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Abstract

Within-network classification, where the goal is to classify the nodes of
a partly labeled network, is a semi-supervised learning problem that has
applications in several important domains like image processing, the clas-
sification of documents, and the detection of malicious activities. While
most methods for this problem infer the missing labels collectively based
on the hypothesis that linked or nearby nodes are likely to have the same
labels, there are many types of networks for which this assumption fails,
e.g., molecular graphs, trading networks, etc. In this paper, we present
a collective classification method, based on relaxation labeling, that clas-
sifies entities of a network using their local structure. This method uses
a marginalized similarity kernel that compares the local structure of two
nodes with parallel random walks in the network. Through experimenta-
tion on different datasets, we show our method to be more accurate than
several state-of-the-art approaches for this problem.

1 Introduction

Networked data is commonly used to model the relations between the entities
of a system, such as hyperlinks connecting web pages, citations relating re-
search papers, and calls between telephone accounts. In such models, entities
are represented by nodes whose label gives their type, and edges are relations
between these entities. As is it often the case, important information on the
nature of certain entities and links may be missing from the network. The task
of recovering the missing types of entities and links (i.e. node and edge labels)
based on the available information, known as within-network classification, is
a semi-supervised learning problem key to several applications like image pro-
cessing [3, 11], classifying document and web pages [6, 8, 21, 26, 32], classifying
protein interaction and gene expression data [29], part-of-speech tagging [19],
detecting malicious or fraudulent activities [7, 23, 26], and recommending items
to consummers [9, 13].
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Unlike traditional machine learning approaches, methods operating on net-
worked data must deal with additional challenges that result from the relational
nature of the data. One of the main challenges comes from the fact that net-
worked data is generally not independent and identically distributed [15]. Thus,
the classification of a node may have an influence on the class membership of
another related node, and vice-versa. To overcome this problem, it has been
widely recognized that the class membership of the nodes should be inferred
simultaneously instead of individually, a technique known as collective classifi-
cation [12, 16, 24, 30].

In general, collective classification methods for this problem are based on
the homophily hypothesis, in which linked nodes have a tendency to belong
to the same class. While strong evidence suggests this assumption to be true
for several types of networks, such as social networks [1, 2], there are many
types of networks for which the homophily hypothesis fails. For instance, in
molecules, nearby atoms are no more likely to have the same type than distant
ones. In such networks, the type of a node is instead dictated by underlying
rules which may be learned by considering the relations of this node with other
ones. Furthermore, while a few methods use information on linked nodes to
infer the class membership, these methods only consider nodes that are directly
linked, or groups of nodes that are tightly couples (e.g. cliques).

Contributions

This paper makes two contributions to the problem of within-network classifica-
tion. First, it introduces a novel collective classification framework that extends
the relaxation approach proposed in [27], which will be described in Section 2.
While our method also uses similarity between nodes to define the class mem-
bership probabilities, it is more general in the sense that it allows the use of
complex similarity kernels that are not based on a vectorial representation of the
neighborhood. Secondly, although methods based random walks have recently
been proposed for the within-network classification problem [6, 35], such meth-
ods strongly rely on the homophily assumption that nearby nodes are likely to
have the same class. Following the success of structural kernels on the problem
of graph classification [4, 17, 20], we present a novel relational classifier based
on marginalized graph kernels [17], that evaluates the local structure similarity
of two nodes in a network with parallel random walks. As we will show in the
experimental section of this paper, considering the local structure of a node in
the network can yield better classification results than simply considering the
label distribution of neighbor nodes.

The rest of this paper is organized as follows. In Section 2, we present a
brief review of related methods. We then describe our method in Section 3, and
evaluate it experimentally on several datasets in Section 4. Finally, we conclude
with a short summary of our approach and contributions.

2 Related work

Collective inference methods for the within-network classification problem can
generally be divided in two groups: exact and approximate inference methods.
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Exact inference methods

Exact inference methods attempt to learn the joint probability distribution of
class membership (i.e. labels). Among the best known methods of this groups
are those using Markov Random Fields (MRF) [19, 31]. In MRFs, the joint
distribution of label probabilities is defined as the product of potential functions
that operate on the cliques of the network, and the conditional probability
distribution of a set of nodes can be obtained by summing over all possible
assignment of labels to nodes that are not in this sets. Because this approach
is generally intractable for networks having more than a few nodes, alternative
approaches, such as as Gibbs sampling [11] or the junction-tree algorithm [33],
are generally used. These approaches also have some practical problems. Thus,
Gibbs sampling can take a long time to converge, especially for large networks
[3]. Furthermore, the computational complexity of the junction-tree algorithm is
exponential in the treewidth of the junction tree formed by the graph [33] which
can be important for certain types of networks. Various extensions to MRFs,
that also take into account observed attribute data, have also been developed.
Among these are Conditional Random Fields [19], Relational Markov Networks
[31] and Markov Logic Networks [10]. Probabilistic directed relational models
extending the Bayesian framework, such as Relational Bayesian Networks [32],
have also been proposed. However, these methods suffer from the same problems
as MRFs.

Approximation methods

Due to the computational complexity of exact inference, approximation meth-
ods are normally used for the within-network classification problem. A collective
classification approach that performs approximate inference on MRFs, by pass-
ing messages across links in network, is the Loopy Belief Propagation algorithm
[34]. A related approach is Relaxation Labeling (RL) [8, 14, 34], where a vector
containing the label probabilities of each node of unknown label is maintained.
These vectors are initialized with apriori probabilities, either given or obtained
from the data, and, at each subsequent iteration, are recomputed using a given
relational classifier, until convergence or a maximum number of iterations is
reached. Nodes of unknown label are then given the label of greatest proba-
bility. Unlike RL methods, Iterative Classification (IC) approaches [21, 25, 26]
assign, at every iteration, a label to each node of unknown label, using a given
relational classifier. To facilitate convergence, the amount of classified nodes is
gradually increased during the process: while only the most probable classifica-
tions are made in the first iterations, every node is classified at the end of the
process.

Relational classifiers

As pointed out in [24], the performance of RL and IC methods greatly depends
on the relational classifier used. A classifier strongly based on the homophily
assumption, the Weighted-Vote Relational Neighbor (WVRN) [22], computes
the probability of a node to be in a given class as a weighted sum of the prob-
abilities of neighbor nodes of having the same label. This simple classifier was
found to work well with an RL method in the classification of documents and
web pages [24]. Another classifier, which is related to the approach presented
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in this paper, is the Class-Distribution Relational Neighbor (CDRN) [27]. This
classifier assigns, to each node v of known label, a vector whose k-th element
contain the sum, over each neighbor u of v, of the probability of u to have label
k. A reference vector is then obtained for each label k as the average of the
vectors belonging to nodes with known label k, and the probability of a node to
have label k is defined as the similarity (L1, L2, cosine, etc.) between its vec-
tor and the reference vector of label k. Two other relational classifiers are the
Network-Only Bayes (NOB) classifier [8, 30] and the Network-Only Link-Based
(NOLB) [21, 30] classifier. The former, which was originally used with an RL
method to classify documents employs a naive Bayes approach to compute the
label probabilities of a node, assumed to be independent, conditioned on the
labels of its neighbors. Finally, the NOLB classifier learns a multiclass logistic
regression model using the label distribution (raw or normalized counts, or ag-
gregation of these values) in the neighborhood of nodes with known labels. In
[21], this classifier was used within an IC method to classify documents.

3 Our classification approach

3.1 Relaxation labeling framework

Although the methods presented in this paper can be extended to the multi-
variate case of the within-network classification problem, we will focus on the
unviariate case. We will model networked-data as a partially labeled graph
G = (V,E, W,LV , LE , l) where V is a set of nodes, E a set of edges between
the nodes of V , W ⊂ V is the set of nodes for which the true labels are known,
LV and LE are respectively the sets of node and edge labels, and l is a function
that maps each node and edge to a label of the corresponding set. To simplify
the notation, we will write lu = l(u) the label of a node u and lu,v = l(u, v)
the label of an edge (u, v). Denoting U the set of unlabeled nodes of G, i.e.
U = V \ W , we need to assign to each u ∈ U a label in LV based on the labels
of nodes in W .

As other RL methods, our approach works by iteratively updating the label
probabilities of each unlabeled nodes of G until convergence. For any node
v ∈ V and any label k ∈ LV , we denote πv,k the probability of v to have label
k. If the true label of a node w is known, i.e. w ∈ W , then this value is binary:
πw,k = δ (lw = k), where δ is the Kronecker delta such that δ(x = y) = 1 if x = y
and 0 otherwise. Furthermore, let K : |V |2 → R be a function that evaluates
the similarity between two nodes and, for notation purposes, let σu,v = K(u, v).
The probability of an unlabeled node u ∈ U of having label k ∈ LV is computed
from the other nodes as

πu,k =

P

v∈V

πα
v,k σβ

u,v

P

v∈V

πα
v,k

, (1)

where α, β ≥ 0 are user-supplied parameters. In the default case where α = β =
1, πu,k is a convex combination of the similarity between u and labels v ∈ V ,
weighted by the probability of v to have label k. For a fixed β, parameter α
controls how label uncertainty influences the computation of πu,k. Thus, if we
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set α → ∞, Equation 1 becomes

πu,k =

P

v∈V

δ (lv = k) σu,v

P

v∈V

δ (lv = k)

=
1

|Wk|

X

v∈Wk

σu,v,

where Wk ⊆ W is the set of nodes that have label k. As mentioned before, the
RL method of [27] can be described in this framework as follows. Let xu be the
class vector of a node u, whose elements are the number of neighbors of u that
have a certain label. Moreover, let xk be the reference vector of class k defined
as

xk =
1

|Wk|

X

v∈Wk

xv.

Using the dot product of the class vectors as similarity function, i.e. σu,v =
xT

uxv, we then get

πu,k =
1

|Wk|

X

v∈Wk

x
T
uxv

= x
T
u

 

1

|Wk|

X

v∈Wk

xv

!

= x
T
uxk,

which is the CDRN classifier of [27]. The second parameter, β, controls how
much the similarity of a node impacts the classification. If we use a large
enough β, only the most similar nodes will influence the classification, as in
nearest-neighbor classification.

Figure 1 summarizes our RL method. At step t = 0, we initialize the label
probability of unlabeled nodes using apriori probabilities, either known or ap-
proximated from the labeled nodes. Then, at each step t, we update the label
probabilities of each unlabeled node u ∈ U and label k ∈ LV , πu,k, based on
Equation (1), using the values of iteration t − 1. This process is repeated until
the label probabilities converge, i.e. the average change is inferior to a given
threshold ǫ > 0, or we reach a given number of iteration Tmax. Finally, we assign
to each unlabeled node u ∈ U the label k of highest probability πu,k.

Note that the method presented above can also be used to classify the un-
labeled edges of a graph G. The idea is to transform G by replacing each edge
(u, v) ∈ E by a new node uv and two new edges, (u, uv) and (uv, v). The
graph obtained in this way will have |V | + |E| nodes with labels from a set of
|LV |+ |LE | nodes labels, and 2|E| edges with the same label. In this new graph,
the nodes of the original graph are only connected to nodes corresponding to
an edge, and vice-versa, such that using only the labels of direct neighbors, as
it is done in the relational classifiers described in Section 2, would not provide
much information.

3.2 Random walk structure similarity kernel

Relational classifiers such as those described above are based on the assumption
that the information necessary to classify a node u is entirely captured by the
distribution of labels in the direct neighborhood of u (i.e. first-order Markov
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Algorithm 1: Relaxation labeling

%Initialization;
foreach v ∈ V , k ∈ LV do

if v ∈W then π
(0)
v,k ← δ (lv = k);

else π
(0)
v,k ← the apriori probability of label k;

t ← 0 ;

%Main loop;
repeat

Compute the node similarities σ
(t)
u,v using the π

(t)
u,k ;

t ← t + 1 ;
foreach u ∈ U , k ∈ LV do

π̂
(t)
u,k ←

X

v∈V

“

π
(t−1)
v,k

”α “

σ(t−1)
u,v

”β

X

v∈V

“

π
(t−1)
v,k

”α ;

foreach u ∈ U , k ∈ L do

π
(t)
u,k ←

π̂
(t)
u,k

P

k′∈L

π̂
(t)

u,k′

;

until converges or t = Tmax ;

%Solution;
foreach u ∈ U do

k ← arg max
k′∈LV

π
(t)

u,k′ ;

Assign label k to u;

Figure 1: Relaxation labeling algorithm to label a set of unlabeled nodes.

assumption). As we will see in Section 4, this simple assumption does not always
produce the best results. To improve this model, one could include the labels
of nodes that are not directly connected to u in the distribution. However,
information on the structure of this extended neighborhood, i.e. how the nodes
are connected, is once more ignored. Also, this approach does not provide a
clear way to give more importance to nodes closer to u in the classification.

To overcome these problems, we present a technique based on the marginal-
ized graph kernel of [17], that extracts information on the local structure of
nodes using random walks. However, there are two important differences be-
tween that setting and the one of this paper: 1) the kernel evaluates the similar-
ity between two nodes of a same graph, instead of between two different graphs,
and 2) the labels of some nodes are only known as a probability. While the
kernel of [17] computes the similarity between two graphs as the probability of
generating the same sequence of labels in parallel random walks traversing each
of these graphs, our kernel evaluates the similarity between two nodes u and
u′ as the probability of generating the same sequence with random walks start-
ing at u and u′. Moreover, to cope with label uncertainty, we make the label
generation stochastic such that label k is generated at node v with probability
πv,k.

Using a constant walk termination probability γ, a node transition probabil-
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ity uniformly distributed over the edges leaving a node, as shown in Appendix

A, the probability R
(N)
u,u′ of generating the same sequences of at most N labels

starting from nodes u and u′ can be expressed recursively as

R
(N)

u,u′ =
(1− γ)2

dudu′

X

v∈Nu

X

v′∈Nu′

X

k

δ (lu,v = lu′,v′) πv,kπv′,k

“

γ2 + R
(N−1)

v,v′

”

, (2)

where Nu is a set containing the neighbors of a node u and du = |Nu| is the
degree of u. Other than being computed between pairs of nodes instead of
graphs, this expression differs from the one of [17] by the fact that the label
probabilities are also marginalized. To compute the kernel, we use the iterative
approach summarized in Figure 2. In this bottom-up approach, we use Equation
2 to compute the probabilities R(N) based on R(N−1). We repeat this process
for increasing values of N , until the similarity values converge, i.e. the average
change is smaller than a given ǫ, or N reaches a given limit Nmax.

Algorithm 2: Structure similarity kernel

%Initialization;
foreach u, u′ ∈ V do R

(0)

u,u′ ← 0;
N ← 0 ;

%Main loop;
repeat

N ← N + 1 ;

foreach u, u′ ∈ V do

Compute R
(N)

u,u′ using Equation 2 ;

until converges or N = Nmax ;

%Solution;
return R(N) ;

Figure 2: Bottom-up computation of the kernel.

Exploiting node degrees

A problem with the kernel definition of Equation 2 is that it does not consider
the difference between the degrees of two nodes u and v, while evaluating their
similarity. To illustrate this, suppose we limit the walk length in Equation 2 to
Nmax = 1, i.e. we consider only the direct neighbors. Moreover, suppose that
the label of every node is known, i.e. πu,k = δ (lu = k). Under these constraints,
the similarity kernel becomes

K(u, v) =
(1− γ)2γ2

dudv

X

k∈LV

nu,knv,k,

where nu,k ≤ du denotes the number of neighbors of u that have label k. Thus,
this simplified kernel simply compares ratios of neighbors having each label k,
similar to what is done in the CDRN classifier of [27]. Using this formulation,
the similarity between the nodes u and v of Figure 3 (a)-(b) is equal to the
self-similarity of these nodes: K(u, u) = K(v, v) = K(u, v) = 1

2 (1 − γ)2γ2.

7



(a) (b) (c)

Figure 3: (a)-(b) The neighborhood of two nodes u, v and (c) the transformed
neighborhood of v.

In order to consider the difference in the degrees, we modify the kernel
formulation as

R
(N)

u,u′ =
(1− γ)2

max{du, du′}2
X

v∈Nu

X

v′∈N′
u

X

k∈LV

δ (lu,v = lu′,v′) πv,kπv′,k

“

γ2 + R
(N−1)

v,v′

”

(3)

This modification to the kernel can be interpreted in the parallel random walks
framework as follows. If the degree of the node visited by a walk is less than
the degree of the node visited by the other walk, temporary edges are added
from this node to a dummy node of label ∅ 6∈ LV , such that both nodes have
the same degree. With the same probability as the true neighbors, the random
walk can jump to this dummy node, after which the probability of generating
the same sequence becomes null. Figure 3(c) illustrates this idea for nodes u, v
of (a) and (b). Using this new formulation, the similarity values for nodes u
and v, again limiting the walk length to Nmax = 1, are K(u, u) = K(v, v) =
1
2 (1 − γ)2γ2 ≥ 1

4 (1 − γ)2γ2 = K(u, v).

3.3 Convergence and complexity

While the convergence of the similarity kernels defined above is proved in Ap-
pendix B, the collective classification method presented in this paper, as most
RL methods, is not guaranteed to converge since the node structure similari-
ties σu,v vary from one iteration to the next. However, because we limit the
number of allowed iterations to Tmax, the algorithm of Figure 1 will eventually
return. Denote hK(G) the time complexity of the similarity kernel on a graph
G, the time complexity of this algorithm is O

(

Tmax(hK(G) + |V |2|LV |)
)

. Let
dmax be the maximum degree of a node in G, the time complexity of the kernel
presented in this paper, if we limit the maximum length of walk to Nmax, is
hK(G) = O

(

Nmax|V |2d2
max|LV |

)

.
Although the classification process using this kernel can be expensive in the

worst-case, i.e. O
(

TmaxNmax|V |4|LV |
)

, its complexity is usually much lower in
practice due to four reasons: 1) in most within-network classification problems,
the number of different node labels is small, 2) the nodes of many real-life graphs
have a low bounded degree (e.g., the degree is always less than 8 in molecular
graphs), 3) most of the relevant information on the local structure of a node is
contained within a a short distance of this node, and 4) the RL algorithm either
converges in a few iterations (if there is convergence), regardless on the number
of nodes in G. Following these observations, it is often possible to consider
|LV |, dmax, Nmax and Tmax as independent of the number of nodes |V | in the
network, such the computational complexity of our classification approach grows
quadratically with |V |.
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4 Experimental evaluation

In this section, we test our framework on the problem of classifying the unlabeled
nodes of a partly labeled graph.

4.1 Experiment data

The data used in our experiments come from three datasets provided by the
IAM Graph DB Repository for Graph Based Pattern Recognition and Machine
Learning [28]. The first dataset, originally proposed in [18] for the problem of
predicting the mutagenicity, an adverse property that hampers the potential of
a chemical compound to become a marketable drug, contains 4,337 chemical
compounds tagged as mutagenic or not.

The second dataset contains a set of 2,000 chemical compounds constructed
from the AIDS Antiviral Screen Database of Active Compounds 1, which are
identified as having activity against HIV or not. This dataset was used as a
benchmark in the problem of predicting the activity of a chemical compound
[5]. The molecules of these two datasets are modeled as undirected graphs
where the nodes represent atoms, node labels are the chemical symbols of these
atoms, and edge are covalent bonds between atoms. Edge labels give the valence
of these bonds.

The third dataset, originally used in [4], contains 600 graphs modeling pro-
teins of the Protein Data Bank2, equally divided in each of the six Enzyme
Commission (EC) top level enzyme classes. These proteins are converted into
undirected graphs using their secondary structure, such that nodes are sec-
ondary structure elements (SSE) labeled as helix, sheet, or turn. Every node is
connected with an edge to its three nearest neighbors in space, and edges are
labeled with their structural type. Note that a node can have more than three
neighbors since the relation “nearest-neighbor” is not symmetric.

Table 1: Properties of the datasets.

Property Mutagen. AIDS Protein

Nb. graphs 4,337 2,000 600
Avg. nodes 30.3 15.7 32.6
Avg. edges 30.8 16.2 62.1
Node labels 14 38 3
Edge labels 3 3 5
Freq. class 44.3% 59.3% 49.4%

Table 1 gives some properties of these datasets: the number of graphs, aver-
age number of nodes and edges, number of node and edge labels, and percentage
of nodes having the most frequent class label. We notice that the graphs of these
datasets are fairly sparse, i.e. average degree ranging from 2 to 4, and that the
distribution of labels is uneven. Thus, in each of these datasets, there is a class
(label) which contains close to half of the nodes. Since, by classifying every
node to the most frequent class, it is possible to achieve accuracy equal to the

1http://dtp.nci.nih.gov/docs/aids/aids_data.html.
2http://www.rcsb.org/pdb/home/home.do.
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frequency of this class, these values can be used as a baseline of the classification
accuracy. For each of three datasets, we generated six test graphs by dividing
the first 600 first graphs into six equally sized sets, and joining the graphs of
each of these sets into one large graph. We then use the first test graph to tune
the classifications methods, and the remaining five to evaluate the performance
of these methods.

4.2 Experimental setting

As suggested in [24], we compare our approach with the classification meth-
ods implemented in NetKit-SRL3. This toolkit provides a general framework
for within-network classification that allows the user to choose any combination
of collective inference approach, i.e. RL, IC or Gibbs sampling, and relational
classifier, i.e. WVRN, CDRN, NOB or NOLB (using either raw or normalized
counts of neighbors with a given label). For additional information, the reader
may refer to Section 2 or to [24]. Although we have tested every possible combi-
nation of collective classification approach and relational classifier, we have kept,
for each classifier, the approach which worked best. Including the two methods
proposed in this paper, i.e. our RL framework with the similarity kernels of
Equations 2 and 3, a total of 7 methods, described in Table 2, are tested.

Table 2: Tested classification methods.

Method Description

RL-WVRN: RL with WVRN
RL-CDRN: RL with CDRN (cosine sim. on norm. counts)
IC-NOB: IC with NOB
IC-NOLB-count: IC with NOLB (raw counts)
IC-NOLB-norm: IC with NOLB (normalized counts)
RL-RW: Our RL with the kernel of Equation 2.
RL-RW-deg: Our RL with the kernel of Equation 3.

Again following [24], we perform 10 runs on each of the 5 test graphs, where
we randomly select a subset of nodes from which we remove the labels. Once
the classification methods are done, we compute the precision and recall using
a weighted-average of the precision and recall obtained for each of the classes:

precision =
X

k∈LV

nk

tpk

tpk + fpk

/
X

k∈LV

nk,

recall =
X

k∈LV

nk

tpk

tpk + fnk

/
X

k∈LV

nk

=
X

k∈LV

tpk /
X

k∈LV

nk,

where nk = tpk + fnk is the number of classified nodes with true label k, and
tpk, fpk, fnk are the number of true positives, false positives and false negatives
obtained by the classification method for this class. Thus, the recall corresponds
to the global accuracy obtained over all classified nodes. Finally, the precision
and recall values obtained in this way are averaged over the 5×10 classification
runs.

3http://netkit-srl.sourceforge.net/.
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4.3 Results
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Figure 4: Precision and recall obtained for the Mutagenicity data

Figures 4, 5 and 6 give the precision and recall obtained by the seven tested
methods on the Mutagenicity, AIDS and Protein data, for decreasing percent-
ages of labeled nodes. From these results, we can see that our structure similar-
ity kernel approach that considers node degrees, i.e. RL-RW-deg, outperforms
the other classification methods, especially when a small portion of nodes are
labeled. Thus, on the Mutagenicity data, this method is correctly classifies 15%
more nodes than the second most accurate method, when 10% of the nodes
are labeled, and 25% more when the percentage of labeled node is only 1%.
Within the classification methods of Netkit-SRL, the IC method based on the
multiclass regression using the raw counts, i.e. IC-NOLB-count, provides results
comparable with RL-RW-deg when the labels of a sufficient number of nodes
are known. However, as the number of labeled nodes reduces, this method fails
to learn a proper regression model and its accuracy quickly drops. As expected,
the methods based on the homophily assumption, such as RL-WDRN, perform
poorly on this type of data.

Comparing our two similarity kernels, we can observe a variation in the
results obtained for the three types of data. While RL-RW-deg is significantly
better than RL-RW on the Mutagenicity data, the performance of these two
methods is comparable on the AIDS data. This is due to the fact valence of an
atom, i.e. degree of a node, is a good indicator of the type of this atom, but
this information is noisy in the AIDS data since bonds to hydrogen atoms have
been omitted. For the Protein data, the degree of a node provides a weak signal
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Figure 5: Precision and recall obtained for the AIDS data

since the data was created in such way that each node has approximately the
same number of neighbors. This could explain the fact that RL-RW slightly
outperforms RL-RW-deg on this data.

4.4 Influence of parameters and runtimes

The within-network classification framework presented in this paper is controlled
by 3 parameters: the RL parameters α and β controlling the impact of label
uncertainty and similarity on the classification, and the kernel parameter γ
which controls the random walk lengths.

Table 3 gives the average accuracy of RL-RW-deg on the Mutagenicity data
(using a percentage of labeled nodes of 50%) for different values of α and β.
Interestingly, we notice that the accuracy can be improved, for this data, by
increasing the importance of nodes with uncertain labels w.r.t. nodes of known
label. Indeed, for every tested value of β, the greatest accuracy is obtained
using a value of α lower than 1. This can be explained by the fact that using
α < 1 helps avoid local optima by providing a smoother convergence. This could
also explain the poor results of the RL-CDRN method, which corresponds to
using α → ∞ in our framework (assuming the random walk length is limited
1). We also observe that the influence of β on the accuracy varies depending on
α. When α < 1, the accuracy can be improved by increasing the importance of
similar nodes in the classification, i.e. using β > 1, while the opposite occurs
when α ≥ 1. This seems to indicate that basing the classification on the most
similar nodes of known label actually deteriorates the classification.
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Figure 6: Precision and recall obtained for the Protein data

Table 3: Impact of parameters α and β on classification accuracy.

RL RL β
α 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.25 87.42 87.48 87.75 88.22 88.42 88.68 89.28
0.50 87.42 87.55 88.02 88.42 88.42 88.82 89.41
0.75 86.95 87.95 88.15 87.88 88.02 88.68 88.88
1.00 86.42 87.82 87.75 87.08 85.82 83.69 81.89
1.25 86.22 86.88 84.82 82.36 77.03 72.44 67.44
1.50 84.75 83.02 76.23 69.04 59.19 44.67 43.81
1.75 75.50 72.90 69.77 56.39 32.49 30.49 35.75
2.00 68.71 58.59 56.06 43.08 28.63 27.56 47.20
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The impact of kernel parameter γ on the classification of the AIDS data (us-
ing a percentage of labeled nodes of 50%) is shown in Table 4. To illustrate how
this parameter influences the length of the random walks, we varied the maxi-
mum walk length Nmax of the kernel. When the walk length is not artificially
limited, i.e. Nmax ≥ 10, we notice that the accuracy is reduced when the termi-
nation probability γ increases. We also see that the greatest gain in accuracy
occurs for Nmax = 2, suggesting that most of the node structure information,
for this data, is contained within a distance of two edges.

Table 4: Impact of parameter γ on classification accuracy.

Kernel Kernel γ
Nmax 0.1 0.3 0.5 0.7 0.9

1 62.54 62.54 62.54 62.54 62.54
2 66.92 66.92 67.49 65.80 62.76
3 65.69 67.15 66.25 64.45 62.76
4 65.46 67.82 66.02 64.00 62.76
5 67.71 67.82 66.02 64.00 62.76
6 66.92 67.60 66.02 64.00 62.76
7 66.36 67.48 66.02 64.00 62.76
8 67.26 67.37 66.02 64.00 62.76
9 67.48 67.37 66.02 64.00 62.76

10 67.71 67.37 66.02 64.00 62.76

The last analysis focuses on the times required to run our methods on a
machine equipped with two 2.60GHz i686 processors and 1Gb of RAM. Figure
7 gives the mean runtimes of RL-RW-deg on the Mutagenicity data (using a
percentage of labeled nodes of 50%), for different values of kernel parameter γ.
As a reference, we also give the runtime of RL-CDRN, the slowest Netkit-SRL
classification method for this data. As predicted, the runtime roughly increases
quadratically with the number of nodes in the network. While our method is
noticeably slower than methods based only on direct neighbors, such as RL-
CDRN, it performed the classification within 2 minutes for networks with 3,000
nodes, suggesting it could be used for networks with up to 10,000 nodes.
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Figure 7: Runtime of our approach on the Mutagenicity data.
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5 Conclusion

We presented a novel approach for the problem of within-network classification.
Unlike other methods for this problem, which rely on the assumption that nearby
nodes are more likely to be in the same class, this approach uses the structural
similarity between nodes to infer their class. Moreover, while such methods
only use the distribution of labels in the neighborhood of a node, our approach
employs a similarity kernel based on random walks that extracts more informa-
tion on the local structure of this node. The collective classification framework,
proposed in this paper, extends a relaxation labeling method described in [27]
by allowing to control the influence of label uncertainty and similarity in the
classification. Furthermore, this framework uses a novel similarity kernel, based
on the marginalized graph kernels proposed in [17], that computes the structure
similarity between two nodes as the probability of generating the same sequence
of labels in parallel random walks starting at these nodes. We also proposed a
modified version of this kernel which considers the difference between the de-
grees of the nodes visited in the random walks. To evaluate our approach, we
tested it on real-life data from the fields of toxicity and activity/function pre-
diction in chemical compounds. The results of these experiments have shown
our method to outperform several state-of-the-art methods for this problem.
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A Kernel derivation

Denote pt(v|u) the probability that the walk jumps from a node u to an adjacent
node v and pe(v) the probability that the walk stops at node v, satisfying the
constraint that

pe(u) +
X

v∈V

pt(v|u) = 1. (4)

Following these definitions, the probability of visiting a sequence of nodes v =
(v0, . . . ,vn) in a random walk starting at node v0 is

p(v) =

(

n
Y

i=1

pt(vi|vi−1)

)

pe(vi).

Let pl(k|v) and pl(k|u, v) denote, respectively, the probability of generating
label k ∈ LV at node v and the probability of generating label k′ ∈ LE while
traversing edge (u, v). Given node sequence v, the conditional probabilities of
generating the sequences of node labels s and edge labels q are

p(s|v) =
n

Y

i=1

pl(si|vi)

p(q|v) =
n

Y

i=1

pl(qi|vi−1,vi)
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Let W
(n)
u be the set of possible sequences of n+1 nodes visited in a random

walk starting at node u. The marginalized probability of a sequence s, given a

start node u = v0, is obtained by summing over all sequences of W
(n)
u :

p(s,q|u) =
∞

X

n=1

X

v∈W
(n)
u

p(s|v)p(q|v)p(v)

=
∞

X

n=1

X

v

 

n
Y

i=1

pt(vi|vi−1)pl(si|vi)pl(qi|vi−1,vi)

!

pe(vi)

Denote S(n) and Q(n) the set containing, respectively, all sequences of n
node labels and edge labels, the probability of generating the same sequence in
two parallel random walks starting at nodes u and u′, written K(u, u′) is given
by

K(u, u′) =
∞

X

n=1

X

s∈S(n)

X

q∈Q(n)

p(s,q|u)p(s,q|u′)

=
∞

X

n=1

X

s,q

X

v∈W
(n)
u

X

v′∈W
(n)

u′

 

n
Y

i=1

pt(vi|vi−1)pt(v
′
i|v

′
i−1)pl(si|vi)pl(si|v

′
i)

. . . pl(qi|vi−1,vi)pl(qi|v
′
i−1,v

′
i)

!

pe(vn)pe(v
′
n)

=
∞

X

n=1

X

s,q

X

v,v′

 

n
Y

i=1

a(vi−1,v
′
i−1,vi,v

′
i, si,qi)

!

pe(vn)pe(v
′
n),

where

a(vi−1,v
′
i−1,vi,v

′
i, si,qi) = pt(vi|vi−1)pt(v

′
i|v

′
i−1)

. . . pl(si|vi)pl(si|v
′
i)pl(qi|vi−1,vi)pl(qi|v

′
i−1,v

′
i).

The computation of K(u, u′) can be greatly simplified using the following recur-
rence: the probability of generating the same sequence of n labels two parallel

random walks starting at nodes u and u′, written r
(n)
u,u′ , can be obtained from

the probability of visiting nodes v and v′, respectively from u and u′, and the
probability of generating the same sequences of n − 1 node and edge labels,
starting at nodes v and v′. This recurrence can be written as

r
(n)

u,u′ =

8

>

>

<

>

>

:

X

v,v′∈V

X

k∈LV

X

k′∈LE

a(u, u′, v, v′, k, k′) r
(n−1)

v,v′ , n ≥ 1

pe(u) pe(u
′) , n = 0

The probability of generating the same sequences of at most N labels starting
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from nodes u and u′, written R
(N)
u,u′ , is then

R
(N)

u,u′ =
N

X

n=1

r
(n)

u,u′

=
N

X

n=1

X

v,v′∈V

X

k∈LV

X

k′∈LE

a(u, u′, v, v′, k, k′) r
(n−1)

v,v′

=
X

v,v′

X

k,k′

a(u, u′, v, v′, k, k′)
N

X

n=1

r
(n−1)

v,v′

=
X

v,v′

X

k,k′

a(u, u′, v, v′, k, k′)
“

pe(v)pe(v
′) + R

(N−1)

v,v′

”

,

where R
(0)
u,u′ = 0 for all u, u′.

Denote Nu the neighbors of node u and let du = |Nu| be the degree of
u. Setting the termination probabilities of u to a constant pe(u) = γ, and
letting the transition probabilities be uniform over the neighbors of u, following
the constraint of Equation 4, we have pt(v|u) = (1 − γ)/du if v ∈ Nu and 0
otherwise. Furthermore, using pl(k|v) = πv,k and pl(k

′|u, v) = δ (lu,v = k′) as
node and edge label probabilities, the formulation of the kernel becomes

R
(N)

u,u′ =
(1− γ)2

dudu′

X

v∈Nu

X

v′∈Nu′

X

k∈LV

X

k′∈LE

δ
`

lu,v = k′
´

δ
`

lu′,v′ = k′
´

πv,kπv′,k

“

γ2 + R
(N−1)

v,v′

”

=
(1− γ)2

dudu′

X

v,v′

X

k

δ (lu,v = lu′,v′) πv,kπv′,k

“

γ2 + R
(N−1)

v,v′

”

B Proof of convergence

Proposition 1. The similarity kernel defined by Equation 2 converges for any

0 < γ ≤ 1.

Proof. Following the ratio test, R
(N)
u,u′ converges for every u, u′ ∈ V if

lim
n→∞

|r
(n+1)
u,u′ |/|r

(n)
u,u′ | < 1.

We prove this by induction. Since dv and πv,k are non-negative, for all v ∈ V

and k ∈ LV , then every r
(n)
u,u′ , computed by summing and multiplying these

terms, is also non-negative. Suppose that, for all u, u′ ∈ V and all 1 ≤ m ≤ n,

r
(m)
u,u′ < r

(m−1)
u,u′ holds. We show that these properties still hold for n + 1. Thus,

r
(n+1)

u,u′ − r
(n)

u,u′ =
(1− γ)2

dudu′

X

v,v′

X

k

δ (lu,v = lu′,v′) πv,kπv′,k

“

r
(n)

v,v′ − r
(n−1)

v,v′

”

≤ 0,

since the differences at the right of the sum are negative. For the same reason,

r
(n+1)
u,u′ − r

(n)
u,u′ = 0 implies that r

(n+1)
u,u′ = r

(n)
u,u′ = 0. In this case, all terms of the

series following n are null and the series converges. We therefore assume that
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r
(n+1)
u,u′ < r

(n)
u,u′ and show that the property holds for n = 1. We have

r
(1)

u,u′ − r
(0)

u,u′ =
(1− γ)2γ2

dudu′

X

v,v′

X

k

δ (lu,v = lu′,v′) πv,kπv′,k − γ2

≤ γ2

"

(1− γ)2

dudu′

X

v,v′

X

k

πv,kπv′,k − 1

#

.

Once again, we ignore the converging case where r
(1)
u,u′ = r

(0)
u,u′ = 0, and prove

r
(1)
u,u′ < r

(0)
u,u′ by showing that the sum on the right-hand side of the previous

equation is strictly inferior to 1:

(1− γ)2

dudu′

X

v,v′

X

k

πv,kπv′,k <
(1− γ)2

dudu′

X

v,v′

X

k,k′

πv,kπv′,k′

=
(1− γ)2

dudu′

 

X

v

X

k

πv,k

! 

X

v′

X

k′

πv′,k′

!

=
(1− γ)2

dudu′

dudu′ < 1,

where we have used the facts that γ > 0 and that πv,k sum to 1 over k.

Proposition 2. The similarity kernel defined by Equation 3 converges for any

0 < γ ≤ 1.

Proof. This can be shown using the same approach as with Proposition 1
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