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ABSTRACT

Social network-based Sybil defenses exploit the algorithmic

properties of social graphs to infer the extent to which an

arbitrary node in such a graph should be trusted. However,

these systems do not consider the different amounts of trust

represented by different graphs, and different levels of trust

between nodes, though trust is a crucial requirement in these

systems. For instance, co-authors in an academic collab-

oration graph are trusted in a different manner than social

friends. Furthermore, some social friends are more trusted

than others. However, previous designs for social network-

based Sybil defenses have not considered the inherent trust

properties of the graphs they use. In this paper we introduce

several designs to tune the performance of Sybil defenses by

accounting for differential trust in social graphs and mod-

eling these trust values by biasing random walks performed

on these graphs. Surprisingly, we find that the cost func-

tion, the required length of random walks to accept all hon-

est nodes with overwhelming probability, is much greater in

graphs with high trust values, such as co-author graphs, than

in graphs with low trust values such as online social net-

works. We show that this behavior is due to the greater num-

ber of close-knit communities in high-trust graphs, requiring

longer walk to traverse multiple communities. Furthermore,

we show that our proposed designs to account for trust in-

crease the cost function of graphs with low trust value.

1. INTRODUCTION

The Sybil attack is a well-known and powerful attack in

distributed systems, such as sensor networks and peer-to-

peer systems. In the basic form of this attack, a peer repre-

senting the attacker generates as many identities as she can

and acts as if she is multiple peers in the system, which are

then utilized to influence the behavior of the system [1]. The

number of identities that an attacker can generate depends

on the attacker’s resources such as bandwidth, memory, and

computational power. With the sharp hardware growth—in

terms of storage and processing capacities—and the popular-

ity of broadband Internet, even attackers who use “commod-

ity” hardware can cause a substantial harm to large systems.

Despite being known for long time, this attack lacked tech-

nical defenses and many papers have reported its existence

without suggesting any defense while many proposed de-

fenses are limited in many aspects [2]. The majority of

defenses proposed in literature to defend against, limit, or

mitigate the Sybil attack can be classified into centralized

defenses and decentralized defenses. In the centralized de-

fenses (e.g., [1, 3, 4, 5]), a centralized authority is respon-

sible for verifying the identity of every user in the systems.

Because they depend on a centralized authority, these de-

fenses are ruled out in many distributed settings. On the

other hand, the decentralized defenses (e.g., [6, 7, 8, 9, 10])

utilize distributed approaches to bind credentials to the iden-

tities of peers, and verify the peers authenticity.

A recent class of the decentralized defenses uses social

networks, where peers in the network are not merely com-

putational entities—the human users behind them are tied

to each other to construct a social network. The social net-

work is then used for bootstrapping the security and detect-

ing Sybils under two assumptions: algorithmic and socio-

logical. The algorithmic assumption is the existence of a

“sparse cut between the Sybil and non-Sybil subgraphs” in

the social network, which implies a limited number of at-

tacker edges; edges between Sybil and non-Sybil nodes. The

sociological assumption is a constraint on the trust in the

underlying social graph: the social graph used in these de-

fenses needs to exhibit strong trust as evidenced, for exam-

ple, by face-to-face interaction demonstrating social actors’

knowledge of each other [9, 11]. While the first assump-

tion has been recently questioned in [12], where it is shown

that even honest subgraphs may have cuts that disrupt the

algorithmic property, the trust—though being a crucial re-

quirement for these designs to perform well—was not con-

sidered carefully. Even worse, many of these defenses [9, 11,

13, 14]—when verified against real-world social networks—

have considered samples of online social graphs, which are

known to possess weaker value of social trust.

We have recently measured the mixing time, a concrete

measure of the algorithmic property required in social net-

works, in [15], and demonstrated that it is greater than the

values used in literature. Also, we pointed out that social

graphs with same size have different mixing times implying
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that social networks, even algorithmically, cannot be taken

equally for the purpose of these designs (see sec. 5). How-

ever, the different mixing times are not arbitrary: social graphs

that exhibit knowledge (e.g., co-authorship) or intensive in-

teraction (e.g., social blogs) are slower mixing than social

graphs that require less interaction or where edges are less

meaningful (e.g., wiki-vote and online social networks such

as Orkut and Facebook), which suggest that the algorithmic

and trust properties in social graphs are at odds. To this end,

we explore designs to model trust in social graphs in order to

base the performance of the Sybil defenses more accurately

on both assumptions: algorithmic and sociological.

We model the trust exhibited in the social graph as param-

eters of modified and biased random walks, as opposed to

the uniform random walks used in Sybil defenses—where

social graphs are presumed to have similar trust value. The

proposed designs use two observations: nodes in the social

graph trust themselves more than they trust others, and they

trust other nodes unequally. We use the first observation to

incur gravitational probability in the random walk – at either

the current or originator node of the walk – and use the sec-

ond observation to incur weights on edges between the dif-

ferent nodes. In the first direction we introduce the lazy and

originator-biased random walks. In the second direction we

introduce the similarity and interaction-biased random walks

to model trust. We investigate their power in modeling trust

and influencing the Sybil defenses.

Perceiving that even online social networks are potentially

going to be used for Sybil defenses—as well as other appli-

cations based on social networks such as routing [16, 17,

18, 19, 20, 21], access control [22], among other applica-

tions, including those in [23, 24, 25, 26, 27, 28, 29, 30]—

the end result of this paper is to prepare for these networks

for such applications by accounting for weaker trust in these

networks. While both strong and weak trust exhibiting net-

works exist and can be options for these designs, the tools

we provide in this paper can be used to quantitatively com-

pare different data sets, and different options, based on their

true values and merits.

Through this paper, we only show the insight and the power

of the different designs to control the behavior of the social

network-based Sybil defenses. We do not insist on any par-

ticular values for parameters used in any design for a simple

reason: the different designs are meant to provide the Sybil

defense designer with further parameters that she can use to

control the network behavior and how the Sybil defense pro-

ceed to detect Sybil nodes or admit non-Sybil nodes. The

adjustment of the parameter is based on the designers per-

ception for the trust exhibited in the social network. Put it

another way, the different parameters associated with the dif-

ferent Sybil defenses can be further assigned by the honest

users within the network based on their estimation and un-

derstanding of the trust in their own network, the ultimate

number of Sybil nodes they are willing to accept, or the ul-

timate number of non-Sybil nodes they are willing to reject.

The length of the random walk used in the Sybil defense,

which is a parameter that we can control using our designs,

can control both types of these issues.

Also, while we experiment the different designs with dif-

ferent parameters on different social graphs, even including

those hypothesized to have good trust values as in section 5,

we do this to understand the behavior and impact of these

designs on different networks with different properties. It is

worth noting that some of the networks, e.g., those hypoth-

esized to have good trust, may not require any adjustment

for their behavior. This is, it is may be possible that small

(close to zero) parameter value such network would guar-

antee the adjustment. On the other hand, networks that are

known to provide weaker trust may require larger parame-

ters to compensate for the weaker trust in these networks.

Ultimately, the parameter value is determined by each node

independently or assigned by an operator who oversees the

value of the trust associated with overall network. This pa-

per provides the tools for understanding such decisions and

their impact on the performance of the defense.

Contributions: The novel and original contributions of this

paper are as follows. First, motivated by the observed rela-

tionship between the quality of the algorithmic property and

hypothesized trust in social graphs, we propose several de-

signs, each in the form of modified random walk, to model

trust in social networks. Second, we learn the impact of the

different designs on the performance of the Sybil defenses

by comparing them to each other when operated on top of

SyilLimit, a known work in literature on defending against

the Sybil attack using social networks. For this part, we use

several real-world social graphs that exhibit different levels

of knowledge and trust. We provide several insights through

discussions that relate to observations on the measurements.

Organization: The organization of this paper is as follows.

We review some of the related work in section 2. In section 3

we introduce the preliminaries of our work. In section 4 we

introduce several designs to model trust in social networks,

which are used for Sybil defenses. In section 5 we discuss

the main results, which include experiments on real-world

social networks. In section 6 provide concluding remarks

and present implications of the findings. In section 7 we

discuss some of the open problems and future work.

2. RELATED WORK

There is a large body of work on social networks, their

analysis, and designs based on them. Many applications –

and not only the Sybil defenses – capitalize on the trust ex-

hibited in these social networks and benefit from these net-

works in trust-demanding settings. These applications in-

clude applications for routing, recommendation systems, ac-

cess control, and admission control, among others. To this

end, we present a select of the related work to this paper.

In particular, we classify the papers of the related work into

papers on Sybil defenses—where this paper is mainly aimed
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at, papers on generic applications that use the trust in so-

cial network, papers on analyzing social networks, papers

on understanding trust in social networks, and finally, pa-

pers on analyzing the security and requirements of the Sybil

defenses and their assumptions.

Sybil defenses based on social networks are reported in

SybilGuard [11], SybilLimit [9], SybilInfer [13], SumUp

[31], and Whānau [14]. In principle, the performance of

these defenses depends on the quality of the algorithmic prop-

erty of the underlying graph by assuming good trust in the

underlying social network. These studies can benefit from

our findings in quantifying their performance by making up

for the trust exhibited in the social graphs they operate on.

A study on analyzing these designs can be seen in [12]. We

further summarize the operation of one of these defenses,

namely SybilLimit, in section 3.

Aside from these systems built to defend against the Sybil

defense, several other systems are introduced in literature on

using the trust in social graphs for building systems. For

instance, Daly et al. [19, 32] studied the use of social net-

works for routing in disconnected delay tolerant networks,

where nodes with higher similarity and betweenness (two

graph theoretic properties) are favored for forwarding mes-

sages from source to destination. The end result of this work

has shown that the new construction is better than the gos-

siping alone protocol. The protocol also explicitly assumed

good trust in the underlying social graph, so that nodes are

honest when reporting their locally computed graph theo-

retic measures. Similar results in similar settings are also

reported in [17]. In [21], Marti et al. studied constructing

DHT over social networks, where nodes in the social graph

act as “routing entries” for their social contacts. In [27], Pai

et al used the trust in social graphs for bootstrapping trust in

ad-hoc networks, that can be then used for building reputa-

tion, routing, etc. In [23], the trust in social graphs is used

for worm detection (similar results are in [33] and [18]).

Selfishness of social node and its impact in social network-

based routing applications is studied in [16]

Understanding, predicting, and analyzing interactions in

social networks are studied by Viswanathet al. in [34] and

by Wilson et al. in [35]. The later model is what we use

for the interaction-biased random walk in this study. Un-

derstanding negative and positive links in social networks –

which can be utilized in settings like our designs – in social

graphs are studied in by Leskovec et al. in [36]. The similar-

ity and centralities in social graphs are studied and evaluated

on social networks in [37, 38, 39]. In [40], Quercia even

used betweenness of nodes to defend against the Sybil at-

tack. The social capital exhibited in social networks is used

in [41] to replace the tit-for-tat concept in peer-to-peer sys-

tems. Classical studies on the analysis of topological fea-

tures in online social and information networks can be seen

in [42] and in [43].

While all of the applications above consider trust to be

the main feature used from the social graphs and utilized for

their performance, some papers have considered quantifying

and modeling trust in social networks to understand the be-

havior of some online social networks (e.g., recommender

systems). Such studies can be found in [44] and [45].

Finally, many applications can be built on top of social

graphs to benefit from the well connectivity of these net-

works. This well-connectivity features a good tool for anonymity

– as evidenced by being able to sample from the whole social

graph after short random walk on the graph beginning from

any arbitrary initial source – which is studied in [46]. In [46],

Nagaraja has shown that social graphs can be good mixers

where a random walk of length of about 10 hops is good

enough accumulate entropy of 18 in an anonymity set of 4
million nodes – which ideally has an entropy of 22. Though

with a different motivations, the mixing time of different so-

cial graphs, with the assumptions used in Sybil defenses in

mind, has been recently measured in [15].

3. PRELIMINARIES

3.1 Network Model

We view the social network as an undirected unweighted

graph G = (V,E) where |V | = n, V = {v1 , v2, . . . , vn},

|E| = m, eij ∈ E = vi → vj if vi ∈ V is adjacent to

vj ∈ V for 1 ≤ i ≤ n and 1 ≤ j ≤ n. We refer to

A = [aij ]
n×n as the adjacency matrix where aij = 1 if eij

is in E and aij = 0 otherwise. We refer to P = [pij ]
n×n as

the transition matrix

pij =

{

1
deg(vi)

eij ∈ E

0 otherwise
, (1)

where deg(vi) is the degree vi, or the row-norm of A:

deg(vi) =

n
∑

k=1

Aik. (2)

The set of neighbors of vi is N(vi) and deg(vi) = |N(vi)|.

3.2 Simple Random Walks and Mixing Time

The “event” of moving from a node to another is captured

by a Markov Chain (MC) which represents a random walk

over G. A random walk of length w over G is a sequence

of vertices in G beginning from an initial node vi and end-

ing at vt, the terminal node, using the transition matrix (1).

The MC is said to be ergodic if it is irreducible and aperi-

odic, meaning that it has a unique stationary distribution π
and the distribution after random walk of length w converges

to π as w → ∞. The stationary distribution of the MC is a

probability distribution that is invariant to the transition ma-

trix P (i.e., πP = π). The mixing time of the MC, T is

defined as the minimal length of the random walk in order

to reach the stationary distribution. More precisely, Defini-

tion 1 states the mixing time of MC on G parameterized by

a variation distance parameter ǫ.
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DEFINITION 1 (MIXING TIME). The mixing time (pa-

rameterized by ǫ) of a Markov chain is defined as

T (ǫ) = max
i

min{t : |π − π(i)
P

t|1 < ǫ}, (3)

where π is the stationary distribution, π(i) is the initial dis-

tribution concentrated at vertex vi, P
t is the transition ma-

trix after t steps, and | · |1 is the total variation distance. The

MC is rapidly mixing if T (ǫ) = poly(log n, log 1
ǫ ).

Papers such as [13, 14, 9, 11] refer to this as “fast mixing”

and strengthen the definition by considering only the case of

ǫ = Θ( 1n ), and requiring T (ǫ) = O(log n).

THEOREM 1 (STATIONARY DISTRIBUTION). For undi-

rected unweighted graph G, the stationary distribution of

the MC over G is the probability vector π = [πvi
] where

πvi =
deg vi
2m . This is, π = [deg(v1)

2m
deg(v2)

2m . . . deg(vn)
2m ].

THEOREM 2 (SECOND LARGEST EIGENVALUE [47]).

Let P be the transition matrix of G with ergodic random

walk, and λi for 1 ≤ i ≤ n be the eigenvalues of P. Then all

of λi are real numbers. If we label them in decreasing order,

1 = λ1 > λ2 ≥ · · · ≥ λn−1 ≥ λn > −1 holds. We de-

fine the second largest eigenvalue modulus (SLEM) as µ =
max (|λ2|, |λn−1|). Then, T (ǫ) is bounded by

µ
2(1−µ) log(

1
2ǫ ) ≤

T (ǫ) ≤ log(n)+log( 1

ǫ
)

1−µ .

We observe that the mixing time captures the connectivity

of the graph. Well-connected graphs have small mixing time

while weakly connected graphs have large mixing time [47].

Also, the second largest eigenvalue used for measuring the

mixing time bounds the graph conductance, a measure for

the community structure [12]. In short, the conductance Φ ≥
1− µ.

3.3 Social Network based Sybil Defenses

As mentioned in section 2, there are several defenses to

the Sybil attack using social networks. Here we limit our-

selves to SybilLimit, which we use to measure our designs.

Unlike SybilGuard which uses one long random route for

verification, SybilLimit [9] uses several shorter instances of

random routes. A verifier as well as the suspect perform

O(
√
m) random routes each of length w = O(log n) to ob-

tain samples of the honest region – since O(
√
m) = r0

√
m,

SybilLimit fixes r0 = 4 to ensure high intersection probabil-

ity. The verifier determines to accept a suspect if he is reg-

istered at one of the tails in his sample. SybilLimit accepts

a suspect if intersection with the verifier happens on a tail,

which is the last edge of the random routes. In SybilLimit, if

a tail ends up in the Sybil region, it will always end-up in it

due to the random routes one-to-one pre-computed permu-

tation structure. Also, if a tail ends up in the Sybil region,

it may advertise many non-existent intersections with routes

initiated by Sybil nodes. To avoid that, SybilLimit limits

the number of intersections into g ×w×m intersections on

honest tails – where g is the number of attack edges and w

is the random walk length. This means that SybilLimit ac-

cept at most w = O(log n) Sybil identities per attack edge.

SybilLimit greatly depends on w for its security and uses

benchmarking techniques for estimating it. However, since

these techniques are not provable, underestimating or over-

estimating the parameters is problematic. SybilLimit works

as long as g ≤ o( n
logn ).

4. DESIGNS TO ACCOUNT FOR TRUST

In most of the literature that considered social networks

for building Sybil defenses, the simple uniform random walk

highlighted in section 3 has been used. In this section, we in-

troduce several designs of modified random walks that con-

sider a “trust“ parameter between nodes. In all of the pro-

posed modified random walks, the purpose is to assign “trust-

driven” weights and thus deviate from uniform. We do this

by either capturing the random walk in the originator or cur-

rent node, as the case of originator-biased and lazy random

walks, or by biasing the random walk probability at each

node, as the case of interaction and similarity-biased random

walks, or a combination of them. The intuition of the lazy

and originator-biased random walk is that nodes trust “their

own selves” and other nodes within their community more

than others. On the other hand, interaction and similarity-

biased trust assignments try to weigh the natural social as-

pect of trust levels. Given the motivation for these designs,

we now formalize them by deriving P and π required for

characterizing them. We omit the details for lack of space

(see the Appendix, theorem 3 through 7, for the complete

proofs).

4.1 Lazy Random Walks

To accommodate for the trust exhibited in the social graph,

we assume a global single parameter α in the network which

is used to characterize this trust level and used in the differ-

ent schemes to enforce and apply the trust along with other

parameters used (e.g., driven from the algorithmic property

in the graph). The transition matrix

P
′ = αI+ (1− α)P (4)

which yields a transition according to pij defined as follows:

pij =











1−α
deg(vi)

vj ∈ N(vi)

α vj = vi

0 otherwise

(5)

We note that for the transition probability defined in (4),

by adding self loops it does not alter the final stationary

distribution from that in Theorem 1. This is, since P
′ =

αI+(1−α)P, by multiplying both sides by π, we get πP′ =
π(αI+(1−α)P) = απI+(1−α)πP = απ+π−απ = π.

4.2 Originator-biased Random Walk

We incorporate the concept of biased random on the social

graph walks to characterize the bias introduced by the trust
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vr vx vi vj

1−α
deg (vr)

1−α
deg (vx)

1−α
deg (vi)

ααα α
Figure 1: An illustration of the lazy random walk. For

simplicity, α is equal for each node though it can be de-

termined by each node locally to reflect what that node

perceive as the trust of the network. The random walk

in this example is (vr, vx, vi, vj)—adjacent nodes other

than the next in the walk to each node are omitted to

simplify the illustration.

among different social actors (nodes). At each time step,

each node decides to direct the random walk back towards

the node that initiates the random walk, i.e., node vr, with

a fixed probability α or follow the original simple random

walk by uniformly selecting among its neighbors with the

total remaining probability 1−α. The transition probability

that captures the movement of the random walk, initiated by

a random node vr, and moving from node vi to node vj is

defined according to pij as follows

pij =



















α j = r, vr 6∈ N(vi)

α+ 1−α
deg(vi)

j = r, vr ∈ N(vi)
1−α

deg(vi)
j 6= r, vj ∈ N(vi)

0 otherwise

(6)

We note that, unlike the lazy random walks, the transition
probability here considers moving the state back to the orig-

inator of the random walk, a state that may not be connected

to the current state in the social graph. This requires a vir-

tual connection between each node through the walk – every

node in the graph – and each originator of a random walk.

To mathematically model this transition loop, for each node

vr(1 ≤ r ≤ n), we define Ar as an all-zero matrix with the

exception of the rth row which is 1’s. Using Ar, we further

define the originator-biased transition matrix, for the walk

originated from vr, as

P
′ = αAr + (1− α)P. (7)

We can show that P′ is stochastic since each row in it sums

to 1. Furthermore, since P
′ depends on the initial state vr,

we observe that the “stationary” distribution is not unique

among all initial states, and so we refer to it as the “bounding

distribution” for the walk initiated from vr. The bounding

distribution in that case is π(vr) = [πi]
1×n where πi is

πi =

{

(1− α)deg(vi)
2m vi ∈ V \ {vr}

α+ deg(vi)
2m vi = vr

(8)

We note also that the bounding distribution in (8) is a valid

probability distribution since α+ deg(vr)
2m +

∑

vi∈V \{vr}(1−

α)deg(vi)
2m = α+

∑n
i=1(1−α)deg(vi)

2m = α+(1−α)
∑n

i=1
deg(vi)

2m =
α+(1−α) = 1. It is also easy to show that given distribution

bounds the random walk since πP′ = π.

vr vx vi vj

1−α
deg (vr)

1−α
deg (vx)

1−α
deg (vi)

α
α

α

α

Figure 2: An illustration of the originator biased random

walk. For simplicity, α is equal for each node though it

can be determined by each node locally to reflect what

that node perceive as the trust of the social network. The

random walk in this example is (vr, vx, vi, vj)—adjacent

nodes other than the next in the walk to each node are

omitted to simplify the illustration.

4.3 Interaction-biased Random Walk

The interaction between nodes can be used to measure the

strength of the social links between nodes in the social net-

work [35]. In this model, high weights are assigned to edges

between nodes with high interaction and low weights are as-

signed to edges between nodes with low interaction. For-

mally, let B be the raw interaction measurements between

nodes in G and D be a diagonal matrix representing the row

norm of B, computed as in (2). The transition matrix P

of the random walk based on interaction is then computed

as P
′ = D

−1
B. The stationary distribution of the random

walk on G following to the probability in P
′ is π = [πi]

1×n

where

πi = (

n
∑

j=1

n
∑

k=1

bjk)
−1(

n
∑

z=1

bzi). (9)

We observe that this distribution makes a valid probability

distribution since
∑n

i=1 πi = 1 and is a stationary distribu-

tion since πP = π.

Wilson et al. [35] introduced a slightly different model to

capture interaction between nodes in the social graph. The

interaction graph G′ = (V,E′) is defined for a social graph

G = (V,E) where E′ ⊆ E and eij ∈ E′ if I(vi, vj) ≥ δ,

where I is an interaction measure to assign weights on edges

between vi and vj for all i, j, and δ is a threshold parameter.

The interaction measure used in [35] is the number of inter-

actions over a period of time. This model further simplifies

the random walk where the P
′ is defined over G′, as well as

the stationary distribution.

4.4 Similarity-biased random walk

The similarity between social nodes in social networks is

used for measuring the strength of social links and predict-

ing future interactions [37, 39]. For two nodes vi and vj
with sets of neighbors N(vi) and N(vj), respectively, the
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similarity is
N(vi)∩N(vj)
N(vi)∪N(vj)

. For ai and aj , two rows in A

corresponding to the entries of vi and vj , we use the cosine

similarity measure given as S(vi, vj) =
vi·vj

|vi|2|vj |2 , where

| · |2 is the L2-Norm. To avoid disconnected graphs resulting

from edge cases, we augment the similarity by adding 1 to

the denominator to account for the edge between the nodes.

Also, we compute the similarity for adjacent nodes only, so

that S = [sij ] where sij = S(vi, vj) if vj ∈ N(vi) or 0 oth-

erwise. The transition matrix P of a random walk defined

using the similarity is given as P = D
−1

S where D is a di-

agonal matrix with diagonal elements being the row norm of

S. Accordingly, the stationary distribution of random walks

on G according to P is π = [πi]
1×n where

πi = (

n
∑

z=1

szi)(

n
∑

j=1

n
∑

k=1

sjk)
−1

.

4.5 Mixed random walks

It is intuitive and natural to consider a hybrid design that

constitutes more than one of the aforementioned random walks.

In particular, the interaction and similarity-biased models

“rank” different nodes differently and “locally” assign weights

to them. Though this limits the mixing time of social graphs,

as we will see later, it does not provide nodes any author-

ity on the random walk once they are a “past state”. On

the other hand, benefits of these models are shortcomings

in other models. It’s hence technically promising and in-

tuitively sound to consider combinations of these designs.

Another potential of a mixed design is to use both the lazy

and originator-biased random walk in a single walk. As we

will see later, in some rapidly mixing social graphs where

the underlying social trust is hypothesized to be weak, the

lazy random walk poorly captures the behavior of the Sybil

defense.

5. RESULTS AND DISCUSSION

In this section we outline the results of this study. We first

measure the mixing time of the social graphs used in this

study (in Table 1) and highlight its variable nature among

networks with similar size. We follow this by examining the

impact of using proposed models on the mixing time and the

performance of SybilLimit, a well-known Sybil defense. We

limit ourselves to this defense scheme though our conclu-

sions apply to all other schemes that using the mixing time

as the underlying property for their performance.

5.1 Social graphs: the data sets

The social graphs used in our experiments are in Table 1.

These graphs are carefully selected to feature different mod-

els of knowledge between nodes in the social networks. These

networks are categorized as follows. (1) Social networks

that exhibit knowledge between nodes and are good for the

trust assumptions of the Sybil defenses—e.g., physics co-

authorships and DBLP. These are slow mixing (see Figure 3).

Table 1: Datasets, their size and their second largest

eigenvalues of the transition matrix. Physics 1, 2, 3

are relativity, high energy and high-energy theory co-

authorship respectively.

Social network Nodes Edges SLEM

Physics 1 [48] 4,158 13,428 0.998133

Slashdot [49] 82,168 582,533 0.987531

Physics 2 [48] 11,204 117,649 0.998221

Physics 3 [48] 8,638 24,827 0.996879

Wiki-vote [36] 7,066 100,736 0.899418

Enron [48] 33,696 180,811 0.996473

Epinion [50] 75,879 13,428 0.998133

DBLP [51] 614,981 1,155,148 0.997494

Facebook A [35] 1,000,000 20,353,734 0.982477

Facebook B [35] 1,000,000 15,807,563 0.992020

Livejournal A [42] 1,000,000 26,151,771 0.999387

Livejournal B [42] 1,000,000 27,562,349 0.999695

Youtube [42] 1,134,890 2,987,624 0.997972

(2) Graphs of networks that may not require face-to-face

knowledge but require interaction—e.g., Youtube and Live-

journal, which are slow mixing, but faster than the first cat-

egory. (3) Datasets that may not require prior knowledge

between nodes or where the social links between nodes are

less meaningful to the context of the Sybil defenses—e.g.,

Facebook and wiki-vote, which are shown to be very fast

mixing.

While these graphs are used for demonstrating the first

part of the results, measuring the performance of SybilLimit

and the impact of our designs on the mixing time is done

over samples of these graphs. For feasibility reasons, we

sample only 10K nodes, using the breadth-first search algo-

rithm, from each graph larger than 10K in Table 1. The re-

sulting sub-graphs are in Table 2. The diameter is the max-

imal eccentricity (set of maximal shortest paths from each

source in the graph) and the radius is the minimal eccentric-

ity. We compute them to show some insight on the structure

of the graphs. For Facebook and Livejoural datasets, the

sub-graphs are from dataset A of each.

5.2 Measuring the mixing time

While measuring the mixing time using SLEM as explained

in section 3 requires computing µ, the computed mixing time

might be an overestimation for quality which is necessary in

the Sybil defenses. In principle, the overestimation occurs

because the computed mixing time using SLEM is the maxi-

mal, where a few outlier nodes may capture the mixing time

of the entire graph, while the majority of nodes may have rel-

atively smaller mixing time than these outliers [15]. For that,

we limit ourselves to measuring the mixing time using Defi-

nition 1, and considering a few initial distributions. We clas-

sify graphs, shown in Table 1, based on their size into large

(> 600, 000 nodes) and small (< 100, 000 nodes) graphs.
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Figure 3: The average mixing time of a sample of 1000 initial distributions in each graph in Table 1 using the sampling

method for computing the mixing time by its definition over P.

Table 2: Social graphs with their size, diameter, and ra-

dius. Physics 1, 2, 3 are relativity, high energy and high

energy theory co-authorship respectively. Dim stands for

Diameter and Rid stands for Radius
Social network Nodes Edges Dim Rad

Physics 1 [48] 4,158 13,428 17 9

Sdot [49] 10,000 14,6469 6 3

Physics 2 [48] 11,204 117,649 13 7

Physics 3 [48] 8,638 24,827 18 10

Wiki-vote [36] 7,066 100,736 7 4

Enron [48] 10,000 108,373 4 2

Epinion [50] 10,000 210,173 4 2

DBLP [51] 10,000 20,684 8 4

Facebook [35] 10,000 81,460 4 2

Livejournal [42] 10,000 135,633 6 3

Youtube [42] 10,000 58,362 4 2

Rice-cs-grad [52] 501 3255 9 5

Rice-cs-ugrad [52] 1221 43153 6 3

For each social graph, we compute the mixing time accord-

ing to Definition 1 for a sample of 1, 000 initial distributions

(nodes). We then compute the total variation distance for

a given walk length w as the average distance among the

1, 000 nodes. The results are shown in Figure 3. In short,

two things to observe from these measurements [15]. First,

the mixing time is larger than used in literature (e.g., 10 to

15 in [8, 9] for 106-node graphs). For example, for ǫ ≈ 1/4,

which is required for ≈ 99% admission rate in SybilLimit,

w = 30 is required in Physics 1. Second, we observe that

the mixing time is variable among social graphs with similar

size where graphs with meaningful edges are slower mixing

than others with less meaningful links.

5.3 Implication on the mixing time

Along with the simple random walk-based design, we im-

plement three of the proposed designs: lazy, originator, and

similarity biased random walks. We use the simple ran-

dom walk-based implementation over the interaction graph

of Wilson et al.’s [35] to learn the performance of the interaction-

based model. We examine the impact of each design on the

mixing time on some graphs from Table 2. The results are

shown in Figure 4 and Figure 5. We observe that, while

they bound the mixing time of the different social graphs,

the originator-biased random walk is too sensitive even to a

small α. For example, as in 5(a) for Facebook social graph in

Table 2, ǫ ≈ 1/4 is realizable at w = 6 with the simple ran-

dom walk, w > 10 for both lazy and originator-biased ran-

dom walk. However, this happens with α = 0.5 in the lazy

against α ≈ 0.1 in the originator-biased walk. This observa-

tion is made clearer on Figure 5 which compares the mixing

time of four different social graphs with different character-

istics when using the simple and modified random walks.

We also observe in Figure 4 and Figure 5 that the linear

increments in the parameters do not necessarily have lin-

ear effect on the measured mixing time. Furthermore, this

behavior is made clearer in the experiments performed on

SybilLimit and shown in Figure 6 and Figure 7. This how-

ever is not surprising, at least with the originator-biased ran-

dom walk, since the probability of intersection when sam-

pling from the stationary distribution is ≤ 1 − e−8(1−α)4

(the proof is in Theorem 8 in the appendix) from which one

can see the exponential effect of α on the admission rate.

While this explains the general tendency in the admission

rates of SybilLimit, it does not answer some inconsistency

shown in Fig. 7(b) for the transition between α = 0.12, 0.16,
and 0.20. One additional explanation for that is the commu-

nity structure in this graph, which is shown in [12] to be

clear in Physics 1 and problematic for Sybil defenses (re-

sults for the same graph are in Fig. 6(b) and Fig. 7(b)). We

believe that the big jumps in these measurements happen at

some values of these parameters, which make an entire com-

munity unreachable from another community. On the other

hand, some graphs are less sensitive to the same value of
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these parameters, e.g., Facebook with the results shown in

figures 4(a), 5(a), 6(d), and 7(d). One possible explanation

for this behavior is that this graph has less community struc-

ture. This claim is further supported by observing the small

diameter and radius (shown in Table 2) and the high density

of the graph, along with supporting clustering coefficient of

0.188. Reasoning about this behavior and its quantification

is to be our future work.

5.4 Performance over simple random walks

To understand the necessary mixing time quality required

for the operation of SybilLimit, we measure the performance

of SybilLimit using simple random walks, where the evalu-

ation metric is the percent of honest nodes accepted by other

honest nodes. We do not consider the accepted Sybil nodes

because they are bounded per attack edge. For each walk

with length w(0 ≤ w ≤ 30), we compute the number of

accepted nodes as a percent out of n(n − 1)—total veri-

fier/suspect pairs. Since SybilLimit accepts nodes on edges

only, it does not work for w < 2. The results are shown

in Figure 8 and the variable mixing time shown earlier is fur-

ther highlighted by observing the percent of accepted nodes

when varying w. We observe that, unlike claims in [53]

where one should expect 95% admission rate at w = 4, some

graphs require w = 30 to achieve that. It is also worth not-

ing that graphs which admit high percent of nodes for small

w are those with poor trust.

5.5 Performance over modified random walks

Now we study the impact of the modified random walks

on the performance of SybilLimit. We select four datasets

with different characteristics from Table 2: DBLP, Face-

book, Facebook (Rice grad), and Physics 1 (relativity the-

ory). We implement modified SybilLimit versions that con-

sider changes introduced by the modified random walks and

test the admission rate of honest nodes under different values

of α and w.

5.5.1 Performance over lazy random walk

we measure the performance of SybilLimit operating with

the lazy random walks – results are shown in Figure 6. We

vary w from 0 to 30 with steps of 2. We further vary α asso-

ciated with the lazy random walk from 0 to 0.80 with steps

of 0.16—α = 0 means simple random walk. While the per-

formance of SybilLimit is generally degraded when increas-

ing α, we observe that the amount of degradation varies and

depends on the initial quality of the graph. For example,

by comparing DBLP (6(c)) to Facebook (6(d)) we observe

that for w = 10, DBLP and Facebook admit about 97% and

100% of the honest nodes respectively for α = 0. For the

same w and α = 0.64, the accepted nodes in Facebook are

still close to 100% while the accepted nodes in DBLP are

only 50% suggesting variable sensitivity of different graphs

to the same α. Once we increase α to 0.80, the number of

accepted nodes in Facebook decreases to 80% while giving

only 25% in DBLP. One explanation of this behavior is what

we have discussed in section 5.3. Also, since the ultimiate

goal of this model is to characterize trust, which already dif-

fers in these graphs, we know that α should not necessarily

be equal in both cases. For instance, if one is concerned

about achieving same admission rate for the same w in both

cases, one may choose α = 0.48 in DBLP and α = 0.80
in Facebook where w = 10 in both cases which yields 80%
admission rate in both cases.

5.5.2 Performance over originator-biased random walk

The same settings in section 5.5.1 are used in this ex-

periment but here we vary α from 0 to 0.2 with 0.02 steps

since the originator-biased walk is more sensitive to smaller

α than the lazy-random walk. Similar to the lazy walk, the

originator-biased walk, as shown in Figure 7, influences the

performance of SybilLimit on different graphs differently,

and depending on the underlying graph. However, two dif-

ferences are specific to the originator-biased walk over the

lazy random walk.

First, the insensitivity shown earlier is even clearer in the

originator-biased model. Second, while the end result of

SybilLimit operating with lazy random walk is identical to

the simple random walk if one allows long enough walk to

compensate for the laziness, the behavior of the originator-

biased walk is different. The indirect implication of the orig-

inator assigned probability to herself is “discontinuity” in the

graph (with respect to each node), where each node gives up

some of the network by not trusting nodes in it. To cover the

whole graph with that the same α, w needs to be exponen-

tially large. To challenge the insensitivity of the fast mixing

social graphs, we extend α beyond the values used in Fig-

ure 7 with Facebook from Table 2 and use α(0 ≤ α ≤ 0.5)
with 0.1 steps and compute the admission rate. The result

is shown in Figure 9. We observe that the originator-biased

walk limits the number of accepted nodes, even in fast mix-

ing graphs.

5.5.3 Similarity and interaction-biased random walks

The similarity and interaction-biased random walks as used

in this paper are unparameterized. We compute the simi-

larity for Facebook in Table 2, as explained in 4.4. The

similarity is then used to assign weights to edges between

nodes, and bias the transition matrix. We run SybilLimit

with similarity-biased random walks on Facebook in Table 2,

where the result is shown in Figure 10. In short, the similar-

ity – while expected to capture some truth about the underly-

ing graph – has less influence on the behavior of SybilLimit.

It is worth noting that the impact of the similarity-biased ran-

dom walk is clearer on other social graphs, such as DBLP

and Physics, which have strong community structures.

For the interaction-biased design, we borrow the interac-

tion graph of Wilson et al. [35] on Facebook (same dataset

in Table 2). The interaction model introduces a richer model

than the mere connections between nodes: it shows how
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(a) Facebook A
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(b) Livejournal A
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(c) Facebook A

   
  0

.0
36

   
  0

.0
57

   
  0

.0
92

   
  0

.1
49

   
  0

.2
39

   
  0

.3
86

   
  0

.6
21

   
  1

.0
00

 0  5  10  15  20  25  30

T
ot

al
 v

ar
ia

tio
n 

di
st

an
ce

Mixing time (walk length)

α = 0.0
α = 0.1
α = 0.3
α = 0.5
α = 0.7
α = 0.9

(d) Livejournal A

Figure 4: The impact of the originator and lazy walks on the mixing time—(a) and (b) are for originator-biased while

(c) and (d) are for lazy random walks.
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(a) Facebook A
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(b) Livejournal A
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(c) Physics 1
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(d) DBLP

Figure 5: The mixing time of four different social graphs when using simple vs. lazy, originator, and similarity-biased

random walks, for each graph. While they are similar in size, a mixing time (parameterized by the same ǫ) is variable.

strong are the links between nodes in the graph. With the

same settings as earlier, we run SybilLimit – as a simple

random walks – over the interaction graph. The results are

shown in Figure 10.

5.6 All designs: comparative study

Finally, we consider all designs at the same time. Be-

cause we only have interaction measurements for the Face-

book dataset, we limit ourselves to that dataset. The re-

sult is shown in Figure 10. While the performance of the

similarity-biased random walk produces almost same results

as the simple random-walk, the interaction-biased walk af-

fects the number of the accepted nodes. Furthermore, the

lazy random walk captures the behavior of model when de-

viated from the simple random-walk. As shown for this

dataset, the interaction model behavior is characterized by

the behavior of the lazy random walk for two given parame-

ters (α = 0.48 and α = 0.64) suggesting that the interaction

model can be further modeled as a lazy random walk where

the problem is to find the proper parameters to match its be-

havior. Note that the value of α works for this dataset in

particular. However, other datasets may be characterized by

other values. This observation is made clearer on Figure 11

where the same results in Figure 10 are smoothened using

the cubic spline interpolation.

6. IMPLICATIONS OF FINDINGS

To sum up, we find in this study that one can control the

behavior of the social network-based Sybil defenses by in-

corporating parameters for trust. For this purpose, we in-

troduced and experimented the behavior of four designs. In
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Figure 11: The measurements in Figure 10 smoothened

using the cubic spline interpolation to show that the dif-

ferent designs can be made equivalent for some set of pa-

rameters. The interaction model can be further consid-

ered as an optimization problem in terms of other de-

signs, such as the lazy and originator-biased designs

graphs that are empirically-proven to be fast mixing and well-

performing for the utility of the Sybil defense – though hav-

ing poor value of trust – we have shown that one can se-

lect the necessary parameters to account for trust and make

the performance of the defense on that graph equivalent to

stronger and richer version of the same graph – e.g., the case

of the interaction-based model versus the mere connections

on the Facebook dataset. With these designs being intuitive

in characterizing trust, the results being in agreement one

another, and with this paper being the first of its own type in

this direction, we believe that this study is a first step in the
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(d) Facebook

Figure 6: The performance of SybilLimit measured for accepted honest nodes when using different lengths of lazy

random walk for different social graphs.
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Figure 7: The performance of SybilLimit depends on the underlying social graph, where different graphs require

different walk lengths to ensure the same number of accepted nodes. The originator-biased random walk can further

influence the number of nodes accepted in each graph.

direction of bringing well-received theoretical results into

practice. The implications of our findings can be summa-

rized as follows.

First, the mixing time and utility of the Sybil defense de-

pends on the underlying graph. Through measurements, we

supported our hypothesis that the quality of the social graph

depends on the characteristic of the social links between the

nodes. On one hand, social links that are easier to make re-

sult in well enmeshed graphs but are bad in principle for the

Sybil defense since they already tolerate bad edges. How-

ever, these are shown to provide good honest nodes accep-

tance rate even with shorter random walks. On the other

hand, social links that are harder to make result in graphs

with more community structure, which are bad for the detec-

tion (as shown in [12]) and require longer walks to operate

for the honest nodes.

Second, it is now possible for the Sybil defense opera-

tor, when given multiple options of social graphs, to further

derive the utility of the Sybil defense using several criteria.

Our study empowers the operators by an additional dimen-

sion that influences the behavior of the Sybil defense: trust.

Third, our findings answer a recently called for question

in [12] of studying the behavior of Sbyil defenses when op-

erated on the interaction-based model rather than the mere

social connections, which are sometimes less meaningful. In

short, our study shows that the interaction model can influ-

ence the behavior of the Sybil defense, by requiring longer

random walk for the defense to work for honest nodes. How-

ever, this finding also suggests that a more community-structure

is in the interaction model than in the mere social graph.

This implies that, while the original social graph does not

possess clear community structure, the use of the interac-

tion model would add sensitivity for the detection part of the

defense and result in weaker detection. However, the under-

lying graphs in both cases are different and the interpretation

of the results should also consider the trust value in the in-

teraction model, which is a better fit to the trust required in

the Sybil defense.

Finally, online social graphs are known to possess weaker

value of trust [45]. However, their potential for being used

for Sybil defenses is very high since alternatives are limited,

too expensive, and may not fit into the Sybil defense settings.

For example, co-authorship social graphs, which are known

for their trust value, may not necessarily include most users

of a particular online system that tries to deploy the Sybil de-

fense. On the other hand, given the popularity of online so-

cial networks, Sybil defenses may benefit from them, across

systems and networks. To this end, the main finding of the

paper is to open the door wide open for investigating trust,

its modeling, and quantification for these systems.

7. OPEN QUESTIONS AND FUTURE WORK

In all of the designs that accept parameters, which are pro-

posed in this paper, we have considered some assumptions to

10



 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5  10  15  20  25  30

A
cc

ep
te

d 
no

de
s 

(%
)

Random walk length

DBLP
Rice-grad

Rice-ugrad
Physics 1
Facebook

Livejournal
Slashdot
Youtube

Figure 8: Accepted honest nodes in

SybilLimit versus walk length, with

simple random walk. Graphs have

different quality of algorithmic prop-

erty though having same size.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5  10  15  20  25  30

A
cc

ep
te

d 
no

de
s 

(%
)

Random walk length

α = 0.0
α = 0.1
α = 0.2
α = 0.3
α = 0.4
α = 0.5

Figure 9: The originator-biased ran-

dom walk limits the number of ac-

cepted nodes in very well-enmeshed

social graphs with poor trust. The

case of large α on Facebook.

 0

 20

 40

 60

 80

 100

 2  3  4  5  6  7  8  9  10

A
cc

ep
te

d 
no

de
s 

(%
)

Random walk length

Simple Walk
Similarity

Interaction
Lazy - α = 0.48
Lazy - α = 0.64

Originator - α = 0.20

Figure 10: Accepted honest nodes in

SybilLimit versus walk length, when

using different designs to model trust

in the social graph. The social graph

of Facebook in Table 2.

simplify the operation of the designs. For example, we con-

sidered that each design uses a globally fixed parameter (α)

that is used by each node in the graph. While this simplifies

the analysis and make it possible to derive a clean formula

for the transition probability and the bounding (or stationary)

distribution of the random walk of the graph, it is natural to

consider different random walks with mixed values for the

same parameter – assigned locally by each node depending

on its perception of the overall graph and trust in it. Pro-

viding clean formulation for this node-wise (as opposed to

graph-wise) parameters stay an open question.

Through the experiments with the interaction and simi-

larity biased random walks, we concerned ourselves by the

percent of nodes accepted rather than “which nodes” are ac-

cepted. The later part of knowing which nodes are accepted

is particularly interesting and can be used further to explore

what additional attack strategies an attacker can use to be

ranked higher than other nodes (see [12] for insights on such

attacks). In the near future we will investigate the charac-

teristics of the similarity and interaction graphs and explore

how different are they from the original social graphs.

The main idea being exploited in the Sybil defenses, a

long with the algorithmic property, is trust. It is assumed that

the attack edges are limited. However, recent studies [54]

have shown that it is easy to penetrate into the social net-

work by introducing attack edges, in several settings. While

the attack in [54] is based on automated identity theft, which

has its own shortcomings in the context of Sybil defenses, it

would be interesting to study that attack using entirely fake

identities, on different social networks, and study the prop-

erties of the attacker network, which is our future work.

In the original SybilLimit, the escape probability is de-

fined as the probability of ending up from the honest region

into the Sybil region. As we assign probabilities to more fa-

miliar nodes (from the point of view of a particular node),

it is intuitive that the escaping probability is going to be re-

duced. However, quantifying the difference remains an open

question that we would like to investigate in the future. In

fact, some these, e.g., SybilLimit, provide mechanisms to

bound the number of accepted nodes by escaping walks.

Several other directions are worth investigation in the near

future. First, we would like to investigate generalized node-

wise parameterized designs that consider different parame-

ters for different users, or categories of them. Second, we

would like to theoretically formulate the behavior of the dif-

ferent designs considering other features of the underlying

graph, e.g., its eigenvalues, mixing time, etc. Finally, we

would like to investigate the applicability of these designs

in other contexts where the trust of social networks is used.

Also, we will investigate other intuitive approaches to char-

acterize trust, use other extra information along with these

designs to reduce the number of accepted Sybil nodes per

attack edge. For example, one of the promising directions

that we will investigate is to use landmarks (e.g., list of good

nodes or bad nodes) that one can use to infer the goodness of

a set of nodes that are close from these landmarks. Another

direction is to use these list of previously known good nodes

for teleportation and see how this is going to affect the “mix-

ing time” of the social graph and the overall performance of

the defense built on top of it.
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APPENDIX

Generalized random walk

Here we introduce a generalized random walk that charac-

terizes the trust in social network as a combination of the

different random walks presented in this paper (state dia-

gram shown in Figure 12). In particular, given the tran-

sition matrix of the generalized random walk is given as

P = [pij ]n× n where:

pij =



















α vj = vi

β vj = vr

Πij vj ∈ N(vi) \ vr
0 otherwise

(10)

Πij in (10) combines the uniform (degree), similarity, and

interaction measures presented earlier. Πij is computed as:

Πij = Πγ
ij +Πη

ij +Πµ
ij , (11)

Πγ
ij =

γ

deg (vi)
, (12)

Πη
ij =

ηsij
∑

y siy
, (13)

Πν
ij =

νbij
∑

y biy
, (14)

1 = α+ β + γ + η + ν. (15)

vr vx vi vj

Πrx Πxi Πij

ααα α

β
β

β

β

Figure 12: An illustration of the generalized random

walk to characterized trust in social graphs. The pa-

rameters are defined in (11) through (15) and transition

probability is defined in (10).

Proofs

THEOREM 3 (SIMPLE RANDOM WALK). For the simple

random walk with transition matrix P defined uniformly over

edges, π = [deg(v1)2m . . . deg(vn)
2m ] is a stationary distribution

(state diagram shown in Figure 13).

PROOF. First, it is easy to show that

∑

i

πi =
∑

vi∈V

deg(v1)

2m
= 1,

hence π is a valid probability distribution. Then, let P be the

transition matrix defined as P = [pij ] where pij = 1
deg(vi)

if vj ∈ N(vi) or 0 otherwise. We know that in order for

π to be a stationary distribution then πP = π must hold.

Let x = πP. By applying that to P and π defined above,

we compute x. In particular, the ith element in x is · · · +
deg(vj)

2m
1

deg(vj)
+ · · ·+ deg(vr)

2m
1

deg(vr)
+ . . . (deg(vi) linear

components) = deg(vi)
2m for 1 ≤ i ≤ n. In other words,

x = [deg(vi)
2m ] = π = πP.

vr vx vi vj

1
deg (vr)

1
deg (vx)

1
deg (vi)

1
deg (vj)

1
deg (vi)

1
deg (vx)

Figure 13: An illustration of the simple random walk.

Other states incident to each of the states shown in this

illustration are omitted for simplicity.

THEOREM 4 (LAZY RANDOM WALK). For the lazy ran-

dom walk with transition matrix P defined uniformly over

edges, and self-loops at each node with probability α to

maintain in the same state, π = [deg(v1)
2m . . . deg(vn)

2m ] is a sta-

tionary distribution. In other words, self loops do not bias

the lazy random walk from the simple random walk (state

diagram shown in Figure 14).

PROOF. First, it is easy to show that
∑

i πi = 1 hence π
is a valid probability distribution. Then, let P be the tran-

sition matrix defined as P = [pij ] where pij = 1−α
deg(vi)

if

vj ∈ N(vi), pij = α if vi = vj and pij = 0 otherwise.

We know that in order for π to be a stationary distribution

then πP = π must hold. Let x = πP. By applying that

to P and π defined above, we compute x. In particular,

the ith element in x is αdeg(vi)
2m + (· · · + deg(vj)

2m
1−α

deg(vj)
+

· · · + deg(vr)
2m

1−α
deg(vr)

+ . . . (deg(vi) linear components) =

αdeg(vi)
2m +

∑deg(vi)
r=1 ( 1−α

2m ) = αdeg(vi)
2m + deg(vi)(

1−α
2m ) =

deg(vi)
2m = for 1 ≤ i ≤ n. In other words, x = [deg(vi)2m ] =

π = πP.

vr vx vi vj

1−α
deg (vr)

1−α
deg (vx)

1−α
deg (vi)

ααα α

Figure 14: An illustration of the originator biased ran-

dom walk. Other states incident to each of the states

shown in this illustration are omitted for simplicity.

THEOREM 5 (ORIGINATOR-BIASED RANDOM WALK).

Let α and β be two numbers where 0 ≤ α ≤ 1, 0 ≤ α ≤ 1,
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and α + β = 1. Define a random walk on G = (V,E) fol-

lowing P = [pij ], where pij is defined as (state diagram is

in Figure 15):

pij =



















α j = r, vr 6∈ N(vi)

α+ 1−α
deg(vi)

j = r, vr ∈ N(vi)
1−α

deg(vi)
j 6= r, vj ∈ N(vi)

0 otherwise

(16)

The random walk initiated from vr has a bounding distribu-

tion defined as π = [pij ] where

πi =

{

α+ β deg(vi)
2m ≈ α i = r

β deg(vi)
2m i 6= r

(17)

PROOF. First, we show that
∑

i πi = 1. We sum (17) for

all i to get

α+
∑

vi∈V

β deg(vi)

2m
= α+ β = 1,

which implies that
∑

i πi = 1 and π is a valid probability

distribution. To prove that π is a bounding distribution for

the random walk initiated from the node vr, we show that

πP = π hold. Let x = πP. By applying that to P and π
defined above, we compute x. In particular, the ith element

in x is given considering two cases:

Case 1— i = r: this case includes three sub-cases. Let vj
be any node in V then vj can be one of the following cases:

vj ∈ N(vr), vj 6∈ N(vr), or vj = vr. Each of these cases

sum as part of the probability assigned to vi — i.e., to give xi

— when i = r. Let xi = xi1 + xi2 + xi3 where xi1, xi2, xi3

are the parts of xi resulting from each case of the sub-cases

independently. Each of these is computed as:

1. vj 6∈ N(vr)

xi1 =
∑

vj∈V \N(vr)

α
β deg(vj)

2m
= αβ

∑

vj∈V \N(vr)

deg(vj)

2m

≈ αβ (18)

2. vj ∈ N(vr)

xi2 =
∑

vi∈N(vr)

β deg(vj)

2m

β

deg(vj)
= β2 deg(vr)

2m
≈ 0

(19)

3. vj = vr

xi3 = α(α+
β

2m
deg(vr)) ≈ α2 (20)

By summing up the three above cases, we get xi = xi1 +
xi2 + xi3 = αβ + 0 + α2 = α− α2 + α2 = α, from which

we conclude case 1.

Case 2 — i 6= r: similar to above, we compute xi = xi1 +
xi2 where xi1 for πi when i = r and xi2 for the rest of cases.

We compute xi1 as:

xi1 =
∑

vj∈N(vi)

(
β deg(vi)

2m
)(

β

deg(vi)
) =

β2 deg(vi)

2m
(21)

and xi2 as

xi2 =

(

α+
β

2m
deg(vr)

)(

β deg(vi)

2m

)

=
αβ deg(vi)

2m
+

β2 deg(vi) deg(vj)

4m2

≈ αβ deg(vi)

2m
=

β deg(vi)

2m
− β2 deg(vi)

2m
(22)

By summing (21) and (22) we get xi =
β deg(vi)

2m . From case

1 and case 2, we conclude that x = πP = π, from which

we conclude that π = [πi] defined in (17) is a bounding

distribution for the walk on G following P in (16).

vr vx vi vj

1−α
deg (vr)

1−α
deg (vx)

1−α
deg (vi)

α
α

α

α

Figure 15: An illustration of the originator biased ran-

dom walk.

THEOREM 6 (SIMILARITY-BIASED WALK). For the sim-

ilarity biased random walk with transition matrix P defined

according the similarity measure over the links between the

nodes as P = [pij ]
n×n where pij =

sij∑
k sik

if vj ∈ N(vi),

π = [πi] where πi =
∑

j sij
∑

i

∑
k sik

is a stationary distribution

(state diagram shown in Figure 16).

PROOF. First, it is easy to show that
∑

i πi = 1 hence

π is a valid probability distribution. Then, similar to the

previous walks above, let P and π be the transition matrix

and the stationary distribution defined as above. We know

that in order for π to be a stationary distribution then πP =
π must hold. Let x = πP. By applying that to P and π
defined above, we compute x. In particular, the ith element

in x is
sij∑
k sik

∑
j sij

∑
i

∑
k sik

+ · · · + sij∑
k sik

∑
j sij

∑
i

∑
k sik

= πi for

1 ≤ i ≤ n. Hence, π = x = πP.

THEOREM 7 (INTERACTION-BIASED WALK). For the similarity-

biased random walk with transition matrix P defined ac-

cording the similarity measure over the links between the

nodes as P = [pij ]
n×n where pij =

bij∑
k bik

if vj ∈ N(vi),

π = [πi] where πi =
∑

j bij
∑

i

∑
k bik

is a stationary distribution

(state diagram shown in Figure 17).
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vr vx vi vj

srx∑
y sry

sxi∑
y sxy

sij∑
y siy

sji∑
y sjy

six∑
y siy

sxr∑
y sxy

Figure 16: An illustration of the originator-biased ran-

dom walk. Other states incident to each of the states

shown in this illustration are omitted for simplicity.

vr vx vi vj

brx∑
y bry

bxi∑
y bxy

bij∑
y biy

bji∑
y bjy

bix∑
y biy

bxr∑
y bxy

Figure 17: An illustration of the originator biased ran-

dom walk.

PROOF. Follows as in the proof of Theorem 6.

THEOREM 8. Let ℓ be the effective length of the random

walk, and α(0 ≤ α ≤ 1) is a graph-wise parameter, then

the number of random walks with length greater than 2 is

Pr(ℓ ≥ 2) = (1 − α)2. Furthermore, the ideal number of

intersections in SybilLimit when using the originator-biased

random walk is ≤ 1− e−8(1−α)4

PROOF. The proof of this is straightforward by consider-

ing the possibilities of a random walk with effective length

greater than 2. Let A(i) be the event of having a random

walk effective length ℓ = i. We can write all the possible

events of effective lengths greater than 2 as A(2), A(3), . . . , A(w).
We know that Pr(A(2)) = Pr(ℓ = 2) = (1−α)2, Pr(A(3)) =
Pr(ℓ = 3) = (1 − α)3, and Pr(A(w)) = Pr(ℓ = w) =
(1−α)w. But since A(w) ⊆ A(w− 1) · · · ⊆ A(3) ⊆ A(2),
we know that Pr(A(2)) already includes the cases of the

events A(3) . . . A(w). That is, Pr(ℓ ≥ 2) ≤ Pr(ℓ = 2) =
(1−α)2 = β2 where β = 1−α. We know that random walk

length needs to at least 2 in order for SybilLimit to work by

intersecting on the tails. By plugging this into the number of

collected samples (i.e., 4
√
m), we get 4β2

√
m. By plugging

this into the birthday paradox bound, we get the probabil-

ity of intersection, Pr, from the effective expected number of

random walks with length greater than 2 as follows:

Pr = 1− e−[(4β2
√
m)(4β2

√
m−1)/2]/m (23)

= 1− e
( 2β2

√

m
−8β4) ≈ 1− e−8β4

= 1− e−8(1−α)4 (24)

which concludes the proof
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