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Abstract: Human diseases are inheently complex and governed by the conmplicaied interplay of several
undelying fadors. Clinicd research focuses on behavioral, demographic and pathology information, whereas
moleaular genomics focuses on finding undelying geneic and genonic fadors in genomic data colleded on
MRNA expresson, proteomics, biological neworks, and othe microbiologicd feaures. However, ead of these
clinicd and genomic datases contains information only about oneparticular aspet of a complex disease, rather
than coveaing all of the several complicated undelying risk fadors. This has led to a new areaof research that
integrates bath clinicd and genomic data and aims to extrad more information about diseases by consideing
na only al the various fadors, but also the interadions among those fadors, which canna be captured by
clinicd and genomic studies that are paformed indgoendently of ead other. Althoughinitial efforts have
aready been made to devdop sud integrative modding of the clinica and genomic data to shel light onthe
biologicd medhanism of the diseases, theresearch field is still in a rudimentary stage. In thisreview article, we
suvey the genea isales, challenges and current work of clinicogenomic studies. We also summarize the
current state of thefield and discusssone posshiliti es for future work.

1 Background and Motivation

Until the last decade traditional clinicd care and management of complex diseases mainly relied on
different clinico-pathdogicd data, sud as signs and synptoms, demographic data, pathologicd lab test results,
and medicd images. In addition, eff orts have been made to cgpture geneic fadors by maintaining the family
history of paients. The effea of suc clinicd and histo-pathologicd markers is assessed by cohat based studies
conducted on large popuations (Szklo 1998 and the knowledge obtained from these studies is summarized as
clinicd guiddines for the diagnasis, prognasis, monitoring and treament of human diseese, e.g., NPl (Galeg
Blamey et al. 1992 and Adjuvant! Online (Goldhirsch, Coates et al. 2006 for breast cance and pamOne
(Blumberg 2004) for prostate cance. However, this approacd still falls short. For example, there are adverse
drug readions for sone paients who have risk fadors similar to thase patients who have been cured by the
same therapeutic treadment. This issue stems from the strategy of ‘one drug fits all” and motivates the need to
improve on conclusions drawn from cohat-based studies so that theunderlying mechanism of complex diseases
can beunderstoodat the individud patient level.

Therecet advancement of high-througtput technology has led to an abundance of information for each
indvidual at the micro-moleaular level. A myriad of gendic, genonic and metabolomics data have been
colleded to capture diff erent aspects of cdl mechanism that shed light on human physiology. Examples indude
SNPs, which provide information about the gengic polymorphism of an individud; geneexpressons, which
measure transaiption; and protein and metabadlite abundance which captures protein abundance and post
translational modifications. These high-throughput datasds have hdped answer some complex biologicd
guestions for different diseases, sut as assesdng the prognais effea (Sotiriou and Piccat 2007),(Driouch,
Landemaine et al. 2007),(Potti, Mukhejeeet al. 2006,(Garber, Troyanskaya et al. 2001), epistasis effeds on
diseases (Anastassou 2007), and discoveing new subphenatypes of conplex diseases (Golub, Slonim et al.
1999,(Alizadeh, Eisen et al. 2000),(Bhattacharjee Richards et al. 2001). The use of gendic information in
epidemiology hdped design eff edive diagnaostics, new theapeutics, and novd drugs which have led to the
recant era of personalized medicine (genonic medicing) (Stephenson Smith e al. 2005, (Edén, Ritz & al.
2009, (Teschendaff, Nadei et al. 2006. However, these gendic fadors alone canna explain all theintricades
of complex diseases. For example, the incidenas of cance vary widdy among different courtries due to the
environmental fadors, even for the same ethnic groups when they migrate from one courtry to ancthe
(RedmondJr 1970, (Weinberg 2007).

In recent studies (Schadt 2009 Eichler, Flint et al. 2010, it has been hypahesized that most cormplex
diseases are caused by the combined effeds of many diverse fadors, including different gendic, genomic,
behavioral fadors and environmental effeds. For example, cancer, which is the most widdy studied disease



phenatype in last few decades, is extremely haerogeneous. Different clinicd endpoints of cance’, sud as the
idiosyncrasy of indvidud tumors, the suwival rate of cancer patients after chemotheapy or suigicd treament,
devdopment of metastasis, and the eff edivenessof drugtherapy are govened by diff erent risk fadors including
multiple mutations of geneic fadors (e.g., RAS, RTK, TGF-f, Wnt/signaling pathways), behavioral fadors
(eg. tobacco exposure, diet, lifestyle) (Weinberg 2007, longtime environmental effeds (eg., stressss,
temperature, radiation, oxygen tensions, hydration and tonicity, micro- and maao-nutrients, toxins) (L oscazo,
Kohaneet a. 2007 and inhegent gamline variations (e.g. BRCA1/2) (West, Ginsbulg et al. 2006. Theefore,
clinico-pathologicd and genonic datasds cepture different effeds of all sud diverse fadors on complex
diseases in a complementary manne rather than a suypplementary nature. Using the two diverse perspedives
provided by bath types of data can patentially reveal disease complexitiesin greaer details.

In addition, theindividud eff eds of ead of the clinicogenomic fadors on diseasepredisposition can be
small and thus can remain unde¢eded by most disease association techniques performed on individua datasds.
However, interadions among those individua fadors may be resporsible for increasing the risk of complex
disease (Anastassou 2007),(Losclzo, Kohane et al. 2007). For example, nathe a genenar an environmental
fador like tobacco use may be significantly assodated with lungcancer by itself, but togehe they can increase
therisk significantly (Zhau, Liu et a. 2002. In a more conplicated scenario, a conplex gendic ngwork can
evolve dynamicdly unde various environmental fadors (Schadt 2009. This phenomenon is true even for
Menddian disease with monogeic disorde like sickle cdl disease, where single different phenatypes were
observed based on environmental effeds (Kato, Gladwin et al. 2007). Besides interadions, there may be othe
types of rdationships sud as causd reationships between two types of markers (L& Cao, Meugnier et al. 2010.
For example, some pathologicd variables sud as PSA can alsohave upsteam gengic influence (Singh Febbo
et a. 2002. In this case theindividud fadors coming from diff erent datasds may na be a strong biomarker;
butrather the relationships inhegent amongthem, induding interadion, can ad as patential biomarkers.

Leveraging sudh wide relationships includng interadions, correlation and casudty among the
genomic, pahdogicd, environmental, and behavioral fadors is important for understanding the nature of
diseases. It will also asdstin making better clinicd decisions. For example, sumgey can be avoided if some
causdive genomic markers of the tumor can be targeted in the ealy stage of breast cancer. Note that if the
asxciation of clinicd and genomic fadors with the disease phenatype is assessd indgendeantly, sud desper
levels of reationships among data saurces canna be discoveed. It is essential to build integrative modds
considering bath genonic and clinicd variables simultaneously being cognizant of theinteradion, redundancy,
and correation amongthose clinica and genomic data (Schadt 2009. This has led to an emerging research area
of integrative studies of clinicd and genomic data, which we will refer as clinico-genomic integration. In this
review, we suivey na only diff erent isaues and chall enges existing in sud clinico-genomic integrative studies,
but also diff erent approaches that aimed to addressthoseisaues. Finally, we concludewith a geneal disausson
onfuturereseach diredionsin this topic.

1.1 Whatis clinicogenomic integration?

Clinicogenomic integration means buil ding modds by integrating clinicd and genomic data. Clinicd data refers
to a broad category of patient’s pathological, behavioral, demographic, familial, environmental and medication
history, while genonic data refers to any kind of patient’s genetic information includng SNPs, geneexpresson,
protein and metabolite profiles [Figure 2]. More spedficdly, the clinicogenomic studies shoud have at least
one clinicd datasd and one genomic datasd for a group of people who are assessed for an outcome of a
phenatype of a disease. Furthamore, we suwvey only integrative modds with an emphasis on biomarker
discoveay. Thaefore, eat sample of datasds is assessed for a particular disease phenatype. The phenatype can
be eithe binary classlabels sud as cance vs. no cancer, tumor vs. narmal tissue samples, metastasis vs. non
reaurrent cancer, or corntinuaus variables, e.qg., thesuwival time after chemotherapy or othe types of therapeutic
treaments. Achieving the goal of biomarker discovey requires identifying the clinica and genomic feaures
fromthedatathat are significantly associated with the diseasephenatype.

1.2 Different aspects of clinicogenomic studies
Integration of diversebiomedicd datasds is a vast research topic and has been studied widdy in many
different domeins. Althoughsome initial eff orts have been made by reseaches for clinicogenomc integration,
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most of these studies are sattered throughaut the lit erature and were deveoped from a clinica perspedive for
different disease phenatypes with ther own limitations and advantages. Moreover, the isaues and challenges
related to this field are nat yet well undestood In this article, we firstidentify the overall issues and challenges
of this field with an emphasis on the methoddogicd perspedive (Sedion 2) and then disausshow the existing
clinicogenonmic methods address these challenges (Sedion 3). In particular, we caegorize exising methods
from many perspetives: stage of integration (Sedion 3.1), how dispaate dimensorality is addressed (Sedion
3.2), and disease heterogendty (Sedion 3.3). We also disaussthe diff erent goals that these studies try to achieve
(Sedion 4) andthevalidationtechniques used in eat categary (Sedion 5). Finally, we review several multi-site
clinicogenonic modds (Sedion 6) and then conclude with disausson (Sedion 7). Moreover, the scope of the
articleis theintegrative modd devedopment of clinicd and genomic data, rather than thesimple incorporation of
genormic data into clinicd pradicefor designing genomic medicine

There are some existing articles that focus on few aspets of the clinicogenomnic studies (Table 1).
Boulesteix et al. (Boulesteix and Sauerbrei 2011) performed a recent suvey on how to validate the additiond
predictive power of genomic markers over traditional clinica variables with a focus on external data. Unlike this
review, they did nat aim at reviewing all types of predictive clinicogenomc modds and the chall enges these
studes address Correaet a. 2010(Correa Adali et al. 2010 partially reviewed theintegration approades that
find rlationships between datase's measured by correlation while Thonmes et a. (Oelker and Boulesteix) mainly
studed methods aiming to find interadions between gene and environmental fadors. There are severa other
reviews on studies that integrate diverse gengic, genomic, proteomic, metabolomics, interadome, phylogenec
and phenome data (abbreviated as ‘omic’ data) (Hamid, Hu et al. 2009 Tsiliki and Kossda 2011, Bebek,
Koyutlrk et al. 2012. However, they do nat cover the integration of clinicd data with genomic datasets.
Althoughthey fall out of scope of our suivey, they are induded in Table 1 since they disausssome of the
geneic challenges common in any integrative study. To the best of our knowledge currently there is no study
which aims at reviewing integrative approaches combining genomic and clinica/environmental data from a
methodologicd perspetive.

2 Issues and challenges in integrating clinical and genomic data
The integration of genomic and clinicd studies is difficult as the two fields have different perspedives.
Several key technicd challenges are desaibed below.

1. Differencein nature of the datasets: As the datasds beng integrated are colleded from two diff erent
perspedives, the difference in the nature of the data being integrated creaes several challenges for
devdoping integrative modds. First, clinicd data are usudly record-based where ead pdient can be
represented by a record of clinica variables. On the othe hand, gendic and genomic data sds vary
widdy in terms of formats. Besides record-based data, there are many nework-based datasds where the
relationships among several biomoleaular entities are represented as feaures. Second clinicd variables
are available in diverse data types such as text, categoricd, and numeric values, but on the other hand
genomic variables are mosiy numeric. Third, some data ses may cortain structure, e.g., measurements
aaosstime or aaoss a gengic sequence, that are na present in othes. Fourth, genomic and gengic
datasds are high-dimensional in comparisonwith clinicd data which often contains ~10-20 variables.
Fifth, gengic and genomic data contains a highe level of misdng values because of technologicd
isaues (loannidis 2005. In cortrast, clinicad data are easy and inexpensive to colled, and so contain
fewer missng values. Integrating variables with sud diff erent formats, types, structure, dimensionality,
and missng values is a chall enging problem in the data mining and machinelearning domain.

2. Statistical significance: The high-dimensonality of genonic datases combined with low sample size
poses challenge for finding statisticaly significant biomarkers (classcd statisticd n<<p problem) [].
Combining such high dimensional feaures with low dimensional clinica data creaes a further
challengefor statistica and data mining methods. Even after pre-seleding significant genes, genonic
feaures (which usudly number afew hunded) still domnate thetraditional clinicd variables in number
(which usudly are around ~10-20) due to the over-fitting problem. Unlessthewhole experimental setup
is performed cautioudy, theclinica markers can be lost in the vast regime of genomic data and thusthe



predictive power of the genomic data could be oveestmated (Boulesteix, Porzdius et al.
2008, (Tibshrani, Efron et al. 2002.

3. Different biases and assumptions. Since the correspondng datasds are colleded indegendantly, the
biases and assunptions of ead of thedata sds being integrated may be different due to thedifferencein
experimental designs and protocols. For example, since clinicd variables are gatheed more
systematicaly ove a large period of time intervals, they contain less noise. In addition, they are
validated rigoroudy by numerous epidemiology studes (Boulesteix, Porzdius et al. 2008 Truntzer,
Maucort-Boulch et al. 2008 Obulkasim, Meijer et a. 2011). Also, clinica data are cheap and easy to
colled (Obulkasim, Meijer et al. 2011). In contrast, gene expresson data (and also other genorric data)
are lessreproducible ove indgpendeant cohats because of the high noise, diff erent experimental biases,
high-dimensionality and small sample sizes of the microarray datasds (Ein-Dor, Kela et al. 2005 Ein-
Dor, Zuk et a. 2006 Naderi, Teschendaff e al. 2006 Chuang, Lee et al. 2007). Integrative studies
need to be aware of sud differing degrees of information present in diff erent datasds. Othewise, the
role of clinicd variables may be undeestimated in the prognestc modd when compared with noisy
genomic variables (Truntzer, Maucort-Boulch et al. 2008.

4. Heterogeneity: Most complex disesses are heterogeneous in nature, i.e., pdaients with a particular
disease may form different sulgroups and fadors appropriate for one sulgroup may na apply to
anathe. For example, diff erent substs of thepopuation are known to have diff erent biomarkers for the
samne disease (McClellan and King 2010, due to different pathways playing arole in the same disease,
or due to the same pathway playing a different role in subjeds from different ethnicities (Kelley and
Ideke 2005. It is impaortant to find suc subgoupsfor integrative studies, becausethe effed of one
type of variable in a subgace can be explained when integrated with other types of data, but the
variable would betreaed as a confounding fador othewise.

5. Interpretability: Anathe geneic challengefor biomarker studes is that the obtained modd has to be
interpretable, i.e., the effea of individua markers on the disesse phenatype must be identified.
Otherwise, the domain experts cannd use the patential risk fadors for furthe validations. Similarly,
clinicogenonic integrative modds must be easily interpretable to be treaed as biomarkers. For
example, if theoriginal genes or clinical variables canna be interpreted by the modd, then drugs canna
be designed targeting somne genes or the proteins encoded by those genes.

6. Finding relationships between datasets. Therelationshp between clinicd and genonic data may also
be different. The predictive modd adieves bendfits over the individud studies if thetwo datasds are
complementary in nature, but not suppkmentary in nature. Besides suc broad reationships among
oveaall datasds, relationships can be present among diff erent types of individua markers. For example,
correlation between genomic data and several clinicd variables has been observed in many domains
includng cancer reseach (Singh Febbo et al. 2002, (Sotiriou, Wirapati et a. 2006, (Kumer,
Grigorakis et al. 2005 and neurosdence (Correa Addi et al. 2010. There may exist othe types of
relationships includng interadions (Oelker and Boulesteix) and causd (Boulesteix, Porzdius et al.
2008 Lé Can, Meugrier e al. 2010 relationships among different types of variables as desaibed
ealier. Finding and leveraging all the relationships beween clinicd and genomic data poses a big
challengefor integrative study.

Some of the technicd chall enges (the dispaate natures of the data) desaibed aboveare quite geneal and
are applicable for any type of integrative studes in any domein, while some othes (haerogendty and
interpretability) are applicable mainly for biomarker discovey. Besides these geneic challengss,
clinicogenonic integration also faces challenges (statisticd significance different amourt of information) that
are speific to the domain. It is difficult to address all these challenges. In fad, most of the clinicogenomic
studes aimto addressonly afew challenges desaibed ealier. Several of them were motivated by theintegrative
modds from diff erent reseach communities induding biostatistics, data mining, and machine learning, which
can handle the geneic chall enges mentionad above Of course many of them were further modified; sometimes
completely new methods were designed to addressthe speific chall enges of clinicogenomic data integration.

Besides these technicd challenges, thee are several donain challenges as well. First, there are diff erences
in the terminologies used in epidemiology and geneics studies, even for the same topic. For example,
asciation studies (geneics) and case-cortrol studies (epidemiology) deal with the same concept of finding
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causdive fadors of diseasses. (Magjo and Martin-Sanchez 2004). This makes the automatic extradion of
information from health care and geneics data difficult. Second the genomic data have been colleded from a
reseach perspective solely acording to solid saentific theories and modds. However, the hedlth care data is
colleded slowly over a longe period of time in a retrospedive manne, from diff erent sources spanning broad
areas sud as medical observations, patient management data, healthcare providers, doctor’s note, and patient’s
life history. Thus clinicd data colleded from eledronic medicd records [EMR] may contain redundant
information, which has to go throughseveral preprocesang steps to extrad usdul information about a pdient
that can be integrated later with genomic data. Lasty, the privagy isaue related to the healthcare domain
(Hristidis 2009, (Meingast, Roosta et al. 2008 creaes a seious baitleneck to theavail ably of clinicd data. The
data colledion related challenges require several preprocessng steps sudh as building data warehouse
integrating multiple sources of data, extrading information from them, text mining and natural language
processng(NLP). Such data colledion and preprocessng steps are out of the soope of this review, since the
focus of this review is on devdoping integrative modds.

3 Different types of integration

In this sedion, we identify and disaussseveral aspets of integrative model devdopment. Furthermore, we will

caegarize the existing clinicogenormic studies basad on thase aspets and disauss how they address diff erent
challenges as desaibed in the last section. Again, some of these categarizations and the correspondng studies
which addressthe geneal chall enges are applicable for any domain; while some addressthe spedfic challenge
of clinicogenomic integration. The main goal of the review is to analyze the clinicogenomc modds from a
methodologicd perspedive. Table 2 contains the ovearall summary of all clinicogenomic modds based on these
taxonomies.

3.1 Stages of data integration:

Integration of multiple heerogeneous datases in geneal can be performed in several stages. For example, either
indvidud datasds can be integrated first before devdoping any modd or decisions coming from modds built
on ead datasd indgpendently can be integrated. Alternatively, ead datase can be transformed to a common
intermediate structure sud as graph or kernd and then these structures can be merged before devdoping
modds. Pavlidis et al. (Pavlidis, Weston & al. 2001) performed seminal work onthese threetypes of integration
and cdled them ealy, late and intermediate integration respedively. We will caegarize all clinicogenomic
integration into these threebroad conogptud categaries.

3.1.1 Earlyintegration:

In geneal, ealy integrative approaches mergetheindependat data saurces togehe before performing any kind
of data analysis. In a simplistic case the individud data matrices are simply augmented into a larger matrix if
bath of the datasds have same set (or subst) of samples. Thus the integration of theindividud datases, which
are clinica and genonic data in our case is paformed in an ealy stage of the ovaal analysis. Once the
combined data matrix is prepared, any types of modds can be devdoped based on the three goals of the
clinicogenonic studies desaibed in sedion 4.

The unique assumption of this type of integrationis that bath of the datasds are similar in nature, i.e.,
most of the properties of the datasds sud as data type formats, structure, dimensiorality are eithe similar or
preprocessed to be as similar as possble Othewise, a significant amournt of preprocessng sudch as
dimensiorality reduction, missng value imputation and data disaeization is required before integrating
indvidud datasds.

Advantage: Ealy integration is the simplest approacd, since any standard modd can be applied on the
integrated datasd to achieve any of the objedives. Theefore, most of the clinicogenomic studies fall in this
caegoy []. Moreover, they can preserve any kind of inter-data relationships. For example, if sone clinicd and
genomic variables are correlated, the modd devdoped after data integration can take the correation structure
into acwmurt.



Disadvantage: Early integration loses the individud propeties of ead datasd sud as the structure and
thedifferent degreeof information when merged togehe into an augmented datasd. The dimensiordlity of the
augmented datasd also increases, thus the modd may also suffer from high dimensionality and low statistica
significance of the obtained resut.

3.1.2 Lateintegration:

Late integration first devedops predictive modds separately for ead of the individud data saurces and
then merges the individud decisions of all predictive modds into a final score as the prediction of outcome
variable. As oppased to ealy integration, this type of integration adudly merges the clasdfier decision rather
than original datasd. The main asumption of late integrationis that the individud datases are indegpendent and
thereis nointer-datases reationship.

The biggest challenge of late integration is how to merge the decision of classfiers obtained from
indvidud datasds. Several strategies like majority voting, linear aggregation and weighted average have been
applied for this pumpase. For example, two breast cance studies conducted by Camponeet al. 2008 (Camponeg
Campion et a. 2008 and Silhava et a. 2009 (Silhava and Smrz 2009 simply summed up the individual
decision coming from genonic and clinicd data. Camponeet al. applied the Cox regresson modd to summarize
the topmost 15 disaiminating gene into a single genomic smre and then addel it to the traditional clinica
sare of breast cancer, NPI to ge thefinal score for assesdngtheeffed of adjuvant chemotherapy. On the other
hand, Silhava et al.(Silhava and Smrz 2009) applied two different predictive modds: logistic regresson, and
BiononialBoosting(BB)(Buhlmann and Hothorn 2007) to ge the genonic and clinicd soore respedively before
sunming up.

However, simple summation is na always appropriate because the contribution of the individud data
saurces to the overall clinicogenomic modd may be different. Alternatively, the contribution from eadt
indvidud datase towards the disease phenatype can be assessd and the scores obtained from the individual
modds can be weighted acaordingy. For example, Futschik et al, 2003 (Futschik, Sullivan et a. 2003 usel
parameterized learning for merging the individua decisions into the final decision. In order to integrate the
indvidud decisions of the clinica (by Bayesian classfier) and genomic data (by evolution fuzzy artificial
neural negwork (EFUNN (Kasabov 2001)), a modular hierarchicd modd was introduced based on two levels of
parameters for asessngtheconfidene of the decisionsof thetwo predictive modds towards theclasslabd and
adjusting the classbias. Furthermore, they also tested statistica indgoendency of the outputs of two indgpendent
modds using the mutud information (Cove and Thomas 2006), which is the important assumption for late
integration. In a more complicaed scenario, with many datasds being integrated, the more geneal problem
arises when some of the modds built on individua datases produce binary class decisions and sone of the
predictive modds geneate continuaus-valued scores. Several approaches induding majority vote, and its more
geneic version cdled consensusleaning (Gao, Fan et al. 2009 have been studied in many othe donmains such
asimageprocessng, sccial neworks domain.

Advantage: The individud structure and the nature of ead datase are preseved in late integration,
since modd is devdoped on ead datasd separately. Moreover, different modds can be used for different
datasds degpending on the individud nature of the datases. Late integration is particularly useful when ead of
the datasds is completely heaerogeneous, i.e., the datasds canna be transformed into a common format for
integration.

Disadvantage: Late integration misses any kind of posshble relationship like correlation, interadions
present among the datasds. Moreover, late integration geneates a different hypahesis for ead of the datasds
as oppased to a single hypahesis for the integrated datase. Interpretation and validation of these diff erent types
of hypahesisisna trivial.

3.1.3 Intermediate integration:

Ealy and late integration are oppcsite in nature in terms of thar advantages and disadvantages. Intermediate
integration tries to overcome the limitations of both approaches. It first represents ead datasd with a common
structure, sudh as a graph or kernd, and then merges these representations before devdoping any modds.
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Therefore, it geneates one hypahesis, but can retain the structure of ead data seé and take in acount the
possble relationships between the datases to some extent. The main assumption of this approad is that thereis
an appropriate intermediate representation for ead datase preserving the individua properties of that datase
and theintermediate representations can be combined ezsily.

Kernd basel intermediate integration has become the most popuar technique for data fusion in many
domeins mainly for two reasors. First, kernds can preserve the individud properties of data easily. Diff erent
types of kernds can be applied based on the properties of a datasd. Second merging kernds obtained from
indvidud datasds is easier than merging decisions in late integration (refer to the review paper (Génen and
Alpaydin 2011) for moretheoretica desaiption of kernd fusion methoddogies). Followed by the seminal work
of Palvidis et a. (Pavlidis, Weston et a. 2001), this idea of kernd based intermediate integration was used by
Daamen e. al. (Daanen, Gevaet e al. 2007) in this context of clinicogenomic integration for classfying
metastasis vs. rdapsefreesuvival of breast cancer. In particular, two narmali zed linear kernds were devdoped
for bath clinicd and geneexpresson data and then, thosekernds were fused usng a weight before applying the
final predictive modd. One advantage with sud kernd based integration is that the weights correspondngto an
indvidud datasd can dende the relative contribution towards the final prediction. However, chocsing an
appropriate kernd for a particular datasd is nat trivial. Moreover, kernds are nat easily interpretable so that
they can be usal as biomarkers.

Graph basal techniques can provide more interpretable modds for intermediate integration. In an similar
effort to devdop sud techniques, Gevaet et. al. (Gevaat, Smet et a. 2006 used Bayesian nework as the
intermediate representation. A Bayesian néwork can represent the dependency among the variables by a
direded agyclic graph (DAG) in a probabilistic manne. In brief, there are two indgpendent stages in Bayesian
modding: learning the structure of the DAG and leaning the parameters of the praobability distribution. The
authors attempted three types of Bayesian integration-ealy, late and partial integration using the two
independant steps of Bayesian leaning. The partial integration is conceptudly similar to intermediate
integration. For example, first, structure learning is performed on bath datasds separatdy (usng heuristic modd
sarch algarithm K2 (Cooper and Herskovits 1992) and then, these two structures are merged through the
outcome variable which is the only common variable in the two datasds. In a secmnd step, the Bayesian
parameter estimation of the modd (learning of conditional probability tables) is performed using a Dirichlet
distribution. Finally, the fadors within the Markov blankets of the outcome variable are defined as the
biomarkers. Althoughsud graphbased intermediate integration provides more interpretable modds, merging
the structures (DAGS) obtained from ead datasds is na as staightforward as fusing the kernds. In both
studes, intermediate and partial integration showed better peformance than eally and late integration.

Alternatively, many statistica approaces including canoricd correation analysis (CCA), indgoendent
componat analysis (ICA), and partial lesst square regresson (PLS) try to find latent components in eah
datasds, which can be alsotreaed as a sat of intermediate representation. However, the gaal of these studies is
very diff erent. In particular, these studies want to assesstherelationships amongthe obtained components rather
than building clasdfication modds using them.

Advantage: It can preseave theindividud properties of a datasd. Moreover, inter-datasd relationships
like correlation and redundancy can also be taken into acourt during final modd devdopments, althoudh it
depends on many isaues like choice of kernd and how sudh relationships are preseved during kernd fusion.

Disadvantage: Finding appropriate intermediate representations that are interpretable and essily fusble
at the same time is difficult. Moreover, finding interadions and causd rdationships aaoss datases is difficult
due to thetransformation of theoriginal feaure spae

3.2 Stage of dimensionality reduction:

Clinicogenomic integrative modds have to be aware of the dispaate dimensioralities of the clinica and
genomic datasds. Otherwise, low-dimensional clinica variables will be lost among the thousands of genomic
variables (Boulesteix, Porzdius et al. 2008. Theclinicogenomic studies can also be categarized. We caegarize
existing clinicogenomic studies into two categaries basad on how they hande this isaue ead of which has its
own asaumptions, advantages and disadvantages.

3.2.1 Two-step methods



The easiest way to handle the dispaate dimensionaliti es of individuad datasds is to first perform dimensonality
reductions for eat datasd separately and then, build predictive modds onthem in a second step. In the context
of clinicogenomic integration, dimenson reduction techniques are applied solely on the genonic dataset
asuming that clinicd variables are already low dimensional. Most of the tedhniques seled topmost
disaiminative genomc feaures, whil e othe's methods combine those feaures into a combined score for future
modd devdopment. In the second step, the seleded genomic variables are merged with the clinica variables to
build progncsis modd onthecombined datasd.

Advantages. Thetwo-steps modds are very flexible. Any types of dimensionality reduction technique
and any predictive modding techniques can be incorporated in buil ding thecli nicogenonic modd.

Disadvantages. Theae are few disadvantages of the two-step methods. First, deermining the
appropriate number of genomic feaures in the first step is hard. The number of feaures may impact the
compaison between the additive performances of clinicd and genomic variables. For example, if too many
fedures are sdeded from genonic data, it may ovefit the clinicogenonic modd in the second phase On the
othe hand, if too few genomic fadors are retained, then the predictive capability of the genonic fador can be
undeestimated. This ovefitting isaue is even more saious if the dimensiondlity reduction techniques take
resporse variables into acourt in thefirst step. In this scenario, the genomic feaures fed into the second stage
will have strong prediction power for theresponse variable. Hence, conparing thase genomic fedures with the
clinicd variable is nat completely fair (Boulesteix, Porzdius et al. 2008. Secwond peforming dimensorality
reduction only on genomic data cannd acourt for the reationship existing between the two datasds. For
example, even theright number of genonic variables sdeded in thefirst step may be redundant in the second
step for modd devdopment given theclinicd variables usal. Moreover, the subte contributions of many genes
to prediction can be missed by the dominant genonic feaures that are correlated with the clinicd variables
(Boulesteix and Hotharn 2010. This is espedally important when the goal is to assessthe additional power of
genomic data over clinicd variables. Thisis desaibed in more detailsin Sedion O.

3.2.2 Combined clinicogenomic models

The second type of approach merges the two steps of dimensionality reduction and modd devdopment into a
single step by leveraging regularization basel statisticd modds with possble modifications. Regularized
modds can inarease the genealization power of predictive modd by preferringlesscomplex modd andthusare
very effedive for reducing the passble ovefitting problem for high-dimensional data sud as gene expresson.
In geneal, regularized tedhniques introduce an extra penalty term for the modd complexity (P,(f)) in addition
to theoriginal lossfundion (L(f]X)) of theobjedive function as shown below.

rr};inL([)’IX) + P (B) Equaion 31

Here, X istheclinicogenonic datasd and B is the co-efficient that represents the corresponding weight of ead
of the variables present in X and A is the regularizaion parameter that controls the tradeoff between the loss
function and modd complexity. The most popuar regularization approaches used in statistica leaning are L,
(ridggHoel and Kennard 1970) and L; (lasso(Tibshirani 1996) regularization, which impose penalty as the
square (P, (B)=1XF_, B#) and absolte value (P,(B)=1X"_,|B:]) of the regresson coefficients in Equation
3-1, respedively. Moreover, L; penalization shrinks most of the codficients of theregresson modd to zero and
hene, it is widdy used to perform feaure seledion simultaneoudy with modd devdopment. However, the
dispaate dimensionalities of clinicd and genonic datasds pose new challenges to the geneic regularization
problem. Several modfications have been propcsed to impase diff erent penalty structures for diff erent datasets
and disaussed in more detailsin sedion 4.

Advantage: The main advantage of the onestep modds is that they can take the redundancy present between
genomic and clinicd datasds implicitly, sincebath datasds are considered togehe during modd deveopment.
This property makes the singe-step approach most suitable for assessng addtional predictive performances of
genomic feaures ove theclinicd variables (Boulesteix and Hothorn 2010. Moreover, most of the co-efficients
of the spase regularized modd are zeros with few nonzeo entries which predudes the explicit variable



sdedion step. So, the number of genomic fedures to retain for modd devdopment is nat required to be
speified upfront.

Disadvantage: Each of the regularized models has their own modd assumptions and requires leaning several
parameters. This sonetimes yields to highe computational complexity. Moreover, theregresson based modds
are mostly applicable to building predictive modds. Finding inter-dataset relationships like correlation is hard
using these modds.

3.3 Full-space vs. Subspace modeling:

Most of the clinicogenonic modds use the full spae modd devdopment techniques, i.e., the bio-
signatures (either geneor clinicd variable) were geneated based on how well they can disaiminate all patients
from the control popuation. However, due to the disease heerogendty, the same set of clinicd and gengic
predictor may nat be the causdive/putative biomarker for all patients. Some fadors may have more effed in a
paticular group of paient while the same fadors may have less effed in the othe group of patient (Ulitsky,
Karp e a. 2008, (Fang, Kuang et a. 2010, as shownin Figure 10. This credes the need for devdoping
tedhniques that are able to find nat only different types of biomarkers, but also the sulgroups of patients or
healthy popuation associated with ead of thase particular groupsof markers.

The easiest way to find the sulgroup of samples associated with a set of biomarkers is to design a two-
step study, where the subgoups of samples are searched in a later stage after biomarker discovery in the first
phase In one sudc study, Schwarz et. al. 2009 (Schwarz, Leweke et al. 2009 applied a geneic negwork based
two-step framework initially propcsed by Barabasi et al. (Goh, Cusick et al. 2007) to find diff erent subgoupsof
schizoptrenia paients. In particular, they built a two layer bi-partite graph representing all biomarkers in one
patition, and all paients in the othe partition, with an edgeaaossthe two layers representing the association
baween them [Figure 5]. In a later phase Markov chain clustering (Van Dongen 2000 was usel to produce
more homogeneous negwork modues containing paients with similar charaderistics based on clinicd state,
pathologica tests, brain images, and moleaular information. Ther nework discovered one clustr containing
amost a third of the Schizophrenia paients with common abnamality in serum primary fatty add which was
further validated for two psychiatric disease subt/pes: naive schizoplrenia and aff eded disorde patients. On the
othe hand, frequent rule mining algorithm (Agrawal, Imieli ski et al. 1993 can find paterns (e.g., the blocks A-
E represented in Figure 10) representing an asociation between clinicogenonic fadors and paient subgroups
togdhe in a single step. Berlingeio €. al., (Berlingeio, Bonchi e al. 2009 usad this technique along with a
postprocesdng step to remove the non-discriminative paterns like (block C of Figure 10) for discoveing the
demographic, pahologicd (eg., hepdic cirrhosis) and genomic fadors (eg., Human Leukocyte Antigens
(HLA) sites) responsible for the all ograft rejedion of liver transplant.

Both of theprevioustwo subgace modds find sulgroupsof patients and the corresponding biomarkers,
where biomarkers can be bath clinicd and genomic markers. Alternatively, some integrative studies aim to
leverage the complementary strengths of the two datasds by looking at the distina paient subgoupsthat the
two types of markers can effedively classfy. For example, clinica variables can be good at classfying a
particular group of patients who canna be classfied well by genomic feaures and vice versa In the context of
clinico-genomic studies, preference was given to clinicd data. For example, Wang €. al. (Wang, Ooi et al.
2007 first sdeded that subgoup of paients who canna be well explained by the current clinica variables such
as Cirrhosis and Vasaular invasion commonly used for assessng the reaurrence of the human hepao-cdlular
cacinoma (HCC) after primary treament. Afterward, gene expresson data was considered only for thase
subgoups for building clasdfication modds like SVM, SLD, and KNN (k=3) (Tan, Steinbach et al. 2006
Hastie, Tibshrani et al. 2009. In ancthe recant study, Obulkasim et. al. 2011 (Obulkasim, Meijer et a. 2011)
peformed a more systematic study to daermineautomaticaly which samples will benefit the mostby induding
moleallar data into clinicd data using step-wise clasdficaion modd. At first, they built two clasdfiers
separatdy on clinicd and moleaular training data. Second they deermined the sulgroup of test samples (using
a re-clasdficaion soore) that ethe lie on the decision boundary of the classfier built uponclinicd variables
(asauming that clinicd variables are inexpensive and well-validated) or have a chance to improve the
clasdficaion acairagy if molealar data is included. In paticular, they projed a test sample into the clinicd
space of training data and then, estimate the re-classficaion score based on how many training samples were
corredly and wrondy classfied in that local naghbahood Finally, the samples with low soore were
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redasdfied using moleaular data. In a different study, Paoli et a (Paoli, Jumman et a. 2008 devedoped a semi-
supevised approac which used the clinica and epidemiologicd variables to validate the cohaent subgoup of
patients who shared similar types of progncstic profiles defined by geneexpresson data. All these modds can
beinterpreted as rules where ead rule contains clinicd variable as their first predictor.

Advantage and disadvantage: As mentioned ealier, thebiggest advantage of subgpace analysis is that
it can discove patterns which are only assodated with a particular group of patients. This is extremely useful
for finding diff erent types of biomarkers for heerogeneous diseases. Anathea big advantage of many subgpace
analysis techniques like association pattern mining or nework based approach desaibed here is that they are
nonpaametric modd which can cepture nonlinear interadion easily. This may be extremely useful for
integrating heterogeneoustypes of data where same kind of modd assunmption may not had for all data types.
Ancthe big advantage of these approades is that they can also be used for hypahesis discovery rather than
hypahesis validation. So, they have the patential to discover novd causd fadors for inferring new knowedge
espedally minar causd fadors that are represented in very few samples and thus, overlooked by full-space
modds(Fang, Pandey et a. 2010. Nonghdess the observed paterns require more robust validation bath
statisticdly by considering the random association, and clinicaly by considering external cohat/test datasets
before considering the paterns and modues as paential fadors. Moreove, a lot of spuious paterns and
modu es are often discovered which are difficult to interpret.

4 Different goals of integrative studies:

In the previous sedion, we described the methodobgcd diff erences between several integration methods based
on howthey addressthe geneic chall enges of data fusion. Moreover, theclinicogenonic integration can also be
caegorized basead on the gaals that they want to achieve through using those modds. More or less the oveall
gaal of clinicogenonic studies can be divided into three broad categaries from medicd perspetive. Some
studies aim at achieving more than oneclinicd goal in a single study eithe implicitly or explicitly.

4.1 Improving the prognostic power only

Predictive clinicogenomic modds aim at improving theclinicd prediction of diseases by integrating clinicd and
genomic datasds. Thus, the main research question addressed by this type of clinicogenomic modd is whether
the datasds contain complementary information. To assessthe improvement of prognais power, the combined
clinicogenonic methodis compared with the modds built on either clinica or genomic data indgoendently. We
will first desaibe the two-step approach which performs explicit dimensionality reduction followed by the
creaion of combined single-step predictive modds.

Two-step models. The choice of the particular predictive modd diff ers based on the clinicd endpoints of the
disessg i.e., whethe thetarge variable is disaete or continuaus. If theresponse variable is continuaus, sud as
suwival of paients after a particular therapeutic treament or the devdopment of metastasis after surgey, then
theregresson basal methods are deployed for modd devdopment. For example, the Cox propational hazad
modd estimates the lifetlime (suwival or failure) of an event associated with the covariates using two
parameters: a hazad function describing the changes of hazad (risk ove time at the basdine level of
covariates and the co-€efficients desaibing the effed of ead variable on suwival. In onesud clinico-genomic
study, Lexin Li (Li 2006 used the Cox modd for predicting the suwival of the paients with diffuse large-B-
Cdl lymphoma (DLBCL) after chemotherapy. In addition to the genomic feaures (seleded by a supervised
dimensiorality reduction (Li 1991), they included a well-established clinicd fador cdled international
progngasis index (IPI) (Shipp, Harrington et al. 1993, which combines diff erent clinicd fadors of DLBCL.
Classdfication techniques are used to build clinicogenomic modds when the output variable has disaete
caegaries. This indudes mostly binary two-class variables, e.g., disessed vs. hedlthy group, suaessful vs.
unsucessul treament, reaurrent vs. nonreaurrent, suwvival vs. death after certain time point, and metastasis
vs. relapsefreeoutcome. Amongthewidevariety of clasdfication schemes, disaiminant modds, which aim at
leaning a disaiminative fundion to separate the two classes, are widdy used. For example, Sun et al. (Sun,
Goodisonet a. 2007 usel linear disaiminant analysis (LDA) (Bishop and SpringeLink 2006 for combining
the current clinicd guiddines for breast canca prognasis sud as St. Gallen (Goldhirsdch, Coates et al. 2006),
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(Goldhirsdh, Wood et al. 2003 and NIH (Eifel, Axelson et al. 2001) with genomic information to predict the
suwival of bresst cance. Anathe popular disaiminant modd is logistic regresson, since it can provide the
probability of the outcome event in addition to leaning a linear decision boundxry, and thus can modd clinica
uncetainty. Most of the clinicogenomic studies (Stephenson, Smith et al. 2005 Beane Sebastiani et al. 2008
usea stepwise logstic regresson modd where ead predictive variable is addel suaessvely in the modd until
the optimal modd is achieved. In one such modd, Beane et al. (Beang Sebastiani e al. 2008 combined the
geneexpresson profiles of lung epithdial cdls of paential lung cancer patients using bronchoscopy (Spira,
Beane e a. 2007 with the clinicd and demographic data to make better diagnostic decisions. Similarly,
Stephenson et. al. (Stephenson Smith et al. 2005 used step-wise logistic regressonto predict therearrence of
prostate cance after a radicd prostatecdonmy (RP) using a well-established clinicad marker cdled nomogram
(Harrdl Jr, Califf et al. 1982 Partin, Mohler et al. 1995 Kattan, Whedler et al. 1999 Blute, Bergstralh et al.
2001, Graden, Karakiewicz et al. 2002 that indudes diagnacstic variables sud as PSA level, Gleason grade,
margin status and pahologicd stage along with gene expresson data. For avoiding modd ove-fitting, a
goodness of fit measure like Akaike’s information criteria (Akaike 1974 is used to seled the optimal modd.
Anathe popular discriminant modd is thesuppat vector madine (SVM) (Vapnik 2000, which maximizesthe
searation between thetwo classes (margin) to adhieve better genealization power in unseen datasds. Li et a,
2005 (Hoeing, Madigan et al.) applied SVM to predict the suwival of advanced-stage ovarian cancer after
platinum-based Chemotherapy. SVM can aso lean a nonlinear decision boundry using the kernd trick
(Appendix B) which was usal for devdoping an intermediate integration desaibed ealier (Sedion3.1).

Othe types of noninear modds have also been applied for the integrative purpose. For example, tree
basel methods (Hastie, Tibshrani et al. 2009 are very popuar, since they can be easily represented as
clasgfication rules which are more interpretable to clinicians and can be tested for inferring nev domain
knowledge These methods are basad on reaursive partitioning of al available samples into more homogeneous
subgoupswith resped to thebinary classvariable. One ealy attempt to use treebased method was conduccted
by Pittman et al. 2004 (Nevins, Huang & al. 2003 Pittman, Huang et al. 2004 to integrate gengic data with
clinicd variables for enhancing the prognastic power of breast cance patients relative to longterm reaurrence.
Similarly, Clarke & a, 2008 (Clarke and West 2008 devdoped a clinicogenomic modd for the suwival
prediction of ovarian cance. One problem with treebased methods is that there is no single optimal treebecaise
they are built using heuristic search criteria. To circumvent this problem, all these clinicogenomic studies used
ensemble learning (Hotharn, Buhlmann et al. 2009),(Kittler 1998 and modd averaging (Oliver and Hand 1995
Raftery, Madigan et al. 1997, Hodling, Madigan et al. 1999 techniques to geneate a forest of trees and then,
estimate the final prediction by taking the weighted average of the individud predictions of ead tree Such
techniques nat only boacst the predictive performances by combining many week leanes (trees), but aso
providea confiden interval for the prediction estimated fromtheindividua modds. This property is extremely
usdul in the context of an integrative clinicogenomic study for cgpturing the clinicd uncertainties (Kelley and
Ideke 2005 Calnan 2008 arising from different clinicd processes sucd as variability of tisale procesdng,
hybridization measures, simall sample size and sample sdedion (Nevins, Huang et al. 2003 Pittman, Huang et
al. 2009). Alsg such modd uncertainty may capture patential corflicting predictions eithe within or between
the clinicd and genomic fadors, which can be very important for complex heerogeneous diseases. Similarly,
mixture of expert (ME) is anathe nonlinear methodthat combines several expert trees using a convex weighted
sumof all the outputs produced by them. However, ead expert can betrained on diff erent partitions of theinput
data with posdble overlaps amongthem (soft split) as oppased to hard spiit of the data used by CART. Cao et
a. (Lé Cao, Meugnier e al. 2010 applied ME method for integrating categoricd clinicd variables diredly with
continuaus-valued geneexpresson data without any disaetizaion. Furthermore, ME provided better result than
random forest based approached used by (Boulesteix, Porzdius et a. 2008).

Single-step sparse models without explicit dimensionality reduction: Some clinicogenomic studies leverage
the strength of spasemodding technique to perform modd devdopment and feaure seledion in a single step
by considering clinicad and genomic data simultaneously. For example, Ma et al, 2007 (Ma and Huang 2007
extended one sud iterative boosting approach cdled Threshold Gradient Directed Regularization (TGDR
(Friedman and Popesau 2004) into a more genealized framework (Cov-TGDR) for two genealized linear
modds:. logstic regresson and the Cox surival modd. Cov-TGDR iteratively optimized the gradient of
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negative log-likelihoodconsidering as thelossfunction (L(B]X) in Equé&ion 3-1). Moreove, in ead iteration
the component-wise gradient was updated only for only afew variables controll ed by a regularization parameter
A. Thus,the components with lower gradient values are nat updated in ead iteration and these resuts in a sparse
representation of the solution (). Moreover, variable seledion was peformed separately for thetwo datasds to
resped ther individua properties of the data using two parameters A; and A, for thetwo datases in Equéaion
3-1. Finally, this study applied the Cox propational modd for the suwival of follicular lymphoma (Dave,
Wright et al. 2004 and logstic regresson for the binary prediction of the devdopment metastasis of breast
cance (Van't Vee, Dai et al. 2002).

Compar ative studies: van Vilet et a. (van Vliet, Horlings et al. 2012 performed a recent comparative study of
two-step predictive modds to systematicdly assssswhehea combining clinica and genonic data help improve
the prediction power of breast cance. They conside three simple classfiers sud as nearest mean classfier
(NMC), Naive Bayes, Neaest ndghba, and two more complex clasdfiers suc as SVM (similar to (Daemen,
Gevaet et a. 2007) and tree based classfier. All of these modds were devdoped in three different stages
(ealy, intermediate and late) along with no integration (built on clinica and genomic variables). The original
treebasal classfiers proposed by (Pittman, Huang et al. 2004 were modified for intermediate integration by
restricting one datasd at the top node For all these classfiers, integration improved the prediction power for
breast cance significantly, and simple classfiers performed better than complex classfiers (with NMC with
OR-type late integration performing the best) which may bean effed of small sample size Moreove, ethe late
or intermediate strategies performs the best, which confirms the previous studies by (Gevaet, Smet et al. 2006
Daamen, Gevaat et a. 2007). Unlike the previous study by (Van't Vee, Da et a. 2002, this study foundthat
clinicd data has slightly beter information than genomic data, which they believe that is mainly because of
more comprehensive clinicd feaures sud as matrix information, central fibrosis, etc. Moreover, the genomic
and clinica feaures obtained from this study perform beter than the markers foundby previousfour studies in
different cdl lines (Van't Veea, Dai e a. 2002 Chi, Wang et al. 2006 Sotiriou, Wirapai et al. 2006 Liu, Wang
et a. 2007). However, they did nat assss the effed of different feaure seledion techniques in the modd
devdopment stage Bovdstad et al. (Bovdstad, Nygard et al. 2009 provided a methodobgica comparison of
different dimensiorality reduction tedhniques designed for Cox regresson in suwival studies. They covered
bath two-step and onestep approaces (Figure 4) in ther modd devéopment and they observed that modfied
ridgeregresson performed the best when applied to threediff erent clinicogenonic datasds. However, they did
na compareit to the Cov-TGDR methods.

4.1.1 Advantages and disadvantages of the predictive models

The main advantage of predictive modds is that they are essy to devdop and simple from a methodobgicd
perspedive. Any modd that is applicable on either clinicd or genomic data can beapplied diredly (for two-step
approaches) or with minor modifications (for regularized methods) to the combined datase. These modds build
urbiased modds on clinicd and genomic data ses without any prior information and bias towards any of the
datasds being integrated. Theefore, the predictive modd can test whehe the datasds being integrated are
complementary in nature basead on the improvement of the predictive power of the combined modd ove the
indvidud modds. However, thefinal clinicogenomc modds may sded a completdy different set of clinicd
and genonic variables than those sdeded by indgoendent modds. Hence, comparing the predictive power of
clinicd and genomic feaures grosdy in datasd level canna assess diredly how much additional power
genomic fedures possess given the traditional clinicd variables. This is an interesting question for
clinicogenonic integration as desaibed in the next sedion.

4.2 Assessing additive prognostic effect of clinical variables over the genomic

factors
The predictive clinicogenomc modds desaibed in the previous sedion treds clinicd and genomic
datasds similarly. However, clinicd variables are consdered more impartant than genomic variables by many
studes for two reasors. First, clinicd variables are well -validated throughindependent studes unlike genomic
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fadors. Second clinicad fadors are essy to colled and currently used in the healthcare system, and thus reuse of
those clinicd variables will also reduce hedlth care costs. Therefore, treding both datasds similarly may
undeestimate the clinica variables and overestimate the performance of the genonic variables significantly.
Trutzner et a. (Truntzer, Maucort-Boulch et al. 2008 paformed a systematic study to assess such optimistic
useof genomc markers ove the clinica variables. Using the synthetic datasds, the authars showel that the
gens seleded by the unbiased predictive modds are less reproducible in the indgendent test datasds. They
used bath the two-step methods and the Threshold Gradient Direded Regularization (TGDR (Friedman and
Popesau 2004) desaibed in the sedion 4.1, and concduded that sud over-estimation of the value of genomic
data increases because of the estmation of too many freeparameters for large number of gene with small
sanples. The two-step methods containing separate supevised dimensondlity reduction step are even more
proneto ove-estimation (Sedion 3.21). For sud two-step methods, Tibshirani et al. (Tibshirani, Efron e al.
2002 performed some seminal works and propcosed the pre-validation framework to compare the genomic
markers to clinica markers more rigorously. In particular, they suggested that the gene should be seleded by a
sepaate crossVvalidation framework rather than the same crossvalidation framework used for assssng the
predictive performance of thefinal modd (more ddail in thevalidation sedion). In cortrast, for modds built for
onestep combined clinicogenomic study;, it islessdifficult to remove sud over-estimation.

In addition to categarization based on how dimensonality reductionis performed, clinicgenonic studies
can be furthe caegorized into two groups based on how the additive power is asessd. One type of study
builds clinicogenonmic modds that are biased to the clinicd markers by including the clinicd variables (or
clinicd index built thereof) as a mandatory variable in the modd devdopment phase The secondtype of study
focuses diredly assessestheadditional power of the genomic data given theclinicd variables using a hypahesis
testing framework. Strictly speaking, they answer the question of ‘Do genomic variables boost the performance
of models given the clinical variables?’ in compared to thenull-hypothesis of ‘no additional value’.

Developing clinicogenomic models biased towards clinical variables: Using the ‘pre-validation’
framework provided by Tibshirani e al., Boulesteix e al. 2008 devdoped a two-step clinicogenomc modd
which can assessthe additional predictive power of genormic data using two separate crossvalidation loops, one
for eath of thetwo-steps The first crossvali dation was usel to reduce the genomic feaures to a few unhiasal
pre-validated components (Tibshirani, Efron et al. 2002 using the supervised partial least square (PLS) method
(Wold 1985. Second they built a random forest (Breiman 2001) which first sdeded al clinicd variables as
mandatory variables and then added PLS genomic components one by one as long as the predictive power
improved as assessd by the out-of-bag (OOB) error (Breiman 2001) using a bodstrapping strategy. Theefore,
the additional performance was assssed by the number of genonic components seleded automaticaly by the
predictive modd in additionto theclinicd feaures. However, as disaussed in Sedion 4.2, two-step methods are
only partially suacesgul in removing paential redundancy that can be present between the clinica and genonic
feaures. For example, in the previous study, some of the PLS componants that have marginal predictive power
are nonredundant compared to theclinicd variables may be missed in the first phase Alternatively, a single-
step spaseCox modd cdl ed CoxBoost has been proposed by Binder et a. 2008(Binde and Schumache 2008
to asssstheaddtional power of genomnic data for survival study using a component-wise off set based bocsting
approach (Tutz and Binde 2007). In particular, they optimize the log-li kelihood of the modd via component-
wise gradient bocsting updates using a NeutorrRaphson method Moreover, all the clinicd variables were
included in themodd as the mandatory variables usng a cusiomized diagoral penalty matrix with ‘zero’ entries
(inthesecondterm of Equaion 3-1) while feaure seledion was performed on the genomic feaures using ‘one’
entries in the penalty matrix to assss the addtional predictive power. In a similar study, Kammer et al.
(Kammers, Lang et al. 2011) usal othe types of spase modds such as L; and L, regularizaion technigues only
ongeneexpresson data and included clinicd variables as mandatory variables into the modd.

Besides the fullspace based modds desaibed so far, several subgpace-based modds also have been
devdoped where genomic variables are only induded for the subgoup of paient that canna be predicted by
clinicd variables. An initial attempt to devedop subgacebased modds stratified the popuation based on the
clinicd data and then, induded genonic data for ead subgoup to improve its prediction power. For example,
estrogen receptor status was useal by (Wang, Klijn et al. 2005 Teschendaff, Nadei et al. 2006 Teschendofff,
Miremadi e al. 2007, while Dai & a. (Dai, van't Vee € al. 2005 usel othe traditional clinicd variables, suc
asage tumor grade and tumor statusfor stratifying breast cance popuation. Similarly, Wang €. al. (Wang, Ooi
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et al. 2007) usal cirrhosis and vasaular invasion which are commonly used for asessng the reaurrence of the
human hepdo-cdlular carcinoma (HCC) after primary treament. These studies are similar to dedsion treerules
where thetopmost nodes are restricted to be from clinicd variables. On the other hand, (van Vliet, Horlings et
al. 2012 explicitly devdoped one such hybrid tree based on intermediate approadh whee the prediction
obtained from a clasdfier was usal for the topmost node In anathe recent study, Obulkasim et. al. 2011
(Obulkasim, Meijer e al. 2011) paformed a more systematic study to deermine autormeticaly which samples
will bendit the most by including moleaular data into clinicd data using step-wise classification
model. Firgt, they build two classfiers separately on clinicd and molealar training data. Second they
deerminethe sulgroup of test samples (using a re-clasdfication soore) that either lie in thedecision boundary of
the clasdfier built upan clinica variables (assuming that clinicd variables are inexpensive and well -vali dated)
or has chanceto improve the clasdficaion acaracy if moleaular data is included. In particular, they projed a
test sample into the clinica space of training data and then, estimate the re-classficaion score based on how
many training samples were corredly and wrongly clasdfied in that local neéghbahood Finally, the samples
with low score were redasgfied using moleaular data. The problem with sud subgace based methods is tha
thee may nat be enoughsamples associated with ead subgoup, so building classfication modds in eat
subgoup may be difficult and statisticadly insignificant.

Hypothesis testing frameworks: All the biased clinicogenomc modds disaussd so far assess the
additional power of genomnic feaures indredly using how many genonic feaures are included in the modd.
However, sone of theseleded components may be statisticdly insignificant. The more eff edive way to address
this issue is to assessthe additive performance of gene in a hypahesis testing framework. In a seminal study,
Tibshrani et al. (Tibshirani, Efron et a. 2002 first sunmarized the genomic variables into a single unbiased
genomic soore using the pre-validation framework (LASSO internal modd). In a second step, a hypahesis
testing framework was designed based on linear regresson modd (or any GLM) built on the clinicd variables
and the pre-validated genomic (PVG) markers used as ‘pseudo-predictors’. In particular, the added predictive
value was asesed by whethe the regresson codficients of the genomic marker was statisticdly significant,
i.e. Bpvg >0 compared to the null-hypothesis Ppyc=0 using t-test or z-tests. In a later study (Hofling and Tibshirani
2008, they showed that this test was biasal becaise of the violation of thei.i.d. assunmption by the sampling
procedure used in the PVG framework uses regresson. Alternatively, they propcsed a random permutation
basad empiricd p-value estimation. In bath case it was shownthat pre-validated genonic score was less
significant than the genomnic score without pre-vali dation using a landmerk breast cancer study (Van't Vee, Da et
a. 2002 which adudly over-estimated the performance of gene expresson data. However, any two-step
approach canna remove patential redundancy between the clinicd and genomic data completely (Sedion 32).
For example, if clinicd and genomic markers are correlated, then bath types of markers will have significant
coefficients by theaboveapproach.

A more rigarous hypahesis testing framework has been propcsed by Boulesteix et al. (Boulesteix and
Hotharn 2010 considering bath types of datasds simultaneoudy in a similar way as CoxBoost (Binder and
Schumadche 2008 to remove any types of redundancy beween thetwo types of variables completely. The main
idea of the method was to include nat only the clinica variables, but also the contribution of those clinica
variables asthe mandatory variable in the clinicogenonic modd, so that genonic variables canna influencethe
clinicd contribution. More speificdly, this methodfirst fits a genealized linear modd ontheclinicd variables
only, and then the clinica predictor is used in the find combined clinicogenomic modd built by lesst-square
boasting strategy (Friedman, Hastie et al. 2000 as a fixed offset sud that its co-€fficient is nat changed during
theiterative learning process Thus,thegenomic feaures canna aff ed the contribution of theclinica feauresin
thefinal modd, unlike the CoxBoost and Pre-vali dation methods. Finally, theli kelihoodof the bocsting method
was tested for the statisticd significance by randomy permuting the genomic variables to estimate the additive
peformance similar to (H6fling and Tibshirani 2008. Althoughthis approach did nat perform any feaure
sdedion for genomc feaures similar to CoxBoost, it can be easily genealized to a regularization based
framework, as argued in thelater study (Oelker and Boulesteix). In this later study, they also compared bath pre-
validation testing and Globdboasttest by geneating several syrthdic datasds with different amourts of
correlation between clinicd and genomic markers. As expeded, if theinformative genes are perfedly correlated
with the clinica variables, Globaboosttest is more conservative in seleding genomic fedures (p-values
uniformly distributed in [0, 1]) than pre-validation. Note that the pre-validation framework only removes the
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bias assciated with genomic variables, but can compare thetwo datasds in a more geneic fashion. In contrast,
Globdboasttest is completely biased to clinicd variables with the sole purpose of rigoroudy testing the
additional power of genomc marker, butthe oppasite properties of thetwo datasds cannad betested.
Incorporating prior knowledge: Oneisaue with including geneexpresson data diredly into the modd
is that the seleded genes do nat necessarily yield to biologicdly interpretable pahways. Moreover, ead of the
gene belonging in a pathway may have weak association and thus missed by the modd, but ther aggregate
asciation may be large. Testing the asdation of the pathways with disease diredly, rather than in a post
processng stage has become papular to aid clinicd interpretability (Subramanian, Tamayo et al. 2005. Kammer
et a. (Kammers, Lang et al. 2017) recetly alsoused geneortologes (GO) for grouping the gene and then the
combined effed of eat GO group (assessed by thefirst principa component) as the predictor in a Cox suwival
modd. However, sonme GO groups are very geneic and only pat of a GO process can be adivated in a
paticular disesse due to disease heterogendty. Alternatively, the author also furthe clustered the genes
bdongng to eath GO group into several subgoups before including them into the modd. From a methods
peaspedive, they followed the combined onestep modd devdopment where bath L, and L, penalization scheme
(Equation 3-1) were used for handling high dimensonal genomic data by induding clinicd variables as
mandatory variables. All thethreetypes of genonic data, i.e., the original geneexpressons, GO groupsand pre-
clusters of GO groupswhen combined with the clinicd variables provided similar peformance assessed by p-
value of thefinal prognastic modd and Brier saore. Since the pre-clustering technique is unsupervised hee and
guided by GO, no pre-validation like framework was necessary to reducethebias of thegenomic data as well.

Advantages and disadvantages: The main advantage of the pre-validation basel framework is that it can
compare the genormic and clinicd feaures more diredly by removing any sort of redundancy among them and
thus can assessthe addtional predictive power of the genomic feaures in an unbiased manne. However, the
pre-validation based framework combines the genomic fedures into one or more newly devdoped feaures,
which make theinterpretation of the final modd difficult for biomarker discovery. Anathe problem with sud
modds is that they assume that clinicd variables are impartant and thus the predictive modds shoud be biased
towards clinicd variables. However, this assunmption may nat betruein thefuture as genomc data become more
easily available and are validated in multiple indgpendent studies. Moreover, somretimes the clinicd variables,
sud as pahologicd and behavioral effeds, can be the downstream effed of causd genomic feaures. In that
case genonic feaures may nat provide additional predictive power ove clinicd variables. However, knowing
sud relationships among diff erent types of markers can be ussful knowledge Neithe the original predictive
modds nar these modds unhiased genomic soores aim to assesstheredationships present among diff erent types
of data

4.3 Assessing relationship between the clinical and genomic studies

The previous two types of studies mainly aimed at building predictive modds by integrating clinica and
genomic data. It is alsoimportant to undestand novd knowledgeabaout disesses by looking at the relationships
present among different datasds, e.g., correlation, interadion and causdity. Each type of relationship may
reveal novel insights about the complexity of human disease For example, if sone kind of causd relationship
can beinferred between themoleaular and clinical fadors or viceversa drugs can bedesigned in a beter way to
targe the original causd fador or preventive health care can be designal in a smarter way based on the
undestanding of these two fadors. Finding sud relationships among these datasds and with gengic and
genomic fadors has become very popular recently. The most prominent application of suc approades is in
neuroscience domein, where abundant clinica and pathdogicd data are colleded usng MRI techndogy that
measures various brain adivities. Examples include fMRI, DTI, and sMRI data, which provide information
about the functional and structural connections among brain regions, and volumetric information of brain,
respedively.

Several multivariate statisticd modds have been extended for finding inter-datasd reationships among
clinicd and genomic variables, where inter-datase relationships are measured by an association measure suc as
correlation. In addition to the inter-datase relationships, there can also be intra-datase relationships present in
the datasds. For example, the nearby locations in the brain can behave similarly leading to spdio-temporal
autocorrelation. To reduce the redundancy present with a single datase, several blind saurce separation based
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tedhniques sud as principd component analysis (PCA (Joliffe 2002 Park and Hastie 2007)) and more geneic
indgendant component analysis (ICA) (Hoel and Kennard 1970 have been fourd useful. In brief, the blind
saurce separation tedhniques geneate two matrices from a datasd: the moduation profile and the component
maps, where componeatt maps represent the saurces and the modultion profile denates the association of eat
indvidud with thase components. These techniques are useful for reducing bath the dimensonality and spaio-
tempaoral corrdation present in several neuroscience dataseds induding fMRI (Biswal and Ulmer 1999, sMRI
(Xu, Pealsonet al. 2009, EEG (Delorme and Makeig 2004 and othe's (Teschendaff, Miremadi et al. 2007,
Cichocki, Zdunek et a. 2009. These original BSS methods have been extendal for integrating multiple dataset
with the goal of finding relationships among multiple dataseds. For example, the easiest way to extend the ICA
based framework for multiple modaliti es is to combine the two datasds being integrated into an augnmented
matrix, asin the ealy integration technique desaibed ealier and then, perform ICA on that augmented matrix
to find the common moduation profil e and a single component map. Note that eat component represents the
fedures frombath datasds being integrated. This technique cdled joint ICA (Calhoun Adali et al. 2006 Gonen
and Alpaydin 2011), has a very strict assumption that eat sample is moduated in the same amourt in two
datasds, which may na betruefor all cases.

Alternatively, several statisticd methods like canonicd correation analysis (CCA) and paralle ICA (pICA)
provide a more natural framework for data integration where the relationship between different components
found from multiple datasds is defined as the inter-subjed variabilities. In geneal, these modds decompose
ead datasd into two components: a moduation profile and a component map using any blind source separation
tedchnigues sud that the components aaoss the datasets are related somehow ove the samples. For example,
CCA (Correa Adali et al. 2010 wants to find a linear transformation of the data (modulation profile) for eah
datase sud that they have maximum correlation after transformation. Therefore, the inter-datase variability is
measured by correlation(Bay and Pazzani 2001, Correa Adali et al. 2010. Multi-set CCA (Dai, van't Vega ¢ al.
2005 and a genealized CCA which can integrate more than two datasds, has also recaitly been applied for
integrating fMRI, EEG and sMRI datasés (L& Cao, Martin & al. 2009. One major problem with applying all
these multi-variate modds is the original overfitting problem desaibed ealier in Sedion 2. Ancther issueisthat
theindvidud componaits are nat diredly interpretable due to thelinear combination over the seleded subst of
feaures. To circumvent these isales, Cao e al. (Obulkasim, Meijer et al. 2011, Westra, Dey & al. 2011) recettly
have propcsed several alternative optimization formulations of the original CCA. More speificdly, they
introduced bath the L, and L; norm in the penalty formulation for reducing bath modd ovefitting and
peforming variable seledion at the same time, which is similar to the élastic na tedhnique(Tibshrani 1996.
However, most of these studies canna take the classlabd into acaount whil e findngthe canonicd conmponents,
and thus geneate many non-disaiminative components that are prunel in a later stage. Recantly, Sun et al.
(Truntzer, Maucort-Boulch et al. 2008 propased a discriminative CCA (DCCA) technigue, which can take the
classlabdsinto acoourt whil e finding canonicd components.

Parallel ICA (Chi, Wang &t al. 2006 van Vliet, Horlings et al. 2012) is an aternative technique, but the
componants are basad ontheoriginal ICA instead of thelinear transformation procedure of CCA. Each of these
multi-variate modds has thar own asaurmptions (Correg Adali e al. 2010). It has been alsoshown that CCA has
fewer modd assumptions than ICA based technigues, since CCA is based onthe second-orde statistics (Correa
Adali et al. 2010. Recatly, an effort has been made to combine these two tedhniques to minimize such
asaunptions (Liu, Wang et al. 2007, Sui, Adali et al. 2010.

5 Validation

In this sedion, we disaussthe validation procedures of the clinicogenomic modds described sofar. Since
themain gaal of all theseclinicogenonic modds is to improve the prognastic power of disesse, they compare
thecombined clinicogenomic modd with the modds built on eithe genomic data or clinicd data alone We will
first disauss several performance metrics used for this pumpose. Then we will disauss different validation
tedhniques to asessthe eff edivenessof obtained results from clinicogenonic modds.

Per for mance metrics: Themost common metrics for paformance measurement of thebinary clasgfication
based modds (Beang Sebastiani e al. 2008, (Sun, Goodison et al. 2007) are acairagy, predsion, recdl and
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area under the ROC curve (Tan, Steinbach et a. 2006. On the othe hand, the studies that want to predict
corntinuaus outcome variable such as suwvival time and disease progresson-free probability (PFP usedifferent
metrics e.g., c-inde&, to assess (Stephenson, Smith et al. 2009 how well the modd disaiminates between
paients with different suwvival probabilities. C-index measures the concordance between the predicted and
observed resporses (Harrel Jr, Califf et al. 1982 in a sale baween 0-1. Anathe popuar measure usea by (Li
2009 isthetime dependent areaunde thecurve (AUC) ddfined by (Heageaty, Lumley et al. 2000. Ontheothe
hand, instead of usng crossvalidation, Binde et a. (Binde and Schumache 2008 used a bodstrap sampling
strategy, as in (Schumadche, Binde et al. 2007), for performance evaluaion usng the Brier score (Gerds and
Schumache 2006. Some studies (Beane Sebastiani et al. 2008, (Tibshrani, Efron et al. 2002 aso usel the
co-efficient of the genomic and clinicd markers to estimate ther relative contribution towards the predictive
modd. However, the performance gain can be obtained by randomchance as a mere data artifad, thusyielding
oveoptimistic results unless they are validated for statistica significance or repededly observed in multiple
datasds (Boulesteix 2010. Permutation based techniques have also been used by many studies to ge the
statisticd significance of the observed resut. For example, (H6fling and Tibshirani 2008 randomly permutated
agenommic marker X to ge thestatistica significance of the observed coefficient of genomic marker. Similarly,
(Stephenson, Smith et al. 2005 pemutated the classlabd to g the statisticd significance of the clasdficatiion
acairacy of the predictive modd. Some studies (Li, Chen et al. 2005 Beane Sebastiani et al. 2008 also usel
standard hypahesis tests-Wil coxontest, t-test, and z-score-to ge the statisticd significance of theimprovement
in performance of combined modd ove the indvidual modds. Beside all these measures, the Kaplan-Meier
curve (Kaplan and Meier 1958 is a popular visudi zation technique to visudize the suwival probabiliti es of
different groups of popuation along the progresson of time. All clinicogenonic suwival studies used this
technigue to visudizethe prognastic separations of subpgulations defined by thefinal modd.

Besides estimating the performance of the predictive modd empiricaly using the above mentioned metrics,
sone clinicogenomic studies validated thdr obtained results from a domein perspective as well. Some studies
wanted to investigate which groups of patients bendfitted the most by the integration of clinicd and genonic
markers. For example, Stephenson et al. observed that ther clinicogenomic modd can significantly i mprovethe
prediction of a sulbsample (~30%of thewhd e prostate cance datasd) where the prediction of well -established
clinicd monogam is in middle range (7-year PFR, 30-70%). On the othe hand, (Beang Sebastiani et al. 2008
validated thdr observed combined clinicogenomic modd by three expert pulmonary physicians. Some studies,
e.g., (Stephenson, Smith e al. 2005, tried to find biologicd information about the obtained predictors in
previous literature. The breast cance studies (Pittman, Huang et al. 2004 Clarke and West 2008 foundthat the
important clinicd fadors ( lymph nodestatus and estrogen recetor (ER) status) and metagene seleded by the
topmost trees were well reaognized in clinica pradice and had been validated through previous study. For
example, all of these studies identified some of the metagenes that are related to estrogen pathways or growing
signal pathways, or are correated with the ER status. The breast cancer study by (Sun, Goodson et al. 2007)
compared ther obtained modd with the 70-genesignature built by Vee et. a. (Van't Vee, Dai e a. 2002. Ma
e al. (Ma and Huang 2007) alsoconfirmed theobtained significant genes from previous studies.

Validation procedures for predictive models. Theideal technique for testing the obtained modd isto use
an external validation datase that is colleded indgpendaitly (Boulesteix and Sauebrei 2011 of the training
datase on which the modd was built. For example, Beane & a. 2008 conpared the performances of
clinicogenonic modd on indgendent test data sds that did na have a ddinite diagnasis following
bronchosmopy as a part of diagnasis for lung carcinoma. However, in most of the pradicd cases, datais saarce
and expensive to colled. It is also hard to design similar experimental setupsfor colleding bath validation data
andthetraining datain an unhiased manne. The simplest way to solve this problem isto dividetheoriginal data
into two disjoint sets: training and test data. The training data is usal to devedop the modd whil e test data tries
to mimic theindependant validation data. For example, some clinicogenomic studies (Li 2006, (Bair, Hastie et
al. 2006 Beang Sebastiani e al. 2008 use a simple sa up of random spiitting of available data based on
previous studies. Alternatively, sud random splitting is repeaed several times by some studies to avoid
sdedionbias (Clarke and West 2008 Bovdstad, Nygard et al. 2009).

K-fold crossvalidation (Kohavi 1995, (Hastie, Tibshrani e al. 2009 provides a more systematic
framework by dividing the available data into K parts, where eadh of these K pats is considered as a test sd
while therest of K-1 datasés are considered as the training set. Bodstrapping (Hastie, Tibshirani et al. 2009,
which is anather useful validation technique, samples the original data with replacement to estimate the variance
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of the resut. Applying standard techniques sudh as crossvalidation or bodstrapping for the onestep
regularization basal techniques is straightforward. However, applying them for two-step approadies is nat
straightforward because of the separate supevised dimensionality reduction step. In the simplest setting for
building a two-step predictive modd, the first step of dimensordlity reduction is performed on the whole
datasd and the secondstep of predictive modd devdopment is performed using two separate datasds: a training
datase for learning the modd and a test datase for assesgng the performance of the observed modd. However,
as mentionad in (Smialowski, Frishrman et al. 2010, (Simon, Radmache et al. 2003, paforming supervised
dimensionality reduction on whde datase provides biased results becauseof the use of test data s, on which
the performance of the final predictive modd is estimated in the second step. In orde to g& an unbiased
estimate of the performance bah the supervised dimensionality reduction step and predictive modd
devdopment shauld be performed solely ontraining datasé. Figure 6 desaibesthis phenomenon Thecorred
sd upis shownas the step A foll owed by thestep C. More speificdly, thewhde two-step devdopment process
of Figure 4(a) shaild be donein step A of Figure 6, which isshownin ddail in Figure 7. In particular,
the dimensionality reduction is only performed for the genonic datase and then the obtained feaures (some
sdeded genes or sone newvly devdoped feaures) are combined with the clinicad marker using a predictive
modd. Several studies ((Stephenson, Smith et al. 2005, (Pittman, Huang et al. 2004, (Li, Chen & a. 2005,
(Sun, Goadison et a. 2007, (Ma and Huang 2007 using LOOCV, (Pittman, Huang e a. 2004) are aware of
thefad and used this step to assessthe predictive modds corredly.

Sometimes, modds have a few parameters that need to be learned from the data itsdf. In those cases, one
more inng CV is usa to sded the optimal parameters for the classfier for thetraining data obtained from the
outer CV framework ((Sun, Goadison e al. 2007, (Ma and Huang 2007 and (Binde and Schumache 2008
usal 5-fold CV and (Bovdstad, Nygard et al. 2009 usad 10-fold internal CV). In subgquent discussons, we
will ignae this inng CV for simplicity and assume only one CV for estimating the final performance of
predictive modd.

Assessing additional predictive values:

The experimental design of methods with the goal of assssng addtional predictive power shauld be
peformed carefully; othewise the prognasis eff ed of thegenomic marker may be over-estimated. For example,
if supervised feaure seledion techniques are used in the vali dation procedure shownin Figure 7, anathe isaue
arises. Specificdly, the genomic fedures are eithe seleded or creaed in such a way so that they are the most
disaiminating feaures in the original genonic datasd X. Comparing such disaiminative genonic feaure with
theclinicd variables can lead to over-estimation of the predictive power of the genomnic feaures. If we look at
the last training phase of modd devedopment, the genomic data X’ already have seen the labd y;, but the
clinicd fedures have nat.

Tibshirani et a. proposed a variant of the crossvalidation framework (cdled pre-validation) to
remove suc kind of bias toward genomic variable. In particular, they propcsed one more k-fold CV for
supevised dimensonality reduction even before devdoping predictive modd usng thesecond CV framework.
The available training data (X,) will be further divided into two sets as mentioned by (Tibshrani, Efron et al.
20032. Oneset will be used for the dimensionality redudion step to sded and/or creae genonic feaure out of
theoriginal data and then other set of data will be used for building predictive modd on the combined clinicd
and the obtained feaures fromthe previous step. The ddail ed steps are described bdow (Figure 8):

1. Dividetheavailabletrainingdata into k separate parts.

2. The first (k-1) pats are useal to lean the dimensondity reduction to seled andor crede genomic

feaure out of theoriginal data.

3. Afteward, the same set of sdeded genes or feaure creaion rules will be applied to the left-out k-th

sanples to predict thelabd of them.

4. Repea the steps 2 and 3 for ead k-th pat to ge the unbiased predictor of genomic variables for all

sanples.

5. Build the predictive modd on the combined clinicd and the pre-validated genonic feaures.

Compaisonbetween theclinica and genonmic fadors can bedoneas well here.

Tibshrani et a provided bath theoreticd and empirica evidene that the ‘pre-validated” genonic soore has

fewer degrees of freedom (idedlly on@ than the nonvalidated version. So, this score can be treated as a ‘fairer’

18



psaido-predictor asif it was built on an independent datasd, and hene the whole datase can be used for modd
devdopment in step 5. They also empiricaly showed that a pre-validated genonic fador is lesssignificant than
that of a nonpre-validated predictor when compared to the clinica variables. Althoughthe authors usel the
above technique for summarizing al genomic fadors into a single predictor, it can be easily genealized for
sdeding more than onefeaure as performed in (Boulesteix, Porzdius et a. 2008. In summary, theright setup
for bath devedoping predictive modd and assessng additional predictive power of the genomic feaures is as
follows:

1. To estimate the performance of a two-step predictive modd along with a supevised dimensionality
reductiontedhnique, separatetraining and testing data are required as shown in Figure 6.

2. Tocompaetheclinicd andreduced genomic fadors fairly, the supervised dimensionality reduction and
compaison of genomic variables with the classcd clinicd predictors should be donein searate
datases or the pre-vali dation tedhnique should be used to build a fairer version of the genomic predictor
(Figure 8). Thisstep is criticd for asessngtheadditional performance gain from genomic data.

Here, in bath of the steps where separate training and testing set are required several alternative tedhniques
like repeaed sampling or bocsting can be usel along with crossvalidation. Boulesteix et al.(Boulesteix,
Porzdiuset al. 2008 peformed these two steps using two separate crossvalidation loops. The first CV was for
the pre-validation of seleded gene as mentioned by Tibshrani et al. (Tibshrani, Efron et a. 2002 with the
second onefor estimating the clasdfication error rate of therandomforest (Breiman 2001) modd built onthe
sdeded genesignature component from the previous step and theclinicd data.

6 Integrating homogeneous and heterogeneous datasets/multi-site

integrative studies

Besides integrating datasds coming from multiple modaliti es/saurces (integrating heerogeneous datases),
integration can also be performed to combine multiple similar types of datasds (integrating honogeneous
datasds). Espeially, genomic data are often criticized for the ladk of reproducibility among the indegpendent
cohats. For example, very few ovelapping gene were observed between the biomarker genes of thetwo well -
known breast cance studies by (Van't Vee, Dai et al. 2002 and (Wang, Klijn et al. 2005 by othe independeant
studes (Ein-Dor, Zuk et a. 2006, (Ein-Dor, Kela et a. 20095, (Chuang, Leeet al. 2007), (Nadei, Teschendolff
et a. 2006. Themain reasors for sud poa consistency of genomic signature across studies are “small sample
cohats size sdedion bias during sample inclusion and annaation, different protocols for sample preparation
and data preprocessng, and heerogeneous clinica endpoints for different studies (Shedden, Taylor et al.
2008”. Theaefore, integrating multiple cohats of same kind of patients can incresse the sample size
significantly and thus, is very popuar to devedop reproducible genonic biomarkers (Fan, Oh et al. 2006). Such
multi-site integration can be performed in many ways: eithe keeping the most common feaures among all
datasds (data level ealy integration), or by learning a more soplisticaed Bayesian methodto fuse information
available in indvidud datases (Troyanskaya, Dolinski et al. 2003, (Konstantinopouos, Cannistra et al. 2011).
Inspired by such multi-site studes, sone clinicogenomic studies integrated nat only multiple geneexpresson
datasds, butalsomultiple clinicd datases to build multi-site universd clinicogenomic modds andfinally assess
theimprovement of prediction power of such modds ove that of multi-site genonic biomarkers (Table 5).

Predictive multi-site studies use some of the avalable indgpendent cohats for deveoping
clinicogenonic modd and then use therest of the cohotts for testing thereprodudibilit y of the predictive modd.
The existing multi-site clinicogenonic modds proceea in two steps (Figure 9). For homogeneous integrationin
thefirst step, most of thestudies take thesimplistic approad of retaining only those feaures that are commonin
al of the datasds. Then, the heerogeneous integration of clinicd and genomic data is peformed using any of
the techniques desaibed ealier. For example, Teschendaff e al. (Teschendaff, Nadei et al. 2006 built a
universd moleaular prognasis marker from five pulblicly available geneexpresson datases including their own
colleaed geneexpressondata for breast cancer suwvival prediction. They used threecohats for buil ding a Cox
regresson basal predictive modd and reserved the othe three as indgpendent test sds. However, instead of
using clasdfication acaracy for validation, they used a recetly devedoped statistica distribution based
evaluation measure cdled D-index (Royston and Sauebrei 2004, which depends only on the relative risk
ordering of thetest samples rather than relying on the absdute value of outcome variable. Thus the prediction
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power remains unchangel as long as the relative ranking of the test samples are nat changed. This property
makes the D-index sutable for assesang theperformances over test samples coming from diff erent coharts with
diverse charaderistics. On the othe hand, Shedden et al.(Shedden, Taylor et a. 2008 tried to minimize the
experimental bias in multi-site studes diredly by geneating thar own datases from six diff erent institutions
using a uniform robustand reproducible protocol (Dobbin, Bee et al. 2005. Moreover, several different gene
sdedion methods along with different classfiers were applied on two out of four datasds colleded for
predicting the suwvival of lungadenocarcenones patients. Conguent with most of other clinicogenomic studies,
clinicd variables like cancer stage and age added sone progncstic power to geneexpresgon, espedally for
more heerogeneous stage-1 lungcance patients.

In anathe large integrative study, Acharya et al. 2009 (Acharya, Hsu et a. 2008 integrated five breast
cance cohats with the goal of identifying additional breast cancer subypes, which have diff erent underlying
biologicd medhanisms beyond thar common clinic-pathological charaderistics. At first this study divided all
paients into three main risk categories (low, medium and high) using a clinicd guiddine cdled Adjuvant
onling (Goldhirsch, Coates et al. 2006, which uses age tumor grade tumor size and lymph nodestatus as
predictors. Afterward, the study refined ead of these paient groupsinto more homogeneous subgoups based
on the clusters found from the genomic data. Moreover, they also incorporated prior knowedge by seleding
gene that are involved in several pathways sud as altered tumor microenvironment states, oncogenic pathway
deregulation and chemotherapy response. Anathe cortribution of the pape was that they also assessd the
chemotherapy sensitivity of different clusters basead on the undelying oncogenic pathway and tumor micro-
environmental deregulation, which can hdp design better therapeutics for breast cancer paients. Althoughthe
clinicogenonic modd was nat compared diredly with the clinica modd, this study provides an indired result
that gene expresson data has same additional prognastic power over thetraditional clinica fadors.

7 Discussion

Clinicogenomic integration has receved wide attention from diff erent communities recantly, because of its
gred paentia of integrating diverse perspedives from clinicad and genonic saurces to reveal complex disease
medhanisms. Because of the multi-disdplinary nature of the topic, the approaches taken by all these
clinicogenonic efforts are quite diverse, athoughthe objedive is same: improving the prognais power of
predictive modds for complex diseases. In this article, we suivey these clinicogenonic studies with emphasis
on, but nat restricted to the methoddogicd perspedive We aimed at finding the existing challenges in
integrating heerogeneous datasds sud as clinicd and genonic data, and undestanding how these challenges
were handed by the methods in the clinicogenomic context. This review can also be relevant for sone othe
integrative studes, as well, where the challenges are similar to those for theintegration of clinicd and genonic
data. For example, Hamid et al. [(Hamid, Hu & al. 2009] propcsed a theoreticd framework for integrating
different kind of genomic data that has some common chall enges with the clinicogenomic integrative eff orts.
Thus, sone of theintegrative methods can be shared between bath aress.

The main purpose of most of the clinicogenonic studies was to devdop better predictive modd for complex
diseases through integration. In geneal, most of the clinicogenomic studies reduce the dimensionality of the
datain afirst step and then devdop sone predictive modds onthe seleded feaures. A few studes mergethese
two steps into a single step taking the advantage of regularization based predictive modds. Several statistica
metrics were used to compare the performance of the combined clinicogenomic modd with that of the clinicd
and genonic modd. In maost of the cases, the predictive power of the combined modds was improved ove tha
of indvidud clinicd and genomic modds, which justifies the usefulness of integration. However, in some
cases, the combined modd provided only marginal improvement; sorretimes the performance of the genomic
modd was even worse than that of well-established clinical prognastic markers. This means that the value of
traditional clinicd variables should nat be undeestimated. Moreover, unlike genonic variables, the clinicd
variables are well established and validated through independent studies on multiple cohats. Therefore,
rigorous comparison between clinica and genomic variables is required in addtion to looking at gains in
predictive power. These observations motivated second sets of clinicogenomic studes which aimed at including
the genomic variables into the prognasis modds only if they provide some addtional prognasis power. Thus,
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these modds are biased towards clinicd variables somehow. However, thee are some additional issues with
these kinds of approaches as well. If the modds are biased too much towards the clinicd variables, then the
importance of genomic data may be suldued. This will hinde the discovey of paential new knowledgeabout
complex diseases and thus may deviate from the main goal of elucidating new knowledgethroughintegration.
As a resul, thee is a trade-off between how much the combined modd shoud be biased towards clinicd
datasd. Deddingthistrade-off is nat trivial. More systematic studies are required for this purpase.

Each of the data saurces being integrated do nat provide same amourt of information, so the integration
method shoud be cognizant of this diff erence in the datases in terms of amourt of information and theinheent
propeties in ead datasds. Very few studies sud as kernd based methods (Daanen, Gevaat et a. 2007) tried
to preserve the individud properties available in ead data saurce explicitly. However, this method usal the
vector basal records only for bath clinicd and genomic data. On the othe hand, the plethora of othe types of
medica, geneic and genomic data cortains rich information with different types of strudures sud as time
sejuences, ngworks, replicaes. Integrating sud diversetype of data requires devedoping new computationd
tedhniques.

Interpretability of the obtained clinicogenonic modds is a much desired property for persoreli zed medicine
as desaibed in Sedion 0. However, predictive modds mainly focus on improving the prediction power by
combining the clinicd and genonic data rather than interpretability. Therefore, most of the predictive models
usethose modds that are more ussful for improving the prediction power rathe than producing interpretable
modds that can infer usdul knowledge Althoughtreebasel methods have been applied in this context, most of
the studies applied more complex ensemble treebased modds which are lessinterpretable than the original tree
basal rules. Moreove, sgarate dimensonality reduction step before devdoping clinico-genonic modd may
asoreducetheinterpretability of the modd. For example, all these studies first combinethe effed of genomic
markers into a singe soore by either unsupervised techniques like PCA or separate pre-validation step, or some
supevised techniques like PLS before deveoping any clinicogenomic modd. The componenits do nat provide
information about the obtained gene and thus, the pathways involved in the disease progresson, which is
important for defining drug targets. Thus, incorparating the pre-vali dation framework for feaure seledion step
isan openisae.

Disease haerogendty is a very impartant challengefor clinico-genomic modd devdopment, but very few
studes aim to hande all the challenges rdated to disease haerogendty. For example, most studes try to find
only different population groupsusing simple techniques, but do nat form any deail ed analysis regarding how
those population groups exhibit different charaderistics in terms of disease devdopment. Moreover, further
analysis is needed on whethe there exist diff erent subgoupsof popuation, where ead subgoup of popuation
may have bias towards different datasds, i.e., ead of these subgoups is associated with different types of
markers. Such kinds of knowledgecan elucidate new knowledgeregarding how diff erent types of markers can
leads to diff erent disease subtypes. Moreover, those subgoupsof paients can be further verified for diff erent
clinicd fadors sud as diff erent demographic fadors such as age, gende groups.

Most of the clinicogenomic modds only aimed at utili zing two heterogeneous data saurces during disease
prognasis, but nat elucidating the existing relationships beween the clinica and genonic data. Different kinds
of relationships between these two datasds can have different implication from domain perspectives. For
example, if bath datasds contain many correlated variables, then they contain similar types of information of a
suppkmentary nature which canna provide value to integrative studies. These types of correlations between
datasds can be induced through othe hidden fadors [(Boulesteix, Porzdius et al. 2008)], eg., the effed of a
drug on geneexpresson [(Sotiriou and Piccat 2007)] during the treament process Besides corrdation and
indgpendence, more complicated relationships like interadive or causd relationships may also exist between the
clinicd and genonic variables. For example, the intricate interadion between some genomc markers and
environmental fadors can make the disease phenatype more severe beyond thdr additive levels [(Losclzo,
Kohane et al. 2007, (Schadt 2009], as mentioned in Sedion 1. Furthermore, there may be some genomic
fadors which have causd effeds on some clinicad variables. In that case drugs can target those genomic
variables in an ealy stage for better treament design. For example, tumor sumgey can be avoided if some
causdive genomic markers of tumor grade can be targded in the ealy stage of breast canca. Ancahe
interesting fador is that the clinicd fadors are na the causd fadors of a diseasephenatype unlike the genomic
fadors. Rather, most of the clinico-pathologca variables are the observational properties of disease phenatype
Beside all these inter-datasd rdationships, there may be also intra-datase reationship among the variables
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within the same datasd representing the interadions or synergy between similar variables [(Braun, Cope et al.

2008,(Hwang, Sicotte et al. 2008)]. For example, familial hypertrophic cardiomyopathy is causeal by mutations
in several gene resporsible for coding sarcomeric proteins [(Losalzo, Kohane et al. 2007)], whee ead gene
or protein is marginally inexplicable. Thoughsome studies [(Boulesteix and Hothorn 2010)] seek to devdop
robustclinicogenomic modd even in the presence of correlated variables, none of the clinicogenomic studies
aim at ducidating this kind of inter- and intra- relationshps between the clinica and genomic datasds. Further

investigation is required to understand and utili ze the patential broader relationships among diff erent clinicd

and genomnic variables when devdoping integrative modds.

Very few studes validate the abtained clinicogenomic modds extensively. Most of the studes did nat
compare the obtained modd with othe clinicogenomc modds even those devdoped for the same disease For
example, only oneout of seven breast cancer studies [(Sun, Goodison et a. 2007)] compared ther final genormic
signature with previousstudies[(Vant Vee, Dai et al. 2002, (Wang, Klijn et al. 2005, (van deVijver, He e al.
2002]. Furthermore, very few of these studies were designed from methodobgicd perspective. Most of the
clinicogenomic studes applied different simple sttisicd and data-mining predictive modds rather than
applying and comparing different methodobgies to ge the best predictive modd. Some studes [(Shedden,
Taylor e a. 2008, (Bovdstad, Nygard et al. 2009] tried to compae several dimensionality reduction
tedhniques for regresson based predictive modd. On the othe hand, the best way to integrate this uniform
number of clinica and genomic variables after dimensionality reduction is nat well undestood Some studies
propcsed intermediate integration for handling the challenges of heerogeneous data integration. Though in
theory, kernd-SVM baseal intermediate integration is supp®ed to be more genealized, it did nat provide
significant improvement in the clinicogenonic context[(Daemen, Gevaeat et a. 2007)]. Moreove, it isnat clea
how to represent the indvidud data using an intermediate format in the best possble way during intermediate
integration. Kernd-based modds also canna find relationships among variables bath within and acossdataset.
Alternatively, a graph-based approach can be utilized to address these isuues. More systematic studies are
required in this spaceto devdop new methods to best leverage the diverse information available from bath the
clinicd and geneexpresgon data.

Althoughfeaure sdedion tedhniques have been explored quite a bit in the clinicogenomic context, there are
still some isaies when they are applied on geneexpresson datasds. First, the genonic feaures seleded by
dimensionality reduction techniques are nat portable among different studies [(Chuang, Lee & al. 2007),
(Nadei, Teschendaff et al. 2006]. Second often thetopmost seeded discriminating genes are hard to interpret
and thus, do na provide any meaningful biologicd knowledge Third and more importantly, in most of the
cases, complex diseases are caused by either theinterplay of alarge group of oncog@es which have a combined
effed onthe oveall disease or deregulation of a group of tumor-suppessor gene. For example, there are some
well-known pathways that have been observed to be involved in disease progresson sud as the EGFR pathway,
Whnt-sigrelli ng pathway, Hedgehog pathway, TGF-f, and so on. To address these issues, several methods for
genome wide geneexpresgon data [Gene set enrichment analysis [(Subramanian, Tamayo et al. 2005], GSA
[(Efron and Tibshirani 2007)], subGSE[(Yan and Sun 2008)]] have been designed to leverage prior genonic
information. They look for pathways or groupsof genes that have small individud disaiminating power, butan
ovaall largeeffed on disease progresgon. Similarly, epidemiologsts already have some modds in pradiceand
they are only interested in incorporating new knowledgeinto thar existing knowedge Theefore, it would be
advantageousto incorparate existing medicd knowledgeinto the modd devdopment stage as prior knowedge
sothat it is easy for bath validating and deploying the modd. Incorparating suc prior knowledge pases some
challenges. For example, if some sort of dimensiondity reduction is performed in the genomic data too
rigorously upfront, then the small marginal affed can be ignaed by the modds which are hoping to ducidate
information about pathways or synergistic rdationships. On the othe hand, if too many genomic variables are
kept during the modd devdoping, then the effed of low dimensional clinicd variables can be undeestimated
[(Boulesteix and Sauebrei 2011)]. The onestep approach can be an aternative solution, where no implicit
dimensiorality reductionis performed upfront and the modd seleds the optimum number of feaures. However,
these kinds of spase modding tedhniques cannd take the prior domain knowledge into acourt easily.
Developing new data mining algarithm to deal with these dimensionality reductions isaues and incorporating
prior knowledgeneeds further research.

Ancthe important issue with most clinicogenomic studies is that most of these modds conside only gene
expresson data as the genomc data from widdy available public datasds. However, geneexpresson data
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contains information about transaiptional regulation only, and thus canna provide any information about other
aspets of conplex cdl medhanisms like posttransaiptional modification, protein  syrthesis and
phosphaylation, copy number variation, random mutation in the genome and so on. Recet technologica
advancements have led to the advent of various high-througtput genomic data like protein abundance data,
genome wide asxciation (GWA) data, gendic interadion data, protein-protein interadion data, etc. It is
important to nate that these datasds are inheently related and ead of them cove's one paticular aspest of
cdlular adivity. Overlooking the inhaent relationship could result in the discovery of biologicdly spuiious
asciations, albdt statisticdly significant. For example, a genethat is diff erentially expressed can be spuiious if
the resutant protein is na differentially abundant due to post-transaiptional modificaions. Integrating these
enriched genomic data in the context of clinicogenonic studies pose furthe challenges. For example, the
formats of othe kind of genomic data are nat uniform-geneexpresson or SNP are vector based, while PR is
graph based. Integrating these types of data with vector based clinicd data is nat trivial and needs furthe
reseach.

Besides integrating clinica and genomnic data sds, sorre multi-site clinicogenormic studies aim at integrating
multiple similar types of datasds avail able from indegpendent studes. However, these indgoendent studies are
peformed in diff erent experimental setupsand diff erent biologicd conditions, which might causedifference in
probe design and final available geneexpresson profiles. Theaefore, these isales have to be addressed with
caution. In al multisite clinicogenomic studes, a simplistic approach was taken during integrating multiple
genormic datasds by induding only thase gene as feaures that are significantly expressed (performed by t-test
or othe similar sttisticd test) in all cohats. However, this reduces the number of feaures dramaticdly,
becauseit is very lesslikely that genes will be simultaneoudy expressed in all indgpendent cohats. Moreove, it
is biologicdly nat meaningful, because different pathways may be disrupted for different groups of patients,
even different groupsof gene can be mutated for the same pathway during diff erent environmental fadors. So,
it may be better to loosen therestriction a littl e bit to include gene that are nat significantly expressed. More
intdli gently, gene can be sdeded from cohats if they belong to a known pathway but do nat med the
threshold of statisticd significance Moreover, more investigations are needed to handle the dispaity in
dimensions that arises when integrating them with low dimensional clinicd variables.

Anahe strategy to reduce the experimental bias during the multi site studies can be sulgroup analysis. If we
asume that different sulgroups of patients have different kinds of causd markers associated with them, then
thee may be heerogendty even within a single cohott. This hypahesis of the existence of subgoups can be
usal to reduce the experimental bias in multi-site studies. Thoughthere have been sone efforts to devdop
subgpace clinicogenomic modds using association patern mining algorithm, this needs furthe exploration in
many dimensions.

In spite of grea paential of clinico-genomic integration, thetopic is still in arudmentary phase. In geneal,
integrating heerogeneous datasds like clinicd and genomic data is a hard problem. Theexisting cli nicogenomic
modds addressthese challenges partly. More detail ed research is necessary espedally to handle diff erent kinds
of relationships among variables and datasds; design robust modd to handle dispaate nature, strudure,
dimensiorality, amount of information present in eat datasd; incorporate prior knowedge into acount,
integrate diverse genomic and medicd data besides geneexpresson and histo-pathologicd and demographic
data; and finally validate the obtained clinicogenomic biomarkers rigorously in multiple independeat cohat
studes before final deployment for persoralized medicine
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Appendix:
A. Dimensionality reduction technique for clinicogenomic studies: We fourd bath feaure seedion
and fedure extraction techniques from machine leaning have been applied for dimensiondity redudion in clinicogenomic
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modd development. We will discuss bath of these kinds of approach as well as some more other tedhniques like clugering
and pre-seleding genes based on incorparating prior knowledge The ddail ed appli cation of such techniquesis described in
the next sedion.

1. Feature extraction techniques. Fedure extradion methodstries to extract a reduced set of features to decrease
the redundancy of the daa. Some integration studes first devdoped their own dimensiondity redudion technique
modifying the existing technique and then, applied their own modd in the context of clinicogenomic modd. So, the main
perspective of these studies was to design madhine-leaning based dimensiondity redudion techniques for clinicogenomic
data. For example, Li et a. [(Li 2006] developed a dimengondity redudion techniqueto sded a reduced sized-set of
genes consisting of linead combindion of genes by applying two step dimensiondlity redudion tecniques. the
unsupevised principd comporent andysis (PCA) method followed by a supevised dimensiondity redudion method
cdled diced inverse regresson (SIR)[(Li 1991)] which seaches for the smallest subspace of the daaset preserving the
regresson information of outcome variable(y) given the input feaure space(X). Findly, they modified the SIR methad to
patia SIR (PSIR) so that it can include clinicd variables as the mandaory variables without applying dimensiondity
redudion on it. The main advantage of this modd is that it does nat assume any kind of prior distribution on the modd.
However, it requires lineaity assumption on the margina distribution of X. This methad is aso difficult to implement.
Moreover, the main problem of this methad is that it fall s into the caegory of feature extradion where the find predictive
modd is built on the extracted feaures which are the linea combination of feaures. So, it is hard for cliniciansto interpret
those extraded feaures so tha they can be used for further use like drug targets.

2. Feature selection methods: To overcome the limitations of such feature extraction methods, fedure sdedion
methods seem the most popular techniquein this context of building clinicogenomic modd. Feaure seledion methadstry
to seled a subset of existing feaures based on their predictability so that most irrelevant and redundant genes are removed.
Thistedhniqueis different than feaure extradion which aims at extracting new feaures from the existing new variable, and
thus feaure sdedion can provide a useful explanation abou the seleded features describing which variables are the most
important one and how they are related to ead other. There are three supevised strategies for feature seledions: filtering
method, wrappe method and embedded method. In next three paragraphs, we will provide the discussion and some
examples of these threemethodsin biologicd domain.

a) Filtering methods: Filtering criteriaranks al the feaures based on some metric and then, seleds those features
that achieve those score. Among several avail able metric for evaluating such feaures, statisticd tests like student t-test,
Wil coxon non-parametric rank sum test, Fishar’s exact test seem mostly used in the medical domain. The most popular
statistics used for pre-sdeding the genes for devedaoping clinicogenomic modd is the t-test. For example, Lihua Li et.
al.[(Li, Chen et a. 2009)], Stephenson et. al. [(Stephenson, Smith et al. 2005], Silhava et a.[(Silhava and Smrz 2009)]
performed two-sample t-test between the disease reaurrent and nornrreaurrent tissue sample. Though t-test is the most
popular filtering methaod, it assumes that the datais narmally distributed. This assumption may nat be valid for al genomic
dataset. Severa dternaive non-parametric tests exist which do na make any such assumptions of the undelying daa
Daamen et d.[(Daanen, Gevaat et al. 2007)] used such a distribution-freetest statistics caled Wil coxonrank sum test to
pre-sded top 1000 most significant genes to build a kernd based integrated clinicogenomic modd. Some other study like
Wang et. a [(Wang, Ooai et a. 2007)] peformed bath parametric and non-parametric tests for pre-seleding the genes. In
some anather recent studes, for example integrative study by Campore et a.[(Canpone, Campion et al. 2008], univariate
cox regresson itself was used to seled the genes usng hazard ratio as thefilt ering criteria. In addition, Campore et al. 2008
seleded those genes which were seleded mos commonly by univariate cox regresson in several randam samplings of the
data to remove the seledion bias. However, sometimes even after the corredion for multiple hypahesis testing, these test
statistics provide lot of statisticdly significant genes which may na be interesting to investigae further from domain
perspectives. Therefore, besides uang smply tests, some studies aso seleded genes usng some intestingness measures
from domain knowledgelike the level of fold change the number of samples where the geneis expressed significantly. For
example, Wang et d.[(Wang, Oai et a. 2007)] and Stephenson et d. [(Stephenson, Smith et al. 2005] saleded those genes
which have significant fold change>1.5. In some other studies [Mario et al. 2008, Campore et a. 08], principal component
andysis was performed in a foll ow-up step to provide further redudions in dimensiondity and thusall genes sdeded by
univariate Cox regresson are represented by topmost prindpa comporent. However, this also shares the same kind of
disadvantages described ealier for feaure extraction.

These statigticd test based filt ering methods have several advantages like they are easier to implement, faster than
other sophigticaed feaure sdedion methoddogy, and easier to interpret and verify for clinicians. Despite these
advantages, they suffer by some limitations in the context of gene seledion [(Sun, Goodison et al. 2007)]. First, filter
methods missthe interadion among the fedures, as it evaluaes ead gene indgpendently. Some feaures may have small
individual margind effects with the disease outcome variable, while they might have greder effeds when they are
considered in a combination. Thisis a big concern especialy for genomic daasets, because genes are nomally expressd
by different biologica processes and pathways which also regulate other genes at atime. Second, Filter methodsare unable
to remove some of the redundint feaures sometime. For example, filter methods canna assgn separate scores for co-
regulated genes. Sudh irrelevant feaures are undesirable from bath computationa and clinicd pespectives. From
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computational perspective, such irrdevant fedures may deteriorate the paformance of the classfiers [(Kohavi and John
1997)]. Moreover from clinicd pespective, the examinaion of the expresson levels of redundant genes may increase the
clinicd cost. To overcome these disadvantages of filter methods different alternaive computationd methods have been
propased in the community of madine learning and data mining for feaure seledion. Some of thase methods have been
also incorporated into the integrative study of clinica and genomic dataaswell as described in the next two sedions.

b) Wrapper method: Wrappe modds search for an optimal subset of feaures in the whde feaure space and then
evaluate the sdleded subset based on some modd built on it. However, seaching for such an optimal subset of feaures
poses challenges for learning algarithms specialy, exhaudive search for substantial feaures is quite impaossble for high-
dimensiond genomic daa This is becaie the possble seach space increases exponentialy with the increase of
dimensionality. That’s why most existing solutions depend on heuristic combinatorial search with a possible trade-off for
optimality. Most of such wrappe methods rely on some grealy seach techniques and stop the search based on some
ohjedive functions or optimality criteria [either wiki or something else]. Moreover, it is aso difficult sometimes to define
an appropriate objedive functions which can be optimized easily for designing faster seach criterion [(Sun, Goodison et al.
2007)].

Sun et. a. (Li and Sun 2006 recently propcsed a new objedive function in their propcsed feature sdledion
techniques cdled I-RELEIF to overcome the limitations of bath filters methads and the combinatorial seach problem of
wrappe methods It assgns weights to the feaures based on the block distance of ead sample to its neaest neighba and
then tries to optimize those weights usng analyticd and numerica solutions such that the acaracy of the neaest-neighba
clasdgfier of ead sample in the origind fedure spaceis maximized. The ddail ed description about how it was applied in
the context of clinicogenomic modd development is given in the next sedion.

Both of the filtering method and wrappe methad fall in the general caegory of supevised method as they
conside the classlabes into acount while sdleding the feaures. Furthermore in a following step, those seleded genes
were fed into a classfier modd aongwith clinicad variable to build a combined clinicogenomic modd along with cross
validaion for estimating the performance of the modds. Such kind of two step approach will produce biased clasgficaion
results unlessthis dimensiondity redudion is performed for ead training data within ead iteration of the crossvalidation.
Very few studies [(Sun, Goodison et a. 2007), (Stephenson, Smith et al. 2005] peformed the gene seledion within the
crossvalidaion logp with LOOCYV and so, was able to produce unhiased classfication results. Such kind of mistake while
feaure seledion and classficaion are peformed together was reported also in other genomic studies (Smiaowski,
Frishman et a. 2010]. Moreover, al of these dimensiondlity redudion techniques try to reduce dimensiondity only on
gene expresson data indepedent of clinicd variables So, these methods did nat consider redudng the dimensionality of
the clinicd dataset at the same time rather most of the study relied on some previoudy developed clinicd index like IPI
(Internaiond Prognastic index devdoped for Large B-Cdl Lymphana[(Shipp, Harrington et a. 1993)]) instead of origind
clinicd database. Regularizaion based clasdfiers can be an alternative solution for these patentia problems and they are
described in next sedion in the context of integrative clinicogenomic modd devel opment.

¢) Penalized statistical learning methods. Recently, several techniques have been developed in madine learning like
booging or regularizaion-based penalized algarithms whee feature sdedion is peformed simultaneoudy with the
devdoping of predictive modd. Such kind of embedded system can be a grea solution to the above mentioned two step
approaches, as it will paform bath feaure seledion and outcome prediction a the same time. The pendized methods
introduce a penalty term for providing shrinkagein the modd development which is leant from the daa as well. Some of
the initia studies of such penalized modd building for genomic data were investigated by Gui and Li et a [(Gui and Li
20059] by developing L-1 pendized Cox regresson modd for gene expresson daa [provide more citations]. However,
most of the currently avail able penalized methads that have been applied into genomic daatrea al of the covariates with
same weights. In the context of integrated clinicogenomic modd devedopment, putting same weights for dl the variables
may na be agoad idea. Because the inherent nature of the datasetsis totaly different, for example, one unit changein gene
expresson has different interpretation than one unit changein clinicd variable [Ma et d.]. Moreover, it is more desirable to
put more penalti es on gene expresson data then clinicd variables becaise, gene expresson daa contains more irrel evant
feaures than clinicd variables and the dimensiondity is also higher in genomic data in compare to clinicd variables.
Moreover, most of the clinicd variables are sdeded from domain knowledgelike pahdogicd and demographic variables
which are arealy being used for clinicd predictions. So, dimensiondity redudion on those variables may nat be desirable
aswell.

For these reasons, some of the integration efforts incorparated the regularization methodsinto integration sudy with a
posshle modificaion of assgning different weights to clinicd and genomic data, so that thase two types of daa can be
regularized differently. For example, Binder et a. 2008incorparated their own techniquedevel oped previoudy (this->3) in
this context of developing combined clinicogenomic modd with a modificalion. They developed a gradient bocsting
methaod for Cox propationd hazard modd in order to al ow flexible penalty structure so tha dimensiondity redudion is
peformed in the genomic daa only and the mandatory clinicd variables are included without any penalization. With
similar motivation, Ma et a. 2007 extended the origind gradient seach based Threshdd Gradient Direded Regularizaion
(TGDR) approac [Friedman and Popescu 2004] into ther Covariate-adjused TGDR (Cowv-TGDR), where two more
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paameters were introduced to represent the regularizaion co-efficient for the two corresponding daasets of clinicad and
genomic data. This provides a more generalized framework in compare to the former approac as dimensionality redudion
can be performed in bath clinicd and genomic datasets.

Beside all these statistica methods of feature seledion and extraction described so far, some studies incorporated the
concept of metagenes which are defined by the clugers of similar genes. Such types of metagenes were developed usng
clustering approach from data mining community in previous studies. In the next sedion we will describe some of these
studies where clugering based approac has been applied to seled some of the genes.

3. Clustering based approach: Metagenes are defined as the representative signaure of similar genes [(Wang, Klijn et
a. 200)]. Those metagenes are ohtained by performing clustering to gene expresson profile for findng groups of genes
with coherent expressons over al of the samples. Nevins et al. 2003developed one of the ealiest clinicogenomic modds
usng such clugering based metagene approad. In this sudy, they applied K-mean clugering first to get some clugers of
geneswith similar profil e and then they computed the weighted average of the genes within ead clugerstojoin themintoa
single meta-genes. In an extended study of this initial study, Pittman et al. 2004 computed the metagenes as the first
principal components of those clugers of genes creded by K-means clugering. However, as the truenumber of the clugers
is unknown here, it was hard to guessthe corred number of clugers upfront which isrequired for K-mean algarithm. This
motivated Clarke et a. 2008 to generate large number of clugders first and then filter out thase clugers tha are na true
representative of metagenes in a post processng steps  For pruning such spurious clugers, they performed some sort of
post-vali dation by silhouette widths for the genes within the same cluger in orde to get the statisticd significancewhich is
determined by a permutation-based nul distribution. Besides K-Mean clugering other types of clugering like hierarchicd
clugering, DBSCAN and so on [(Tan, Steinbach et a. 2006)], which does nat require the number of clugersto be specified
as apriori, can be investigaed aso for this purpase. One big advantage of clugering based methodsisthat ead cluger can
capture the expressons of several genes belonging to tha duger and so can retain more information during classfication
as confirmed by the supeior results of the clinico-genamic study by Shedden et d.[(Shedden, Taylor et a. 2008)].

4. Pre-selecting genes from previous knowedge: Some of the studies relied on the previous study or prior biologicd
knowledgeto seled the most appropriate genes to determine the most relevant genes for the purpose of the study, rather
than only depending on the dimensiondity redudion techniques described above. For example, Beane et a. 2008used a
gene expresson index developed usng majority voting algorithm [(Golub, Slonim et al. 1999] in a previous study.
Similarly, Teschendaff et al. 2006 peformed an extended study on six breast cancer datasets including his own colleded
samples but relied only on the genes tha are common between their own dataset with al of the previousfive studies. In a
similar study as Teschendaff et a. 2006,Acharya et al. 2009also tried to discover the underlying biologicd behaviors of
different disease subgroups of breast cancer. In this effort of combining five different breast cancer datasets, they only
seleded those gene signaures of altered tumor microenvironment states, dong with oncogenic pahway deregulation, and
chemotherapy resporse. More specificdly, genes invdved in chromosomal instability, wound heding, IGS, epigenetic
stem cdls, and tumor necosis factor a. (TNF-a) which are believed to have some effects in breast cancer survival were
included for further study. Similarly, during the finding risk fadors of common liver diseases, Berlingeaio et a
[(Berlingerio, Bonchi et al. 2009)] also seleded gene expressons of six sites from HLA which are aready known to have
effects on theliver diseases. Thoughsuah kind of biologicd knowledgefrom previous studies provide a way to increase the
confidence andrelevance of seleding genes, this narrows down the passhility of seleding new genes tha are nat described
in previousliterature.

All of these above mentioned feaure seledion techniques have their own advantages and disadvantages. So, some
studies examined several feaure sdedion techniques rather than confined in one feaure seledion method, and then use
that feaure seledion method which produces the best results for the classfication methads in the follow-up studies. For
example, Shedde et al. 2008[Shedden, Taylor et al. 2008)] used several methods like gene clugering, filtering based on
univariate regresson modds, etc. for seleding genes and gat the best clasdficaion results for clugering methods In
anather recant study, Bovdstad et al. 200 built compared seven different approaces for dimensiondity redudion covering
severa tedhniques already described in last few paragraphs for building Cox regresson modd. The deails of all these
approaches are described more elaborately in the next sedion where Cox based modd s are discussed.

B: Preprocessing of data
Most clinicogenonic studes perform several preprocessng steps before devdoping clinicogenomnic integrative
modds (Herrero, DiazUriarte et al. 2003. The gaoal of the preprocessng of the datasds is to reduce the
heterogendty between thetwo datasds as much as possble, sothat modd devéopment onthecombined datase
becomes as easy as passble. For example, genomic daa contains more naise and missng values than clinicd
variables. Many clinicogenomic studies incorporate the same preprocessng techniques as many genomic
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studes. For example, filtering based on the fold change to drop some irrdevant gene having very few
expresson labds throughait the samples was useal by (Shedden, Taylor et al. 2008. Anathe common
preprocesdng step is to normalize the data to reduce the sample variances (Shedden, Taylor et a. 2008. Many
of the microarray studies contain misang values for cetain probes. Several studies (Li 2006, (Binder and
Schumache 2008, (Clarke and West 2008 also addressed this issue by using imputation techniques e.g., the
nearest naghba algarithm (Troyanskaya, Cantor et al. 2001), (Liew, Law et al. 2010 before devdoping any
clinicogenomic modd. Anathea challenge for binary classfication on any medica domain is the imbalanced
class problem, as disease pdients are rare than hedlthy controls. Special corredions are needed for handling
imbadanced classesto avoid thebias of the modd towards the majority class Very few clinicogenomic studies
(Stephenson, Smith et al. 2005 are aware of thisfad.

The biggest challenge that these heerogeneous datasets pose is the dispaate dimensionaliti es of the
clinicd and genomnic data. Sinceclinicd data is low dimensional, most of the two-step approades first reduces
the dimensiorality of the high-dimensional genonic data before building any predictive modd. Dimensionality
reduction (DR) [(Guyon and Elisseedf 2003) (Xing, Jadan et a. 2001) (Bernau and Boulesteix 2010] is a
widdy studied reseach topic in the area of from madiine leaning. There are various advantages of
dimensionality reduction: reducing the ovefitting problem and thus improving the prediction power of the
modds, reducing the time and space complexity of modd devdopment, enhancing the undestanding of
geneative fadors of the data, and fadlitating visualization (Guyon and Eliseedf 2003. In geneal, DR
tedhnigues can be divided into two main caegories. feature selection and feature extraction. Fedure seledion
techniques seled a subst of important variables retaining as much information as possble fromthe data, while
feaure extradion tedhniques creae some new feaures fromthe existing variables. Anather caegorization of the
dimensionality reduction techniques can be based on whehe the labd information is used. In this sedion, we
will providea brief summarizaion of all techniques that have been used by clinicogenonic modds. A ddailed
desaiption of all these tedhniques has been induded in the Appendx A.

Most of the feaure extradion techniques sud as principd componeait analysis (PCA) (Jolli ffe 2002
creaes new feaures which are a linear transformation of the data for example. Creaing feaures from some
natural groupsin the data throughclustering is anather technique (Pittman, Huang et al. 2004 Clarke and West
2008. For example, eat cluster centroid or first prindpd componait of ead cluster can be represented as a
new feaure All these approaches do nat use the labd information during construding feaures. Severa
clinicogenonic studies alsoaimed to modify the origind unsupervised feaure creaion techniques. For example,
Boulesteix et al. (Boulesteix, Porzdius et al. 2008 useal supervised PLS techniques to defines genomic feaures
like PCA. Ontheothea hand, Lexin Li [] used atwo-step dimension reduction technique: unsupervised prindpd
componat analysis (PCA) method followed by a swevised dimensionality reduction method called sliced
inverseregresson (SIR) (Li 1991). Onebig advantage of feaure credion as oppaed to feaure seledionis that
eah extraded feaure can retain more information about the data. For example, the metagenes (West,
Blanchete e al. 2001), (Huang, Ishida et a. 2003, (Huang, Cheng et al. 2003 that are co-expressd in a
relevant pathway can be summarized by a fedure represented by a singe cluster. However, one major problem
with these fedure creaion tedhniques is that the feaures are nat biologicdly interpretable, which is utmost
important in the context of biomarker discovery.

In the domain of building a clinicogenonic integrative modd, feaure seledion seans the most popular
technique, becauseof interpretability. In geneal, threetypes of feaure seledion techniques are used: filtering
method wrappe method and embedded methods. Note that all these methods are supervised in the nature.
Filtering methods rank all the feaures basal on various metrics and then, seleds those feaures that achieve a
particular score. Some of the metrics used in the clinicogenomic context are parametric (e.g., studant t-test (Li,
Chen ¢ al. 2005, (Stephenson, Smith et a. 2005, (Silhava and Smrz 2009)), non-parametric statistica tests
(eg., Wilcoxon rank sum test (Daanen, Gevaet et al. 2007),(Wang, Ooi et al. 2007), univariate Cox
regresson(Campone Campion &t al. 2008 and domein knowledgelike thelevel of fold change (Wang, Ooi et
al. 2007, (Stephenson, Smith et al. 2005, (Hofling and Tibshrani 2008, the number of samples wheethegene
is expressed significantly. Althoughfiltering methods are simpler to implement, they are often criticized for
sdeding many reduncant feaures andlack of consideringinteradion between thefeaures (Sun, Goodson et al.
2007). To make the best use of groups of variables, wrappe modds (Kohavi and John 1997 seach for an
optimal subst of fedures in the whole fedure space and then evaluae that subst based on predictive models
built using it. However, searching for an optimal sub&t of fedures is NP-hard (Amaldi and Kann 1998. As a
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result, most existing solutions depend on heuristic combinatorial search based on an objective function with a
possible trade-off for optimality. Even so, it is difficult sometimes to define an appropriate objective function
that can be optimized easily in high-dimensional data. Some clinicogenomic models (Sun, Goodison et al. 2007)
aim at developing a method (e.g. I-RELEIF (Li and Sun 2006)) for handling this issue. However, both filtering
techniques and wrapper models try to reduce dimensionality only on gene expression data and thus, they cannot
find possible redundancy between the clinical and genomic data. Embedded models rather perform both feature
subset selection and predictive learning in a single step. In clinicogenomic studies (Binder and Schumacher
2008), (Ma and Huang 2007), (Bovelstad, Nygard et al. 2009), (Boulesteix and Hothorn 2010), several
regularization based predictive models have been developed with special modifications that impose two
different penalties for the two types of data.

Some studies (Beane, Sebastiani et al. 2008), (Acharya, Hsu et al. 2008), (Berlingerio, Bonchi et al. 2009)
rely on a previous study or prior biological knowledge to select the most appropriate genes for the particular
disease they are investigating, rather than only depending on the dimensionality reduction techniques. All of
these above mentioned feature selection techniques have their own advantages and disadvantages. Some
clinicogenomic studies (Shedden, Taylor et al. 2008),(Bovelstad, Nygard et al. 2009) have assessed several
dimensionality reduction methods to get the best classification results.

C. Discriminant models:
Discriminant models learn a discriminant function L
= g(x) = w'x + wo, where w is the coefficients for
each variable of x as shown in Figure 1 for two-
dimensional dataset x (x denotes the genomic al
variables here, but can also denote the clinical
variables ¢ and clinicogenomic variables z). LDA
chooses the parameters w and wy, such that the 1
samples from the two classes are well-separated,
maximizing the between class variances(Bishop and
SpringerLink 2006). di

In addition to learning linear decision boundary, E o ; z 5 =5
logistic regression (Duda, Hart et al. 2001),(Bishop
and SpringerLink 2006) learns the posterior | Figure 1: Discriminant models.
probability of the outcome variable by a logistic
function y=sigmoid(g(x)). Logistic regression is a generalized linear model that summarizes the contributions of all
predictors into a single variable, which is fed into a sigmoid transfer function to produce the final predicted probability of
outcome event y. On the other hand, SVM tries to learn the decision boundary in such a way that it maximizes the
separation between the two classes (measure by the soft margin).

Although logistic regression and LDA provide simpler discriminant models, they are typically confined in finding linear
decision boundary only. Support vector machines (SVM) (Vapnik 2000) can circumvent this problem to learn more
generalized non-linear decision boundary, by utilizing the power of kernel machines. The kernel machines first transfer the
original feature space into higher dimensions by a non-linear mapping function and then, linear SVM is applied in that
higher dimensional space. Thus, learning linear decision boundary in the higher dimensional space yields a non-linear
decision boundary in the original space.
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Table 2: Taxonomy of different clinicogenomic models. Some branches are missing indicating no studies
observed in that category. The studies marked as (M) means they are multi-site meta-analysis approach.
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Figure 5: The complex disease network: the upper layer
represents association between the patients and the
lower layer represents the different candidate factors
from laboratory test, genomic information, clinical
factors and so on [(Schwarz, Leweke et al. 2009)]
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Table 3: Summary of predictive clinicogenomic models

Stage of
Stage | dimensio | Full-
of nality space/su | Dimensionality
Clinicogeno | integr | reductio | bspace reduction Predictive
mic Study ation n model technique method Clinical Endpoint Disease
Two-step feaure large-B-Cdl
extraction: PCA, | Cox hazard | Survival time after lymphana
Li 2006 Early 2-step Fullspace | SIR modd chemotherapy (DLBCL)
Reaurrance after
Stephenson Rankingusng Logistic Radicd Prostatedomy
et.al. 2005 | Ealy | 2-step Fullspace | statisticd test regresson | (Binarized) Prostate cancer
Linea
Sunet. Al., Discrimina | Survival prediction
2007 Early 2-step Fullspace | Wrappe Modd ntanaysis | (Two clasg Breest cancer
Response to platinum-
based based
Liet. d, Gene sdledion Chemoatherapy
2005 Early 2-step Fullspace | based on t-test SVM (Survival ) Ovarian cance
Devel opment of
Beaneet a. Rankingusng Logistic metastasi s after
2008 Early 2-step Fullspace | Statisticd test regresson | pathdogy Lungcancer
Fedure credion Survival prediction
Nevinset. a. by Clugering Statisticd (Two classmetastasis
2003 Early 2-step Fullspace | and PCA tree devdopment) Breast Cancer
Surviva
Feaure creaion prediction(Two class
Pittman et. by Clugering Statisticd meastasis
al. 2004 Early 2-step Fullspace | and PCA tree devdopment) Breast Cancer
Survival time after
primary
Clarkeet al. Clugeringbased | Statisticd chemotherapy/disease
2008 Early 2-step Fullspace | metagene tree relapse Ovarian cancea
Breast cancer,
Three Prostate
dimensiondity cance,
Caoetd. redudion Mixture of Medulloblasto
2010 Early 2-step Fullspace | methods Expets Binary outcome mas
Binder et. al. Regularizaion Cox based
2008 Ealy 1-step Fullspace | Techniques prior modd | Survival daa DLBCL
Penalized
Statisticd test logisticand | Binary class Breest cancer,
Maet. al. and Cox (metastasis), Survival | Folli cular
2007 Ealy 1-step Fullspace | regularization regresson | anaysis lymphana
Breast cancer,
Bovelstad et. Regularization Cox DLBCL,
al. 2009 Early 1-step Fullspace | methad regresson | Surviva prediction Neuroblastoma
Only HLA
antigendaldes
correspordingto | Frequent Liver diseases
Berlingeio six loci are Pattern Liver trangplant VS. leadingto liver
et a. 2009 Early | 2-step Subspace | considered Mining normal transplantation
Network
Schwarz €. based
al. 2009 Ealy | 2-step Subspace | Domain guided | framework | Case-control Schizophrenia

41




Logit,
JanaSilhava Bionamial | Reaurrancevs. Not
et.al. 2009 | Late 2-step Fullspace | Filtering booging rearrence Breast Cancer
Multivariat
Filtering by eCox
Campore €. univariant cox regresson | Metastasisfree
al. 2008 Late 2-step Fullspace | regresson+tPCA | anadyss survival Breast cencer
Bayesian
Futschik et. Filteringusng network & | Two classSurvival
a. 2003 Late 2-step Fullspace | statisticd test ANN after 5-yrs. DLBCL
Daeamen et. Interm Rankingusng
al. 2007 ediate | 2-step Fullspace | statisticd test SVM Metastasi s Breast cencer
Gevaat et Interm Bayesian
al. 2006 ediate | 2-step Fullspace | Gene Filtering network Metastasis Breast cencer

Table 4: Clinicogenomic studies to assess additional prediction power of genomic features over
clinical variables.

Clinicogen | Stage | Stage of | Full- Dimensionality | Predictive | Clinical Disease
omic Study | of dimensio | space/su | reduction method Endpoint
integra | nality bspace technique
tion reduction | model
Wang et. a. | Early 2-step Fullspace | Stepwise logigtic | SYVM/SLD/ | Reaurrent  vs. | Human
2007 regresson for | KNN Non-reaurrent | Hepatocdlul
gene sdedion ar
Cacinoma)
Tibshirani et | Early 2-step Fullspace | Filtering approach | Logistic Binary  class| Breast
al. 2002 based on p-value | regresson (metastasis vs. | cancer
of fold change normal)
Hofling et al. | Early 2-step Fullspace | Filtering approadh | Logistic Binary  class| Breast
2008 based on p-value | regresson (metastasis vs. | cancer
of fold change nomral)
Boulesteix et | Early 2-step Fullspace | Supevised feature | Tree based | Binary  class| Bresst and
al. 2008 extraction, PLS method (metastasis vs. | Cdoredal
nomral) cance
Boulesteix et | Early 1-step Fullspace | Regularization Logistic Binary  class| Breast
al. 2010 based technique regresson (metastasis vs. | cancer,
with normal & | Acute
booging remisson vs. | Lymphobast
no-remisson) ic Leucemia
(ALL)
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Figure 6: The right way to perform the supervised feature
selection [(Smialowski, Frishman et al. 2010)] is step A
Jollowed by step C, where most of the methods follow step B
that yields biased result for classification method.
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Figure 8: Schematic diagram of Pre-validation as suggested by Tibshirani et al. The first three phases

are repeated here k times to get the full X’ matrix. Here X,f represents the k-th part of training set.
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Figure 9: The two stage integration of the multi-site clinicogenomic models.

>

Homogeneous
Integration

Heterogeneous
Integration

44




Healthy Disease

Clinical information Genomic information

Figure 10: Subgroups of samples associated with several clinicogenomic
markers. Each of the marker groups such as A-E corresponds to a
subgroup. Among these A, C, E, D are discriminative (in order of their
discriminative power). A and E cover same group of patients, where rest of
them cover different subgroups of samples.
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Table 5: Summary of multisite clinicogenomic studies.

Study Dimensiondity Predictive Integration Testing Clinicd Endpant Disease
redudion method type additive
technique performance
of genamic
variables
Acharya et. Gene Clugering Hierarchicd | Early/Semi- | Yes Relapsefreesurvival | Breast
al. 2009 and preseledion Clugering | supevised (may be distant) Cance
based on prior
knowledge
Shedden et d. | Compaitivestudy | Cox hazard | Early No Survival daa LungCance
2008 among 8 modd
dimensiondity
redudion
techniques
Teschendaff | Common genes Univariate | Early No survival vs. death/ ER+ breast
et. a. aqoss6 datasets Cox modd devdopment of cancer
2006 metastatis
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