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Abstract—Probabilistic matrix factorization (PMF) methods
have shown great promise in collaborative filtering. In this
paper, we consider several variants and generalizations of PMF
framework inspired by three broad questions: Are the prior
distributions used in existing PMF models suitable, or can one
get better predictive performance with different priors? Are
there suitable extensions to leverage side information? Are
there benefits to taking into account row and column biases?
We develop new families of PMF models to address these
questions along with efficient approximate inference algorithms
for learning and prediction. Through extensive experiments
on movie recommendation datasets, we illustrate that simpler
models directly capturing correlations among latent factors
can outperform existing PMF models, side information can
benefit prediction accuracy, and accounting for row/column
biases leads to improvements in predictive performance.

Keywords-probabilistic matrix factorization, topic models,
variational inference,

I. INTRODUCTION

In recent years, matrix factorization methods have been
successfully applied to collaborative filtering [10]. For ex-
ample, in movie recommendation, given a rating matrix,
the idea is to predict any missing entry (i, j) with the
inner product of latent feature vectors for row (user) i and
column (movie) j. The idea has been explored by Simon
Funk [8], and later a probabilistic framework was developed,
yielding probabilistic matrix factorization (PMF) [16] and
its Bayesian generalization Bayesian PMF (BPMF) [17].
Both of them have achieved high accuracy in collaborative
filtering.

In this paper, we propose generalized PMFs (GPMFs)
based on the following three questions: First, are the prior
distributions used in PMF and BPMF suitable, or is it
possible to get a better prediction and a simpler algorithm
with different priors? PMF assumes a diagonal covariance
for the Gaussian prior, implying independent latent features;
BPMF maintains a distribution over all possible covariance
matrices. A model between PMF and BPMF is “parametric
PMF” (PPMF), which allows a non-diagonal covariance ma-
trix, but does not maintain distributions over all covariance
matrices. In this paper, we first consider this PPMF model.
The motivation is to avoid the independence assumption in
PMF, and avoid the full Bayesian treatment in BPMF to
simplify the learning process.

Second, are there suitable extensions to PMF models to
leverage side information for better collaborative filtering?
For example, in movie recommendation, there might be side
information on movies, such as genre and cast. It would be
interesting if the available side information could help the
rating prediction. Therefore, we incorporate side information
while performing matrix factorization. The side information
we consider is in form of discrete tokens, such as genre and
cast. The main idea is to use topic models over the side
information and PMF over the ratings matrix. The coupling
between two models come from the shared latent variables.

Third, are there any benefits to take into account row and
column biases in the PMF framework? Certain rows (users)
and columns (movies) may have significant biases, e.g., a
critical user gives low ratings, and a popular movie gets
high ratings. Therefore, the inner product of latent feature
vectors might not be a good explanation for the full rating,
but only for the residual rating after taking off the biases.
While considering biases in SVD [14] improves prediction
performance, we propose residual GPMFs which take the
biases into the PMF framework.

By running experiments on movie recommendation
datasets, we show that (1) PPMF performs better than PMF,
BPMF, and co-clustering based algorithms; (2) incorporating
side information improves prediction accuracy to a certain
extent; and (3) residual models usually generate higher
accuracy than the corresponding non-residual ones.

The rest of the paper is organized as follows: In Sec-
tions III-V, we propose GPMFs: Section III is for the models
only on the rating matrix, Section IV is for the models on
both the rating matrix and side information, and Section V
is for the residual models. We present experimental results
in Section VI and conclude in Section VII.

II. PRELIMINARIES AND RELATED WORK

In this section, we give a brief overview of PMF and
BPMF, as well as two topic models LDA and CTM. We also
give the recent related work on extensions to PMF models.

A. PMF and BPMF

PMF [16] is a probabilistic linear matrix factorization
model. Given a matrix R with N rows and M columns,
assuming each row i and column j has a latent feature
vector ui and vj , Rij is then generated from a Gaussian
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(d) LDA-MPMF

Figure 1. Graphical models for GPMFs. (a) and (b) work on the rating matrix. (c) and (d) work on the rating matrix with side information.

N(uT
i vj , τ

2). The priors for ui and vj are multivariate
Gaussians N(ui|0, σ2

1I) and N(vj |0, σ2
2I). The model is

learned by maximizing the posterior on latent feature vectors
u1:N and v1:M .

BPMF [17] introduces a full Bayesian prior to PMF. In
particular, for u1:N , it has a Gaussian prior N(ui|µ1,Σ1),
and for parameters (µ1, Σ1), there is a prior given by

p(µ1, Σ1|µ0, ν0,W0) = p(µ1|µ0, Σ1)p(Σ1|W0, ν0) ,

where p(µ1|µ0, Σ1) is a multivariate Gaussian with mean
µ0 and covariance Σ1, and p(Σ1|W0, ν0) is a Wishart
distribution with ν0 and W0 being degrees of freedom and
scale matrix respectively. v1:M have similar priors.

B. Topic models

Latent Dirichlet allocation (LDA) [5] is one of the most
popular topic modeling algorithms. LDA assumes that each
document has a separate discrete distribution π to generate
the topics of words, and all documents share a Dirichlet prior
α. The generative process for each document w is:

1) Draw π ∼ Dirichlet(α).
2) For each word wh in w:

a) Draw a topic zh = c ∼ discrete(π).
b) Draw wh from p(wh|β, zh).

β = {βc, [c]k1} ([c]k1 ≡ c = 1 . . . k) are the parameters for
k discrete topic distributions over all words, and each time
one of them is picked to generate the word given its topic.

Correlated topic models [4] (CTM) is similar to LDA,
except that instead of the Dirichlet prior, it uses a Gaussian
prior to capture the correlation among the topics.

C. Related work

Collaborative filtering with low-dimensional factors mod-
els have been widely explored: [14] improves regularized

SVD. [9], [13] are probabilistic models with hidden factor
variables connected to the ratings. In addition, as extensions
to PMF: [11] proposes a non-linear matrix factorization
algorithm using Gaussian processes. Bayesian clustered ten-
sor factorization [20] and mixed membership matrix fac-
torization [12] combine the clustering based models with
the factorization based models. [6] and [19] generalize the
idea of PMF to work on multi-way/multi-relational data.
Moreover, [15] and [1] also use side information to help
matrix factorization, but they differ from GPMFs either
in the types of side information to work on, the basic
mechanism of combining side information, or the inference
algorithm.

III. GPMFS ON RATING MATRIX

In this section, we propose PPMF and MPMF, which
are two GPMFs working only on the rating matrix. For
ease of exposition, we assume that we are working on the
movie rating matrix, where the rows represent the users and
columns represent the movies.

A. Parameterized PMF

Given a matrix R with N users and M movies, assuming
the k-dimensional latent feature vector for each user i is ui

and for each movie j is vj , the generative process of the
matrix R following PPMF is given as follows (Figure 1(a)):

1) For each user i, [i]N1 , generate ui ∼ N(µ1,Σ1).
2) For each movie j, [j]M1 , generate vj ∼ N(µ2, Σ2).
3) For each non-missing entry (i, j) in R, generate Rij ∼

N(uT
i vj , τ

2).
The likelihood of R is given by

p(R|P) =
∫

u1:N

∫

v1:M

N∏

i=1

p(ui|µ1, Σ1) (1)



M∏

j=1

p(vj |µ2, Σ2)
N∏

i=1

M∏

j=1

p(Rij |uT
i vj , τ

2)δij du1:Ndv1:M ,

where P = {µ1,Σ1, µ2,Σ2, τ
2} are the model parameters,

and δij is 1 if Rij is non-missing and 0 otherwise.

Given R, the learning task is to estimate model pa-
rameters P such that p(R|P) is maximized. A general
approach is to use the expectation maximization (EM)
algorithm, where we calculate the posterior over latent
variables p(u1:N ,v1:M |R,P) in the E-step and estimate
model parameters P in the M-step. In this paper, we propose
an efficient variational EM algorithm: First we introduce
a tractable family of distributions q(u1:N ,v1:M |P ′) as an
approximation of the true posterior p(u1:N ,v1:M |R,P),
where P ′ denotes the variational parameters. In particular,
P ′ = {λ1i,ν

2
1i,λ2j , ν

2
2j , [i]

N
1 , [j]M1 } in PPMF, and the

variational distribution q is given by

q(u1:N ,v1:M |P ′) (2)

=
N∏

i=1

q(ui|λ1i, diag(ν2
1i))

M∏

j=1

q(vj |λ2j , diag(ν2
2j)) ,

where for each ui and vj we have a variational Gaussian
distribution of k-dimensions. Given q(u1:N ,v1:M |P ′), ap-
plying Jensen’s inequality [5] yields a lower bound to the
log-likelihood

log p(R|P) ≥Eq[log p(u1:N ,v1:M , R|P)] (3)
+ H(q(u1:N ,v1:M |P ′)) .

The variational EM algorithm then iterates through E-step
and M-step as follows:

E-step: Denoting the lower bound (3) with L(P,P ′), the
best lower bound can be found by maximizing L(P,P ′)
over P ′, which gives

λ1i =
(
Σ−1

1 +
1
τ2

M∑

j=1

δij(λ2jλ
T
2j + diag(ν2

2j))
)−1

(
Σ−1

1 µ1 +
1
τ2

M∑

j=1

δijRijλ2j

)
(4)

ν2
1ic =

( M∑

j=1

δij(λ2
2jc + ν2

2jc)/τ2 + Σ−1
1,cc

)−1

, (5)

where Σ−1
1,cc is the cth element of Σ−1

1 ’s diagonal. λ2j and
ν2
2jc have a similar form. Note that although the covariance

matrices for variational Gaussians are diagonal, the model
parameters Σ1 and Σ2 are not diagonal, so PPMF is able to
capture the correlation among latent factors.

M-step: P ′∗ from the E-step gives us a surrogate objective
function L(P,P ′∗), optimizing L(P,P ′∗) over P yields the
estimate of the model parameters:

µ1 =
1
N

N∑

i=1

λ1i (6)

Σ1 =
1
N

N∑

i=1

(
diag(ν2

1i) + (λ1 − µ1)(λ1 − µ1)T
)

(7)

τ2 =
1
A

N∑

i=1

M∑

j=1

δij

(
R2

ij +λT
1idiag(ν2

2j)λ1i+λT
2jdiag(ν2

1i)λ2j

−2Rijλ
T
1iλ2j + (λT

1iλ2j)2 + Tr(diag(ν2
1i)diag(ν2

2j))
)

(8)

where A is the total number of non-missing entries in R.
The expressions for µ2 and Σ2 are similar with µ1 and Σ1.

To learn the model, the algorithm iterates through the
E-step and M-step until convergence. In the E-step, the
algorithm updates λ1, λ2, and ν1, ν2 alternatively till con-
vergence. The time complexity of each E-step is O(k2(kM+
kN + MN)tE), where k is the dimension of u and v, and
tE is the number of iterations inside the E-step. The time
complexity of each M-step is O(k2N + k2M + kMN).

We compare PPMF to PMF and BPMF. PMF only uses
a zero mean and diagonal covariance Gaussian over u and
v for regularization, and it uses MAP estimate to find the
best u1:N and v1:M directly. Comparatively, PPMF has a
Gaussian prior with an arbitrary mean and a full covariance
matrix. Before finding the best u1:N and v1:M , it first learns
model parameters by maximizing the log-likelihood of R,
which integrates out all possible u1:N and v1:M . For BPMF,
it uses a full Bayesian treatment with hyperparameters on top
of the Gaussian priors, which essentially keeps a distribution
over all possible PPMF models. Therefore, PPMF lies be-
tween PMF and BPMF. Meanwhile, the variational inference
for PPMF is a deterministic approximation algorithm, and
the Markov chain Monte Carlo used in BPMF is a stochastic
sampling based algorithm.

For prediction, we are using a MAP estimate. In particular,
for the estimate of the (i, j)th entry, R̂ij = ûT

i v̂j , where

{ûi, v̂j} = argmax
(ui,vj)

p(ui,vj |R,P)

≈ argmax
(ui,vj)

q(ui,vj |P ′) = {λ1i,λ2j} ,

so we have R̂ij = λT
1iλ2j .

B. Mixture PMF

In PPMF, ui and vj are generated from a single Gaussian
distribution. We could generalize the model by allowing ui

and/or vj to be generated from a mixture of Gaussians,
yielding mixture PMF.

Assuming one Gaussian N(µ1, Σ1) to generate ui, but a
mixture of L Gaussians {N(µ2l, Σ2l), [l]L1 } to generate vj ,
the generative process for MPMF is given by (Figure 1(b)):

1) For each user i, [i]N1 , generate ui ∼ N(µ1,Σ1).
2) For each movie j, [j]M1 :

a) Generate ρj ∼ Dirichlet(α).
b) Pick a Gaussian tj ∼ discrete(ρj).
c) Generate vj ∼ p(vj |µ2,1:L, Σ2,1:L, tj).



3) For each non-missing entry (i, j) in R, generate Rij ∼
N(uT

i vj , τ
2).

The likelihood of observing R is given by

p(R|P) =
∫

u1:N

∫

v1:M

N∏

i=1

p(ui|µ1, Σ1)
( M∏

j=1

p(ρj |α)p(tj |ρj)

p(vj |µ2,1:L, Σ2,1:L, tj)
) N∏

i=1

M∏

j=1

p(Rij |uT
i vj , τ

2)δij

du1:Ndv1:M , (9)

where P = {µ1,Σ1,µ2l, Σ2l, τ
2, α, [l]L1 }.

There are a few things to note for MPMF: First, for the
model in Figure 1(b), vj is generated from a mixture of
Gaussians, but ui is still generated from a single Gaussian.
In principle, both ui and vj could be generated from a
mixture of Gaussians. Second, the Dirichlet-discrete prior
(α → ρj) over tj seems unnecessary. Following the standard
mixture model, we only need one discrete(ρ) to generate all
{tj , [j]M1 }. However, we are proposing MPMF as an inter-
mediate model from PPMF to LDA-MPMF. The Dirichlet-
discrete prior (α → ρj) becomes useful when we combine
MPMF with LDA as discussed in Section IV-B.

For inference and learning, MPMF follows a sim-
ilar approach as in PPMF, except that it uses a
more complicated variational distribution q. Let P ′ =
{λ1i, ν

2
1i, λ2jl, ν

2
2jl, γj , φj , [j]M1 , [l]L1 }, the variational dis-

tribution q for MPMF is given by

q(u1:N ,v1:M , t1:M , ρ1:M |P ′) =
N∏

i=1

q(ui|λ1i, diag(ν2
1i))

( M∏

j=1

q(ρj |γj)q(tj |φj)q(vj |λ2j,1:L,diag(ν2
2j,1:L), tj)

)
(10)

where for each ui we still have a k-dimensional Gaussian,
and for each vj we have an L-dimensional Dirichlet(γj) to
generate ρj , an L-dimensional discrete(φj) to generate tj ,
and a mixture of k-dimensional Gaussians to generate vj .

The updating equations are given by:
E-step:

λ1i =
(
Σ−1

1 +
1
τ2

M∑

j=1

δij

L∑

l=1

φjl(λ2jlλ
T
2jl + diag(ν2

2jl))
)−1

(
Σ−1

1 µ1 +
1
τ2

M∑

j=1

δijRij

L∑

l=1

φjlλ2jl

)
(11)

λ2jl =
(
Σ−1

2l +
1
τ2

N∑

i=1

δij(λ1iλ
T
1i + diag(ν2

1i))
)−1

(
Σ−1

2l µ2 +
1
τ2

N∑

i=1

δijRijλ1i

)
(12)

ν2
1ic =

( M∑

j=1

δij

L∑

l=1

φjl(λ2
2jlc+ν2

2jlc)/τ2+Σ−1
1,cc

)−1

(13)

ν2
2jlc =

( N∑

i=1

δij(λ2
1ic + ν2

1ic)/τ2 + Σ−1
2l,cc

)−1

(14)

φjl ∝ exp
(
Ψ(γjl)−Ψ(

L∑

l′=1

γjl)− 1
2

Tr(Σ−1
2l diag(ν2

2jl))

− 1
2
(λ2jl − µ2l)T Σ−1

2l (λ2jl − µ2l) +
1
2

log |Σ−1
2l |

− 1
2τ2

N∑

i=1

δij

(− 2Rijλ
T
1iλ2jl + (λT

1iλ2jl)2

+ λT
1idiag(ν2

2jl)λ1i + λT
2jldiag(ν2

1i)λ2jl

+ Tr(diag(ν2
1i)diag(ν2

2jl))
)

+
1
2

log(ν2
2jlc)

)
(15)

γjl =αl + φjl (16)

where Ψ is the digamma function.
M-step:

µ1 =
1
N

N∑

i=1

λ1i (17)

µ2l =
M∑

j=1

φjlλ2jl/

M∑

j=1

φjl (18)

Σ1 =
1
N

N∑

i=1

(
diag(ν2

1i) + (λ1 − µ1)(λ1 − µ1)T
)

(19)

Σ2l =
M∑

j=1

φjl

(
diag(ν2

2jl)+(λ2jl−µ2)(λ2jl−µ2)T
)
/

M∑

j=1

φjl

(20)

τ2 =
1
A

N∑

i=1

M∑

j=1

δij

(
R2

ij − 2Rijλ
T
1i

L∑

l=1

φjlλ2jl

+
L∑

l=1

φjl

(
(λT

1iλ2jl)2 + λT
1idiag(ν2

2jl)λ1i + λT
2jldiag(ν2

1i)λ2jl

+ Tr(diag(ν2
1i)diag(ν2

2jl))
))

(21)

α could be updated using Newton-Raphson algorithm [5] as
α′l = αl − ζ(xl − y)/rl , (22)

where ζ is the learning rate and

xl =M
(
Ψ(

L∑

l′=1

αl′)−Ψ(αl)
)

+
M∑

j=1

(
Ψ(γjl)−Ψ(

L∑

l′=1

γjl)
)

rl =−MΨ′(αl)

y =(
L∑

l=1

xl/rl)/(1/e +
L∑

l=1

1/rl)

e =MΨ′(
L∑

l=1

αl) .

As in PPMF, the algorithm iterates through E-step and
M-step until convergence, and in the E-step, the algorithm
updates all variational parameters alternatively until con-
vergence. The complexity for each E-step is O((k3N +



k2NML + k3ML + ML2)tE). For each M-step, the com-
plexity for updating α is O(MLtα) given tα the number of
iterations to update α, and the complexity for updating other
model parameters is O(k2N + k2ML + kNML).

For the prediction of MPMF, we use MAP estimate as
in PPMF, i.e., R̂ij = ûT

i v̂j , where ûi = λ1i, and v̂j =∑L
l=1 φjlλ2jl. Therefore, R̂ij = λT

1i

∑L
l=1 φjlλ2jl.

IV. GPMFS ON RATING MATRIX WITH SIDE
INFORMATION

PPMF and MPMF work on the rating matrix only. In
this section, we propose two models to incorporate the side
information while performing matrix factorization. The idea
of using side information to help matrix factorization could
be considered as a combination of two basic algorithms
in collaborative filtering—matrix factorization based algo-
rithms and neighborhood based algorithms. We use matrix
factorization on the rating matrix, meanwhile, we hope that
the low-dimensional latent feature vectors v for two movies
are close to each other if they are neighbors based on side
information, e.g. they have similar casts. In this paper, we
assume that we only have side information on movies, such
as movie’s cast, plot, genre, etc..

Topic modeling algorithms such as CTM and LDA work
on documents, and matrix factorization algorithms such as
PPMF and MPMF work on the rating matrix. Therefore,
given the data like “ratings+movie plots”, it is a natural idea
to combine topic models with matrix factorization, in order
to help rating prediction using movie plots. In particular, we
propose CTM-PPMF and LDA-MPMF, with CTM-PPMF
a combination of CTM and PPMF, and LDA-MPMF a
combination of LDA and MPMF. Other than the plots, in
general, the model works on other side information in form
of discrete tokens, such as actor/actress names, movie genre,
etc., but for ease of exposition, we will still use “document”,
“words”, and “topics” when describing the model.

A. CTM-PPMF

The main idea in CTM-PPMF is as follows: For each
movie j, vj not only serves as PPMF’s latent feature vector
for its ratings, but also serves as CTM’s membership vector
over topics (after logistic transformation) for its correspond-
ing side information. Therefore the common vj for both the
ratings and side information of movie j becomes the glue
to combine PPMF and CTM together.

Given a matrix R with N users and M movies, for
each movie j, we have side information wj as a collection
of words. Denoting the side information of M movies as
W = {wj , [j]M1 }, the generative process of (R, W ) for
CTM-PPMF is given as follows (Figure 1(c)):

1) For each user i in R, [i]N1 , generate ui∼N(µ1, Σ1).
2) For each movie j in R, [j]M1 , generate vj∼N(µ2,Σ2).
3) For the hth word in wj ,[j]M1 :

a) Generate a topic zjh ∼ discrete(logistic(vj)).

b) Generate the word wjh ∼ p(wjh|β, zjh).
4) For each non-missing entry (i, j) in R, generate Rij ∼

N(uT
i vj , τ

2).

Here logistic(vj) = exp(vj)∑k
c=1 exp(vjc)

is a logistic function to

transform vj to a discrete distribution, and β = {βc, [c]k1}
are k discrete distributions for k topics over all words in
the dictionary. Let P = {µ1, Σ1, µ2,Σ2, τ

2, βc, [c]k1}, the
likelihood function of observing R and W is

p(R,W |P) (23)

=
∫

u1:N

∫

v1:M




M∏

j=1

p(vj |µ2, Σ2)p(zj |vj)p(wj |zj , β1:k)




N∏

i=1

p(ui|µ1, Σ1)
N∏

i=1

M∏

j=1

p(Rij |uT
i vj , τ

2)δij du1:Ndv1:M .

The inference and learning for CTM-PPMF is similar to
that of PPMF, except that we need to introduce discrete(φj)
in the variational distribution to generate zj , so we have

q(u1:N ,v1:M |P ′) =
N∏

i=1

q(ui|λ1i, diag(ν2
1i)) (24)

M∏

j=1

(
q(vj |λ2j , diag(ν2

2j))
Sj∏

h=1

q(zjh|φj)
)
,

where Sj is the number of total words in wj and P ′ =
{λ1i, ν

2
1i,λ2j , ν

2
2j , φj , [i]N1 , [j]M1 }.

For the update equations, in the E-step, the equations for
λ1i and ν1ic are the same as in PPMF, and the equations
for λ2j , ν2jc and φjc are given by

λ2j =
(
Σ−1

2 +
1
τ2

N∑

i=1

δij(λ1iλ
T
1i + diag(ν2

1i)) + SjH(ξj)
)−1

(
Σ−1

2 µ2 +
1
τ2

N∑

i=1

δijRijλ1i− Sj exp(ξj)∑k
c=1 exp(ξjc)

+SjH(ξj)ξj +Sjφj

)
(25)

ν2jc =
(
Sj exp(ξjc)(

k∑

c′=1

exp(ξjc′)− exp(ξjc)) + Σ−1
2,cc

+
1
τ2

N∑

i=1

δij(λ2
1ic + ν2

1ic)
)−1

(26)

φjc ∝ exp
(
λ2jc +

1
Sj

Sj∑

h=1

D∑

d=1

1(wjh ∼ d) log βcd

)
(27)

Here ξj is a new variational parameter, and in each iteration
of EM, it takes the value of λ2j from the last iteration.
1(wjh ∼ d) is an indicator taking value 1 if wjh is the dth

word in the dictionary and 0 otherwise. H(ξj) is given by

H(ξj) =
diag(exp(ξj))∑k

c=1 exp(ξjc)
− exp(ξj) exp(ξj)T

(∑k
c=1 exp(ξjc)

)2 .

The update equations for µ1, µ2, Σ1, and Σ2 in the M-step



are the same as in PPMF. For β, we have

βcd ∝
M∑

j=1

φjc

Sj∑

h=1

1(wjh ∼ d) . (28)

For each E-step, the time complexity for updating φ
is O(kMSDtE), where S = max{Sj , [j]M1 }, and the
complexity for updating the rest variational parameters is
O(k2(kM + kN + NM)tE). For each M-step, the time
complexity is O(kMSD) for updating β and O(k2N +
k2M + kMN) for updating other model parameters.

For CTM-PPMF, the prediction of the missing entry is
the same as PPMF, i.e., R̂ij = λT

1iλ2j .

B. LDA-MPMF

The main idea of LDA-MPMF is as follows: For MPMF
on the rating matrix, each movie has a Dirichlet-discrete
prior (α → ρj). Meanwhile, if we use LDA on side
information, each movie also needs a Dirichlet-discrete prior
to generate the topics of words in its side information.
Therefore, letting MPMF and LDA share the Dirichlet-
discrete prior, we can combine MPMF and LDA together.

Given a rating matrix R with N users and M movies,
where each movie j has the side information wj , the gen-
erative process of (R,W ) for LDA-MPMF is (Figure 1(d)):

1) For each user i in R, [i]N1 , generate ui ∼ N(µ1,Σ1).
2) For each movie j in R, [j]M1 :

a) Generate ρj ∼ Dirichlet(α).
b) Pick a Gaussian tj ∼ discrete(ρj).
c) Generate vj ∼ p(vj |µ2,1:L, Σ2,1:L, tj).

3) For the hth word in wj ,[j]M1 :
a) Generate a topic zjh ∼ discrete(ρj).
b) Generate the word wjh ∼ p(wjh|β, zjh).

4) For each non-missing entry (i, j) in R, generate Rij ∼
N(uT

i vj , τ
2).

Here β = {βl, [l]L1 } are L discrete distributions for L
topics over all words in the dictionary. Letting P =
{µ1, Σ1, µ2l,Σ2l, τ

2, α, , βl, [l]L1 }, the likelihood function
of observing R and W is given by

p(R,W |P) =
∫

u1:N

∫

v1:M

N∏

i=1

p(ui|µ1, Σ1) (29)

( M∏

j=1

p(ρj |α)p(tj |ρj)p(vj |µ2,1:L, Σ2,1:L, tj)p(zj |ρj)

p(wj |zj ,β1:L)
) N∏

i=1

M∏

j=1

p(Rij |uT
i vj , τ

2)δij du1:Ndv1:M .

Looking at the graphical models of MPMF and LDA-
MPMF in Figure 1, as we have mentioned, MPMF is the
intermediate model between PPMF and LDA-MPMF, so
although the prior α → ρj seems to be redundant in MPMF,
it becomes useful when combining with LDA.

In Figure 1, LDA-MPMF and CTM-PPMF show different
ways to incorporate side information. In CTM-PPMF, the
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Figure 2. Graphical model for residual PPMF.

topics z for side information of movies are generated
from the membership vector logistic(v). Therefore, similar
logistic(v) may lead to similar documents apriori, i.e.,
similar documents indicate similar v for movies aposteriori,
hence similar ratings. In LDA-MPMF, the ratings and side
information for a particular movie share the membership
vectror ρ. Therefore, conditioned on similar side information
of movies, their ρ would be similar, so their v would
probably be generated from a same Gaussian in the mixture,
hence are similar. Due to their different strategies, in CTM-
PPMF, the dimension of v is the same with the number of
topics in the documents, but in LDA-MPMF, the dimension
of v has nothing to do with the number of topics.

The variational distribution q for LDA-MPMF is

q(u1:N ,v1:M , t1:M ,ρ1:M , z1:M |P ′) =
N∏

i=1

q(ui|λ1i, diag(ν2
1i))

( M∏

j=1

q(ρj |γj)q(tj |φj)q(vj |λ2j,1:L,diag(ν2
2j,1:L), tj)q(zj |φj)

)
,

(30)

where P ′ is the same as in MPMF. For the updating
equations, in the E-step, the equations for λ1i, λ2jl, ν1ic

and ν2jlc are the same as in MPMF, and the equations for
φjl and γjl are

φjl ∝ exp
{[(

Ψ(γjl)−Ψ(
L∑

l′=1

γjl)
)
(Sj + 1) +

1
2

log |Σ−1
2l |

− 1
2

Tr(Σ−1
2l diag(ν2

2jl))−
1
2
(λ2jl−µ2l)T Σ−1

2l (λ2jl−µ2l)

+
Sj∑

h=1

D∑

d=1

1(wjh ∼ d) log βld − 1
2τ2

N∑

i=1

δij

(
−2Rijλ

T
1iλ2jl

+(λT
1iλ2jl)2+λT

1idiag(ν2
2jl)λ1i + λT

2jldiag(ν2
1i)λ2jl

+Tr(diag(ν2
1i)diag(ν2

2jl))
)
+

1
2

log(ν2
2jlc)

]
/(1+Sj)

}
(31)

γjl = αl + (1 + Sj)φjl . (32)

In the M-step, the updating equation for β is given by

βld ∝
M∑

j=1

φjl

Sj∑

h=1

D∑

d=1

1(wjh ∼ d) , (33)

where D is the total number of words in the dictionary. The
equations for other parameters are the same as in MPMF.



In each E-step, the time complexity is O(ML(L + k3 +
SD + Nk)tE) for updating φ and O((k3N + k2MNL +
k3ML)tE) for updating the rest of the variational pa-
rameters. In each M-step, the complexity for updating α
and β is O(MLtα) and O(MSD2L) respectively, and
the complexity for updating the rest model parameters is
O(k2N + k2ML + kNML).

For prediction of missing entry in LDA-MPMF, the pre-
diction is the same as MPMF, i.e., R̂ij = λT

1i

∑L
l=1 φjlλ2jl.

V. RESIDUAL GPMFS

There are usually biases in the ratings. For example, a
popular movie usually receives high ratings, and a critical
user usually gives low ratings. Therefore, it may be unwise
to explain the full rating Rij using the inner product of ui

and vj . Instead, a certain part of Rij could be explained by
the user and movie biases, hence we use uT

i vj to explain
Rij with the biases taken off, i.e., the residue of Rij , which
gives residual GPMFs.

We have a corresponding residual model for each of the
four models we have proposed. In particular, instead of
generating Rij from N(uT

i vj , τ
2), in the residual models,

Rij is generated from N(uT
i vj + fi + gj , τ

2), where fi

and gj are the row and column biases, and are assumed to
be generated from N(m1, σ

2
1) and N(m2, σ

2
2) respectively.

Therefore, the matrix factorization is performed on R after
the effects of fi and gj removed. For brevity, we only
discuss residual PPMF (rsPPMF) as an example, the other
residual models can be obtained in a similar way. We report
experimental results on all residual models in Section VI.

As in Figure 2, the generative process of rsPPMF for the
matrix R with N users and M movies is as follows:

1) For each user i, [i]N1 , generate ui ∼ N(µ1,Σ1).
2) For each movie j, [j]M1 , generate vj ∼ N(µ2, Σ2).
3) For each user i, [i]N1 , generate fi ∼ N(m1, σ

2
1).

4) For each movie j, [j]M1 , generate gj ∼ N(m2, σ
2
2).

5) For each non-missing entry (i, j) in R, generate Rij ∼
N(uT

i vj + fi + gj , τ
2).

The likelihood of observing R is therefore

p(R|P)=
∫

u1:N

∫

v1:M

∫

f1:N

∫

g1:M

( N∏

i=1

p(ui|µ1, Σ1)p(fi|m1, σ
2
1)

)

(M∏

j=1

p(vj |µ2,Σ2)p(gj |m2,σ
2
2)

)N∏

i=1

M∏

j=1

p(Rij |uT
i vj +fi+gj , τ

2)δij

du1:Ndv1:Mdf1:Ndg1:M (34)

where P = {µ1,Σ1,µ2, Σ2, τ
2, m1, σ

2
1 ,m2, σ

2
2}.

For inference, we introduce two new terms to the varia-
tional distribution: a variational Gaussian N(θ1i, η

2
1i) for fi

and N(θ2j , η
2
2j) for gj . The variational distribution becomes:

q(u1:N ,v1:M |P ′) =
( N∏

i=1

q(ui|λ1i, diag(ν2
1i))q(fi|θ1i, η

2
1i)

)

( M∏

j=1

q(vj |λ2j , diag(ν2
2j))q(gj |θ2j , η

2
2j)

)
, (35)

where P ′ = {λ1i, ν
2
1i, λ2j ,ν

2
2j , θ1i, η

2
1i, θ2j , η

2
2j , [i]

N
1 , [j]M1 }.

The updating equations for ν1, ν2, µ1, µ2 and Σ1, Σ2

are the same as in PPMF. For the rest parameters, we have:
E-step:

λ1i =
(
Σ−1

1 +
1
τ2

M∑

j=1

δij(λ2jλ
T
2j + diag(ν2

2j))
)−1

(
Σ−1

1 µ1 +
1
τ2

M∑

j=1

δij(Rij − θ1i − θ2j)λ2j

)
(36)

θ1i =
( 1
σ2

1

+
1
τ2

M∑

j=1

δij

)−1(m1

σ2
1

+
1
τ2

M∑

j=1

(Rij − θ2j − λT
1iλ2j)

)

(37)

η2
1i =

(
1/σ2

1 +
M∑

j=1

δij/τ2
)−1

. (38)

The expressions for λ2j , θ2j and η2
2j are similar.

M-step:

τ2 =
1
A

N∑

i=1

M∑

j=1

δij

(
R2

ij + λT
1idiag(ν2

2j)λ1i + λT
2jdiag(ν2

1i)λ2j

− 2Rij(λT
1iλ

T
2j + θ1i + θ2j) + (λT

1iλ2j + θ1i + θ2j)2

+ Tr(diag(ν2
1i)diag(ν2

2j)) + η2
1i + η2

2j

)
(39)

m1 =
1
N

N∑

i=1

θ1i (40)

σ2
1 =

1
N

N∑

i=1

((θ1i −m1)2 + η2
1i) . (41)

The expressions for m2, and σ2
2 are similar.

For the other three models, their corresponding residual
models also generate Rij from N(uT

i vj + fi + gj , τ
2), and

they also need a variational Gaussian N(θ1i, η
2
1i) for fi

and N(θ2j , η
2
2j) for gj while doing inference. The update

equations could be easily derived then.
For prediction of residual GPMFs following MAP esti-

mate, we have R̂rs
ij = R̂ij + f̂i + ĝj , where R̂ij = ûT

i v̂j

according to the corresponding original models, f̂i = θ1i

and ĝj = θ2j .

VI. EXPERIMENTAL RESULTS

In this section, we run collaborative filtering on movie rat-
ing data using multiple algorithms, including PMF, BPMF,
co-clustering algorithms and GPMFs we have proposed1.

1For algorithms we compare with, the code for spectral co-clustering
is from http://adios.tau.ac.il/SpectralCoClustering/, and the code for other
algorithms are from the authors of original papers.



Table I
MSE FROM PPMF AND CO-CLUSTERING BASED ALGORITHMS.

(a) On movielens
k 5 10 15 20 25 30
specCoc 0.1178 0.1160 0.1163 0.1157 0.1103 0.1103
s2 ±0.0016 ±0.0020 ±0.0025 ±0.0028 ±0.0013 ±0.0014
specCoc 0.0983 0.0958 0.0962 0.0959 0.0942 0.0943
s5 ±0.0011 ±0.0017 ±0.0023 ±0.0021 ±0.0013 ±0.0011
BregCoc 0.0943 0.0949 0.0953 0.0959 0.0966 0.0973
s2 ±0.0015 ±0.0014 ±0.0014 ±0.0013 ±0.0020 ±0.0016
BregCoc 0.0993 0.1021 0.1030 0.1049 0.1063 0.1078
s5 ±0.0012 ±0.0017 ±0.0020 ±0.0017 ±0.0021 ±0.0018
BCC 0.1139 0.1116 0.1119 0.1119 0.1106 0.1114

±0.0011 ±0.0015 ±0.0011 ±0.0015 ±0.0018 ±0.0022
PPMF 0.0862 0.0863 0.0859 0.0854 0.0853 0.0855

±0.0011 ±0.0010 ±0.0011 ±0.0013 ±0.0011 ±0.0012

(b) On million-movielens
k 5 10 15 20 25 30
specCoc 0.1212 0.1170 0.1141 0.1136 0.1128 0.1115
s2 ±0.0012 ±0.0010 ±0.0001 ±0.0001 ±0.0001 ±0.0001
specCoc 0.0948 0.0987 0.0953 0.0987 0.0968 0.0977
s5 ±0.0022 ±0.0063 ±0.0014 ±0.0035 ±0.0035 ±0.0037
BregCoc 0.0902 0.0885 0.0881 0.0878 0.0874 0.0875
s2 ±0.0001 ±0.0001 ±0.0001 ±0.0001 ±0.0004 ±0.0004
BregCoc 0.0978 0.0987 0.0967 0.1007 0.0953 0.0955
s5 ±0.0020 ±0.0030 ±0.0031 ±0.0099 ±0.0022 ±0.0022
BCC 0.1079 0.1060 0.1044 0.1037 0.1036 0.1035

±0.0014 ±0.0001 ±0.0001 ±0.0001 ±0.0006 ±0.0005
PPMF 0.0800 0.0784 0.0785 0.0784 0.0785 0.0783

±0.0005 ±0.0005 ±0.0005 ±0.0006 ±0.0005 ±0.0006

Table II
MSE FROM PMF, BPMF AND PPMF.

(a) On movielens
k 5 10 15 20 25 30
PMF 0.09172 0.09702 0.10048 0.10106 0.10235 0.10350

±0.00230 ±0.00179 ±0.00194 ±0.00209 ±0.00182 ±0.00123
BPMF 0.08954 0.09040 0.09269 0.09638 0.10121 0.10664

±0.00104 ±0.00117 ±0.00129 ±0.00144 ±0.00152 ±0.00152
PPMF 0.08620 0.08629 0.08587 0.08544 0.08533 0.08551

±0.00112 ±0.00103 ±0.00111 ±0.00137 ±0.00112 ±0.00122

(b) On million-movielens
k 5 10 15 20 25 30
PMF 0.07996 0.08040 0.08238 0.08343 0.08362 0.08431

±0.00044 ±0.00036 ±0.00070 ±0.00067 ±0.00047 ±0.00059
BPMF 0.08517 0.08685 0.08970 0.09382 0.09879 0.10525

±0.00055 ±0.00058 ±0.00062 ±0.00063 ±0.00067 ±0.00076
PPMF 0.08003 0.07837 0.07849 0.07840 0.07855 0.07832

±0.00057 ±0.00051 ±0.00050 ±0.00055 ±0.00054 ±0.00059

Table III
MSE FROM ORIGINAL AND RESIDUAL GPMFS WITH k = 30.

(a) On movielens
original residual

PPMF 0.08551 0.08502
±0.00122 ±0.00119

CTM-PPMF 0.08695 0.08615
cast ±0.01486 ±0.00120
CTM-PPMF 0.08913 0.08803
plot ±0.00153 ±0.00127
CTM-PPMF 0.08589 0.08538
genre ±0.00139 ±0.00108
MPMF 0.08628 0.08753

±0.00115 ±0.00110
LDA-MPMF 0.08774 0.08739
cast ±0.00164 ±0.00105
LDA-MPMF 0.08747 0.08750
plot ±0.00121 ±0.00110
LDA-MPMF 0.08693 0.08754
genre ±0.00167 ±0.00156

(b) On million-movielens
original residual

PPMF 0.07832 0.07786
±0.00059 ±0.00056

CTM-PPMF 0.07800 0.07734
cast ±0.00056 ±0.00055
CTM-PPMF 0.07942 0.07859
plot ±0.00055 ±0.00058
CTM-PPMF 0.07817 0.07727
genre ±0.00047 ±0.00054
MPMF 0.07906 0.07819

±0.00054 ±0.00052
LDA-MPMF 0.07897 0.07839
cast ±0.00055 ±0.00053
LDA-MPMF 0.07905 0.07824
plot ±0.00052 ±0.00053
LDA-MPMF 0.07923 0.07824
genre ±0.00045 ±0.00053

We use two movielens datasets2. One (movielens) con-
tains 100,000 ratings for 1682 movies by 943 users, the
other (million-movielens) contains 1 million ratings for 3900
movies by 6040 users. For each movie we extract three
types of side information from IMDB3—cast, genre, and
plot. For genre, there are 25 movie types in both datasets.
For cast, we only use the top-10 ranked most important
actors/actresses in each movie, and there are totally 7099 and
13924 actors/actresses in movielens and million-movielens
respectively. For plot, we use the plots written by imdb users.
After preprocessing the text, there are totally 2791 and 2693
words in the dictionary of movielens and million-movielens
respectively. We then remove the movies with one or more
types of side information missing.

We use mean square error (MSE) as the measurement of
prediction accuracy on the rating matrix. A small part of the
ratings is held out as the validation set, which is used in the
training process to decide the stopping time for variational
EM iterations. In particular, we stop the variational EM when

2www.movielens.umn.edu
3www.imdb.com

the number of iterations is larger than 3 (because we do
not want the iteration to stop too early) and the MSE on
the validation set is larger than the last iteration. Unless
otherwise specified, we use this “early stopping” strategy
for all matrix factorization based algorithms. For the rest of
the ratings, we use a 10-fold cross validation: We divide all
ratings evenly into 10 parts, one of which is picked as the
test set, and the remaining 9 parts are used as the training
set. The process is repeated for 10 times, with each part
used once as the test set. We then take the average MSE
over 10 folds on the test set. Before running the algorithm,
we transform each rating Rij to

√
6−Rij , such that the

ratings are closer to a Gaussian distribution [2].

A. PPMF vs. Co-clustering Algorithms

We first compare PPMF to co-clustering based algorithms.
Performing co-clustering on a matrix gives the membership
vectors for rows/columns over row/column clusters, as well
as certain statistics for each row-column cluster, i.e., co-
cluster. For a certain entry (i, j) in the matrix R, after
learning the membership vectors for row i and column j,
as well as the statistics for all co-clusters, we can predict
Rij . In our experiment, we compare PPMF with three co-
clustering algorithms: spectral co-clustering (specCoc) [7],
Bregman co-clustering (BregCoc) [3], and Bayesian co-
clustering (BCC) [18]. We use two schemes (s2 and s5)
for specCoc and BregCoc, with different schemes keeping
different types of statistics [3]. For initialization of co-
clustering algorithms, we run k-means on the low-rank
vectors from imputed singular value decomposition (SVD),
and use the result membership vectors for initialization.
For PPMF, we use random initialization. The MSE with
k from 5 to 30 are presented in Table I, where k is
the dimension of u and v for PPMF and the number of
row/column clusters for the co-clustering algorithms. We can



Table IV
MSE FROM GENERALIZED PMFS.

(a) On movielens
k 5 10 15 20 25 30
PPMF 0.08620 0.08629 0.08587 0.08544 0.08533 0.08551

±0.00112 ±0.00103 ±0.00111 ±0.00137 ±0.00112 ±0.00122
CTM 0.08741 0.08663 0.08633 0.08650 0.08686 0.08695
-PPMF ±0.00125 ±0.00121 ±0.00127 ±0.00169 ±0.01262 ±0.01486
cast
CTM 0.08849 0.08812 0.08817 0.08846 0.08849 0.08913
-PPMF ±0.00124 ±0.00123 ±0.00142 ±0.00148 ±0.00120 ±0.00154
plot
CTM 0.08694 0.08728 0.08607 0.08615 0.08578 0.08589
-PPMF ±0.00112 ±0.00143 ±0.00121 ±0.00141 ±0.00132 ±0.00139
genre
MPMF 0.08765 0.08683 0.08641 0.08598 0.08613 0.08628

±0.00079 ±0.00112 ±0.00127 ±0.00106 ±0.00126 ±0.00115
LDA 0.08766 0.08826 0.08763 0.08749 0.08737 0.08774
-MPMF ±0.00065 ±0.00099 ±0.00140 ±0.00134 ±0.00119 ±0.00164
cast
LDA 0.08788 0.08790 0.08813 0.08756 0.08735 0.08747
-MPMF ±0.00096 ±0.00081 ±0.00118 ±0.00169 ±0.00104 ±0.00121
plot
LDA 0.08719 0.08737 0.08770 0.08683 0.08649 0.08693
-MPMF ±0.00104 ±0.00134 ±0.00104 ±0.00093 ±0.00122 ±0.00167
genre •

(b) On million-movielens
k 5 10 15 20 25 30
PPMF 0.08003 0.07837 0.07849 0.07840 0.07855 0.07832

±0.00057 ±0.00051 ±0.00050 ±0.00055 ±0.00054 ±0.00059
CTM 0.08108 0.07875 0.07829 0.07810 0.78090 0.07800
-PPMF ±0.00053 ±0.00047 ±0.00042 ±0.00053 ±0.00053 ±0.00056
cast • • • •
CTM 0.08166 0.07991 0.07945 0.07915 0.07923 0.07942
-PPMF ±0.00048 ±0.00046 ±0.00049 ±0.00040 ±0.00052 ±0.00055
plot
CTM 0.08062 0.07831 0.07830 0.07800 0.07808 0.07817
-PPMF ±0.00040 ±0.00045 ±0.00057 ±0.00052 ±0.00048 ±0.00047
genre • • • • •
MPMF 0.07983 0.07874 0.07886 0.07874 0.07915 0.07906

±0.00061 ±0.00071 ±0.00067 ±0.00060 ±0.00043 ±0.00054
LDA 0.07986 0.07861 0.07924 0.07877 0.07908 0.07897
-MPMF ±0.00066 ±0.00053 ±0.00048 ±0.00050 ±0.00061 ±0.00055
cast • • •
LDA 0.08000 0.07869 0.07916 0.07884 0.07904 0.07905
-MPMF ±0.00059 ±0.00060 ±0.00057 ±0.00039 ±0.00047 ±0.00052
plot • • •
LDA 0.08013 0.07902 0.07908 0.07938 0.07972 0.07923
-MPMF ±0.00049 ±0.00053 ±0.00053 ±0.00044 ±0.00049 ±0.00045
genre

Table V
MSE FROM RESIDUAL MODELS OF GENERALIZED PMFS.

(a) On movielens
k 5 10 15 20 25 30
rsPPMF 0.08605 0.08671 0.08559 0.08517 0.08506 0.08502

±0.00100 ±0.00129 ±0.00109 ±0.00111 ±0.00117 ±0.00119
rsCTM 0.08576 0.08634 0.08589 0.08621 0.08629 0.08615
-PPMF ±0.00077 ±0.00134 ±0.00096 ±0.00112 ±0.00108 ±0.00120
cast • •
rsCTM 0.08678 0.08685 0.08699 0.08731 0.08730 0.08803
-PPMF ±0.00110 ±0.00073 ±0.00119 ±0.00102 ±0.00128 ±0.00127
plot
rsCTM 0.08590 0.08599 0.08565 0.08509 0.08521 0.08538
-PPMF ±0.00092 ±0.00106 ±0.00078 ±0.00116 ±0.00116 ±0.00108
genre • • •
rsMPMF 0.08764 0.08683 0.08640 0.08598 0.08724 0.08753

±0.00079 ±0.00112 ±0.00127 ±0.00106 ±0.00116 ±0.00110
rsLDA 0.08877 0.08952 0.08867 0.08807 0.08783 0.08739
-MPMF ±0.00136 ±0.00170 ±0.00123 ±0.00146 ±0.00141 ±0.00105
cast •
rsLDA 0.08894 0.08949 0.08842 0.08776 0.08765 0.08750
-MPMF 0.00128 ±0.00150 ±0.00145 ±0.00111 ±0.00112 ±0.00110
plot •
rsLDA 0.08881 0.08930 0.08860 0.08765 0.08745 0.08754
-MPMF ±0.00154 ±0.00134 ±0.00117 ±0.00104 ±0.00130 ±0.00156
genre

(b) On million-movielens
k 5 10 15 20 25 30
rsPPMF 0.07902 0.07795 0.07776 0.07780 0.07783 0.07786

±0.00061 ±0.00074 ±0.00056 ±0.00061 ±0.00053 ±0.00056
rsCTM 0.07916 0.07818 0.07799 0.07754 0.07727 0.07734
-PPMF ±0.00078 ±0.00084 ±0.00044 ±0.00051 ±0.00058 ±0.00055
cast • • •
rsCTM 0.07957 0.07851 0.07860 0.07838 0.07843 0.07859
-PPMF ±0.00072 ±0.00064 ±0.00101 ±0.00047 ±0.00052 ±0.00058
plot
rsCTM 0.07903 0.07814 0.07768 0.07750 0.07722 0.07727
-PPMF ±0.00075 ±0.00054 ±0.00054 ±0.00053 ±0.00059 ±0.00054
genre • • • •
rsMPMF 0.07982 0.07874 0.07886 0.07875 0.07843 0.07819

±0.00061 ±0.00070 ±0.00066 ±0.00060 ±0.00057 ±0.00052
rsLDA 0.07954 0.07871 0.07840 0.07856 0.07859 0.07839
-MPMF ±0.00060 ±0.00061 ±0.00049 ±0.00054 ±0.00060 ±0.00053
cast • • • •
rsLDA 0.07962 0.07875 0.07840 0.07850 0.07856 0.07824
-MPMF ±0.00053 ±0.00061 ±0.00049 ±0.00054 ±0.00060 ±0.00053
plot • • •
rsLDA 0.07962 0.07848 0.07856 0.07835 0.07837 0.07824
-MPMF ±0.00057 ±0.00042 ±0.00061 ±0.00058 ±0.00054 ±0.00053
genre • • • • •

see that PPMF clearly generates a smaller MSE compared to
the co-clustering based algorithms. Co-clustering algorithms
represent the neighborhood based algorithms since similar
rows/columns will have similar membership vectors. While
they can learn the clustering structures of a matrix, their
matrix approximation results are usually not as good as the
matrix factorization based algorithms.

B. PPMF vs. PMF and BPMF

We then compare PPMF with PMF and BPMF. For
BPMF, we do not use the early stopping strategy since it
hurts the performance. The MSE of these three algorithms
using random initialization are presented in Table II. On
both datasets, PPMF performs better than PMF. We are
surprised to see that PPMF performs even better than BPMF,
which gives us some supportive evidence to go with PPMF
instead of a full Bayesian model as in BPMF, but more
rigorous experiments will be needed to fully compare the
performance of these algorithms.

C. GPMFs vs. residual GPMFs

To compare GPMFs with residual GPMFs, we present the
result with k = 30 in Table III. For PPMF and CTM-PPMF,
the residual models generate higher accuracy in almost all
cases; for MPMF and LDA-MPMF, the residual models
also generate high accuracy on the larger dataset million-
movielens. Such observation could also be obtained from
Table IV and V when we provide the results for both GPMFs
and residual GPMFs with k from 5 to 30.

D. GPMFs with side information

We use three types of side information for GPMFs—
cast, plot and genre. To see whether incorporating side
information helps improve the accuracy, we show the results
for GPMFs with k from 5 to 30 in Table IV and V, with
Table IV for original models and Table V for residual models
respectively (We put “rs” before the model name to denote
residual models.). In each table, the top part is the results of
the pair of PPMF and CTM-PPMF, and the bottom part is the
results of the pair of MPMF and LDA-MPMF. In each part,
we put a • under the results of CTM-PPMF (LDA-MPMF) if



Table VI
TWO CAST CLUSTERS FROM LDA-MPMF.

(a)
cast movie names
Carrey, Jim Batman Forever; Ace Ventura: Pet Detective;

The Mask; The Cable Guy; Liar Liar; The Truman Show
Ace Ventura: When Nature calls; Dumb & Dumber

Doohan, Jams Star Trek series
Kelley, DeForest Star Trek series
Koenig, Walter Star Trek series
Nimony, Lenard Star Trek series
Shatner, William Star Trek series
Takei, George Star Trek series
Nichols, Nichelle Star Trek series
Harris, Ed Apollo 13; The Firm; The Rock; The Abyss

Glengarry Glen Ross; The Right Stuff; Nixon
Milk Money; Eye for an Eye; Just Cause

Gough, Michael Batman series

(b)
cast year of movies
Grant, Cary 1940, 1959, 1946, 1955,

1940, 1938, 1944, 1963, 1941
Stewart, James 1939, 1940, 1958, 1946, 1954
Bogart, Humphrey 1942, 1941, 1954, 1951, 1948, 1946
Balsam, Martin 1961, 1957, 1960, 1991, 1962
Hepburn, Audrey 1961, 1964, 1954,

1953, 1963, 1957, 1957
Mitchell, Thomas 1939, 1939, 1946, 1937, 1952, 1943
Rains, Claude 1939, 1942, 1946,

1938, 1962, 1939, 1946
Kelly, Grace 1955, 1954, 1954, 1952
Coburn Jams 1994, 1996, 1963, 1996, 1997, 1990
Newman, Paul 1994, 1973, 1969,

1958, 1967, 1998, 1994

the MSE is lower than corresponding PPMF (MPMF) which
does not use side information. Also, for each choice of k, we
use bold for the best result. For MPMF and LDA-MPMF,
we have tried different values for L but it does not affect
the result much, so we only use L = 5.

For LDA-MPMF compared to MPMF, incorporating side
information on movielens hurts the prediction most of the
times, but the side information seems to help on the larger
dataset million-movielens, especially for residual models.
For CTM-PPMF compared to PPMF, the advantage of taking
side information is more distinct. For both the original model
and residual model of CTM-PPMF on million-movielens,
and for the residual model of CTM-PPMF on movielens, we
can see the increase of prediction accuracy, especially when
incorporating cast and genre. Overall, PPMF and CTM-
PPMF perform better than MPMF and LDA-PPMF.

Among three types of side information, genre seems to
be the most informative one, then comes cast, and plots are
more hurting the result than helping, especially for CTM-
PPMF. For the reasons of bad performance using plots, the
plots are quite subjective and highly compressed, and two
movies with similar plots may be completely different in
their quality. As for the cast, it may help prediction if it
contains famous movie stars, but for most actors/actresses,
whether he/she shows up in a movie does not seem to
affect the rating that much. Meanwhile, the overlapping
of cast among different movies is very small, i.e., most
actors/actresses only appear in one or two movies, making
it difficult to discover the relationship between a certain
actor/actress and the movie ratings. In comparison, there are
only 25 movie types in genre, so a large number of movies
would be assigned to a same movie type, making it easier to
find out the relationship between the rating and genre, which
could be one reason of genre’s usefulness in prediction.
However, intuitively, genre is not that informative for the
ratings. A movie will not necessarily get a high or low rating
just because it belongs to a certain type. Due to all reasons
above, although we have expected better performance, the
side information we have used may not be powerful enough
to generate a distinct improvement on accuracy, at least

through the ways we have considered.
Although LDA-MPMF does not show advantage in pre-

diction accuracy, it generates several interesting cast groups
after running on rating+cast. Table VI shows two examples
of top 10 actor/actress names in two cast groups. Table VI(a)
is a list of actors/actresses acting in Star Trek or other
science fiction movies. For better presentation, we also give
the movie names they performed in. Table VI(b) is another
group of cast. Given the year of movies they performed in,
we can see these are actors/actresses mostly active as early
as in 40’s-60’s, which is a distinct group since most movies
in movielens are in 80’s or 90’s. For the word list of topics
from plots, since the plots are highly subjective as we have
discussed, we do not see very coherent topics.

VII. CONCLUSION

In this paper, we have generalized probabilistic matrix
factorizations along several directions: We have proposed
PPMF which is more flexible than PMF but simpler than
BPMF. We have incorporated the side information to
help matrix factorization. We have also proposed residual
models which are able to account for the row and column
biases. We show the following results in the experiments:
PPMF generates higher accuracy than PMF and BPMF,
as well as the co-clustering based algorithms. Also, the
residual models usually have better performance than the
corresponding original models. Moreover, incorporating
side information does help prediction to a certain extent.
The future work includes generalizing PMF to work
on a series of matrices with different time stamps, and
incorporating the side information for multiple entities such
as for both users and movies.

REFERENCES

[1] D. Agarwal and B. Chen. fLDA: Matrix factorization through
latent Dirichlet allocation. In WSDM, 2010.

[2] D. Aggarwal and S. Merugu. Predictive discrete latent factor
models for large scale dyadic data. In KDD, 2007.



[3] A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D. Modha.
A generalized maximum entropy approach to Bregman co-
clustering and matrix approximation. JMLR, 2007.

[4] D. Blei and J. Lafferty. Correlated topic models. In NIPS,
2005.

[5] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation.
JMLR, 3:993–1022, 2003.

[6] W. Chu and Z. Ghahramani. Probabilistic models for incom-
plete multi-dimensional arrays. In AISTATS, 2009.

[7] I. Dhillon. Co-clustering documents and words using bipartite
spectral graph partitioning. In KDD, 2001.

[8] S. Funk. http://sifter.org/∼simon/journal/20061211.html.

[9] T. Hofmann. Probabilistic latent semantic indexing. In
Proceedings of the 22nd Annual ACM Conference on Re-
search and Development in Information Retrieval, pages 50–
57, Berkeley, California, August 1999.

[10] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. IEEE Computer, 2009.

[11] N. Lawrence and R. Urtasun. Non-linear matrix factorization
with Gaussian processes. In ICML, 2009.

[12] L. Mackey, D. Weiss, and M. Jordan. Mixed membership
matrix factorization. In ICML, 2010.

[13] B. Marlin. Modeling user rating profiles for collaborative
filtering. In NIPS, 2003.

[14] A. Paterek. Improving regularized singular value decomposi-
tion for collaborative filtering. In KDD Cup and Work Shop,
2007.

[15] I. Porteous, A. Asuncion, and M. Welling. Bayesian matrix
factorization with side information and Dirichlet process
mixtures. In AAAI, 2010.

[16] R. Salakhutdinov and A. Mnih. Probabilistic matrix factor-
ization. In NIPS, 2007.

[17] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix
factorization using Markov chain Monte Carlo. In ICML,
2008.

[18] H. Shan and A. Banerjee. Bayesian co-clustering. In ICDM,
pages 530–539, 2008.

[19] A. Singh and G. Gordon. A Bayesian matrix factorization
model for relational data. In UAI, 2010.

[20] I. Sutskever, R. Salakhutdinov, and J. Tenenbaum. Modelling
relational data using Bayesian clustered tensor facotrization.
In NIPS, 2009.


