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Abstract

Discriminative patterns can provide valuable insights into datasets with class labels, that may not

be available from the individual features or the predictivemodels built using them. Most existing

approaches work efficiently for sparse or low-dimensional datasets. However, for dense and high-

dimensional datasets, they have to use high thresholds to produce the complete results within limited

time, and thus, may miss interesting low-support patterns.In this paper, we address the necessity of

trading off the completeness of discriminative pattern discovery with the efficient discovery of low-

support discriminative patterns from such datasets. We propose a family of anti-monotonic measures

namedSupMaxK that organize the set of discriminative patterns into nested layers of subsets, which are

progressively more complete in their coverage, but requireincreasingly more computation. In particular,

the member ofSupMaxK with K = 2, namedSupMaxPair , is suitable for dense and high-dimensional

datasets. Experiments on both synthetic datasets and a cancer gene expression dataset demonstrate

that there are low-support patterns that can be discovered using SupMaxPair but not by existing

approaches. Furthermore, we show that the low-support discriminative patterns that are only discovered

usingSupMaxPair from the cancer gene expression dataset are statistically significant and biologically

relevant. This illustrates the complementarity ofSupMaxPair to existing approaches for discriminative

pattern discovery. The codes and dataset for this paper are available at http://vk.cs.umn.edu/SMP/.

Index Terms

Association analysis, Discriminative pattern mining, Biomarker discovery, Permutation test

I. I NTRODUCTION

For data sets with class labels, association patterns [2], [43] that occur with disproportionate

frequency in some classes versus others can be of considerable value in many applications. Such

applications include census data analysis that aims at identifying differences among demographic

groups [14], [5] and biomarker discovery, which searches for groups of genes or related entities,

that are associated with diseases [8], [39], [1]. We will refer to these patterns as discriminative

patterns1 in this paper, although they have also been investigated under other names [35], such

as emerging patterns [14] and contrast sets [5]. In this paper, we focus on 2-class problems,

which can be generalized to multi-class problems as described in [5].

Discriminative patterns have been shown to be useful for improving the classification per-

formance for data sets where combinations of features have better discriminative power than

1The terms ”pattern” and ”itemset” are used interchangeably in this paper.
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the individual features [9], [13], [47], [10], [15], [30]. More importantly, as discussed in [5],

discriminative pattern mining can provide insights beyondclassification models. For example,

for biomarker discovery from case-control data (e.g. disease vs. normal samples), it is important

to identify groups of biological entities, such as genes andsingle-nucleotide polymorphisms

(SNPs), that are collectively associated with a certain disease or other phenotypes [1], [50],

[38]. Algorithms that can discover a comprehensive set of discriminative patterns are especially

useful for domains like biomarker discovery, and such algorithms are the focus of this paper.

The algorithms for finding discriminative patterns usuallyemploy a measure for the discrim-

inative power of a pattern. Such measures are generally defined as a function of the pattern’s

relative support2 in the two classes, and can be defined either simply as the ratio [14] or difference

[5] of the two supports, or other variations, such as its information gain [9], Gini index, odds

ratio [43] etc. In this paper, we use the measure that is defined as the difference of the supports

of an itemset in the two classes (originally proposed in [5] and used by its extensions [24], [25]).

We will refer to this measure asDiffSup (formally discussed in Section II). Given a dataset with

0-1 class labels and aDiffSup thresholdr, the patterns withDiffSup ≥ r can be considered as

valid discriminative patterns.

To introduce some key ideas about discriminative patterns and make the following discussion

easier to follow, consider Figure 1, which displays a sampledataset3 containing 15 items

(columns) and two classes, each with 10 instances (rows). Inthe figure, four patterns (sets

of binary variables) can be observed:P1 = {i1, i2, i3}, P2 = {i5, i6, i7}, P3 = {i9, i10} and

P4 = {i12, i13, i14}. P1 and P4 are interesting discriminative patterns that occur with different

frequencies in the two classes, whoseDiffSup is 0.6 and0.7 respectively. In contrast,P2 andP3

are uninteresting patterns with a relatively uniform occurrence across the classes, both having a

DiffSup of 0. Furthermore,P4 is a discriminative pattern whose individual items are alsohighly

discriminative, while those ofP1 are not. Based on support in the whole dataset,P2 is a frequent

non-discriminative pattern, whileP3 is a relatively infrequent non-discriminative pattern.

2Note that, in this paper, unless specified, the support of a pattern in a classis relative to the number of transactions (instances)

in that class, i.e. a ratio between 0 and 1, which can help handle the case ofskewed class distributions.

3The discussion in this paper assumes that the data is binary.Nominal categorical data can be converted to binary

data without loss of information, while ordinal categorical data and continuous data can be binarized, although with

some loss of magnitude and order information.
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Fig. 1. A sample data set with interesting discriminative patterns(P1, P4) and uninteresting patterns (P2, P3)

Note that the discriminative measures discussed above are generally not anti-monotonic as

shown by [14], [5], [9]. TakeDiffSup for instance (while other measures like support ratio,

information gain and odds ratio are not anti-monotonic either): although theDiffSup of the

three items inP1 are0, 0 and0.2 respectively,P1 has aDiffSup of 0.6 as an itemset. Due to the

lack of anti-monotonicity, these measures can not be directly used in an Apriori framework [2]

for exhaustive and efficient pattern mining as can be done formeasures like support[2], h-

confidence [53] etc. To address this issue, many approaches [29], [28], [55], [11], [9] adopt a

two-step strategy (denoted as Group A), where first, a frequent pattern mining algorithm is used

to find all (closed) frequent patterns that satisfy a certainsupport thresholdminsup either from

the whole dataset or from only one of the classes. The patterns found can be further refined

using other interestingness measures (e.g. [7], [23], [44]). Then, as post-processing,DiffSup is

computed for each of these patterns, based on which discriminative patterns are selected. Note

that, in general, these two-step approaches can work even with a very lowminsup threshold

[49], [9] on relatively sparse or low-dimensional datasets.

However, since these approaches ignore class label information in the mining process, many
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frequent patterns discovered in the first step may turn out tohave low discriminative power

in the second step. For instance, in Figure 1, the relative supports ofP2 and P3 in the whole

dataset are0.6 and 0.3 respectively, and will be considered as frequent patterns if the support

threshold is0.2. However,P2 and P3 are not discriminative since they both have aDiffSup

of 0. In particular, in datasets with relatively high density4 and high-dimensionality, a huge

number of non-discriminative patterns likeP2 andP3 in Figure 1 may exist. Such patterns may

meet theminsup threshold and would be discovered in the first step, but wouldbe found as

non-discriminative patterns in the second step. If a lowminsup is used, a huge number of such

patterns can reduce the efficiency of both the two steps as discussed in [10]. In such a situation,

the two-step approaches have to use a sufficiently highminsup in order to generate the complete

set of results within an acceptable amount of time, and thus may miss a large number of highly

discriminative patterns that fall below theminsup threshold.

A possible strategy for improving the performance of the two-step approaches is to directly

utilize the support of a pattern in the two classes for pruning some non-discriminative patterns

in the pattern mining stage. Indeed, several approaches have been proposed [5], [9], where the

anti-monotonic upper bounds of discriminative measures, such asDiffSup, are used for pruning

some non-discriminative patterns in an Apriori-like framework [2]. This strategy, like the two-

step approaches, also guarantees to find the complete set of discriminative patterns with respect

to a threshold, although in a more efficient manner. However,in datasets with relatively high

density and high-dimensionality, there can be a large number of frequent non-discriminative

patterns likeP2 in Figure 1. Such patterns may not be pruned by these approaches because

the upper bounds of the discriminative measures may be weak (technical details in Section

III). Thus, as illustrated in Figure 2(a), these approaches(referred to as groupB in the rest

of this paper) are able to discover a larger fraction of the interesting discriminative patterns as

compared to the two-step approaches. However, they may still miss a lot of highly discriminative

patterns, particularly those at low support levels, given the same fixed amount of time. These low

support patterns are supported by a relatively small numberof samples but can still be highly

discriminative according to theirDiffSup value, especially in the case of data sets with skewed

class size distributions.

4The density of a transaction matrix is the percentage of1′s in the transaction-by-item matrix
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Yet another strategy for discovering a significant subset ofthe discriminative patterns is to

directly use a measure of discriminative power for pruning non-discriminative patterns [56]. As

an instance of such an approach,DiffSup can be computed for each candidate patternα, and

if DiffSup(α) < r, thenα and all its supersets can be pruned in an Apriori-like algorithm [2].

This strategy is computationally more efficient than the two-step approaches, because no patterns

with DiffSup(α) < r are generated during the mining process. However, this improved efficiency

comes at the cost of not discovering the complete set of discriminative patterns, sinceDiffSup

is not anti-monotonic [5]. More specifically, the algorithms in this group (referred to as group

C in the rest of this paper), may miss interesting discriminative patterns whose individual items

are not discriminative (e.g.P1 in Fig. 1). With respect to the coverage of the set of interesting

discriminative patterns, the approaches in this group may be able to discover low-support patterns

at the expense of missing a large number of interesting patterns, as illustrated by the stars not

included in box C in Figure 2(a). This observation is also reflected in our experimental results

(section VI-B.2).

As can be seen from the discussion above, which is summarizedin Figure 2(a), the current

approaches face an inherent trade-off when discovering discriminative patterns from a dense and

high-dimensional data set. The approaches in groupsA andB face challenges with discovering

low-support patterns due to their focus on the complete discovery of discriminative patterns

satisfying the corresponding thresholds. On the other hand, the approaches in groupC sacrifice

completeness for the ability of discovering low-support discriminative patterns. This trade-off is

expected to be faced by any algorithm for this complex problem, particularly due to the restriction

of fixed computational time. In such a scenario, an appropriate approach to discover some of

the interesting discriminative patterns missed by the current approaches, is to formulate new

measures for discriminative power and corresponding algorithms that can progressively explore

lower support thresholds for discovering patterns, while trading off completeness to some extent.

Such a design is illustrated in Figure 2(b), where boxesX, Y andZ represent three approaches,

which can discover patterns with progressively lower thresholds (tx > ty > tz). However, the

cost associated with this ability is that of potentially missing some patterns that are at higher

support levels. Still,X, Y andZ can all discover several patterns that are exclusive to onlyone

of them, and can thus play a complementary role to the existing approaches by expanding the

coverage of the set of interesting discriminative patterns.
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(a) The limitation of existing approaches (b) The motivation of the proposed work

Fig. 2. An illustration of the coverage of the space of discriminative patterns by different approaches given the

same amount of time. Thet’s on the y-axis represent the lowest support of the patternsthat are respectively covered

by the corresponding approaches (represented by boxes), given the same and fixed amount of time. (a) BoxA, B

andC represent the set of patterns discovered by the corresponding approaches in groupA, B andC respectively.

(b) Illustration of the tradeoff between the capability to search low-support discriminative patterns in dense and

high-dimensional data and the completeness of the pattern discovery. BoxesX, Y andZ represent three conceptual

low-support discriminative pattern mining approaches that discover patterns not found by the approaches in groups

A, B and C. Note that, in this figure, the set of interesting discriminative patterns is the same as that in (a), but

the corresponding∗’s are not shown for the sake of clarity.

Corresponding to the motivation discussed above, we proposea family of anti-monotonic

measures of discriminative power namedSupMaxK . These measures conceptually organize the

set of discriminative patterns into nested layers of subsets, which are progressively complete

in their coverage, but require increasingly more computation for their discovery. Essentially,

SupMaxK estimates theDiffSup of an itemset by calculating the difference of its support in

one class and the maximal support among all of its size-K subsets in the other class. The

smaller the value ofK, the more effectiveSupMaxK is for finding low-support discriminative

patterns by effectively pruning frequent non-discriminative patterns. Notably, due to the anti-

monotonicity property of all the members ofSupMaxK , each of them can be used in an Apriori-

like framework [2] to guarantee the discovery of all the discriminative patterns withSupMaxK

≥ r, wherer is a user-specified threshold. Given the same (limited) amount of time, the members

of this family provide a tradeoff between the ability to search for low-support discriminative

patterns and the coverage of the space of valid discriminative patterns for the corresponding
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threshold, as illustrated by the three conceptual approaches X, Y and Z in Figure 2(b). In

particular, we find that a special member withK = 2 namedSupMaxPair , is suitable for

dense and high-dimensional data. We have designed a framework, named SMP, which uses

SupMaxPair for discovering discriminative patterns. Carefully designed experiments with both

synthetic datasets and a cancer gene expression dataset areused to demonstrate that SMP can

serve a complementary role to the existing approaches by discovering low-support yet highly

discriminative patterns from dense and high-dimensional data, when the latter fail to discover

them within an acceptable amount of time.

A. Contributions of this paper

The contributions of this paper can be summarized as follows:

1) We address the necessity of trading off the completeness of discriminative pattern discovery

with the ability to discover low-support discriminative patterns from dense and high-

dimensional data within an acceptable amount of time. For this, We propose a family

of anti-monotonic measures namedSupMaxK that conceptually organize the set of dis-

criminative patterns into nested layers of subsets, which are progressively more complete

in their coverage, but require increasingly more computation for their discovery.

2) In particular,SupMaxK with K = 2, namedSupMaxPair , is a special member of this

family that is suitable for dense and high-dimensional data, and can serve a complementary

role to the existing approaches by helping to discover low-support discriminative patterns,

when the latter fail to discover them within an acceptable amount of time. We designed a

framework, named SMP, which usesSupMaxPair for discovering discriminative patterns.

3) A variety of experiments with both synthetic datasets anda cancer gene expression dataset

are presented to demonstrate that there are many patterns with relatively low support

that can be discovered by SMP but not by the existing approaches. In particular, these

experiments rigorously demonstrate that the low-support discriminative patterns discovered

only by SMP from the cancer gene expression dataset are statistically significant (via

permutation test [18], [42]) and biologically relevant (via comparison with a list of cancer-

related genes [21] and a collection of biological gene sets [42] (e.g. pathways)). These are

the recognized methods for evaluating the utility of such patterns for applications such as

biomarker discovery [42], [8], [22].
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The source codes and dataset used in this paper are availableat http://vk.cs.umn.edu/SMP/.

II. BASIC TERMINOLOGY AND PROBLEM DEFINITION

Let D be a dataset with a set ofm items, I = {i1, i2, ..., im}, two class labelsS1 and S2,

and a set ofn labeled instances (itemsets),D = {(xi, yi)}
n

i=1
, wherexi ⊆ I is a set of items

and yi ∈ {S1, S2} is the class label forxi. The two sets of instances that respectively belong

to the classS1 and S2 are denoted byD1 and D2, and we have|D| = |D1| + |D2|. For an

itemsetα = {α1, α2, ..., αl} whereα ⊆ I, the set of instances inD1 and D2 that containα

are respectively denoted byD1
α and D2

α. The relative supports ofα in classesS1 and S2 are

RelSup1(α) = |D1
α|

|D1|
and RelSup2(α) = |D2

α|
|D2|

, respectively.RelSup is anti-monotonic since the

denominator is fixed and the numerator is support of the itemset, which is anti-monotonic.

The absolute difference of the relative supports ofα in D1 andD2 is defined originally in [5]

and denoted in this paper asDiffSup:

DiffSup(α) = |RelSup1(α) − RelSup2(α)|. (1)

An itemsetα is r − discriminative if DiffSup(α) ≥ r. The problem addressed by discrimi-

native pattern mining algorithms is to discover all patterns in a dataset withDiffSup≥ r.

Without loss of generality, we only consider discriminative patterns for the binary-class prob-

lem. Our work can be extended to multiple classes as described in [5].

III. C OMPUTATIONAL L IMITATIONS OF CURRENT APPROACHES

As discussed in Section I, in dense and high-dimensional data, the approaches in groupsA

andB have to use a relatively high threshold in order to provide the complete result within an

acceptable amount of time. In this section, we will show thatthis limitation is essentially due to

the ineffective pruning of frequent non-discriminative patterns (e.g.P2 in Figure 1). Generally,

the approaches in groupB is relatively more efficient than those in groupA, as discussed in

Section I. We use the measure originally proposed in CSET [5] as a representative of groupB

for this discussion, while a similar discussion also holds for other approaches in groupB [9],

[34]. In CSET, an upper bound ofDiffSup is defined as the bigger of the relative supports of a

patternα in D1 andD2. In this paper, we denote it asBiggerSup:
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BiggerSup(α) = max(RelSup1(α),RelSup2(α)). (2)

Lemma 1. BiggerSup is anti-monotonic

Proof. Follows from the anti-monotonicity ofRelSup and the property of themax function.

SinceBiggerSup is an upper bound ofDiffSup [5], and it is also anti-monotonic (Lemma 1),

CSET [5] usesBiggerSup as a pruning measure in a Apriori-like framework, and can discover,

given sufficient time and computing resources, the completeset of discriminative patterns (w.r.t

a BiggerSup threshold). However, by using the bigger one to estimate thedifference of the

two supports,BiggerSup is a weak upper bound ofDiffSup. For instance, if we want to use

CSET to search for0.4 − discriminative patterns in Figure 1,P3 can be pruned, because it

has aBiggerSup of 0.3. However,P2 can not be pruned (BiggerSup(P2) = 0.6), even though

it is not discriminative (DiffSup(P2) = 0). More generally,BiggerSup-based pruning can only

prune infrequent non-discriminative patterns with relatively low support, but not frequent non-

discriminative patterns. Therefore, in dense and high-dimensional data, where a large number of

frequent non-discriminative patterns are expected to exist, CSET with a relatively lowBiggerSup

threshold can often fail to produce the complete results in areasonable amount of time. Thus,

CSET has to set theBiggerSup threshold high and may not discover discriminative patterns

at lower support that may be of interest. Similar discussionon the limited ability of pruning

frequent non-discriminative patterns also holds for otherapproaches in groupsA andB, i.e., all

the two-step approaches, and those based on the informationgain upper bound [9], and other

statistical metric-based pruning [5], [34].

IV. PROPOSEDAPPROACH

As shown above, the limitation of existing approaches is essentially the ineffectiveness of

pruning frequent non-discriminative patterns. Conceptually, to prune frequent non-discriminative

patterns, a new measure should be designed such that a pattern’s support in one class can be

effectively limited to a relatively smaller number compared to its support in the other class. In this

section, we start with such a measureSupMax1 in Definition 1, and then extend it to a family of

measuresSupMaxK . Then, we will discuss the relationships betweenDiffSup, BiggerSup and

SupMaxK . Finally, we will focus on a special member of this familySupMaxPair that is suitable
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for high-dimensional data. Note that, for an itemsetα two cases can happen:RelSup1(α) ≥

RelSup2(α) or RelSup1(α) < RelSup2(α). In the following discussion, without loss of generality,

we assumeRelSup1(α) ≥ RelSup2(α) for simplicity.

A. SupMax1: A Simple Measure to Start with

Definition 1. TheSupMax1 of an itemsetα in D1 and D2 is defined as

SupMax1(α) = RelSup1(α) − maxa∈α(RelSup2({a})).

SupMax1 of an itemsetα is computed as the difference between the support ofα in D1,

and the maximal individual support of the items inα in D2. SupMax1 approximatesDiffSup

by using the maximal individual support inD2 to estimateRelSup2(α). Clearly, the maximal

individual support is quite a rough estimator forRelSup2(α), because a pattern can have very

low support in classS2 but the items in it can still have very high individual supports in this

class. However, an alternative way to interpretSupMax1 is that, a pattern with largeSupMax1

has relatively high support in one class and all the items in it have relatively low support in

the other class.P4 is such an example whoseSupMax1 is 0.9 − max(0.3, 0.3, 0.3) = 0.6 as

shown in Figure 1. Thus, given aSupMax1 threshold, say 0.4,SupMax1 discovers a subset of

0.4 − discriminative patterns but not all, e.g. it will miss patterns likeP1 in Figure 1, which

has relatively highDiffSup (0.6) but zeroSupMax1 .

B. SupMaxK

Following the rationale ofSupMax1 , the maximal support of size-k subsets of a pattern in

D2 can be used to estimateRelSup2(α) instead of using maximal individual support in classS2

to estimateRelSup2(α). This can provide a better estimation ofRelSup2(α). In such a manner,

SupMax1 can be generalized into a family of measuresSupMaxK , which is formally defined

in Definition 2. Note that in the following discussion,SupMaxK will be used to refer to this

family as well as one of its general members, for the clarity of presentation.

Definition 2. TheSupMaxK of an itemsetα in D1 and D2 is defined as

SupMaxK(α) = RelSup1(α) − maxβ⊆α(RelSup2(β)), where|β| = K
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So, SupMaxK of an itemsetα is computed as the difference between the support ofα in

D1, and the maximal support among all the size-K subsets ofα in D2. Note that, in this paper,

SupMaxK is defined with respect toDiffSup, while similar concept can also be applied to other

discriminative measures such as the ratio-based measure [14].

C. Properties of theSupMaxK Family

In the following subsections, we discuss three properties of the SupMaxK family.

1) The subset-superset relationship among SupMaxK members: Based on the definition of

SupMaxK , the following two Lemmas show the relationship amongSupMaxK members.

Lemma 2. If we useMaxSup(α,K ) to denote the second component ofSupMaxK (α), i.e.

maxβ⊆α(RelSup(β)) with |β| = K, thenMaxSup(α,K ) is a lower bound ofMaxSup(α,K − 1 )

for integerK ∈ [2, |α|]

Proof. For every size-(K − 1) subset ofα (sayβ, |β| = K − 1), there exists a size-K subset of

α (sayβ′, |β′| = K) such thatβ ⊂ β′, e.g. by adding anyi to β, wherei ∈ α and i /∈ β. Based

on the anti-monotonicity property ofRelSup, it is guaranteed thatRelSup(β′) ≤ RelSup(β).

Then, from the properties of themax function, maxβ′⊆α(RelSup(β′)) ≤ maxβ⊆α(RelSup(β)).

Thus,MaxSup(α,K ) is a lower bound ofMaxSup(α,K − 1 ).

Lemma 3. SupMax (K − 1 ) of an itemsetα is a lower bound of itsSupMaxK , or alternatively

SupMaxK of an itemsetα is an upper bound of itsSupMax (K − 1 ), for integerK ∈ [2, |α|]

Proof. Follows directly from Definition 2, Lemma 2.

From Lemma 3, we know that, given the same thresholdr and sufficient time, the set

of patterns discovered withSupMax (K − 1 ) in an Apriori framework is a subset of the set

of patterns discovered withSupMaxK . This means thatSupMaxK can find more and more

discriminative patterns asK increases from1 (SupMax1 ), to 2 (SupMax2), to 3 (SupMax3) and

so on. The patterns that are discovered bySupMaxK but not bySupMax (K − 1 ) are those with

SupMaxK≥ r, but with SupMax (K − 1 ) < r. Figure 3 shows an extended version of the data

set shown in Figure 1 containing fifteen addition items (i16 − i30) and two patternsP5 andP6,

the rest being identical to Figure 1. In this data set, given the same thresholdr = 0.4, SupMax1
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Fig. 3. An extended version of the data set shown in Figure 1 containing fifteen addition items (i16 − i30) and two

patternsP5 andP6, the rest being identical to Figure 1.

can findP4, but notP1 andP5, both of which haveDiffSup= 0.6, but zeroSupMax1 ; SupMax2

can findP1 in addition toP4; furthermore,SupMax3 can findP5 in addition toP4 andP1. This

illustrates thatSupMax3 can find all the patterns found usingSupMax1 andSupMax2 , but not

vice versa, as discussed above. Furthermore,SupMax10will be able to discover patternP6 in

addition to the patterns found usingSupMax1 , SupMax2 andSupMax3 .

2) The Exactness of theSupMaxK Family: Lemmas 2 and 3 lead to Theorem 1, which shows

the relationship betweenSupMaxK andDiffSup.

Theorem 1. SupMaxK is a lower bound ofDiffSup, for integerK ∈ [1, |α| − 1].

Proof. SinceDiffSup(α) is equivalent toSupMaxK(α) with K = |α| (We assumedRelSup1(α) ≥

RelSup2(α) for simplicity earlier this Section), this theorem followsfrom Lemma 3.

Theorem 1 guarantees that the patterns discovered by anySupMaxK members with threshold

r also haveDiffSup≥ r. Therefore,SupMaxK members with thresholdr discover onlyr −

discriminative patterns.

3) The Increasing Completeness of theSupMaxK Family: The max function together with

the anti-monotonicity ofRelSup yields the following result about the anti-monotonicity ofeach

member ofSupMaxK .
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Theorem 2. Each member ofSupMaxK is anti-monotonic.

Proof. Let α ⊆ I be an itemset, andα′ ⊆ I be a superset ofα, such thatα′ = α ∪ {i},

wherei ∈ I and i /∈ α. Firstly, from the anti-monotonicity ofRelSup, we haveRelSup1(α′) ≤

RelSup1(α). Then, based on the property of themax function, maxβ′⊆α′(RelSup2(β′)) ≥

maxβ⊆α(RelSup2(β)), where|β| = K and |β′| = K. Finally, we have the following:

SupMaxK (α′) = RelSup1(α′) − maxβ′⊆α′(RelSup2(β′))

≤ RelSup1(α) − maxβ⊆α(RelSup2(β))

= SupMaxK (α).

Based on Theorem 2, given a thresholdr, any member of theSupMaxK family can be used

within an Apriori-like framework [2] to discover the complete set of patterns withSupMaxK ≥ r.

Note thatSupMaxK could be alternatively defined using themin function, thus providing a better

estimation ofDiffSup. However, this version ofSupMaxK will not be anti-monotonic and thus

can not be used in the Apriori framework for the systematic search of discriminative patterns.

Since there are a finite number of discriminative patterns ina dataset given aDiffSup threshold,

andSupMaxK finds more and more discriminative patterns asK increases (Lemma 3), the set

of patterns discovered withSupMaxK and thresholdr within an Apriori-like framework is

increasingly more complete with respect to the complete setof r − discriminative patterns.

4) Summary of the three properties of the SupMaxK Family:From the subset-superset re-

lationship amongSupMaxK members, and the exactness and increasing completeness of the

SupMaxK family, SupMaxK members conceptually organize the complete set of discriminative

patterns into nested subsets of patterns that are increasingly more complete in their coverage with

respect tor − discriminative patterns. This yields interesting relationships betweenDiffSup,

BiggerSup and theSupMaxK family, which are discussed below.

D. Relationship between DiffSup, BiggerSup and the SupMaxK Family

To understand relationship amongDiffSup, BiggerSup and SupMaxK , Figure 4 displays

the nested structure of theSupMaxK family together withDiffSup and BiggerSup from the

perspective of the search space of discriminative patternsin a dataset.LAll is the complete set

of r−discriminative patterns given aDiffSup thresholdr. LCSET is the search space explored
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by CSET in order to find all the patterns inLAll. Note thatLCSET is a superset ofLAll, because

BiggerSup is an upper bound ofDiffSup. Note that,LCSET can be much larger thanLAll for

dense and high-dimensional data sets, especially when a relatively low BiggerSup threshold is

used. In such cases, CSET may not be able to generate complete results within an acceptable

amount of time. For instance, on the cancer gene expression data set used in our experiments, the

lowest BiggerSup threshold for which CSET can produce the complete results within 4 hours

is 0.6. With a lower threshold0.4, CSET can not produce the complete results within 24 hours.

Members of theSupMaxK family help address this problem withBiggerSup by stratifying

all ther−discriminative patterns into subsets that are increasingly more complete (SetL1, L2,

. . ., Lk, Lk+1, . . ., LAll), as shown in Lemma 3 and the subsequent discussion, and illustrated in

Figure 4. However, note that these superset-subset relationships amongSupMaxK members and

betweenSupMaxK andBiggerSup (used by CSET) hold only when the same threshold is used

for BiggerSup and all theSupMaxK members, and unlimited computation time is available. In

practice, given the same fixed amount of time, progressivelylower thresholds can be used for

SupMaxK members asK decreases. This tradeoff was illustrated earlier in Figure2(b).

Since the focus of this paper is on dense and high-dimensional data, another practical factor

should be considered, that is, the computational efficiencyof the SupMaxK members. In the

next section, we will introduce a special member of theSupMaxK family that is computationally

suitable for dense and high-dimensional data.

E. SupMaxPair: A Special Member Suitable for High-Dimensional Data

In the previous discussion, we showed that asK increases, the set of patterns discovered

with SupMaxK and thresholdr in an Apriori framework is increasingly more complete with

respect to the complete set ofr − discriminative patterns. Thus, in order to discover as

many r − discriminative patterns as possible, an as large as possible value ofK should be

used given the time limit. However, it is worth noting that the time and space complexity to

compute and store the second component in the definition ofSupMaxK , i.e. MaxSup(α,K ) =

maxβ∈α(RelSup2(β)) with |β| = K are bothO(mK) (The exact times of calculation is
(

M

K

)

),

whereM is the number of items in the dataset. In high-dimensional data set (largeM ), K > 2

is usually infeasible. For instance, if there are 10000 items in the data set (M = 10000), even

SupMaxK with K = 3 will require the computation of the support of all
(

10000

3

)

≈ 1.6 × 1011
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Fig. 4. Nested layers (L1, L2, L3, . . . , Lk, Lk+1, . . . , LAll, LCSET ) of patterns defined bySupMaxK , and

relationship with the complete set of discriminative patterns (layerLAll), and the search space ofBiggerSup

used by CSET (layerLCSET ). (PDb stands for ”Patterns Discovered by”.)PDbSupMaxK is a subset of

PDbSupMax(K + 1). Note that this figure only shows the subset-superset relationship, while the size of each

rectangle does not the imply number of patterns in each set.

size-3 patterns. Therefore, due to our emphasis on dense andhigh-dimensional data, we will

focus on SupMaxK with K = 2, i.e., SupMaxPair , to balance the accurate estimation of

DiffSup and computational efficiency. Note that, based on the definition of SupMaxPair , the

computational complexity of the second component ofSupMaxPair (maximal pair-wise support

in classS2) for an itemsetα = {α1, α2, ..., αl} with size greater than2 is O(l2). However,

according to the Apriori framework [2],MaxSup(α, 2 ) only depends on three terms that will have

been computed before the computation ofMaxSup(α, 2 ) itself: MaxSup({α1, α2, ..., αl−1} , 2)

and MaxSup({α1, α2, ..., αl−2, αl} , 2), andMaxSup({αl−1, αl} , 2), and thus the computational

complexity forMaxSup(α, 2 ) is O(1) per itemsetα.

As shown in Figure 4,SupMaxPair can perform a complete search of ther−discriminative

patterns in the first two layers, even for a low value ofr. Indeed, we will demonstrate in our

experimental results on a cancer gene expression data set (Section VI) that searching these
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two layers itself can enable SupMaxPair to discover many low-support patterns that may not

be discovered by CSET within an acceptable amount of time. Furthermore, these patterns are

statistically significant and biologically relevant.

Before we discuss these results, we lay out the complete framework that we use for discovering

discriminative patterns from dense and high-dimensional data.

V. FRAMEWORK FORDISCRIMINATIVE PATTERN M INING

In this section, we explain the major steps in the framework used for discriminative pattern

mining in our experiments:

• Step 1: This is an algorithm-specific step. For example, forSupMaxPair , all the item-pair

supports are computed and stored in a matrix, whose(i, j) entry is the item-pair support of item

i and j. The complexity of this step isO(nm2), wheren is the number of transactions, andm

is the number of unique items. No such pre-computation has tobe done for CSET.

• Step 2: The Apriori framework [2] is used in this step for discriminative pattern mining using

the anti-monotonic measuresBiggerSup andSupMaxPair . For SMP, discriminative patterns are

firstly mined from one class and then mined from the other, while CSET discovers patterns once

from the whole dataset.

• Step 3: To facilitate further pattern processing and pattern evaluation, we selected only the

closed itemsets [37] from the complete set of itemsets produced.

For clarity, we refer to the version of this framework whereBiggerSup is used for discovering

patterns asCSET, while the version usingSupMaxPair is referred to asSMP in the subsequent

discussion. Our analysis of the quality of the patterns and the computational time requirements

are presented with respect to the patterns produced by thesecomplete pipelines.

VI. EXPERIMENTAL RESULTS

In order to evaluate the efficacy of different discriminative pattern mining algorithms, par-

ticularly CSET (a representative of the approaches in groupB discussed in Section I) and our

proposed algorithm SMP, we designed two sets of experiments. The first set of experiments utilize

synthetic data sets with varying density and dimensionality to study the properties of CSET and

SMP. The second set of experiments involve the application of CSET and SMP to a breast

cancer gene expression data. The second set aims at a systematic evaluation of the statistical
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significance and biological relevance of the resultant patterns, thus validating the effectiveness

of CSET and SMP for knowledge discovery from real data. All theexperiments presented here

were run on a Linux machine with 8 Intel(R) Xeon(R) CPUs (E5310 @ 1.60GHz) and 16GB

memory.

A. Experiments on Synthetic Data Sets with Varying Density and Dimensionality

In the first set of experiments, we study the performance of SMP and CSET on synthetic binary

data sets whose background can be fully controlled. Specifically, we created two collections of

synthetic datasets respectively with (i) varying density and fixed dimensionality, and (ii) varying

dimensionality and fixed density. We first describe the approach we used to create these two

collections of data sets and then present the performance ofSMP compared to CSET.

1) Methodology for Generating Synthetic Data Sets:Each synthetic data set have two ma-

jor components: discriminative and non-discriminative patterns. Discriminative patterns are the

target of the mining algorithms, while non-discriminativepatterns are obstacles. As discussed

in Section I, an effective discriminative pattern mining algorithm should be able to prune the

non-discriminative patterns at early stage while discovering discriminative patterns.

Ten discriminative patterns each of sizes 2, 4, 6, 8 and 10 were embedded in each synthetic

dataset, resulting in a total of 50 discriminative patternsper dataset. To reflect the distribution

of different types of discriminative patterns in real data,for each of the five sizes, we randomly

determined a number of patterns (out of ten) that can be discovered by CSET but not SMP (type-

I), and the remaining patterns that can be discovered by SMP but not CSET (type-II). Specifically,

type-I patterns are those that haveDiffSup greater than0.2, but SupMaxPair below 0.2. As

discussed in Section IV, SMP can not find type-I patterns due to the fact thatSupMaxPair is

an lower bound ofDiffSup. In contrast, type-II patterns are those that haveBiggerSup below

the lowest threshold (0.2) that CSET can finish within an acceptable amount of time (we use

4 hours as the representative acceptable amount of time). SMP can find these type-II patterns

if it can effectively prune non-discriminative patterns and can search at lower support levels

(0.1). Table I displays the number of type-I and type-II discriminative patterns of different sizes

embedded in each of the synthetic datasets. Note that these numbers are kept the same for all

the synthetic datasets to ensure that results across acrossdifferent datasets are comparable. Note

that in practice, there may be other types of patterns that can be discovered by both CSET and
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size-2 size-4 size-6 size-8 size-10

type-I patterns 3 6 5 8 7

type-II patterns 7 4 5 2 3

Total patterns of each size 10 10 10 10 10

TABLE I

NUMBER OF TYPE-I AND TYPE-II DISCRIMINATIVE PATTERNS OF SIZE-2, 4, 6, 8AND 10.

SMP. In this analysis, we do not embed these other types of patterns and focus only on the

effectiveness of CSET and SMP for discovering different types of discriminative patterns.

For all the synthetic data sets, we fix the number of samples at700, in which half are of class

1 and the other half are of class2. Two collections of datasets were generated as follows.

Varying density with fixed dimensionality: For this collection of data sets, we fix the

dimensionality at4000. After we embed the 50 discriminative patterns, we have the first dataset

of density 10%. Next, we keep adding non-discriminative patterns of size 10 and support greater

than0.2, and create four more data sets with densities of0.13, 0.16, 0.19 and0.22 respectively.

Varying dimensionality with fixed density: For this collection of data sets, we fix the density

of the dataset at0.2. After we embed the 50 discriminative patterns (density 10%), we further

add non-discriminative patterns to make the density equal to 0.2 and use this dataset as the first

dataset (the dimensionality is350). Next, we further add non-discriminative patterns of size-10

and support greater than0.2 and simultaneously increase the dimensionality of the dataset to

maintain the density at0.2. In this way, we create another four data sets with dimensionalities

of 500, 2000, 4000 and6000.

Note that the supporting transactions of both the discriminative and non-discriminative patterns

are selected randomly to avoid their combination into patterns of larger sizes. To simulate

practical situations, for each data set generated in the above process, we add an additional

10% noise by flipping 10% of the 0’s to 1’s and 1’s to 0’s.

2) Performance of SMP and CSET on Synthetic Data Sets:For both the collections of datasets,

we use aBiggerSup threshold of0.2 for CSET and aSupMaxPair threshold of0.1 for SMP.

These thresholds agree with the definitions of type-I and type-II patterns for the following

experiments (Section VI-A.1). The questions we want to answer in these experiments are: Which

level of the itemset lattice can CSET and SMP reach when miningthese synthetic datasets given

the time limit of 4 hours, and correspondingly, how many of the discriminative patterns at each
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level can be discovered by the two algorithms?

Figures 5(a) and 5(b) display the levels that CSET and SMP reach on each of the five synthetic

data sets of varying density and varying dimensionality respectively. Note that the highest level

is 10, which is the size of the largest discriminative and non-discriminative patterns. Several

observations can be made from Figure 5(a). First, when the density is 10%, both CSET and

SMP can reach all the 10 levels. Thus, CSET can discover all the29 type-I patterns (but none

of the type-II patterns) and SMP can discover all the 21 type-II patterns (but none of the type-I

patterns). Second, when the density increases to 13%, CSET only reaches level 3 and thus can

only discover its 3 type-I patterns of size-2. In contrast, SMP can complete all the 10 levels

and discovers all the 21 type-II patterns. Similar observation also holds for densities 0.16 and

0.19. This illustrates that even for reasonably high levelsof density, SMP can discover type-II

patterns with lower-support that can not be discovered by CSET, even though it can miss some

type-I patterns that can be discovered by CSET. Finally, whendensity increases to0.22, both

SMP and CSET only reach level-2, i.e. CSET discovers its3 type-I patterns and SMP discovers

its 7 type-II patterns. This indicates that for relatively very high levels of density, both CSET

and SMP can face challenges in discovering the embedded patterns that they are supposed to

discover (i.e. type I patterns for CSET and type II patterns for SMP). However it should be

noted that this deterioration in the performance of SMP is due to the expense of theO(N2)

time complexity in the generation of level-2 candidates. Indeed, even at this density (0.22), SMP

can again finish all the 10 levels in only an additional0.5 hour (total4.5 hrs). However, CSET

is still unable to generate all the level-3 candidates even in another 4 hours (total more than8

hours). In summary, these results show that SMP is more effective for searching for low-support

discriminative patterns on dense datasets.

Similar observations can also be made from Figure 5(b). First, at the dimensionality350, both

CSET and SMP can complete all the 10 levels and discover all thepatterns they are supposed

to find. Second, at dimensionality 500, 2000 and 4000, CSET canonly reach up to levels 6, 3

and 2 respectively, while SMP still reaches all the 10 levels. Finally, at dimensionality 6000,

both SMP and CSET can only complete level 2. Again, SMP can finish all the 10 levels in

another half an hour, but CSET is still generating level-3 candidates in another 4 hours. These

results show that SMP is more effective for searching for low-support discriminative patterns

from high-dimensional datasets.
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Fig. 5. Levels that can be reached by CSET and SMP in the two series of synthetic data sets (varying density and

varying dimensionality).

From the above experimental results on the two collections of synthetic datasets with varying

density and varying dimensionality, we demonstrated the efficacy of SMP for mining low-

support discriminative patterns from dense and high-dimensional data sets. Next, we will use a

real gene expression data set to study the practical utilityof SMP for discovering low-support

discriminative patterns.

B. Experiments on a Breast Cancer Gene Expression Data Set

In the second set of experiments, we used CSET and SMP to discover discriminative patterns

from a breast cancer gene expression data set. Only closed patterns are used in these experiments.

The details of this data set are provided in Section VI-B.1. Wefirst present a global analysis of

these patterns in Section VI-B.2. Subsequently, we perform an extensive statistical and biological

evaluation of these patterns, the results of which are presented in Sections VI-B.3 and VI-B.4.

In particular, we highlight the statistical significance and biological relevance of low-support

patterns discovered by SMP but not CSET, thus illustrating the complementarity that SMP can

provide to the existing approaches discussed in Section I.

1) Dataset description:A breast cancer gene expression data set [45] is used for evaluating

the efficacy of discriminative pattern mining algorithms oncomplex, real data sets. This data set

contains the expression profiles of about25000 genes in295 breast cancer patients, categorized

into two classes corresponding to whether the patient survive the disease (0) or not (1). Using
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pre-processing methodologies suggested by the authors [46], we only considered5981 genes that

showed evidence of significant up- or down-regulation (at least a two-fold change), and whose

expression measurements were accurate (p-value≤ 0.01) for at least five patients. Furthermore,

to make the dataset usable for binary pattern mining algorithms, each column pertaining to the

expression of a single gene is split into two binary columns.Since the data has been properly

normalized to eliminate between-gene variations in the scale of their expression values, we adopt

a simple discretization method, as used in other studies [32], [12]: a 1 is stored in the first column

if the expression of the gene is less than−0.2, while a 1 is stored in the second column if the

expression of the gene is greater than0.2. Values between−0.2 and0.2 are not included, since

genes showing an expression around0 are not expected to be interesting, and may add substantial

noise to the data set. The resulting binary data set has11962 items and295 transactions, with

a density of16.62%.

For this data set, discriminative pattern mining can help uncover groups of genes that are

collectively associated with the progression or suppression of cancer, and our experiments are

designed to evaluate the effectiveness of different algorithms for this task.

2) General analysis of the patterns discovered:We ran CSET and SMP at the lowest pa-

rameter thresholds for which they would finish in about 4 hours5. Only closed patterns are used

in our experiments. Due to the weaker pruning ofBiggerSup and the resulting large number

of discriminative patterns, we were forced to use relatively higher thresholds for CSET and

restrict the computation to patterns of a limited size to obtain the patterns necessary for our

evaluation. Table II shows that the lowestBiggerSup threshold for which CSET can produce

the complete results within 4 hours is 0.6. The lowestBiggerSup threshold for which CSET can

discover size-2 and size-3 patterns within 4 hours is 0.55. At a lower threshold of 0.4, CSET

can only discover size-2 patterns before running out of time. In contrast, SMP is ableto run at

a much lowerSupMaxPair threshold of0.18 and finds patterns of size as high as 7 in about 40

minutes. See Table III for the details of the patterns found by SMP at different thresholds. For

the evaluation of pattern quality, we combine the patterns discovered by CSET at the0.4, 0.55,

and0.6 BiggerSup thresholds as the collection of all patterns that can be discovered by CSET,

5Some time period needed to be chosen for the experiments. Theduration of four hours is, although slightly

arbitrary, is generally reasonable for most data analysis operations.
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BiggerSup Time # Closed Pattern Highest

Threshold (sec) Patterns Size(s) NegLogP

0.4* 617 64942 2 12.09

0.55* 1454 84840 2-3 9.65

0.6 1558 90637 2-10 8.78

TABLE II

DETAILS OF PATTERNS DISCOVERED BYCSETAT VARIOUS BiggerSup THRESHOLDS. (* EXPANSION OF THE SET OF PATTERNS TO

PATTERNS OF LARGER SIZES COULD NOT FINISH IN OVER12 HOURS, AND THUS, THEIR RESULTS ARE NOT INCLUDED HERE.)

SupMaxPair Time # Closed Pattern Highest

Threshold (sec) Patterns Size(s) NegLogP

0.18 2401 45982 2-7 12.09

0.2 1187 21285 2-5 12.09

0.25 332 3007 2-4 12.09

0.3 186 283 2-3 12.09

TABLE III

DETAILS OF PATTERNS DISCOVERED BYSMP AT VARIOUS SupMaxPair THRESHOLDS.

while for SMP, we only use the patterns discovered at the single SupMaxPair threshold0.18.

Indeed, even with this setup that is slightly biased towardsCSET, there are still high quality

low-support patterns that can only be discovered by SMP, thedetails of which are provided later.

In addition to analyzing the characteristics of the patterns discovered by SMP and CSET,

we also examined the value of DiffSup for each individual gene constituting these patterns.

Specifically, Figure 6 displays the distribution of theDiffSup of individual genes in the patterns

discovered only bySMPat a SupMaxPair threshold of0.18, but not by CSET. Among the332

genes covered by these patterns, almost 60% (198) of the genes haveDiffSup lower than the

0.18. Based on the discussion of approaches that directly utilizeDiffSup or other measures of

discriminative power for finding discriminative patterns (group C) in Section I, it can be seen

that these approaches can not discover any of these genes, and thus can not discover the patterns

that include them. Since one of our major foci is on algorithms that can discover patterns whose

individual genes may not be discriminative, we discuss onlythe results of CSET and SMP, which

can find such patterns, in the rest of this section.

3) Statistical Evaluation:There are various ways to evaluate the importance of discriminative

patterns. We are interested in patterns that occur disproportionately between the two classes.
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Fig. 6. Histogram of theDiffSup of individual genes in the patterns discovered only by SMP, but not by CSET.

.

However, in real world data sets, particularly those with small number of instances in the two

classes, even patterns that occur with similar support across classes will show some deviation

from perfect balance in data sets with relatively small sample size. Thus, to ensure that the

patterns found are not just a result of random fluctuation, a statistical test is commonly used to

ensure that any deviation from equal support is statistically significant. In this section, we will

perform this type of evaluation for the patterns from CSET andSMP.

We use the Fisher exact test [16] for this evaluation, whose result is a p-value (probability). If

the p-value is below some user defined threshold, e.g., 0.05 or 0.01, then the pattern is regarded

as authentic. Note that p-values are often expressed as their negativelog10 value for convenience

(the higher this−log10 value (denoted asNegLogP), the more reliable the discriminative pattern

is expected to be). We will refer to this measure asNegLogP. If there are multiple patterns, the

NegLogP threshold needs to be adjusted. By using a randomization test, as discussed below, we

were able to determine that aNegLogP of 8 is unlikely to arise from a random pattern. We give

the technical details of this a bit later.
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(a) NegLogP vs. global support for CSET patterns.
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(b) NegLogP vs. global support for SMP patterns

Fig. 7. Plot of NegLogP vs. global support for patterns from CSET and SMP, where the support is relative to the

whole data set.

In Figure 7, we show plots ofNegLogP vs. global support for the patterns discovered by

both CSET and SMP. For CSET, patterns discovered by usingBiggerSup thresholds0.4, 0.55,

and 0.6 were combined as described in Section VI-B.2, while for SMP, a0.18 threshold was

used. Several conclusions can be drawn from this figure. First, CSET finds more patterns than

SMP, particularly for patterns with higher support (the ones with support greater than0.4).

This is not surprising since SMP sacrifices completeness to find lower support patterns. Second,

CSET finds many patterns withNegLogP less than2, while all the patterns discovered by SMP

haveNegLogP higher than2. This demonstrates the exactness ofSupMaxPair (Theorem 1),

i.e. becauseSupMaxPair is an lower bound ofDiffSup, all the patterns discovered withr are

r − discriminative. Last and the most importantly, SMP finds many patterns at lowsupport

level that are not found by CSET, especially the ones withNegLogP higher than the significance

threshold8. Also, these patterns are constituted by many genes that arenot covered by the

patterns discovered by CSET, as will be discussed in Section VI-B.4.

We now come back to the details of how we determined a significance threshold forNegLogP ,

both for the completeness of the above discussion and to further illustrate the quality of the

patterns found by SMP but not found by CSET. Because of the issues of low sample size

and high-dimensionality for data sets used for problems such as biomarker discovery, many

patterns may be falsely associated with the class label. This raises the multiple-hypothesis testing

problem [40], [18], which are addressed by various approaches, such as Bonferroni correction

[33], false discovery rate control [48] and permutation test [33], [52], [18]. Permutation tests
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based on row-wise, column-wise and swap randomization [18]have been used to assess the

statistical significance of the results of unsupervised pattern discovery and clustering algorithms.

While in the context of labeled transactions, class-label permutation tests [42], [50] are often an

effective option. In this approach, a reference distribution for evaluation measures likeNegLogP is

generated by randomly shuffling the class labels (permutations). Specifically, for each iteration,

the class labels are randomly shuffled and reassigned to patients, discriminative patterns are

found, and theNegLogP values are computed for these patterns using the same methodas for

the patterns discovered with the true labels. TheNegLogP values from the random runs can

be used to generate an empirical distribution for theNegLogP values, which can be displayed

as a histogram as in Figure 8. (Sometimes only the extreme (maximum) NegLogP values are

used as in this figure.) If aNegLogP of a pattern derived from the true labels falls outside the

main concentration ofNegLogP values from the random labels, then theNegLogP very likely

indicates a discriminative pattern with a ”more than random” variation from equal frequency

across classes.

Figure 8 summarizes the results of such a permutation test for the dataset being used in these

experiments. The right hand side shows the top300 NegLogP of the patterns discovered only

by SMP but not by CSET, while the left hand side displays the maximum NegLogP for each

of the 1000 permutation tests where randomized labels are used for pattern mining. We observe

that theNegLogP values with random labels rarely exceed8 (less than8.72 in each of the1000

permutation tests). Thus, we can use 8 as a relaxed thresholdfor significance, since only a few

percent of the random patterns are above this value. TheNegLogP values of the top-300 patterns

discovered by SMP but not by CSET with true label are much higher (all larger than9.67). In

contrast, only 34 patterns discovered by CSET have aNegLogP greater than8. This shows that

SMP can discover additional statistically significant low-support patterns. In the next section,

we illustrate the biological significance of these patternsand how they can be used to discover

cancer-related genes.

4) Biological Relevance of Patterns based on a list of Cancer-related Genes:There are various

ways to determine the biological relevance of discriminative patterns. Since the application we

consider is that of discovering biomarkers for cancer, we measured the biological relevance of

the patterns using a list of about2400 human genes known to be involved in the induction,

progression and suppression of various types of cancers [21]. Of these2400 genes,611 were
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included in the set of5981 genes in our processed gene expression data set. If the discriminative

patterns found by CSET and SMP, which are just small sets of genes, tend to disproportionately

contain these610 cancer related genes as opposed to the non-cancer related genes, then this

indicates that these patterns contain information that maybe of significance to a biological

researcher. To make this idea concrete for the purposes of evaluation, two evaluation approaches

were designed.

1) Pattern-based Biological Relevance: For each pattern generated by CSET or SMP, we

matched the genes in the pattern with the set of611 validated cancer genes, giving us a

measure of the ‘precision’ of the pattern. For instance, if apattern contains3 genes, of

which 2 are found to match the list of cancer genes, then the precision of the this pattern

is 2/3 = 66.67%. Note that if a pattern withN genes is randomly chosen from our set of

5981 genes, one would expect a precision of[N ∗ (611/5981)]/N = 10.2%.

2) Gene Collection-based Biological Relevance: Since patterns may overlap with each other

(pattern redundancy), and do not directly show how many cancer genes can be discov-

ered by SMP in addition to CSET, we also designed a gene collection-based evaluation

methodology. Here we collect the set of genes covered by all the patterns discovered by

CSET(SMP), and compare this set of genes with the set of611 validated cancer genes just

as for pattern-based evaluation. For instance, if a set of100 patterns covers300 genes, of
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which50 are found to match the list of cancer genes, then the precision of the set of patterns

is 50/300 = 16.67% and the recall is50/611 = 8.18%. To compare, if we select300 genes

randomly from the5981 genes, then the expected precision is[300 ∗ (611/5981)]/300 =

10.2%, and the expected recall is[300 ∗ (611/5981)]/611 = 5.02%.

This section details the results obtained from with these evaluation methodologies.

Brief Preview of Results: From the pattern-based biological relevance evaluation,we observed

that CSET can discover patterns with good precision at relatively high support level, while SMP

can further discover good quality patterns at relatively low support level, among which, there

are some patterns with 100% precision with respect to the cancer gene list. From the gene

collection-based biological relevance evaluation, we observed that both the techniques discovered

substantially more cancer genes than expected by random chance, especially among the higher

NegLogP patterns. In particular, SMP was able to discover more cancer genes as compared to

CSET due to its ability of discovering low-support patterns.This result further indicates the

potential usefulness of recovering low-support patterns and discovering biomarkers that may be

examined and utilized by the biology community. The following discussion provides additional

details of these results.

Results from Pattern-based Relevance: Figure 9(a) shows the distribution of pattern-based

precision of those patterns discovered only by SMP but not byCSET. For comparison, we

generated a sequence of size-k patterns exactly according to the sizes of the patterns corre-

sponding to Figure 9(a). The distribution of precision of these random patterns is shown in

Figure 9(b). We can make the following observations from a comparison of Figure 9(a) and 9(b):

(i) these patterns that are discovered exclusively by SMP include many that have a relatively

high precision. Specifically, about 200 patterns have precisions above0.6, among which there

are 18 with a precision of 100%; (ii) the pattern-based precision of randomly generated patterns

is mostly (about 1500 times)0, and sometimes (about 300 times) fall into the range of0.2 and

0.3, but rarely (less than 20) go beyond0.4, and never go beyond0.8. Interestingly, some of the

SMP patterns with 100% precision play similar roles in cancer processes.

Results from Gene collection-based Relevance: To investigate how many cancer genes can be

discovered using CSET and SMP, we summarized the gene collection-based evaluation results

for them in Tables IV and V respectively. These tables include the number of cancer genes

discovered, precision, recall, and expected recall for randomly selected group of genes of the
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Fig. 9. Comparison of the distributions of pattern-based precision between (a) the patterns discovered by SMP but

not CSET and (b) random generated patterns.

same size. Note that, the expected precision for a random collection of genes is10.2% as

calculated earlier, and thus we do not include this in these tables. The following observations

can be made from these tables.

1) Both CSET and SMP usually find very precise patterns for reasonably high levels of the

NegLogP measure, and this precision is much higher than that expected from a set of

randomly selected gene collection of the same size (10.2%).Similarly, the recall values

for the genes covered by these patterns are much higher than those expected from the

same type of randomly selectd gene collection, as shown by a comparison with the last

column of these tables.

2) For similar values of cancer gene discovery precision, SMP generally finds more cancer

genes than CSET. For instance, at a precision of about25%, the recall of CSET is only

0.5% (3 cancer genes), while SMP has a recall4.3% (26 cancer genes).

Note that the highlight of the second observation is not thatSMP discovers more cancer

genes, but that SMP can discover cancer genes from discriminative patterns with low-support

in addition to the ones discovered by CSET, thus indicating the complementarity of SMP to

existing approaches like CSET. Because of such complementarity, even if SMP discovered less

cancer genes than CSET, SMP still complement CSET as long as additional genes are exclusively

discovered by SMP. Indeed, from the specific example in the second observation, at least23
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NegLogP # # Genes # Cancer Pre Rec ERec

Threshold Patterns Covered Genes (%) (%) (%)

12 2 3 2 66.7 0.3 0.052

11 2 3 2 66.7 0.3 0.052

10 2 3 2 66.7 0.3 0.052

9 10 12 3 25.0 0.5 0.21

8 34 31 7 22.6 1.1 0.54

TABLE IV

PRECISION-RECALL RESULTS OFCSETPATTERNS WITHBiggerSup≥ 0.4 (PRE: PRECISION, REC: RECALL , EXPECTEDPRECISION FOR

RANDOM GENE COLLECTIONS IS10.2%, EREC: EXPECTEDRECALL OF RANDOM GENE COLLECTIONS WITH THE SAME SIZE)

NegLogP # # Genes # Cancer Pre Rec ERec

Threshold Patterns Covered Genes (%) (%) (%)

12 2 4 2 50.0 0.3 0.067

11 6 7 3 42.9 0.5 0.12

10 200 36 11 30.6 1.8 0.60

9 541 57 17 29.8 2.8 0.95

8 1502 103 26 25.2 4.3 1.72

TABLE V

PRECISION-RECALL RESULTS OFSMP PATTERNS WITHSupMaxPair≥ 0.18 (PRE: PRECISION, REC: RECALL , EXPECTEDPRECISION FOR

RANDOM GENE COLLECTIONS IS10.2%, EREC: EXPECTEDRECALL OF RANDOM GENE COLLECTIONS WITH THE SAME SIZE)

cancer genes are discovered by SMP in addition to CSET.

5) Biological Relevance of Patterns based on Biological Gene Sets:An alternative way of

evaluating the biological relevance of the patterns discovered only by SMP but not by CSET

is to estimate how well they capture the 5452 known biological gene sets (e.g. pathways) in

the Molecular Signature database [42]6 (MSigDB). MSigDB is widely used collection of gene

groups containing genes with similar biological functions. The methodology we adopt for this

evaluation is one of calculating the enrichment of one pattern with these gene groups. This

enrichment is measured as the probability of a random pattern of the same size having the same

or better annotations by a given grne group by random chance,and the lower this probability

the more enriched a pattern is with a given gene group. Specifically, for a pattern of sizek

6Specifically, MSigDB (version 2.1, Feb 2007) contains 386 positional gene sets, 1892 curated gene sets, 837 motif gene sets,

883 computational gene sets, and 1454 annotations in Gene Ontology. http://www.broadinstitute.org/gsea/msigdb/
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and a gene set of sizem which sharex common genes, we use the hypergeometric cumulative

distribution function7 to compute the probability that there are greater or equal tox common

genes between the pattern and the gene set by random chance given that the total number of

genes in the data set isN [3]. The −log value of this probability can be considered as an

enrichment score between a pattern and a gene set (denoted byNegLogEnrichP), and the larger

this score, the more significant the biological relevance ofthe pattern. For each pattern, we use

the bestNegLogEnrichPwith the 5452 gene sets as a measure of its biological relevance.

Instead of directly applying the above enrichment methodology to all the patterns that are

discovered only by SMP but not by CSET, we first select a subset in which no pairs of patterns

have greater than 25% overlap of genes. This selection helpsreduce the effect of the redundancy

between these patterns on the enrichment results. The resultant set has37 patterns. Figure 10

shows the distribution of the bestNegLogEnrichPvalues of these37 patterns with respect

to the gene sets in MSigDB. It can observed that more than half of the patterns (20) have

at least two genes overlapping with one or more gene sets, andsome patterns even have a

NegLogEnrichPvalue as high as8 (original p-value as low as10−8). Interestingly, some of

the patterns in this collection are enriched with several gene sets that are clearly related to

breast cancer such asBREAST-DUCTAL-CARCINOMA-GENES(NegLogEnrichP= 8.02) and

BREAST-CANCER-PROGNOSIS-NEG(NegLogEnrichP= 6.73), as well as several gene sets

that are related to general cancer-related biological processes such as the cell-growth-related

gene setIRITANI-ADPROX-LYMPH[42] (NegLogEnrichP= 6.67) and the proliferation-related

gene setHOFFMANN-BIVSBII-BI-TABLE2[42] (NegLogEnrichP= 6.15). These results further

support the biological relevance of the patterns discovered only by SMP but not by CSET, and

thus demonstrate the benefits of using SMP to search for low-support discriminative patterns in

addition to existing approaches.

6) Comparison of the scalability of the algorithms:In section VI-A, we compared the effec-

tiveness of CSET and SMP for discovering low-support patterns from synthetic datasets with

varying density and dimensionality. In this part of the study, we test the scalability of CSET

and SMP with varying thresholds on the real gene expression data. In addition, we also test the

FPClose (FPC) [19] algorithm (plus pattern selection) as the baseline as used by other studies

7p(x|k, m, N) = 1 −
P

x−1

i=0

(N−i

k−i
)(m

i
)

(N

k
)
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Fig. 10. Histogram of the best enrichmentNegLogEnrichPvalues w.r.t. the gene sets in MSigDB, for the patterns

discovered by SMP but not by CSET. An enrichment p-value is computed only if a pattern and a gene set have at

least2 genes in common.

[10], [15]. Note that, as mentioned in Section VI-B, the gene expression data set was discretized

with ±0.2 as thresholds, into a binary matrix with density 16.62% and dimension11962, to

preserve most of the information in the data. This dataset isquite dense, due to which CSET

can only generate complete results at a threshold larger than 0.6. In order to obtain a more

complete picture of the scalabilities of FPC, CSET and SMP, we discretized the gene expression

dataset using±0.3 as the discretization threshold in this section, which yields a binary matrix

with density 8.71%.

Figure 11 shows the results of this comparisons. The X-axis in this plot is the threshold used

for discriminative pattern mining, while the Y-axis denotes the log10(run-time in seconds) value.

Note that run-times are recorded for any algorithm only if itcan produce output within four

hours. The relativeminsup threshold used in FPC is defined on the whole dataset (both classes),

while BiggerSupfor CSET andSupMaxPair for SMP take into account the support in each of

the classes individually. Therefore, for a fair comparison, FPC’s minsupis adjusted according

to the size ratio of the two classes (divided by the percentage of the majority class in the whole

dataset (0.74)) and then plotted together withBiggerSupandSupMaxPair .

Several observations can be made from these plots: (i) the FPC-based two-step approach can

search for discriminative patterns at high support levels (above0.55), (ii) by using BiggerSup,

CSET is able to search at slightly lower support levels (above0.5) compared to FPC; and for

the same threshold, CSET is more efficient than FPC, and (iii)SupMaxPair can explore pattern
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Fig. 11. Scalability of different discriminative pattern mining algorithms on the gene expression data

space with substantially lower support levels (0.1 − 0.3). Thus, FPC and CSET can be used to

discover patterns at higher thresholds, while SMP is able tofind lower support patterns missed

by the other approaches.

C. Summary of Results

Based on the experimental results on both the synthetic datasets and the cancer gene expression

data set presented in this section, we have demonstrated that on dense and high-dimensional

data, there are patterns with relatively low support that can only be discovered bySupMaxPair

but not by the existing approaches. Specifically, on the cancer gene expression data set, the

low-support discriminative patterns discovered only by SMP are statistically significant and

biologically relevant.

We also did another set of experiments for studying how well the members ofSupMaxK

approximateDiffSup as K increases. We selected several UCI datasets [4], on which allthe

discriminative patterns (given a relatively low DiffSup threshold) can be discovered and used

for the study. The experimental results show that: (i)SupMax1 generally provides very poor

approximation ofDiffSup; (ii), the approximation is improved substantially whenK goes to2,

i.e. SupMaxPair; (iii) whenK is increased further to3 and 4, the computation time increases

exponentially, but the approximation improves much slowercompared to the improvement ob-

tained whenK goes from1 to 2. These experimental results indicate thatSupMaxPair provides a

good balance between the approximation ofDiffSup and the computational expense. The detailed
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results are discussed as a supplementary material (available at http://vk.cs.umn.edu/SMP/).

VII. R ELATED WORK

Over the past decade, many approaches have studied discriminative pattern mining and related

topics. Dong and Li [14] definedemerging patterns (EP)as itemsets with a sufficiently large

growth rate (support ratio) between two classes. A two-stepalgorithm is proposed to discover

EPs, which first finds frequent itemsets with the Max-Miner algorithm [6] for each of the two

classes, and then compares these itemsets to find EPs. Emerging pattern were the first formulation

of discriminative patterns and have been extended further to several special cases such as jumping

emerging patterns [26] and minimal emerging patterns[31],[27]. Here, the discriminative power

of a pattern is measured with support ratio [14], or simply with the two supports of the pattern in

the two classes and two corresponding thresholds [31]. As discussed in [5], these emerging pattern

mining algorithms must mine the data multiple times given a certain threshold for support ratio

(or two thresholds for the two supports). In [5], a new formulation of discriminative patterns,

contrast sets (CSETs), is proposed along with an algorithm tomine them. CSET is the first

technique that formulates discriminative pattern mining within an Apriori-like framework [2],

[6], in which different pruning measures can be used to perform a systematic search on the itemset

lattice [2]. In [51], contrast set mining is shown to be a special case of a more general task,

namely rule learning, where a contrast set can be consideredas an antecedent of a rule whose

consequent is a group. Notably, CSET has also be used in some biomedical applications [25].

The upper bounds of statistical discriminative measures have also been studied for discriminative

pattern mining e.g. information gain [9],χ2 − test [5] and several others [34].

Next, we also briefly discuss other research work related to discriminative pattern mining,

although they are not the focus of the paper. Many existing approaches have studied the use of

frequent patterns in classification. Associative classifiers [29], [28], [55], [11], [49] are a series

of approaches that focus on the mining of high-support, high-confidence rules that can be used

in a a rule-based classifier. Cheng et. al. [9] recently conducted a systematic evaluation of the

utility of frequent patterns in classification. Several pattern-based classification frameworks have

also been proposed, in which a small number of discriminative patterns are selected, which

can achieve comparable classification accuracy with respect to the whole set of discriminative

patterns [10], [15], [54], [30]. Discriminative pattern mining from multiple classes has been
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studied in [5], [27], [25], while mining complex discriminative patterns has been studied in

[31]. Although traditional pattern summarization approaches [20] can be adopted to control the

redundancy among discriminative patterns, closeness and redundancy are specially studied for

in the context of discriminative patterns respectively in [17] and [41].

VIII. C ONCLUSIONS

In this paper, we addressed the necessity of trading off the completeness of discriminative

pattern discovery, with the ability to discover low-support discriminative patterns from dense and

high-dimensional data within an acceptable amount of time.For this, we proposed a family of

anti-monotonic measures of discriminative power namedSupMaxK that conceptually organize

the set of discriminative patterns into nested layers of subsets, and are progressively more

complete in their coverage, but require increasingly more computation for their discovery. Given

the same and fixed amount of time, theSupMaxK family provides a tradeoff between the

ability to search for low-support discriminative patternsand the coverage of the space of valid

discriminative patterns for the corresponding threshold.In particular,SupMaxK with K = 2

namedSupMaxPair , is a special member of this family that is suitable for denseand high-

dimensional data. We designed a framework, named SMP, whichusesSupMaxPair for discov-

ering discriminative patterns from dense and high-dimensional data. A variety of experiments on

both synthetic datasets and a breast cancer gene expressiondataset demonstrated that there

are patterns with relatively low support that can be discovered using SMP but not by the

existing approaches. In particular, the low-support discriminative patterns discovered only by

SMP from the gene expression dataset are statistically significant and biologically relevant. In

summary, SMP can complement existing algorithms for discovering discriminative patterns by

finding patterns with relatively low support from dense and high-dimensional data sets that

other approaches fail to discover within an acceptable amount of time. Thus, in practice, it is

recommended that CSET and other existing approaches should be used to discover medium-to-

high support patterns from such data sets within an acceptable amount of time, and then SMP

could be used to further discover low-support discriminative patterns that existing approaches

may not discover.

Our work can be extended in several directions. As discussedin Section IV-D, the members

of SupMaxK induce a hierarchy of subsets of the complete set of discriminative patterns. This
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hierarchy motivates further research that focuses on the mining of discriminative patterns from

the other layers that are not covered bySupMaxPair . It is also interesting to study the quality of

the discriminative patterns in the different layers of thishierarchy, which may provide insights

into different priorities for discriminative pattern mining from these layers. Note that, the use of

measures from theSupMaxK family is only one possible method for trading off the completeness

of pattern discovery with the ability to discover low-support discriminative patterns from high-

dimensional data. Indeed, other approaches that adopt a different strategy for handling this

tradeoff are also possible and should be studied. Also, mostexisting discriminative pattern mining

algorithms (as well as SMP) are designed for binary data, andhave to rely on discretization for

continuous data. It will be useful to design approaches thatcan directly handle continuous data

for discriminative pattern mining, as has been done for discovering patterns in an unsupervised

manner[36].

IX. SUPPLEMENTARY MATERIAL : EXPERIMENTS TO SHOW HOW WELLSupMaxK

ESTIMATES DiffSup

In this set of experiments, we study how the members ofSupMaxKapproximateDiffSup as

K increases. There are two approaches for this purpose, i.e. analytical and empirical analysis.

In an analytical approach, some assumptions need to be made such as that the data comes from

independence model. Such assumptions generally do not holdfor real datasets. Therefore, we

selected several real datasets from UCI Data Repository [4] and designed an empirical study

on the approximation ofDiffSup by the members ofSupMaxK. The datasets we selected are

mushroom, hypo, hepatic and sonar, which have relatively low density or low dimensionality,

so that a lowDiffSup threshold (0.1) can be used to discover the complete set of discriminative

patterns for a comprehensive study on the approximation.

Given a dataset, for each discriminative pattern of size no less thanN , we compute the value

of its SupMax1, SupMax2, ... andSupMax(N-1), and compare this sequence of values with its

DiffSup, from which we can see howSupMaxKapproximatesDiffSupwith increasing value of

K. The results on these datasets are displayed in Figures 12. Several observations can be made:

• Firstly, asK increases,SupMaxKprovides a closer and closer approximation ofDiffSup.

Specifically in the left subfigures, all the patterns have non-decreasingSupMaxKvalues (shown

by the non-decreasing curves). This observation is guaranteed by Lemma3 and Theorem1.
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• Secondly,SupMax1generally provides very poor approximation of DiffSup. Specifically,

although all the patterns discovered from the four datasetshaveDiffSupno less than0.1, most

of them have negativeSupMax1values.

• Thirdly, whenK goes from1 to 2, i.e. SupMaxPair, the approximation is improved sub-

stantially (shown by the jump of value fromSM1 to SM2). With this improvement, for many

discriminative patterns,SupMaxPair (K = 2) provides a reasonably good approximation of

DiffSup. Take the mushroom dataset as an example, for200 of the total285 patterns (70.2%),

SupMaxPairhas difference less than0.1 from DiffSup. There are also many patterns whose

SupMaxPairvalues have differences less than0.1 from DiffSup in the other three datasets: hypo

(about (70%)), sonar (about (20%)) and hepatic (about (20%)).

• Finally, whenK is increased further to3 and4, the computation time increases exponentially,

but the approximation improves relatively much less compared to the improvement obtained when

K goes from1 to 2. However, it is worthnoting that the differences betweenSupMaxPairand

DiffSup can also be large (ranging from0.1 to 0.4) for many discriminative patterns on all the

four datasets, e.g.30% in the mushroom dataset, about80% in the hepatic and sonar datasets. For

these discriminative patterns,SupMaxKwith largerK (≥ 3) is necessary to provide sufficiently

close approximation ofDiffSup.

These experimental results indicate thatSupMaixPairprovides a good balance between the

approximation ofDiffSup and the computational expense. However, we present the details of

this study in the supplementary material rather than in the main paper due to the space limits

(we are alrady at the maximal 36 pages allowed), and because the highlight ofSupMaxPairis

not its accurate approximation ofDiffSupbut the combination of the following three advantages:

(i) it is effective for pruning non-discriminative patterns as a lower bound ofDiffSup, compared

to BiggerSup(an upper bounds ofDiffSup) (ii) it is a tighter lower bound for DiffSup compared

to SupMax1(theoretically guaranteed by Lemma3 and Theorem1, and also shown in Figure

12) and (iii) it is the only one, among the members ofSupMaxK (K ≥ 2), that is feasible

for handling high dimensional datasets. These advantages enableSupMaxPairfor discovering

additional low-support discriminative patterns from dense and high-dimensional dataset when

existing techniques fail to, as extensively discussed in Sections I and IV and demonstrated in

Sections VI-A and VI-B.
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(a) Mushroom dataset:285 discriminative patterns with size greater or equal

to 5 andDiffSupno less than0.1
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(b) Hypo dataset:45 discriminative patterns with size greater or equal to4

(too few patterns with size≥ 5) andDiffSupno less than0.1
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(c) Sonar dataset:385 discriminative patterns with size greater or equal to

5 andDiffSupno less than0.1
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(d) Hepatic dataset:164 discriminative patterns with size greater or equal

to 4 (too few patterns with size≥ 5) andDiffSupno less than0.1

Fig. 12. The approximation ofDiffSupby the members ofSupMaxKwith increasing value ofK on the three UCI

data sets. In the left subfigures, the sequence of values for each pattern (SupMax1, SupMax2, SupMax3, SupMax4

andDiffSup) are plotted as a curve. The right subfigures are the distribution of the difference betweenDiffSupand

SupMax2, the value of which measures how closeSupMax2approximateDiffSup
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