
. We can observe this

situation in Figure4 when D = 5m.

4.2 Unconstrained optimal profileviolates thebound
v(t)≤ vm

If the unconstrained optimal profile violates the bound
vm, the constrained optimal velocity profile will consist of
unconstrained U (v(t)< vm) and constrained arcs C (v(t) =
vm) joined together at corner points. We show that there
existsan optimal profilewith aU−C−U sequence(or one
of its degenerate cases {U−C,C−U,C}) having corner
pointsat timest = t1 andt = t f −t2 (degeneracy occurswhen
either or both of t1 and t2 equal to 0).
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By definition, there cannot be any U − U or C −
C sequence, as these do not include any corner points.
Combining this observation with the following lemma, we
show that the constrained velocity profile is limited to a
U−C−U sequenceor oneof itsdegenerate case.

Lemma 2 The optimal velocity profile cannot consist any
sequenceof the formC−U−C.

The proof follows a process similar to that in Lemma 1.
We show that any C−U−C sequence can bereplaced bya
singleC segment to reducethe energy consumption.

We now show how to obtain the solution for this case
in closed form. Specifically, we show how to obtain v∗(t)
for the unconstrained and constrained arcs andcompute the
corner points t1 and t2.

We begin by writing the velocity constraint in the form
of state inequality S̄= (v(t)− vm) ≤ 0. We convert the
state inequality S̄ into a control equality S̄(1) and interior
point constraint G by differentiating S̄ once, leading to
S̄(1) = v̇(t) = u and G = ξ (v(t)− vm). The Hamiltonian
is augmented with the control equality constraint between
[t1, t f − t2] and is given by Ĥ = H + µ(t)a(t). Here, µ(t) is
the slack variable associated with the control constraint and
H is given byEquation 8.

We use the three necessary conditions given in
Equation 9to obtain the optimal profile in the time interval
[0, t1] and [t f − t2, t f ]. On the constraint boundary, i.e.,
t ∈ [t1, t f − t2], the following necessary conditions must
hold [10],

Ẋ∗(t) =
∂ Ĥ
∂λ

λ̇ ∗(t) =
∂ Ĥ
∂X

0=
∂ Ĥ
∂a

(17)

Additionally, on the two corners (t = t1, t = t f − t2), the
followingconditionsmust hold for the optimal solution,

H(t+1 ) = H(t−1 )+

[

∂G
∂ t

]

t1

,λ (t+1 ) = λ (t−1 )−

[

∂G
∂X

]T

t1

H((t f − t2)
+) = H((t f − t2)

−)

λ ((t f − t2)
+) = λ ((t f − t2)

−) (18)

Using the conditions given above, we can solve for the
optimal control and velocity profilein termsof the constants
for theoff-boundary exponential curves, andtimes t1, t2 and
t f . Theoptimal velocity profile in this case is given by,

v∗(t) =



































s1

(

ekt +ek(2t1−t)− (1+e2kt1)
)

,

0≤ t ≤ t1
vm, t1≤ t ≤ t f − t2

s2

(

e−k(t f−t−2t2)+ek(t f−t)− (1+e2kt2)
)

,

t f − t2≤ t ≤ t f .

(19)

We can obtain the values of these constants and times
using the initial and final conditions, the transversality

condition given in Equation 15, and the interior point
constraint v∗(t) = vm, t1≤ t ≤ t f − t2 as,

s1 =−
vm

(ekt1−1)2 ,

s2 =−
vm

(ekt2−1)2 ,

t1 = t2 =
1
k

ln









√

c4

c2
+ vm

√

c4

c2
− vm









. (20)

The final time can then be calculated by using the total
distance to travel and the distances traveled in the two
exponential curves.

t f = t1+ t2+
x∗(t f − t2)− x∗(t1)

vm
. (21)
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Fig. 6 Optimal Velocity (v∗(t)) profileobtained for maximum velocity
bound vm = 1m/s. The constrained velocity profile consists of
exponential acceleration and deceleration curves with the constraint
boundary in the middle. This profile is not the same as that obtained
from unconstrained solution by setting velocity to vm wherever it
exceeds.

Figure 6 shows the optimal velocity profile obtained
for traveling a distanceof 25m with the maximum velocity
boundset to vm = 1m/s. Observe that the optimal velocity
profile follows an exponential curve till it hits the boundary
at t1 = 4.06s and then stays on the constraint boundary,
before following a symmetric exponential curve to zero.
However, this profile is not the same as that obtained from
the unconstrained solution by setting velocity equal to vm

wherever it exceeds. This unconstrained optimal velocity
profile obtained from Section 3 is also shown in Figure 6.
The corresponding optimal control a(t) is shown inFigure7.
The acceleration is zero when v(t) is on the constraint
boundary, and followsexponential curvesotherwise.
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Fig. 7 Optimal control for the case with bound onmaximum velocity.
Note that the control is zero whenever the velocity ison the constraint
boundary (seeFigure 6).

5 Optimal Profileover Multiple Segments

In many applications, a high level task planner is used to
find the exact path to be followed by the robot. However,
the velocity profile of the robot alongthis path is freeto be
optimized. We use the solution from the precedingsections
to solve for the problem of finding the optimal velocity
profile when the given path consists of N segments (see
Figure 13). We restrict our attention to the case when the
paths are composed of straight-line segments and constant
curvature turns with possibly different turning radii . For
each segment, we aregivenmaximumallowablevelocity for
the robot vm(i) (seeEquation 6) and the distance to travel
D(i), 1≤ i ≤ N.

The robot initially starts at and returns to rest, however
the initial andfinal velocity for the intermediatesegmentsis
not constrained to zero. Let v0(i) andvf (i) be the initial and
final velocitiesfor segment i. Thus, v0(1)=0 andvf (N) = 0.
The velocities v0(i) and vf (i) can be non-zero for all other
intermediate segments. If we know the v0(i) and vf (i) that
theoptimal uses, we can find the entirevelocity profile.

5.1 Velocity profilesubroutines

While solving for the optimal profiles in Sections 3 and 4,
we considered only zero initial and final velocity boundary
conditions. Here, we extend this result for possibly non-
zero v0 and vf as initial and final velocities, and use this
extension as a subroutine for solving Problem 3. Note that
in Problem 3, thefirst andthe last segmentshave zero initial
andfinal velocitiesrespectively, and hencethe energymodel
(which ignoresthe termsc5 andc6 becausethey cancel-out)
remainsvalid (seeproof in appendix).

For segments with no bound onthe maximum velocity,
by followingaprocess similar to that described in Section 3

weget,

s1 =
(v0− vf )(1−e−kt f − kt f )+Dk(1−e−kt f )

ekt f (2− kt f )+e−kt f (2+ kt f )−4
,

s2 =
(v0− vf )(1−ekt f + kt f )−Dk(1−ekt f )

ekt f (2− kt f )+e−kt f (2+ kt f )−4
,

s3 = 2c1(s1+ s2)− c3− v0,

s4 =−
s1− s2

k
. (22)

The resulting profiles can be obtained by substituting the
abovein Equations10-12.

Similarly for segmentswith a maximum velocity bound
vm, the optimal velocity profile isgiven by,

v∗(t) =



































s1

(

ekt +ek(2t1−t)− (1+e2kt1)
)

+ v0,

0≤ t ≤ t1
vm, t1 ≤ t ≤ t f − t2

s2

(

e−k(t f−t−2t2)+ek(t f−t)− (1+e2kt2)
)

+ vf ,

t f − t2≤ t ≤ t f .

(23)

where,

s1 =−
(vm− v0)

(ekt1−1)2 , s2 =−
vm− vf

(ekt2−1)2 ,

t1 =
1
k

ln

(

c4+ c2v2
m−2c2v0vm

c4− c2v2
m

+

2(c2vm(c4− c2v0vm)(vm− v0))
1
2

c4− c2v2
m

)

,

t2 =
1
k

ln

(

c4+ c2v2
m− ca2vf vm

c4− c2v2
m

+

2(c2vm(c4− c2vf vm)(vm− vf ))
1
2

c4− c2v2
m

)

. (24)

Figure 8 shows the optimal velocity profile obtained for
traveling a distance of 30m, with velocity bound vm =

0.4m/s and initial and final velocities v0 = 0.3m/s and
vf = 0.1m/s respectively. Note that the acceleration and
decelerationtimesaredifferent in thiscase.

Thefollowingtheorem summarizestheresultsfor all the
casesconsidered.

Theorem 1 The optimal velocity profile that minimizes the
energy consumption given by Equation 5for a segment with
distanceD isgiven by,

– Equations13 and 14when there isnomaximumvelocity

bound or if vm>

√

c4

c2
, andinitial and final velocitiesfor

the segment are both zero. The final time t f is obtained
from Equation 15.
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Fig. 8 Optimal velocity profile with v0 = 0.3m/s, vm = 0.4m/s and
vf = 0.1m/s for traveling 30m.
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Fig. 9 Typical path for arobot composed of two straight linesegments
and two turns of different radii . Segments have different maximum
allowablevelocities, depending ontheir radii .

– Equations22 and 14when there isnomaximumvelocity

bound or if vm>

√

c4

c2
, and at least oneof initial or final

velocities for the segment is non-zero. The final time t f

is obtained from Equation 15.
– Equations19 and 20when the maximumvelocity bound

vm ≤

√

c4

c2
and initial and final velocities are both

zero for the segment. The final time t f is obtained from
Equation 21.

– Equations23 and 24when the maximumvelocity bound

vm ≤

√

c4

c2
, and initial or final velocity is non-zero

for the segment. The final time t f is obtained from
Equation 21. The initial and final velocity for the first
andlast segment respectively is zero.

We can use the separate cases of this theorem as
subroutines to compute the optimal velocity profile for
multiple segments using dynamic programming. Note that
the last case is only valid when the initial and final velocity
of thefirst and the last segment iszero (i.e., thenet effect of
c5 andc6 is zero).

5.2 Dynamic Programming

Let Vmax = max{vm(1),vm(2), . . . ,vm(i), . . . ,vm(N)}. We
then discretize the velocity space at the segment boundary

into M + 1 equal partitions v(k) =
k
M

Vmax,0≤ k≤M. Let

C(v(k), i) be the cost to reach velocity v(k) at the ith segment
boundary. Let E(v0,vm,vf ) be a function which gives the
energy consumption for an optimal velocity profile in a
segment starting with v0 and ending with vf , using the
solution in Theorem 1. If either v0 > vm or vf > vm then
the functionreturns the cost asE(v0,vm,vf ) = ∞.

We can then use the following recurrence for the ith

segment boundary:

C(v(k), i) = min
0≤ j≤M

(

C(v( j), i−1)+E(v( j),vm(i),v
(k))
)

,

1≤ k≤M.

Since the robot initially starts from rest, we have the
following,

C(v(k),0) =

{

0 k= 0,

∞ 1≤ k≤M.

The solution can be obtained by backtracking from
C(v(0),N) and finding optimal segment boundary velocity
values. Theoptimal velocity profile can then be constructed
using these optimal boundary velocity values to find
individual segment profilesusingTheorem 1.
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Fig. 10 Optimal velocity profile with different bounds for different
segments. The given path consists of 4 segments with bounds
vm = {0.8,0.2,0.8,0.4}m/sand distances D = {6,0.5,6,1}m

Figure 10 shows the optimal velocity profile obtained
for a path consisting of 4 segments. The velocity bounds
for these segments are vm = {0.8,0.2,0.8,0.4}m/s and the
distances D = {6,0.5,6,1}m respectively. By discretizing
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velocity at the junction boundaries, we obtain the set of
transition velocitiesusing the recurrencegiven above as,

v0(1) = vf (4) = 0m/s, vf (1) = v0(2) = 0.2m/s,

vf (2) = v0(3) = 0.2m/s, vf (3) = v0(4) = 0.4m/s.

The profiles between the boundaries are computed using
Theorem 1.

For building the table C, we consider each discretized
velocity v(i) at transition boundaries. Thisdiscretizationcan
be avoided when a segment is sufficiently long so that the
robot can accelerate (or decelerate) to the bound for the
next segment. In this case agreedy approach which chooses
the transition velocity at the ith segment boundary using the
followingrulesuffices:

v(i) =











0, i = 0,

min{vm(i−1),vm(i)}, 0< i < N,

0, i = N.

We can then useTheorem 1 to computevelocity profiles for
each segment i usingv0(i) = v(i−1) andvf (i) = v(i).

Using a procedure similar to that in Lemma 1 we can
show that at any segment boundary, if a velocity profile
decelerates further than min{vm(i),vm(i +1)}, it consumes
more energy than another profile that only decelerates up
to min{vm(i),vm(i +1)}. It can also be shown that the
complete velocity profile obtained by combining profiles
for each segment is optimal, when each distance D(i) is
large. However, when the distances are small , this strategy
forces the velocity profile to achieve vf (i) = v(i) leading
to higher energy consumption. The optimal solution onthe
other hand will reach a much lower value for vf (i). The
dynamic programming solution presented here covers this
possibilit y by incorporatingall boundary velocity values.

6 Energy Optimal Paths

In this section, we study the problem of finding an energy
optimal path and a velocity profile along this path, given a
start and goal poses for a car-like robot (refer Problem 4).
Dubins [6] first showed that the minimum length curves
between two poses consists of at most three segments.
Each segment is either a left or a right turn of minimum
turning radius or a straight line path, and no other type.
The maximum feasible speed alonga curve dependson the
turning radius of the robot (Equation 6). In the absence
of any constraints on the maximum speed, we know from
the discussion in Section 3 that the energy consumption is
a monotonically increasing function of the length of the
paths. This suggests that for a car-like robot capable of

travelingat more than
√

c4

c2
at the minimum turningradius,

the minimum length paths are also the minimum energy
paths. Theoptimal profile for such pathswill be thosegiven
in Section 3.

In general, computing the energy optimal paths cannot
be decoupled from finding the velocity profiles. The
structure of the minimum energy paths will depend on
the trade-off between turning radii r(t), maximum feasible
speed as a function of turning radii vm(t), the length of the
path and the energy parameters. While finding the general
solution, where the turning radius varies continuously in
time seems difficult, we find an approximate solution by
restricting the robot to move along a sequence of constant
curvaturepaths.

To find such a path, we build a weighted graph (which
we term as the Energy Roadmap) G(V,E), where each
vertex represents a discretized pose and velocity, i.e. V =

{(x,y,θ ,v)}1. We add an edge between two vertices vi =
(xi ,yi ,θi ,vi) and vj = (x j ,y j ,θ j ,v j) if (i) there exists a
(directed) circular arc (or straight line) from (xi ,yi ,θi) to
(x j ,y j ,θ j), and(ii ) vi andv j areboth lessthan or equal to the
maximum feasiblespeed alongthiscircular arc. Theweight
onthe edgefromvi to vj is set to the energy for theminimum
energy velocity profile alongthis circular arc with start and
end speeds set to vi and v j . The energy is computed using
the result in Theorem 1.

Theminimum energy path from thestart and goal vertex
can then be computed by any shortest path algorithm on G,
e.g. A* search. The shortest (minimum energy) path will
be asequenceof poses and discretized velocities; the entire
robot path can be obtained by connecting the sequence of
poses with circular arcs or straight line segments and the
optimal profile along the path can be obtained by applying
Theorem 1 to the correspondingsequenceof velocities.
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Fig. 11 In theEnergy Roadmap we connect any two discretized poses
by a circular path, if it exists. (a) All possible circular paths starting
from (0,0,0). Theminimum turningradius is set to 1m. A total of 2254
pathsexists from (0,0,0) usingsideresolution of 0.1mand orientation
resolution of π

64. (b) Paths startingfrom (0,0,0) reachingall discretized
verticeswith (x,3,θ ). There existsaunique circular path starting from
agiven pose reaching agiven position.

1 In this section, x refers to theX-coordinateof therobot, and not the
parametric position of the robot alonga path as used in the preceding
sections.
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In the Energy Roadmap, although the poses are
discretized, we allow connecting any two poses with a
circular arc (Figure 11). Note that we do not impose any
grid connectivity or fixed radius turns. Further, althoughwe
discretize velocities at a pose, we use the optimal energy
profiles leveraging Theorem 1 to interpolate the velocity
between two vertices (as opposed to enforcing any fixed
profile).

The complete algorithmispresented in Algorithm1. The
mainsubroutinesGetMinEnergyandGetMinEnergyProfile
are applicationsof Theorem1. ThesubroutineGetPath finds
the directed circular arc or straight linepath. The rest of the
subroutinesare obviousfrom their names.

Fig. 12 There exists only one circle passing througha pose (xi ,yi ,θi)
and a position (x j ,y j ). All other circular arcs (shown dashed) passing
throughthesamepair of pointswill not have atangent aligned alongθi

at (xi ,yi). Hence, in buildingtheEnergy Roadmap, instead of searching
over all pairs of poses (O(|X|2 · |Θ |2)), we search over pairs of poses
and positions (O(|X|2 · |Θ |)).

If |X|, |Θ |, |V| are the number of discretized positions,
orientations and velocities respectively, then the Energy
Roadmap has |V| = |X| · |Θ | · |V| vertices. Checking for a
feasible path between every pair of vertices would require
O(|X|2|Θ |2|V|2) checks. Instead we can reducethe number
of checks to O(|X|2|Θ |) by observing that there is exactly
one circular arc or line from a given pose (xi ,yi ,θi) to a
position (x j ,y j) as shown in Figure 12. Hence, we only
check each pose with every other position for a feasible
path (Lines 4–6in Algorithm 1). Looking upa vertex from
a pose or position while adding the edge (FindVertex in
Lines12–13) can bedone in constant timeby maintaininga
map of pointers.

6.1 Implementation

We implemented2 the algorithm in C++. We used the GNU
Scientific Library [7] to perform numerical integration
in computing energy and for solving the transversality
condition given in Equation 15. To find the Dubins’

2 Code is available to download from http://rsn.cs.umn.edu/

index.php/Downloads

paths, we used the Open Motion Planning Library [4].
Our implementation makes the following optimizations to
reducethe runtime andstoragerequirements:

– In general, the number of edges in G can be
O(|X|2|Θ ||V|2). For a fine discretization, the storage
can become prohibitively high. We reduce the storage
requirement to O(|X||Θ ||V|2) by observing that the
paths between two poses are invariant to rotation and
translation in the plane. Hence, instead of computing
and storing edgesbetween all possible pairs of vertices,
we initially create alookuptable consisting of outgoing
edges from (0,0,θ ,v0), for all θ ∈ Θ and v0 ∈ V to
all other vertices. While finding the shortest path using
A* search, each time a new vertex, say (x,y,θ ,v), is
discovered, we first transform all other vertices in the
relative coordinate frame centered at (x,y). We can
then extract its neighbors by looking up the relative
coordinates in the table. This approach trades the
running time of the search phase with the running time
for building the Energy Roadmap (Lines 4–18) and the
storagerequired for theEnergy Roadmap.

– To further speed uptheA* search, weuse alower bound
on the energy as a heuristic function. For any vertex
(xi ,yi ,θi ,vi), a lower bound onthe energy to reach the
goal (xt ,yt ,θt ,vt) can be computed as c4

d
vm

where d is
theEuclidean distancebetween (xi ,yi) and (xt ,yt).

A discretization of 0.1m, π
64rad and 0.5m/s was used for

finding minimum energy trajectories. Energy parameters
c1, . . . ,c4 were set to 1, Fmax = 0.05, m= 1 and minimum
turning radius was set to 1m for each instance. The graph,
thus created consisted of 6.4M vertices. The lookup table
to store potential edges (as described above) used 10GB
memory. Computing the minimum energy path typically
took under 15mins on a 3.0GHz computer. To find the
optimal velocity profile alongthe Dubins’ path a resolution
of 0.02m/swasused for dynamic programming.

6.2 Comparisonwith Dubins’ Paths

Figure 13 shows the energy-optimal paths and velocity
profiles obtained using Algorithm 1 for four start and goal
poses. These four instances are representative of the trade-
off between the turning radius, maximum velocity and
energy. Figure 13(a) shows an instance where the Dubins’
path consisted of three consecutive circular segments of
minimum turning radius. The maximum allowable speeds
along turns of minimum radii using Equation 6 was
0.22m/s. Hence, the optimal velocity profile along the
Dubins’ path (right column) was forced to move at a slower
speed, for alonger time consequently payingahigher energy
cost. On the other hand, the optimal path consisted of a
straight line segment and turns with greater turning radii ,
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allowingtherobot to move at ahigher velocity. Theresulting
path, althoughlonger than the Dubins’ path, takes a lesser
amount of time to travel and paysa lower energy cost.

Figure 13(b) shows an instance where the minimum
energy path does not contain a straight line segment,
whereas the Dubins’ path does. Both paths begin and end
with circular segments of minimum turning radius. The
minimum energy path, however, spends lesser time on the
minimum turningradius segmentsandswitchesto segments
with higher turning radius (consequently lower energy) in
the middle. We can observe that one of the characteristics
of minimum energy paths is to avoid turns with minimum
turning radius. Figure 13(c) shows an instance where the
minimum energy path does not contain any segment of
minimum turningradius.

We observed that as the length of the minimum radius
turns becomes smaller than length of the straight line
segment of the Dubins’ path, the energy overhead of
travelingat slower speedsdecreases. Figure13(d) showsone
such instance.

It must be noted that these observations are afunction
of the system parameters. For example, if the robot is
capable of moving at very high speeds at minimum turning
radius, then theminimum energy path will coincidewith the
minimum length paths. Nevertheless, Algorithm 1 will find
theminimum energy path, subject to thediscretization.

7 Calibration and Experiments

To test thevalidity of our results, weperformedexperiments
using our custom robot. Wefirst describe asimpleprocedure
to findthe energymodel (Equation 5) of therobot for agiven
flat surface.

7.1 Calibration

Fig. 14 Left: Custom-built robot used in our experiments. Right:
Attopilot voltage and current measurement circuit from SparkFun
Electronics.

We use a custom-built robot (see Figure 14) for
experiments. Two DC motors with their output shafts

Algor ithm 1: Minimum Energy Trajectories
Input: s, t: Start and goal pose
Data: X,Θ ,V discretized positions, orientations, speeds
Output: {φ (t),v(t)}: Steering angle and translational velocity

profiles.
1 P←{(l ∈ X,θ ∈Θ)} /* discretized poses */

2 V←{(p∈ P,v∈V)} /* vertices */

3 E← /0
/* There exists exactly one circle/line through

given pose & position */

4 forall the p∈ P do
5 forall the l ∈ X do
6 (θ , len, rad)← GetPath (p, l )
7 if θ ∈Θ then
8 vm← GetMaxVel (rad)
9 forall the v0 ∈V AND v0 ≤ vm do

10 forall the vf ∈V AND vf ≤ vm do
11 E← GetMinEnergy (len,v0,vf ,vm)
12 vi ← FindVertex (p,v0)
13 vj ← FindVertex (l ,θ ,vf )
14 E← E ∪ Edge (vi ,vj ,E)
15 end
16 end
17 end
18 end
19 end
20 s← FindVertex (s,0)
21 t← FindVertex (t,0)
22 Path←A* Search (V,E,s, t)
23 φ (t)←GetSteering (Path)
24 v(t)←GetMinEnergyProfile (Path)
25 return {φ (t),v(t)}

coupled together through a gearbox drive the robot. The
robot has car-like steering controlled by a servo motor
througha fixed steering rod (unlike Ackermann steering).
We useseparatebatteries to drive theDC motorsand power
the rest of the electronicson the robot.

Our method utili zes a simple current and voltage
measurement circuit (Figure 14) connected between the
output of the motor and the motor driver circuit. This
circuit measuresthe current flowingthroughandthevoltage
acrossthe motor. An optical encoder installed on oneof the
robot’swheelsmeasuresits linear velocity. In the calibration
proceduredescribed next, wefix thesteering of the robot so
that it drives in a straight line.

We can write Equations2 and 3as,

i(t) = b1+b2v(t)+b3a(t),

e(t) = b4+b5v(t)+b6a(t) (25)

where b1, . . . ,b6 are linear combinations of the internal
parameters of the motors. The calibration procedure to
obtain the energy parametersconsistsof thefollowingsteps:

STEP 1: Drive the robot at a constant velocity (vset )
for some time interval (we used 10s in our calibration
experiments). Log the current and voltage acrossthe motor.
Repeat for different vset valuesrangingfromtheminimumto
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(a) Energy-Optimal trajectory (39.4J,7.6m). Dubins’ path with energy-optimal velocity profile (40.1J,6.9m). The Dubins’ path
consists of C-C-C segments, whereas theminimum energy path foundconsists of 1 straight line and 5circular segments.
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(b) Energy-Optimal trajectory (19.1J,3.7m). Dubins’ path with energy-optimal velocity profile (20.7J,3.6m). The Dubins’ path
consists of C-S-C segments, whereas theminimum energy path foundconsists of 4 circular segments.
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Optimal Velocity Profile on Dubins Path

(c) Energy-Optimal trajectory (17.4J,4.7m). Dubins’ path with energy-optimal velocity profile (17.8J,4.6m). The Dubins’ path
consists of C-S-C segments, whereas theminimum energy path foundconsists of 1 straight line initiall y and 3circular segments.
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(d) Energy-Optimal trajectory (26.29J,6.55m). Dubins’ path with energy-optimal velocity profile (26.35J,6.59m). TheDubins’ path
consists of C-S-C segments, whereas theminimum energy path foundconsists of 1 straight line and 5circular segments.

Fig. 13 The left column shows the energy-optimal paths found using Algorithm 1. The color profile alongthepath indicates the optimal velocity
profile, also shown in the middle column. The dashed path is the minimum length Dubins’ paths. The energy-optimal velocity profiles alongthe
Dubins’ paths (using thedynamic programming presented in Section 5) are shown in theright column. Energy parameters c1, . . .,c4 were set to 1,
Fmax = 0.05, m= 1 and minimum turning radius was set to 1m for each instance. A discretization of 0.1m, π

64rad and 0.5m/s was used for finding
minimum energy trajectories. Resolution of 0.02m/s was used for dynamic programming.
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Fig. 15 Figuresobtained duringcalibration onthe corridor surface. Left to right: (a) Therobot initiall y accelerates from rest to various set velocity
values. We compute the average current and voltage for the region where the robot moves at vset (STEP 1). (b) Current consumption as a linear
function of the velocity, when the motor is not accelerating (STEP 2). (c) Voltage applied to the motor as a linear function of the velocity, when
themotor isnot accelerating (STEP 2). (d) Calibration procedure to determine theparameter c1 in the energy model. We accelerate the robot with
various set acceleration values aset while loggingcurrent and voltagevalues (STEPS3 and 4).

themaximum achievablevelocity for therobot. Figure15(a)
shows someof the actual profilesobtained duringcalibration
for vset from 0.5m/s to 2.5m/s.

STEP 2: Compute the average current and voltage for
each of the above trials disregarding the initial acceleration
phase. Using Equation 25, we can find the parameters b1,
b2, b4 and b5 using least-squares linear fitting to the data
(seeFigure15(b andc)).

STEP 3: To find the remaining two terms b3 and b6 in
the model, program the robot to drive from rest at various
set acceleration valuesaset to reach somevelocity value(we
used 1.6m/s for our system, seeFigure15(d)).

STEP 4: Compute the values of b3 and b6 by
substituting aset and b1,b2,b4 and b5 valuesobtained above
in Equation 25andtaking the averageof all the readings.

STEP 5: Finally, calculate the required parameters
c1, . . . ,c4 in Equation 5 using c1 = b3b6, c2 = b2b5,
c3 = b1b5+b2b4, andc4 = b1b4.

Table 1 Energy model parameters (SI units) obtained using the
calibration procedure.

Surface c1 c2 c3 c4

Corridor 17.75 1.16 10.46 4.70
Concrete 5.47 0.77 10.10 4.24

Grass 8.10 5.28 28.01 25.07

Using the above procedure, we calibrated our robot
on three surfaces: indoors on a corridor and outdoors on
concrete and grass. The corridor surfacewas flat whereas
the two outdoor surfaceshad uneven terrain, thegrassy area
moreso. Figure 15showsplots for the complete calibration
procedure with the corridor surface. Figure 16 shows the
current and voltage plots for the grass surface. The current
consumption and voltage required for driving the robot are
higher for grass than for the corridor surface. Since the
surfaces outdoors are uneven, the plots contain more noise

than thosefor corridor. Themodel parameterscomputed for
all surfacesareshown in Table1.

7.2 Experiments

We conductedexperimentsonthesmoothcorridor surfaceto
experimentally validate the optimal velocity profiles found
in Section 5and compared with two other profiles. We first
computed the analytical solution for the velocity profile to
travel the given distance. We then sampled this profile at
10Hzandstored thevalues in a look-uptable.

Figure 17shows the optimal profile computed using the
dynamicprogrammingsolution presented in Section 5, for a
given path threesegments with distances D = {10,3,10}m
and maximum velocity constraints as vm = {1,0.2,1}m/s.
The computed velocity profile is shown as a dashed curve.
Thetotal energy consumed over the entireprofilewas595J.
The actual profile executed has small deviations arising
due to noise and disturbances on the surface. In this work,
we pre-compute the optimal trajectory for the robot. A
useful extension to this could be to design an optimal
velocity feedback controller which minimizes the energy
consumption.

We compare the energy consumption of our optimal
profile with two commonly-used trapezoidal profiles. We
chose the maximum speeds for these profiles as 1m/s and

0.8 1 1.2 1.4 1.6 1.8 2
6

8

10

12

14

16

18
Current vs. Velocity

C
ur

re
nt

 in
 a

m
ps

Velocity in m/s
0.8 1 1.2 1.4 1.6 1.8 2

3.5

4

4.5

5

5.5

6

6.5
Voltage vs. Velocity

V
ol

ta
ge

 in
 v

ol
ts

Velocity in m/s

Fig. 16 Current and voltage as a function of velocity, for the grass
surface outdoors. Since the surface outdoors is not flat, the plots
contain more noise than the corridor surface(Figure 15(b) & (c))
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Fig. 17 Optimal velocity profile executed by the robot for mul-
tiple segments. The dashed curve shows the optimal profile com-
puted using the dynamic programming solution for segments with
D = {10,3,10}mandmaximum velocity constraintsvm = 1,0.2,1m/s.

2m/s, so that therobot coversthesamedistancetakingmore
and less time than the optimal respectively. We perform
these comparisonsfor D = 20mandD = 45m.
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Fig. 18 Left: Optimal velocity profile executed by the robot for
traveling 20m in 18.4s while consuming 296J energy. The optimal
profile is shown as dashed. Right: Sub-optimal velocity profiles
executed by the robot for traveling 20m at maximum set velocities of
1m/sand 2m/s. The energy consumption for theseprofiles is303J and
319J.

Figure 18 shows the optimal, slower and faster velocity
profiles executed by the robot in the corridor. The optimal
profile computed is also shown in Figure 18 as dashed.
Table 2 shows the comparison of the energy consumption
for all the trials conducted. As we can observe, the optimal
profile consumes lesser energy than the two sub-optimal
profiles. Also, the energy savings become more significant
as thedistancetraveled increases.

Table2 Energy consumption during experiments

D (m) Eopt(J) Eslow(J) Ef ast (J)

20 296 303 319
45 656 694 696

8 Conclusion

In this work, we studied the problem of computing
trajectories for a car-likerobot so as to minimizethe energy
consumed while traveling ona flat surface. We separately
considered the problem of computing the energy optimal
velocity profiles, and that of simultaneously computing the
energy optimal paths and velocity profiles. We presented
closed form solutions for the velocity profiles for two
cases: no constraints on the robot’s speed, and a single
upper-bound on the speed. For the general problem
of computing both paths and trajectories, a discretized
graph search algorithm that leverages our closed form
solution for optimal velocity profiles was presented. Using
an implementation of this algorithm, we investigated
the structure exhibited by minimum energy paths and
highlighted instances when these paths differ from the
minimum length (Dubins’) paths. Extensions to trajectory
planning in the presenceof obstacles using sampling-based
planners isan avenueof futurework.

In addition, we presented a calibration procedure for
obtaining robot’s internal parameters related to energy
consumption. We demonstrated the utilit y of the calibration
procedure and the algorithms presented in the paper with
experimentsperformed ona custom-built robot.
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A Proof: Unconstrained Solution

Thestate transition equationcan bewritten as,

Ẋ(t) =

[

ẋ(t)
v̇(t)

]

=

[

v(t)
a(t)

]

(26)

The objective is to find a velocity profile v∗(t) which minimizes the
total energy required for motion given bythefollowingcost functional,

J =
∫

0

t f [

c1a2(t)+c2v2(t)+c3v(t)+c4

]

dt, (27)

where the final time t f is kept a free variable. The initial boundary
conditions aregiven as,

x(0) = 0, v(0) = 0, (28)

and thefinal boundary conditionsare given as,

x(t f ) = D, v(t f ) = 0. (29)

Hamiltonian

Thehamiltonian H(X,λ ,u, t) is defined as,

H(X,λ ,u, t) = J+λ1(t)ẋ(t)+λ2(t) ˙v(t), (30)

where λ1(t) and λ2(t) are the Lagrange multipliers, also called the
co-state variables which include the state transition equations as a
constraint to theobjective.

When thereisno bound onthemaximumvelocity, theHamiltonian
for thisproblem can beobtained usingEquations 26and 27as,

H(X(t),a(t),λ (t), t) = c1a2(t)+c2v2(t)+c3v(t)

+c4+λ1(t)v(t)+λ2(t)a(t) (31)

where the acceleration a(t) is the control.
The three necessary conditions for a∗(t) to optimize the

Hamiltonian [14] for all ti me t ∈ [0, t f ] are given as,

Ẋ∗(t) =
∂H
∂ λ

, λ̇ ∗(t) =−
∂H
∂X

, 0=
∂H
∂a

(32)

By substitutingweget,

ẋ(t) = v(t),

v̇(t) = a(t),

λ̇1(t) = 0,

λ̇2(t) = 2c2v(t)+c3+λ1,

λ2(t) =−2c1a(t),

∴ λ2(t) =−2c1v̇(t).

Using the last two equations, we can write,

−2c1v̈(t) = 2c2v(t)+c3+λ1,

2c1v̈(t)+2c2v(t)+c3+λ1 = 0.

We can solve for this second order differential equation to yield,

v∗(t) = s1ekt +s2e−kt −

(

c3+s3

2c1

)

(33)

where k=
√

c2
c1

and s1−s4 are constants and λ1 = s3.

Applying the state transition equations, we can get the optimal
control and statesgiven as,

a∗(t) = ks1ekt −ks2e−kt (34)

x∗(t) =
s1ekt

k
−

s2e−kt

k
−

(

c3+s3

2c1

)

t +s4. (35)

We can solvefor s1−s4 in termsof thefinal timet f by substituting
the boundary conditions given in Equations 28 and 29 for v∗(t) and
x∗(t). Weobtain,

s1 =−
Dk

kt f +ekt f (kt f −2)+2
,

s2 = s1ekt f ,

s3 = 2c1(s1+s2)−c3,

s4 =−
s1−s2

k
. (36)

By substituting in Equations 34-35 weobtain,

a∗(t) = D

(

c2

c1

)

(

e(kt f − t)−e(kt)

kt f +ekt f (kt f −2)+2

)

,

v∗(t) = D

√

c2

c1

(

(1+ekt f − (ek(t f−t)+ekt))

kt f +ekt f (kt f −2)+2

)

,

x∗(t) = D

(

(ek(t f−t)−ekt)− (ekt f −1)+kt(ekt f +1)

kt f +ekt f (kt f −2)+2

)

. (37)
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Since the final time is free, it can be solved for using the additional
boundary condition (known as the transversality condition) given by,

H(X∗(t f ),a
∗(t f ),λ ∗(t f ), t f ) = 0. (38)

SubstitutingEquations 34-35 and 36above results in,

(D
c2

c1
+2)(1−ekt f )+

√

c4

c1
kt f (1+ekt f ) = 0, (39)

which is an equation in single variable t f and can be solved using
existing solvers. (We used MATLAB’s solve function). Alternatively,
if the final time is fixed, we can directly substitute this given value in
Equation 37to find v∗(t).

B Proof for Lemma 1

Proof Consider any velocity profile v(t) shown in Figure 19. Let D
andE bethe total distance covered andenergy consumed byv(t). This

profile crosses
√

c4

c2
between times [t1, t2] and [t3, t4]. Let d12 and d34

be the distances covered by v(t) in these sections. The total energy
consumption of v(t) is given by,

E = E01+E12+E23+E34+E45, (40)

where Ei j refers to the energy consumption to cover thedistancedi j .
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Fig. 19 Sectionsof thisvelocity profile crossing (vc =

√

c4

c2
) between

[t1, t2] and [t3, t4] can be replaced by constant velocity (vc) sections
resulting in a velocity profile that consumes lesser energy to travel the
same distance.

We construct another velocity profile v′(t) by replacing the

sections [t1, t2] and [t3, t4] by constant velocity vc =

√

c4

c2
sections for

time
d12

vc
and

d34

vc
respectively. The total distance traveled by v′(t) is

D, same asv(t). The total energy consumption of v′(t) isgiven by,

E′ = E01+E′12+E23+E′34+E45, (41)

since v′(t) is the same as v(t) everywhere except t ∈ [t1, t2] and t ∈
[t3, t4].

We now show that E′ ≤ E by proving both E′12≤ E12 and E′34≤
E34. This result can then be generalized to velocity profiles with any
number of crossing sections in either directions.

First, consider the energy consumption E12 for v(t),

E12 =
∫

t1

t2[

c1a2(t)+c2v2(t)+c4

]

dt +c3d12. (42)

Now, let us consider E′12. The time taken in this case would be

tc =
d12

vc
. The energy consumption is,

E′12 =
∫

t1

tc[

c1a2(t)+c2v2(t)+c3v(t)+c4

]

dt,

= c2vcd12+c3d12+c4
d12

vc
. (43)

Thedistanced12 can also bewritten as,

d12 =
∫

t1

t2
[v(t)dt] . (44)

SubstitutingEquation 44in 43, weobtain,

E′12 = c2

∫

t1

t2
vcv(t)dt +c3d12+c4

∫

t1

t2 v(t)
vc

dt. (45)

UsingEquations 42and 45, we can write,

E12−E′12 = c1

∫

t1

t2
a2(t)dt

+
c2

vc

∫

t1

t2
[vc(t)−v(t)]

[

c4

c2
−v(t)vc

]

.dt

∴ E12−E′12≥ 0,

sincev(t)≤ vc≤

√

c4

c2
. For thesection between t3 and t4, we can show

that E34−E′34≥ 0.
In general we can replace any number of such sections crossing

√

c4

c2
to yield another velocity profile with lower energy covering

the same distance moving at
√

c4

c2
. Hence, once the velocity profile

hits
√

c4

c2
, there is no reason to deviate from this value except at the

boundary (initial andfinal conditions). ⊓⊔

C Proof: Constrained Solution

We begin by writing the velocity constraint in the form of state
inequality S̄= (v(t)−vm)≤ 0. The state inequality S̄ is converted into
a control equality andinterior point constraint by differentiating S̄once
leading to,

S̄(1) = v̇(t) = u.

v(t1) = vm (46)

Along the unconstrained arc, the state transition is governed by
Equation 26. On the constrained arc, thestate transition isgiven by,

Ẋ(t) =

[

ẋ(t)
v̇(t)

]

=

[

vm

0

]

(47)

TheHamiltonian isaugmented with the control equality constraint
in [t1, t f − t2] and isgiven by,

Ĥ = c1a2(t)+c2v2(t)+c3v(t)+c4

+λ1(t)v(t)+λ2(t)a(t)+µ(t)a(t) (48)
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where µ is the slack variable associated with the control constraint. In
the interval [0, t1] and [t f − t2, t f ], theHamiltonian isgiven by,

H = c1a2(t)+c2v2(t)+c3v(t)

+c4+λ1(t)v(t)+λ2(t)a(t) (49)

The interior point constraint isgiven by,

G= ξ (t)(v(t)−vm). (50)

C.1 0≤ t ≤ t1

Using thenecessary condition λ̇ =−
∂H
∂x

weget,

λ̇1 = 0,

∴ λ1 = s3.

and,

λ̇2 =−
∂H
∂x

, (51)

∴ λ̇2 =− [2c2v(t)+c3+s3] . (52)

Applying the third necessary condition, 0=
∂H
∂a

weget,

0= 2c1a(t)+λ2(t),

∴ λ2(t) =−2c1a(t).

Differentiating the above equation weget,

˙λ2(t) =−2c1v̈(t).

From Equation 52we can write,

2c1
¨v(t) = 2c2v(t)+c3+s3,

∴ v̈(t)−
c2

c1
v(t)−

c3+s3

2c1
= 0.

Thesolution for the above differential equation isgiven as,

v∗(t) = s1ekt +s2e−kt −
c3+s3

2c1
,

a∗(t) = s1kekt −s2ke−kt ,

x∗(t) =
s1

k
ekt −

s2

k
e−kt −

c3+s3

2c1
t +s4,

λ ∗1 (t) = s3,

λ ∗2 (t) =−2c1a∗(t).

Using initial conditions x(0) = 0 and v(0) = v0, weget,

s4 =−
s1−s2

k
,

c3+s3

2c1
= s1+s2−v0.

Putting these together weget,

v∗(t) = s1ekt +s2e−kt − (s1+s2−v0),

a∗(t) = s1kekt −s2ke−kt ,

x∗(t) =
s1

k
ekt −

s2

k
e−kt − (s1+s2−v0)t−

s1−s2

k
,

λ ∗1 (t) = 2c1s1+s2−v0−c3,

λ ∗2 (t) =−2c1a∗(t),

where s1 and s2 are two constants left to be evaluated.

C.2 t f − t2≤ t ≤ t f

In this section, the system is governed by the same state equation as
in the interval 0≤ t ≤ t1. Hence, weget a similar form for theoptimal
state andcontrol given by,

v∗(t) = s′1e−kt f ekt +s′2ekt f e−kt −
c3+s′3

2c1
,

a∗(t) = s′1ke−kt f ekt −s′2kekt f e−kt ,

x∗(t) =
s′1
k

e−kt f ekt −
s′2
k

ekt f e−kt −
c3+s′3

2c1
t +s′4,

λ ∗1 (t) = s′3,

λ ∗2 (t) =−2c1a∗(t).

where s′1 . . .s
′
4 are the new constants to be solved for. Using the final

condition, x(t f ) = D, weget

D =
s′1
k
−

s′2
k
−

c3+s′3
2c1

t f +s′4,

∴ s′4 = D−

[

s′1
k
−

s′2
k
−

c3+s′3
2c1

t f

]

.

Using thesecondfinal condition, v(t f ) = vf weget,

vf = s′1+s′2−
c3+s′3

2c1
,

∴ s′3 = 2c1(s
′
1+s′2−vf )−c3.

The equations can then bewritten as,

v∗(t) = s′1e−k(t f−t)+s′2ek(t f−t)− (s′1+s′2−vf ),

a∗(t) = s′1ke−k(t f−t)−s′2kek(t f−t),

λ ∗1 (t) = 2c1(s
′
1+s′2−vf )−c3,

λ ∗2 (t) =−2c1a∗(t).

C.3 Corner conditions

We can now use the corner conditions to determine the unknown
constants s1,s2,s′1,s

′
2. The corner conditions state that λ ((t f − t2)+) =

λ ((t f − t2)−) and v((t f − t2)+) = v((t f − t2)−) and µ((t f − t2)+) = 0,

H(t+2 ) = H(t−2 ),

∴ a(t f − t2) = 0,

∴ s′2 = s′1e−2kt2.

Usingtheother corner conditionv((t f − t2)+) = v((t f − t2)−) wehave,

v(t f − t2) = vm,

∴ s′1e−kt2 +s′1e−kt2− (s′1+s′1e−2kt2−vf ) = vm,

∴ s′1 =−
vm−vf

(e−kt2−1)2 .

Usingsimilar argumentsat theother corner t = t1 weget thefinal form
for theoptimal velocity profile as,

v∗(t) =



































s1

(

ekt +ek(2t1−t)− (1+e2kt1)
)

+v0,

0≤ t ≤ t1
vm, t1≤ t ≤ t f − t2

s2

(

e−k(t f−t−2t2)+ek(t f−t)− (1+e2kt2)
)

+vf ,

t f − t2≤ t ≤ t f .
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where,

s1 =−
(vm−v0)

(ekt1−1)2 ,

s2 =−
vm−vf

(ekt2−1)2 ,

Using the transversality condition H(t f ) = 0, we can determine the
times t1 and t2 as,

t1 =
1
k

ln

(

c4+c2v2
m−2c2v0vm

c4−c2v2
m

+

2(c2vm(c4−c2v0vm)(vm−v0))
1
2

c4−c2v2
m

)

,

t2 =
1
k

ln

(

c4+c2v2
m−ca2vf vm

c4−c2v2
m

+

2(c2vm(c4−c2vf vm)(vm−vf ))
1
2

c4−c2v2
m

)

.

(53)

and the final time can then be calculated by using the total distance to
travel andthedistancestraveled in thetwoexponential curves. It iseasy
to seethat if v0 or vf is equal to vm, then t1 = 0 or t2 = 0 respectively.

D Proof for Lemma 2

Proof Consider any velocity profile consisting of a C−U−C
sequence covering distanceD. We can replacethisC−U−C sequence
with asingleC section, so that theresulting velocity profile covers the
same distance and consumes energy lessthan theoriginal profile.

Let v(t) be any velocity profile that contains a C−U−C
sequence. That is, v(t) = vm(t) for t0 ≤ t ≤ t1 and t2 ≤ t ≤ t3 and
v(t)< vm between t1≤ t ≤ t2. The energy consumption of this profile
for traveling a distance D = d01+d12+d23 is E = E01+E12+E23,
where Ei j is the energy spent in traveling di j for v(t). We construct
another velocity profile that is identical to v(t) in [t0, t1] and [t2, t3] but
covers the section d12 at v(t) = vm. The energy consumption for this
new profile differs only in thed12 section.

By following a process similar to that in Lemma 1, we can show
that E′12≤ E12 leading to E′ ≤ E. Hence, any C−U−C sequence can
be replaced by a single C segment to reduce the energy consumption.
Hence, the optimal velocity profile will never consist of a C−U−C
sequence. ⊓⊔

E Proof of Energy Model for Non-zero Initial and Final
Velocities

Lemma 3 Let τ be a path with N segments starting and returning
to rest, i.e., v0(1) = 0 and vf (N) = 0. Let E14(i) and E16(i) be the
minimum energy obtained for the ith segment using Equations 5 and 4
respectively. Then ∑i E14(i) = ∑i E16(i).

Proof First, consider the energy obtained using Equation 4. For each
segment, wehave

E16(i) =
∫

0

t f [

c1a2(t)+c2v2(t)+c3v(t)

+c4+c5a(t)+c6v(t)a(t)
]

dt

=
∫

0

t f [

c1a2(t)+c2v2(t)+c3v(t)+c4

]

dt

+
∫

0

t f [

c5a(t)+c6v(t)a(t)
]

dt

= E14
16(i)+E56

16(i).

Now wehave,

∑
i

E16(i) = ∑
i

E14
16(i)+∑

i

E56
16(i)

= ∑
i

E14
16(i)

= ∑
i

E14(i).

The second statement follows since ∑i E
56
16(i) = 0 when v0(0) =

vf (N) = 0 as given by [1]. That is, the net effect of c5 and c6 is zero
when the robot startsand returns to rest. ⊓⊔


