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Abstract

Discriminative patterns can provide valuable insight® idatasets with class labels, that may not
be available from the individual features or the predictimedels built using them. Most existing
approaches work efficiently for sparse or low-dimensionafagets. However, for dense and high-
dimensional datasets, they have to use high thresholdsottupe the complete results within limited
time, and thus, may miss interesting low-support patteimghis paper, we address the necessity of
trading off the completeness of discriminative patterrcoiery with the efficient discovery of low-
support discriminative patterns from such datasets. Wege® a family of anti-monotonic measures
namedSupMaxK that organize the set of discriminative patterns into rieltgers of subsets, which are
progressively more complete in their coverage, but regaceeasingly more computation. In particular,
the member oSupMazK with K = 2, namedSupMaxPair, is suitable for dense and high-dimensional
datasets. Experiments on both synthetic datasets and @rcgane expression dataset demonstrate
that there are low-support patterns that can be discovesatj WupMazPair but not by existing
approaches. Furthermore, we show that the low-supportidis@tive patterns that are only discovered
using SupMazPair from the cancer gene expression dataset are statistiégfiifisant and biologically
relevant. This illustrates the complementaritySifp MaxPair to existing approaches for discriminative

pattern discovery. The codes and dataset for this papeaialde at http://vk.cs.umn.edu/SMP/.

Index Terms

Association analysis, Discriminative pattern mining, Barker discovery, Permutation test

. INTRODUCTION

For data sets with class labels, association patterns43],that occur with disproportionate
frequency in some classes versus others can be of condeleedbe in many applications. Such
applications include census data analysis that aims atifigieg differences among demographic
groups [14], [5] and biomarker discovery, which searchegyfoups of genes or related entities,
that are associated with diseases [8], [39], [1]. We wilereb these patterns as discriminative
patterns in this paper, although they have also been investigateeérunither names [35], such
as emerging patterns [14] and contrast sets [5]. In this rpape focus on 2-class problems,
which can be generalized to multi-class problems as destiiii [5].

Discriminative patterns have been shown to be useful forrawvipg the classification per-

formance for data sets where combinations of features hatterbdiscriminative power than

1The terms "pattern” and "itemset” are used interchangeably in this paper.
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the individual features [9], [13], [47], [10], [15], [30]. bfe importantly, as discussed in [5],
discriminative pattern mining can provide insights beyatassification models. For example,
for biomarker discovery from case-control data (e.g. disess. normal samples), it is important
to identify groups of biological entities, such as genes amgjle-nucleotide polymorphisms
(SNPs), that are collectively associated with a certaireatie or other phenotypes [1], [50],
[38]. Algorithms that can discover a comprehensive set s€riininative patterns are especially
useful for domains like biomarker discovery, and such algors are the focus of this paper.

The algorithms for finding discriminative patterns usuaiyploy a measure for the discrim-
inative power of a pattern. Such measures are generallyedefis a function of the pattern’s
relative suppoftin the two classes, and can be defined either simply as tiee[tdf or difference
[5] of the two supports, or other variations, such as its imi@tion gain [9], Gini index, odds
ratio [43] etc. In this paper, we use the measure that is defisethe difference of the supports
of an itemset in the two classes (originally proposed in [ ased by its extensions [24], [25]).
We will refer to this measure aBiffSup (formally discussed in Section Il). Given a dataset with
0-1 class labels and RiffSup thresholdr, the patterns withDiffSup > r can be considered as
valid discriminative patterns.

To introduce some key ideas about discriminative pattenasnaake the following discussion
easier to follow, consider Figure 1, which displays a sangiééaset containing 15 items
(columns) and two classes, each with 10 instances (rows)hdnfigure, four patterns (sets
of binary variables) can be observeB; = {i,is, i3}, P» = {is, 46,07}, Ps = {ig,i10} and
P, = {i1s, 013,714} P, and Py are interesting discriminative patterns that occur witfiedent
frequencies in the two classes, wha3gfSup is 0.6 and0.7 respectively. In contrast’, and P
are uninteresting patterns with a relatively uniform ocence across the classes, both having a
DiffSup of 0. Furthermore P, is a discriminative pattern whose individual items are dighly
discriminative, while those oP; are not. Based on support in the whole dataBeis a frequent

non-discriminative pattern, whilé; is a relatively infrequent non-discriminative pattern.

2Note that, in this paper, unless specified, the support of a pattern in dsctaative to the number of transactions (instances)
in that class, i.e. a ratio between 0 and 1, which can help handle the cakevedd class distributions.

3The discussion in this paper assumes that the data is bidarginal categorical data can be converted to binary
data without loss of information, while ordinal categotidata and continuous data can be binarized, although with

some loss of magnitude and order information.
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Fig. 1. A sample data set with interesting discriminative pattdids P,) and uninteresting pattern®{, Ps)

Note that the discriminative measures discussed above arergly not anti-monotonic as
shown by [14], [5], [9]. TakeDiffSup for instance (while other measures like support ratio,
information gain and odds ratio are not anti-monotonic exithalthough theDiffSup of the
three items inP; are0, 0 and0.2 respectively,P, has aDiffSup of 0.6 as an itemset. Due to the
lack of anti-monotonicity, these measures can not be dyresied in an Apriori framework [2]
for exhaustive and efficient pattern mining as can be donenfeasures like support[2], h-
confidence [53] etc. To address this issue, many approa@®s[P8], [55], [11], [9] adopt a
two-step strategy (denoted as Group A), where first, a freigp@ttern mining algorithm is used
to find all (closed) frequent patterns that satisfy a cersaipport thresholdninsup either from
the whole dataset or from only one of the classes. The pattewmd can be further refined
using other interestingness measures (e.g. [7], [23],)[#]en, as post-processing;ffSup is
computed for each of these patterns, based on which dis@ative patterns are selected. Note
that, in general, these two-step approaches can work evinawery lowminsup threshold
[49], [9] on relatively sparse or low-dimensional datasets

However, since these approaches ignore class label infammiz the mining process, many
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frequent patterns discovered in the first step may turn outawe low discriminative power
in the second step. For instance, in Figure 1, the relatippats of P, and P; in the whole
dataset ar®.6 and 0.3 respectively, and will be considered as frequent pattefrtisei support
threshold is0.2. However, P, and P; are not discriminative since they both haveDa(fSup

of 0. In particular, in datasets with relatively high densftyand high-dimensionality, a huge
number of non-discriminative patterns lik® and P; in Figure 1 may exist. Such patterns may
meet theminsup threshold and would be discovered in the first step, but wo@dound as
non-discriminative patterns in the second step. If a tamwmsup is used, a huge number of such
patterns can reduce the efficiency of both the two steps asstied in [10]. In such a situation,
the two-step approaches have to use a sufficiently highsup in order to generate the complete
set of results within an acceptable amount of time, and thag miss a large number of highly
discriminative patterns that fall below theinsup threshold.

A possible strategy for improving the performance of the-step approaches is to directly
utilize the support of a pattern in the two classes for prgréiome non-discriminative patterns
in the pattern mining stage. Indeed, several approaches lbeen proposed [5], [9], where the
anti-monotonic upper bounds of discriminative measunesh f1sDiffSup, are used for pruning
some non-discriminative patterns in an Apriori-like framoek [2]. This strategy, like the two-
step approaches, also guarantees to find the complete sistafrdnative patterns with respect
to a threshold, although in a more efficient manner. Howewvedatasets with relatively high
density and high-dimensionality, there can be a large nunobdrequent non-discriminative
patterns likeP, in Figure 1. Such patterns may not be pruned by these apmsdunbcause
the upper bounds of the discriminative measures may be wegknical details in Section
ll). Thus, as illustrated in Figure 2(a), these approacfrieferred to as grou@d in the rest
of this paper) are able to discover a larger fraction of therasting discriminative patterns as
compared to the two-step approaches. However, they maynsds a lot of highly discriminative
patterns, particularly those at low support levels, givemgsame fixed amount of time. These low
support patterns are supported by a relatively small nurobesamples but can still be highly
discriminative according to theibiffSup value, especially in the case of data sets with skewed

class size distributions.

“The density of a transaction matrix is the percentagé’efin the transaction-by-item matrix
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Yet another strategy for discovering a significant subsethef discriminative patterns is to
directly use a measure of discriminative power for pruning-discriminative patterns [56]. As
an instance of such an approadhffSup can be computed for each candidate patierand
if DiffSup(a) < r, thena and all its supersets can be pruned in an Apriori-like atpari[2].
This strategy is computationally more efficient than the-st&p approaches, because no patterns
with DiffSup(«) < r are generated during the mining process. However, thisaweat efficiency
comes at the cost of not discovering the complete set ofiidigwative patterns, sinc®iffSup
is not anti-monotonic [5]. More specifically, the algoriterm this group (referred to as group
C in the rest of this paper), may miss interesting discriniveapatterns whose individual items
are not discriminative (e.g?, in Fig. 1). With respect to the coverage of the set of intémgst
discriminative patterns, the approaches in this group nesgidbe to discover low-support patterns
at the expense of missing a large number of interesting rpattas illustrated by the stars not
included in box C in Figure 2(a). This observation is alsoec#d in our experimental results
(section VI-B.2).

As can be seen from the discussion above, which is summainzedyure 2(a), the current
approaches face an inherent trade-off when discoverirgidimative patterns from a dense and
high-dimensional data set. The approaches in groupsid B face challenges with discovering
low-support patterns due to their focus on the completeotiexy of discriminative patterns
satisfying the corresponding thresholds. On the other hdnedapproaches in groupg sacrifice
completeness for the ability of discovering low-supposdcdiminative patterns. This trade-off is
expected to be faced by any algorithm for this complex problearticularly due to the restriction
of fixed computational time. In such a scenario, an appropgproach to discover some of
the interesting discriminative patterns missed by theenirapproaches, is to formulate new
measures for discriminative power and corresponding dlgos that can progressively explore
lower support thresholds for discovering patterns, whigeling off completeness to some extent.
Such a design is illustrated in Figure 2(b), where baXes” and Z represent three approaches,
which can discover patterns with progressively lower thodds ¢, > t, > ¢.). However, the
cost associated with this ability is that of potentially sig) some patterns that are at higher
support levels. Still, X, Y and Z can all discover several patterns that are exclusive to ong
of them, and can thus play a complementary role to the egigipproaches by expanding the

coverage of the set of interesting discriminative patterns
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Fig. 2. An illustration of the coverage of the space of discrimivatpatterns by different approaches given the
same amount of time. Thiés on the y-axis represent the lowest support of the pattiéwaisare respectively covered
by the corresponding approaches (represented by boxgs)) thie same and fixed amount of time. (a) BéxB
and C' represent the set of patterns discovered by the correspprgiproaches in groug, B andC respectively.

(b) Nlustration of the tradeoff between the capability ®asch low-support discriminative patterns in dense and
high-dimensional data and the completeness of the patiecovery. BoxesX, Y and Z represent three conceptual
low-support discriminative pattern mining approaches thscover patterns not found by the approaches in groups
A, B andC. Note that, in this figure, the set of interesting discrintivea patterns is the same as that in (a), but

the corresponding’s are not shown for the sake of clarity.

Corresponding to the motivation discussed above, we propofamily of anti-monotonic
measures of discriminative power namé&dpMaxK . These measures conceptually organize the
set of discriminative patterns into nested layers of suhsehich are progressively complete
in their coverage, but require increasingly more compaitafior their discovery. Essentially,
SupMazK estimates theDiffSup of an itemset by calculating the difference of its support in
one class and the maximal support among all of its éizesubsets in the other class. The
smaller the value of<, the more effectiveSupMazK is for finding low-support discriminative
patterns by effectively pruning frequent non-discrimivatpatterns. Notably, due to the anti-
monotonicity property of all the members 8tipMaxK, each of them can be used in an Apriori-
like framework [2] to guarantee the discovery of all the disinative patterns withSup MazK
> r, wherer is a user-specified threshold. Given the same (limited) arnoitime, the members
of this family provide a tradeoff between the ability to sgarfor low-support discriminative

patterns and the coverage of the space of valid discrimmaiatterns for the corresponding
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threshold, as illustrated by the three conceptual appesagh Y and Z in Figure 2(b). In

particular, we find that a special member with = 2 named SupMaxPair, is suitable for

dense and high-dimensional data. We have designed a fraenamed SMP, which uses

SupMazPair for discovering discriminative patterns. Carefully desidrexperiments with both

synthetic datasets and a cancer gene expression dataseieakéo demonstrate that SMP can

serve a complementary role to the existing approaches lopwising low-support yet highly

discriminative patterns from dense and high-dimensiom@d,dwhen the latter fail to discover

them within an acceptable amount of time.

A. Contributions of this paper

The contributions of this paper can be summarized as follows

1)

2)

3)

We address the necessity of trading off the completerfatisaiminative pattern discovery
with the ability to discover low-support discriminative tpans from dense and high-
dimensional data within an acceptable amount of time. Fa, Me propose a family
of anti-monotonic measures namédpMazK that conceptually organize the set of dis-
criminative patterns into nested layers of subsets, whiehpaogressively more complete
in their coverage, but require increasingly more compaotafor their discovery.

In particular,SupMazK with K = 2, namedSupMazPair, is a special member of this
family that is suitable for dense and high-dimensional data can serve a complementary
role to the existing approaches by helping to discover lappert discriminative patterns,
when the latter fail to discover them within an acceptablean of time. We designed a
framework, named SMP, which us@&spMaxPair for discovering discriminative patterns.
A variety of experiments with both synthetic datasets amancer gene expression dataset
are presented to demonstrate that there are many pattetnsrelatively low support
that can be discovered by SMP but not by the existing appesadm particular, these
experiments rigorously demonstrate that the low-suppedrigninative patterns discovered
only by SMP from the cancer gene expression dataset arst&tally significant (via
permutation test [18], [42]) and biologically relevantg\aomparison with a list of cancer-
related genes [21] and a collection of biological gene s&2% (e.g. pathways)). These are
the recognized methods for evaluating the utility of suctigoas for applications such as
biomarker discovery [42], [8], [22].
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The source codes and dataset used in this paper are avaitattigp://vk.cs.umn.edu/SMP/.

1. BASIC TERMINOLOGY AND PROBLEM DEFINITION

Let D be a dataset with a set of items, [ = {iy,is,...,7,}, two class labelsS; and Ss,
and a set ofx labeled instances (itemsetd), = {(x;,v;)},_,, wherex; C I is a set of items
andy; € {S1,5} is the class label fok;. The two sets of instances that respectively belong
to the classS; and S, are denoted byD! and D?, and we have D| = |D'| + |D?|. For an
itemseta = {ay,as,...,a;} Wherea C I, the set of instances im! and D? that containa

are respectively denoted ! and D2. The relative supports aof in classesS; and S, are

RelSup*(a) = '@%l' and RelSup?(a) = '|g§|', respectively.RelSup is anti-monotonic since the
denominator is fixed and the numerator is support of the g&nwghich is anti-monotonic.

The absolute difference of the relative supportsraf D! and D? is defined originally in [5]
and denoted in this paper d%ffSup:

DiffSup(a) = |RelSup' (a) — RelSup?(a)|. (1)

An itemseta is r — discriminative if DiffSup(«) > r. The problem addressed by discrimi-
native pattern mining algorithms is to discover all patterm a dataset withDiffSup> r.
Without loss of generality, we only consider discriminatpatterns for the binary-class prob-

lem. Our work can be extended to multiple classes as deschibgb].

[11. COMPUTATIONAL LIMITATIONS OF CURRENT APPROACHES

As discussed in Section I, in dense and high-dimensional, daé approaches in groups
and B have to use a relatively high threshold in order to provide ¢cbmplete result within an
acceptable amount of time. In this section, we will show that limitation is essentially due to
the ineffective pruning of frequent non-discriminativettpens (e.g.P; in Figure 1). Generally,
the approaches in group is relatively more efficient than those in group as discussed in
Section I. We use the measure originally proposed in CSET 45 eepresentative of groub
for this discussion, while a similar discussion also holdis dther approaches in group [9],
[34]. In CSET, an upper bound dbiffSup is defined as the bigger of the relative supports of a
patterna in D' and D?. In this paper, we denote it aSiggerSup:
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10

BiggerSup(a) = max(RelSup*(a), RelSup*(a)). 2)
Lemma 1. BiggerSup is anti-monotonic

Proof. Follows from the anti-monotonicity oRelSup and the property of thewax function. [J

Since BiggerSup is an upper bound obiffSup [5], and it is also anti-monotonic (Lemma 1),
CSET [5] usesBiggerSup as a pruning measure in a Apriori-like framework, and cacalisr,
given sufficient time and computing resources, the cometeof discriminative patterns (w.r.t
a BiggerSup threshold). However, by using the bigger one to estimatedifference of the
two supports,BiggerSup is a weak upper bound abiffSup. For instance, if we want to use
CSET to search fof.4 — discriminative patterns in Figure 1P; can be pruned, because it
has aBiggerSup of 0.3. However, P, can not be prunedHiggerSup(P,) = 0.6), even though
it is not discriminative DiffSup(P,) = 0). More generally,BiggerSup-based pruning can only
prune infrequent non-discriminative patterns with refaiy low support, but not frequent non-
discriminative patterns. Therefore, in dense and highedsional data, where a large number of
frequent non-discriminative patterns are expected td,eQISET with a relatively lowBiggerSup
threshold can often fail to produce the complete results inagsonable amount of time. Thus,
CSET has to set thé&iggerSup threshold high and may not discover discriminative pagern
at lower support that may be of interest. Similar discussianthe limited ability of pruning
frequent non-discriminative patterns also holds for o@qgsroaches in groupd and B, i.e., all
the two-step approaches, and those based on the inforngdionupper bound [9], and other

statistical metric-based pruning [5], [34].

IV. PROPOSEDAPPROACH

As shown above, the limitation of existing approaches iemsally the ineffectiveness of
pruning frequent non-discriminative patterns. Conceptutd prune frequent non-discriminative
patterns, a new measure should be designed such that anjgafiepport in one class can be
effectively limited to a relatively smaller number compate its support in the other class. In this
section, we start with such a measwhenMax1 in Definition 1, and then extend it to a family of
measuresSupMazK . Then, we will discuss the relationships betweeiffSup, BiggerSup and

SupMazK . Finally, we will focus on a special member of this famiyp MazPair that is suitable
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for high-dimensional data. Note that, for an itemsetwo cases can happe®elSup' (o) >
RelSup® () or RelSup' (o)) < RelSup®(c). In the following discussion, without loss of generality,

we assumeRelSup'(a) > RelSup®(a) for simplicity.

A. SupMax1l: A Simple Measure to Start with

Definition 1. The SupMaz1 of an itemsety in D! and D? is defined as
SupMaz1(a) = RelSup'(a) — mazqecq(RelSup®({a})).

SupMaz1 of an itemseta is computed as the difference between the suppoit afi D!,
and the maximal individual support of the itemsdnin D?. SupMax1 approximatesDiffSup
by using the maximal individual support iR? to estimateRelSup*(a). Clearly, the maximal
individual support is quite a rough estimator fBelSup?(«), because a pattern can have very
low support in classS, but the items in it can still have very high individual supsoin this
class. However, an alternative way to interpfepMax! is that, a pattern with larg8upMaz1
has relatively high support in one class and all the itemg imave relatively low support in
the other classP, is such an example whosg&upMazx1 is 0.9 — max(0.3,0.3,0.3) = 0.6 as
shown in Figure 1. Thus, given gupMax! threshold, say 0.4SupMaz1 discovers a subset of
0.4 — discriminative patterns but not all, e.g. it will miss patterns lik& in Figure 1, which
has relatively highDiffSup (0.6) but zeroSupMaz1.

B. SupMaxK

Following the rationale ofSupMaz1, the maximal support of size-subsets of a pattern in
D? can be used to estimafeelSup® (o) instead of using maximal individual support in class
to estimateRelSup? (). This can provide a better estimation B&/Sup®(a). In such a manner,
SupMazx1 can be generalized into a family of measure® MazK, which is formally defined
in Definition 2. Note that in the following discussio§upMazK will be used to refer to this

family as well as one of its general members, for the clarftpr@sentation.
Definition 2. The SupMazK of an itemsety in D! and D? is defined as

SupMazK (o) = RelSup'(a) — mazsca(RelSup®(3)), where|3| = K
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So, SupMaxK of an itemseta is computed as the difference between the support of
D!, and the maximal support among all the si¥esubsets ofy in D2. Note that, in this paper,
SupMazK is defined with respect t®iffSup, while similar concept can also be applied to other

discriminative measures such as the ratio-based meastire [1

C. Properties of theSupMaxK Family

In the following subsections, we discuss three propertfeh® SupMazK family.
1) The subset-superset relationship among SupMaxK memBased on the definition of

SupMazK , the following two Lemmas show the relationship amahig MaexK members.

Lemma 2. If we use MazSup(«, K) to denote the second componentSifpMazK («), i.e.
mazgca(RelSup(F)) with |3| = K, thenMazSup(«, K) is a lower bound of\/azSup(a, K — 1)
for integer K € [2, |«|]

Proof. For every sizg-K — 1) subset ofw (say g,

G| = K — 1), there exists a sizé& subset of
a (say(d, |f'| = K) such that C [, e.g. by adding any to 3, wherei € « andi ¢ 5. Based
on the anti-monotonicity property aRelSup, it is guaranteed thaRelSup(3') < RelSup(5).
Then, from the properties of theax function, maxgc,(RelSup(3')) < maxsca(RelSup(3)).
Thus, MazSup(«, K) is a lower bound ofMazSup(a, K — 1). O

Lemma 3. SupMaz(K — 1) of an itemsety is a lower bound of itsSupMaz K, or alternatively

SupMazK of an itemsetv is an upper bound of itSupMaz (K — 1), for integer K € [2, |a/]

Proof. Follows directly from Definition 2, Lemma 2. O

From Lemma 3, we know that, given the same thresholdnd sufficient time, the set
of patterns discovered witupMaz(K — 1) in an Apriori framework is a subset of the set
of patterns discovered witlSupMazK. This means thatupMaxK can find more and more
discriminative patterns a&” increases from (SupMax1), to 2 (SupMax2, to 3 (SupMax3 and
so on. The patterns that are discoveredShyMazK but not by SupMaz(K — 1) are those with
SupMazK > r, but with SupMaz(K — 1) < r. Figure 3 shows an extended version of the data
set shown in Figure 1 containing fifteen addition itemg € i30) and two patterng’s and F,

the rest being identical to Figure 1. In this data set, givengame threshold = 0.4, SupMaz1
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Fig. 3. An extended version of the data set shown in Figure 1 comtgifiiteen addition itemsi{s —i39) and two

patternsP5; and Pg, the rest being identical to Figure 1.

can find Py, but not P, and Ps, both of which haveDiffSup= 0.6, but zeroSupMax1; SupMaz2
can find P, in addition to P,; furthermore,SupMax3 can find P5 in addition toP, and P;. This
illustrates thatSupMaz3 can find all the patterns found usirttypMaz! and SupMazx2, but not
vice versa, as discussed above. Furtherm8ugMax10will be able to discover patter#; in
addition to the patterns found usifypMaz1, SupMax2 and SupMax3.

2) The Exactness of theup MazK Family: Lemmas 2 and 3 lead to Theorem 1, which shows
the relationship betweefupMazK and DiffSup.

Theorem 1. SupMazK is a lower bound ofDiffSup, for integer K € [1, |a| — 1].

Proof. SinceDiffSup) is equivalent taSupMaxK¢) with K = |a| (We assumedelSup' (o) >

RelSup®(«) for simplicity earlier this Section), this theorem folloir®m Lemma 3. O

Theorem 1 guarantees that the patterns discovered byagmfazK members with threshold
r also haveDiffSup> r. Therefore,SupMaxK members with threshold discover onlyr —
discriminative patterns.

3) The Increasing Completeness of thepMaxK Family: The max function together with
the anti-monotonicity ofRelSup yields the following result about the anti-monotonicity exdch

member ofSupMaxK .
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Theorem 2. Each member obupMazK is anti-monotonic.

Proof. Let « C [ be an itemset, and’ C [ be a superset ofy, such thate’ = a U {i},
wherei € I andi ¢ a. Firstly, from the anti-monotonicity oRelSup, we haveRelSup'(a’) <
RelSup'(a). Then, based on the property of theax function, mazgcq (RelSup®(3)) >

mazgcq(RelSup®(3)), where|3| = K and|3'| = K. Finally, we have the following:

SupMazK (/) = RelSup'(a') — mazgca(RelSup*(3'))
< RelSup' () — mazsca(RelSup®(3))
= SupMazK ().
[

Based on Theorem 2, given a threshe]dany member of the&upMaxK family can be used
within an Apriori-like framework [2] to discover the compéeset of patterns withupMaxK > r.
Note thatSupMaxK could be alternatively defined using then function, thus providing a better
estimation ofDiffSup. However, this version ofupMazK will not be anti-monotonic and thus
can not be used in the Apriori framework for the systematarae of discriminative patterns.

Since there are a finite number of discriminative patterressdataset given &iffSup threshold,
and SupMazK finds more and more discriminative patterns/asncreases (Lemma 3), the set
of patterns discovered witlSupMaxK and thresholdr within an Apriori-like framework is
increasingly more complete with respect to the completeotet— discriminative patterns.

4) Summary of the three properties of the SupMaxK Fanmfgom the subset-superset re-
lationship amongSupMaxzK members, and the exactness and increasing completeneke of t
SupMazK family, SupMaxK members conceptually organize the complete set of discative
patterns into nested subsets of patterns that are incgbasinore complete in their coverage with
respect tor — discriminative patterns. This yields interesting relationships betwégfiSup,

BiggerSup and theSupMaxK family, which are discussed below.

D. Relationship between DiffSup, BiggerSup and the SupMaxKil{

To understand relationship among:ffSup, BiggerSup and SupMazK, Figure 4 displays
the nested structure of th€upMazK family together with DiffSup and BiggerSup from the
perspective of the search space of discriminative patter@sdatasetl 4; is the complete set

of r — discriminative patterns given diffSup thresholdr. Losgr is the search space explored
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by CSET in order to find all the patterns iny;. Note thatL-sgr IS a superset of. 4;;, because
BiggerSup is an upper bound oDiffSup. Note that,Loszr can be much larger thah,; for
dense and high-dimensional data sets, especially wheratvedy low BiggerSup threshold is
used. In such cases, CSET may not be able to generate comgdedes rwithin an acceptable
amount of time. For instance, on the cancer gene expresatarsdt used in our experiments, the
lowest BiggerSup threshold for which CSET can produce the complete resultsinvd hours
is 0.6. With a lower threshold).4, CSET can not produce the complete results within 24 hours.
Members of theSupMazK family help address this problem witBiggerSup by stratifying
all ther — discriminative patterns into subsets that are increasingly more compete/(, Lo,
ooy Ly, Ly, - .., Lay), @as shown in Lemma 3 and the subsequent discussion, astitalied in
Figure 4. However, note that these superset-subset mdaijps amongupMarK members and
betweenSupMaxzK and BiggerSup (used by CSET) hold only when the same threshold is used
for BiggerSup and all theSupMaxK members, and unlimited computation time is available. In
practice, given the same fixed amount of time, progressil@ixer thresholds can be used for
SupMaxK members ad( decreases. This tradeoff was illustrated earlier in Fig(ly.
Since the focus of this paper is on dense and high-dimeristizta, another practical factor
should be considered, that is, the computational efficiesfcthe SupMazK members. In the
next section, we will introduce a special member of the MazK family that is computationally

suitable for dense and high-dimensional data.

E. SupMaxPair: A Special Member Suitable for High-Dimenaldata

In the previous discussion, we showed that/asincreases, the set of patterns discovered
with SupMazK and threshold- in an Apriori framework is increasingly more complete with
respect to the complete set of— discriminative patterns. Thus, in order to discover as
many r — discriminative patterns as possible, an as large as possible valu€ should be
used given the time limit. However, it is worth noting thaettime and space complexity to
compute and store the second component in the definiticSuphMazK, i.e. MazSup (o, K) =
mazseq(RelSup®(3)) with |3| = K are bothO(mX) (The exact times of calculation i§))),
where M is the number of items in the dataset. In high-dimensiontd dat (largel\/), K > 2
is usually infeasible. For instance, if there are 10000 #emthe data set)/ = 10000), even

SupMazK with K = 3 will require the computation of the support of 4l%") ~ 1.6 x 10"
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PDb SupMax1 L7 Lz Lz L« Lwst) La LCE‘SET

PDb SupMax2 - I
PDb SupMax3

. .

:  PDb SupMaxK ‘e

Pattern Discovered by (PDb) SupMax(K+1)

. All the r-discriminative Patterns .

Search Space of BiggerSup (CSET)
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Fig. 4. Nested layers I{y, Lo, L3, ..., Ly, Lxy1,--., Lau, Losegr) of patterns defined bySupMazK, and
relationship with the complete set of discriminative paite (layer L 4;;), and the search space @figgerSup
used by CSET (layetLcsgr). (PDb stands for "Patterns Discovered by'PDbSupMaxK is a subset of
PDbSupMax(K + 1). Note that this figure only shows the subset-superset oefttip, while the size of each

rectangle does not the imply number of patterns in each set.

size-3 patterns. Therefore, due to our emphasis on denséighelimensional data, we will
focus on SupMaxK with K = 2, i.e., SupMaxPair, to balance the accurate estimation of
DiffSup and computational efficiency. Note that, based on the deimiof SupMazPair, the
computational complexity of the second componens@fMaxPair (maximal pair-wise support
in class S,) for an itemseta = {ay, s, ...,q;} with size greater thar2 is O(i?). However,
according to the Apriori framework [2/azSup(«a, 2) only depends on three terms that will have
been computed before the computationMfizSup(«, 2) itself: MazSup({a, s, ...,cq_1},2)
and MazSup ({1, as, ..., 2, oy}, 2), and MazSup({ay_1, 4}, 2), and thus the computational
complexity for MazSup(a, 2) is O(1) per itemsetu.

As shown in Figure 45upMaxPair can perform a complete search of the discriminative
patterns in the first two layers, even for a low valuerofindeed, we will demonstrate in our

experimental results on a cancer gene expression data setiofs V1) that searching these
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two layers itself can enable SupMaxPair to discover many-dapport patterns that may not
be discovered by CSET within an acceptable amount of timethEBtmore, these patterns are
statistically significant and biologically relevant.

Before we discuss these results, we lay out the complete Wwvarkeghat we use for discovering

discriminative patterns from dense and high-dimensioash.d

V. FRAMEWORK FORDISCRIMINATIVE PATTERN MINING

In this section, we explain the major steps in the framewa&dufor discriminative pattern
mining in our experiments:

e Step I This is an algorithm-specific step. For example, fapMaxPair, all the item-pair
supports are computed and stored in a matrix, whiasg entry is the item-pair support of item
i andj. The complexity of this step i®(nm?), wheren is the number of transactions, and
is the number of unique items. No such pre-computation hd=etdone for CSET.

e Step 2 The Apriori framework [2] is used in this step for discrinative pattern mining using
the anti-monotonic measurégggerSup and SupMazPair. For SMP, discriminative patterns are
firstly mined from one class and then mined from the other]eMBSET discovers patterns once
from the whole dataset.

e Step 3 To facilitate further pattern processing and patternesabn, we selected only the
closed itemsets [37] from the complete set of itemsets medu

For clarity, we refer to the version of this framework whétggerSup is used for discovering
patterns a&SET, while the version usingupMazPair is referred to aSMP in the subsequent
discussion. Our analysis of the quality of the patterns &edcomputational time requirements

are presented with respect to the patterns produced by tloesplete pipelines.

VI. EXPERIMENTAL RESULTS

In order to evaluate the efficacy of different discriminatigattern mining algorithms, par-
ticularly CSET (a representative of the approaches in grBugiscussed in Section I) and our
proposed algorithm SMP, we designed two sets of experim&hgsfirst set of experiments utilize
synthetic data sets with varying density and dimension#itstudy the properties of CSET and
SMP. The second set of experiments involve the applicatio€®ET and SMP to a breast

cancer gene expression data. The second set aims at a dystewaduation of the statistical
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significance and biological relevance of the resultantgpa#t, thus validating the effectiveness
of CSET and SMP for knowledge discovery from real data. All é¢xperiments presented here
were run on a Linux machine with 8 Intel(R) Xeon(R) CPUs (E5310 @G&Hz) and 16GB

memory.

A. Experiments on Synthetic Data Sets with Varying Densitly Rimensionality

In the first set of experiments, we study the performance oP@Md CSET on synthetic binary
data sets whose background can be fully controlled. Spaliyfiave created two collections of
synthetic datasets respectively with (i) varying densitg &ixed dimensionality, and (ii) varying
dimensionality and fixed density. We first describe the apginowe used to create these two
collections of data sets and then present the performan&Mef compared to CSET.

1) Methodology for Generating Synthetic Data Sefach synthetic data set have two ma-
jor components: discriminative and non-discriminativétgras. Discriminative patterns are the
target of the mining algorithms, while non-discriminatigatterns are obstacles. As discussed
in Section |, an effective discriminative pattern mining@iithm should be able to prune the
non-discriminative patterns at early stage while discoeediscriminative patterns.

Ten discriminative patterns each of sizes 2, 4, 6, 8 and 1@ werbedded in each synthetic
dataset, resulting in a total of 50 discriminative pattgpes dataset. To reflect the distribution
of different types of discriminative patterns in real ddta, each of the five sizes, we randomly
determined a number of patterns (out of ten) that can beksed by CSET but not SMP (type-
1), and the remaining patterns that can be discovered by SMRdi CSET (type-Il). Specifically,
type-l patterns are those that hawg(fSup greater thar).2, but SupMazPair below 0.2. As
discussed in Section IV, SMP can not find type-l patterns duthé fact thatSupMazPair is
an lower bound ofDiffSup. In contrast, type-ll patterns are those that h&iegerSup below
the lowest threshold0(2) that CSET can finish within an acceptable amount of time (we us
4 hours as the representative acceptable amount of timelp &\ find these type-Il patterns
if it can effectively prune non-discriminative patternsdacan search at lower support levels
(0.1). Table I displays the number of type-I and type-Il discnative patterns of different sizes
embedded in each of the synthetic datasets. Note that thesbems are kept the same for all
the synthetic datasets to ensure that results across atifiesent datasets are comparable. Note

that in practice, there may be other types of patterns thatoeadiscovered by both CSET and
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size-2 | size-4 | size-6 | size-8 | size-10
type-I patterns 3 6 5 8 7
type-Il patterns 7 4 5 2 3
Total patterns of each siz¢ 10 10 10 10 10
TABLE |

NUMBER OF TYPE| AND TYPE-Il DISCRIMINATIVE PATTERNS OF SIZE2, 4, 6, 8AND 10.

SMP. In this analysis, we do not embed these other types ¢érpatand focus only on the
effectiveness of CSET and SMP for discovering different sypédiscriminative patterns.

For all the synthetic data sets, we fix the number of sampl&8(atin which half are of class
1 and the other half are of clags Two collections of datasets were generated as follows.

Varying density with fixed dimensionality: For this collection of data sets, we fix the
dimensionality att000. After we embed the 50 discriminative patterns, we have tisé dataset
of density 10%. Next, we keep adding non-discriminativeagras of size 10 and support greater
than0.2, and create four more data sets with densitie8.b$, 0.16, 0.19 and0.22 respectively.

Varying dimensionality with fixed density: For this collection of data sets, we fix the density
of the dataset ab.2. After we embed the 50 discriminative patterns (density 04 further
add non-discriminative patterns to make the density equal2tand use this dataset as the first
dataset (the dimensionality 850). Next, we further add non-discriminative patterns of sife
and support greater thah2 and simultaneously increase the dimensionality of the datao
maintain the density &.2. In this way, we create another four data sets with dimeiadiioes
of 500, 2000, 4000 and 6000.

Note that the supporting transactions of both the discrtnme and non-discriminative patterns
are selected randomly to avoid their combination into pasteof larger sizes. To simulate
practical situations, for each data set generated in th@eapoocess, we add an additional
10% noise by flipping 10% of the O's to 1's and 1's to O’s.

2) Performance of SMP and CSET on Synthetic Data S&isboth the collections of datasets,
we use aBiggerSup threshold of0.2 for CSET and aSupMaxPair threshold of0.1 for SMP.
These thresholds agree with the definitions of type-l and-ymatterns for the following
experiments (Section VI-A.1). The questions we want to amswthese experiments are: Which
level of the itemset lattice can CSET and SMP reach when mithiege synthetic datasets given

the time limit of 4 hours, and correspondingly, how many a thiscriminative patterns at each
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level can be discovered by the two algorithms?

Figures 5(a) and 5(b) display the levels that CSET and SMFhrea@ach of the five synthetic
data sets of varying density and varying dimensionalitpeesively. Note that the highest level
is 10, which is the size of the largest discriminative and noreifilisinative patterns. Several
observations can be made from Figure 5(a). First, when tmsityeis 10%, both CSET and
SMP can reach all the 10 levels. Thus, CSET can discover al%ype-I patterns (but none
of the type-Il patterns) and SMP can discover all the 21 tygeatterns (but none of the type-I
patterns). Second, when the density increases to 13%, CSKTeathes level 3 and thus can
only discover its 3 type-l patterns of size-2. In contragt)PScan complete all the 10 levels
and discovers all the 21 type-Il patterns. Similar obs@maalso holds for densities 0.16 and
0.19. This illustrates that even for reasonably high leedlslensity, SMP can discover type-li
patterns with lower-support that can not be discovered byTC8#en though it can miss some
type-l patterns that can be discovered by CSET. Finally, wdemsity increases t0.22, both
SMP and CSET only reach level-2, i.e. CSET discovers iftgpe-1 patterns and SMP discovers
its 7 type-ll patterns. This indicates that for relatively venglin levels of density, both CSET
and SMP can face challenges in discovering the embeddeermaithat they are supposed to
discover (i.e. type | patterns for CSET and type Il patternrsS&P). However it should be
noted that this deterioration in the performance of SMP is thuthe expense of th@(N?)
time complexity in the generation of level-2 candidatesleled, even at this density (0.22), SMP
can again finish all the 10 levels in only an additiofa hour (total4.5 hrs). However, CSET
is still unable to generate all the level-3 candidates ewveaniother 4 hours (total more than
hours). In summary, these results show that SMP is moreteffefor searching for low-support
discriminative patterns on dense datasets.

Similar observations can also be made from Figure 5(b)t,Fitghe dimensionality50, both
CSET and SMP can complete all the 10 levels and discover alpafterns they are supposed
to find. Second, at dimensionality 500, 2000 and 4000, CSEToonreach up to levels 6, 3
and 2 respectively, while SMP still reaches all the 10 levEisally, at dimensionality 6000,
both SMP and CSET can only complete level 2. Again, SMP canhfiais the 10 levels in
another half an hour, but CSET is still generating level-3dadaites in another 4 hours. These
results show that SMP is more effective for searching for-tmpport discriminative patterns

from high-dimensional datasets.
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Fig. 5. Levels that can be reached by CSET and SMP in the two serigmtifetic data sets (varying density and
varying dimensionality).

From the above experimental results on the two collectidrsy/thetic datasets with varying
density and varying dimensionality, we demonstrated tHeagly of SMP for mining low-
support discriminative patterns from dense and high-dsimgral data sets. Next, we will use a
real gene expression data set to study the practical uafitgMP for discovering low-support
discriminative patterns.

B. Experiments on a Breast Cancer Gene Expression Data Set

In the second set of experiments, we used CSET and SMP to disd®criminative patterns
from a breast cancer gene expression data set. Only clotiednsaare used in these experiments.
The details of this data set are provided in Section VI-B.1.fiig present a global analysis of
these patterns in Section VI-B.2. Subsequently, we performxéensive statistical and biological
evaluation of these patterns, the results of which are ptedan Sections VI-B.3 and VI-B.4.
In particular, we highlight the statistical significancedabiological relevance of low-support
patterns discovered by SMP but not CSET, thus illustratimydabmplementarity that SMP can
provide to the existing approaches discussed in Section I.

1) Dataset descriptionA breast cancer gene expression data set [45] is used faradiva)
the efficacy of discriminative pattern mining algorithmsamplex, real data sets. This data set
contains the expression profiles of ab@G000 genes in295 breast cancer patients, categorized

into two classes corresponding to whether the patient wirtfie disease (0) or not (1). Using
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pre-processing methodologies suggested by the authdrsfd@®nly considered9d81 genes that
showed evidence of significant up- or down-regulation (asiea two-fold change), and whose
expression measurements were accurate (p-valaé1) for at least five patients. Furthermore,
to make the dataset usable for binary pattern mining algost each column pertaining to the
expression of a single gene is split into two binary colunBisce the data has been properly
normalized to eliminate between-gene variations in théesafatheir expression values, we adopt
a simple discretization method, as used in other studigs[[B2]: a1 is stored in the first column
if the expression of the gene is less thaf.2, while a1 is stored in the second column if the
expression of the gene is greater thlta Values between-0.2 and0.2 are not included, since
genes showing an expression aroOrate not expected to be interesting, and may add substantial
noise to the data set. The resulting binary data setlh882 items and295 transactions, with
a density 0f16.62%.

For this data set, discriminative pattern mining can helpower groups of genes that are
collectively associated with the progression or suppoessif cancer, and our experiments are
designed to evaluate the effectiveness of different algms for this task.

2) General analysis of the patterns discoveratfe ran CSET and SMP at the lowest pa-
rameter thresholds for which they would finish in about 4 saudnly closed patterns are used
in our experiments. Due to the weaker pruning B¥gerSup and the resulting large number
of discriminative patterns, we were forced to use relagveigher thresholds for CSET and
restrict the computation to patterns of a limited size toaobthe patterns necessary for our
evaluation. Table Il shows that the loweBiggerSup threshold for which CSET can produce
the complete results within 4 hours is 0.6. The lowBsjgerSup threshold for which CSET can
discover size-2 and size-3 patterns within 4 hours is 0.35a fower threshold of 0.4, CSET
can only discover size-patterns before running out of time. In contrast, SMP is ableun at
a much lowerSup MaxPair threshold of0.18 and finds patterns of size as high as 7 in about 40
minutes. See Table 1l for the details of the patterns foupdSMP at different thresholds. For
the evaluation of pattern quality, we combine the patteissadered by CSET at th@4, 0.55,
and0.6 BiggerSup thresholds as the collection of all patterns that can beodesed by CSET,

®Some time period needed to be chosen for the experimentsdiitation of four hours is, although slightly

arbitrary, is generally reasonable for most data analysesaiions.
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BiggerSup | Time | # Closed | Pattern| Highest
Threshold | (sec) | Patterns | Size(s) | NegLogP

0.4* 617 64942 2 12.09
0.55* 1454 | 84840 2-3 9.65
0.6 1558 90637 2-10 8.78
TABLE I

DETAILS OF PATTERNS DISCOVERED BYCSETAT VARIOUS BiggerSup THRESHOLDS (* EXPANSION OF THE SET OF PATTERNS TO

PATTERNS OF LARGER SIZES COULD NOT FINISH IN OVER2 HOURS, AND THUS, THEIR RESULTS ARE NOT INCLUDED HERE)

SupMazPair | Time | # Closed | Pattern| Highest
Threshold (sec) | Patterns | Size(s) | NegLogP
0.18 2401 45982 2-7 12.09
0.2 1187 21285 2-5 12.09
0.25 332 3007 2-4 12.09
0.3 186 283 2-3 12.09
TABLE 11l

DETAILS OF PATTERNS DISCOVERED BYSMP AT VARIOUS SupMaxPair THRESHOLDS

while for SMP, we only use the patterns discovered at thelssifgpMazPair threshold0.18.
Indeed, even with this setup that is slightly biased towa@&ET, there are still high quality
low-support patterns that can only be discovered by SMRj#tails of which are provided later.

In addition to analyzing the characteristics of the patediscovered by SMP and CSET,
we also examined the value of DiffSup for each individual g@onstituting these patterns.
Specifically, Figure 6 displays the distribution of theffSup of individual genes in the patterns
discovered only bySMP at a SupMaxPair threshold 6f18, but not by CSET. Among th&32
genes covered by these patterns, almost 6098) (of the genes haveéiffSup lower than the
0.18. Based on the discussion of approaches that directly utihzgf Sup or other measures of
discriminative power for finding discriminative patterrgedup C') in Section I, it can be seen
that these approaches can not discover any of these gedethiusncan not discover the patterns
that include them. Since one of our major foci is on algorghtmat can discover patterns whose
individual genes may not be discriminative, we discuss ¢timiyresults of CSET and SMP, which
can find such patterns, in the rest of this section.

3) Statistical Evaluation:There are various ways to evaluate the importance of digtaiive

patterns. We are interested in patterns that occur dispiopately between the two classes.
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Fig. 6. Histogram of theDiffSup of individual genes in the patterns discovered only by SMR,riot by CSET.

However, in real world data sets, particularly those witraBmumber of instances in the two
classes, even patterns that occur with similar supportsacetasses will show some deviation
from perfect balance in data sets with relatively small dangize. Thus, to ensure that the
patterns found are not just a result of random fluctuatiortatistical test is commonly used to
ensure that any deviation from equal support is statiggicgnificant. In this section, we will
perform this type of evaluation for the patterns from CSET &iP.

We use the Fisher exact test [16] for this evaluation, wheselt is a p-value (probability). If
the p-value is below some user defined threshold, e.g., 3.09&, then the pattern is regarded
as authentic. Note that p-values are often expressed asdwtivelog;, value for convenience
(the higher this-log;, value (denoted allegLogP), the more reliable the discriminative pattern
is expected to be). We will refer to this measureNsgLogP. If there are multiple patterns, the
NegLogP threshold needs to be adjusted. By using a randomizationagstiscussed below, we
were able to determine thatéegLogP of 8 is unlikely to arise from a random pattern. We give

the technical details of this a bit later.
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(a) NegLogP vs. global support for CSET patterns. (b) NegLogP vs. global support for SMP patterns

Fig. 7. Plot of NegLogP vs. global support for patterns from CSET and SMP, where tippart is relative to the
whole data set.

In Figure 7, we show plots oNegLogP vs. global support for the patterns discovered by
both CSET and SMP. For CSET, patterns discovered by uBiiggerSup thresholds).4, 0.55,
and 0.6 were combined as described in Section VI-B.2, while for SMB, X8 threshold was
used. Several conclusions can be drawn from this figuret, EISET finds more patterns than
SMP, particularly for patterns with higher support (the ®mveith support greater thaf.4).
This is not surprising since SMP sacrifices completenessitbléwer support patterns. Second,
CSET finds many patterns witNegLogP less tharR, while all the patterns discovered by SMP
have NegLogP higher than2. This demonstrates the exactnessSapMaxzPair (Theorem 1),
i.e. becaus&upMazPair is an lower bound ofDiffSup, all the patterns discovered withare
r — discriminative. Last and the most importantly, SMP finds many patterns atdopport
level that are not found by CSET, especially the ones WitghLogP higher than the significance
threshold8. Also, these patterns are constituted by many genes thabhareovered by the
patterns discovered by CSET, as will be discussed in SectleB.4/

We now come back to the details of how we determined a signdieahreshold foiNegLogP,
both for the completeness of the above discussion and tbefurtiustrate the quality of the
patterns found by SMP but not found by CSET. Because of the gsefidow sample size
and high-dimensionality for data sets used for problems$ sag biomarker discovery, many
patterns may be falsely associated with the class labes. rEliges the multiple-hypothesis testing
problem [40], [18], which are addressed by various apprescbBuch as Bonferroni correction
[33], false discovery rate control [48] and permutationt §&8], [52], [18]. Permutation tests
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based on row-wise, column-wise and swap randomization fiE®e been used to assess the
statistical significance of the results of unsupervisetepatdiscovery and clustering algorithms.
While in the context of labeled transactions, class-labeinpgation tests [42], [50] are often an
effective option. In this approach, a reference distrdoufor evaluation measures likéegLogP is
generated by randomly shuffling the class labels (pernauis}i Specifically, for each iteration,
the class labels are randomly shuffled and reassigned tenpatidiscriminative patterns are
found, and theNegLogP values are computed for these patterns using the same mashfumat
the patterns discovered with the true labels. The LogP values from the random runs can
be used to generate an empirical distribution for #eLogP values, which can be displayed
as a histogram as in Figure 8. (Sometimes only the extremeirfmian) NegLogP values are
used as in this figure.) If &egLogP of a pattern derived from the true labels falls outside the
main concentration ofVegLogP values from the random labels, then thegLogP very likely
indicates a discriminative pattern with a "more than rantimariation from equal frequency
across classes.

Figure 8 summarizes the results of such a permutation teshéodataset being used in these
experiments. The right hand side shows the 30p NegLogP of the patterns discovered only
by SMP but not by CSET, while the left hand side displays theimam NegLogP for each
of the 1000 permutation tests where randomized labels are used farpatiining. We observe
that the NegLogP values with random labels rarely excegdless tharg.72 in each of thel000
permutation tests). Thus, we can use 8 as a relaxed thre&iradegnificance, since only a few
percent of the random patterns are above this value.Nidg¢éogP values of the toB00 patterns
discovered by SMP but not by CSET with true label are much highk larger than9.67). In
contrast, only 34 patterns discovered by CSET havée@.ogP greater thar8. This shows that
SMP can discover additional statistically significant lewpport patterns. In the next section,
we illustrate the biological significance of these patteand how they can be used to discover
cancer-related genes.

4) Biological Relevance of Patterns based on a list of Camekted GenesThere are various
ways to determine the biological relevance of discrimweapatterns. Since the application we
consider is that of discovering biomarkers for cancer, wasueed the biological relevance of
the patterns using a list of abo@t#00 human genes known to be involved in the induction,

progression and suppression of various types of canceis @1lthese2400 genes,611 were
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Fig. 8. Histogram of NegLogP values: (a) the maximumVegLogP for each of the 1000 permutation tests where
randomized labels are used by SMP, (b) the top B@§LogP values of the patterns discovered only by SMP but
not by CSET

included in the set 05981 genes in our processed gene expression data set. If thardisative
patterns found by CSET and SMP, which are just small sets cfgge¢and to disproportionately
contain these&10 cancer related genes as opposed to the non-cancer related, deen this
indicates that these patterns contain information that tm@yof significance to a biological
researcher. To make this idea concrete for the purposesabfation, two evaluation approaches
were designed.

1) Pattern-based Biological RelevanceFor each pattern generated by CSET or SMP, we
matched the genes in the pattern with the se6idf validated cancer genes, giving us a
measure of the ‘precision’ of the pattern. For instance, fastern containg genes, of
which 2 are found to match the list of cancer genes, then the precafidhe this pattern
is 2/3 = 66.67%. Note that if a pattern withV genes is randomly chosen from our set of
5981 genes, one would expect a precision[df* (611/5981)]/N = 10.2%.

2) Gene Collection-based Biological Relevanc&ince patterns may overlap with each other
(pattern redundancy), and do not directly show how many eagenes can be discov-
ered by SMP in addition to CSET, we also designed a gene dolebtased evaluation
methodology. Here we collect the set of genes covered byhallpatterns discovered by
CSET(SMP), and compare this set of genes with the sét bivalidated cancer genes just

as for pattern-based evaluation. For instance, if a sédofpatterns cover800 genes, of
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which 50 are found to match the list of cancer genes, then the precidithe set of patterns
is 50/300 = 16.67% and the recall i$0/611 = 8.18%. To compare, if we sele@00 genes
randomly from the5981 genes, then the expected precision3i80 x (611/5981)]/300 =
10.2%, and the expected recall j800 x (611/5981)]/611 = 5.02%.

This section details the results obtained from with thesduation methodologies.

Brief Preview of Results From the pattern-based biological relevance evaluanepbserved
that CSET can discover patterns with good precision at vellgthigh support level, while SMP
can further discover good quality patterns at relatively Eupport level, among which, there
are some patterns with 100% precision with respect to theeragene list. From the gene
collection-based biological relevance evaluation, wesoled that both the techniques discovered
substantially more cancer genes than expected by randontehaspecially among the higher
NegLogP patterns. In particular, SMP was able to discover more cageres as compared to
CSET due to its ability of discovering low-support patteriigis result further indicates the
potential usefulness of recovering low-support patten discovering biomarkers that may be
examined and utilized by the biology community. The follogidiscussion provides additional
details of these results.

Results from Pattern-based RelevanceFigure 9(a) shows the distribution of pattern-based
precision of those patterns discovered only by SMP but nolCBET. For comparison, we
generated a sequence of sizgpatterns exactly according to the sizes of the patternse€orr
sponding to Figure 9(a). The distribution of precision ogéslh random patterns is shown in
Figure 9(b). We can make the following observations from mgarison of Figure 9(a) and 9(b):
(i) these patterns that are discovered exclusively by SMiude many that have a relatively
high precision. Specifically, about 200 patterns have precs above).6, among which there
are 18 with a precision of 100%; (ii) the pattern-based ieniof randomly generated patterns
is mostly (about 1500 timesg), and sometimes (about 300 times) fall into the rangé.®fand
0.3, but rarely (less than 20) go beyofd., and never go beyon@38. Interestingly, some of the
SMP patterns with 100% precision play similar roles in carmrecesses.

Results from Gene collection-based Relevancéo investigate how many cancer genes can be
discovered using CSET and SMP, we summarized the gene oofidised evaluation results
for them in Tables IV and V respectively. These tables ineldde number of cancer genes

discovered, precision, recall, and expected recall fodoamy selected group of genes of the
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Fig. 9. Comparison of the distributions of pattern-based prexisietween (a) the patterns discovered by SMP but

not CSET and (b) random generated patterns.

same size. Note that, the expected precision for a randofactioh of genes isl0.2% as
calculated earlier, and thus we do not include this in thebées. The following observations
can be made from these tables.

1) Both CSET and SMP usually find very precise patterns for resdy high levels of the
NegLogP measure, and this precision is much higher than that expdoben a set of
randomly selected gene collection of the same size (10.3Wilarly, the recall values
for the genes covered by these patterns are much higher tloge expected from the
same type of randomly selectd gene collection, as shown hymrgarison with the last
column of these tables.

2) For similar values of cancer gene discovery precisionPSinerally finds more cancer
genes than CSET. For instance, at a precision of abdft the recall of CSET is only

0.5% (3 cancer genes), while SMP has a recali’% (26 cancer genes).

Note that the highlight of the second observation is not ®stP discovers more cancer
genes, but that SMP can discover cancer genes from disatinenpatterns with low-support
in addition to the ones discovered by CSET, thus indicatireg dbmplementarity of SMP to
existing approaches like CSET. Because of such complemntwen if SMP discovered less
cancer genes than CSET, SMP still complement CSET as long @®adtigenes are exclusively

discovered by SMP. Indeed, from the specific example in tlvergk observation, at leag8
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NegLogP # # Genes| # Cancer| Pre | Rec | ERec
Threshold | Patterns| Covered| Genes | (%) | (%) (%)
12 2 3 2 66.7 | 0.3 | 0.052
11 2 3 2 66.7 | 0.3 | 0.052
10 2 3 2 66.7 | 0.3 | 0.052
10 12 3 250| 05 | 0.21
34 31 7 226 | 11 0.54
TABLE IV

PRECISION-RECALL RESULTS OFCSETPATTERNS WITHBIiggerSup> 0.4 (PRE: PRECISION, REC: RECALL, EXPECTED PRECISION FOR

RANDOM GENE COLLECTIONS 1510.2%, EReC: EXPECTEDRECALL OF RANDOM GENE COLLECTIONS WITH THE SAME SIZE)

NegLogP # # Genes| # Cancer| Pre | Rec | ERec

Threshold | Patterns| Covered| Genes | (%) | (%) (%)
12 2 4 2 50.0 | 0.3 | 0.067

11 6 7 3 429 | 05| 0.12

10 200 36 11 306 | 1.8 | 0.60
541 57 17 298| 28 | 0.95

1502 103 26 252 | 43 | 1.72

TABLE V

PRECISION-RECALL RESULTS OFSMP PATTERNS WITH SupMazPair> 0.18 (PRE: PRECISION, REC: RECALL, EXPECTEDPRECISION FOR

RANDOM GENE COLLECTIONS 1S10.2%, EREC: EXPECTEDRECALL OF RANDOM GENE COLLECTIONS WITH THE SAME SIZE)

cancer genes are discovered by SMP in addition to CSET.

5) Biological Relevance of Patterns based on Biological &&ets: An alternative way of
evaluating the biological relevance of the patterns disoed only by SMP but not by CSET
is to estimate how well they capture the 5452 known bioldgigmne sets (e.g. pathways) in
the Molecular Signature database [42}1SigDB). MSigDB is widely used collection of gene
groups containing genes with similar biological functiofiie methodology we adopt for this
evaluation is one of calculating the enrichment of one patteith these gene groups. This
enrichment is measured as the probability of a random pattethe same size having the same
or better annotations by a given grne group by random cha the lower this probability

the more enriched a pattern is with a given gene group. Spaltyfi for a pattern of size:

®Specifically, MSigDB (version 2.1, Feb 2007) contains 386 positionaégets, 1892 curated gene sets, 837 motif gene sets,
883 computational gene sets, and 1454 annotations in Gene Ontology. mtpiwadinstitute.org/gsea/msigdb/

August 19, 2010 DRAFT



31

and a gene set of size which sharec common genes, we use the hypergeometric cumulative
distribution function’ to compute the probability that there are greater or equal tommon
genes between the pattern and the gene set by random chaecetlgat the total number of
genes in the data set & [3]. The —log value of this probability can be considered as an
enrichment score between a pattern and a gene set (denotéeghpgEnrichlp, and the larger
this score, the more significant the biological relevancéhefpattern. For each pattern, we use
the bestNegLogEnrichPwith the 5452 gene sets as a measure of its biological retevan

Instead of directly applying the above enrichment methogiplto all the patterns that are
discovered only by SMP but not by CSET, we first select a sulmsehich no pairs of patterns
have greater than 25% overlap of genes. This selection hethge the effect of the redundancy
between these patterns on the enrichment results. Theaetsskt hass7 patterns. Figure 10
shows the distribution of the bedegLogEnrichPvalues of these37 patterns with respect
to the gene sets in MSigDB. It can observed that more than Hathe patterns Z0) have
at least two genes overlapping with one or more gene setssam patterns even have a
NegLogEnrichPvalue as high as (original p-value as low ag0~®). Interestingly, some of
the patterns in this collection are enriched with severalegsets that are clearly related to
breast cancer such &REAST-DUCTAL-CARCINOMA-GENENegLogEnrichP= 8.02) and
BREAST-CANCER-PROGNOSIS-NBE&egLogEnrichP= 6.73), as well as several gene sets
that are related to general cancer-related biological ggees such as the cell-growth-related
gene setRITANI-ADPROX-LYMPIH#2] (NegLogEnrichP= 6.67) and the proliferation-related
gene seHOFFMANN-BIVSBII-BI-TABLE22] (NegLogEnrichP= 6.15). These results further
support the biological relevance of the patterns discaverdy by SMP but not by CSET, and
thus demonstrate the benefits of using SMP to search for lppest discriminative patterns in
addition to existing approaches.

6) Comparison of the scalability of the algorithmb section VI-A, we compared the effec-
tiveness of CSET and SMP for discovering low-support pastérom synthetic datasets with
varying density and dimensionality. In this part of the studle test the scalability of CSET
and SMP with varying thresholds on the real gene expressate ¢h addition, we also test the

FPClose (FPC) [19] algorithm (plus pattern selection) as @meline as used by other studies

August 19, 2010 DRAFT



32

20

I -1 indicates the overlap is less than 2
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Best enrichment p—value (NegLogEnrichP) w.r.t. the gene sets in MSigDB

Fig. 10. Histogram of the best enrichmeNegLogEnrichPvalues w.r.t. the gene sets in MSigDB, for the patterns
discovered by SMP but not by CSET. An enrichment p-value mpaed only if a pattern and a gene set have at

least2 genes in common.

[10], [15]. Note that, as mentioned in Section VI-B, the gerpression data set was discretized
with +0.2 as thresholds, into a binary matrix with density 16.62% amdedsion11962, to
preserve most of the information in the data. This datasquite dense, due to which CSET
can only generate complete results at a threshold larger (tia In order to obtain a more
complete picture of the scalabilities of FPC, CSET and SMP, iseretized the gene expression
dataset usingt0.3 as the discretization threshold in this section, whichdgeh binary matrix
with density 8.71%.

Figure 11 shows the results of this comparisons. The X-axikis plot is the threshold used
for discriminative pattern mining, while the Y-axis denet@e logy(run-time in seconds) value.
Note that run-times are recorded for any algorithm only i€d@in produce output within four
hours. The relativeninsup threshold used in FPC is defined on the whole dataset (botbesi
while BiggerSupfor CSET andSupMaxPair for SMP take into account the support in each of
the classes individually. Therefore, for a fair comparisBRC’s minsupis adjusted according
to the size ratio of the two classes (divided by the percentdighe majority class in the whole
dataset (0.74)) and then plotted together vdiggerSupand SupMaxPair.

Several observations can be made from these plots: (i) tieFeRed two-step approach can
search for discriminative patterns at high support leval®ye0.55), (ii) by using BiggerSup
CSET is able to search at slightly lower support levels (abib%e compared to FPC; and for
the same threshold, CSET is more efficient than FPC, andS(iji)//axPair can explore pattern
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Fig. 11. Scalability of different discriminative pattern mininggakithms on the gene expression data

space with substantially lower support levelsi(— 0.3). Thus, FPC and CSET can be used to
discover patterns at higher thresholds, while SMP is abliéntblower support patterns missed

by the other approaches.

C. Summary of Results

Based on the experimental results on both the syntheticetatasd the cancer gene expression
data set presented in this section, we have demonstratearihdense and high-dimensional
data, there are patterns with relatively low support that @aly be discovered byupMaxPair
but not by the existing approaches. Specifically, on the @agene expression data set, the
low-support discriminative patterns discovered only by FSire statistically significant and
biologically relevant.

We also did another set of experiments for studying how wedl members ofSupMazK
approximateDiffSup as K increases. We selected several UCI datasets [4], on whictinell
discriminative patterns (given a relatively low DiffSupréshold) can be discovered and used
for the study. The experimental results show that:SipMax! generally provides very poor
approximation ofDiffSup; (ii), the approximation is improved substantially wh&nhgoes to2,

i.e. SupMaxPair; (iii) whenk is increased further t8 and 4, the computation time increases
exponentially, but the approximation improves much sloa@mpared to the improvement ob-
tained whenk goes froml to 2. These experimental results indicate thap MaxzPair provides a

good balance between the approximatiorDaffSup and the computational expense. The detailed
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results are discussed as a supplementary material (aeadaibttp://vk.cs.umn.edu/SMPY/).

VIl. RELATED WORK

Over the past decade, many approaches have studied disativei pattern mining and related
topics. Dong and Li [14] defineémerging patterns (EPas itemsets with a sufficiently large
growth rate (support ratio) between two classes. A two-sigprithm is proposed to discover
EPs, which first finds frequent itemsets with the Max-Minegoaithm [6] for each of the two
classes, and then compares these itemsets to find EPs. Bgpatiern were the first formulation
of discriminative patterns and have been extended furtheeveral special cases such as jumping
emerging patterns [26] and minimal emerging patterns[21]]. Here, the discriminative power
of a pattern is measured with support ratio [14], or simplthwihe two supports of the pattern in
the two classes and two corresponding thresholds [31]. #audbed in [5], these emerging pattern
mining algorithms must mine the data multiple times giveregain threshold for support ratio
(or two thresholds for the two supports). In [5], a new foratidn of discriminative patterns,
contrast sets (CSETS), is proposed along with an algorithmite them. CSET is the first
technique that formulates discriminative pattern mininighim an Apriori-like framework [2],
[6], in which different pruning measures can be used to perfasystematic search on the itemset
lattice [2]. In [51], contrast set mining is shown to be a spkecase of a more general task,
namely rule learning, where a contrast set can be consideyeth antecedent of a rule whose
consequent is a group. Notably, CSET has also be used in samedhical applications [25].
The upper bounds of statistical discriminative measurgs h#so been studied for discriminative
pattern mining e.g. information gain [9},> — test [5] and several others [34].

Next, we also briefly discuss other research work relatedigorichinative pattern mining,
although they are not the focus of the paper. Many existilgaaches have studied the use of
frequent patterns in classification. Associative clagsifi@9], [28], [55], [11], [49] are a series
of approaches that focus on the mining of high-support, feighfidence rules that can be used
in a a rule-based classifier. Cheng et. al. [9] recently cotedlia systematic evaluation of the
utility of frequent patterns in classification. Severaltpat-based classification frameworks have
also been proposed, in which a small number of discrimieapatterns are selected, which
can achieve comparable classification accuracy with régpethe whole set of discriminative

patterns [10], [15], [54], [30]. Discriminative pattern mmg from multiple classes has been
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studied in [5], [27], [25], while mining complex discrimitige patterns has been studied in
[31]. Although traditional pattern summarization approas [20] can be adopted to control the
redundancy among discriminative patterns, closeness eshehdancy are specially studied for

in the context of discriminative patterns respectively i7]J[and [41].

VIIl. CONCLUSIONS

In this paper, we addressed the necessity of trading off timepteteness of discriminative
pattern discovery, with the ability to discover low-suppdiscriminative patterns from dense and
high-dimensional data within an acceptable amount of tiRwe. this, we proposed a family of
anti-monotonic measures of discriminative power namegdMazK that conceptually organize
the set of discriminative patterns into nested layers ofsetd) and are progressively more
complete in their coverage, but require increasingly mamputation for their discovery. Given
the same and fixed amount of time, tBepMaxK family provides a tradeoff between the
ability to search for low-support discriminative patteiarsd the coverage of the space of valid
discriminative patterns for the corresponding threshatdparticular, SupMazK with K = 2
named SupMazPair, is a special member of this family that is suitable for deasd high-
dimensional data. We designed a framework, named SMP, wisebSupMazPair for discov-
ering discriminative patterns from dense and high-dinemeli data. A variety of experiments on
both synthetic datasets and a breast cancer gene expraksiaset demonstrated that there
are patterns with relatively low support that can be disoedeusing SMP but not by the
existing approaches. In particular, the low-support disicrative patterns discovered only by
SMP from the gene expression dataset are statisticallyfisigmt and biologically relevant. In
summary, SMP can complement existing algorithms for disdag discriminative patterns by
finding patterns with relatively low support from dense arighkdimensional data sets that
other approaches fail to discover within an acceptable atofitime. Thus, in practice, it is
recommended that CSET and other existing approaches sheuldda to discover medium-to-
high support patterns from such data sets within an accleptabount of time, and then SMP
could be used to further discover low-support discrimivefpatterns that existing approaches
may not discover.

Our work can be extended in several directions. As discuss&ection 1V-D, the members

of SupMaxK induce a hierarchy of subsets of the complete set of disgdtivie patterns. This
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hierarchy motivates further research that focuses on tmengiof discriminative patterns from
the other layers that are not covered$wpMazPair. It is also interesting to study the quality of
the discriminative patterns in the different layers of thisrarchy, which may provide insights
into different priorities for discriminative pattern mig from these layers. Note that, the use of
measures from th8upMaxK family is only one possible method for trading off the coneteess
of pattern discovery with the ability to discover low-suppdiscriminative patterns from high-
dimensional data. Indeed, other approaches that adoptferedhf strategy for handling this
tradeoff are also possible and should be studied. Also, exasting discriminative pattern mining
algorithms (as well as SMP) are designed for binary data,have to rely on discretization for
continuous data. It will be useful to design approaches ¢hatdirectly handle continuous data
for discriminative pattern mining, as has been done foralisdng patterns in an unsupervised

manner[36].

IX. SUPPLEMENTARY MATERIAL: EXPERIMENTS TO SHOW HOW WELLSupMaxK

ESTIMATES DiffSup

In this set of experiments, we study how the memberSwubMaxKapproximateDiffSup as
K increases. There are two approaches for this purpose niadytigal and empirical analysis.
In an analytical approach, some assumptions need to be mateas that the data comes from
independence model. Such assumptions generally do notftwoleal datasets. Therefore, we
selected several real datasets from UCI Data Repository [d]d@msigned an empirical study
on the approximation oDiffSup by the members oBupMaxK The datasets we selected are
mushroom, hypo, hepatic and sonar, which have relatively density or low dimensionality,
so that a lowDiffSupthreshold (.1) can be used to discover the complete set of discriminative
patterns for a comprehensive study on the approximation.

Given a dataset, for each discriminative pattern of sizeess thanV, we compute the value
of its SupMax] SupMax2 ... andSupMax(N-1)and compare this sequence of values with its
DiffSup from which we can see ho8upMaxKapproximateDiffSup with increasing value of
K. The results on these datasets are displayed in Figurese¥@rab observations can be made:

e Firstly, as K increasesSupMaxKprovides a closer and closer approximationDoffSup
Specifically in the left subfigures, all the patterns have-deareasingsupMaxKvalues (shown

by the non-decreasing curves). This observation is guaednby Lemma and Theorem.
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e Secondly,SupMaxlgenerally provides very poor approximation of DiffSup. &feally,
although all the patterns discovered from the four datdsate DiffSup no less thar.1, most
of them have negativupMax1values.

e Thirdly, when K goes from1 to 2, i.e. SupMaxPaiy the approximation is improved sub-
stantially (shown by the jump of value fro%iA/1 to SM2). With this improvement, for many
discriminative patternsSupMaxPair(K = 2) provides a reasonably good approximation of
DiffSup Take the mushroom dataset as an example2@orof the total285 patterns 70.2%),
SupMaxPairhas difference less tham1 from DiffSup There are also many patterns whose
SupMaxPairvalues have differences less tham from DiffSupin the other three datasets: hypo
(about [0%)), sonar (about20%)) and hepatic (about2(%)).

e Finally, whenK is increased further t® and4, the computation time increases exponentially,
but the approximation improves relatively much less coragao the improvement obtained when
K goes froml to 2. However, it is worthnoting that the differences betwe&arpMaxPairand
DiffSup can also be large (ranging frotml to 0.4) for many discriminative patterns on all the
four datasets, e.¢0% in the mushroom dataset, ab®t; in the hepatic and sonar datasets. For
these discriminative patternSupMaxKwith larger K (> 3) is necessary to provide sufficiently
close approximation oDiffSup

These experimental results indicate tisatpMaixPairprovides a good balance between the
approximation ofDiffSup and the computational expense. However, we present thdsdeta
this study in the supplementary material rather than in tlaénrpaper due to the space limits
(we are alrady at the maximal 36 pages allowed), and becaeskighlight of SupMaxPairis
not its accurate approximation BiffSupbut the combination of the following three advantages:
(i) it is effective for pruning non-discriminative patteras a lower bound dDiffSup compared
to BiggerSup(an upper bounds ddiffSup (ii) it is a tighter lower bound for DiffSup compared
to SupMax1(theoretically guaranteed by Lemn3aand Theoreni, and also shown in Figure
12) and (iii) it is the only one, among the membersSiipMaxK (K > 2), that is feasible
for handling high dimensional datasets. These advantagaisleeSupMaxPairfor discovering
additional low-support discriminative patterns from derend high-dimensional dataset when
existing techniques fail to, as extensively discussed icti®es | and IV and demonstrated in
Sections VI-A and VI-B.
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(b) Hypo dataset45 discriminative patterns with size greater or equal to
(too few patterns with size> 5) and DiffSupno less tharo.1
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(c) Sonar dataseB85 discriminative patterns with size greater or equal to
5 and DiffSupno less thard.1
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(d) Hepatic datasetl64 discriminative patterns with size greater or equal
to 4 (too few patterns with size> 5) and DiffSupno less thard.1

Fig. 12. The approximation oDiffSupby the members cBupMaxKwith increasing value of< on the three UCI
data sets. In the left subfigures, the sequence of valuesafdr pattern SupMax] SupMax2 SupMax3 SupMax4
and DiffSup) are plotted as a curve. The right subfigures are the disimibwf the difference betweeDiffSupand

SupMax2 the value of which measures how cldSepMax2approximateDiffSup
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