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Abstract— Very recently, the vision of the Semantic Web has
brought about new challenges in data management. One fun-
damental research issue in this arena is storage of the Resource
Description Framework (RDF): the data model at the core of the
Semantic Web. In this paper, we study a data-centric approach
for storage of RDF in relational databases. The intuition behind
our approach is that each RDF dataset requires a tailored table
schema that achieves efficient query processing by (1) reducing
the need for joins in the query plan and (2) keeping null storage
below a given threshold. Using a basic structure derived from the
RDF data, we propose a two-phase algor ithm involving clustering
and partitioning. The clustering phase aims to reduce the need
for joins in a query. The partitioning phase aims to optimize
storage of extra (i.e., null ) data in the underlying relational
database. Fur thermore, our approach does not assume query
workload statistics. Extensive experimental evidence using three
publicly available real-wor ld RDF data sets (i.e., DBLP, DBPedia,
and Uniprot) shows that our schema creation technique provides
superior query processing performance compared to previous
state-of-the ar t approaches.

I . INTRODUCTION

Over the past decade, the W3C [1] has led an effort to
build the Semantic Web. The purpose of the Semantic Web is
to provide a common framework for data-sharing across ap-
plications, enterprises, and communities [2]. Currently, many
heterogeneous data sources exist in different applications and
domains across the world, causing interoperabilit y problems
when these data sources need to be shared acrossboundaries.
The Semantic Web establishes a means to solve this problem
by giving data semantic meaning, allowing machines to con-
sume, understand, and reason about the structure and purpose
of the data. Furthermore, the Semantic Web is not distinct
from the World Wide Web (WWW). Rather, it is designed to
be complementary to the WWW, tying together data from a
rangeof heterogeneous sources. In thisway, theSemantic Web
resembles a worldwide database, where humans or computer
agents can pose semantically meaningful queries and receive
answers from a variety of distributed and distinct sources.

The core of the Semantic Web is built on the Resource
Description Framework (RDF) data model. RDF provides a
simple syntax, where each data item is broken down into a
<subject, property, object> triple. The subject represents
an entity instance, identified by a Uniform Resource Identifier
(URI). The property represents an attribute of the entity, while
the object represents the value of the property. As a simple
example, the following RDF triples model the fact that a
person John is a reviewer for the conference ICDE 2009:

person1 hasName ‘‘John’’
confICDE09 hasTitle ‘‘ICDE 2009’’
person1 isReviewerFor confICDE09

While the ubiquity of the RDF data model has yet to be real-
ized, many application areas and use-cases exist for RDF [3],
such as intelli gence[4], mobilesearch environments[5], social
networking [6], and biology and li fe science [7], making it an
emerging and challenging research domain.

An important and fundamental challenge exists in storing
and querying RDF data in a scalable and efficient manner,
making RDF data management a problem aptly suited for
the database community. In fact, many RDF storage solu-
tions use relational databases to achieve this scalabilit y and
efficiency, implementing a variety of storage schemas. To
ill ustrate, Figure 1(a) gives a sample set of RDF triples for
information about four people and two cities, along with a
simple query that asks for people with both a name and
website. Figures 1(b)- 1(d) give threepossible approaches to
storing these sample RDF triples in a DBMS, along with the
translated RDF queries given in SQL. A large number of
systems use a triple-store schema [8], [9], [10], [11], [12],
[13], [14], where each RDF triple is stored directly in a three-
column table (Figure1(b)). Thisapproach suffersduring query
execution due to a proli feration of self-joins, as shown in
the SQL query in Figure 1(b). Another schema approach is
the property table [9], [15], [12], [16], [17] (Figure 1(c))
that models multiple RDF properties as n-ary table columns.
The n-ary table eliminates the need for a join in our query.
However, as only one person out of four has a website, the
n-ary table contains a high number of nulls (i.e., the data
is semi-structured), potentially causing a high overhead in
query processing [18]. The decomposed storage schema [19]
(Figure 1(d)) stores triples for each RDF property in a binary
table. The binary table approach reduces null storage, but
introduces a join in our query.

In this paper, we propose a new storage solution for RDF
data that aims to avoid the drawbacks of these previous
approaches, i.e., self joins on a triple table, a high ratio of null
storage in property tables, and the proli feration of joins over
binary tables. Our approach can be considered data-centric, as
it tailors a relational schema based on a derived structure of
theRDF datawith the explicit goal of providingefficient query
performance. The main intuition driving this data-centric
approach is that RDF datasetsacrossdifferent domainsrequire
unique storage schemas. Furthermore, our approach does not
assume aquery workload for schema creation, making it useful
for situations where a query workload cannot be reliably
derived, likely in cases where a majority of queries on an
RDF knowledge base are ad-hoc. In order to build a relational
schema without a query workload and achieve efficient query



<Person1, Name, Mike>

<Person1, Website, ~mike>

<Person2, Name, Mary>

<Person3, Name, Joe>

<Person4, Name, Kate>

<City1, Population, 200K>

<City2, Population, 300K>

Query

“Find all people that have both a 

name and website”

(a) RDF Triples

SELECT T1.Obj,T2.Obj

FROM TS T1,TS T2

WHERE T1.Prop=Name AND

T2.Prop=Website AND 

T1.Subj=T2.Subj;

Subj Prop Obj

TS

Person1 Name Mike

Person1 Website ~mike

Person2 Name Mary

Person3 Name Joe

Person4 Name Kate

City1 Pop. 200K

City2 Pop. 300K

(b) Triple Store

Subj Name Website

NameWebsite

Person1 Mike ~mike

Person2 Mary NULL

Person3 Joe NULL

SELECT T.Name,T.Website

FROM NameWebsite T

Where T.Website IS NOT NULL;

Person4 Kate NULL

Pop.

200K

Subj

City1

Population

300KCity2

(c) N-ary Table

Obj

200K

Subj

City1

Population

300KCity2

Subj Obj

ObjName

Person1 Mike

~mike

Person2 Mary

Person3 Joe

Subj

Person1

Website

Person4 Kate

SELECT T1.Obj,T2.Obj

FROM Name T1,Website T2

WHERE T1.Subj=T2.Subj;

(d) Binary Tables

Fig. 1. RDF Storage Example

processing, our data-centric approach defines the following
trade off : (1) storing as much RDF data together, reducing,
on average, the need for joins in a query plan, and (2) tuning
extra storage(i.e., null storage) to fall below a given threshold.

Our data-centric schema creation approach involves two
phases, namely clustering, and partitioning. The clustering
phase scans the RDF data to find groups of related properties
(i.e., properties that always exist together for a large number
of subjects). Properties in a cluster are candidates to be stored
together in an n-ary table. Likewise, propertiesnot in a cluster
are candidates to be stored in binary tables. The partitioning
phase takesclusters from the clustering phase and balances the
tradeoff between storingasmany RDF propertiesin clustersas
possible while keeping null storage to a minimum (i.e., below
a given threshold). Our approach also handles cases involving
multi -valued properties (i.e., properties defined multiple times
for a single subject) and reification (i.e., extra information
attached to a whole RDF triple). The output of our schema
creation approach can be considered a balanced mix of binary
and n-ary tables based on the structure of the data.

The performance of our data-centric approach is backed
by experiments on three large publicly available real-world
RDF data sets; specifically, the DBLP [20], DBPedia [21],
and Uniprot [7] data sets. Each of these data show a range
of schema needs, and a set of benchmark queries are used to
show that our data-centric schema creation approach improves
query processing compared to previous approaches. Results
show that our data-centric approach showsordersof magnitude
performance improvement over the triple store, and speedup
factors of up to 36 over a straight binary table approach.

The rest of this paper is organized as follows. Section II
highlights related work. Section III gives an overview of
how our schema creation approach interacts with a DBMS.
Section IV givesthedetailsof our data-centric schema creation
approach. Handling multi -valued attributes and reification in
RDF is covered in Section V. Section VI gives experimental
evidence that our approach outperforms previous approaches.
Finally, Section VII concludes this paper.

II . RELATED WORK

Previous approaches to RDF storage have focused on three
main categories. (1) The triple-store (Figure 1(b)). Relational
architectures that make use of a triple-store as their primary
storage scheme include Oracle [9], [12], Sesame [11], 3-
Store [13], R-Star [14], RDFSuite [8], and Redland [10].
(2) The property table (Figure 1(c)). Due to the proli ferations
of self-joins involved with the triple-store, the property table
approach was proposed. Architectures that make use of prop-
erty tables as their primary storage scheme include the Jena
Semantic Web Toolkit [15], [16], [17]. Oracle [9], [12] also
makes use of property tables as secondary structures, called
materialized join views (MJVs). (3) The decomposed storage
model [22] (Figure 1(d)) has recently been proposed as an
RDF storage method [19], and has been shown to scale well
on column-oriented databases, with mixed results for row-
stores. Our work distinguishes itself from previous work as
we provide a tailored schema for each RDF data set, using a
balancebetween n-ary tables (i.e., property tables) and binary
tables (i.e.,decomposed storage). Furthermore, we note that
previous approaches to building property tables have involved
the use of generic pre-computed joins, or construction by
a DBA with knowledge of query usage statistics [12]. Our
approach provides an automated method to place properties
together in tables based on the structure of the data.

Other work in RDF storage has dealt with storing pre-
computed paths in a relational database [23], used to answer
graph queries over the data (i.e., connection, shortest path).
Other graph database approachesto RDF, includingextensions
to RDF query languages to support graph queries, has been
proposed [24]. This work is outside the scope of this paper,
as we do not study the effect of graph queries over RDF.

Automated relational schema design has primarily been
studied with the assumption of query workload statistics.
Techniques have been proposed for index and materialized
view creation [25], horizontal and vertical partitioning [26],
[27], and partitioning for large scientific workloads [28]. Our
automated data-centric schema design methodfor RDF differs
from these approaches in two main ways. First, our method
does not assume a set of query workload statistics, rather,
we base our method on the structure found in RDF data.
Second, these previous schema creation techniquesdo not take
into account the heterogeneous nature of RDF data, i.e., table
design that balances its schema between well -structured and
semi-structured data sets.

III . SYSTEM OVERVIEW AND PROBLEM DEFINITION

System Overview. Figure 2 gives an overview of how RDF
data is managed using a relational database system. In general,
two modules (represented by dashed rectangles) exist outside
the database engine to handle RDF data and queries: (1) an
RDF import module, and (2) an RDF query module. Our
proposed data-centric schema creation technique exists inside
the RDF import module (represented by a shaded rectangle in
Figure 2). The schema creation processtakes as input an RDF
data set. The output of our technique is a schema (i.e., a set
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Fig. 2. RDF Query Architecture using DBMS

of relational tables) used to store the imported RDF data in
the underlying DBMS.

Problem Definition. Given a data set of RDF triples,
generate a relational table schema that achieves the following
criteria. (1) Maximize the likelihood that queries will access
properties in the same table and (2) minimize the amount of
extra (e.g., null ) data storage.

Join operations along with extra table accesses produce a
large query processing overhead in relational databases. Our
schema creation method aims to achieve the first criterion by
explicitly aiming to maximize the amount RDF data stored
together in n-ary tables. However, as we saw in the example
given in Figure 1, n-ary tables can lead to extra storage
overhead that also affects query processing. Thus, our schema
creation method aims to achieve the second criterion by
keeping the null storage in each table below a given threshold.

IV. DATA-CENTRIC SCHEMA CREATION

In this section, we present our data-centric schema creation
algorithm for RDF data. The output of this algorithm can be
considered a balanced mix of binary and n-ary tables based on
the structure of the data. Unlike previous techniques that use
the same schema regardless of the structure of the data, the
intuition behind our approach is that different RDF data sets
require different storage structures. For example, a relatively
well -structured RDF data set (i.e., data where the majority
of relevant RDF properties are defined for the subjects) may
result in a few large n-ary tables used as a primary storage
schema. On the other hand, a relatively semi-structured data
set (i.e., data that does not follow a fixed pattern for property
definition) may use a large number of binary tables as its
primary storage schema.

The basic ideabehind our approach is to implement a two-
phase algorithm that: (1) finds interesting clusters of RDF
properties that are candidates to be stored in the same n-ary
table. This processrelates to the first criterion in our problem
definition (Section III) , and (2) partition the clusters to balance
the tradeoff between storing the maximum number properties
together, while ensuring that extra (i.e., null ) storage is kept
to a minimum. This process relates to the second criterion
in our problem definition. The output of our algorithm is a
schema that achieves a balance between a set of n-ary and
binary tables based on the structure of the RDF data. The
n-ary tables contain a subject column with multiple RDF
property columns (i.e., a property table), while the binary
tables contain a subject column with a single property column
(i.e., decomposed storage tables).

The rest of this section introduces our data-centric schema
creation algorithm. First, an overview of our algorithm is
given, followed by a presentation of its details.

A. Algorithm Overview and Data Structures

Algor ithm parameters. Our schema creation algorithm
takesasparametersan RDF dataset, alongwith two numerical
values, namely support threshold and null threshold. Support
threshold is a value used to measure strength of correlation
between properties in the RDF data. If a set of properties
meets this threshold, they are candidates to exist in the same
n-ary table. The null threshold is the percentageof null storage
tolerated for each table in the schema. This parameter exists
to tune the null storage to an appropriate level for efficient
query processing.

Data Structures. The data structures for our algorithm are
built using an O(n) process that scans the RDF triples once
(wheren is the number of RDF triples). We maintain two data
structures: (1) Property usage list. This is a list structure that
stores, for each property defined in the RDF data set, the count
of subjects that have that property defined. For example, if a
property usage list were built for the data in Figure 1(a), the
property Website would have a usage count of one, since it
is only defined for the subject Person1. Likewise, the Name
property would have ausage count of four (defined for subjects
Person1-Person4), and Population would have a count of
two. (2) Subject-property baskets. This is a list of all RDF
subjects mapped to their associated properties (i.e., a property
basket). A single entry in the subject-property basket structure
takes the form subjId → {prop1, · · · , propn}, where subjId

is the Uniform Resource Identifier of an RDF subject and its
property basket is the list of all properties defined for that
subject. As an example, for the sample data in Figure 1(a),
six baskets would be created by this process: Person1 →
{Name, Website}, Person2 → {Name}, Person3 →
{Name}, Person4 → {Name}, City1 → {Population},
and City2 → {Population}.

High-level algor ithm. Our schema creation algorithm in-
volves two main phases, namely clustering and partitioning.
The clustering phase (Phase I) aims to find groups of related
properties in the data set using the support threshold parame-
ter. Clustering leverages previous work from association rule
mining, specifically, maximum frequent itemset generation, to
look for related properties in the data. The idea behind the
clustering phase is that properties contained in the clusters
should be stored in the same n-ary table. The clustering phase
also creates an initial set of final tables. These initial tables
consist of the properties that are not found in the generated
clusters (thus being stored in binary tables) and the property
clusters that do not need partitioning (i.e., in Phase II) . The
partitioning phase (Phase II) takes the clusters from Phase
I and ensures that they contain a disjoint set of properties
while keeping the null storage for each cluster below a given
threshold.

Algorithm 1 gives the pseudocode for our schema creation
process. The function takes as argumentsRDFTriples, an RDF



Algor ithm 1 RDF Data-Centric Schema Creation
1: Function BuildRDFSchema(RDFTriples T ,Threshsup,Threshnull)
2: /* Preprocessing - Build Data Structures* /
3: Baskets, PropertyUsage ← BuildDS(T)
4: /* Phase I: Clustering */
5: TablesI,Clusters ← Cluster(Baskets, PropertyUsage, Threshsup ,

Threshnull)
6: /* Phase II : Partitioning */
7: TablesII ← Partition(Clusters,PropertyUsage,Threshnull )
8: return TablesI ∪ TablesII

Property Usage

P1 1000

P2 500

P3 700

P4 750

P5 450

P6 450

P7 300

P8 350

P9 50

NullPercentage({P1, P2, P3, P4}) = 21%

NullPercentage({P1,P2,P5, P6}) = 32%

NullPercentage({P7, P8}) = 4%

Tables = {P1,P3,P4}, {P2,P5,P6},    

                        {P7,P8}, {P9}
(a)

PC: {P1, P2, P3, P4} (54% Support)

{P1, P2, P5, P6} (45% Support)

{P7, P8} (30% Support)     

(b)

(c)

(e)

NullPercentage({P1, P3, P4}) = 13%

NullPercentage({P2,P5, P6}) = 5%
(d)

Fig. 3. RDF Data Partitioning Example

data set, and two threshold values Threshsup, the support
threshold for clustering, and Threshnull, the null ratio thresh-
old for partitioning. The data structures, namely, the property
usage list and subject-property baskets, are created using the
BuildDS function (Line 3 in Algorithm 1). The first phase of
the algorithm is invoked to find property clusters by calli ng
the function Cluster, passing the subject-property baskets,
property usage li st, support threshold, and null threshold as
arguments (Line 5 in Algorithm 1). Generated clusters that
need to be sent to the partitioning phase are stored in the
list Clusters, while the initial li st of final tables is stored in
list TablesI. Next, the second phase (partitioning) is started
by calli ng the method Partition (Line 7 in Algorithm 1),
passing as parameters the property clusters (Clusters), the
property usage li st, and the null storage threshold. The func-
tion Partition returns the second part of the final table set,
TablesII. The union of tables lists TablesI and TablesII is
considered the complete final schema, and is returned by the
high-level algorithm (Line 8 in Algorithm 1).

Example. Figure 3 gives example data that will be used
as a running example throughout the rest of this section to
demonstrate how our partitioning method works. Figure 3 (a)
gives an example property usage li st with nine properties. The
data given in Figure1 will also beused in our examples. Phase
I is the topic of Section IV-B, while Phase II is discussed in
Section IV-C.

B. Phase I: Clustering

Objective. The objective of the clustering phase is to
find property clusters, or groups of related properties using
the subject-property basket data structure. Properties in each
cluster are candidates to be stored together in the same n-ary
table. The canonical argument for n-ary tables is that related
properties are likely to be queried together. Thus, storing

related properties together in a single table will reduce the
number of joins during query execution. The clustering phase
is also responsible for building an initial set of final tables.
These tables consist of: (1) the properties that are not found
in the generated clusters (thus being stored in binary tables),
and (2) property clusters that meet the null threshold and do
not contain properties that overlap with other clusters, thus
not needed in the partitioning phase.

Main idea. The clustering phase involves two main steps.
Step 1: A set of clusters (i.e., related properties) are found
by leveraging the use of frequent itemset finding, a method
used in association rule mining [29]. For our purposes, the
terms frequent itemsets and clusters are used synonymously.
The idea behind the clustering phase is to find groups of
properties that are foundoften in the subject-property basket
data structure. The measure of how often a cluster occurs
is called its support. Clusters with high support imply that
many RDF subjects have all of the properties in the cluster
defined. In other words, high support implies that properties in
a cluster are related sincethey often exist together in the data.
The metric for high support is set by the support threshold
parameter to our algorithm, meaning we consider a group of
properties to be a cluster only if they have support greater
than or equal to the support threshold. In general, we can
think of the support threshold as the strength of the relation
between properties in the data. If we specify a high support
threshold, the clustering phase will produce a small number
of small clusters with highly correlated properties. For low
support threshold, the clustering phase will produce agreater
number of large clusters, with less-correlated properties. Also,
for our purposes, we are only concerned with maximum sized
cluster (or maximum frequent itemsets); these are the clusters
that occur often in the data and contain the most properties.
Intuitively, we are interested in these clusters because our
schema creation method aims to maximize the data stored in
n-ary tables. It is important to note that maximum frequent
itemset generation can produce clusters with overlapping
properties. Step 2: Construct an initial set of final tables. This
list of tables contains (1) the properties that are not found
in generated clusters (thus being stored in binary tables) and
(2) the property clusters that meet the null threshold and do
not contain properties that overlap with other clusters, thus
no necessitating Phase II . Clusters that are added to the initial
final table list are removed from the cluster list. The output of
the clustering phase is a list of initial final tables, and a set
of clusters, sorted in decreasing order by their support value,
that will be sent to the partitioning phase.

Example. Consider an example with a support threshold
of 15%, null threshold of 20%, and the six subject-property
baskets generated from the data in Figure 1(a): Person1 →
{Name, Website}, Person2 → {Name}, Person3 →
{Name}, Person4 → {Name}, City1 → {Population},
and City2 → {Population}. In this case we have four pos-
sible property clusters: {Name}, {Website}, {Population},
and {Name, Website}. The cluster {Name} occurs in 4
of the 6 property baskets, giving it a support of 66%. The



Algor ithm 2 Clustering
1: Function Cluster(Baskets B,Usage PU ,Threshsup ,Threshnull)
2: Clusters← GetClusters(B, Threshsup)
3: /* Initialize final table set * /
4: Tables ← properties not in PC /* Binary tables * /
5: for all clust1 ∈ PC do
6: OK ← false

7: /* Test 1: cluster is below null threshold */
8: if Null%(clust1, PU) ≤ Threshnull then
9: OK ← true

10: /* Test 2: cluster doesn’t contain overlapping properties * /
11: for all clust2 ∈ PC if clust1 ∩ clust2 6= φ then OK ← false

12: end if
13: if OK then Tables ← Tables ∪ clust1; Clusters ← Clusters −

clust1
14: end for
15: return Tables,Clusters

cluster {Population} occurs in 2 of 6 baskets (with support
33%). The clusters {Website} and {Name, Website} occur
in 1 of the 6 property baskets, giving them a support of
16%. In this case, the {Name, Website} is generated as a
cluster, since it meets the support threshold and has the most
possible properties. Note the single property {Population}
is not considered a cluster, and would be added to the initial
final table list. Note also that this arrangement corresponds to
the tables in Figure 1(c), and that the {Name, Website} table
contains 25% null values. With the null threshold of 20%, the
initial final table list would contain {Population}, while the
cluster list would be set to {Name, Website}, as it does not
meet the null threshold.

As a second example, Figure 3(b) gives three example
clusters along with their support values, while Figure 3 (c)
gives their null storage values (null storage calculation will
be covered in the algorithm discussion). The output of the
clustering phase in this example with a support and null
threshold value of 20% would produce an initial final ta-
ble list containing {P9} (not contained in a a cluster) and
{P7, P8} (not containing overlapping properties and meet-
ing the null threshold). The set of output clusters to be
sent to the next phase would contain {P1, P2, P3, P4} and
{P1, P2, P5, P6}.

Algor ithm. Algorithm 2 gives the pseudocode for the clus-
tering phase. The algorithm takes as parameters the subject-
property baskets (B), the property usage list (PU ), the sup-
port threshold (Threshsup), and the null threshold parameter
(Threshnull). The algorithm begins by generating clusters
and storing them in a list Clusters, sorted in descending
order by support value. (Line 2 in Algorithm 2). This is a
direct call to a maximum frequent itemset algorithm [29], [30].
Next, we initialize Tables, an initial li st of final tables, to
the properties that do not quali fy for clusters (i.e., stored in
binary tables). Next, the algorithm filters out the set of clusters
that quali fy for final tables (Lines 5 to 14 in Algorithm 2).
The algorithm first checks that each cluster’s null storage
falls below the given threshold (Line 9 in Algorithm 2). In
general, the null storage for a cluster c can be calculated
from a property usage list PU as follows. Let |c| be the
number of propertiesin a cluster, andPU.maxcount(c) be the
maximum property count for a cluster in PU . As an example,

P1 P2

Usage:

1000

Usage:

500

Null:

500

P3 P4

Usage:

700

Null: 

300

Usage:

750

Null: 

250

Null({P1,P2,P3,P4}) = 1050/5000 = 21%

Subj

Usage:

1000

Fig. 4. Null Calculation

in Figure 3 (b) if c = {P1, P2, P3, P4}), |c| = 4 and
PU.maxcount(c) = 1000 (corresponding to P1). Figure 4
gives a graphical representation for a sample null calculation
using cluster {P1, P2, P3, P4}. If PU.count(ci) is the usage
count for the ith property in c, the null storage percentage for
c is:

Null%(c) =

∑
∀i∈c(PU.maxcount(c) − PU.count(ci))

(|c| + 1) ∗ PU.maxcount(c)

The algorithm also checks that a cluster does not contain
properties that overlap with other clusters (Line 11 in Algo-
rithm 2). For clusters that pass this test, they are removed
from the cluster list Clusters and added to the final table
list Tables (i.e., as n-ary tables) (Line 13 in Algorithm 2).
Finally, the algorithm returns the initial final table list and
clusters, assumed to be sorted in decreasing order by their
support value (Line 15 in Figure 2).

C. Phase II: Partitioning

Objective. The objective of the partitioning phase is
twofold: (1) Partitioning the given clusters (from Phase I)
into a set of non-overlapping clusters (i.e., a property exists
in a single n-ary table). Ensuring that a property exists in
a single cluster reduces the number of table accesses and
unions necessary in query processing. For example, consider
two possible n-ary tables storing RDF data for academic
publications: T itleConf = {subj, title, conference} and
T itleJourn = {subj, title, journal}. In this case, an RDF
query asking for all published titles would involve two table
accessesanda union, due to the fact that publicationscan exist
in a conference or a journal, but not both. (2) Ensuring that
each partitioned cluster, when populated with data as an n-ary
table, falls below the null storage threshold. This objective is
based on a main requirement of our algorithm, stated in the
problem definition given in Section III , and tunes our schema
for efficient query processing.

Main idea. To achieve our objectives, we propose agreedy
algorithm that continually attempts to keep the cluster with
highest support intact, while pruning lower-support clusters
containing overlapping properties (i.e., ensuring that each
property exists in a single table). The reason for this greedy
approach is that, intuitively, the clusters with highest support
contain properties that occur together most often in the data
set. Recall that support is the percentage of RDF subjects that
have all of the cluster’s properties. Thus, keeping high support
clusters intact implies that the most RDF subjects (with the
cluster’s properties defined) will be stored in this table. Our
greedy approach iterates throughthe given cluster list (sorted
in decreasing order by support value), takes thehighest support



Algor ithm 3 Partition Clusters
1: Function Partition(PropClust C,PropUsage PU ,Threshnull)
2: Tables ← φ

3: /* Traverse list from highest support to lowest * /
4: for all clust1 ∈ C do
5: C ← (C − clust1)
6: if Null%(clust1, PU) > NullThresh then
7: /* Case 2: cluster needs partitioning */
8: repeat
9: p← property causing most null storage

10: clust1 ← (clust1 − p)
11: /* Case 2a: partitioned property in other cluster * /
12: if p exists in lower-support cluster do continue
13: /* Case 2b: partitioned property not in other cluster * /
14: else Tables← Tables ∪ p /* Binary table * /
15: until Null%(clust1, PU) ≤ NullThresh

16: end if
17: Tables ← Tables ∪ clust1
18: forall clust2 ∈ C do clust2 ← clust2 − (clust2 ∩ clust1)
19: Merge cluster fragments
20: end for
21: return Tables

cluster, and handles two main cases based on its null storage
computation (null computation is discussed in Section IV-B).
Case 1: the cluster meets the null storage threshold. This case
handles the given cluster from Phase I that meets the null
threshold but contains overlapping properties. In this case,
the cluster is considered a table and all l ower-support clusters
with overlapping properties are pruned (i.e., the overlapping
properties are removed from these lower-support clusters).
We note that pruning will li kely create overlapping cluster
fragments; these are clusters that are no longer maximum
sized (i.e., maximum frequent itemsets) and contain similar
properties. To ill ustrate, consider a list of three clusters c1 =
{A, B, C, D}, c2 = {A, B, E, F}, and c3 = {C, E} such that
support(c1) > support(c2) > support(c3). Since our
greedy approach chooses c1 as a final table, pruning creates
overlapping cluster fragments c2 = {E, F} and c3 = {E}. In
this case sincec3 ⊆ c2, these clusters can be combined during
thepruningstep. Thus, wemergeany overlappingfragments in
the cluster list. Case 2: the high-support cluster does not meet
the null storage threshold. Thus, it is partitioned until it meets
the null storage threshold. The partitioning processrepeatedly
removes the property p from the cluster that causes the most
null storage until it meets the null threshold. The reason for
removing p is to remove the maximum null storage from the
cluster possible in one iteration. Also, we note that support for
clusters is monotonic. That is, given two clusters c1 and c2,
c1 ⊆ c2 ⇐ support(c1) ≥ support(c2). With this property,
the cluster will still meet the given support threshold. After
removing p, the partitioning processhandles two cases. Case
2a: p exists in a lower-support cluster. Thus, p has a chance
of being kept in a n-ray table. Case 2b: p does not exist in
a lower-support cluster. This is the worst case, as p must be
stored in a binary table. Oncethe cluster is partitioned to meet
thenull threshold, it is considered a table andall l ower-support
clusters with overlapping properties are pruned.

Example. From our running example in Figure 3,
two clusters would be passed to the partitioning phase:
{P1, P2, P3, P4} and {P1, P2, P5, P6}. The cluster

{P1, P2, P3, P4} has the highest support value (as given
in Figure 3 (b)), thus it is handled first. Since this cluster
does not meet the null threshold (as given in Figure 3 (c))
the cluster is partitioned (Case 2) by removing the property
that causes the most null storage, P2, corresponding to the
property with minimum usage in the property usage li st in
Figure 3 (a). Since P2 is found in the lower-support cluster
{P1, P2, P5, P6} (Case 2a), it has a chanceof being kept in
an n-ary table. Removing P2 from {P1, P2, P3, P4} creates
the cluster {P1, P3, P4} that falls below the null threshold
of 20% (as given in Figure 3 (d)), thus it is considered
a final table. Since {P1, P3, P4} and {P1, P2, P5, P6}
contain overlapping properties, P1 is then pruned from
{P1, P2, P5, P6}, creating cluster {P2, P5, P6}. Since
cluster {P2, P5, P6} also falls below the null threshold (as
given in Figure 3 (d)), it would be added to the final table
list in the next iteration. With the two final tables created in
this example, and the initial final table list created by the
clustering phase, Figure 3 (e) gives the combined final table
list.

Algor ithm. Algorithm 3 gives the psuedocode for the
partitioning phase, taking as arguments the list of property
clusters (C) from Phase I, sorted in decreasing order by
support value, the property usage li st (PU ), and the null
threshold value (Threshnull). The algorithm first initializes
the final table list Tables to empty (Line 2 in Algorithm 3).
Next, it traverseseach property cluster clust1 in list C, starting
at the cluster with highest support (Line 4 in Algorithm 3).
Next, clust1 is removed from the cluster list C (Line 5 in
Algorithm 3). The algorithm then checks that clust1 meets
the null storage threshold (Line 6 in Algorithm 3). If this is
the case, it considers clust1 a final table (i.e., Case 1), and
all l ower-support clusters with properties overlapping clust1
are pruned and cluster fragments are merged. (Lines 18 to 19
in Algorithm 3). If clust1 does not meet the null theshold, it
must bepartitioned (i.e., Case 2). The algorithm findsproperty
p causing maximum storage in clust1 (corresponding to the
minimum usage count for clust1 in PU ) and removes it.
(Lines 9 and 10 in Algorithm 3). If p exists in a lower-
support cluster (i.e., Case 2a), iteration continues, otherwise
(i.e., Case 2b) p is added to Tables as a binary table (Lines12
and 14 in Algorithm 3). Partitioning continues until clust1
meets the null storage threshold (Line 8 in Algorithm 3).
When partitioning finishes, the algorithm considers clust1 a
final table, and prunes all l ower-support clusters of properties
overlapping with clust1 while merging any cluster fragments
(Lines 18 to 19 in Algorithm 3).

V. IMPORTANT RDF CASES

In this section, we highlight two cases for RDF that are
important to our schema creation technique. The first case
deals with multi -valued properties (i.e., properties defined
multiple times for the same subject). The second case covers
with reification; an RDF data model structure that allows
statements to be made about other whole RDF statements.
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A. Multi -Valued Properties

We assumed thus far that candidate properties for storage in
n-ary tables are single-valued (i.e., defined once for each sub-
ject). However, multi -valued properties exist in RDF data that
would cause redundancy if stored in n-ary tables. For example,
given the data in Figure 5(a), an n-ary table (Figure 5(b))
stores the date property redundantly due to the multi -valued
attribute auth. We now outline a method to deal with multi -
valued properties in our schema creation framework.

If a certain amount of redundant datastorage is tolerated, we
propose the following method to handle it in our framework.
Each property is assigned a redundancyfactor (rf ), a measure
of repetition per subject in the RDF data set. If Nb is the total
number of subject-property baskets, the redundancy factor for
a property p is computed as rf = PU.count(p)

support(p)×Nb
. Intuitively,

the term PU.count(p) is a count of the actual property
usage in a data set, while the term support(p) × Nb is the
usage count of a property if it were single-valued. We note
that the property usage table (PU ) stores the usage count
(includingredundancy) of each property in thedataset (e.g., in
Figure 5(a), PU.count(auth) = 2 and PU.count(date) = 1),
while the subject-property basket stores a property defined
for a subject only once (e.g., in Figure 5(a) the basket is
book1 → {auth, date}). For the data in Figure 5(a), the rf

value for auth is 2 ( 2
1×1 ), while for date it i s 1 ( 1

1×1 ). To
control redundancy, a redundancy threshold can be defined
that sets the maximum rf value aproperty can have in order
to quali fy for storage in an n-ary table. We note that rf values
multiply each other, that is, if two multi -valued properties are
stored in an n-ary table, the amount of redundancy is rf1×rf2.
Properties not meeting the threshold are explicitly disqualified
from the clustering and partitioning phases, and stored in a
binary table. For example, the policy in Figure 5(c) stores the
auth property in a separate binary table, removing redundant
storage of the date property. If the redundancy threshold is 1,
multi -valued properties are not allowed in n-ary tables, thus
they are all stored in binary tables.

The null calculation (as discussed in Section IV-B) for
clusters are affected if multi -valued properties are allowed.
Due to spacerestrictions, we do not list new calculations for
this case. However, we outline how the calculation changes
using the example in Figure 5(d), where Prop 1 is single-
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Fig. 6. Reification Example

valued (with rf = 1), while Prop 2 and Prop 3 are multi -
valued (with rf = 2). The shaded columns of the table
represent the property usage for each property if they were
single valued (as calculated in the rf equation). Using these
usage values, the initial null storage value for a table can be
calculated as discussed in Section IV-B. However, the final
calculation must account for redundancy. In Figure 5(d), the
table displays three redundancy tiers. Tier 1 represents rows
with all threeproperties defined, thus having a redundancy of
4 (the rf multiplication for Prop 2 and Prop 3). Tier 2 has a
redundancy of 2 (the rf for Prop 2). Thus, the repeated null
values for the Prop 3 column must be calculated. Tier 3 does
not have redundancy (due to the rf value of 1 for Prop 1). In
general, the null calculation must be aware of the redundancy
distribution in the tables containing multi -valued properties.

B. Reification

Reification is a special RDF data model property that
allows statements to be made about other RDF statements.
An example of reification is given in Figure 6, taken from
the Uniprot protein annotation data set [7]. The graph form
of reification is given in Figure 6(a), while the RDF triple
format is given at the top of Figure 6(b). The Uniprot RDF
data stores for each < protein, Enzyme, enzyme > triple
information about whether the relationship between protein
and enzyme has been verified to exist. This information is
modeled by the Certain property, attached as a vertex for the
graph representation in Figure 6(a). The only viable method
to represent such information in RDF is to first create a
new subject ID for the reification statement (e.g., reifID1 in
Figure 6(b)). Next, the subject, property, and object of the
reified statement are redefined. Finally, the property and object
are defined for the reificationstatement (e.g., certain and false,
respectively, in Figure 6(b)). We mention reification as our
data-centric method greatly helps query processing over this
structure. Notice that for reification a set of at least four
properties must always exist together in the data. Thus, our
schema creation method will cluster these properties together
in an n-ary table, as given in Figure 6(b). Our framework
also makes an exception to allow reification propertiessubject,
property, and object to exist in multiple n-ary tables for
each reification edge. This exception means that a separate
n-ary table will be created for each reification edge in the
RDF data (e.g., Certain in figure Figure 6), Section VI will
experimentally test this claim over the real-world Uniprot [7]
data set.



Statistics DBLP DBPedia Uniprot
Triples 13.5M 10M 11M
No. Properties 30 19K 86
Mult-Val. Properties 14% 32% 41%
Reified Triples 0 0 232K
% null for wide table 95% 99% 91%

TABLE I

DATA SET STATISTICS

VI. EXPERIMENTS

This section provides experimental evidence that our data-
centric schema creation approach outperforms the triple-store
and the decomposed storage approaches for query processing
on a relational database. Three real-world data sets are used
from three different domains. We test the DBLP [20], DB-
Pedia [21], and Uniprot [7] RDF data sets with five queries
based on previous benchmarks on this data [31], [12]. All
experiments are performed using PostgreSQL.

The rest of this section is organized as follows. Section VI-
A provides an overview of our real-world RDF data sets.
Section VI-B gives the output of our data-centric schema
creation algorithm for each RDF data set. Section VI-C
describes the system setup for our experiments. Section VI-D
studies performance for a set of benchmark queries that run
over threereal-world data sets.

A. RDF Data Sets

In this section, we give an overview of three publicly
available real-world RDF datasets. Specifically, the datasets
we use in our experiments are the DBLP [20], DBPedia [21],
and Uniprot [7] protein annotation data sets. Table I gives a
handful of overview statistics for each of the data sets.

DBLP. The Digital Bibliography and Library Project
(DBLP) is a well -known database tracking bibliographical
information for major computer science journals and confer-
ence proceedings. The DBLP server indexes more than 955K
computer science articles. For our experiments, we use the
SwetoDBLP [20] data set, an RDF version of the DBLP
database with approximately 13M triples. In total, the DBLP
dataset contains 30 properties, of which only 14% are multi -
valued (i.e., appearing more than once for a given subject).
Also, the DBLP data set does not make use of reification, and
if stored in a single wide property table the data would cause
95% null storage.

DBPedia. The DBPedia [21] data set encodes Wikipedia
data in RDF. For our experiments, we use a subset of the
data that encodes infoboxes found onthe English version of
Wikipedia. In total, thisdataset contains10M triples. DBPedia
uses 19K unique RDF properties in encoding; a high value
relative to the other data sets. In total, 32% of these properties
are multi -valued. DBPedia does not make use of reification. If
stored in a wide property table, the DBPedia data shows the
highest percentage of null storage at 99%.

Uniprot. The Uniprot [7] dataset is a large-scale database
of protein sequence and annotation data. This dataset joins
threeof the largest protein annotation databases in the world
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Fig. 7. Data Centric Schema Tables

(Swiss-Prot, TrEMBL, and PIR) into one comprehensive data
set open to the research community at large. Uniprot stores a
wide array of data, rangingfrom cellular components, proteins,
enzymes, and citations for journal publications about each
protein. In total, the Uniprot data we use is 11M triples. A
total of 86 propertiesexist in thisdataset where41% aremulti -
valued. The Uniprot dataset also contains roughly 23K reified
statements. If thisdataset were to bestored usinga single wide
property table, the total null storage would be 91%.

B. Data-Centric Schema Tables

This section gives an overview of the tables created by our
data-centric schema approach for the threedata sets discussed
in Section VI-A. For this purpose, the support parameter was
set to 1% (a generally accepted default support value [32]),
the null threshold value was set to 30%, and the redundancy
threshold was set to 1.5. Figure 7(a) gives the breakdown of
the percentageof all properties for each data set that are stored
in either n-ary tables or binary tables (rows 1-3). Also, this
table gives the number of multi -valued properties in each data
set (row 4), along with the minimum redundancy factor from
all these properties (row 5). Only the Uniprot data set had
multi -valued properties that met the redundancy threshold of
1.5, thus six of theseproperties(17%) werekept in n-ary tables
(given in row 6).

For the tablescreated for each dataset, Figure7(b) gives the
table type (i.e., binary or n-ary tables) and the distribution of
properties stored in each table type for each data set. We note
that thenumbersgiven for each dataset sum to thetotal number
of propertiesgiven in the first row in Figure 7(a). For example,
the DBLP dataset contains 30 properties (Figure 7(a)), and the
sum of all properties in Figure7(b) for DBLP sum to 30. Also,
the number of properties in binary tables given in Figure 7(b)
correspond to the percentages given in the second row in
Figure 7(a) (e.g., for DBLP .40*30 = 12), while the number
of properties in n-ary tables given in Figure 7(b) correspond
to the percentages in the third row Figure 7(a) (e.g., for DBLP
.60*30 = 18).

For the 60% of the properties stored in property tables
for the DBLP dataset, large tables sizes (i.e., with three and
greater properties) are favored. Thisnumber implies that larger



clusters of properties were found to exist often in the data.
For the Uniprot data arange of table sizes are favored, while
the DBPedia data set favors both smaller and larger property
tables.

C. Experimental Setup

This section gives the details of our experimental setup.
The experimental machine used in our experiments is a 64-bit
single-processor 3.0 GHz Pentium IV, running Feisty Ubuntu
Linux with 4Gbytes of memory. The hard-disk is a standard
SCSI setup with a 80GB volume.

1) Implementation: All experiments were evaluated using
the open-source PostgreSQL 8.0.3 database. Our schema
creation module was built using C++, and integrated with
PostgreSQL database. Specifically, our module reads any RDF
dataset (locally or remotely) in any standard transport format.
After the schema creation process, SQL scripts are created for
table creation and forwarded to PostgreSQL.

2) Storage Details: For all of the approaches, a dictionary-
encodingscheme is used, meaning that each string in the RDF
dataset is mapped to a unique 32-bit integer. Thus, each table
stores 32-bit integers, while the integer-to-string dictionary is
stored in aseparate table. For thedictionary table, two B+ trees
exist: one clustered on the integer (i.e., encoding) column,
while an unclustered index is built over the string column.
As the bulk of query processing is performed on integers
instead of strings, the dictionary-encoding scheme was shown
to provide an oder-of-magnitudeperformanceimprovement for
all storage approaches in our experiments.
Tr iple-Store. We implement the triple-store similar to many
RDF storage applications using triple-stores as their primary
storage approach (e.g., see [8], [11], [13], [14]), which is
a single table containing three columns corresponding to an
RDF subject, property, and object. The table has threeB+ tree
indices built over it. The first index is clustered on (subject,
property, object), second index is unclustered on (property,
object, subject), and the third index is unclustered on (object,
subject, property).
Decomposed Storage. We implement the decomposed RDF
storage methodas follows: each table corresponds to a unique
property in the RDF dataset. A clustered B+ treeindex is built
over the subject column, while an unclustered B+ tree index
is built over the object column.
Our Data-Centr ic Approach. Our data-centric approach
results in both n-ary and binary tables. For n-ary tables, a
clustered B+ treeindex is built over the subject column, while
an unclustered B+ tree index is built over all subsequent
columns (representing properties). For binary tables, indices
were built according to the decomposed model described
above.

D. Experimental Evaluation

This section provides performance numbers for a set of
benchmark queries on the data sets introduced in Section VI-
A. Thequeriesused in these experimentsarebased on previous
benchmark queries for Uniprot [12] and DBPedia [31]. We
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Fig. 8. Query 1

note that since the benchmarks were originally designed for
their respective data, we first generalize the query in terms
of its signature, then give the specific query for each data
set. In total, we use five queries with the following signatures:
predetermined properties retrieving all subjects, single subject
retrieving all defined properties, administrative query, prede-
termined properties retrieving specific subjects, and reification
retrieval. For each query, weplot thequery runtimefor each of
the threestorage approaches: triple-store, decomposed storage
model (DSM), and our proposed data-centric schema creation
approach. All ti mes given are the average of several runs,
with the cache cleared between each run. In general, our data-
centric schema creation approach shows superior performance
over all queries. This performanceimprovement is mainly due
to thereduction of joins in thequery execution, dueto common
properties in the queries existing in the same table.

1) Query 1: Predetermined props/all subjects: Query 1 asks
about a predetermined set of RDF properties. The general
signatureof this query is to select all records for which certain
properties are defined. Figure 8(a) gives the runtime for this
query across all three data sets, while Figure 8(b) gives the
speedup of the data-centric approach over the triple-store and
decomposed method.
DBLP. For DBLP, this query accesses six RDF properties, and
translates to Display the author, conference, title, publisher,
date, and year for all conference articles. The data-centric
approach stores all relevant properties in a single relation,
thus producing a single table access (table distributions for
our data-centric approach are discussed in Section VI-B).
Meanwhile, both the decomposed and triple-store approaches
involve six table accesses including subject-to-subject joins,
with the triple-store involving five self-joins, respectively. Due
to the relative number of table accesses and joins, the data-
centric approach shows superior performance with a runtime
of 1.61 seconds, compared to 59.15 and 105.56 seconds for
the decomposed and triple-store approaches. Thisperformance
translates to a relative speedup of a factor of 36 and 65,
respectively (Figure 8(b)).
DBPedia. For DBPedia, this query accesses five RDF proper-
ties, and translates to Display population information for all
cities. The triple-store approach involved five table accesses
and four self-joins, with the decomposed approach using
five table accesses and four joins. The data-centric approach
used three table accesses and two joins. The runtimes for
the decomposed and data-centric approaches are similar and
showed sub-second performance. While thequery timesfor the
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DSM 8.837 0.025 5.387
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Fig. 9. Query 2

decomposed and data-centric approacheswere sub-second, the
relative speedup of 14 in this case is large.
Uniprot. For Uniprot, this query accesses six RDF properties,
and translates to Show all ranges of transmembrane regions.
The data-centric approach required a total of five table ac-
cesses, where the majority of the joinswere subject-to-subject,
making extensive use of the clustered indices. Meanwhile, the
decomposed approach required a total of six table accesses.
The triple-store approach also used six table accesses, with
five self-joins being generated over the table. The data-centric
approach showed better relative performance, with a runtime
of 18.9 seconds, compared to 23.92secondsand 72.61seconds
over the decomposed and triple-store approaches, translating
to a relative speedup of factors of 1.2 and 3.8, respectively.
Discussion. Overall , the data-centric approach shows better
relative runtime performance for Query 1. Interestingly, the
data-centric approach showed a factor of 65 speedup over the
triple-store for the DBLP query, and a factor of 36 speedup
over the decomposed approach. The DBLP data is relatively
well -structured, thus, our data-centric approach stores a large
number of properties in n-ary tables. For this query, the
number of table-accesses and joins decreased significantly due
to this storage scheme.

2) Query 2: Single subject/all defined properties: Query 2
involves a selection of all defined properties for a single RDF
subject (i.e., a single record). Figure 9(a) gives the runtime
for this query across all three data sets, while Figure 9(b)
gives the relative speedup of the data-centric approach over
the triple-store and decomposed method.
DBLP. For DBLP, this query accesses 13 RDF properties, and
translates to show all i nformation about a particular confer-
ence publication. The decomposed and triple-store approach
involved 13 table accesses, while the data-centric approach
involved nine. The performancebetween the decomposed and
our data-centric approaches is similar in this case, with run
times of 8.84 seconds and 8.06 seconds, respectively. This
similarity is due to the fact that some tables in the data-
centric approach contained extraneous properties, meaning
some stored properties were not used in the query. Thus, the
reduction of joins in the data-centric methodwas offset by the
overhead of storing extra property data stored in each tuple.
DBPedia. For DBPedia, this query accesses 23 RDF prop-
erties, and translates to show all i nformation about a par-
ticular cricket player. Both the data-centric and decomposed
approachesexhibit a similar relative performanceto the triple-
store with sub-second runtimes. However, the data-centric

DBLP DBpedia Uniprot

Triple-Store 47.49 10.24 38.82
DSM 40.31 2.24 9.38
Data-Centric 1.91 2.12 2.95
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Fig. 10. Query 3

approach accessed a total of 17 tables, compared to the 23
needed by the decomposed and triple-store approaches. Thus,
the speedup measures for the data-centric approach show a
superior performance at 15.13 and 3K over and decomposed
and triple-store approaches, respectively.
Uniprot. For Uniprot, this query accesses 15 RDF properties,
and translates to show all i nformation about a particular
protein. The decomposed and triple-store approach involved
fifteen table accesses along with fourteen subject-to-subject
joins. For the triple-store, this fact is due to the need to select
each property from the triple-store, plus the self join over the
table to answer the query. For the decomposed approach, these
accesses and joins were due to each property being stored
in a separate table. Meanwhile, the data-centric approach
involved 11 table accesses generating 10 subject-to-subject
joins. Due to this fact, the data-centric approach shows better
relative performance as given in Figure 9(a), with a runtime
of 3.75 seconds, compared to 5.38 seconds and 15.51 seconds
for the decomposed and triple-store approaches, respectively.
This translates to a speedup of 4.14 and 1.44, respectively
(Figure 9(b)).
Discussion. Overall , the data-centric approach shows better
relative runtime performance to that of the other schema
approachesfor Query 2. This ismainly dueto properties stored
in the same n-ary table also being accessed together.

3) Query 3: Administrative query: Query 3 is an admin-
istrative query asking about date ranges for a set of recently
modified RDF subjects in thedataset. Thegeneral signatureof
this query is a range selection over dates. Figure 10(a) gives
the runtime for this query across all three data sets, while
Figure 10(b) gives the relative speedup of the data-centric
approach over the triple-store and decomposed method.
DBLP. This query accesses threeRDF properties, and trans-
lates to List title, author, and date of recently modified entries
(recent is≥ 2005). Thedata-centric approach required a single
table access, with all propertiesclustered to asingletable. Both
the decomposed and triple-store approaches required separate
table accesses for the range selection and joins to retrieve
all RDF properties. Thus, the data-centric approach shows a
speedup over the decomposed and triple-store approaches of
24.8 and 21, respectively.
DBPedia. For DBPedia, this query accesses 23 RDF proper-
ties, and translates to Show information for recently updated
sports information (recent > 2006). The data-centric approach
shows similar performance to the decomposed approach due
to all data being stored in binary tables for both approaches.
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Fig. 11. Query 4

No discerniblespeedupis present between thedata-centric and
decomposed approaches, while the data-centric approach saw
a speedup of 4.83 over the triple-store.
Uniprot. For Uniprot, thisquery accesses four RDF properties,
and translates to List version and creation date of recently
modified entries (recent is > 2002). One property (i.e., mod-
ified date) is used in the range selection. The data-centric
approach required only two table accesses and one join. The
decomposed approach used four table accesses, causing three
joins, while the triple-store approach used four table accesses
with three self-joins. The, the data-centric approach shows a
speedup over the decomposed and triple store of 3.18 and
13.16, respectively.
Discussion. The data-centric approach shows better relative
performanceto that of theother schema approaches. Again, for
the well -structured DBLP data, data-centric approach stored
all query properties in a single table, causing a factor of
24 speedup over the triple-store, and a factor of 21 speedup
over thedecomposed approach. Thedata-centric approach also
showed goodspeedupfor the semi-structured Uniprot datadue
to reduction of joins and table accesses.

4) Query 4: Predetermined props/spec subjects: Query 4
retrievesa specific set of properties for a particular set of RDF
subjects. The general signature of this query is a selection of
a set of RDF subjects (using the IN operator). Figure 11(a)
gives the runtimefor thisquery acrossall threedatasets, while
Figure 11(b) gives the relative speedup of the data-centric
approach over the triple-store and decomposed method.
DBLP. For DBLP, this query accesses five RDF properties,
and translates to Show author, conference, title, abstract, and
year for all papers in SIGMOD,VLDB,ICDE (1999-2003). The
data-centric approach stores all relevant properties in a single
relation, thus producing a single table access and a selection
using the IN operator. Meanwhile, both the decomposed and
triple-store approaches involve five table accesses including
three subject-to-subject joins and one subject-to-object joins,
with the triple-store involving four self-joins. The data-centric
approach had a runtime of 4.46 seconds, compared to 7.9 for
the decomposed approach and 72.5 seconds for the triple-store
approach. Thisperformancetranslates to aspeedup of 1.79and
16.24, respectively.
DBPedia. For DBPedia, thisquery translates to Two degreesof
separation from Kevin Bacon, and involves one RDF property
accessed a total of three times in order to find degrees of
separation from a particular RDF subject. The data-centric and
decomposed methods show similar performancedueto the fact

Triple-Store DSM Data-
Centric

Uniprot 51.74 26.22 4.96
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Fig. 12. Query 5 - Reification

that both methods accessa similar number of tables. Thus the
speedup over the decomposed approach is minimal. However,
thedecomposed approach showed a factor of 140speedup over
the triple-store due to the high selectivity of the two self-joins.
Uniprot. For Uniprot, thisquery accessesfour RDF properties,
and translates to Show all proteins associated with specific
organisms and species of that organism. The data-centric
approach requires a total of two table accesses using one
subject-to-object join, while the decomposed and triple-store
methods involved four table accesses and threejoins. For this
query, the tables used in the data-centric approach contained
extra properties. However, even with the extra storage the
reduction in joins led to better a query runtime of 4.71
seconds, compared to 8.84and 41seconds for the decomposed
and triple-store approaches. This performance translates to a
speedup factor of 1.88 and 8.71, respectively.
Discussion. Again, the data-centric approach shows better
overall performance to that of the other schema approaches.
For the Uniprot and DBLP queries, the data-centric approach
shows good speedup over the triple-store, with a factor of
1.8 speedup over the decomposed approach, as given in
Figure 11(b). This query again shows the need for a data-
centric schema creation approach that finds and stores related
properties in the same table.

5) Query 5: Reification: Query 5 involves a query using
reification. For this query, only the Uniprot data set is tested,
as it is the only experimental data set that makes use of
reification. The query here is to display the top hit count for
statements made about proteins. In the Uniprot dataset, hit
countsarestored ona subset of thestatementsusingreification
(much like the certain attribute discussed in Section V-B).
Thus, all reification statements need to be found with the
object property corresponding to a protein, along with the hit
count (modeled as the hits property) for each statement. The
results for this query are given in Figure 12, with Figure 12(a)
giving the runtime, while Figure 12(b) displays the relative
speedup over the decomposed and triple-store approaches. The
large differencein performancenumbershere is mainly due to
the table accesses needed by both the decomposed and triple-
store to reconstruct the statements used for reification. Our
data-centric approach involved a single table access with no
joins, due to the fact that the reification structure being clus-
tered together in n-ary tables. Thus, the data-centric approach
shows a speedup of 5.29 and 10.44 over the decomposed and
triple-store approaches, respectively.

6) Relative Speedup: Figure 13(a) gives the relative
speedup for the data-centric approach over the triple-store
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Fig. 13. Relative Speedup

approach for each query and data set, while Figure 13(b)
gives the same speedup data over the decomposed approach.
The DBLP data set is well -structured, and our data centric
approach showed superior speedup for queries 1 and 3 over
the DBLP data as it clustered all related data to the same
table. Thus, the queries were answered with a single table
access, compared to multiple accesses and joins for the triple-
store and decomposed approaches. For DBPedia queries 1
and 2, the data-centric approach showed speedup over the
decomposed approach due to accessing the few n-ary tables
present to store this data. However, this data was mostly semi-
structured, thus queries 3 and 4 showed similar performance
as they involved the same table structure. The speedup over
the triple-store for DBPedia was superior as queries using
the data-centric approach involved tables (1) with smaller
cardinality and (2) containing, on average, only the properties
necessary to answer the queries, as opposed to the high-
selectivity joins used by the large triple-store. Our data-centric
approach showed a moderate speedup performance for the
Uniprot queries due to two main factors: (1) some data-
centric tablescontained extraneouspropertiesandmulti -valued
attributes that caused redundancy, and (2) the semi-structured
nature of the Uniprot data set led to a similar number of
relative joins and table accesses. However, the speedup for
Uniprot was still modest across the board.

VII . CONCLUSION

This paper proposed a data-centric schema creation ap-
proach for storing RDF data in relational databases. Our
approach derivesabasic structure from RDF data andachieves
a good balance between using n-ary tables (i.e., property
tables) and binary tables (i.e., decomposed storage) to tune
RDF storage for efficient query processing. First, a clustering
phase finds all related properties in the data set that are
candidates to be stored together. Second, the clusters are sent
to a partitioning phase to optimize for storage of extra data
in the underlying database. Furthermore, our approach han-
dles multi -valued properties and RDF reification effectively.
We compared our data-centric approach with state-of-the art
approaches for RDF storage, namely the triple store and
decomposed storage, using queries over threereal-world data
sets. Results show that our data-centric approach shows large
orders of magnitude performanceimprovement over the triple
store, and speedup factors of up to 36 over the decomposed
storage approach.
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