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Abstract: Human diseases are inherently complex and governed by the complicated interplay of several 
underlying factors. Clinical research focuses on behavioral, demographic and pathology information, whereas 
molecular genomics focuses on finding underlying genetic and genomic factors in genomic data collected on 
mRNA expression, proteomics, biological networks, and other microbiological features. However, each of these 
clinical and genomic datasets contains information only about one particular aspect of a complex disease, rather 
than covering all  of the several complicated underlying risk factors. This has led to a new area of research that 
integrates both clinical and genomic data and aims to extract more information about diseases by considering 
not only all  the various factors, but also the interactions among those factors, which cannot be captured by 
clinical and genomic studies that are performed independently of each other. Although initial efforts have 
already been made to develop such integrative modeli ng of the clinical and genomic data to shed light on the 
biological mechanism of the diseases, the research field is still  in a rudimentary stage. In this review article, we 
survey the general issues, challenges and current work of clinicogenomic studies. We also summarize the 
current state of the field and discuss some possibiliti es for future work.  

 
 Until  the last decade, traditional clinical care and management of complex diseases mainly relied on 
different clinico-pathological data, such as signs and symptoms, demographic data, pathological lab test results, 
and medical images. In addition, efforts have been made to capture genetic factors by maintaining the famil y 
history of patients. The effect of such clinical and histo-pathological markers is assessed by cohort based studies 
conducted on large populations (Szklo 1998) and the knowledge obtained from these studies is summarized as 
clinical guidelines for the diagnosis, prognosis, monitoring and treatment of human disease, e.g., NPI (Galea, 
Blamey et al. 1992) and Adjuvant! Online (Goldhirsch, Coates et al. 2006) for breast cancer and palmOne 
(Blumberg 2004) for prostate cancer. However, this approach still  falls short. For example, there are adverse 
drug reactions for some patients who have risk factors similar to those patients who have been cured by the 
same therapeutic treatment. This LVVXH�VWHPV�IURP�WKH�VWUDWHJ\�RI�µRQH�GUXJ�ILWV�DOO¶ and motivates the need to 
improve on conclusions drawn from cohort-based studies so that the underlying mechanism of complex diseases 
can be understood at the individual patient level.  

The recent advancement of high-throughput technology has led to an abundance of information for each 
individual at the micro-molecular level. A myriad of genetic, genomic and metabolomics data have been 
collected to capture different aspects of cell  mechanism that shed light on human physiology. Examples include 
SNPs, which provide information about the genetic polymorphism of an individual; gene expressions, which 
measure transcription; and protein and metabolit e abundance, which captures protein abundance and post-
translational modifications. These high-throughput datasets have helped answer some complex biological 
questions for different diseases, such as assessing the prognosis effect (Sotiriou and Piccart 2007),(Driouch, 
Landemaine et al. 2007),(Potti, Mukherjee et al. 2006),(Garber, Troyanskaya et al. 2001), epistasis effects on 
diseases (Anastassiou 2007), and discovering new sub-phenotypes of complex diseases (Golub, Slonim et al. 
1999),(Alizadeh, Eisen et al. 2000),(Bhattacharjee, Richards et al. 2001). The use of genetic information in 
epidemiology helped design effective diagnostics, new therapeutics, and novel drugs which have led to the 
recent era of personalized medicine (genomic medicine) (Stephenson, Smith et al. 2005), (Edén, Ritz et al. 
2004), (Teschendorff , Naderi et al. 2006). However, these genetic factors alone cannot explain all  the intricacies 
of complex diseases. For example, the incidences of cancer vary widely among different countries due to the 
environmental factors, even for the same ethnic groups, when they migrate from one country to another 
(Redmond Jr 1970), (Weinberg 2007). 

In recent studies (Schadt 2009, Eichler, Flint et al. 2010), it has been hypothesized that most complex 
diseases are caused by the combined effects of many diverse factors, including different genetic, genomic, 
behavioral factors and environmental effects. For example, cancer, which is the most widely studied disease 
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phenotype in last few decades, is extremely heterogeneous. Different clinical endpoints of cancer, such as the 
idiosyncrasy of individual tumors, the survival rate of cancer patients after chemotherapy or surgical treatment, 
development of metastasis, and the effectiveness of drug therapy are governed by different risk factors including 
multiple mutations of genetic factors (e.g., RAS, RTK, TGF- ��:QW�VLJQDOLQJ� SDWKZD\V��� behavioral factors 
(e.g. tobacco exposure, diet, li festyle) (Weinberg 2007), long-time environmental effects (e.g., stresses, 
temperature, radiation, oxygen tensions, hydration and tonicity, micro- and macro-nutrients, toxins) (Loscalzo, 
Kohane et al. 2007) and inherent germline variations (e.g. BRCA1/2) (West, Ginsburg et al. 2006). Therefore, 
clinico-pathological and genomic datasets capture different effects of all  such diverse factors on complex 
diseases in a complementary manner rather than a supplementary nature. Using the two diverse perspectives 
provided by both types of data can potentially reveal disease complexities in greater details.  

In addition, the individual effects of each of the clinicogenomic factors on disease predisposition can be 
small  and thus can remain undetected by most disease association techniques performed on individual datasets. 
However, interactions among those individual factors may be responsible for increasing the risk of  complex 
disease (Anastassiou 2007),(Loscalzo, Kohane et al. 2007). For example, neither a gene nor an environmental 
factor li ke tobacco use may be significantly associated with lung cancer by itself, but together they can increase 
the risk significantly (Zhou, Liu et al. 2002). In a more complicated scenario, a complex genetic network can 
evolve dynamically under various environmental factors (Schadt 2009). This phenomenon is true even for 
Mendelian disease with monogenic disorder li ke sickle cell  disease, where single different phenotypes were 
observed based on environmental effects (Kato, Gladwin et al. 2007). Besides interactions, there may be other 
types of relationships such as causal relationships between two types of markers (Lê Cao, Meugnier et al. 2010). 
For example, some pathological variables such as PSA, can also have upstream genetic influence (Singh, Febbo 
et al. 2002). In this case, the individual factors coming from different datasets may not be a strong biomarker; 
but rather the relationships inherent among them, including interaction, can act as potential biomarkers.  
 Leveraging such wider relationships including interactions, correlation and casualty among the 
genomic, pathological, environmental, and behavioral factors is important for understanding the nature of 
diseases. It will  also assist in making better clinical decisions. For example, surgery can be avoided if some 
causative genomic markers of the tumor can be targeted in the early stage of breast cancer. Note that if the 
association of clinical and genomic factors with the disease phenotype is assessed independently, such deeper 
levels of relationships among data sources cannot be discovered. It is essential to build integrative models 
considering both genomic and clinical variables simultaneously being cognizant of  the interaction, redundancy, 
and correlation among those clinical and genomic data (Schadt 2009). This has led to an emerging research area 
of integrative studies of clinical and genomic data, which we will  refer as clinico-genomic integration. In this 
review, we survey not only different issues and challenges existing in such clinico-genomic integrative studies, 
but also different approaches that aimed to address those issues. Finally, we conclude with a general discussion 
on future research directions in this topic. ��� ���� �� �	�
����
���� �
�������
�
Clinicogenomic integration means building models by integrating clinical and genomic data. Clinical data refers 
WR�D�EURDG�FDWHJRU\�RI�SDWLHQW¶V�SDWKRORJLFDO��EHKDYLRUDO��GHPRJUDSKLF��IDPLOLDO��environmental and medication 
history, while genomic data refers to DQ\�NLQG�RI�SDWLHQW¶V�JHQHWLF information including SNPs, gene expression, 
protein and metabolite profiles [Figure 2]. More specifically, the clinicogenomic studies should have at least 
one clinical dataset and one genomic dataset for a group of people who are assessed for an outcome of a 
phenotype of a disease. Furthermore, we survey only integrative models with an emphasis on biomarker 
discovery. Therefore, each sample of datasets is assessed for a particular disease phenotype. The phenotype can 
be either binary class labels such as cancer vs. no cancer, tumor vs. normal tissue samples, metastasis vs. non-
recurrent cancer, or continuous variables, e.g., the survival time after chemotherapy or other types of therapeutic 
treatments. Achieving the goal of biomarker discovery requires identifying the clinical and genomic features 
from the data that are significantly associated with the disease phenotype. ��� �����
� ������ �� �	�
����
���� ������

Integration of diverse biomedical datasets is a vast research topic and has been studied widely in many 
different domains. Although some initial efforts have been made by researchers for clinicogenomic integration, 
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most of these studies are scattered throughout the lit erature and were developed from a clinical perspective for 
different disease phenotypes with their own limitations and advantages. Moreover, the issues and challenges 
related to this field are not yet well  understood. In this article, we first identify the overall  issues and challenges 
of this field with an emphasis on the methodological perspective (Section 2) and then discuss how the existing 
clinicogenomic methods address these challenges (Section 3). In particular, we categorize existing methods 
from many perspectives: stage of integration (Section 3.1), how disparate dimensionalit y is addressed (Section 
3.2), and disease heterogeneity (Section 3.3). We also discuss the different goals that these studies try to achieve 
(Section 4) and the validation techniques used in each category (Section 5). Finally, we review several multi -site 
clinicogenomic models (Section 6) and then conclude with discussion (Section 7). Moreover, the scope of the 
article is the integrative model development of clinical and genomic data, rather than the simple incorporation of 
genomic data into clinical practice for designing genomic medicine.  

There are some existing articles that focus on few aspects of the clinicogenomic studies (Table 1). 
Boulesteix et al. (Boulesteix and Sauerbrei 2011) performed a recent survey on how to validate the additional 
predictive power of genomic markers over traditional clinical variables with a focus on external data. Unlike this 
review, they did not aim at reviewing all  types of predictive clinicogenomic models and the challenges these 
studies address. Correa et al. 2010 (Correa, Adali  et al. 2010) partially reviewed the integration approaches that 
find relationships between datasets measured by correlation while Thomas et al. (Oelker and Boulesteix) mainly 
studied methods aiming to find interactions between genes and environmental factors. There are several other 
reviews on studies that integrate diverse genetic, genomic, proteomic, metabolomics, interactome, phylogeneic 
DQG� SKHQRPH� GDWD� �DEEUHYLDWHG� DV� µRPLF¶� GDWD� (Hamid, Hu et al. 2009, Tsili ki and Kossida 2011, Bebek, 
Koyutürk et al. 2012). However, they do not cover the integration of clinical data with genomic datasets. 
Although they fall  out of scope of our survey, they are included in Table 1 since they discuss some of the 
generic challenges common in any integrative study. To the best of our knowledge, currently there is no study 
which aims at reviewing integrative approaches combining genomic and clinical/environmental data from a 
methodological perspective.  

 
The integration of genomic and clinical studies is diff icult as the two fields have different perspectives. 

Several key technical challenges are described below. 
1. Difference in nature of the datasets: As the datasets being integrated are collected from two different 

perspectives, the difference in the nature of the data being integrated creates several challenges for 
developing integrative models. First, clinical data are usually record-based where each patient can be 
represented by a record of clinical variables. On the other hand, genetic and genomic data sets vary 
widely in terms of formats. Besides record-based data, there are many network-based datasets where the 
relationships among several biomolecular entities are represented as features. Second, clinical variables 
are available in diverse data types such as text, categorical, and numeric values, but on the other hand 
genomic variables are mostly numeric. Third, some data sets may contain structure, e.g., measurements 
across time or across a genetic sequence, that are not present in others. Fourth, genomic and genetic 
datasets are high-dimensional in comparison with clinical data which often contains ~10-20 variables. 
Fifth, genetic and genomic data contains a higher level of missing values because of technological 
issues (Ioannidis 2005).  In contrast, clinical data are easy and inexpensive to collect, and so contain 
fewer missing values. Integrating variables with such different formats, types, structure, dimensionality, 
and missing values is a challenging problem in the data mining and machine learning domain. 

2. Statistical significance: The high-dimensionality of genomic datasets combined with low sample size 
poses challenge for finding statistically significant biomarkers (classical statistical n<<p problem) [] . 
Combining such high dimensional features with low dimensional clinical data creates a further 
challenge for statistical and data mining methods. Even after pre-selecting significant genes, genomic 
features (which usually number a few hundred) still  dominate the traditional clinical variables in number 
(which usually are around ~10-20) due to the over-fitting problem. Unless the whole experimental setup 
is performed cautiously, the clinical markers can be lost in the vast regime of genomic data and thus the 
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predictive power of the genomic data could be overestimated (Boulesteix, Porzelius et al. 
2008),(Tibshirani, Efron et al. 2002). 

3. Different biases and assumptions: Since the corresponding datasets are collected independently, the 
biases and assumptions of each of the data sets being integrated may be different due to the difference in 
experimental designs and protocols. For example, since clinical variables are gathered more 
systematically over a large period of time intervals, they contain less noise. In addition, they are 
validated rigorously by numerous epidemiology studies (Boulesteix, Porzelius et al. 2008, Truntzer, 
Maucort-Boulch et al. 2008, Obulkasim, Meijer et al. 2011). Also, clinical data are cheap and easy to 
collect (Obulkasim, Meijer et al. 2011). In contrast, gene expression data (and also other genomic data) 
are less reproducible over independent cohorts because of the high noise, different experimental biases, 
high-dimensionalit y and small  sample sizes of the microarray datasets (Ein-Dor, Kela et al. 2005, Ein-
Dor, Zuk et al. 2006, Naderi, Teschendorff  et al. 2006, Chuang, Lee et al. 2007). Integrative studies 
need to be aware of such differing degrees of information present in different datasets. Otherwise, the 
role of clinical variables may be underestimated in the prognostic model when compared with noisy 
genomic variables (Truntzer, Maucort-Boulch et al. 2008). 

4. Heterogeneity: Most complex diseases are heterogeneous in nature, i.e., patients with a particular 
disease may form different subgroups and factors appropriate for one subgroup may not apply to 
another. For example, different subsets of the population are known to have different biomarkers for the 
same disease (McClellan and King 2010), due to different pathways playing a role in the same disease, 
or due to the same pathway playing a different role in subjects from different ethnicities (Kelley and 
Ideker 2005). It is important to find such subgroups for integrative studies, because the effect of one 
type of variable in a subspace can be explained when integrated with other types of data, but the 
variable would be treated as a confounding factor otherwise. 

5. Interpretability: Another generic challenge for biomarker studies is that the obtained model has to be 
interpretable, i.e., the effect of individual markers on the disease phenotype must be identified. 
Otherwise, the domain experts cannot use the potential risk factors for further validations. Similarly, 
clinicogenomic integrative models must be easily interpretable to be treated as biomarkers. For 
example, if the original genes or clinical variables cannot be interpreted by the model, then drugs cannot 
be designed targeting some genes or the proteins encoded by those genes.   

6. Finding relationships between datasets: The relationship between clinical and genomic data may also 
be different. The predictive model achieves benefits over the individual studies if the two datasets are 
complementary in nature, but not supplementary in nature. Besides such broad relationships among 
overall  datasets, relationships can be present among different types of individual markers. For example, 
correlation between genomic data and several clinical variables has been observed in many domains 
including cancer research (Singh, Febbo et al. 2002), (Sotiriou, Wirapati et al. 2006), (Kumar, 
Grigorakis et al. 2005) and neuroscience (Correa, Adali  et al. 2010). There may exist other types of 
relationships including interactions (Oelker and Boulesteix) and causal (Boulesteix, Porzelius et al. 
2008, Lê Cao, Meugnier et al. 2010) relationships among different types of variables as described 
earlier. Finding and leveraging all  the relationships between clinical and genomic data poses a big 
challenge for integrative study. 
 

Some of the technical challenges (the disparate natures of the data) described above are quite general and 
are applicable for any type of integrative studies in any domain, while some others (heterogeneity and 
interpretabilit y) are applicable mainly for biomarker discovery. Besides these generic challenges, 
clinicogenomic integration also faces challenges (statistical significance, different amount of information) that 
are specific to the domain. It is diff icult to address all  these challenges. In fact, most of the clinicogenomic 
studies aim to address only a few challenges described earlier. Several of them were motivated by the integrative 
models from different research communities including biostatistics, data mining, and machine learning, which 
can handle the generic challenges mentioned above. Of course, many of them were further modified; sometimes 
completely new methods were designed to address the specific challenges of clinicogenomic data integration. 

Besides these technical challenges, there are several domain challenges as well . First, there are differences 
in the terminologies used in epidemiology and genetics studies, even for the same topic. For example, 
association studies (genetics) and case-control studies (epidemiology) deal with the same concept of finding 
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causative factors of diseases. (Maojo and Martin-Sanchez 2004). This makes the automatic extraction of 
information from health care and genetics data diff icult. Second, the genomic data have been collected from a 
research perspective solely according to solid scientific theories and models. However, the health care data is 
collected slowly over a longer period of time in a retrospective manner, from different sources spanning broad 
areas such as PHGLFDO�REVHUYDWLRQV��SDWLHQW�PDQDJHPHQW�GDWD��KHDOWKFDUH�SURYLGHUV��GRFWRU¶V�QRWH��DQG�SDWLHQW¶V�
li fe history. Thus, clinical data collected from electronic medical records [EMR] may contain redundant 
information, which has to go through several preprocessing steps to extract useful information about a patient 
that can be integrated later with genomic data. Lastly, the privacy issue related to the healthcare domain 
(Hristidis 2009), (Meingast, Roosta et al. 2008) creates a serious bottleneck to the availably of clinical data. The 
data collection related challenges require several preprocessing steps such as building data warehouse 
integrating multiple sources of data, extracting information from them, text mining and natural language 
processing(NLP). Such data collection and preprocessing steps are out of the scope of this review, since the 
focus of this review is on developing integrative models. 

 
In this section, we identify and discuss several aspects of integrative model development. Furthermore, we will  
categorize the existing clinicogenomic studies based on those aspects and discuss how they address different 
challenges as described in the last section. Again, some of these categorizations and the corresponding studies 
which address the general challenges are applicable for any domain; while some address the specific challenge 
of clinicogenomic integration. The main goal of the review is to analyze the clinicogenomic models from a 
methodological perspective. Table 2 contains the overall  summary of all  clinicogenomic models based on these 
taxonomies.  ��� ����� �� ���� �
�������
�
Integration of multiple heterogeneous datasets in general can be performed in several stages. For example, either 
individual datasets can be integrated first before developing any model or decisions coming from models built  
on each dataset independently can be integrated. Alternatively, each dataset can be transformed to a common 
intermediate structure such as graph or kernel and then these structures can be merged before developing 
models. Pavlidis et al. (Pavlidis, Weston et al. 2001) performed seminal work on these three types of integration 
and called them early, late and intermediate integration respectively. We will  categorize all  clinicogenomic 
integration into these three broad conceptual categories.  

3.1.1 Early integration:  

In general, early integrative approaches merge the independent data sources together before performing any kind 
of data analysis. In a simplistic case, the individual data matrices are simply augmented into a larger matrix if 
both of the datasets have same set (or subset) of samples. Thus, the integration of the individual datasets, which 
are clinical and genomic data in our case, is performed in an early stage of the overall  analysis. Once the 
combined data matrix is prepared, any types of models can be developed based on the three goals of the 
clinicogenomic studies described in section 4.  

The unique assumption of this type of integration is that both of the datasets are similar in nature, i.e., 
most of the properties of the datasets such as data type, formats, structure, dimensionality are either similar or 
preprocessed to be as similar as possible. Otherwise, a significant amount of preprocessing such as 
dimensionality reduction, missing value imputation and data discretization is required before integrating 
individual datasets.  

Advantage: Early integration is the simplest approach, since any standard model can be applied on the 
integrated dataset to achieve any of the objectives. Therefore, most of the cli nicogenomic studies fall  in this 
category [] . Moreover, they can preserve any kind of inter-data relationships. For example, if some clinical and 
genomic variables are correlated, the model developed after data integration can take the correlation structure 
into account.  
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Disadvantage: Early integration loses the individual properties of each dataset such as the structure and 
the different degree of information when merged together into an augmented dataset. The dimensionalit y of the 
augmented dataset also increases, thus the model may also suffer from high dimensionalit y and low statistical 
significance of the obtained result. 

3.1.2 Late integration: 

Late integration first develops predictive models separately for each of the individual data sources and 
then merges the individual decisions of all  predictive models into a final score as the prediction of outcome 
variable. As opposed to early integration, this type of integration actually merges the classifier decision rather 
than original dataset. The main assumption of late integration is that the individual datasets are independent and 
there is no inter-datasets relationship. 

The biggest challenge of late integration is how to merge the decision of classifiers obtained from 
individual datasets. Several strategies li ke majority voting, linear aggregation and weighted average have been 
applied for this purpose. For example, two breast cancer studies conducted by Campone et al. 2008 (Campone, 
Campion et al. 2008) and Silhava et al. 2009 (âLlhavá and Smrz 2009) simply summed up the individual 
decision coming from genomic and clinical data. Campone et al. applied the Cox regression model to summarize 
the topmost 15 discriminating genes into a single genomic score and then added it to the traditional clinical 
score of breast cancer, NPI to get the final score for assessing the effect of adjuvant chemotherapy. On the other 
hand, Silhava et al.(âLOKDYi�DQG�6PU]�����) applied two different predictive models: logistic regression, and 
BionomialBoosting(BB)(Buhlmann and Hothorn 2007) to get the genomic and clinical score respectively before 
summing up.  

However, simple summation is not always appropriate because the contribution of the individual data 
sources to the overall  clinicogenomic model may be different. Alternatively, the contribution from each 
individual dataset towards the disease phenotype can be assessed and the scores obtained from the individual 
models can be weighted accordingly. For example, Futschik et al, 2003 (Futschik, Sulli van et al. 2003) used 
parameterized learning for merging the individual decisions into the final decision. In order to integrate the 
individual decisions of the clinical (by Bayesian classifier) and genomic data (by evolution fuzzy artificial 
neural network (EFuNN (Kasabov 2001)), a modular hierarchical model was introduced based on two levels of 
parameters for assessing the confidence of the decisions of the two predictive models towards the class label and 
adjusting the class bias. Furthermore, they also tested statistical independency of the outputs of two independent 
models using the mutual information (Cover and Thomas 2006), which is the important assumption for late 
integration. In a more complicated scenario, with many datasets being integrated, the more general problem 
arises when some of the models built  on individual datasets produce binary class decisions and some of the 
predictive models generate continuous-valued scores. Several approaches including majority vote, and its more 
generic version called consensus learning (Gao, Fan et al. 2009) have been studied in many other domains such 
as image processing, social networks domain.  
 Advantage: The individual structure and the nature of each dataset are preserved in late integration, 
since model is developed on each dataset separately. Moreover, different models can be used for different 
datasets depending on the individual nature of the datasets. Late integration is particularly useful when each of 
the datasets is completely heterogeneous, i.e., the datasets cannot be transformed into a common format for 
integration. 

 Disadvantage: Late integration misses any kind of possible relationship li ke correlation, interactions 
present among the datasets. Moreover, late integration generates a different hypothesis for each of the datasets 
as opposed to a single hypothesis for the integrated dataset. Interpretation and validation of these different types 
of hypothesis is not trivial. 

3.1.3 Intermediate integration:  

Early and late integration are opposite in nature in terms of their advantages and disadvantages. Intermediate 
integration tries to overcome the limitations of both approaches.  It first represents each dataset with a common 
structure, such as a graph or kernel, and then merges these representations before developing any models. 
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Therefore, it generates one hypothesis, but can retain the structure of each data set and take in account the 
possible relationships between the datasets to some extent. The main assumption of this approach is that there is 
an appropriate intermediate representation for each dataset preserving the individual properties of that dataset 
and the intermediate representations can be combined easily. 

Kernel based intermediate integration has become the most popular technique for data fusion in many 
domains mainly for two reasons. First, kernels can preserve the individual properties of data easily. Different 
types of kernels can be applied based on the properties of a dataset. Second, merging kernels obtained from 
individual datasets is easier than merging decisions in late integration (refer to the review paper (Gönen and 
$OSD\GÕQ�����) for more theoretical description of kernel fusion methodologies). Followed by the seminal work 
of Palvidis et al. (Pavlidis, Weston et al. 2001), this idea of kernel based intermediate integration was used by 
Daemen et. al. (Daemen, Gevaert et al. 2007) in this context of clinicogenomic integration for classifying 
metastasis vs. relapse free survival of breast cancer. In particular, two normalized linear kernels were developed 
for both clinical and gene expression data and then, those kernels were fused using a weight before applying the 
final predictive model. One advantage with such kernel based integration is that the weights corresponding to an 
individual dataset can denote the relative contribution towards the final prediction. However, choosing an 
appropriate kernel for a particular dataset is not trivial. Moreover, kernels are not easily interpretable so that 
they can be used as biomarkers. 
            Graph based techniques can provide more interpretable models for intermediate integration. In an similar 
effort to develop such techniques, Gevaert et. al. (Gevaert, Smet et al. 2006) used Bayesian network as the 
intermediate representation. A Bayesian network can represent the dependency among the variables by a 
directed acyclic graph (DAG) in a probabilistic manner. In brief, there are two independent stages in Bayesian 
modeling: learning the structure of the DAG and learning the parameters of the probabilit y distribution. The 
authors attempted three types of Bayesian integration-early, late and partial integration using the two 
independent steps of Bayesian learning. The partial integration is conceptually similar to intermediate 
integration. For example, first, structure learning is performed on both datasets separately (using heuristic model 
search algorithm K2 (Cooper and Herskovits 1992)) and then, these two structures are merged through the 
outcome variable which is the only common variable in the two datasets. In a second step, the Bayesian 
parameter estimation of the model (learning of conditional probabilit y tables) is performed using a Dirichlet 
distribution. Finally, the factors within the Markov blankets of the outcome variable are defined as the 
biomarkers. Although such graph-based intermediate integration provides more interpretable models, merging 
the structures (DAGs) obtained from each datasets is not as straightforward as fusing the kernels. In both 
studies, intermediate and partial integration showed better performance than early and late integration.  
 Alternatively, many statistical approaches including canonical correlation analysis (CCA), independent 
component analysis (ICA), and partial least square regression (PLS) try to find latent components in each 
datasets, which can be also treated as a sort of intermediate representation. However, the goal of these studies is 
very different. In particular, these studies want to assess the relationships among the obtained components rather 
than building classification models using them. 
 Advantage: It can preserve the individual properties of a dataset. Moreover, inter-dataset relationships 
li ke correlation and redundancy can also be taken into account during final model developments, although it 
depends on many issues like choice of kernel and how such relationships are preserved during kernel fusion. 
 Disadvantage: Finding appropriate intermediate representations that are interpretable and easily fusible 
at the same time is diff icult. Moreover, finding interactions and causal relationships across datasets is diff icult 
due to the transformation of the original feature space. ��� ���� �� ���
���
�	��� �������
�
Clinicogenomic integrative models have to be aware of the disparate dimensionaliti es of the clinical and 
genomic datasets. Otherwise, low-dimensional clinical variables will  be lost among the thousands of genomic 
variables (Boulesteix, Porzelius et al. 2008). The clinicogenomic studies can also be categorized. We categorize 
existing clinicogenomic studies into two categories based on how they handle this issue, each of which has  its 
own assumptions, advantages and disadvantages.  

3.2.1 Two-step methods 
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The easiest way to handle the disparate dimensionaliti es of individual datasets is to first perform dimensionality 
reductions for each dataset separately and then, build predictive models on them in a second step. In the context 
of clinicogenomic integration, dimension reduction techniques are applied solely on the genomic dataset 
assuming that clinical variables are already low dimensional. Most of the techniques select topmost 
discriminative genomic features, while others methods combine those features into a combined score for future 
model development. In the second step, the selected genomic variables are merged with the clinical variables to 
build prognosis model on the combined dataset.   
 Advantages: The two-steps models are very flexible. Any types of dimensionalit y reduction technique 
and any predictive modeling techniques can be incorporated in building the clinicogenomic model.  

Disadvantages: There are few disadvantages of the two-step methods. First, determining the 
appropriate number of genomic features in the first step is hard. The number of features may impact the 
comparison between the additive performances of clinical and genomic variables. For example, if too many 
features are selected from genomic data, it may overfit the clinicogenomic model in the second phase. On the 
other hand, if too few genomic factors are retained, then the predictive capabilit y of the genomic factor can be 
underestimated. This overfitting issue is even more serious if the dimensionality reduction techniques take 
response variables into account in the first step. In this scenario, the genomic features fed into the second stage 
will  have strong prediction power for the response variable. Hence, comparing those genomic features with the 
clinical variable is not completely fair (Boulesteix, Porzelius et al. 2008). Second, performing dimensionality 
reduction only on genomic data cannot account for the relationship existing between the two datasets. For 
example, even the right number of genomic variables selected in the first step may be redundant in the second 
step for model development given the clinical variables used. Moreover, the subtle contributions of many genes 
to prediction can be missed by the dominant genomic features that are correlated with the clinical variables 
(Boulesteix and Hothorn 2010). This is especially important when the goal is to assess the additional power of 
genomic data over clinical variables. This is described in more details in Section 0.  

3.2.2 Combined clinicogenomic models 

The second type of approach merges the two steps of dimensionality reduction and model development into a 
single step by leveraging regularization based statistical models with possible modifications. Regularized 
models can increase the generalization power of predictive model by preferring less complex model and thus are 
very effective for reducing the possible overfitting problem for high-dimensional data such as gene expression. 
In general, regularized techniques introduce an extra penalty term for the model complexity ( ) in addition 
to the original loss function ( ) of the objective function as shown below. 
 ���  Equation 3-1 

Here, X is the clinicogenomic dataset and � is the co-eff icient that represents the corresponding weight of each 
of the variables present in ;�DQG� � LV� the regularization parameter that controls the tradeoff  between the loss 
function and model complexity. The most popular regularization approaches used in statistical learning are L2 

(ridge(Hoerl and Kennard 1970)) and L1 (lasso(Tibshirani 1996)) regularization, which impose penalty as the 
square ( =� � ) and absolute value ( =� ) of the regression coeff icients in Equation 
3-1, respectively. Moreover, L1 penalization shrinks most of the coeff icients of the regression model to zero and 
hence, it is widely used to perform feature selection simultaneously with model development. However, the 
disparate dimensionaliti es of clinical and genomic datasets pose new challenges to the generic regularization 
problem. Several modifications have been proposed to impose different penalty structures for different datasets 
and discussed in more details in section 4. 
 
Advantage: The main advantage of the one-step models is that they can take the redundancy present between 
genomic and clinical datasets implicitl y, since both datasets are considered together during model development. 
This property makes the single-step approach most suitable for assessing additional predictive performances of 
genomic features over the clinical variables (Boulesteix and Hothorn 2010). Moreover, most of the co-eff icients 
of the sparse regularized model are zeros with few non-zero entries which precludes the explicit variable 
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selection step. So, the number of genomic features to retain for model development is not required to be 
specified upfront.  
Disadvantage: Each of the regularized models has their own model assumptions and requires learning several 
parameters. This sometimes yields to higher computational complexity. Moreover, the regression based models 
are mostly applicable to building predictive models. Finding inter-dataset relationships li ke correlation is hard 
using these models.  ��� ��		����� ��� ������� ���	�
��

Most of the clinicogenomic models use the full space model development techniques, i.e., the bio-
signatures (either gene or clinical variable) were generated based on how well  they can discriminate all patients 
from the control population. However, due to the disease heterogeneity, the same set of clinical and genetic 
predictor may not be the causative/putative biomarker for all  patients. Some factors may have more effect in a 
particular group of patient while the same factors may have less effect in the other group of patient (Ulitsky, 
Karp et al. 2008), (Fang, Kuang et al. 2010), as shown in Figure 10. This creates the need for developing 
techniques that are able to find not only different types of biomarkers, but also the subgroups of patients or 
healthy population associated with each of those particular groups of markers.  

The easiest way to find the subgroup of samples associated with a set of biomarkers is to design a two-
step study, where the subgroups of samples are searched in a later stage after biomarker discovery in the first 
phase. In one such study, Schwarz et. al. 2009 (Schwarz, Leweke et al. 2009) applied a generic network based 
two-step framework initiall y proposed by Barabasi et al. (Goh, Cusick et al. 2007) to find different subgroups of 
schizophrenia patients. In particular, they built a two layer bi-partite graph representing all  biomarkers in one 
partition, and all  patients in the other partition, with an edge across the two layers representing the association 
between them [Figure 5]. In a later phase, Markov chain clustering (Van Dongen 2000) was used to produce 
more homogeneous network modules containing patients with similar characteristics based on clinical state, 
pathological tests, brain images, and molecular information. Their network discovered one cluster containing 
almost a third of the Schizophrenia patients with common abnormalit y in serum primary fatty acid which was 
further validated for two psychiatric disease subtypes: naive schizophrenia and affected disorder patients. On the 
other hand, frequent rule mining algorithm (Agrawal, Imieli  ski et al. 1993) can find patterns (e.g., the blocks A-
E represented in Figure 10) representing an association between clinicogenomic factors and patient subgroups 
together in a single step. Berlingerio et. al., (Berlingerio, Bonchi et al. 2009) used this technique along with a 
postprocessing step to remove the non-discriminative patterns li ke (block C of Figure 10) for discovering the 
demographic, pathological (e.g., hepatic cirrhosis) and genomic factors (e.g., Human Leukocyte Antigens 
(HLA) sites) responsible for the allograft rejection of li ver transplant.  

Both of the previous two subspace models find subgroups of patients and the corresponding biomarkers, 
where biomarkers can be both clinical and genomic markers. Alternatively, some integrative studies aim to 
leverage the complementary strengths of the two datasets by looking at the distinct patient subgroups that the 
two types of markers can effectively classify. For example, clinical variables can be good at classifying a 
particular group of patients who cannot be classified well  by genomic features and vice versa. In the context of 
clinico-genomic studies, preference was given to clinical data. For example, Wang et. al. (Wang, Ooi et al. 
2007) first selected that subgroup of patients who cannot be well  explained by the current clinical variables such 
as Cirrhosis and Vascular invasion commonly used for assessing the recurrence of the human hepato-cellular 
carcinoma (HCC) after primary treatment. Afterward, gene expression data was considered only for those 
subgroups for building classification models li ke SVM, SLD, and KNN (k=3) (Tan, Steinbach et al. 2006, 
Hastie, Tibshirani et al. 2009). In another recent study, Obulkasim et. al. 2011 (Obulkasim, Meijer et al. 2011) 
performed a more systematic study to determine automatically which samples will  benefit the most by including 
molecular data into clinical data using step-wise classification model. At first, they built two classifiers 
separately on clinical and molecular training data. Second, they determined the subgroup of test samples (using 
a re-classification score) that either lie on the decision boundary of the classifier built upon clinical variables 
(assuming that clinical variables are inexpensive and well -validated) or have a chance to improve the 
classification accuracy if molecular data is included. In particular, they project a test sample into the clinical 
space of training data and then, estimate the re-classification score based on how many training samples were 
correctly and wrongly classified in that local neighborhood. Finally, the samples with low score were 
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reclassified using molecular data. In a different study, Paoli  et al (Paoli , Jurman et al. 2008) developed a semi-
supervised approach which used the clinical and epidemiological variables to validate the coherent subgroup of 
patients who shared similar types of prognostic profiles defined by gene expression data. All  these models can 
be interpreted as rules where each rule contains clinical variable as their first predictor. 

Advantage and disadvantage: As mentioned earlier, the biggest advantage of subspace analysis is that 
it can discover patterns which are only associated with a particular group of patients. This is extremely useful 
for finding different types of biomarkers for heterogeneous diseases. Another big advantage of many subspace 
analysis techniques li ke association pattern mining or network based approach described here is that they are 
non-parametric model which can capture non-linear interaction easily. This may be extremely useful for 
integrating heterogeneous types of data where same kind of model assumption may not hold for all  data types. 
Another big advantage of these approaches is that they can also be used for hypothesis discovery rather than 
hypothesis validation. So, they have the potential to discover novel causal factors for inferring new knowledge, 
especially minor causal factors that are represented in very few samples and thus, overlooked by full -space 
models(Fang, Pandey et al. 2010). Nonetheless, the observed patterns require more robust validation both 
statistically by considering the random association, and clinically by considering external cohort/test datasets 
before considering the patterns and modules as potential factors. Moreover, a lot of spurious patterns and 
modules are often discovered which are diff icult to interpret.  

 
In the previous section, we described the methodological differences between several integration methods based 
on how they address the generic challenges of data fusion. Moreover, the clinicogenomic integration can also be 
categorized based on the goals that they want to achieve through using those models. More or less, the overall  
goal of clinicogenomic studies can be divided into three broad categories from medical perspective. Some 
studies aim at achieving more than one clinical goal in a single study either implicitly or explicitl y. ��� �������
� �� ����
����� ���� �
	�
Predictive clinicogenomic models aim at improving the clinical prediction of diseases by integrating clinical and 
genomic datasets. Thus, the main research question addressed by this type of clinicogenomic model is whether 
the datasets contain complementary information. To assess the improvement of prognosis power, the combined 
clinicogenomic method is compared with the models built on either clinical or genomic data independently. We 
will  first describe the two-step approach which performs explicit dimensionality reduction followed by the 
creation of combined single-step predictive models.  
 
Two-step models: The choice of the particular predictive model differs based on the clinical endpoints of the 
disease, i.e., whether the target variable is discrete or continuous. If  the response variable is continuous, such as 
survival of patients after a particular therapeutic treatment or the development of metastasis after surgery, then 
the regression based methods are deployed for model development. For example, the Cox proportional hazard 
model estimates the li fetime (survival or failure) of an event associated with the covariates using two 
parameters: a hazard function describing the changes of hazard (risk) over time at the baseline level of 
covariates and the co-eff icients describing the effect of each variable on survival. In one such clinico-genomic 
study, Lexin Li (Li 2006) used the Cox model for predicting the survival of the patients with diffuse large-B-
Cell  lymphoma (DLBCL) after chemotherapy. In addition to the genomic features (selected by a supervised 
dimensionality reduction (Li 1991)), they included a well -established clinical factor called international 
prognosis index (IPI) (Shipp, Harrington et al. 1993), which combines  different clinical factors of DLBCL.  
 Classification techniques are used to build clinicogenomic models when the output variable has discrete 
categories. This includes mostly binary two-class variables, e.g., diseased vs. healthy group, successful vs. 
unsuccessful treatment, recurrent vs. non-recurrent,  survival vs. death after certain time point, and metastasis 
vs. relapse free outcome. Among the wide-variety of classification schemes, discriminant models, which aim at 
learning a discriminative function to separate the two classes, are widely used. For example, Sun et al. (Sun, 
Goodison et al. 2007) used linear discriminant analysis (LDA) (Bishop and SpringerLink 2006) for combining 
the current clinical guidelines for breast cancer prognosis such as St. Gallen (Goldhirsch, Coates et al. 2006), 
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(Goldhirsch, Wood et al. 2003) and NIH (Eifel, Axelson et al. 2001) with genomic information  to predict the 
survival of breast cancer. Another popular discriminant model is logistic regression, since it can provide the 
probabilit y of the outcome event in addition to learning a linear decision boundary, and thus can model clinical 
uncertainty. Most of the clinicogenomic studies (Stephenson, Smith et al. 2005, Beane, Sebastiani et al. 2008) 
use a stepwise logistic regression model where each predictive variable is added successively in the model until  
the optimal model is achieved. In one such model, Beane et al. (Beane, Sebastiani et al. 2008) combined the 
gene expression profiles of lung epithelial cells of potential lung cancer patients using bronchoscopy (Spira, 
Beane et al. 2007) with the clinical and demographic data to  make better diagnostic decisions. Similarly, 
Stephenson et. al. (Stephenson, Smith et al. 2005) used step-wise logistic  regression to predict the recurrence of 
prostate cancer after a radical prostatectomy (RP) using a well -established clinical marker called nomogram 
(Harrell  Jr, Cali ff  et al. 1982, Partin, Mohler et al. 1995, Kattan, Wheeler et al. 1999, Blute, Bergstralh et al. 
2001, Graefen, Karakiewicz et al. 2002) that includes diagnostic variables such as PSA level, Gleason grade, 
margin status, and pathological stage along with gene expression data. For avoiding model over-fitting, a 
JRRGQHVV�RI� ILW�PHDVXUH� OLNH�$NDLNH¶V� LQIRUPDWLRQ�FULWHULD� (Akaike 1974) is used to select the optimal model. 
Another popular discriminant model is the support vector machine (SVM) (Vapnik 2000), which  maximizes the 
separation between the two classes (margin) to achieve better generalization power in unseen datasets. Li  et al, 
2005 (Hoeting, Madigan et al.) applied SVM to predict the survival of advanced-stage ovarian cancer after 
platinum-based Chemotherapy. SVM can also learn a non-linear decision boundary using the kernel trick 
(Appendix B) which was used for developing an intermediate integration described earlier  (Section 3.1). 

Other types of non-linear models have also been applied for the integrative purpose. For example, tree 
based methods (Hastie, Tibshirani et al. 2009) are very popular, since they can be easily represented as 
classification rules which are more interpretable to clinicians and can be tested for inferring new domain 
knowledge. These methods are based on recursive partitioning of all  available samples into more homogeneous 
subgroups with respect to the binary class variable. One early attempt to use tree based method was conduccted 
by Pittman et al. 2004 (Nevins, Huang et al. 2003, Pittman, Huang et al. 2004) to integrate genetic data with 
clinical variables for enhancing the prognostic power of breast cancer patients relative to long-term recurrence. 
Similarly, Clarke et al, 2008 (Clarke and West 2008) developed a clinicogenomic model for the survival 
prediction of ovarian cancer. One problem with tree based methods is that there is no single optimal tree because 
they are built  using heuristic search criteria. To circumvent this problem, all  these clinicogenomic studies used 
ensemble learning (Hothorn, Buhlmann et al. 2005),(Kittler 1998) and model averaging (Oliver and Hand 1995, 
Raftery, Madigan et al. 1997, Hoeting, Madigan et al. 1999) techniques to generate a forest of trees and then, 
estimate the final prediction by taking the weighted average of the individual predictions of each tree. Such 
techniques not only  boost the predictive performances by combining many weak learners (trees), but also 
provide a confidence interval for the prediction estimated from the individual models. This property is extremely 
useful in the context of an integrative clinicogenomic study for capturing the clinical uncertainties (Kelley and 
Ideker 2005, Calnan 2008) arising from different clinical processes such as variabilit y of tissue processing, 
hybridization measures, small  sample size, and sample selection (Nevins, Huang et al. 2003, Pittman, Huang et 
al. 2004). Also, such model uncertainty may capture potential conflicting predictions either within or between 
the clinical and genomic factors, which can be very important for complex heterogeneous diseases. Similarly, 
mixture of expert (ME) is another non-linear method that combines several expert trees using a convex weighted 
sum of all  the outputs produced by them. However, each expert can be trained on different partitions of the input 
data with possible overlaps among them (soft split ) as opposed to hard split of the data used by CART. Cao et 
al. (Lê Cao, Meugnier et al. 2010) applied ME method for integrating categorical clinical variables directly with 
continuous-valued gene expression data without any discretization. Furthermore, ME provided better result than 
random forest based approached used by (Boulesteix, Porzelius et al. 2008).  
 
Single-step sparse models without explicit dimensionality reduction: Some clinicogenomic studies leverage 
the strength of sparse modeling technique to perform model development and feature selection in a single step 
by considering clinical and genomic data simultaneously. For example, Ma et al, 2007 (Ma and Huang 2007) 
extended one such iterative boosting approach called Threshold Gradient Directed Regularization (TGDR 
(Friedman and Popescu 2004)) into a more generalized framework (Cov-TGDR) for two generalized linear 
models: logistic regression and the Cox survival model. Cov-TGDR iteratively optimized the gradient of 
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negative log-li kelihood considering as the loss function (  in Equation 3-1). Moreover, in each iteration 
the component-wise gradient was updated only for only a few variables controlled by a regularization parameter 
��Thus, the components with lower gradient values are not updated in each iteration and these results in a sparse 

representation of the solution (�). Moreover, variable selection was performed separately for the two datasets to 
respect their individual properties of the data using WZR�SDUDPHWHUV� 1 DQG� 2 for the two datasets in Equation 
3-1. Finally, this study applied the Cox proportional model for the survival of follicular lymphoma (Dave, 
Wright et al. 2004) and logistic regression for the binary prediction of the development metastasis of breast 
cancer (Van't Veer, Dai et al. 2002).  
 
Comparative studies: van Vilet et al. (van Vliet, Horlings et al. 2012) performed a recent comparative study of 
two-step predictive models to systematically assess whether combining clinical and genomic data help improve 
the prediction power of breast cancer. They consider three simple classifiers such as nearest mean classifier 
(NMC), Naïve Bayes, Nearest neighbor, and two more complex classifiers such as SVM (similar to (Daemen, 
Gevaert et al. 2007)) and tree based classifier. All  of these models were developed in three different stages 
(early, intermediate and late) along with no integration (built  on clinical and genomic variables). The original 
tree based classifiers proposed by (Pittman, Huang et al. 2004) were modified for intermediate integration by 
restricting one dataset at the top node. For all  these classifiers, integration improved the prediction power for 
breast cancer significantly, and simple classifiers performed better than complex classifiers (with NMC with 
OR-type late integration performing the best) which may be an effect of small  sample size. Moreover, either late 
or intermediate strategies performs the best, which confirms the previous studies by (Gevaert, Smet et al. 2006, 
Daemen, Gevaert et al. 2007). Unlike the previous study by (Van't Veer, Dai et al. 2002), this study found that 
clinical data has slightly better information than genomic data, which they believe that is mainly because of 
more comprehensive clinical features such as matrix information, central fibrosis, etc. Moreover, the genomic 
and clinical features obtained from this study perform better than the markers found by previous four studies in 
different cell  lines (Van't Veer, Dai et al. 2002, Chi, Wang et al. 2006, Sotiriou, Wirapati et al. 2006, Liu, Wang 
et al. 2007). However, they did not assess the effect of different feature selection techniques in the model 
development stage. Bovelstad et al. (Bovelstad, Nygard et al. 2009) provided a methodological comparison of 
different dimensionality reduction techniques designed for Cox regression in survival studies. They covered 
both two-step and one-step approaches (Figure 4) in their model development and they observed that modified 
ridge regression performed the best when applied to three different clinicogenomic datasets. However, they did 
not compare it to the Cov-TGDR methods. 

4.1.1 Advantages and disadvantages of the predictive models 

The main advantage of predictive models is that they are easy to develop and simple from a methodological 
perspective. Any model that is applicable on either clinical or genomic data can be applied directly (for two-step 
approaches) or with minor modifications (for regularized methods) to the combined dataset. These models build 
unbiased models on clinical and genomic data sets without any prior information and bias towards any of the 
datasets being integrated. Therefore, the predictive model can test whether the datasets being integrated are 
complementary in nature based on the improvement of the predictive power of the combined model over the 
individual models. However, the final clinicogenomic models may select a completely different set of clinical 
and genomic variables than those selected by independent models. Hence, comparing the predictive power of 
clinical and genomic features grossly in dataset level cannot assess directly how much additional power 
genomic features possess given the traditional clinical variables. This is an interesting question for 
clinicogenomic integration as described in the next section.  ��� ������
� ������� ����
����� ���� �� �	�
���	 ������	� ��� �� �
�����������

The predictive clinicogenomic models described in the previous section treats clinical and genomic 
datasets similarly. However, clinical variables are considered more important than genomic variables by many 
studies for two reasons. First, clinical variables are well -validated through independent studies unlike genomic 
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factors. Second, clinical factors are easy to collect and currently used in the healthcare system, and thus reuse of 
those clinical variables will  also reduce health care costs. Therefore, treating both datasets similarly may 
underestimate the clinical variables and overestimate the performance of the genomic variables significantly. 
Trutzner et al. (Truntzer, Maucort-Boulch et al. 2008) performed a systematic study to assess such optimistic 
use of genomic markers over the clinical variables. Using the synthetic datasets, the authors showed that the 
genes selected by the unbiased predictive models are less reproducible in the independent test datasets. They 
used both the two-step methods and the Threshold Gradient Directed Regularization (TGDR (Friedman and 
Popescu 2004)) described in the section 4.1, and concluded that such over-estimation of the value of genomic 
data increases because of the estimation of too many free-parameters for large number of genes with small  
samples. The two-step methods containing separate supervised dimensionalit y reduction step are even more 
prone to over-estimation (Section 3.2.1). For such two-step methods, Tibshirani et al. (Tibshirani, Efron et al. 
2002) performed some seminal works and proposed the pre-validation framework to compare the genomic 
markers to clinical markers more rigorously. In particular, they suggested that the genes should be selected by a 
separate cross-validation framework rather than the same cross-validation framework used for assessing the 
predictive performance of the final model (more detail  in the validation section). In contrast, for models built for 
one-step combined clinicogenomic study, it is less diff icult to remove such over-estimation.  

In addition to categorization based on how dimensionality reduction is performed, clinicgenomic studies 
can be further categorized into two groups based on how the additive power is assessed. One type of study 
builds clinicogenomic models that are biased to the clinical markers by including the clinical variables (or 
clinical index built  thereof) as a mandatory variable in the model development phase. The second type of study 
focuses directly assesses the additional power of the genomic data given the clinical variables using a hypothesis 
testing framework. Strictly speaking, they answer the question RI�µ'R�JHQRPLF�YDULDEOHV�ERRVW the performance 
RI�PRGHOV�JLYHQ�WKH�FOLQLFDO�YDULDEOHV"¶ in compared to the null -K\SRWKHVLV�RI�µQR�DGGLWLRQDO�YDOXH¶� 

Developing clinicogenomic models biased towards clinical variables: Using the µSUH-validatioQ¶�
framework provided by Tibshirani et al., Boulesteix et al. 2008 developed a two-step clinicogenomic model 
which can assess the additional predictive power of genomic data using two separate cross-validation loops, one 
for each of the two-steps. The first cross-validation was used to reduce the genomic features to a few unbiased 
pre-validated components (Tibshirani, Efron et al. 2002) using the supervised partial least square (PLS) method 
(Wold 1985). Second, they built  a random forest (Breiman 2001) which first selected all  clinical variables as 
mandatory variables and then added PLS genomic components one by one, as long as the predictive power 
improved as assessed by the out-of-bag (OOB) error (Breiman 2001) using a bootstrapping strategy. Therefore, 
the additional performance was assessed by the number of genomic components selected automatically by the 
predictive model in addition to the clinical features. However, as discussed in Section 4.2, two-step methods are 
only partially successful in removing potential redundancy that can be present between the clinical and genomic 
features. For example, in the previous study, some of the PLS components that have marginal predictive power 
are non-redundant compared to the clinical variables may be missed in the first phase. Alternatively, a single-
step sparse Cox model called CoxBoost has been proposed by Binder et al. 2008 (Binder and Schumacher 2008) 
to assess the additional power of genomic data for survival study using a component-wise offset based boosting 
approach (Tutz and Binder 2007). In particular, they optimize the log-li kelihood of the model via component-
wise gradient boosting updates using a Neuton-Raphson method. Moreover, all  the clinical variables were 
included in the model as the mandatory variables using a customized diagonal penalty matrix with µzero¶ entries 
(in the second term of Equation 3-1) while feature selection was performed on the genomic features using µRQH¶�
entries in the penalty matrix to assess the additional predictive power. In a similar study, Kammer et al. 
(Kammers, Lang et al. 2011) used other types of sparse models such as L1 and L2 regularization techniques only 
on gene expression data and included clinical variables as mandatory variables into the model.  

Besides the fullspace based models described so far, several subspace-based models also have been 
developed where genomic variables are only included for the subgroup of patient that cannot be predicted by 
clinical variables. An initial attempt to develop subspace based models stratified the population based on the 
clinical data and then, included genomic data for each subgroup to improve its prediction power. For example, 
estrogen receptor status was used by (Wang, Klij n et al. 2005, Teschendorff , Naderi et al. 2006, Teschendorff , 
Miremadi et al. 2007), while Dai et al. (Dai, van't Veer et al. 2005) used other traditional clinical variables, such 
as age, tumor grade and tumor status for stratifying breast cancer population. Similarly, Wang et. al. (Wang, Ooi 
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et al. 2007) used cirrhosis and vascular invasion which are commonly used for assessing the recurrence of the 
human hepato-cellular carcinoma (HCC) after primary treatment. These studies are similar to decision tree rules 
where the topmost nodes are restricted to be from clinical variables. On the other hand, (van Vliet, Horlings et 
al. 2012) explicitl y developed one such hybrid tree based on intermediate approach where the prediction 
obtained from a classifier was used for the topmost node. In another recent study, Obulkasim et. al. 2011 
(Obulkasim, Meijer et al. 2011) performed a more systematic study to determine automatically which samples 
will  benefit the most by including molecular data into clinical data using step-wise classification 
model. First, they build two classifiers separately on clinical and molecular training data. Second, they 
determine the subgroup of test samples (using a re-classification score) that either lie in the decision boundary of 
the classifier built upon clinical variables (assuming that clinical variables are inexpensive and well -validated) 
or has chance to improve the classification accuracy if molecular data is included. In particular, they project a 
test sample into the clinical space of training data and then, estimate the re-classification score based on how 
many training samples were correctly and wrongly classified in that local neighborhood. Finally, the samples 
with low score were reclassified using molecular data. The problem with such subspace based methods is that 
there may not be enough samples associated with each subgroup, so building classification models in each 
subgroup may be diff icult and statistically insignificant. 

Hypothesis testing frameworks: All  the biased clinicogenomic models discussed so far assess the 
additional power of genomic features indirectly using how many genomic features are included in the model. 
However, some of the selected components may be statistically insignificant. The more effective way to address 
this issue is to assess the additive performance of genes in a hypothesis testing framework. In a seminal study, 
Tibshirani et al. (Tibshirani, Efron et al. 2002) first summarized the genomic variables into a single unbiased 
genomic score using the pre-validation framework (LASSO internal model). In a second step, a hypothesis 
testing framework was designed based on linear regression model (or any GLM) built on the clinical variables 
and the pre-validated genomic (PVG) markers used DV�µSVHXGR-SUHGLFWRUV¶�� ,Q�SDUWLFXODU�� WKH�DGGHG�SUHGLFWLYH�
value was assessed by whether the regression coeff icients of the genomic marker was statistically significant, 
L�H�� PVG >0 compared to the null -K\SRWKHVLV� PVG=0 using t-test or z-tests. In a later study (Höfling and Tibshirani 
2008), they showed that this test was biased because of the violation of the i.i.d. assumption by the sampling 
procedure used in the PVG framework uses regression. Alternatively, they proposed a random permutation 
based empirical p-value estimation. In both case, it was shown that pre-validated genomic score was less 
significant than the genomic score without pre-validation using a landmark breast cancer study (Van't Veer, Dai et 
al. 2002) which actually over-estimated the performance of gene expression data. However, any two-step 
approach cannot remove potential redundancy between the clinical and genomic data completely (Section 3.2). 
For example, if clinical and genomic markers are correlated, then both types of markers will  have significant 
coeff icients by the above approach.  

A more rigorous hypothesis testing framework has been proposed by Boulesteix et al. (Boulesteix and 
Hothorn 2010) considering both types of datasets simultaneously in a similar way as CoxBoost (Binder and 
Schumacher 2008) to remove any types of redundancy between the two types of variables completely. The main 
idea of the method was to include not only the clinical variables, but also the contribution of those clinical 
variables as the mandatory variable in the clinicogenomic model, so that genomic variables cannot influence the 
clinical contribution. More specifically, this method first fits a generalized linear model on the clinical variables 
only, and then the clinical predictor is used in the final combined clinicogenomic model built by least-square 
boosting strategy (Friedman, Hastie et al. 2000) as a fixed offset such that its co-eff icient is not changed during 
the iterative learning process. Thus, the genomic features cannot affect the contribution of the clinical features in 
the final model, unlike the CoxBoost and Pre-validation methods. Finally, the li kelihood of the boosting method 
was tested for the statistical significance by randomly permuting the genomic variables to estimate the additive 
performance similar to (Höfling and Tibshirani 2008). Although this approach did not perform any feature 
selection for genomic features similar to CoxBoost, it can be easily generalized to a regularization based 
framework, as argued in the later study (Oelker and Boulesteix). In this later study, they also compared both pre-
validation testing and Globalboosttest by generating several synthetic datasets with diff erent amounts of 
correlation between clinical and genomic markers. As expected, if  the informative genes are perfectly correlated 
with the clinical variables, Globalboosttest is more conservative in selecting genomic features (p-values 
uniformly distributed in [0, 1]) than pre-validation. Note that the pre-validation framework only removes the 
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bias associated with genomic variables, but can compare the two datasets in a more generic fashion. In contrast, 
Globalboosttest is completely biased to clinical variables with the sole purpose of rigorously testing the 
additional power of genomic marker, but the opposite properties of the two datasets cannot be tested. 

Incorporating prior knowledge: One issue with including gene expression data directly into the model 
is that the selected genes do not necessarily yield to biologically interpretable pathways. Moreover, each of the 
genes belonging in a pathway may have weak association and thus missed by the model, but their aggregate 
association may be large. Testing the association of the pathways with disease directly, rather than in a post-
processing stage has become popular to aid clinical interpretabilit y (Subramanian, Tamayo et al. 2005). Kammer 
et al. (Kammers, Lang et al. 2011) recently also used gene ontologies (GO) for grouping the genes and then the 
combined effect of each GO group (assessed by the first principal component) as the predictor in a Cox survival 
model. However, some GO groups are very generic and only part of a GO process can be activated in a 
particular disease due to disease heterogeneity. Alternatively, the author also further clustered the genes 
belonging to each GO group into several subgroups before including them into the model. From a methods 
perspective, they followed the combined one-step model development where both L1 and L2 penalization scheme 
(Equation 3-1) were used for handling high dimensional genomic data by including clinical variables as 
mandatory variables. All  the three types of genomic data, i.e., the original gene expressions, GO groups and pre-
clusters of GO groups when combined with the clinical variables provided similar performance assessed by p-
value of the final prognostic model and Brier score. Since the pre-clustering technique is unsupervised here and 
guided by GO, no pre-validation li ke framework was necessary to reduce the bias of the genomic data as well . 

Advantages and disadvantages: The main advantage of the pre-validation based framework is that it can 
compare the genomic and clinical features more directly by removing any sort of redundancy among them and 
thus can assess the additional predictive power of the genomic features in an unbiased manner. However, the 
pre-validation based framework combines the genomic features into one or more newly developed features, 
which make the interpretation of the final model diff icult for biomarker discovery. Another problem with such 
models is that they assume that clinical variables are important and thus the predictive models should be biased 
towards clinical variables. However, this assumption may not be true in the future as genomic data become more 
easily available and are validated in multiple independent studies. Moreover, sometimes the clinical variables, 
such as pathological and behavioral effects, can be the downstream effect of causal genomic features. In that 
case, genomic features may not provide additional predictive power over clinical variables. However, knowing 
such relationships among different types of markers can be useful knowledge. Neither the original predictive 
models nor these models unbiased genomic scores aim to assess the relationships present among different types 
of data. ��� ������
� �	����
���� ���
 �� �	�
���	 �
� �
���� ������
The previous two types of studies mainly aimed at building predictive models by integrating clinical and 
genomic data. It is also important to understand novel knowledge about diseases by looking at the relationships 
present among different datasets, e.g., correlation, interaction and causalit y. Each type of relationship may 
reveal novel insights about the complexity of human disease. For example, if some kind of causal relationship 
can be inferred between the molecular and clinical factors or vice versa, drugs can be designed in a better way to 
target the original causal factor or preventive health care can be designed in a smarter way based on the 
understanding of these two factors. Finding such relationships among these datasets and with genetic and 
genomic factors has become very popular recently. The most prominent application of such approaches is in 
neuroscience domain, where abundant clinical and pathological data are collected using MRI technology that 
measures various brain activities. Examples include fMRI, DTI, and sMRI data, which provide information 
about the functional and structural connections among brain regions, and volumetric information of brain, 
respectively.  

Several multivariate statistical models have been extended for finding inter-dataset relationships among 
clinical and genomic variables, where inter-dataset relationships are measured by an association measure such as 
correlation. In addition to the inter-dataset relationships, there can also be intra-dataset relationships present in 
the datasets. For example, the nearby locations in the brain can behave similarly leading to spatio-temporal 
autocorrelation. To reduce the redundancy present with a single dataset, several blind source separation based 
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techniques such as principal component analysis (PCA (Jolli ff e 2002, Park and Hastie 2007)) and more generic 
independent component analysis (ICA) (Hoerl and Kennard 1970) have been found useful. In brief, the blind 
source separation techniques generate two matrices from a dataset: the modulation profile and the component 
maps, where component maps represent the sources and the modulation profile denotes the association of each 
individual with those components. These techniques are useful for reducing both the dimensionality and spatio-
temporal correlation present in several neuroscience datasets including fMRI (Biswal and Ulmer 1999), sMRI 
(Xu, Pearlson et al. 2009), EEG (Delorme and Makeig 2004) and others (Teschendorff , Miremadi et al. 2007, 
Cichocki, Zdunek et al. 2009). These original BSS methods have been extended for integrating multiple dataset 
with the goal of finding relationships among multiple datasets. For example, the easiest way to extend the ICA 
based framework for multiple modaliti es is to combine the two datasets being integrated into an augmented 
matrix, as in the early integration technique described earlier and then, perform ICA on that augmented matrix 
to find the common modulation profile and a single component map. Note that each component represents the 
features from both datasets being integrated. This technique called joint ICA (Calhoun, Adali  et al. 2006, Gönen 
DQG�$OSD\GÕQ� ����), has a very strict assumption that each sample is modulated in the same amount in two 
datasets, which may not be true for all  cases.  

Alternatively, several statistical methods li ke canonical correlation analysis (CCA) and parall el ICA (pICA) 
provide a more natural framework for data integration where the relationship between different components 
found from multiple datasets is defined as the inter-subject variabiliti es. In general, these models decompose 
each dataset into two components: a modulation profile and a component map using any blind source separation 
techniques such that the components across the datasets are related somehow over the samples. For example, 
CCA (Correa, Adali  et al. 2010) wants to find a linear transformation of the data (modulation profile) for each 
dataset such that they have maximum correlation after transformation. Therefore, the inter-dataset variabilit y is 
measured by correlation(Bay and Pazzani 2001, Correa, Adali  et al. 2010). Multi-set CCA (Dai, van't Veer et al. 
2005) and a generalized CCA which can integrate more than two datasets, has also recently been applied for 
integrating fMRI, EEG and sMRI datasets (Lê Cao, Martin et al. 2009). One major problem with applying all  
these multi-variate models is the original overfitting problem described earlier in Section 2. Another issue is that 
the individual components are not directly interpretable due to the linear combination over the selected subset of 
features. To circumvent these issues, Cao et al. (Obulkasim, Meijer et al. 2011, Westra, Dey et al. 2011) recently 
have proposed several alternative optimization formulations of the original CCA. More specifically, they 
introduced both the L2 and L1 norm in the penalty formulation for reducing both model overfitting and 
performing variable selection at the same time, which is similar to the elastic net technique(Tibshirani 1996). 
However, most of these studies cannot take the class label into account while finding the canonical components, 
and thus generate many non-discriminative components that are pruned in a later stage. Recently, Sun et al. 
(Truntzer, Maucort-Boulch et al. 2008) proposed a discriminative CCA (DCCA) technique, which can take the 
class labels into account while finding canonical components.  

Parallel ICA (Chi, Wang et al. 2006, van Vliet, Horlings et al. 2012) is an alternative technique, but the 
components are based on the original ICA instead of the linear transformation procedure of CCA. Each of these 
multi-variate models has their own assumptions (Correa, Adali  et al. 2010). It has been also shown that CCA has 
fewer model assumptions than ICA based techniques, since CCA is based on the second-order statistics (Correa, 
Adali  et al. 2010). Recently, an effort has been made to combine these two techniques to minimize such 
assumptions (Liu, Wang et al. 2007, Sui, Adali  et al. 2010).  

 
In this section, we discuss the validation procedures of the clinicogenomic models described so far. Since 

the main goal of all  these clinicogenomic models is to improve the prognostic power of disease, they compare 
the combined clinicogenomic model with the models built on either genomic data or clinical data alone. We will  
first discuss several performance metrics used for this purpose. Then we will  discuss different validation 
techniques to assess the effectiveness of obtained results from clinicogenomic models.  

Performance metrics: The most common metrics for performance measurement of the binary classification 
based models (Beane, Sebastiani et al. 2008), (Sun, Goodison et al. 2007) are accuracy, precision, recall  and 
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area under the ROC curve (Tan, Steinbach et al. 2006). On the other hand, the studies that want to predict 
continuous outcome variable such as survival time and disease progression-free probabilit y (PFP) use different 
metrics e.g., c-index, to assess (Stephenson, Smith et al. 2005) how well  the model discriminates between 
patients with different survival probabiliti es. C-index measures the concordance between the predicted and 
observed responses (Harrell  Jr, Cali ff  et al. 1982) in a scale between 0-1. Another popular measure used by (Li 
2006) is the time dependent area under the curve (AUC) defined by (Heagerty, Lumley et al. 2000). On the other 
hand, instead of using cross-validation, Binder et al. (Binder and Schumacher 2008) used a bootstrap sampling 
strategy, as in (Schumacher, Binder et al. 2007), for performance evaluation using the Brier score (Gerds and 
Schumacher 2006).  Some studies (Beane, Sebastiani et al. 2008),(Tibshirani, Efron et al. 2002) also used the 
co-eff icient of the genomic and clinical markers to estimate their relative contribution towards the predictive 
model. However, the performance gain can be obtained by random chance as a mere data artifact, thus yielding 
overoptimistic results unless they are validated for statistical significance or repeatedly observed in multiple 
datasets (Boulesteix 2010). Permutation based techniques have also been used by many studies to get the 
statistical significance of the observed result. For example, (Höfling and Tibshirani 2008) randomly permutated 
a genomic marker X to get the statistical significance of the observed coeff icient of genomic marker. Similarly, 
(Stephenson, Smith et al. 2005) permutated the class label to get the statistical significance of the classification 
accuracy of the predictive model. Some studies (Li, Chen et al. 2005, Beane, Sebastiani et al. 2008) also used 
standard hypothesis tests-Wilcoxon test, t-test, and z-score-to get the statistical significance of the improvement 
in performance of combined model over the individual models. Beside all  these measures, the Kaplan-Meier 
curve (Kaplan and Meier 1958) is a popular visualization technique to visualize the survival probabiliti es of 
different groups of population along the progression of time. All  clinicogenomic survival studies used this 
technique to visualize the prognostic separations of subpopulations defined by the final model. 

Besides estimating the performance of the predictive model empirically using the above mentioned metrics, 
some clinicogenomic studies validated their obtained results from a domain perspective as well . Some studies 
wanted to investigate which groups of patients benefitted the most by the integration of clinical and genomic 
markers. For example, Stephenson et al. observed that their clinicogenomic model can significantly improve the 
prediction of a sub-sample (~30% of the whole prostate cancer dataset) where the prediction of well -established 
clinical monogram is in middle range (7-year PFP, 30-70%). On the other hand, (Beane, Sebastiani et al. 2008) 
validated their observed combined clinicogenomic model by three expert pulmonary physicians. Some studies, 
e.g., (Stephenson, Smith et al. 2005), tried to find biological information about the obtained predictors in 
previous lit erature. The breast cancer studies (Pittman, Huang et al. 2004, Clarke and West 2008) found that the 
important clinical factors ( lymph node status and estrogen receptor (ER) status) and metagenes selected by the 
topmost trees were well  recognized in clinical practice and had been validated through previous study. For 
example, all  of these studies identified some of the metagenes that are related to estrogen pathways or growing 
signal pathways, or are correlated with the ER status. The breast cancer study by (Sun, Goodison et al. 2007) 
compared their obtained model with the 70-gene signature built by Veer et. al. (Van't Veer, Dai et al. 2002). Ma 
et al. (Ma and Huang 2007) also confirmed the obtained significant genes from previous studies.  

Validation procedures for predictive models: The ideal technique for testing the obtained model is to use 
an external validation dataset that is collected independently (Boulesteix and Sauerbrei 2011) of the training 
dataset on which the model was built. For example, Beane et al. 2008 compared the performances of 
clinicogenomic model on independent test data sets that did not have a definite diagnosis following 
bronchoscopy as a part of diagnosis for lung carcinoma. However, in most of the practical cases, data is scarce 
and expensive to collect. It is also hard to design similar experimental setups for collecting both validation data 
and the training data in an unbiased manner. The simplest way to solve this problem is to divide the original data 
into two disjoint sets: training and test data. The training data is used to develop the model while test data tries 
to mimic the independent validation data. For example, some clinicogenomic studies (Li 2006), (Bair, Hastie et 
al. 2006, Beane, Sebastiani et al. 2008) use a simple set up of random splitting of available data based on 
previous studies. Alternatively, such random splitti ng is repeated several times by some studies to avoid 
selection bias (Clarke and West 2008, Bovelstad, Nygard et al. 2009).  

K-fold cross-validation (Kohavi 1995), (Hastie, Tibshirani et al. 2009) provides a more systematic 
framework by dividing the available data into K parts, where each of these K parts is considered as a test set 
while the rest of K-1 datasets are considered as the training set. Bootstrapping (Hastie, Tibshirani et al. 2009), 
which is another useful validation technique, samples the original data with replacement to estimate the variance 
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of the result. Applying standard techniques such as cross-validation or bootstrapping for the one-step 
regularization based techniques is straightforward. However, applying them for two-step approaches is not 
straightforward because of the separate supervised dimensionalit y reduction step. In the simplest setting for 
building a two-step predictive model, the first step of dimensionalit y reduction is performed on the whole 
dataset and the second step of predictive model development is performed using two separate datasets: a training 
dataset for learning the model and a test dataset for assessing the performance of the observed model. However, 
as mentioned in (Smialowski, Frishman et al. 2010), (Simon, Radmacher et al. 2003), performing supervised 
dimensionality reduction on whole dataset provides biased results because of the use of test data set, on which 
the performance of the final predictive model is estimated in the second step. In order to get an unbiased 
estimate of the performance, both the supervised dimensionalit y reduction step and predictive model 
development should be performed solely on training dataset. Figure 6 describes this phenomenon. The correct 
set up is shown as the step A followed by the step C. More specifically, the whole two-step development process 
of Figure 4(a) should be done in step A of Figure 6, which is shown in detail  in Figure 7. In particular, 
the dimensionality reduction is only performed for the genomic dataset and then the obtained features (some 
selected genes or some newly developed features) are combined with the clinical marker using a predictive 
model. Several studies ((Stephenson, Smith et al. 2005), (Pittman, Huang et al. 2004), (Li , Chen et al. 2005), 
(Sun, Goodison et al. 2007), (Ma and Huang 2007) using LOOCV, (Pittman, Huang et al. 2004)) are aware of 
the fact and used this step to assess the predictive models correctly.  

Sometimes, models have a few parameters that need to be learned from the data itself. In those cases, one 
more inner CV is used to select the optimal parameters for the classifier for the training data obtained from the 
outer CV framework ((Sun, Goodison et al. 2007), (Ma and Huang 2007) and (Binder and Schumacher 2008) 
used 5-fold CV and (Bovelstad, Nygard et al. 2009) used 10-fold internal CV). In subsequent discussions, we 
will  ignore this inner CV for simplicity and assume only one CV for estimating the final performance of 
predictive model.  

Assessing additional predictive values:  
The experimental design of methods with the goal of assessing additional predictive power should be 

performed carefully; otherwise the prognosis effect of the genomic marker may be over-estimated. For example, 
if supervised feature selection techniques are used in the validation procedure shown in Figure 7, another issue 
arises. Specifically, the genomic features are either selected or created in such a way so that they are the most 
discriminating features in the original genomic dataset X. Comparing such discriminative genomic feature with 
the clinical variables can lead to over-estimation of the predictive power of the genomic features. If  we look at 
the last training phase of model development, the genomic data Xtr¶ already have seen the label ytr but the 
clinical features have not. 

Tibshirani et al. proposed a variant of the cross-validation framework (called pre-validation) to 
remove such kind of bias toward genomic variable. In particular, they proposed one more k-fold CV for 
supervised dimensionalit y reduction even before developing predictive model using the second CV framework. 
The available training data (Xtr) will  be further divided into two sets as mentioned by (Tibshirani, Efron et al. 
2002). One set will  be used for the dimensionalit y reduction step to select and/or create genomic feature out of 
the original data and then other set of data will  be used for building predictive model on the combined clinical 
and the obtained features from the previous step. The detailed steps are described below (Figure 8): 

1. Divide the available training data into k separate parts. 
2. The first (k-1) parts are used to learn the dimensionality reduction to select and/or create genomic 

feature out of the original data.  
3. Afterward, the same set of selected genes or feature creation rules will  be applied to the left-out k-th 

samples to predict the label of them. 
4. Repeat the steps 2 and 3 for each k-th part to get the unbiased predictor of genomic variables for all  

samples. 
5. Build the predictive model on the combined clinical and the pre-validated genomic features. 

Comparison between the clinical and genomic factors can be done as well  here. 
Tibshirani et al provided both theoretical and empirical evidence that the µpre-validated¶ genomic score has 

fewer degrees of freedom (ideally one) than the non-validated version. 6R��WKLV�VFRUH�FDQ�EH�WUHDWHG�DV�D�µIDLUHU¶�
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pseudo-predictor as if it was built on an independent dataset, and hence the whole dataset can be used for model 
development in step 5. They also empirically showed that a pre-validated genomic factor is less significant than 
that of a non-pre-validated predictor when compared to the clinical variables. Although the authors used the 
above technique for summarizing all  genomic factors into a single predictor, it can be easily generalized for 
selecting more than one feature as performed in (Boulesteix, Porzelius et al. 2008). In summary, the right setup 
for both developing predictive model and assessing additional predictive power of the genomic features is as 
follows:  

1. To estimate the performance of a two-step predictive model along with a supervised dimensionalit y 
reduction technique, separate training and testing data are required as shown in Figure 6. 

2. To compare the clinical and reduced genomic factors fairly, the supervised dimensionalit y reduction and 
comparison of genomic variables with the classical clinical predictors should be done in separate 
datasets or the pre-validation technique should be used to build a fairer version of the genomic predictor 
(Figure 8). This step is criti cal for assessing the additional performance gain from genomic data. 

Here, in both of the steps where separate training and testing set are required several alternative techniques 
li ke repeated sampling or boosting can be used along with cross-validation. Boulesteix et al.(Boulesteix, 
Porzelius et al. 2008) performed these two steps using two separate cross-validation loops. The first CV was for 
the pre-validation of selected genes as mentioned by Tibshirani et al. (Tibshirani, Efron et al. 2002) with the 
second one for estimating the classification error rate of the random forest (Breiman 2001) model built  on the 
selected gene signature component from the previous step and the clinical data.  

 

Besides integrating datasets coming from multiple modaliti es/sources (integrating heterogeneous datasets), 
integration can also be performed to combine multiple similar types of datasets (integrating homogeneous 
datasets). Especially, genomic data are often criticized for the lack of reproducibilit y among the independent 
cohorts. For example, very few overlapping genes were observed between the biomarker genes of the two well -
known breast cancer studies by (Van't Veer, Dai et al. 2002) and (Wang, Klij n et al. 2005) by other independent 
studies (Ein-Dor, Zuk et al. 2006), (Ein-Dor, Kela et al. 2005), (Chuang, Lee et al. 2007), (Naderi, Teschendorff  
et al. 2006). The main reasons for such poor consistency RI�JHQRPLF�VLJQDWXUH�DFURVV�VWXGLHV�DUH�³VPDOO�VDPSOH�
cohorts size, selection bias during sample inclusion and annotation, different protocols for sample preparation 
and data preprocessing, and heterogeneous clinical endpoints for different studies (Shedden, Taylor et al. 
2008)´. Therefore, integrating multiple cohorts of same kind of patients can increase the sample size 
significantly and thus, is very popular to develop reproducible genomic biomarkers (Fan, Oh et al. 2006). Such 
multi-site integration can be performed in many ways: either keeping the most common features among all  
datasets (data level early integration), or by learning a more sophisticated Bayesian  method to fuse information 
available in individual datasets (Troyanskaya, Dolinski et al. 2003), (Konstantinopoulos, Cannistra et al. 2011). 
Inspired by such multi -site studies, some clinicogenomic studies integrated not only multiple gene expression 
datasets, but also multiple clinical datasets to build multi-site universal clinicogenomic models and finally assess 
the improvement of prediction power of such models over that of multi -site genomic biomarkers (Table 5).  

Predictive multi-site studies use some of the available independent cohorts for developing 
clinicogenomic model and then use the rest of the cohorts for testing the reproducibilit y of the predictive model. 
The existing multi -site clinicogenomic models proceed in two steps (Figure 9). For homogeneous integration in 
the first step, most of the studies take the simplistic approach of retaining only those features that are common in 
all  of the datasets. Then, the heterogeneous integration of clinical and genomic data is performed using any of 
the techniques described earlier. For example, Teschendorff  et al. (Teschendorff , Naderi et al. 2006) built  a 
universal molecular prognosis marker from five publicly available gene expression datasets including their own 
collected gene expression data  for breast cancer survival prediction. They used three cohorts for building a Cox 
regression based predictive model and reserved the other three as independent test sets. However, instead of 
using classification accuracy for validation, they used a recently developed statistical distribution based 
evaluation measure called D-index (Royston and Sauerbrei 2004), which depends only on the relative risk 
ordering of the test samples rather than relying on the absolute value of outcome variable. Thus the prediction 
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power remains unchanged as long as the relative ranking of the test samples are not changed. This property 
makes the D-index suitable for assessing the performances over test samples coming from different cohorts with 
diverse characteristics. On the other hand, Shedden et al.(Shedden, Taylor et al. 2008) tried to minimize the 
experimental bias in multi -site studies directly by generating their own datasets from six different institutions 
using a uniform robust and reproducible protocol (Dobbin, Beer et al. 2005). Moreover, several different gene 
selection methods along with different classifiers were applied on two out of four datasets collected for 
predicting the survival of lung adenocarcenomas patients. Congruent with most of other clinicogenomic studies, 
clinical variables li ke cancer stage and age added some prognostic power to gene expression, especially for 
more heterogeneous stage-1 lung cancer patients.  

In another large integrative study, Acharya et al. 2009 (Acharya, Hsu et al. 2008) integrated five breast 
cancer cohorts with the goal of identifying additional breast cancer subtypes, which have different underlying 
biological mechanisms beyond their common clinic-pathological characteristics. At first this study divided all  
patients into three main risk categories (low, medium and high) using a clinical guideline called Adjuvant 
online! (Goldhirsch, Coates et al. 2006), which uses age, tumor grade, tumor size, and lymph node status as 
predictors. Afterward, the study refined each of these patient groups into more homogeneous subgroups based 
on the clusters found from the genomic data. Moreover, they also incorporated prior knowledge by selecting 
genes that are involved in several pathways such as altered tumor microenvironment states, oncogenic pathway 
deregulation and chemotherapy response. Another contribution of the paper was that they also assessed the 
chemotherapy sensitivity of different clusters based on the underlying oncogenic pathway and tumor micro-
environmental deregulation, which can help design better therapeutics for breast cancer patients. Although the 
clinicogenomic model was not compared directly with the clinical model, this study provides an indirect result 
that gene expression data has some additional prognostic power over the traditional clinical factors.  

 
 
Clinicogenomic integration has received wide attention from different communities recently, because of its 

great potential of integrating diverse perspectives from clinical and genomic sources to reveal complex disease 
mechanisms. Because of the multi -disciplinary nature of the topic, the approaches taken by all  these 
clinicogenomic efforts are quite diverse, although the objective is same: improving the prognosis power of 
predictive models for complex diseases. In this article, we survey these clinicogenomic studies with emphasis 
on, but not restricted to the methodological perspective. We aimed at finding the existing challenges in 
integrating heterogeneous datasets such as clinical and genomic data, and understanding how these challenges 
were handled by the methods in the clinicogenomic context. This review can also be relevant for some other 
integrative studies, as well , where the challenges are similar to those for the integration of clinical and genomic 
data. For example, Hamid et al. [(Hamid, Hu et al. 2009)] proposed a theoretical framework for integrating 
different kind of genomic data that has some common challenges with the clinicogenomic integrative efforts. 
Thus, some of the integrative methods can be shared between both areas. 

The main purpose of most of the clinicogenomic studies was to develop better predictive model for complex 
diseases through integration. In general, most of the clinicogenomic studies reduce the dimensionality of the 
data in a first step and then develop some predictive models on the selected features. A few studies merge these 
two steps into a single step taking the advantage of regularization based predictive models. Several statistical 
metrics were used to compare the performance of the combined clinicogenomic model with that of the clinical 
and genomic model. In most of the cases, the predictive power of the combined models was improved over that 
of individual clinical and genomic models, which justifies the usefulness of integration. However, in some 
cases, the combined model provided only marginal improvement; sometimes the performance of the genomic 
model was even worse than that of well -established clinical prognostic markers. This means that the value of 
traditional clinical variables should not be underestimated. Moreover, unlike genomic variables, the clinical 
variables are well  established and validated through independent studies on multiple cohorts. Therefore, 
rigorous comparison between clinical and genomic variables is required in addition to looking at gains in 
predictive power. These observations motivated second sets of clinicogenomic studies which aimed at including 
the genomic variables into the prognosis models only if they provide some additional prognosis power. Thus, 
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these models are biased towards clinical variables somehow. However, there are some additional issues with 
these kinds of approaches as well . If  the models are biased too much towards the clinical variables, then the 
importance of genomic data may be subdued. This will  hinder the discovery of potential new knowledge about 
complex diseases and thus may deviate from the main goal of elucidating new knowledge through integration. 
As a result, there is a trade-off  between how much the combined model should be biased towards clinical 
dataset. Deciding this trade-off  is not trivial. More systematic studies are required for this purpose.  

Each of the data sources being integrated do not provide same amount of information, so the integration 
method should be cognizant of this difference in the datasets in terms of amount of information and the inherent 
properties in each datasets. Very few studies such as kernel based methods (Daemen, Gevaert et al. 2007) tried 
to preserve the individual properties available in each data source explicitl y. However, this method used the 
vector based records only for both clinical and genomic data. On the other hand, the plethora of other types of 
medical, genetic and genomic data contains rich information with different types of structures such as time 
sequences, networks, replicates. Integrating such diverse type of data requires developing new computational 
techniques.  

Interpretabilit y of the obtained clinicogenomic models is a much desired property for personalized medicine 
as described in Section 0. However, predictive models mainly focus on improving the prediction power by 
combining the clinical and genomic data rather than interpretabilit y. Therefore, most of the predictive models 
use those models that are more useful for improving the prediction power rather than producing interpretable 
models that can infer useful knowledge. Although tree based methods have been applied in this context, most of 
the studies applied more complex ensemble tree based models which are less interpretable than the original tree 
based rules. Moreover, separate dimensionalit y reduction step before developing clinico-genomic model may 
also reduce the interpretabilit y of the model. For example, all  these studies first combine the effect of genomic 
markers into a single score by either unsupervised techniques li ke PCA or separate pre-validation step, or some 
supervised techniques li ke PLS before developing any clinicogenomic model. The components do not provide 
information about the obtained genes and thus, the pathways involved in the disease progression, which is 
important for defining drug targets. Thus, incorporating the pre-validation framework for feature selection step 
is an open issue.  

Disease heterogeneity is a very important challenge for clinico-genomic model development, but very few 
studies aim to handle all  the challenges related to disease heterogeneity. For example, most studies try to find 
only different population groups using simple techniques, but do not form any detailed analysis regarding how 
those population groups exhibit different characteristics in terms of disease development. Moreover, further 
analysis is needed on whether there exist different subgroups of population, where each subgroup of population 
may have bias towards different datasets, i.e., each of these subgroups is associated with different types of 
markers. Such kinds of knowledge can elucidate new knowledge regarding how different types of markers can 
leads to different disease subtypes. Moreover, those subgroups of patients can be further verified for different 
clinical factors such as different demographic factors such as age, gender groups. 

Most of the clinicogenomic models only aimed at utili zing two heterogeneous data sources during disease 
prognosis, but not elucidating the existing relationships between the clinical and genomic data. Different kinds 
of relationships between these two datasets can have different implication from domain perspectives. For 
example, if both datasets contain many correlated variables, then they contain similar types of information of a 
supplementary nature which cannot provide value to integrative studies. These types of correlations between 
datasets can be induced through other hidden factors [(Boulesteix, Porzelius et al. 2008)], e.g., the effect of a 
drug on gene expression [(Sotiriou and Piccart 2007)] during the treatment process. Besides correlation and 
independence, more complicated relationships li ke interactive or causal relationships may also exist between the 
clinical and genomic variables. For example, the intricate interaction between some genomic markers and 
environmental factors can make the disease phenotype more severe beyond their additive levels [(Loscalzo, 
Kohane et al. 2007), (Schadt 2009)], as mentioned in Section 1. Furthermore, there may be some genomic 
factors which have causal effects on some clinical variables. In that case, drugs can target those genomic 
variables in an early stage for better treatment design. For example, tumor surgery can be avoided if some 
causative genomic markers of tumor grade can be targeted in the early stage of breast cancer. Another 
interesting factor is that the clinical factors are not the causal factors of a disease phenotype unlike the genomic 
factors. Rather, most of the clinico-pathological variables are the observational properties of disease phenotype. 
Beside all  these inter-dataset relationships, there may be also intra-dataset relationship among the variables 
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within the same dataset representing the interactions or synergy between similar variables [(Braun, Cope et al. 
2008),(Hwang, Sicotte et al. 2008)]. For example, famili al hypertrophic cardiomyopathy is caused by mutations 
in several genes responsible for coding sarcomeric proteins [(Loscalzo, Kohane et al. 2007)], where each gene 
or protein is marginally inexplicable. Though some studies [(Boulesteix and Hothorn 2010)] seek to develop 
robust clinicogenomic model even in the presence of correlated variables, none of the clinicogenomic studies 
aim at elucidating this kind of inter- and intra- relationships between the clinical and genomic datasets. Further 
investigation is required to understand and utili ze the potential broader relationships among different clinical 
and genomic variables when developing integrative models.  

Very few studies validate the obtained clinicogenomic models extensively. Most of the studies did not 
compare the obtained model with other clinicogenomic models even those developed for the same disease. For 
example, only one out of seven breast cancer studies [(Sun, Goodison et al. 2007)] compared their final genomic 
signature with previous studies[(Van't Veer, Dai et al. 2002), (Wang, Klij n et al. 2005), (van de Vijver, He et al. 
2002)]. Furthermore, very few of these studies were designed from methodological perspective. Most of the 
clinicogenomic studies applied different simple statistical and data-mining predictive models rather than 
applying and comparing different methodologies to get the best predictive model. Some studies [(Shedden, 
Taylor et al. 2008), (Bovelstad, Nygard et al. 2009)] tried to compare several dimensionalit y reduction 
techniques for regression based predictive model. On the other hand, the best way to integrate this uniform 
number of clinical and genomic variables after dimensionalit y reduction is not well  understood. Some studies 
proposed intermediate integration for handling the challenges of heterogeneous data integration. Though in 
theory, kernel-SVM based intermediate integration is supposed to be more generalized, it did not provide 
significant improvement in the clinicogenomic context[(Daemen, Gevaert et al. 2007)]. Moreover, it is not clear 
how to represent the individual data using an intermediate format in the best possible way during intermediate 
integration. Kernel-based models also cannot find relationships among variables both within and across dataset. 
Alternatively, a graph-based approach can be utili zed to address these issues. More systematic studies are 
required in this space to develop new methods to best leverage the diverse information available from both the 
clinical and gene expression data. 

Although feature selection techniques have been explored quite a bit in the clinicogenomic context, there are 
still  some issues when they are applied on gene expression datasets. First, the genomic features selected by 
dimensionality reduction techniques are not portable among different studies [(Chuang, Lee et al. 2007), 
(Naderi, Teschendorff  et al. 2006)]. Second, often the topmost selected discriminating genes are hard to interpret 
and thus, do not provide any meaningful biological knowledge. Third and more importantly, in most of the 
cases, complex diseases are caused by either the interplay of a large group of oncogenes which have a combined 
effect on the overall  disease or deregulation of a group of tumor-suppressor genes. For example, there are some 
well-known pathways that have been observed to be involved in disease progression such as the EGFR pathway, 
Wnt-signalli ng pathway, Hedgehog pathway, TGF- ��DQG�VR�RQ��7R�DGGUHVV� WKHVH� LVVXHV��VHYHUDO�PHWKRGV�IRU�
genome wide gene expression data [Gene set enrichment analysis [(Subramanian, Tamayo et al. 2005)], GSA 
[(Efron and Tibshirani 2007)], sub-GSE[(Yan and Sun 2008)]]  have been designed to leverage prior genomic 
information. They look for pathways or groups of genes that have small  individual discriminating power, but an 
overall  large effect on disease progression. Similarly, epidemiologists already have some models in practice and 
they are only interested in incorporating new knowledge into their existing knowledge. Therefore, it would be 
advantageous to incorporate existing medical knowledge into the model development stage as prior knowledge 
so that it is easy for both validating and deploying the model. Incorporating such prior knowledge poses some 
challenges. For example, if some sort of dimensionality reduction is performed in the genomic data too 
rigorously upfront, then the small  marginal affect can be ignored by the models which are hoping to elucidate 
information about pathways or synergistic relationships. On the other hand, if too many genomic variables are 
kept during the model developing, then the effect of low dimensional clinical variables can be underestimated 
[(Boulesteix and Sauerbrei 2011)]. The one-step approach can be an alternative solution, where no implicit 
dimensionality reduction is performed upfront and the model selects the optimum number of features. However, 
these kinds of sparse modeling techniques cannot take the prior domain knowledge into account easily. 
Developing new data mining algorithm to deal with these dimensionalit y reductions issues and incorporating 
prior knowledge needs further research. 

Another important issue with most clinicogenomic studies is that most of these models consider only gene 
expression data as the genomic data from widely available public datasets. However, gene expression data 
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contains information about transcriptional regulation only, and thus cannot provide any information about other 
aspects of complex cell  mechanisms like post-transcriptional modification, protein synthesis and 
phosphorylation, copy number variation, random mutation in the genome and so on. Recent technological 
advancements have led to the advent of various high-throughput genomic data li ke protein abundance data, 
genome wide association (GWA) data, genetic interaction data, protein-protein interaction data, etc. It is 
important to note that these datasets are inherently related and each of them covers one particular aspect of 
cellular activity. Overlooking the inherent relationship could result in the discovery of biologically spurious 
associations, albeit statistically significant. For example, a gene that is differentially expressed can be spurious if 
the resultant protein is not differentially abundant due to post-transcriptional modifications. Integrating these 
enriched genomic data in the context of clinicogenomic studies pose further challenges. For example, the 
formats of other kind of genomic data are not uniform-gene expression or SNP are vector based, while PPI is 
graph based. Integrating these types of data with vector based clinical data is not trivial and needs further 
research.  

Besides integrating clinical and genomic data sets, some multi -site clinicogenomic studies aim at integrating 
multiple similar types of datasets available from independent studies. However, these independent studies are 
performed in different experimental setups and different biological conditions, which might cause difference in 
probe design and final available gene expression profiles. Therefore, these issues have to be addressed with 
caution. In all  multisite clinicogenomic studies, a simplistic approach was taken during integrating multiple 
genomic datasets by including only those genes as features that are significantly expressed (performed by t-test 
or other similar statistical test) in all  cohorts. However, this reduces the number of features dramatically, 
because it is very less li kely that genes will  be simultaneously expressed in all  independent cohorts. Moreover, it 
is biologically not meaningful, because different pathways may be disrupted for different groups of patients, 
even different groups of genes can be mutated for the same pathway during different environmental factors. So, 
it may be better to loosen the restriction a littl e bit to include genes that are not significantly expressed. More 
intelli gently, genes can be selected from cohorts if they belong to a known pathway but do not meet the 
threshold of statistical significance. Moreover, more investigations are needed to handle the disparity in 
dimensions that arises when integrating them with low dimensional clinical variables.  

Another strategy to reduce the experimental bias during the multisite studies can be subgroup analysis. If  we 
assume that different subgroups of patients have different kinds of causal markers associated with them, then 
there may be heterogeneity even within a single cohort. This hypothesis of the existence of subgroups can be 
used to reduce the experimental bias in multi -site studies. Though there have been some efforts to develop 
subspace clinicogenomic models using association pattern mining algorithm, this needs further exploration in 
many dimensions.  

In spite of great potential of clinico-genomic integration, the topic is still  in a rudimentary phase. In general, 
integrating heterogeneous datasets li ke clinical and genomic data is a hard problem. The existing clinicogenomic 
models address these challenges partly. More detailed research is necessary especially to handle different kinds 
of relationships among variables and datasets; design robust model to handle disparate nature, structure, 
dimensionality, amount of information present in each dataset; incorporate prior knowledge into account; 
integrate diverse genomic and medical data besides gene expression and histo-pathological and demographic 
data; and finally validate the obtained clinicogenomic biomarkers rigorously in multiple independent cohort 
studies before final deployment for personalized medicine. 
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Appendix: 
 A. Dimensionality reduction technique for clinicogenomic studies: We found both feature selection 
and feature extraction techniques from machine learning have been applied for dimensionalit y reduction in clinicogenomic 



32 
 

model development. We will  discuss both of these kinds of approach as well  as some more other techniques li ke clustering 
and pre-selecting genes based on incorporating prior knowledge. The detailed application of such techniques is described in 
the next section.  

1. Feature extraction techniques: Feature extraction methods tries to extract a reduced set of features to decrease 
the redundancy of the data. Some integration studies first developed their own dimensionalit y reduction technique 
modifying the existing technique and then, applied their own model in the context of clinicogenomic model. So, the main 
perspective of these studies was to design machine-learning based dimensionalit y reduction techniques for clinicogenomic 
data. For example, Li et al. [(Li 2006)] developed a dimensionalit y reduction technique to select a reduced sized-set of 
genes consisting of linear combination of genes by applying two step dimensionalit y reduction techniques: the 
unsupervised principal component analysis (PCA) method followed by a supervised dimensionalit y reduction method 
called sli ced inverse regression (SIR)[(Li 1991)] which searches for the smallest subspace of the dataset preserving the 
regression information of outcome variable(y) given the input feature space(X). Finally, they modified the SIR method to 
partial SIR (PSIR) so that it can include clinical variables as the mandatory variables without applying dimensionalit y 
reduction on it. The main advantage of this model is that it does not assume any kind of prior distribution on the model. 
However, it requires linearity assumption on the marginal distribution of X. This method is also diff icult to implement. 
Moreover, the main problem of this method is that it fall s into the category of feature extraction where the final predictive 
model is built on the extracted features which are the linear combination of features. So, it is hard for clinicians to interpret 
those extracted features so that they can be used for further use li ke drug targets.  

 2. Feature selection methods: To overcome the limitations of such feature extraction methods, feature selection 
methods seem the most popular technique in this context of building clinicogenomic model. Feature selection methods try 
to select a subset of existing features based on their predictabilit y so that most irrelevant and redundant genes are removed. 
This technique is different than feature extraction which aims at extracting new features from the existing new variable, and 
thus feature selection can provide a useful explanation about the selected features describing which variables are the most 
important one and how they are related to each other. There are three supervised strategies for feature selections: filtering 
method, wrapper method and embedded method. In next three paragraphs, we will  provide the discussion and some 
examples of these three methods in biological domain.  

a) Filtering methods: Filtering criteria ranks all  the features based on some metric and then, selects those features 
that achieve those score. Among several available metric for evaluating such features, statistical tests li ke student t-test, 
Wilcoxon non-SDUDPHWULF�UDQN�VXP�WHVW��)LVKDU¶V�H[DFW� WHVW� VHHP�PRVWO\�XVHG� LQ� WKH�PHGLFDO�GRPDLQ��7KH�PRVW�SRSXODU�
statistics used for pre-selecting the genes for developing clinicogenomic model is the t-test. For example, Lihua Li et. 
al.[(Li, Chen et al. 2005)], Stephenson et. al. [(Stephenson, Smith et al. 2005)], Silhava et al.[(âLOKDYi�DQG�6PU]�����)] 
performed two-sample t-test between the disease recurrent and non-recurrent tissue sample. Though t-test is the most 
popular filtering method, it assumes that the data is normally distributed. This assumption may not be valid for all  genomic 
dataset. Several alternative non-parametric tests exist which do not make any such assumptions of the underlying data. 
Daemen et al.[(Daemen, Gevaert et al. 2007)] used such a distribution-free test statistics called Wilcoxon rank sum test to 
pre-select top 1000 most significant genes to build a kernel based integrated clinicogenomic model. Some other study like 
Wang et. al [(Wang, Ooi et al. 2007)] performed both parametric and non-parametric tests for pre-selecting the genes. In 
some another recent studies, for example integrative study by Campone et al.[(Campone, Campion et al. 2008)], univariate 
cox regression itself was used to select the genes using hazard ratio as the filtering criteria. In addition, Campone et al. 2008 
selected those genes which were selected most commonly by univariate cox regression in several random samplings of the 
data to remove the selection bias. However, sometimes even after the correction for multiple hypothesis testing, these test 
statistics provide lot of statisticall y significant genes which may not be interesting to investigate further from domain 
perspectives. Therefore, besides using simply tests, some studies also selected genes using some intestingness measures 
from domain knowledge li ke the level of fold change, the number of samples where the gene is expressed significantly. For 
example, Wang et al.[(Wang, Ooi et al. 2007)] and Stephenson et al. [(Stephenson, Smith et al. 2005)]  selected those genes 
which have significant fold change >1.5. In some other studies [Mario et al. 2008, Campone et al. 08], principal component 
analysis was performed in a follow-up step to provide further reductions in dimensionalit y and thus all  genes selected by 
univariate Cox regression are represented by topmost principal component. However, this also shares the same kind of 
disadvantages described earlier for feature extraction.  
 These statistical test based filtering methods have several advantages like they are easier to implement, faster than 
other sophisticated feature selection methodology, and easier to interpret and verify for clinicians. Despite these 
advantages, they suffer by some limitations in the context of gene selection [(Sun, Goodison et al. 2007)]. First, filter 
methods miss the interaction among the features, as it evaluates each gene independently. Some features may have small  
individual marginal effects with the disease outcome variable, while they might have greater effects when they are 
considered in a combination. This is a big concern especially for genomic datasets, because genes are normally expressed 
by different biological processes and pathways which also regulate other genes at a time. Second, Filter methods are unable 
to remove some of the redundant features sometime. For example, filter methods cannot assign separate scores for co-
regulated genes. Such irrelevant features are undesirable from both computational and clinical perspectives. From 
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computational perspective, such irrelevant features may deteriorate the performance of the classifiers [(Kohavi and John 
1997)]. Moreover from clinical perspective, the examination of the expression levels of redundant genes may increase the 
clinical cost. To overcome these disadvantages of filter methods different alternative computational methods have been 
proposed in the community of machine learning and data mining for feature selection. Some of those methods have been 
also incorporated into the integrative study of clinical and genomic data as well  as described in the next two sections. 

b) Wrapper method: Wrapper models search for an optimal subset of features in the whole feature space and then 
evaluate the selected subset based on some model built on it. However, searching for such an optimal subset of features 
poses challenges for learning algorithms speciall y, exhaustive search for substantial features is quite impossible for high-
dimensional genomic data. This is because the possible search space increases exponentiall y with the increase of 
GLPHQVLRQDOLW\��7KDW¶V�ZK\�PRVW�H[LVWLQJ�VROXWLRQV�GHSHQG�RQ�KHXULVWLF�FRPELQDWRULDO�VHDUFK�ZLWK�D�SRVVLEOH�WUDGH-off for 
optimality.  Most of such wrapper methods rely on some greedy search techniques and stop the search based on some 
objective functions or optimality criteria [either wiki or something else]. Moreover, it is also diff icult sometimes to define 
an appropriate objective functions which can be optimized easily for designing faster search criterion [(Sun, Goodison et al. 
2007)]. 

Sun et. al. (Li and Sun 2006) recently proposed a new objective function in their proposed feature selection 
techniques called I-RELEIF to overcome the limitations of both filters methods and the combinatorial search problem of 
wrapper methods. It assigns weights to the features based on the block distance of each sample to its nearest neighbor and 
then tries to optimize those weights using analytical and numerical solutions such that the accuracy of the nearest-neighbor 
classifier of each sample in the original feature space is maximized. The detailed description about how it was applied in 
the context of clinicogenomic model development is given in the next section.  

Both of the filtering method and wrapper method fall  in the general category of supervised method as they 
consider the class labels into account while selecting the features. Furthermore in a following step, those selected genes 
were fed into a classifier model along with clinical variable to build a combined clinicogenomic model along with cross-
validation for estimating the performance of the models. Such kind of two step approach will  produce biased classification 
results unless this dimensionalit y reduction is performed for each training data within each iteration of the cross-validation. 
Very few studies [(Sun, Goodison et al. 2007), (Stephenson, Smith et al. 2005)] performed the gene selection within the 
cross-validation loop with LOOCV and so, was able to produce unbiased classification results. Such kind of mistake while 
feature selection and classification are performed together was reported also in other genomic studies (Smialowski, 
Frishman et al. 2010)]. Moreover, all  of these dimensionalit y reduction techniques try to reduce dimensionalit y only on 
gene expression data independent of clinical variables So, these methods did not consider reducing the dimensionalit y of 
the clinical dataset at the same time rather most of the study relied on some previously developed clinical index li ke IPI 
(International Prognostic index developed for Large B-Cell  Lymphoma[(Shipp, Harrington et al. 1993)]) instead of original 
clinical database.  Regularization based classifiers can be an alternative solution for these potential problems and they are 
described in next section in the context of integrative clinicogenomic model development.  

c) Penalized statistical learning methods: Recently, several techniques have been developed in machine learning li ke 
boosting or regularization-based penalized algorithms where feature selection is performed simultaneously with the 
developing of predictive model. Such kind of embedded system can be a great solution to the above mentioned two step 
approaches, as it will  perform both feature selection and outcome prediction at the same time. The penalized methods 
introduce a penalty term for providing shrinkage in the model development which is learnt from the data as well . Some of 
the initial studies of such penalized model building for genomic data were investigated by Gui and Li et al [(Gui and Li 
2005)] by developing L-1 penalized Cox regression model for gene expression data [provide more citations]. However, 
most of the currently available penalized methods that have been applied into genomic data treat all  of the covariates with 
same weights. In the context of integrated clinicogenomic model development, putting same weights for all  the variables 
may not be a good idea. Because the inherent nature of the datasets is totall y different, for example, one unit change in gene 
expression has different interpretation than one unit change in clinical variable [Ma et al.]. Moreover, it is more desirable to 
put more penalties on gene expression data than clinical variables because, gene expression data contains more irrelevant 
features than clinical variables and the dimensionalit y is also higher in genomic data in compare to clinical variables. 
Moreover, most of the clinical variables are selected from domain knowledge li ke pathological and demographic variables 
which are already being used for clinical predictions. So, dimensionalit y reduction on those variables may not be desirable 
as well .  

For these reasons, some of the integration efforts incorporated the regularization methods into integration study with a 
possible modification of assigning different weights to clinical and genomic data, so that those two types of data can be 
regularized differently. For example, Binder et al. 2008 incorporated their own technique developed previously (this->3) in 
this context of developing combined clinicogenomic model with a modification. They developed a gradient boosting 
method for Cox proportional hazard model in order to allow flexible penalty structure so that dimensionalit y reduction is 
performed in the genomic data only and the mandatory clinical variables are included without any penalization. With 
similar motivation, Ma et al. 2007 extended the original gradient search based Threshold Gradient Directed Regularization 
(TGDR) approach [Friedman and Popescu 2004] into their Covariate-adjusted TGDR (Cov-TGDR), where two more 
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parameters were introduced to represent the regularization co-eff icient for the two corresponding datasets of clinical and 
genomic data. This provides a more generalized framework in compare to the former approach as dimensionalit y reduction 
can be performed in both clinical and genomic datasets.   

Beside all  these statistical methods of feature selection and extraction described so far, some studies incorporated the 
concept of metagenes which are defined by the clusters of similar genes. Such types of metagenes were developed using 
clustering approach from data mining community in previous studies. In the next section we will  describe some of these 
studies where clustering based approach has been applied to select some of the genes. 

 
3. Clustering based approach: Metagenes are defined as the representative signature of similar genes [(Wang, Klij n et 

al. 2005)]. Those metagenes are obtained by performing clustering to gene expression profile for finding groups of genes 
with coherent expressions over all  of the samples. Nevins et al. 2003 developed one of the earliest clinicogenomic models 
using such clustering based metagene approach. In this study, they applied K-mean clustering first to get some clusters of 
genes with similar profile and then they computed the weighted average of the genes within each clusters to join them into a 
single meta-genes. In an extended study of this initial study, Pittman et al. 2004 computed the metagenes as the first 
principal components of those clusters of genes created by K-means clustering. However, as the true number of the clusters 
is unknown here, it was hard to guess the correct number of clusters upfront which is required for K-mean algorithm. This 
motivated Clarke et al. 2008 to generate large number of clusters first and then filter out those clusters that are not true 
representative of metagenes in a post processing steps.  For pruning such spurious clusters, they performed some sort of 
post-validation by silhouette widths for the genes within the same cluster in order to get the statistical significance which is 
determined by a permutation-based null  distribution. Besides K-Mean clustering other types of clustering li ke hierarchical 
clustering, DBSCAN and so on [(Tan, Steinbach et al. 2006)], which does not require the number of clusters to be specified 
as apriori, can be investigated also for this purpose. One big advantage of clustering based methods is that each cluster can 
capture the expressions of several genes belonging to that cluster and so can retain more information during classification 
as confirmed by the superior results of the clinico-genomic study by Shedden et al.[(Shedden, Taylor et al. 2008)]. 

 
4. Pre-selecting genes from previous knowledge: Some of the studies relied on the previous study or prior biological 

knowledge to select the most appropriate genes to determine the most relevant genes for the purpose of the study, rather 
than only depending on the dimensionalit y reduction techniques described above. For example, Beane et al. 2008 used a 
gene expression index developed using majority voting algorithm [(Golub, Slonim et al. 1999)] in a previous study. 
Similarly, Teschendorff et al. 2006 performed an extended study on six breast cancer datasets including his own collected 
samples but relied only on the genes that are common between their own dataset with all  of the previous five studies. In a 
similar study as Teschendorff et al. 2006, Acharya et al. 2009 also tried to discover the underlying biological behaviors of 
different disease subgroups of breast cancer. In this effort of combining five different breast cancer datasets, they only 
selected those gene signatures of altered tumor microenvironment states, along with oncogenic pathway deregulation, and 
chemotherapy response. More specificall y, genes involved in chromosomal instabilit y, wound healing, IGS, epigenetic 
stem cells, and tumor necrRVLV� IDFWRU�� �71)-� � ZKLFK�DUH�EHOLHYHG� WR�KDYH�VRPH�HIIHFWV� LQ�EUHDVW�FDQFHU�VXUYLYDO�ZHUH�
included for further study. Similarly, during the finding risk factors of common li ver diseases, Berlingerio et al 
[(Berlingerio, Bonchi et al. 2009)] also selected gene expressions of six sites from HLA which are already known to have 
effects on the li ver diseases. Though such kind of biological knowledge from previous studies provide a way to increase the 
confidence and relevance of selecting genes, this narrows down the possibilit y of selecting new genes that are not described 
in previous literature.  
 All  of these above mentioned feature selection techniques have their own advantages and disadvantages. So, some 
studies examined several feature selection techniques rather than confined in one feature selection method, and then use 
that feature selection method which produces the best results for the classification methods in the follow-up studies. For 
example, Shedden et al. 2008[(Shedden, Taylor et al. 2008)] used several methods li ke gene clustering, filtering based on 
univariate regression models, etc. for selecting genes and got the best classification results for clustering methods. In 
another recent study, Bovelstad et al. 2009 built compared seven different approaches for dimensionalit y reduction covering 
several techniques already described in last few paragraphs for building Cox regression model. The detail s of all  these 
approaches are described more elaborately in the next section where Cox based models are discussed.  

Most clinicogenomic studies perform several preprocessing steps before developing clinicogenomic integrative 
models (Herrero, Diaz-Uriarte et al. 2003). The goal of the preprocessing of the datasets is to reduce the 
heterogeneity between the two datasets as much as possible, so that model development on the combined dataset 
becomes as easy as possible. For example, genomic data contains more noise and missing values than clinical 
variables. Many clinicogenomic studies incorporate the same preprocessing techniques as many genomic 
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studies. For example, filt ering based on the fold change to drop some irrelevant genes having very few 
expression labels throughout the samples was used by (Shedden, Taylor et al. 2008). Another common 
preprocessing step is to normalize the data to reduce the sample variances (Shedden, Taylor et al. 2008). Many 
of the microarray studies contain missing values for certain probes. Several studies (Li 2006), (Binder and 
Schumacher 2008), (Clarke and West 2008) also addressed this issue by using imputation techniques e.g., the 
nearest neighbor algorithm (Troyanskaya, Cantor et al. 2001), (Liew, Law et al. 2010) before developing any 
clinicogenomic model. Another challenge for binary classification on any medical domain is the imbalanced 
class problem, as disease patients are rare than healthy controls. Special corrections are needed for handling 
imbalanced classes to avoid the bias of the model towards the majority class. Very few clinicogenomic studies 
(Stephenson, Smith et al. 2005) are aware of this fact.  

The biggest challenge that these heterogeneous datasets pose is the disparate dimensionaliti es of the 
clinical and genomic data. Since clinical data is low dimensional, most of the two-step approaches first reduces 
the dimensionalit y of the high-dimensional genomic data before building any predictive model. Dimensionalit y 
reduction (DR) [(Guyon and Elisseeff  2003), (Xing, Jordan et al. 2001), (Bernau and Boulesteix 2010)] is a 
widely studied research topic in the area of from machine learning. There are various advantages of 
dimensionality reduction: reducing the overfitting problem and thus improving the prediction power of the 
models, reducing the time and space complexity of model development, enhancing the understanding of 
generative factors of the data, and facilit ating visualization (Guyon and Elisseeff  2003). In general, DR 
techniques can be divided into two main categories: feature selection and feature extraction. Feature selection 
techniques select a subset of important variables retaining as much information as possible from the data, whil e 
feature extraction techniques create some new features from the existing variables. Another categorization of the 
dimensionality reduction techniques can be based on whether the label information is used. In this section, we 
will  provide a brief summarization of all  techniques that have been used by clinicogenomic models. A detailed 
description of all  these techniques has been included in the Appendix A.  

Most of the feature extraction techniques such as principal component analysis (PCA) (Jolli ff e 2002) 
creates new features which are a linear transformation of the data for example. Creating features from some 
natural groups in the data through clustering is another technique (Pittman, Huang et al. 2004, Clarke and West 
2008). For example, each cluster centroid or first principal component of each cluster can be represented as a 
new feature. All  these approaches do not use the label information during constructing features. Several 
clinicogenomic studies also aimed to modify the original unsupervised feature creation techniques. For example, 
Boulesteix et al. (Boulesteix, Porzelius et al. 2008) used supervised PLS techniques to defines genomic features 
li ke PCA. On the other hand, Lexin Li  []  used a two-step dimension reduction technique: unsupervised principal 
component analysis (PCA) method followed by a supervised dimensionality reduction method called sliced 
inverse regression (SIR) (Li 1991). One big advantage of feature creation as opposed to feature selection is that 
each extracted feature can retain more information about the data. For example, the metagenes (West, 
Blanchette et al. 2001), (Huang, Ishida et al. 2003), (Huang, Cheng et al. 2003) that are co-expressed in a 
relevant pathway can be summarized by a feature represented by a single cluster. However, one major problem 
with these feature creation techniques is that the features are not biologically interpretable, which is utmost 
important in the context of biomarker discovery.  

In the domain of building a clinicogenomic integrative model, feature selection seems the most popular 
technique, because of interpretabilit y. In general, three types of feature selection techniques are used: filt ering 
method, wrapper method and embedded methods. Note that all  these methods are supervised in the nature. 
Filt ering methods rank all  the features based on various metrics and then, selects those features that achieve a 
particular score. Some of the metrics used in the clinicogenomic context are parametric (e.g., student t-test (Li , 
Chen et al. 2005), (Stephenson, Smith et al. 2005), (âLOKDYi�DQG�6PU]�����)), non-parametric statistical tests 
(e.g., Wilcoxon rank sum test (Daemen, Gevaert et al. 2007),(Wang, Ooi et al. 2007)), univariate Cox 
regression(Campone, Campion et al. 2008) and domain knowledge li ke the level of fold change (Wang, Ooi et 
al. 2007), (Stephenson, Smith et al. 2005), (Höfling and Tibshirani 2008), the number of samples where the gene 
is expressed significantly. Although filt ering methods are simpler to implement, they are often criticized for 
selecting many redundant features and lack of considering interaction between the features (Sun, Goodison et al. 
2007). To make the best use of groups of variables, wrapper models (Kohavi and John 1997) search for an 
optimal subset of features in the whole feature space and then evaluate that subset based on predictive models 
built  using it. However, searching for an optimal subset of features is NP-hard (Amaldi and Kann 1998). As a 
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Table 3: Summary of predictive clinicogenomic models 

Clinicogeno
mic Study 

Stage 
of 
integr
ation 

Stage of 
dimensio
nality 
reductio
n 

Full-
space/su
bspace 
model 

Dimensionality 
reduction 
technique 

Predictive 
method Clinical Endpoint Disease 

Li 2006 Early 2-step Fullspace 

Two-step feature 
extraction: PCA, 
SIR  

Cox hazard 
model  

Survival time after 
chemotherapy 

large-B-Cell  
lymphoma 
(DLBCL) 

Stephenson 
et. al. 2005 Early 2-step Fullspace 

Ranking using 
statistical test 

Logistic 
regression 

Recurrance after 
Radical Prostatectomy 
(Binarized) Prostate cancer 

Sun et. Al., 
2007 Early 2-step Fullspace Wrapper Model 

Linear 
Discrimina
nt analysis  

Survival prediction 
(Two class) Breast cancer 

Li et. al, 
2005 Early 2-step Fullspace 

Gene selection 
based on t-test  SVM 

Response to platinum-
based based 
Chemotherapy 
(Survival ) Ovarian cancer 

Beane et al. 
2008 Early 2-step Fullspace 

Ranking using 
Statistical test 

Logistic 
regression 

Development of 
metastasis after 
pathology Lung cancer 

Nevins et. al. 
2003 Early 2-step Fullspace 

Feature creation 
by Clustering 
and PCA 

Statistical 
tree  

Survival prediction 
(Two class metastasis 
development)  Breast Cancer 

Pittman et. 
al. 2004 Early 2-step Fullspace 

Feature creation 
by Clustering 
and PCA 

Statistical 
tree  

Survival 
prediction(Two class 
metastasis 
development)  Breast Cancer 

Clarke et al. 
2008 Early 2-step Fullspace 

Clustering based 
metagene   

Statistical 
tree 

Survival time after 
primary 
chemotherapy/disease 
relapse Ovarian cancer 

Cao et al. 
2010 Early 2-step Fullspace 

Three 
dimensionalit y 
reduction 
methods 

Mixture of 
Experts Binary outcome 

Breast cancer, 
Prostate 
cancer, 
Medulloblasto
mas 

Binder et. al. 
2008 Early 1-step Fullspace 

Regularization 
Techniques 

Cox based 
prior model Survival data DLBCL 

Ma et. al. 
2007 Early 1-step Fullspace 

Statistical test 
and 
regularization  

Penalized 
logistic and 
Cox 
regression 

Binary class 
(metastasis), Survival 
analysis 

Breast cancer, 
Folli cular 
lymphoma 

Bovelstad et. 
al. 2009 Early 1-step Fullspace 

Regularization 
method  

Cox 
regression Survival prediction  

Breast cancer, 
DLBCL, 
Neuroblastoma 

Berlingerio 
et al. 2009 Early 2-step Subspace 

Only HLA 
antigens/alleles 
corresponding to 
six loci are 
considered 

Frequent 
Pattern 
Mining 

Liver transplant VS. 
normal 

Liver diseases 
leading to li ver 
transplantation 

Schwarz et. 
al. 2009 Early 2-step Subspace Domain guided  

Network 
based 
framework Case-control Schizophrenia 
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Table 4: Clinicogenomic studies to assess additional prediction power of genomic features over 
clinical variables. 

Clinicogen
omic Study 

Stage 
of 
integra
tion 

Stage of 
dimensio
nality 
reduction 

Full-
space/su
bspace 
model 

Dimensionality 
reduction 
technique 

Predictive 
method 

Clinical 
Endpoint 

Disease 

Wang et. al. 
2007 

Early 2-step Fullspace Stepwise logistic 
regression for 
gene selection  

SVM/SLD/
KNN  

Recurrent vs. 
Non-recurrent 

Human 
Hepatocellul
ar 
Carcinoma) 

Tibshirani et 
al. 2002  

Early 2-step Fullspace Filtering approach 
based on p-value 
of fold change 

Logistic 
regression 

Binary class 
(metastasis vs. 
normal) 

Breast 
cancer 

Hofling et al. 
2008 

Early 2-step Fullspace Filtering approach 
based on p-value 
of fold change 

Logistic 
regression 

Binary class 
(metastasis vs. 
nomral) 

Breast 
cancer 

Boulesteix et 
al. 2008 

Early 2-step Fullspace Supervised feature 
extraction, PLS 

Tree based 
method 

Binary class 
(metastasis vs. 
nomral) 

Breast and 
Colorectal 
cancer 

Boulesteix et 
al. 2010 

Early 1-step Fullspace Regularization 
based technique 

Logistic 
regression 
with 
boosting 

Binary class 
(metastasis vs. 
normal & 
remission vs. 
no-remission) 

Breast 
cancer, 
Acute 
Lymphoblast
ic Leucemia 
(ALL) 

 
  

Jana Silhava 
et. al. 2009 Late 2-step Fullspace Filtering  

Logit, 
Bionomial 
boosting 

Recurrance vs. Not 
recurrence Breast Cancer 

Campone et. 
al. 2008 Late 2-step Fullspace 

Filtering by 
univariant cox 
regression+PCA 

Multivariat
e Cox 
regression 
analysis 

Metastasis free 
survival Breast cancer 

Futschik et. 
al. 2003 Late 2-step Fullspace 

Filtering using 
statistical test 

Bayesian 
network & 
ANN 

Two class Survival 
after 5-yrs. DLBCL 

Daemen et. 
al. 2007 

Interm
ediate 2-step Fullspace 

Ranking using 
statistical test SVM Metastasis Breast cancer 

Gevaert et 
al. 2006 

Interm
ediate 2-step Fullspace Gene Filtering  

Bayesian 
network Metastasis Breast cancer 
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Table 5: Summary of multisite clinicogenomic studies. 

Study Dimensionalit y 
reduction 
technique 

Predictive 
method 

Integration 
type 

Testing 
additive 
performance 
of  genomic 
variables 

Clinical Endpoint Disease 

Acharya et. 
al. 2009 

Gene Clustering 
and preselection 
based on prior 
knowledge 

Hierarchical 
Clustering 

Early/Semi-
supervised 

Yes Relapse free survival 
(may be distant)  

Breast 
Cancer 

Shedden et al. 
2008 

Compariti ve study 
among 8 
dimensionalit y 
reduction 
techniques 

Cox hazard 
model 

Early No Survival data Lung Cancer 

Teschendorff 
et. al.  
2006 

Common genes 
across 6 datasets  

Univariate 
Cox model 

Early No survival vs. death/ 
development of 
metastatis  

ER+ breast 
cancer 

 


