
CFTL: A Convertible Flash Translation Layer with Consideration of Data Access Patterns

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 09-023

CFTL: A Convertible Flash Translation Layer with Consideration of

Data Access Patterns

Dongchul Park, Biplob Debnath, and David Du

September 14, 2009





CFTL: A Convertible Flash Translation Layer with
Consideration of Data Access Patterns

Dongchul Park, Biplob Debnath, and David Du
University of Minnesota, Twin Cities

200 Union Street SE, Minneapolis, MN 55455, USA
park@cs.umn.edu, Biplob@umn.edu, du@cs.umn.edu

ABSTRACT
NAND flash memory-based storage devices are increas-
ingly adopted as one of the main alternatives for magnetic
disk drives. The flash translation layer (FTL) is a soft-
ware/hardware interface inside NAND flash memory, which
allows existing disk-based applications to use it without any
significant modifications. Since FTL has a critical impact
on the performance of NAND flash-based devices, a vari-
ety of FTL schemes have been proposed to improve their
performance. However, existing FTLs perform well for ei-
ther a read intensive workload or a write intensive work-
load, not for both of them due to their fixed and static ad-
dress mapping schemes. To overcome this limitation, in this
paper, we propose a novel FTL addressing scheme named
as Convertible Flash Translation Layer (CFTL, for short).
CFTL is adaptive to data access patterns so that it can
dynamically switch the mapping of a data block to either
read-optimized or write-optimized mapping scheme in order
to fully exploit the benefits of both schemes. By judiciously
taking advantage of both schemes, CFTL resolves the in-
trinsic problems of the existing FTLs. In addition to this
convertible scheme, we propose an efficient caching strat-
egy so as to considerably improve the CFTL performance
further with only a simple hint. Consequently, both of the
convertible feature and caching strategy empower CFTL to
achieve good read performance as well as good write per-
formance. Our experimental evaluation with a variety of
realistic workloads demonstrates that the proposed CFTL
scheme outperforms other FTL schemes.

1. INTRODUCTION
NAND flash memory has come into wide use as main

data storage media in mobile devices, such as PDAs, cell
phones, digital cameras, embedded sensors, and notebooks
due to its superior characteristics: smaller size, lighter
weight, lower power consumption, shock resistance, lesser
noise, non-volatile memory, and faster read performance [1,
2, 3, 4, 5]. Recently, to boost up I/O performance and en-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

ergy savings, flash-based Solid State Drives (SSDs) are also
being increasingly adopted as a storage alternative for mag-
netic disk drives by laptops, desktops, and enterprise class
servers [3, 4, 5, 6, 7, 8, 9]. Due to the recent advancement
of the NAND flash technologies, it is expected that NAND
flash-based storages will have a great impact on the designs
of the future storage subsystems [4, 5, 7, 10].

A distinguishing feature of flash memory is that read oper-
ations are very fast compared to magnetic disk drive. More-
over, unlike disks, random read operations are as fast as
sequential read operations as there is no mechanical head
movement. However, a major drawback of the flash memory
is that it does not allow in-place updates (i.e., overwrite).
In flash memory, data are stored in an array of blocks. Each
block spans 32-64 pages, where a page is the smallest unit
of read and write operations. Page write operations in a
flash memory must be preceded by an erase operation and
within a block pages need be to written sequentially. The
in-place update problem becomes complicated as write op-
erations are performed in the page granularity, while erase
operations are performed in the block granularity. The typ-
ical access latencies for read, write, and erase operations are
25 microseconds, 200 microseconds, and 1500 microseconds,
respectively [7]. In addition, before the erase is done on a
block, the live (i.e., not over-written) pages in that block
need to be moved to pre-erased blocks. Thus, an erase
operation incurs a lot of page read and write operations,
which makes it a performance critical operation. Besides
this asymmetric read and write latency issue, flash memory
exhibits another limitation: a flash block can only be erased
for a limited number of times (e.g., 10K-100K) [7]. Thus,
frequent block erase operations reduce the lifetime of the
flash memory. This is known as wear-out problem.

The flash translation layer (FTL) is a software/firmware
layer implemented inside a flash-based storage device to
make the linear flash memory device to act like a magnetic
disk drive (as shown in Figure 1). FTL emulates disk-like in-
place update for a logical page number (LPN) by writing the
new page data to a different physical page number (PPN).
It maintains a mapping between each LPN and its current
PPN. Finally, it marks the old PPN as invalid for the later
garbage collection. Thus, FTL enables existing application
to use flash memory without any modification. However,
internally FTL needs to deal with physical characteristics
of the flash memory. Thus, an efficient FTL scheme makes
a critical effect on overall performance of flash memory as
it directly affects in-place update performance and wear-out
problem.



File System

NAND Flash memory

FTL

Controller

Flash Memory System

Logical address Physical address

SRAM

Mapping Table

Figure 1: NAND Flash memory system architecture

Existing FTLs use various logical to physical page map-
ping strategies to solve the in-place update and wear-out
problem. The mapping can be maintained at the page
level, block level, or a combination of them (hybrid). In
a page level mapping case, FTL maintains a mapping be-
tween each logical page number (LPN) and physical page
number (PPN). Although a page level mapping scheme [11]
has its merits in high block utilization and good read/write
performance, but it requires very large memory space to
store the entire page mapping table. To overcome this large
memory limitation, a block level mapping FTL tries to map
each logical block number (LBN) to physical block number
(PBN). In addition, inside a block, page offsets are always
fixed. An update to a page in a page level mapping may
not have to trigger a block erasure, while an update to a
page in a block level mapping will trigger the erasure of the
block containing the corresponding page. Thus, the perfor-
mance of a block level mapping for write intensive workloads
is much worse than that of a page level mapping. However,
for the read intensive workloads, the performance of a block
level mapping is comparable to that of a page level mapping
even with much less memory space requirement.

To take advantage of the both page level and block level
mapping, various hybrid schemes [12, 13, 14, 15, 16, 17]
have been proposed. Most of these schemes are fundamen-
tally based on a block level mapping with an additional
page level mapping restricted only to a small number of
log blocks in order to delay the block erasure. However, for
write intensive workloads, hybrid FTL schemes still suffer
from performance degradation due to the excessive number
of block erase operations. Recently, Gupta et al. proposed
a pure page level mapping scheme called DFTL (Demand-
based Flash Translation Layer) with a combination of small
SRAM and flash memory [18]. In DFTL, the entire page
level mapping is stored in the flash memory and tempo-
ral locality is exploited in an SRAM cache to reduce lookup
overhead of the mapping table. However, DFTL incurs page
mapping lookup overhead for the workloads with fewer tem-
poral locality. In addition, it suffers from frequent updates
in the pages storing the page mapping table in case of write
intensive workloads and garbage collection.

Considering the advantages and disadvantages of the ex-
isting FTLs and the limited memory space, we have made
the following observations: (1) Block level mapping has a
good performance for read intensive data due to its fast di-
rect address translations, (2) Page level mapping manages
write intensive data well since its high block utilization and
the reduced number of erase operations required, (3) Write

intensive pages, which define as hot pages, will be benefited
from the page level mapping, and (4) Read intensive pages,
which we define as cold pages, will be benefited from the
block level mapping. (5) Spatial locality in a workload can
help to improve an FTL performance. Based on these obser-
vations, our goal is to design an FTL scheme that will follow
the workload behavior. For a write intensive workload, it
will provide the page level mapping-like performance, while
for a read intensive workload, it will provide the block level
mapping-like performance.

In this paper, we propose a novel FTL scheme named
as CFTL, which stands for Convertible Flash Translation
Layer. In CFTL, the core mapping table is a pure page
level mapping. This mapping table is stored in the flash
memory. The key idea is to force the page level mapping to
provide performance comparable to a block level mapping,
if the data is turned to cold (read intensive) from hot (write
intensive) and vice versa. Since CFTL maintains core map-
ping table in the page level mapping, a logical page can be
mapped to any physical page. Thus, to change from block
level to page level mapping, no extra effort is needed. Con-
trarily, to switch from page level to block level mapping, we
force CFTL to map consecutive logical pages to consecutive
physical pages.

CFTL uses a simple hot/cold block detection algorithm
for its addressing mode changes. If a logical block is identi-
fied as cold, then all consecutive logical pages in the block
are stored in the consecutive physical pages of a new block.
On the other hand, if logical block is identified as hot, CFTL
does not force any restriction between the corresponding log-
ical pages to physical page mapping for that block. Accord-
ing to the hotness of a block, the corresponding mapping
is also dynamically changed. In CFTL, since mapping ta-
ble is stored in the flash memory, there can be an overhead
to lookup the mapping table. To speed up the mapping
table lookup, CFTL maintains two mapping caches. First
cache maintains the page level mappings, while second cache
maintains block level mappings. These caches exploit both
temporal and spatial localities to reduce the lookup over-
head. The main contribution of this paper is as follows:

• A Convertible FTL Scheme: Unlike other existing
FTLs, CFTL is adaptive to data access patterns. The
main idea of CFTL is simple: a block level mapping
deals with read intensive data to make the best of the
fast direct address translation, and a page level map-
ping manages write intensive data to minimize erase
operations thereby doing completely away with expen-
sive full merge operations. Therefore, some parts of
flash are addressed by a page level mapping, while
some parts are addressed by a block level mapping.
In addition, the mapping can be dynamically switched
to either scheme according to current access patterns
of underlying data.

• An Efficient Caching Strategy: For the fast ad-
dress translation, CFTL employs two caches to store
the mapping data. One cache is used to speed up the
page level address translation, while another cache is
used to speed up the block level address translation.
In particular, the page level cache is specially designed
to exploit the spatial locality of data. It uses hints to
improve hit ratio. Consequently, by exploiting both
temporal and spatial localities, these two caches make



significant contribution to improve the overall perfor-
mance thereby reducing address lookup overhead.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of flash memory and describes ex-
isting FTL schemes. Section 3 explains the design and op-
erations of CFTL scheme. Section 4 provides experimental
results. Finally, Section 5 concludes the discussion.

2. BACKGROUND AND RELATED WORK
In this section, at first, we describe flash memory archi-

tecture. Next, we describe various address mapping schemes
including page level, block level, and hybrid mappings.

2.1 Flash Memory Architecture
There are two types of flash memory: NOR and NAND

flash memory. NOR flash memory has a very similar inter-
face to block devices, fast read speed, and access in a byte
unit. So it is more appropriate to save and execute program
codes. NAND flash, on the other hand, has a distinct in-
terface to block devices, relatively slower read speed, and
allows access data in a page unit [19]. These features make
NAND flash more relative media to save data, not to pro-
gram codes. Consequently NAND flash memory is widely
used in flash memory-based storage devices such as SSD,
PDA, and other mobile devices. In this paper, we focus on
the NAND flash memory.

Figure 1 gives an overview of an NAND flash-based stor-
age device. In an NAND flash memory, data are organized
as an array of blocks. Each block comprises either 32 pages
(small block NAND flash) or 64 pages (large block NAND
flash). In case of small block NAND flash, each page con-
sists of sectors of 512 bytes and spare areas of 16 bytes.
Each sector is employed to save data and each spare area is
used to record LPN (Logical Page Number) or ECC (Error
Correcting Code). Since NAND flash does not allow over-
write to the page already written, the whole block which the
page belongs to must be erased before writing operation is
allowed to the page due to the feature of Erase-before-Write
in flash memory. In order to balance the number of era-
sures on physical blocks, an update to data in a logical page
may migrate the updated data to a different physical page.
Therefore, there must be a mapping between logical pages
to physical pages. This mapping is managed by the Flash
Translation Layer (FTL). FTL allows existing applications
to use flash memory as a replacement for the magnetic disk
without any code modifications. However, the performance
of the flash memory is greatly impacted by mapping scheme
used in FTL.

2.2 Address Mapping Schemes
Typical address mapping procedures in FTL are as fol-

lows: on receiving a logical page address from the host
system, FTL looks up the address mapping table and re-
turns the corresponding physical address. When the host
system issues overwrite operations, FTL redirects the phys-
ical address to an empty location in order to avoid erase
operations. After the overwrite operation, FTL updates the
address mapping information and the outdated block can
be erased later by a garbage collection process. FTL can
maintains the mapping table information either in the page-
level, or block-level, or in a hybrid manner. In addition,
FTL can store mapping table either in the SRAM or in the

0

1

2

3

4

5

9

7

12

10

11

3

Block #0

Block #1

Block #2

Block #3

LPN PPN

Page #0
Page #1
Page #2

Page #11

...

Write to LPN #2
0

1

2

3

2

0

3

1

Block #0

Block #1

Block #2

Block #3

LBN PBN

Page #0
Page #1
Page #2

Page #11

...

Write to LPN #11

LBN = 2 (11/4)

PBN = 2 

Offset = 3 Offset = 3 (11%4) 

PPN = 9

LPN: Logical Page Number

PPN: Physical Page Number

LBN: Logical Block Number

PBN: Physical Block Number

Page mapping table Block mapping table

Flash Memory Flash Memory

(a) Page level mapping (b) Block level mapping

Figure 2: Page level and block level mapping

flash memory itself. In the rest of this section, first we de-
scribe SRAM based mapping schemes. Next, we describe
flash memory based mapping schemes.
1) SRAM-based Mapping Table: According to the gran-
ularities with which the mapping information is managed,
FTLs are largely classified into either a page level mapping
[11] or a block level mapping [20] or hybrid.

• Page Level Mapping: This is a very flexible scheme in
that a logical page can be mapped into any physical page in
flash memory (Figure 2). In addition to this feature, since it
does not require expensive full merge operations described in
the next subsection, it shows a good overall performance for
both read and write operations. This intrinsic merit, how-
ever, brings about its critical demerit–large size of memory
requirements. That is, the size of mapping table may be
too large to be resided in SRAM of FTL. For example, let
us consider a flash memory of 4GB size and a page size of
2KB, this requires 2 million (221) numbers of page mapping
information to be stored in SRAM. In this case, assuming
each mapping entry needs 8bytes, 16MB memory space is
required only for the mapping table. This may be infeasible
for the economic reasons.

• Block Level Mapping: In a block level address mapping,
a logical page address is made up of both a logical block
number and its corresponding offset. Since the mapping ta-
ble maintains only the mapping information between logical
and physical blocks, the size of block mapping information
is relatively smaller than that of a page level mapping. How-
ever, this approach also retains an inevitable disadvantage.
When the overwrite operations to logical pages are issued,
the corresponding block must be migrated and remapped to
a free physical block as follows: The valid pages and the up-
dated page of the original data block are copied to a new free
physical block, and then the original physical block should
be erased. When it comes to a block level mapping, this
Erase-before-Write characteristic is an unavoidable perfor-
mance bottleneck in write operations.

• Hybrid Mapping: To overcome the shortcomings of the
page level and block level mapping approaches, a variety of
hybrid schemes have been proposed [12, 13, 14, 15, 16, 17].
Most of these algorithms are based on a log buffer approach.
In other words, there exists a page level mapping table for
a limited number of blocks (log blocks) as well as a block
level mapping table for the data blocks. The log blocks are
used to temporarily record updates to improve the write
performance. The memory usage for mapping can also be
reduced since only a small number of log blocks are allocated
for a page level mapping. However, log blocks eventually
need to be erased and this will trigger a merge operation.
A merge operation can be expensive and cause a number of



log block erasures.
Merge operations can be classified into three types: switch

merge, partial merge, and full merge [18]. A switch merge
is triggered only when all pages in a block are sequentially
updated from the first logical page to the last logical page.
An FTL erases the data block filled with invalid pages and
switches the log block into the data block. Since this re-
quires only one block erasure, this is the cheapest merge
operation. A partial merge is similar to the switch merge
except for additional valid page copies. After all the valid
pages are copied to the log block, an FTL simply applies
the switch merge operation. The partial merge is executed
when the updates do not fill one block sequentially. There-
fore, this costs additional page copies as well as one block
erasure. A full merge requires the largest overhead among
merge operations. An FTL allocates a free block and copies
the all valid pages either from the data block or from the
log block into the free block. After copying all the valid
pages, the free block becomes the data block and the former
data block and the log block are erased. Therefore, a single
full merge operation requires as many read and write oper-
ations as the number of valid pages in a block and two erase
operations [15].

A variety of hybrid mapping schemes have been proposed
[12, 13, 14, 15, 16, 17]. We summarize core features of each
scheme and discuss merits and demerits of each scheme.

BAST (Block Associative Sector Translation) [12] scheme
classifies blocks into two types, namely, data blocks for data
saving and log blocks for overwrite operations. Once an
overwrite operation is issued, an empty log block is assigned
and the data is written to it instead of direct calling a block
erase operation which is very expensive. As a result of this,
erase operation does not need to be performed whenever
overwrite operation is issued. However, this scheme suffers
from low block utilization due to log block thrashing and
hot logical block problem [14].

FAST (Fully Associative Sector Translation) [14] is based
on BAST scheme but allows log blocks to be shared by all
data blocks unlike BAST in which data blocks are associ-
ated to log blocks exclusively. This scheme subdivides log
blocks into two types: sequential log blocks for switch op-
erations and random log blocks for merge operations. Even
though this accomplished better utilization of log blocks, it
still remains in low utilization if overwrite operations are
repeatedly requested only to the first page of each block.
Moreover, random log blocks give rise to the more compli-
cated merge operations due to fully associative policy.

SuperBlock FTL [15] scheme attempts to exploit the block
level spatial locality in workloads by allowing the page level
mapping in a superblock which is a set of consecutive blocks.
This separates hot data (frequently updated data) and non-
hot data into different blocks within a superblock and conse-
quently the garbage collection efficiency is achieved thereby
reducing the number of full merge operations. However, this
approach uses a three-level address translation mechanism
which leads to multiple accesses of spare area to serve the
requests. In addition, it also uses a fixed size of superblock
explicitly required to be tuned according to workload re-
quirements and does not efficiently make a distinction be-
tween cold and hot data.

LAST (Locality-Aware Sector Translation) [16] scheme
adopts multiple sequential log blocks to make use of spatial
localities in workload in order to supplement the limitations

DLPN DPPN

8

9

10

11

570

571

501

420

MVPN=2

F V

MPPN=17

DLPN DPPN

0

1

2

3

110

111

112

113

MVPN=0

V I

MPPN=21

DLPN=10

F V

DPPN=501

DATA

Spare Area

DPPN=502

DATA

Data block Translation Block

MVPN MPPN

0

1

2

3

21

15

17

22

Global Translation Directory

DLPN DPPN

4

12

7

2

45

58

30

129

Cached Mapping Table

DLPN DPPN

0

1

2

3

110

111

129

113

MVPN=0

F V

MPPN=25

DLPN = 10
(1) (6)

(2)

(3)

(4)

(5)

21 25
(7)

(8)

(2, 129) (10, 501)

(9)

Figure 3: Address translation process of DFTL

of FAST. It classifies random log buffers into hot and cold
partitions to alleviate full merge cost. LAST, as the au-
thors mentioned, relies on an external locality detector for
its classification which cannot efficiently identify sequential
writes when the small-sized write has a sequential locality.
Moreover, the fixed size of the sequential log buffer brings
about the overall garbage collection overhead.

AFTL (Adaptive Two-Level Flash Translation Layer) [17]
scheme maintains latest recently used mapping information
with fine-grained address translation mechanism and the
least recently used mapping information with coarse-grained
mechanisms due to the limited source of the fine-grained
slots. Notwithstanding this two-level management, even
though there are the large amounts of hot data, they all
cannot move to fine-grained slots due to the limited size of
fine-grained mechanism. That is, coarse-to-fine switches in-
cur corresponding fine-to-coarse switches, which causes over-
head in valid data page copies. Additionally, only if all of the
data in its primary block appear in the replacement block,
both corresponding coarse-grained slot and its primary block
can be removed, which leads to low block utilization.
2) Flash-based Mapping Table: Instead of storing the
page mapping table in the SRAM, it can also be stored in
the flash memory itself. Thus, the performance degradation
due to expensive full merge operations experienced by the
hybrid schemes can be avoided. To that end, Gupta et al.
[18] proposed a two-tier, SRAM and Flash, pure page level
mapping scheme called DFTL. Our proposed new mapping,
CFTL (Convertible Flash Translation Layer), also stores the
mapping table in the flash memory. Since DFTL is highly
related to CFTL, we describe the DFTL scheme in detail.

• DFTL Architecture: DFTL maintains two types of ta-
bles in SRAM, namely, Cached Mapping Table (CMT) and
Global Translation Directory (GTD). CMT stores only a
small number of page mapping information like a cache for
a fast address translation in SRAM. GTD keeps track of
all scattered page mapping tables stored in flash since out-
of-updates cause translation pages get physically dispersed
over the entire flash memory. That is, GTD works like tier-1
mapping table in the two-tier address translation hierarchy.
A complete translation pages are stored in flash due to their
relatively big size. Translation pages retain the whole ad-
dress mapping information and each page directly point to
physical data pages in flash.

• Address Translation Process in DFTL: Figure 3 il-
lustrates the address translation process of DFTL. If a
read/write request hits the CMT in SRAM, it is served di-
rectly by using the mapping information stored in CMT.



Table 1: Comparison between DFTL and CFTL

DFTL CFTL
Mapping Table Stored in Flash Flash

Write Intensive Workload Performance Good Good
Read Intensive Workload Performance Not Good Good

Exploits Temporal Locality Yes Yes
Exploits Spatial Locality No Yes

Adaptiveness No Yes

Otherwise it goes through the two-tier address translation
process and it may entail to choose a victim entry in CMT
for eviction in case of the list full. If the victim information
has been updated since it was loaded into it, DFTL checks
GTD to find translation page including corresponding log-
ical page address. Next, DFTL invalidates the translation
page and assign one new page to reflect the updated map-
ping information. Then DFTL also needs to update GTD
to reflect the newly assigned translation page. However, if
the victim entry has not been updated since it was stored
in CMT, the mapping information is simply removed from
CMT. Now the incoming request is translated with the same
processes above and the newly translated mapping informa-
tion is stored in CMT. Finally, the requested operation is
executed.
• Advantages and Disadvantages of DFTL: Since DFTL is

a pure page level mapping scheme, not only does it achieve
high block utilization, but also it completely remove full
merge operations [18]. As a result, it improves overall per-
formance and outperforms state-of-the-art hybrid FTLs in
terms of write performance, block utilization, and the num-
ber of merge operations. However, DFTL suffers from fre-
quent updates of translation pages in case of write dominant
access patterns or garbage collection. To alleviate this prob-
lem, it uses delayed updates and batch updates in CMT with
the aim of delaying the frequent updates. DFTL achieves
a good write performance but cannot achieve as good read
performance as hybrid FTLs under read dominant work-
loads due to its intrinsic two-tier address translation over-
head. It costs an extra page read in flash when the request
does not hit the CMT. Therefore DFTL cannot outperform
hybrid mapping schemes using direct (i.e., one-level) ad-
dress translation especially under randomly read intensive
environments. DTFL considers temporal locality but leaves
spatial locality unaccounted. In many cases, spatial locality
is also an essential factor to efficiently access data [21].

Our novel mapping scheme, CFTL, addresses the short-
comings of the DFTL scheme. Table 1 provides a compari-
son between CFTL and DFTL schemes.

3. CONVERTIBLE FLASH TRANSLA-
TION LAYER

In this section, we describe our proposed Convertible
Flash Translation Layer (CFTL, for short). CFTL judi-
ciously takes advantage of both page level and block level
mappings so that it can overcome the innate limitations of
existing FTLs described in Section 2.2. In addition, CFTL
uses two mapping caches to speed up the address lookup
performance. The rest of this section is organized as fol-
lows. Section 3.1 depicts the CFTL architecture and sec-
tion 3.2 explains the addressing mode change scheme. The
address translation process in CFTL is described in sec-

Cached page mapping

table (CPMT)

Data blocks Mapping table blocks

SRAM

Flash Memory

LPN PPN

0

11

10

8

110

420

501

570

Consec

4

1

1

2

VPN MPPN

0

1

2

3

21

15

17

22

Tier-1 

page mapping table

LBN PBN

4

12

7

45

45

58

30

56

Cached block mapping 

table (CBMT)

MPPN=17 VPN=8

F V

MPPN=21 VPN=9

F V

Mapping table

Mapping table

Tier-2 page mapping tables
LPN PPN

8

9

10

11

570

571

501

420

VPN=2

F V

MPPN=17

LPN PPN

0

1

2

3

110

111

112

113

VPN=0

F V

MPPN=21

Tier-2 page mapping tables (detail)

PPN=570 LPN=8

F V

PPN=571 LPN=9

F V

Data

Data

Figure 4: CFTL Architecture

tion 3.3 and section 3.4 describes how to efficiently manage
mapping caches. Finally, Section 3.5 discusses the advan-
tages of CFTL compared to other existing FTL schemes.

3.1 Architecture
Figure 4 gives an overview of the CFTL design. CFTL en-

tire page mapping table in the flash memory. We define it as
tier-2 page mapping table. As mapping table is stored in the
flash memory, therefore during the address lookup, first we
need to read page mapping table to find the location of the
orginal data. Next, from that location, we can find the data.
Clearly, page table lookup incurs at least one flash read op-
eration. To solve this problem, CFTL caches parts of the
mapping table on the SRAM. As shown in Figure 4, CFTL
maintains two mapping tables in SRAM: CPMT (Cached
Page Mapping Table) and CBMT (Cached Block Mapping
Table). CPMT is a small amount of a page mapping table
and served as a cache to make the best of temporal local-
ity and spatial locality in a page level mapping. This table
has an addition to a general address mapping table called
consecutive field. This simple field provides a smart hint in
order to effectively improve the hit ratio of CPMT thereby
exploiting spatial locality. This will be explained in more
detail later in subsection 3.4. CBMT is also a small amount
of a block mapping table and serves like a cache as well
in order to exploit both localities in a block level mapping.
CBMT translates logical block numbers (LBN) to physical
block numbers (PBN), which enables fast direct access to
data blocks in flash in conjunction with page offsets.

In addition to both CBMT and CPMT (as shown in Fig-
ure 4), there exists another mapping table. We define this
SRAM based mapping table as tier-1 page mapping table.
A tier-1 page mapping table keeps track of tier-2 page map-
ping tables dissipated over the entire flash memory. Unlike
those three tables residing in SRAM, tier-2 mapping tables
are stored on flash memory due to its large size limitation.
Since tier-2 mapping tables compose the whole page map-
ping table in a pure page level mapping scheme, each en-
try in each table directly points to a physical page in flash.
Moreover, since each tier-2 mapping table resides in flash
memory, whenever any mapping information is updated, a
new page is assigned and all mapping information in the old
page (mapping table) is copied to the new page while reflect-
ing the updated mapping information. This arises from such
a peculiarity that both reads and writes to flash memory are
performed in terms of pages. Thus we need to maintain a



tier-1 mapping table so as to trace each tier-2 mapping table
which can be scattered over the flash memory whenever it is
updated. Actually each page (one tier-2 mapping table) can
store 512 page mapping entries. For clarification, assum-
ing one page size is 2KB and 4bytes are required to address
entire flash memory space, then 29 (2KB/4bytes) logically
consecutive address mapping entries can be saved for each
data page. Therefore, 1GB flash memory device needs only
2MB (210

×2KB) space for all tier-2 mapping tables in flash:
it totally requires 210 (1GB/1MB per page) number of tier-2
mapping tables. Apart from these small amounts of tier-2
page mapping tables, all the other spaces are for data blocks
to store real data in flash memory.

3.2 Addressing Mode Changes
The core feature of CFTL is that it is dynamically con-

verted to either a page level mapping or a block level map-
ping to follow workload characteristics. Therefore, when and
how CFTL converts its addressing mode are of paramount
importance. In this subsection, we describe the addressing
mode change policy in CFTL.

When any data block is frequently updated, we define it
as hot data. On the other hand, it is accessed in a read
dominant manner or has not updated for a long time, we
define it as cold data. In CFTL scheme, hot and cold data
identification plays an important role in decision making on
mode changes from a block mapping to page mapping or
vice versa. As a hot/cold identification algorithm in CFTL,
we employ a simple counting method. In this approach, we
maintain a counter for every logical page address and each
time the logical page address is accessed, the corresponding
counter is incremented. If the counter value for a particular
logical address is more than a specified value (hot threshold
value), we identify the data block as a hot block. Hot and
cold data identification itself, however, is out of scope of this
paper, other algorithms such as a hash-based technique [22]
or LRU discipline [23] can also replace it.
• Page to Block Level Mapping: If a hot/cold data iden-

tifier in CFTL identifies some data as cold data, addressing
mode of those data is switched to a block level mapping
during garbage collection time. In particular, when the cold
data pages in a logical block are physically dissipated in
flash, we need to collect those pages into a new physical
data block consecutively. Then we can register this block
mapping information into CBMT for a block level mapping.
Contrastingly, all valid physical data pages in a logical block
are identified as cold data and saved in a consecutive man-
ner, it can be switched to a block level mapping without
any extra cost. Note that although cold data, in general,
include such data that have not updated for a long time,
CFTL does not convert such type of cold data blocks to a
block level mapping. It converts only cold data blocks that
frequently accessed in a read manner to a block level map-
ping.
• Block to Page Level Mapping: In case of write dom-

inant access patterns, a block level mapping scheme does
not demonstrate a good performance because frequent up-
dates indispensably lead to expensive full merge operations.
This inevitable full merge operation is the main cause to de-
grade, in particular, write performance in a block level map-
ping scheme including existing hybrid FTLs. Thus CFTL
maintains write intensive data with a page level mapping
schemes. On the contrary to the mode change from a page

Cached page mapping

table (CPMT)

Data blocks Mapping table blocks (Tier-2 page mapping tables)

SRAM

Flash Memory

LPN PPN

0

33

10

8

110

778

550

570

Consec

4

1

1

2

VPN MPPN

0

1

2

3

21

15

17

22

Tierl-1 

page mapping table

LBN PBN

4

12

7

10

45

58

30

56

Cached block mapping 

table (CBMT)

PPN=420
LPN=11

F V

PPN=421
LPN=12

F V

Data

Data

LPN PPN

8

9

10

11

570

571

501

420

VPN=2

F I

MPPN=17

LPN PPN

12

13

14

15

421

422

423

424

VPN=0

F V

MPPN=22

…

LPN PPN

8

9

10

11

570

571

550

420

VPN=2

F V

MPPN=25

LPN = 12 (1) (2)

(3)

(4)
(5)

(6)

(17 25)(7)(8) (10,550,1) (12,421,4)(9)

Figure 5: Address translation process of CFTL

to a block level mapping, this mode switch originally does
not require any extra cost because a page mapping table is
always valid to all data in flash. Therefore, when a hot/cold
data identifier in CFTL identifies some data in flash as hot
data, CFTL only has to remove corresponding mapping en-
tries from CBMT. Then those data can be accessed only by
page mapping tables, not block mapping tables any more.

3.3 Address Translation Process
Figure 5 describes the address translation process of

CFTL for serving requests that are composed of read or
write operations. As described in subsection 3.1, since both
CPMT and CBMT in SRAM are served as a cache, if the
requested mapping information for read or write requests is
already stored in both tables in SRAM, those requests can
be directly served with that information. Otherwise, CFTL
fetches the corresponding mapping information into the ta-
bles from flash by using both tier-1 and tier-2 page mapping
table. At this time we may need to choose a victim entry
from those tables if the corresponding mapping tables are
fully filled with the fetched mapping information. As an en-
try replacement algorithm, CFTL adopts Least Frequently
Used (LFU) cache algorithm [24]. If the victim selected by
the LFU algorithm has not been updated since it was stored
into CPMT, the entry is simply removed without any extra
operations. Otherwise, we need to reflect the updated map-
ping information in CPMT to tier-1 and tier-2 page map-
ping table because CFTL uses delayed updates. Thus CFTL
reads the mapping information from the old page (old tier-2
page mapping table), updates the corresponding mapping
information, and then writes to a new physical page (new
tier-2 page mapping table) (step 4 and 5 in Figure 5). Fi-
nally the corresponding tier-1 mapping table is updated to
reflect the new tier-2 page mapping table (step 6 in Figure
5). Now the request is ready to be served with the fetched
mapping information.
Algorithm: Algorithm 1 describes the address translation
process in CFTL. If a request is issued from the system,
CFTL first checks CBMT, and then CPMT. If it does not
hit both CBMT and CPMT, CFTL follows regular address
translation process by using both tier-1 and tier-2 page map-
ping tables.

First, if the requested mapping information exists in
CBMT, the request can be directly served with the corre-
sponding mapping information in CBMT combined with its
offset (Lines 3-5 in Algorithm 1). In this case, if the request



entails write operation in flash, we update the correspond-
ing mapping information in CPMT (Line 8 in Algorithm 1).
Since the block mapping scheme in CFTL does not main-
tain log blocks, if any update request is issued to the pages
managed by CBMT, the corresponding update information
is stored in CPMT. This update process follows the CPMT
address translation process. This will be described in more
detail next.

Second, if the request does not hit CBMT, CFTL checks
CPMT next. If the mapping information is present in
CPMT, the request is also served directly with the infor-
mation. In addition, if the request is related to a write
operation, the corresponding entry in CPMT needs to be
updated with the new PPN (Lines 13-20 in Algorithm 1).

Third, if the request, however, does not hit CPMT as well
as CBMT, CFTL follows its regular two-tier address trans-
lation process. CFTL first checks whether CPMT is full of
mapping entries or not. In case that CPMT has any space
available to store mapping information, the new mapping in-
formation can take the free slot in CPMT (Lines 35-39 in Al-
gorithm 1). On the other hand, if CPMT is full of mapping
entries, CFTL chooses a victim entry to evict it from CPMT.
If the victim selected by the LFU algorithm has not been
updated since it was stored into CPMT, the entry is simply
removed without any extra operations. Otherwise (this is
the worst case), we need to update the corresponding tier-2
page mapping table to reflect the new mapping information
because CFTL uses delayed update and batching process to
prevent frequent update of tier-2 page mapping tables. At
this moment, we can get the PPN storing the corresponding
tier-2 page mapping table from tier-1 page mapping table.
After arriving at the corresponding tier-2 mapping table, we
copy all mapping information from the old tier-2 mapping
table to the newly assigned tier-2 mapping table while re-
flecting the new mapping information. Then we also need
to update the corresponding tier-1 mapping table entry to
reflect the newly assigned PPN of the new tier-2 mapping
table (Lines 25-31 in Algorithm 1). Up to this point, we
are ready to translate the original request issued from the
system. The translation process is the same as above. We
finally can find the PPN to serve the request in flash and
then store this mapping information into CPMT.

3.4 An Efficient Caching Strategy
All PPNs (Physical Page Numbers) in a data block are

consecutive. Our proposed efficient caching strategy in
CFTL is inspired by this simple idea. CFTL maintains two
types of cached mapping tables in SRAM, namely, Cached
Page Mapping Table (CPMT) and Cached Block Mapping
Table (CBMT). Although these are address mapping tables,
they are served as a cache for a fast address translation.
CPMT is employed to speed up the page level address trans-
lation, while CBMT is for the fast block level address trans-
lation. As shown in Figure 4, in addition to the existing
logical to physical address mapping fields in CPMT, CFTL
adds one more field named consecutive field for more efficient
address translation. This field describes how many PPNs
are consecutive from the corresponding PPN in CPMT. In
other words, whenever FTL reaches a tier-2 page mapping
table for an address translation, it identifies how many phys-
ical data pages are consecutive from the corresponding page.
Then it reflects the information on CPMT at the time it up-
dates CPMT.

Algorithm 1 CFTL Address Translation Algorithm

Function AddrTrans(Request, RequestLPN )
1: RequestLBN = RequestLPN / Unit Page Number per Block
2: Offset = Request LPN % Unit Page Number per Block
3: if (Request LBN hits CBMT) then
4: Get PBN from CBMT
5: Serve the request with PBN and Offset
6: if (Type of Request == WRITE) then
7: if (RequestLPN exists in CPMT) then
8: PPN in CPMT with RequestLPN = new PPN
9: else
10: Follow algorithm line 23 to 39
11: end if
12: end if
13: else
14: // if RequestLBN miss in CBMT, then check CPMT
15: if (RequestLPN exists in CPMT) then
16: Get PPN with RequestLPN from CPMT directly
17: Serve the request
18: if (Type of request == WRITE) then
19: PPN in CPMT with RequestLPN = new PPN
20: end if
21: else
22: // if RequestLPN miss in both CPMT and CBMT
23: if (CPMT is full) then
24: Select victim entry using LFU algorithm
25: if (CPMT is full) then
26: VPN = Victim LPN / Unit Page Number per Block
27: Get Mppn with VPN from Tier-1 page mapping table
28: Invalidate Mppn (old Mppn) and assign new one page

(new Mppn)
29: Copy all LPN in old Mppn to new Mppn

30: PPN in new Mppn = Victim PPN in CPMT
31: Mppn in Tier-1 page mapping table with VPN = new

Mppn

32: end if
33: Remove the victim entry from CPMT
34: end if
35: VPN = RequestLPN / Unit Page Number per Block
36: Get Mppn with VPN from Tier-1 page mapping table
37: Get PPN with RequestLPN from Tier-2 page mapping ta-

ble with Mppn

38: Serve the request
39: Store this mapping information (LPN,PPN) to CPMT
40: end if
41: end if

As a clear example, according to the CPMT in Figure 4,
LPN = 0 corresponds to PPN = 110. Moreover, the consec-
utive field hints that 4 numbers of PPN from PPN = 110 are
consecutive, namely, 110, 111, 112, and 113. These physical
addresses also correspond to 4 logical addresses respectively
from LPN = 0. That is, LPN = 1 is mapped to PPN =
111, LPN = 2 is correspondent to PPN = 112, and LPN =
3 corresponds to PPN = 113. If any page out of the consec-
utive pages is updated, we need to maintain both sides of
consecutive pages because all corresponding pages are not
consecutive any more due to the updated page. In this case,
we divide the corresponding mapping information into two
consecutive parts and update each mapping information ac-
cordingly. Algorithm 2 describes this algorithm especially
regarding CPMT management.

In summary, consecutive field in CPMT enables CPMT
to exploit spatial locality as well as temporal locality. By
using this simple field, even though CPMT does not store
the requested address mapping information, the consecutive
field provides a hint to increase the hit ratio of the cache.
This, ultimately, can achieve higher address translation effi-
ciency even with the same number of mapping table entries
in the cache, which results in higher overall performance.
Algorithm: Algorithm 2 gives the pseudocode to manage
CPMT containing consecutive field. When CFTL gets Re-



questLPN (Logical Page Number), for each CPMT entry,
it first checks if the LPN in CPMT is equivalent to Re-
questLPN. If the LPN in CPMT is equal to RequestLPN,
CFTL can directly serve the requested operation with the
corresponding mapping information. Otherwise, CFTL
checks consecutive field to find a hint. If the RequestLPN
is greater than LPN in CPMT and smaller than LPN in
CPMT plus the value in consecutive field (Line 2 in Algo-
rithm 2), RequestLPN can hit the CPMT even though there
does not exist the exact mapping information in CPMT.
CFTL first calculates the difference between RequestLPN
and the corresponding LPN in CPMT. Then it can finally
find out PPN (Physical Page Number) just by adding the
difference to PPN in the corresponding CPMT entry (Line
4 in Algorithm 2). If the operation (Type of request) is
WRITE, CFTL needs to carefully update the corresponding
mapping information in CPMT because WRITE operation
causes page update, which produces an effect on consecu-
tive value in the corresponding mapping entry. The update
process is as follows. First of all, CFTL updates the orig-
inal consecutive value to difference value it already calcu-
lated. Next, it saves the new mapping information with
RequestLPN and new PPN (Lines 5-10 in Algorithm 2). If
the the RequestLPN is not the end of consecutive address
of LPN, it needs to save one more mapping entry with Re-
questLPN+1 for LPN and PPN+Diff+1 for PPN. Finally
CFTL needs to update consecutive value to Consecutive–
Diff–1.

For clarification, a mapping entry in CPMT assumes the
form of (LPN, PPN, Consecutive). We additionally assume
that RequestLPN is 105 and the mapping entry corresponds
to (100, 200, 10). Then this request, typically, does not
hit that mapping entry since 100 (LPN in CPMT) is not
equivalent to 105 (RequestLPN ). However, CFTL can make
the request hit the table thereby using its efficient caching
strategy as follows. First of all, CFTL looks up the consec-
utive field in the corresponding mapping entry and checks if
the RequestLPN lies in between 100 (LPN in CPMT) and
109 (LPN+Consecutive–1 ). In this case, the RequestLPN
(105) lies in between 100 and 109. Then, CFTL can derive
the requested PPN (205) by adding 5 (Diff ) to 200 (PPN ).
However, if this request is WRITE operation, we separate
the one corresponding entry into three mapping entries be-
cause the WRITE operation hurts the consecutiveness of
PPNs in a data block. In order to manage CPMT, CFTL
first updates the consecutive value from 10 to 5 (i.e., (100,
200, 5)), then need to save a new mapping entry. Assuming
WRITE operation updates data in a page with PPN 205
to a new page with PPN 500, then CFTL needs to save a
new mapping entry (105, 500, 1) to CPMT. Finally, since
the RequestLPN (105) is not correspondent to the end of
consecutive address of LPN (109), it needs to save one more
entry (106, 206, 4) to CPMT. If the RequestLPN is 109, it
needs to save only two entries, namely, (100, 200, 9) and
(109, 500, 1).

3.5 Discussions
In this subsection, we discuss the advantages of CFTL

compared to other existing FTL schemes in several respects.
• Read Performance: DFTL shows a good read perfor-

mance under the condition with a high temporal locality.
However, under totally random read intensive patterns (i.e.,
low temporal locality), DFTL inevitably causes many cache

Algorithm 2 Cache Manangement in CFTL

Function CPMTCheck(RequestLPN )
1: for (Each CPMT entry) do
2: if (LPN in CPMT < RequestLPN < LPN in CPMT+

Consecutive–1) then
3: Diff = RequestLPN–LPN in CPMT
4: PPN = PPN in CPMT+Diff
5: if (Type of Request == WRITE) then
6: // if one of the consecutive addresses is updated,

the entry in CPMT is divided into two or three
entries. Then they will be updated or newly stored
into CPMT accordingly

7: Update Consecutive value of LPN in CPMT = Diff
8: Store to CPMT with RequestLPN and new PPN
9: if (Consecutive value of LPN–Diff–1 > 0) then
10: // if the hitting Request LPN is not the end of

consecutive addresses of LPN
11: Store to CPMT with Request LPN+1, PPN+Diff+1,

and Consecutive–Diff–1
12: end if
13: end if
14: end if
15: end for

misses in SRAM, which is the root cause to degrade its over-
all read performance compared to the existing hybrid FTLs.
CFTL, on the other hand, displays a good read performance
even under the low temporal locality since read intensive
data are dynamically converted to a block level mapping
and accessed by the block mapping manner. Moreover, its
efficient caching strategy improves its read performance fur-
ther.

• Temporal and Spatial Localities: When it comes to data
access, both temporal and spatial localities play a very im-
portant role in data access performance [21]. DFTL takes
a temporal locality into consideration by residing a cached
mapping table in SRAM but leaves spatial locality unac-
counted. On the other hands, hybrid FTLs like superblock
FTL [15] and LAST [16] take both localities into account. In
addition to these schemes, CFTL also considers both thereby
putting both CBMT and CPMT into SRAM.

• Full Merge Operations: Since CFTL is fundamentally
based on a two-tier page level mapping like DFTL, this erad-
icates expensive full merge operations. However, existing
hybrid FTLs are stick to the inborn limitations of a block
level mapping. Even though each hybrid approach tries to
adopt a page level mapping scheme, they are restricted only
to a small amount of log blocks. Thus this kind of approach
cannot be a basic solution to remove full merge operations
but just to delay them.

• Block Utilization: Existing hybrid FTLs maintain rela-
tively a small amount of log blocks to serve update requests.
These ultimately lead to low block utilization. So even
though there are many unoccupied pages in data blocks,
garbage collection can be unnecessarily triggered to reclaim
them. On the other hands, DFTL and CFTL based on a
page level mapping scheme, resolve this low block utiliza-
tion problem because updated data can be placed into any
of the data block in flash.

• Write Performance: As far as hybrid FTLs maintain log
blocks, they cannot be free from a low write performance.
Many random write operations inevitably cause many full
merge operations to them, which ultimately results in low
write performance. A page level mapping, however, can get
rid of full merge operations. Although CFTL uses a hy-
brid approach, it achieves the good write performance like
a page level mapping scheme because all data in CFTL is



Table 2: Simulation parameters
Parameters Values

Page Read Speed 25µs
Page Write Speed 200µs
Block Erase Speed 1.5ms

Page Size 2KB
Block Size 128KB

Entries in Mapping Tables 4,096 entries

Table 3: Workload characteristics

Workloads Total Request Ratio Inter-arrival
Requests (Read:Write) Time (Avg.)

Websearch3 4,261,709 R:4,260,449(99%) 70.093 ms
W:1,260(1%)

Financial1 5,334,987 R:1,235,633(22%) 8.194 ms
W:4,099,354(78%)

Financial2 3,699,194 R:3,046,112(82%) 11.081 ms
W:653,082(18%)

Random read 3,695,000 R:3,657,822(99%) 11.077 ms
W:37,170(1%)

Random even 3,695,000 R:1,846,757(50%) 11.077 ms
W:1,848,244(50%)

Random write 3,695,000 R:370,182(10%) 11.077 ms
W:3,324,819(90%)

fundamentally managed by a two-tier pure page level map-
ping and a block level mapping approach is adopted only for
read intensive data for the better performance. Thus both
CFTL and DFTL achieve good write performance.

4. EXPERIMENTAL RESULTS
There exist several factors that affect FTL performance

such as the number of merge operations and block era-
sures performed, address translation time, SRAM size, and
so forth. Although each factor has its own significance to
FTL performance, FTL scheme exhibits its good perfor-
mance only when all those factors are well harmonized. We,
therefore, choose an average response time to compare each
performance of a diverse set of FTL schemes. An average
response time is a good measure of the overall FTL perfor-
mance estimation in the sense that it reflects the overhead
of a garbage collection and address translation time as well
as system service time. We also make an attempt to com-
pare the overall performance of CFTL with and without an
efficient caching strategy in order to demonstrate the effi-
ciency of our proposed caching strategy. Finally, memory
requirements are another important factor to be discussed
since SRAM size is very limited in flash memory.

4.1 Evaluation Setup
We simulate a 32GB NAND flash memory with configu-

rations shown in Table 2. Our experiments of flash memory
are based on the latest product specification of Samsung’s
K9XXG08UXM series NAND flash part [25][7]. We consider
only a part of flash memory storing our test workloads for
equitable comparison with other schemes. We additionally
assume that the remainder of the flash memory is free or
cold blocks which are not taken into account for this ex-
periment. For more objective evaluation, various types of
workloads including real trace data sets are selected (Ta-
ble 3). Websearch3 [26] trace made by Storage Performance
Council (SPC) [27] reflects well read intensive I/O trace.
As a write intensive trace, we employ Financial1 [28] made

from an OLTP application running at a financial institu-
tion. For the totally random performance measurements,
we based random traces upon Financial2 [28] which is also
made from an OLTP application. Three types of random
trace workloads-read intensive, half and half, and write in-
tensive workload-are employed for more complete and ob-
jective experiments of the random access performance.

4.2 Results and Analysis
We illustrate our simulation results with a variety of

plots to demonstrate that CFTL outperforms existing FTL
schemes in terms of overall read and write performance un-
der various workload conditions.

1) Overall Performance: Figure 6 illustrates overall per-
formance of diverse FTLs under a variety of workloads. We
measure not only overhead of garbage collection and address
translation time but also system service time in order to
evaluate overall performance including both read and write
performance. Afterwards we will call the summation of these
average response time. An ideal pure page level mapping is
selected as our baseline scheme.

As shown in Figure 6, overall performance of CFTL is
very close to that of an ideal page level mapping. That is,
CFTL outperforms all the other FTLs in the lists in terms
of both read and write performances under realistic work-
loads as well as random workloads since read intensive work-
load reflects well the read performance and write intensive
workload the write performance. CFTL shows, in particu-
lar, not only its better read performance against FAST [14]
having strong point in read performance, but also write per-
formance against DFTL [18] displaying the excellent write
performance.

Figure 7 depicts the overall performance change of each
scheme as time flows and enables us to analyze these results
in more detail. Under the read intensive access patterns
(Figure 6(a) and 7(a), Figure 6(b) and 7(b), and Figure 6(d)
and 7(d)), CFTL switches more and more data to a block
level mapping as time goes by in order to make the best of
its fast direct address translation. Moreover, the efficient
caching strategy makes a considerable effect on read perfor-
mance since almost of the consecutive data pages in a data
block are not dispersed under the environment of the read
intensive access patterns. In particular, as shown in Figure
6(d), our proposed caching strategy exhibits its respectable
effectiveness in read performance especially under randomly
read intensive workloads. Compared to Figure 6(a), we can
identify the random read performance of most of the FTLs
is significantly degraded. However, CFTL still shows its
good random read performance due to the efficient caching
strategy. We will discuss this in more detail in the next sub-
section. As we expected, FAST which is hybrid mapping
but primarily based on a block level mapping also shows a
good performance under the read intensive workloads. How-
ever, it does not reach CFTL because of its intrinsic limi-
tation such as merge operations even though there are not
so many update operations in this workload. In addition
to the expensive merge operations in FAST, extra read cost
in log blocks is also another factor to deteriorate its read
performance. DFTL is a two-tier pure page level mapping.
If, however, the workload does not contain a high temporal
locality, it frequently requires an additional overhead in ad-
dress translation. This is the main cause that DFTL does
not exhibit relatively good random read performance (Fig-



(a) Websearch3 (99% Read:1% Write) (b) Financial2 (82% Read:18% Write)

(c) Financial1 (23% Read:77% Write) (d) Random_read (99% Read:1% Write)

(e) Random_even (50% Read:50% Write) (f) Random_write (10% Read:90% Write)

25 26

34

30

50

20

25

30

35

40

45

50

Page 

(ideal)

CFTL DFTL FAST AFTL

A
v

g
. 

R
e

sp
o

n
se

 T
im

e
 (

u
s)

56 58

74

129
123

40

50

60

70

80

90

100

110

120

130

140

Page 

(ideal)

CFTL DFTL FAST AFTL

A
v

g
. 

R
e

sp
o

n
se

 T
im

e
 (

u
s)

162
185 192

507

334

100

150

200

250

300

350

400

450

500

Page 

(ideal)

CFTL DFTL FAST AFTL

A
v

g
. 

R
e

sp
o

n
se

 T
im

e
 (

u
s)

25 27

51

39

20

30

40

50

60

70

80

Page 

(ideal)

CFTL DFTL FAST AFTL

A
v

g
. 

R
e

sp
o

n
se

 T
im

e
 (

u
s)

116 122
142

375

247

50

100

150

200

250

300

350

Page 

(ideal)

CFTL DFTL FAST AFTL

A
v

g
. 

R
e

sp
o

n
se

 T
im

e
 (

u
s)

183 205 208

423

100

200

300

400

500

600

700

Page 

(ideal)

CFTL DFTL FAST AFTL

A
v

g
. 

R
e

sp
o

n
se

 T
im

e
 (

u
s)

99

1068

Figure 6: Overall read and write performance under
various workloads

ure 6(d) and 7(d)). Unlike these three schemes, AFTL [17]
does not show a good overall performance in read intensive
workload because when fine-grained slots are full of mapping
information, it starts to cause valid data page copies for a
coarse-grained mapping. This brings about severe overhead
so that it degrades its overall performance.

As the number of write requests grows in a workload, per-
formance variations among each scheme are also increased
rapidly since frequent write operations cause frequent up-
dates in flash. As shown in Figure 6(c) and 7(c), Fig-
ure 6(e) and 7(e), and Figure 6(f) and 7(f), the overall per-
formances of AFTL and FAST are severely degraded under
half and half workload, not to mention write intensive work-
load. Thus we eliminate both schemes in Figure 7(c) and
7(f).

This fundamentally stems from frequent erase operations
in both schemes. That is to say, frequent updates cause
frequent merge operations in FAST and frequent both pri-
mary and replacement block erases in AFTL. However, since
DFTL is a two-tier pure page level mapping and CFTL is
fundamentally based on a page level mapping, both schemes
shows a considerably better overall performance than AFTL
as well as FAST, in particular, under write dominant access
patterns (Figure 6(c) and 7(c) and Figure 6(f) and 7(f)).
However, CFTL shows the better overall write performance
than DFTL due to its faster address translation resulting
from our efficient caching strategy. Note that CFTL re-

(e) Random_even (50% Read:50% Write) (f) Random_write (10% Read:90% Write)

Time(sec.)

20

25

30

35

40

45

50

55

1
0

3
0

5
0

7
0

9
0

1
1
0

1
3
0

1
5
0

1
7
0

1
9
0

4
0
0

1
0
0
0

3
0
0
0

A
v

g
. 

R
e

sp
o

n
se

 T
im

e
 (

u
s)

Time(sec.)

Page

CFTL

DFTL

FAST

AFTL

40

50

60

70

80

90

100

5
0

1
5
0

2
5
0

3
5
0

4
5
0

5
5
0

6
5
0

7
5
0

8
5
0

9
5
0

1
0
5
0

1
1
5
0

1
2
5
0

1
3
5
0

A
v

g
. 

R
e

sp
o

n
se

 T
im

e
 (

u
s)

Time(sec.)

Page

CFTL

DFTL

FAST

AFTL

100

150

200

250

300

1
0
0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

1
1
0
0
0

1
2
0
0
0

1
3
0
0
0

1
4
0
0
0

A
v

g
. 

R
e

sp
o

n
se

 T
im

e
(u

s)

Time(sec.)

Page

CFTL

DFTL

FAST

AFTL

100

110

120

130

140

150

160

170

180

190

200

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

1
1
0
0
0

1
2
0
0
0

1
3
0
0
0

1
4
0
0
0

A
v

g
. 

R
e

sp
o

n
se

 T
im

e
(u

s)

Time(sec.)

Page

CFTL

DFTL

20

30

40

50

60

70

80

90

100

1
0

3
0

5
0

7
0

9
0

1
1
0

1
3
0

1
5
0

1
7
0

1
9
0

2
5
0

4
0
0

8
0
0

2
0
0
0

A
v

g
. 

R
e

sp
o

n
se

 T
im

e
 (

u
s)

Time(sec.)

Page

CFTL

DFTL

FAST

AFTL

175

180

185

190

195

200

205

210

1
0
0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

1
1
0
0
0

1
2
0
0
0

1
3
0
0
0

1
4
0
0
0

A
v

g
. 

R
e

sp
o

n
se

 T
im

e
 (

u
s)

Time(sec.)

Page

CFTL

DFTL

(a) Websearch3 (99% Read:1% Write) (b) Financial2 (82% Read:18% Write)

(c) Financial1 (23% Read:77% Write) (d) Random_read (99% Read:1% Write)

Figure 7: Performance change in the time flow.
Here, page stands for ideal page level mapping.

quires no extra cost of switch from a block level mapping
to a page level mapping and does not maintain log blocks
under a block level mapping.

In summary, CFTL is adaptive to data access patterns
to fully exploit the benefits of a page level mapping and a
block level mapping whereby it achieves a good read per-
formance as well as write performance under read intensive,
write intensive, and totally random access patterns. These
simulation results demonstrate well our assertion.

2) An Efficient Caching Strategy: CFTL maintains
Cached Page Mapping Table (CPMT) in SRAM the same
as Cached Mapping Table (CMT) in DFTL [18]. However,
CPMT retains one more field called consecutive field. This
simple field helps improve not only read performance but
write performance in CFTL by judiciously exploiting spatial
locality. As shown in Figure 8, our proposed caching strat-
egy is effective to improve overall performance of CFTL fur-
ther. Due to this simple field, we considerably ameliorate the
hit ratio of CPMT even though the request does not hit the
cache (Shown in Figure 8(c)). This yields a faster address
translation and ultimately wields great influence on the en-
hancement of overall performance. Figure 8(c) supports our
assertion on effectiveness of our proposed caching strategy.
It illustrates the request hit ratios in CPMT under several
workloads. As shown in the Figure 8(c), CFTL C (CFTL
with the efficient caching strategy) exhibits its dominant re-
quest hit count against CFTL (CFTL without the strategy)
especially under read intensive workloads (Websearch3 and
Financial2) since read operations does not affect the con-
secutiveness of data pages in a block. On the other hand,
as write requests grow like Random even (50% Read:50%
Write) and Financial1 (23% Read:77% Write), the frequent
updates hurt the consecutiveness so that the variation of hit



(c) Request hit ratios in CPMT

(a) Read performance (b) Write performance

25

27

29

31

33

35

37

39

41

43

45

1
0

3
0

5
0

7
0

9
0

1
1
0

1
3
0

1
5
0

1
7
0

1
9
0

4
0
0

1
0
0
0

3
0
0
0

A
v

g
. R

e
sp

o
n

se
 T

im
e

 (
u

s)

Time(sec.)

CFTL_C

CFTL

205

207

209

211

213

215

217

219

221

223

225

1
0
0

3
0
0

5
0
0

7
0
0

9
0
0

1
1
0
0

1
3
0
0

1
5
0
0

1
7
0
0

1
9
0
0

2
1
0
0

2
3
0
0

2
5
0
0

A
v

g
. R

e
sp

o
n

se
 T

im
e

(u
s)

Time(sec.)

CFTL_C

CFTL

2.06

5.98

3.92

1.99

0.5

3.6 3.73

0.5

0

1

2

3

4

5

6

7

Websearch3 Random_even Financial1 Financial2

H
it

 R
a

ti
o

 (
%

)

CFTL_C

CFTL

Figure 8: Performance improvement with efficient
caching strategy

counts between CFTL C and CFTL is relatively reduced.
Figure 8(a) illustrates that both schemes converge on the

same average response time as time goes by. In other words,
even though the CFTL does not have the efficient caching
strategy, its read performance gradually approaches to that
of CFTL C as more and more requests come in. In our ex-
periment, both read performances converge on the same per-
formance after around 500 seconds corresponding to 104,420
intensive read requests in this workload. Note that the con-
vergence time totally depends on the types of workloads. In
other words, most of the read intensive data switch to a block
level mapping so that the read performance of CFTL grad-
ually approaches to that of CFTL C after some time. This
proves the adaptive feature of CFTL. However, CFTL C
exhibits its better read performance even before the read in-
tensive data are converted to a block level mapping because
it can considerably improve the hit ratio of CPMT even with
the same number of mapping table entries in SRAM. This is
the unique point of our proposed efficient caching strategy
in CFTL scheme.

3) Memory Space Requirements: Most of the FTLs
maintain their own address mapping information in SRAM
for a faster address translation. Since SRAM size, how-
ever, is very limited to flash memory, memory space re-
quirements are also another momentous factor among di-
verse FTL schemes. For simplification, we assume entire
flash size is 4GB and each mapping table in SRAM consists
of 2,048 mapping entries. We additionally assume that ap-
proximately 3% of the entire space is allocated for log blocks
in hybrid FTLs (this is based on [15]).

An ideal page level mapping requires 8MB for its complete
page mapping table. This is exceptionally large space com-
pared to the other schemes; so we exclude this in Figure 9.
Both AFTL [17] and FAST [14] also consume a lot of mem-
ory space. Almost over 90% of total memory requirements
in AFTL are assigned for coarse-grained slots and almost of
them in FAST are allocated for page level mapping tables.
On the contrary, CFTL and DFTL [18] consume only about

50
32

512

400

0

100

200

300

400

500

600

CFTL DFTL FAST AFTL

M
e

m
o

ry
 s

p
a

c
e

 (
K

B
)

Figure 9: Memory space requirements

10% of the total memory space in FAST and AFTL since
complete page mapping tables are stored in flash memory
not in SRAM. CFTL consumes a little more memory than
DFTL since it adds Consecutive Field in CPMT for a more
efficient caching strategy and maintains one additional map-
ping table called CBMT for a block mapping which does not
exist in DFTL. However, this extra small amount of memory
empowers CFTL to make the best of a page level mapping
and a block level mapping, with which CFTL achieves a
good read performance as well as good write performance.

5. CONCLUSION
In this paper, we propose a novel FTL scheme named Con-

vertible Flash Translation Layer (CFTL, for short) for flash
memory based storage devices. CFTL can dynamically con-
vert its mapping scheme either to a page level mapping or a
block level mapping in accordance with data access patterns
in order to fully exploit the benefits of both schemes. CFTL
stores entire mapping table in the flash memory. Thus, there
is an overhead to lookup the mapping table. To remedy this
problem, we also propose an efficient caching strategy which
improves the mapping table lookup performance of CFTL
by leveraging spatial locality as well as temporal locality.

Our experimental results show that for the real-life read
intensive workloads CFTL outperforms DFTL (which is the
state-of-the-art FTL scheme) [18] by up to 24%, and for
random read intensive workload CFTL outperforms DFTL
by up to 47%, while for the real-life write intensive workloads
CFTL outperforms DFTL by up to 4%. Our experiments
also show about new caching strategy improves cache hit
ratio by up to 400% for the read intensive workloads.

6. REFERENCES
[1] E. Gal and S. Toledo, “Algorithms and Data

Structures for Flash Memories,” in ACM Computing
Surveys, vol. 37, no. 2, 2005.

[2] S. Lee, D. Park, T. Chung, D. Lee, S. Park, and
H. Song, “A Log Buffer-Based Flash Translation Layer
Using Fully-Associate Sector Translation,” in ACM
Transactions on Embedded Computing System, vol. 6,
no. 3, 2007.

[3] H. Kim and S. Ahn, “BPLRU: A Buffer Management
Scheme for Improving Random Writes in Flash
Storage,” in FAST, 2008.

[4] S. Nath and P. Gibbons, “Online Maintenance of Very
Large Random Samples on Flash Storage,” in VLDB,
2008.

[5] S. Lee and B. Moon, “Design of Flash-based DBMS:
an In-page Logging Approach,” in SIGMOD, 2007.

[6] S. Lee, B. Moon, C. Park, J. Kim, and S. Kim, “A
Case for Flash Memory SSD in Enterprise Database
Applications,” in SIGMOD, 2008.



[7] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis,
M. Manasse, and R. Panigrahy, “Design Tradeoffs for
SSD Performance,” in Usenix, 2008.

[8] M. Moshayedi and P. Wilkison, “Enterprise SSDs,”
ACM Queue, vol. 6, no. 4, 2008.

[9] A. Leventhal, “Flash Storage Today,” Queue, vol. 6,
no. 4, 2008.

[10] A. Caulfield, L. Grupp, and S. Swanson, “Gordon:
Using Flash Memory to Build Fast, Power-efficient
Clusters for Data-intensive Applications,” in ASPLOS,
2009.

[11] CompactFlashAssociation,
“http://www.compactflash.org.”

[12] Jesung Kim and Jong Min Kim and Noh, S.H. and
Sang Lyul Min and Yookun Cho, “A space-efficient
flash translation layer for compactflash systems,”
IEEE Transactions on Consumer Electronics, 2002.

[13] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W.
Lee, and H.-J. Song, “A survey of Flash Translation
Layer,” J. Syst. Archit., vol. 55, no. 5-6, 2009.

[14] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee,
S. Park, and H.-J. Song, “A Log Buffer-based Flash
Translation Layer Using Fully-associative Sector
Translation,” ACM Trans. Embed. Comput. Syst.,
vol. 6, no. 3, 2007.

[15] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee, “A
Superblock-based Flash Translation Layer for NAND
Flash Memory,” in EMSOFT, 2006.

[16] S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “LAST:
Locality-aware Sector Translation for NAND Flash
Memory-based storage Systems,” SIGOPS Oper. Syst.
Rev., vol. 42, no. 6, 2008.

[17] C.-H. Wu and T.-W. Kuo, “An adaptive two-level
management for the flash translation layer in
eembedded systems,” in ICCAD, 2006.

[18] A. Gupta, Y. Kim, and B. Urgaonkar, “Dftl: a flash
translation layer employing demand-based selective
caching of page-level address mappings,” in ASPLOS,
2009.

[19] M-systems, “Two Technologies Compared: NOR vs.
NAND,” White Paper, July 2003.

[20] A. Ban, “Flash File System,” United States of America
Patent 5 404 485, April 4, 1995.

[21] L.-P. Chang and T.-W. Kuo, “Efficient Management
for Large-scale Flash Memory Storage Systems with
Resource Conservation,” in ACM Transactions on
Storage, vol. 1, no. 4, 2005.

[22] J.-W. Hsieh, T.-W. Kuo, and L.-P. Chang, “Efficient
Identification of Hot Data for Flash Memory Storage
Systems,” Trans. Storage, vol. 2, no. 1, 2006.

[23] L.-P. Chang and T.-W. Kuo, “An Adaptive Striping
Architecture for Flash Memory Storage Systems of
Embedded Systems,” in RTAS, 2002.

[24] R. Karedla, J. S. Love, and B. G. Wherry, “Caching
Strategies to Improve Disk System Performance,”
Computer, vol. 27, no. 3, 1994.

[25] SamsungElectronics, “K9XXG08XXM Flash Memory
Specification,” 2007.

[26] “Websearch Trace from UMass Trace Repository,”
http:
//traces.cs.umass.edu/index.php/Storage/Storage.

[27] “SPC: Storage Performance Council,”
http://www.storageperformance.org.

[28] “OLTP Trace from UMass Trace Repository,” http:
//traces.cs.umass.edu/index.php/Storage/Storage.


