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Abstract— Very recently, the vision of the Semantic Web has
brought about new challenges in data management. One fun-
damental research isaue in this arena is gorage of the Resource
Description Framework (RDF): the data model at the core of the
Semantic Web. In this paper, we study a data-centric approach
for storage of RDF in relational databases. The intuition behind
our approach is that each RDF dataset requires a tailored table
schema that achieves efficient query processng by (1) reducing
the nedl for joinsin the query plan and (2) keeping null storage
below a given threshold. Using a basic structure derived from the
RDF data, we propose a two-phase algorithm involving clustering
and partitioning. The clustering phase aims to reduce the neal
for joins in a query. The partitioning phase aims to optimize
storage of extra (i.e, null) data in the underlying relational
database. Furthermore, our approach does not assume query
workload statistics. Extensive experimental evidence using three
publicly avail able real-world RDF data sets (i.e., DBL P, DBPedia,
and Uniprot) shows that our schema creation technique provides
superior query processng performance mmpared to previous
state-of-the art approaches.

|. INTRODUCTION

Over the past decale, the W3C [1] has led an effort to
build the Semantic Web. The purpose of the Semantic Web is
to provide a @mmon framework for data-sharing aaoss ap-
plicions, enterprises, and communities [2]. Currently, many
heterogeneous data sources exist in different applicaions and
domains aaoss the world, causing interoperability problems
when these data sources need to be shared acossboundiries.
The Semantic Web establi shes a means to solve this problem
by giving data semantic meaning, allowing machines to con
sume, uncderstand, and reason abou the structure and pupaose
of the data. Furthermore, the Semantic Web is nat distinct
from the World Wide Web (WWW). Rather, it is designed to
be complementary to the WWW, tying together data from a
range of heterogeneous urces. In thisway, the Semantic Web
resembles a worldwide database, where humans or computer
agents can pose semanticadly meaningful queries and receve
answers from a variety of distributed and dstinct sources.

The ore of the Semantic Web is built on the Resource
Description Framework (RDF) data model. RDF provides a
simple syntax, where eat data item is broken down into a
<subject, property, object> triple. The subjed represents
an entity instance, identified by a Uniform Resource Identifier
(URI). The property represents an attribute of the entity, while
the objed represents the value of the property. As a simple
example, the following RDF triples model the fad that a

person Johnis a reviewer for the conference ICDE 2009

personl hasNanme ‘‘John’’
conf | CDEO9 hasTitle ‘1 CDE 2009’
personl i sRevi ewer For conf| CDEO9

’mokbel @s. um. edu

While the ubiquity of the RDF data model has yet to be red-
ized, many application areas and use-cases exist for RDF [3],
such asintelli gence[4], mobil e seach environments[5], socia
networking [6], and bology and life science [7], making it an
emerging and challenging research damain.

An important and fundamental challenge exists in storing
and querying RDF data in a scdable and efficient manner,
making RDF data management a problem aptly suited for
the database community. In fad, many RDF storage solu-
tions use relational databases to achieve this scdability and
efficiency, implementing a variety of storage schemas. To
illustrate, Figure 1(a) gives a sample set of RDF triples for
information abou four people and two cities, along with a
simple query that asks for people with bah a name and
website. Figures 1(b)- 1(d) give three possble gproades to
storing these sample RDF triples in a DBMS, along with the
transated RDF queries given in SQL. A large number of
systems use a triple-store schema [8], [9], [10], [1]], [12],
[13], [14], where eat RDF triple is gored diredly in a three
column table (Figure 1(b)). This approach suffers during query
exeaution dwe to a proliferation o self-joins, as shown in
the SQL query in Figure 1(b). Ancther schema gproadc is
the property table [9], [15], [12], [16], [17] (Figure 1(c))
that models multiple RDF properties as n-ary table columns.
The n-ary table diminates the need for a join in our query.
However, as only one person ou of four has a website, the
n-ary table contains a high nunber of nulls (i.e., the data
is emi-structured), potentially causing a high owrhea in
guery processng [18]. The decomposed storage schema [19)]
(Figure 1(d)) stores triples for eath RDF property in a binary
table. The binary table gproach reduces null storage, but
introduces a join in our query.

In this paper, we propcse anew storage solution for RDF
data that aims to avoid the drawbadks of these previous
approaches, i.e., self joins on atriple table, ahighratio of null
storage in property tables, and the proliferation of joins over
binary tables. Our approach can be considered data-centric, as
it tailors a relational schema based on a derived structure of
the RDF data with the explicit goal of providingefficient query
performance. The main intuition diving this data-centric
approach isthat RDF data sets acossdiff erent domainsrequire
unique storage schemas. Furthermore, our approach does not
assume aquery workload for schema aeaion, makingit useful
for situations where a query workload canna be reliably
derived, likely in cases where a majority of queries on an
RDF knowledge base ae ad-hoc. In order to build a relational
schema without a query workload and achieve dficient query



TS
<Personl, Name, Mike> Subj Prop Obj
<Personl, Website, ~mike> Personl | Name Mike
<Person2, Name, Mary> Website
<Person3, Name, Joe> Name
<Person4, Name, Kate>
<Cityl, Population, 200K>

Personl ~mike

Person2 Mary

Person3 | Name Joe

Persond Name Kate

<City2, Population, 300K> Cityl Pop. 200K
City2 Pop. 300K
Query SELECT T1.0bj,T2.0bj
“Find all people that have both a FROM TS T1,TS T2
name and website” WHERE T1.Prop=Name AND
T2.Prop=Website AND
T1.Subj=T2.Subj;
(a) RDF Triples (b) Triple Store
Website
Name Subj Obj
Subj Obj Personl | ~mike

s
Population Personl | Mike ———
P

Person2 | Mary
Person3 | Joe

Cityl 200K
City2 | 300K
SELECT T1.0bj,T2.0bj

FROM Name T1,Website T2
WHERE T1.Subj=T2.Subj;

T Mike | ~mike Cityl | 200K
City2 | 300K

P
P
P

Persond Kate

Persond | Kate

SELECT T.Name,T.Website
FROM NameWebsite T
Where T.Website IS NOT NULL;

(¢) N-ary Table
Fig. 1.

(d) Binary Tables
RDF Storage Example

processng, our data-centric goproach defines the following
trade off: (1) storing as much RDF data together, reducing,
on average, the nedl for joins in a query plan, and (2) tuning
extra storage (i.e., null storage) to fall below a given threshold.

Our data-centric schema aedion approach involves two
phases, namely clustering, and partitioning. The clustering
phase scans the RDF data to find groups of related properties
(i.e., properties that always exist together for a large number
of subjeds). Propertiesin a cluster are candidates to be stored
together in an nrary table. Likewise, propertiesnot in a duster
are candidates to be stored in binary tables. The partitioning
phase takes clusters from the dustering phese and balances the
trade off between storing as many RDF propertiesin clusters as
possble while kegoing nul storage to a minimum (i.e., below
a given threshald). Our approach also handles cases invalving
multi-valued properties (i.e., properties defined multiple times
for a single subjed) and reification (i.e., extra information
attached to a whole RDF triple). The output of our schema
credion approach can be considered a balanced mix of binary
and nrary tables based on the structure of the data.

The performance of our data-centric approach is badked
by experiments on three large pubicly available red-world
RDF data sets; spedficdly, the DBLP [20], DBPedia [21],
and Uniprot [7] data sets. Each of these data show a range
of schema nedls, and a set of benchmark queries are used to
show that our data-centric schema aeaion approach improves
guery processng compared to previous approadhes. Results
show that our data-centric gpproach shows orders of magnitude
performance improvement over the triple store, and speedup
fadors of up to 36 ower a straight binary table gpproach.

The rest of this paper is organized as follows. Sedion I
highlights related work. Sedion 11l gives an overview of
how our schema aedion approach interads with a DBMS.
Sedion |V givesthe detail s of our data-centric schema aedion
approach. Handling multi-valued attributes and reification in
RDF is covered in Sedion V. Sedion VI gives experimental
evidence that our approach ouperforms previous approaces.
Finally, Sedion VII concludes this paper.

Il. RELATED WORK

Previous approaches to RDF storage have focused on three
main categories. (1) The triple-store (Figure 1(b)). Relational
architedures that make use of a triple-store as their primary
storage scheme include Orade [9], [12], Sesame [11], 3-
Store [13], R-Star [14], RDFSuite [8], and Redland [10Q].
(2) The property table (Figure 1(c)). Due to the proliferations
of sef-joins involved with the triple-store, the property table
approach was proposed. Architedures that make use of prop-
erty tables as their primary storage scheme include the Jena
Semantic Web Toodlkit [15], [1€], [17]. Orade [9], [12] also
makes use of property tables as seconday structures, cdled
materialized join views (MJVs). (3) The decomposed storage
model [22] (Figure 1(d)) has recently been propcsed as an
RDF storage method [19], and has been shown to scde well
on column-oriented databases, with mixed results for row-
stores. Our work distingushes itself from previous work as
we provide atailored schema for eaty RDF data set, using a
balance between n-ary tables (i.e., property tables) and kinary
tables (i.e.,decomposed storage). Furthermore, we note that
previous approadches to bulding property tables have involved
the use of generic pre-computed joins, or construction by
a DBA with knowledge of query usage statistics [12]. Our
approach provides an automated method to place properties
together in tables based on the structure of the data.

Other work in RDF storage has dedt with storing pre-
computed paths in a relational database [23], used to answer
graph queries over the data (i.e., conredion, shortest path).
Other graph database gpproachesto RDF, including extensions
to RDF query languages to suppat graph queries, has been
proposed [24]. This work is outside the scope of this paper,
as we do nd study the dfed of graph queries over RDF.

Automated relational schema design has primarily been
studied with the assumption o query workload dtatistics.
Tedhniques have been proposed for index and materialized
view credion [25], horizontal and verticd partitioning [26],
[27], and partitioning for large scientific workloads [28]. Our
automated data-centric schema design methodfor RDF differs
from these goproaches in two main ways. First, our method
does not asume a set of query workload statistics, rather,
we base our method on the structure found in RDF data.
Seoond these previous £hema aediontechniquesdo nd take
into acourt the heterogeneous nature of RDF data, i.e., table
design that balances its hema between well-structured and
semi-structured data sets.

IIl. SYSTEM OVERVIEW AND PROBLEM DEFINITION

System Overview. Figure 2 gives an overview of how RDF
datais managed using arelational database system. In general,
two modues (represented by dashed redangles) exist outside
the database engine to hande RDF data and geries: (1) an
RDF import modue, and (2) an RDF query modue. Our
proposed data-centric schema aedion technique exists inside
the RDF import modue (represented by a shaded redangle in
Figure 2). The schema aedion processtakes as inpu an RDF
data set. The output of our technique is a schema (i.e., a set
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Fig. 2. RDF Query Architedure using DBMS

of relational tables) used to store the imported RDF data in
the underlying DBMS.

Problem Definition. Given a daa set of RDF triples,
generate a relationd table schema that achieves the foll owing
criteria. (1) Maximize the likdihoodthat queries will access
properties in the same table and (2) minimize the amourt of
exra (e.g., null) data storage.

Join operations along with extra table acceses prodwce a
large query processng owerhea in relational databases. Our
schema aedion method aims to acieve the first criterion by
explicitly aiming to maximize the anourt RDF data stored
together in nary tables. However, as we saw in the example
given in Figure 1, n-ary tables can lead to extra storage
overhead that also affeds query processng. Thus, our schema
cregion method aims to achieve the seoond criterion by
keegping the null storage in ead table below a given threshold.

IV. DATA-CENTRIC SCHEMA CREATION

In this ®dion, we present our data-centric schema aedion
algorithm for RDF data. The output of this algorithm can be
considered a balanced mix of binary and n-ary tables based on
the structure of the data. Unlike previous techniques that use
the same schema regardless of the structure of the data, the
intuition behind ou approadh is that different RDF data sets
require different storage structures. For example, a relatively
well-structured RDF data set (i.e., data where the majority
of relevant RDF properties are defined for the subjeds) may
result in a few large n-ary tables used as a primary storage
schema. On the other hand, a relatively semi-structured data
set (i.e., data that does not follow a fixed pattern for property
definition) may use alarge number of binary tables as its
primary storage schema.

The basic ideabehind ou approach is to implement a two-
phase dgorithm that: (1) finds interesting clusters of RDF
properties that are candidates to be stored in the same n-ary
table. This processrelates to the first criterion in our problem
definition (Sedion ) , and (2) partitionthe dustersto balance
the tradeoff between storing the maximum number properties
together, while ensuring that extra (i.e., null) storage is kept
to a minimum. This process relates to the second criterion
in ou problem definition. The output of our agorithm is a
schema that achieves a balance between a set of n-ary and
binary tables based on the structure of the RDF data. The
n-ary tables contain a subjed column with multiple RDF
property columns (i.e., a property table), while the binary
tables contain a subjed column with a single property column
(i.e., decompaosed storage tables).

The rest of this sdion introduces our data-centric schema
credion algorithm. First, an owverview of our algorithm is
given, followed by a presentation o its details.

A. Algorithm Overview and Data Sructures

Algorithm parameters. Our schema aeaion agorithm
takes as parameters an RDF data set, alongwith two numericd
values, namely suppat threshold and null threshold. Suppot
threshold is a value used to measure strength of correlation
between properties in the RDF data. If a set of properties
mees this threshold, they are candidates to exist in the same
n-ary table. The null threshold is the percentage of null storage
tolerated for ead table in the schema. This parameter exists
to tune the null storage to an appropriate level for efficient
guery processng.

Data Structures. The data structures for our algorithm are
built using an O(n) processthat scans the RDF triples once
(where n is the number of RDF triples). We maintain two data
structures: (1) Property usage list. Thisis a list structure that
stores, for ead property defined in the RDF data set, the court
of subjeds that have that property defined. For example, if a
property usage list were built for the data in Figure 1(a), the
property Website would have a usage count of one, since it
is only defined for the subjed Personl Likewise, the Name
property would have ausage court of four (defined for subjeds
Personl-Person4), and Popuation would have a ®@urt of
two. (2) Suljed-property baskets. This is a list of al RDF
subjeds mapped to their asociated properties (i.e., a property
basket). A single entry in the subjed-property basket structure
takes the form subjId — {prop1,--- ,prop,}, where subjId
is the Uniform Resource Identifier of an RDF subjed and its
property basket is the list of al properties defined for that
subjed. As an example, for the sample data in Figure 1(a),
six baskets would be aeaed by this process Personl —
{Name, Website}, Person2 — {Name}, Person3 —
{Name}, Persond — {Name}, Cityl — {Population},
and City2 — {Population}.

High-level algorithm. Our schema aedion agorithm in-
volves two main phases, namely clustering and partitioning.
The clustering phase (Phase I) aims to find groups of related
properties in the data set using the suppat threshold parame-
ter. Clustering leverages previous work from association rule
mining, spedficdly, maximum frequent itemset generation, to
look for related properties in the data. The idea behind the
clustering phese is that properties contained in the dusters
shoud be stored in the same n-ary table. The dustering phese
also creaes an initial set of final tables. These initial tables
consist of the properties that are not foundin the generated
clusters (thus being stored in hinary tables) and the property
clusters that do not need partitioning (i.e., in Phase Il). The
partitioning phase (Phase Il) takes the dusters from Phase
| and ensures that they contain a digoint set of properties
whil e kegping the null storage for ead cluster below a given
threshald.

Algorithm 1 gives the pseudocode for our schema aedion
process The function takes as arguments RDFTriples, an RDF



Algorithm 1 RDF Data-Centric Schema Credion

1. Function BuildRDFSchema(RDFTriples T, T hreshsup,Threshpi)
2: I* Preprocessing - Build Data Structures*/
3. Baskets, PropertyUsage < BuildDS(T)
4: [* Phase I: Clustering */
5. TablesI,Clusters « Cluster(Baskets, PropertyUsage, Threshsup,
Threshpyi1)
6: /* Phase II: Partitioning */
7. TablesII «— Patition(Clusters,PropertyUsage, Threshp.i1)
8. return TablesI U TablesII
Property [ Usage PC:  {PI, P2, P3, P4} (54% Support)
P1 1000 {PI, P2, P5, P6} (45% Support) | (D)
P2 500 {P7, P8} (30% Support)
P3 700 NullPercentage({P1, P2, P3, P4}) = 21%
P4 750 NullPercentage({P1,P2,P5, P6}) = 32% | (c)
. N — 40
P5 250 NullPercentage({P7, P8}) = 4%
P6 450 NullPercentage({P1, P3, P4}) = 13% @
P7 300 NullPercentage({P2,P5, P6}) = 5%
P8 350
P9 50 Tables = {P1,P3,P4}, {P2,P5,P6}, ©
@ {P7,P8}, {PY}

Fig. 3. RDF Data Partitioning Example

data set, and two threshold values Threshs.,,, the suppat
threshold for clustering, and T'hresh,,.;, the nul ratio thresh-
old for partitioning. The data structures, namely, the property
usage list and subjed-property baskets, are aeaed using the
BuildDS function (Line 3 in Algorithm 1). The first phase of
the dgorithm is invoked to find property clusters by cdling
the function Cluster, pasing the subjed-property baskets,
property usage list, suppat threshold, and null threshold as
arguments (Line 5 in Algorithm 1). Generated clusters that
need to be sent to the partitioning phase ae stored in the
list Clusters, while the initial list of final tables is gored in
list TablesI. Next, the second plase (partitioning) is darted
by cdling the method Partition (Line 7 in Algorithm 1),
passng as parameters the property clusters (Clusters), the
property usage list, and the null storage threshold. The func-
tion Partition returns the second part of the final table set,
TablesII. The union o tables lists T'ablesI and T'ablesII is
considered the complete final schema, and is returned by the
high-level algorithm (Line 8 in Algorithm 1).

Example. Figure 3 gives example data that will be used
as a running example throughot the rest of this ®dion to
demonstrate how our partitioning method works. Figure 3 (a)
gives an example property usage list with nine properties. The
data givenin Figure 1 will also be used in our examples. Phase
| is the topic of Sedion IV-B, while Phase Il is discussd in
Sedion IV-C.

B. Phase I: Clustering

Objedive. The objedive of the dustering plese is to
find property clusters, or groups of related properties using
the subjed-property basket data structure. Properties in ead
cluster are candidates to be stored together in the same n-ary
table. The canoricd argument for n-ary tables is that related
properties are likely to be queried together. Thus, storing

related properties together in a single table will reduce the
number of joins during query exeadution. The dustering phase
is also resporsible for building an initial set of final tables.
These tables consist of: (1) the properties that are not found
in the generated clusters (thus being stored in binary tables),
and (2) property clusters that mee the null threshold and do
not contain properties that overlap with other clusters, thus
not needed in the partitioning phase.

Main idea. The dustering phese involves two main steps.
Sep L. A set of clusters (i.e., related properties) are found
by leveraging the use of frequent itemset finding, a method
used in association rule mining [29]. For our purposes, the
terms frequent itemsets and clusters are used synonymously.
The idea behind the clustering phase is to find goups of
properties that are found often in the subjed-property basket
data structure. The measure of how often a duster occurs
is cdled its suppat. Clusters with high suppat imply that
many RDF subjeds have all of the properties in the duster
defined. In other words, high suppat implies that propertiesin
a duster are related sincethey often exist together in the data.
The metric for high suppat is st by the suppat threshold
parameter to our algorithm, meaning we consider a group d
properties to be a duster only if they have suppat greaer
than or equal to the suppat threshold. In general, we can
think of the suppat threshald as the strength of the relation
between properties in the data. If we spedfy a high suppat
threshold, the dustering phase will produce asmall number
of small clusters with highly correlated properties. For low
suppat threshold, the dustering phese will produce agreder
number of large dusters, with lesscorrelated properties. Also,
for our purposes, we ae only concerned with maximum sized
cluster (or maximum frequent itemsets); these are the dusters
that occur often in the data and contain the most properties.
Intuitively, we ae interested in these dusters because our
schema aedion method aims to maximize the data stored in
n-ary tables. It is important to nae that maximum frequent
itemset generation can produce dusters with overlappng
properties. Sep 2: Construct an initial set of final tables. This
list of tables contains (1) the properties that are not found
in generated clusters (thus being stored in binary tables) and
(2) the property clusters that med the null threshold and do
not contain properties that overlap with other clusters, thus
no recesstating Phase Il . Clusters that are added to the initial
final table list are removed from the duster list. The output of
the clustering phase is a list of initial final tables, and a set
of clusters, sorted in deaeasing arder by their suppat value,
that will be sent to the partitioning phase.

Example. Consider an example with a suppat threshold
of 15%, null threshold of 20%, and the six subjed-property
baskets generated from the data in Figure 1(a): Personl —
{Name, Website}, Person2 — {Name}, Person3 —
{Name}, Persond — {Name}, Cityl — {Population},
and City2 — {Population}. In this case we have four pos-
sible property clusters: { Name}, {Website}, { Population},
and {Name, Website}. The duster {Name} occurs in 4
of the 6 property baskets, giving it a suppat of 66%. The




Algorithm 2 Clustering

1: Function Cluster(Baskets B,Usage PU,Threshsyp,Threshpqii)
2 Clusters «— GetClusters(B, Threshsup)

3. /* Initialize fina table set */

4. Tables «+ properties not in PC /* Binary tables */
5: for all clust; € PC do
6:
7
8
9

OK « false
/* Test 1: cluster is below null threshold */
if Null%(clusty, PU) < Threshyq; then

: OK «+ true
10: /* Test 2: cluster doesn't contain overlapping properties */
11 for all clusts € PC if clusty N clusts # ¢ then OK «— false
12 end if
13 if OK then Tables < Tables U clusty; Clusters «— Clusters —
clusty
14: end for

15. return Tables,Clusters

cluster { Population} occursin 2 o 6 baskets (with suppat
33%). The dusters {Website} and { Name, Website} occur
in 1 o the 6 property baskets, giving them a suppat of
16%. In this case, the { Name, Website} is generated as a
cluster, since it meds the suppat threshold and has the most
passhle properties. Note the single property {Population}
is not considered a duster, and would be added to the initial
final table list. Note dso that this arrangement corresponds to
the tables in Figure 1(c), and that the { Name, Website} table
contains 25% null values. With the null threshald of 20%, the
initial final table list would contain { Population}, while the
cluster list would be set to { Name, Website}, as it does not
med the null threshold.

As a seoond example, Figure 3(b) gives three example
clusters along with their suppat vaues, while Figure 3 (c)
gives their null storage values (null storage cdculation will
be oovered in the dgorithm discusson). The output of the
clustering plese in this example with a suppat and ndl
threshold value of 20% would produce an initia final ta
ble list containing {P9} (not contained in a a duster) and
{P7,P8} (nat containing owerlapping properties and med-
ing the null threshold). The set of output clusters to be
sent to the next phase would contain {P1, P2, P3, P4} and
{P1, P2, P5, P6}.

Algorithm. Algorithm 2 gives the pseudacode for the dus-
tering phese. The dgorithm takes as parameters the subjed-
property baskets (B), the property usage list (PU), the sup-
port threshold (T'hreshs,yp), and the null threshold parameter
(Threshp.). The dgorithm begins by generating clusters
and storing them in a list Clusters, sorted in descending
order by suppat vaue. (Line 2 in Algorithm 2). This is a
direa cdl to a maximum frequent itemset algorithm [29], [30].
Next, we initidize Tables, an initia list of fina tables, to
the properties that do not qualify for clusters (i.e., stored in
binary tables). Next, the dgorithm filters out the set of clusters
that qualify for final tables (Lines 5 to 14 in Algorithm 2).
The dgorithm first cheds that ead cluster's null storage
fals below the given threshad (Line 9 in Algorithm 2). In
general, the null storage for a duster ¢ can be cdculated
from a property usage list PU as follows. Let |¢| be the
number of propertiesin a duster, and PU.maxcount(c) bethe
maximum property court for a duster in PU. As an example,

Subj | PI [ 3 2]

Usage: | Usage: | Usage:
500 700 750

Null: Null: Null:
500 300 250

Null({P1,P2,P3,P4}) = 1050/5000 = 21%

Fig. 4. Null Caculation

Usage: Usage:
1000 1000

in Figure 3 (b) if ¢ = {P1,P2,P3,P4}), |¢] = 4 and
PU.mazcount(c) = 1000 (correspondng to P1). Figure 4
gives a graphica representation for a sample null cdculation
using cluster { P1, P2, P3, P4}. If PU.count(c;) is the usage
court for the ith property in ¢, the null storage percentage for
cis

Null%(c) = > vice(PU.mazxcount(c) — PU.count(c;))
e (le] + 1) * PU.maxcount(c)

The dgorithm also chedks that a duster does not contain
properties that overlap with other clusters (Line 11 in Algo-
rithm 2). For clusters that pass this test, they are removed
from the duster list Clusters and added to the final table
list Tables (i.e., as n-ary tables) (Line 13 in Algorithm 2).
Finally, the dgorithm returns the initial final table list and
clusters, assumed to be sorted in deaeasing ader by their
suppat value (Line 15 in Figure 2).

C. Phase II: Partitioning

Objedive. The objedive of the partitioning phase is
twofold: (1) Partitioning the given clusters (from Phase )
into a set of nonoverlapping clusters (i.e., a property exists
in a singe n-ary table). Ensuring that a property exists in
a single duster reduces the number of table access and
unions necessary in query processng. For example, consider
two posshle n-ary tables doring RDF data for acalemic
pubications: TitleConf = {subj, title,conference} and
TitleJourn = {subj,title, journal}. In this case, an RDF
guery asking for all pubished titles would involve two table
accesss and aunion, dueto the fad that pubicaions can exist
in a conference or a journal, but nat bath. (2) Ensuring that
ead partitioned cluster, when popuated with data & an n-ary
table, falls below the null storage threshald. This objedive is
based on a main requirement of our algorithm, stated in the
problem definition gven in Sedion Ill, and tunes our schema
for efficient query processng.

Main idea. To achieve our objedives, we propose agreedy
algorithm that continually attempts to keep the duster with
highest suppat intad, while pruning lower-suppat clusters
containing owerlapping properties (i.e., ensuring that ead
property exists in a single table). The reason for this greedy
approach is that, intuitively, the dusters with highest suppat
contain properties that occur together most often in the data
set. Recdl that suppat is the percentage of RDF subjeds that
have all of the duster’s properties. Thus, keging high suppat
clusters intadt implies that the most RDF subjeds (with the
cluster’s properties defined) will be stored in this table. Our
gready approad iterates throughthe given cluster list (sorted
in deaeasing arder by suppat value), takes the highest suppat




Algorithm 3 Partition Clusters

1: Function Partition(PropClust C,PropUsage PU,Threshy i)
2. Tables «— ¢

3. /* Traverse list from highest suppat to lowest */

4: for all clust; € C do

5: C — (C = clusty)
6: it Null%(clusty, PU) > NullThresh then
7. /* Case 2: cluster needs partitioning */
8: repeat
9 p < property causing most null storage
10 clusty «— (clust; — p)
11 /* Case 2a partitioned property in ather cluster */
12 if p existsin lower-suppat cluster do continue
13 /* Case 2b: partitioned property not in other cluster */
14 else T'ables «— Tables U p [* Binary table */
15 until Null%(clust,, PU) < NullThresh
16 end if
17 Tables <« Tables U clusty
18: forall clusts € C do clusty < clusts — (clusts N clusty)
19 Merge duster fragments
20 end for

21 return Tables

cluster, and handles two main cases based onits null storage
computation (null computation is discussed in Sedion 1V-B).
Case 1: the duster meds the null storage threshold. This case
handes the given cluster from Phase | that meds the null
threshold bu contains overlapping properties. In this case,
the duster is considered a table and all | ower-suppat clusters
with overlapping properties are pruned (i.e., the overlapping
properties are removed from these lower-suppat clusters).
We note that pruning will li kely creae overlapping cluster
fragments; these ae dusters that are no longer maximum
sized (i.e,, maximum frequent itemsets) and contain similar
properties. To ill ustrate, consider a list of three dusters ¢; =
{A,B,C,D}, co ={A,B,E,F}, and c3 = {C, E} such that
support(cy) > support(ce) > support(cs). Since our
greedy approach choacses ¢; as a final table, pruning creaes
overlapping cluster fragments co = {E, F'} and¢s = {E}. In
this case since cs C ¢, these dusters can be combined during
the pruning step. Thus, we merge any overlapping fragmentsin
the duster list. Case 2: the high-suppat cluster does not med
the null storage threshold. Thus, it is partitioned urtil it mees
the null storage threshald. The partitioning processrepededly
removes the property p from the duster that causes the most
null storage until it meds the null threshold. The reason for
removing p is to remove the maximum null storage from the
cluster posshlein oreiteration. Also, we note that suppat for
clusters is monaonic. That is, given two clusters ¢; and co,
c1 C ¢g < support(c1) > support(ce). With this property,
the duster will till med the given suppat threshold. After
removing p, the partitioning process handes two cases. Case
2a: p exists in a lower-suppat cluster. Thus, p has a chance
of being kept in a n-ray table. Case 2b: p does not exist in
a lower-suppat cluster. This is the worst case, as p must be
stored in a binary table. Oncethe duster is partitioned to med
the null threshald, it is considered a table and all | ower-suppat
clusters with overlapping properties are pruned.

Example. From our runnng example in Figure 3,
two clusters would be pased to the partitioning phese:
{P1,P2,P3,P4} and {P1,P2 P5 P6}. The duster

{P1, P2, P3, P4} has the highest suppat value (as given
in Figure 3 (b)), thus it is handled first. Since this cluster
does nat med the null threshald (as given in Figure 3 (c¢))
the duster is partitioned (Case 2) by removing the property
that causes the most null storage, P2, correspondng to the
property with minimum usage in the property usage list in
Figure 3 (a). Since P2 is foundin the lower-suppat cluster
{P1, P2, P5, P6} (Case 2a), it has a chance of being kept in
an nary table. Removing P2 from {P1, P2, P3, P4} creaes
the duster {P1, P3, P4} that falls below the null threshold
of 20% (as given in Figure 3 (d)), thus it is considered
a fina table. Since {P1,P3,P4} and {P1, P2, P5, P6}
contain owerlapping properties, P1 is then pruned from
{P1, P2, P5, P6}, creding cluster {P2,P5,P6}. Since
cluster {P2, P5, P6} aso fals below the null threshod (as
given in Figure 3 (d)), it would be alded to the final table
list in the next iteration. With the two final tables creaed in
this example, and the initial final table list creaed by the
clustering phase, Figure 3 (€) gives the combined final table
list.

Algorithm. Algorithm 3 gives the psuedocode for the
partitioning phase, taking as arguments the list of property
clusters (C) from Phase |, sorted in deaeasing ader by
suppat value, the property usage list (PU), and the null
threshold value (T'hresh,.y). The dgorithm first initializes
the final table list T'ables to empty (Line 2 in Algorithm 3).
Next, it traverses ead property cluster clust; inlist C, starting
at the duster with highest suppat (Line 4 in Algorithm 3).
Next, clust; is removed from the duster list C' (Line 5 in
Algorithm 3). The dgorithm then chedks that clust; meds
the null storage threshold (Line 6 in Algorithm 3). If thisis
the case, it considers clust; a fina table (i.e., Case 1), and
al lower-suppat clusters with properties overlapping clust,
are pruned and cluster fragments are merged. (Lines 18 to 19
in Algorithm 3). If clust; does not mee the null theshald, it
must be partitioned (i.e., Case 2). The dgorithm finds property
p causing maximum storage in clust; (correspondng to the
minimum usage urt for clust; in PU) and removes it.
(Lines 9 and 10 in Algorithm 3). If p exists in a lower-
suppat cluster (i.e., Case 2a), iteration continues, otherwise
(i.e., Case 2b) p isadded to T'ables as abinary table (Lines 12
and 14 in Algorithm 3). Partitioning continues until clusty
mees the null storage threshold (Line 8 in Algorithm 3).
When partitioning finishes, the dgorithm considers clust; a
final table, and prunes all | ower-suppat clusters of properties
overlapping with clust; while merging any cluster fragments
(Lines 18to 19in Algorithm 3).

V. IMPORTANT RDF CASES

In this edion, we highlight two cases for RDF that are
important to our schema aeaion technique. The first case
deds with multi-valued properties (i.e., properties defined
multiple times for the same subjed). The second case covers
with reification; an RDF data model structure that allows
statements to be made abou other whole RDF statements.



Author & Date
Bookl | Smith | 1998
Bookl | Jones | 1998

<Bookl, Auth, Smith>
<Bookl, Auth, Jones>
<Bookl, Date, 1998>

(a) RDF Triples (b) N-ary Table
Prop 1 (ri=1) | [ Prop 2 (rf=2) ] [ Prop 3 (r=2)
Tier 1 redundant 4x

Author Date -

n = Tier 2 redundant 2x
Sub Auth. Subj Date

Smith | Null
Bookl | Smith Bookl 1998 Tier 3 Null ot redundant
Bookl | Jones
(c) Binary Tables (d) Null Calculation

Fig. 5. Multi-Valued Attribute Example

A. Multi-Valued Properties

We asaumed thus far that candidate properties for storage in
n-ary tables are single-valued (i.e., defined once for ead sub-
jead). However, multi-valued properties exist in RDF data that
would cause redundancy if stored in n-ary tables. For example,
given the data in Figure 5(a), an n-ary table (Figure 5(b))
stores the date property redundantly due to the multi-valued
attribute auth. We now outline a method to ded with multi-
valued properties in our schema aedion framework.

If a catain amourt of redundant data storage istolerated, we
propose the following method to handle it in our framework.
Each property is assgned aredundarcy factor (r f), a measure
of repetition per subjed in the RDF data set. If IV, is the total
number of subjed-property baskets, the redundarcy factor for
a property p is computed as r f = %. I ntuitively,
the term PU.count(p) is a wurt of the actual property
usage in a data set, while the term support(p) x Ny is the
usage wurt of a property if it were single-valued. We note
that the property usage table (PU) stores the usage ocount
(including redundhncy) of ead property in the data set (e.g., in
Figure 5(8), PU.count(auth) = 2 and PU.count(date) = 1),
while the subjed-property basket stores a property defined
for a subjea only once (e.g., in Figure 5(a) the basket is
bookl — {auth,date}). For the data in Figure 5(a), the rf
value for auth is 2 (125), while for date it is 1 (7). To
control redundancy, a redundarcy threshold can be defined
that sets the maximum r f value aproperty can have in order
to qualify for storagein an n-ary table. We naote that » f values
multiply eadh other, that is, if two multi-valued properties are
stored in an n-ary table, the anount of redundancy isr f1 xr fa.
Properties not meding the threshold are explicitly disqualified
from the clustering and partitioning phases, and stored in a
binary table. For example, the palicy in Figure 5(c) stores the
auth property in a separate binary table, removing redundant
storage of the date property. If the redundarcy threshold is 1,
multi-valued properties are not allowed in n-ary tables, thus
they are dl stored in binary tables.

The null cdculation (as discused in Sedion IV-B) for
clusters are dfeded if multi-valued properties are dlowed.
Due to spacerestrictions, we do nd list new cdculations for
this case. However, we outline how the cdculation changes
using the example in Figure 5(d), where Prop 1 is dngle-

P >~ Reification Triples

( Enzyme ) <reifID1, Subj, Protein1>
X 7

<reifID1, Prop, Enzyme>
< = <reifID1, Obj, Enzymel>
== <reifID1, Certain, False>

Reification Table
Subj. Prop. 0bj.
Proteinl | Enzyme |Enzymel

Subj. Certain

reifID1

False

(a) Reificaion Graph (b) Reification Table

Fig. 6. Reficaion Example

valued (with »f = 1), while Prop 2 and Prop 3 are multi-
valued (with rf = 2). The shaded columns of the table
represent the property usage for ead property if they were
single wvalued (as cdculated in the » f equation). Using these
usage values, the initia null storage value for a table can be
cdculated as discused in Sedion IV-B. However, the fina
cdculation must acourt for redundancy. In Figure 5(d), the
table displays three redundarcy tiers. Tier 1 represents rows
with all three properties defined, thus having a redundancy of
4 (the r f multiplication for Prop 2 and Prop 3). Tier 2 hasa
redundancy of 2 (the »f for Prop 2). Thus, the repeaed nul
values for the Prop 3 column must be cdculated. Tier 3 does
not have redundancy (due to the r f value of 1 for Prop 1). In
general, the null cdculation must be avare of the redundancy
distribution in the tables containing multi-valued properties.

B. Reification

Reificdion is a spedal RDF data model property that
allows statements to be made @ou other RDF statements.
An example of reificaion is given in Figure 6, taken from
the Uniprot protein annaation data set [7]. The graph form
of reificaion is given in Figure 6(a), while the RDF triple
format is given at the top o Figure 6(b). The Uniprot RDF
data stores for eah < protein, Enzyme, enzyme > triple
information abou whether the relationship between protein
and enzyme has been verified to exist. This information is
modeled by the Certain property, attached as a vertex for the
graph representation in Figure 6(a). The only viable method
to represent such information in RDF is to first creade a
new subjed ID for the reificaion statement (e.g., reifID1 in
Figure 6(b)). Next, the subjed, property, and objed of the
reified statement are redefined. Finaly, the property and oljed
are defined for the reificaion statement (e.g., certain and false,
respedively, in Figure 6(b)). We mention reification as our
data-centric method gedaly helps query procesing ower this
structure. Notice that for reification a set of at least four
properties must always exist together in the data. Thus, our
schema aedion method will cluster these properties together
in an nary table, as given in Figure 6(b). Our framework
also makes an exception to al ow reificaiion properties subjed,
property, and objed to exist in multiple n-ary tables for
ead reificaion edge. This exception means that a separate
n-ary table will be aeaed for eadh reificaion edge in the
RDF data (e.g., Certain in figure Figure 6), Sedion VI will
experimentally test this claim over the red-world Uniprot [7]
data set.



Statistics DBLP | DBPedia | Uniprot

Triples 135M 10M 1M

No. Properties 30 19K 86

Mult-Val. Properties 14% 32% 41%

Reified Triples 0 0 23X

% null for wide table | 95% 9% 91%
TABLE |

DATA SET STATISTICS

VI. EXPERIMENTS

This ®dion provides experimental evidence that our data-
centric schema aedion approach ouperforms the triple-store
and the decomposed storage approaches for query processng
on a relational database. Three red-world data sets are used
from three different domains. We test the DBLP [20], DB-
Pedia [21], and Uniprot [7] RDF data sets with five queries
based on previous benchmarks on this data [31], [12]. All
experiments are performed using PostgreSQL.

The rest of this ®dionis organized as foll ows. Sedion VI-
A provides an owerview of our red-world RDF data sets.
Sedion VI-B gives the output of our data-centric schema
cregion algorithm for each RDF data set. Sedion VI-C
describes the system setup for our experiments. Sedion VI-D
studies performance for a set of benchmark queries that run
over threered-world data sets.

A. RDF Data &ts

In this ®dion, we give an owerview of three pubicly
available red-world RDF datasets. Spedficdly, the datasets
we use in our experiments are the DBLP [20], DBPedia [21],
and Uniprot [7] protein anndation data sets. Table | gives a
handful of overview statistics for eat of the data sets.

DBLP. The Digita Bibliography and Library Projed
(DBLP) is a well-known database tracking hibliographicd
information for major computer science journals and confer-
ence proceadings. The DBLP server indexes more than 95K
computer science aticles. For our experiments, we use the
SwetoDBLP [20] data set, an RDF version o the DBLP
database with approximately 13M triples. In total, the DBLP
dataset contains 30 properties, of which orly 14% are multi-
valued (i.e., appeaing more than orce for a given subea).
Also, the DBLP data set does not make use of reificaion, and
if stored in a single wide property table the data would cause
95% null storage.

DBPedia. The DBPedia [21] data set encodes Wikipedia
data in RDF. For our experiments, we use a subset of the
data that encodes infoboxes found onthe English version o
Wikipedia. In total, this data set contains 10M triples. DBPedia
uses 19K unique RDF properties in encoding; a high value
relative to the other data sets. In total, 32% of these properties
are multi-valued. DBPedia does not make use of reification. If
stored in a wide property table, the DBPedia data shows the
highest percentage of null storage & 9%%.

Uniprot. The Uniprot [7] dataset is a large-scde database
of protein sequence axd annaation data. This dataset joins
three of the largest protein anndation databases in the world

Statistic DBLP | DBPedia | Uniprot
# Total Properties 30 19K 86
% total props stored in binary tables 40% | 99.59% 69%
% total props stored in n-ary tables 60% 0.41% 31%
# Multi-Val Properties 4 6080 35
Min rf'value for multi-val properties 34 4 1.2
% multi-val prop stored in n-ary tables 0% 0% 17%
(a) Schema Bresgdown
Data Set | Binary | 3-ary 4-ary 5-ary |(6+)-ary| Total
DBLP 12 2 6 4 6 30
DBPedia | 18922 8 6 8 56 19K
Uniprot 60 4 9 8 5 86

(b) Table Distribution (by Property)

Fig. 7. Data Centric Schema Tables

(SwissProt, TTEMBL, and PIR) into ore comprehensive data
set open to the reseach community at large. Uniprot stores a
wide aray of data, rangingfrom cdlular comporents, proteins,
enzymes, and citations for journal pubicdions abou ead
protein. In total, the Uniprot data we use is 11M triples. A
total of 86 propertiesexist in this dataset where 41% are multi-
valued. The Uniprot dataset also contains rougHy 23K reified
statements. If this dataset were to be stored using asingle wide
property table, the total null storage would be 91%.

B. Data-Centric Schema Tables

This dion gves an overview of the tables creaed by ou
data-centric schema goproach for the three data sets discussed
in Sedion VI-A. For this purpose, the suppat parameter was
set to 1% (a generaly accepted default suppat value [32)),
the null threshold value was st to 30%, and the redundancy
threshold was st to 1.5. Figure 7(a) gives the brekdown of
the percentage of al propertiesfor ead data set that are stored
in either n-ary tables or binary tables (rows 1-3). Also, this
table gives the number of multi-valued propertiesin ead data
set (row 4), along with the minimum redundancy fador from
all these properties (row 5). Only the Uniprot data set had
multi-valued properties that met the redundancy threshold of
1.5, thus sx of these properties (17%) were kept in n-ary tables
(given in row 6).

For the tables creaed for eat data set, Figure 7(b) givesthe
table type (i.e., binary or n-ary tables) and the distribution of
properties dored in ead table type for ead data set. We note
that the numbers given for ead dataset sum to the total number
of propertiesgivenin thefirst row in Figure 7(a). For example,
the DBLP dataset contains 30 properties (Figure 7(a)), and the
sum of all propertiesin Figure 7(b) for DBLP sum to 30. Also,
the number of propertiesin binary tables given in Figure 7(b)
correspond to the percentages given in the second row in
Figure 7(a) (e.g., for DBLP .40*30 = 12), while the number
of properties in n-ary tables given in Figure 7(b) correspond
to the percentagesin the third row Figure 7(a) (e.g., for DBLP
.60*30 = 18).

For the 60% of the properties gored in property tables
for the DBLP dataset, large tables szes (i.e., with three and
greder properties) are favored. This number implies that larger



clusters of properties were foundto exist often in the data.
For the Uniprot data arange of table sizes are favored, while
the DBPedia data set favors both smaller and larger property
tables.

C. Experimental Setup

This sdion gves the details of our experimental setup.
The experimental machine used in our experimentsis a 64-bit
single-procesor 3.0 GHz Pentium IV, running Feisty Uburtu
Linux with 4Gbytes of memory. The hard-disk is a standard
SCSI setup with a 80GB volume.

1) Implementation: All experiments were evaluated using
the open-source PostgreSQL 8.0.3 database. Our schema
cregion modue was built using C++, and integrated with
PostgreSQL database. Spedficdly, our modue reals any RDF
dataset (locdly or remotely) in any standard transport format.
After the schema aedion process SQL scripts are aeaed for
table aedion and forwarded to PostgreSQL.

2) Sorage Details: For al of the goproadies, a dictionary-
encoding scheme is used, meaning that ead string in the RDF
dataset is mapped to a unique 32-hit integer. Thus, ead table
stores 32-bit integers, whil e the integer-to-string dctionary is
stored in a separate table. For the dictionary table, two B+ trees
exist: one dustered on the integer (i.e., encoding) column,
while an urclustered index is built over the string column.
As the bulk of query processng is performed on integers
instead of strings, the dictionary-encoding scheme was hown
to provide an oder-of-magnitude performanceimprovement for
all storage goproaches in our experiments.

Triple-Store. We implement the triple-store similar to many
RDF storage gplications using triple-stores as their primary
storage gproach (e.g., see [8], [11], [13], [14]), which is
a single table mntaining three ®lumns correspondng to an
RDF subjed, property, and oljed. The table has threeB+ tree
indices built over it. The first index is clustered on (subjed,
property, objed), second index is unclustered on (property,
objed, subjed), and the third index is unclustered on (objed,
subjed, property).

Demmposed Storage. We implement the decomposed RDF
storage method as foll ows: ead table correspondsto a unique
property in the RDF dataset. A clustered B+ treeindex is built
over the subjea column, while an unclustered B+ tree index
is built over the objed column.

Our Data-Centric Approach. Our data-centric gpproach
results in bah nary and hinary tables. For n-ary tables, a
clustered B+ treeindex is built over the subjed column, while
an urclustered B+ tree index is built over al subsequent
columns (representing properties). For binary tables, indices
were built acwording to the decomposed model described
abowe.

D. Experimental Evaluation

This sdion provides performance numbers for a set of
benchmark queries on the data sets introduced in Sedion VI-
A. The queries used in these experiments are based on revious
benchmark queries for Uniprot [12] and DBPedia [31]. We
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Fig. 8. Query 1

note that since the benchmarks were originaly designed for
their respedive data, we first generalize the query in terms
of its dgnature, then give the spedfic query for eadh data
set. In total, we use five queries with the foll owing signatures:
predetermined properties retrieving dl subjeds, single subjed
retrieving dl defined properties, administrative query, prede-
termined properties retrieving spedfic subjeds, and reification
retrieval. For eat query, we plot the query runtime for ead of
the threestorage goproades: triple-store, decompaosed storage
model (DSM), and ou proposed data-centric schema aedion
approach. All times given are the average of severa runs,
with the cahe deaed between eadh run. In general, our data-
centric schema aedion approach shows superior performance
over al queries. This performanceimprovement is mainly due
to thereduction o joinsin the query exeaution, dueto common
properties in the queries existing in the same table.

1) Query 1: Predetermined propd/all subjeds:. Query 1 asks
abou a predetermined set of RDF properties. The genera
signature of this query isto seled all records for which certain
properties are defined. Figure 8(a) gives the runtime for this
guery acaoss al three data sets, while Figure 8(b) gives the
speadup d the data-centric gpproach owver the triple-store and
decmposed method
DBLP. For DBLP, this query accesses 9x RDF properties, and
trandates to Display the author, conference, title, pubisher,
date, and year for all conference articles. The data-centric
approach stores al relevant properties in a single relation,
thus prodwcing a single table acces (table distributions for
our data-centric gpproach are discused in Sedion VI-B).
Meanwhil e, both the decomposed and triple-store goproaches
involve six table acceses including subjed-to-subjed joins,
with the triple-store invalving five self-joins, respedively. Due
to the relative number of table acceses and joins, the data-
centric goproach shows uperior performance with a runtime
of 1.61 seconds, compared to 5915 and 10556 seconds for
the decomposed and triple-store gpproacdhes. This performance
trandates to a relative speedup d a fador of 36 and 65
respedively (Figure 8(b)).

DBPedia. For DBPedia, this query accesses five RDF proper-
ties, and trandates to Display popuation information for all
cities. The triple-store gproach involved five table acceses
and four sdlf-joins, with the decmposed approach using
five table access and four joins. The data-centric gpproach
used three table access and two joins. The runtimes for
the decomposed and data-centric gpproaches are similar and
showed sub-second performance Whil e the query timesfor the
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Fig. 9. Query 2

decomposed and data-centric goproaches were sub-secnd, the
relative speedup d 14 in this case is large.

Uniprot. For Uniprot, this query accesses sx RDF properties,
and trandlates to Shav all ranges of transmembrane regions.
The data-centric gpproach required a total of five table ac
cesss, where the mgjority of the joins were subjed-to-subjed,
making extensive use of the dustered indices. Meanwhil e, the
decomposed approach required a total of six table access.
The triple-store gproach also used six table access, with
five sdlf-joins being generated over the table. The data-centric
approach showed better relative performance, with a runtime
of 18.9 seands, compared to 2392 sendsand 7261 seamnds
over the decomposed and triple-store gproaces, transating
to arelative speedup d fadors of 1.2 and 38, respedively.
Discusson. Overal, the data-centric goproach shows better
relative runtime performance for Query 1. Interestingly, the
data-centric gpproach showed a fador of 65 speedup ower the
triple-store for the DBLP query, and a fador of 36 speedup
over the decomposed approach. The DBLP data is relatively
well-structured, thus, our data-centric goproach stores a large
number of properties in nary tables. For this query, the
number of table-accesses and joins deaeased significantly due
to this dorage scheme.

2) Query 2: Single subjed/all defined properties. Query 2
involves a seledion o all defined properties for a single RDF
subjed (i.e., a singe reaord). Figure 9(a) gives the runtime
for this query aaoss al three data sets, while Figure 9(b)
gives the relative speedup d the data-centric approach over
the triple-store and decomposed method
DBLP. For DBLP, this query accesses 13 RDF properties, and
trandates to show all i nformation abou a particular confer-
ence pubication. The decomposed and triple-store gproach
involved 13 table accs®s, while the data-centric gpproac
involved nine. The performance between the decompaosed and
our data-centric gpproaches is smilar in this case, with run
times of 8.84 seconds and 806 sewnds, respedively. This
similarity is due to the fad that some tables in the data-
centric gpproach contained exraneous properties, meaning
some stored properties were not used in the query. Thus, the
reduction o joinsin the data-centric method was off set by the
overhead of storing extra property data stored in ead tuple.
DBPedia. For DBPedia, this query accesses 23 RDF prop-
erties, and trandates to show all information abou a par-
ticular cricke player. Both the data-centric and decomposed
approaches exhibit a similar relative performanceto the triple-
store with sub-second runtimes. However, the data-centric
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1

approach accesed a total of 17 tables, compared to the 23
needed by the decomposed and triple-store gpproaches. Thus,
the speedup measures for the data-centric goproach show a
superior performance @ 15.13 and XK over and decomposed
and triple-store goproaches, respedively.

Uniprot. For Uniprot, this query acceses 15 RDF properties,
and trandates to show all information abou a particular
protein. The decompased and triple-store gpproac involved
fifteen table acceses along with fourteen subjed-to-subjed
joins. For the triple-store, this fad is due to the need to seled
ead property from the triple-store, plus the self join over the
table to answer the query. For the decompaosed approach, these
accesss and joins were due to ead property being stored
in a separate table. Meanwhile, the data-centric gpproach
involved 11 table access generating 10 subjed-to-subjed
joins. Due to this fad, the data-centric gpproach shows better
relative performance & given in Figure 9(a), with a runtime
of 3.75 seconds, compared to 5.38 seconds and 1551 seands
for the decompased and triple-store goproacdhes, respedively.
This trandates to a speedup d 4.14 and 144, respedively
(Figure 9(b)).

Discusson. Overall, the data-centric gpproach shows better
relative runtime performance to that of the other schema
approachesfor Query 2. Thisismainly dueto properties gored
in the same n-ary table dso being accesed together.

3) Query 3: Administrative query: Query 3 is an admin-
istrative query asking abou date ranges for a set of recently
modified RDF subjedsin the data set. The general signature of
this query is a range seledion ower dates. Figure 10(a) gives
the runtime for this query acaoss al three data sets, while
Figure 10(b) gives the relative speedup d the data-centric
approach owver the triple-store and decompaosed method
DBLP. This query accesses three RDF properties, and trans-
lates to List title, author, and dde of recently modified entries
(recent is > 2005. The data-centric goproac required asingle
table acces with all propertiesclustered to asingletable. Both
the decomposed and triple-store goproaches required separate
table accesss for the range seledion and joins to retrieve
all RDF properties. Thus, the data-centric goproach shows a
speadup ower the decomposed and triple-store gproaches of
24.8 and 21, respedively.

DBPedia. For DBPedig, this query accesses 23 RDF proper-
ties, and trandates to Shawv information for recently updaed
sportsinformation (recent > 2006). The data-centric goproach
shows dmilar performance to the decomposed approach due
to al data being stored in binary tables for both approacdes.
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No discernible speedupis present between the data-centric and
demmposed approaches, while the data-centric goproach saw
a speadup d 4.83 owr the triple-store.

Uniprot. For Uniprot, this query accesses four RDF properties,
and trandates to List version and creation dae of recently
modified entries (recent is > 2002. One property (i.e., mod-
ified date) is used in the range seledion. The data-centric
approach required only two table access and ore join. The
decomposed approach used four table acceses, causing three
joins, while the triple-store goproach used four table acceses
with three self-joins. The, the data-centric gpproach shows a
speadup ower the decomposed and triple store of 3.18 and
13.16, respedively.

Discusson. The data-centric gpproach shows better relative
performanceto that of the other schema gproaches. Again, for
the well-structured DBLP data, data-centric gpproach stored
all query properties in a single table, causing a fador of
24 speedup ower the triple-store, and a factor of 21 speedup
over the decomposed approach. The data-centric goproac also
showed goodspeadupfor the semi-structured Uniprot data due
to reduction o joins and table access.

4) Query 4: Predetermined props/spec subjeds. Query 4
retrieves a spedfic set of propertiesfor a particular set of RDF
subjeds. The general signature of this query is a seledion o
a set of RDF subjeds (using the IN operator). Figure 11(a)
givesthe runtime for this query acossall threedata sets, while
Figure 11(b) gives the relative speedup d the data-centric
approach owver the triple-store and decompaosed method
DBLP. For DBLP, this query access five RDF properties,
and tranglates to Shaw author, conference, title, abstract, and
year for all papersin SGMOD,VLDB,ICDE (19992003. The
data-centric gpproach stores all relevant propertiesin a single
relation, thus producing a single table accassand a seledion
using the IN operator. Meanwhile, both the decompased and
triple-store gproaches invalve five table access including
three subjed-to-subjed joins and ore subjed-to-objed joins,
with the triple-store invalving four self-joins. The data-centric
approach had a runtime of 4.46 seconds, compared to 7.9 for
the decomposed approacdh and 725 seamnds for the triple-store
approach. This performancetrandatesto aspeedup d 1.79 and
16.24, respedively.

DBPedia. For DBPedia, this query translates to Two degrees of
separation from Kevin Bacon, and involves one RDF property
accesd a total of threetimes in order to find degrees of
separation from a particular RDF subjed. The data-centric and
decmposed methods show simil ar performancedue to the fad
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that both methods accessa similar number of tables. Thus the
speadup ower the decompased approach is minimal. However,
the decomposed approach showed afador of 140speedup ower
the triple-store due to the high seledivity of the two self-joins.
Uniprot. For Uniprot, this query accesses four RDF properties,
and trandates to Shav all proteins assciated with spedfic
orgarnisms and spedes of that organism. The data-centric
approach requires a total of two table access using ore
subjed-to-objed join, while the decomposed and triple-store
methods invalved four table acceses and threejoins. For this
guery, the tables used in the data-centric gpproach contained
extra properties. However, even with the extra storage the
reduction in joins led to better a query runtime of 4.71
semnds, compared to 8.84 and 41secnds for the decomposed
and triple-store goproaches. This performance trandates to a
speadup fador of 1.88 and 871, respedively.

Discusson. Again, the data-centric goproach shows better
overal performance to that of the other schema gproaces.
For the Uniprot and DBLP queries, the data-centric gpproach
shows good speadup owr the triple-store, with a fador of
1.8 speedup ower the decompased approach, as given in
Figure 11(b). This query again shows the need for a data-
centric schema aedion approach that finds and stores related
properties in the same table.

5) Query 5: Reification: Query 5 invalves a query using
reification. For this query, only the Uniprot data set is tested,
as it is the only experimental data set that makes use of
reification. The query here is to display the top ht court for
statements made abou proteins. In the Uniprot dataset, hit
counts are stored ona subset of the statements using reificaion
(much like the certain attribute discussed in Sedion V-B).
Thus, al reification statements need to be found with the
objed property correspondng to a protein, along with the hit
cournt (modeled as the hits property) for ead statement. The
results for this query are given in Figure 12, with Figure 12(a)
giving the runtime, while Figure 12(b) displays the relative
speadup over the decomposed and triple-store gproaches. The
large differencein performance numbers here is mainly due to
the table acce=s nealed by bah the decomposed and triple-
store to remnstruct the statements used for reification. Our
data-centric gpproach involved a single table accas with no
joins, due to the fad that the reificaion structure being clus-
tered together in n-ary tables. Thus, the data-centric gpproach
shows a speadup d 5.29 and 1044 ower the decompaosed and
triple-store goproades, respedively.

6) Relative Speadup Figure 13(a) gives the relative
speadup for the data-centric gpproach owver the triple-store
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approach for ead query and data set, while Figure 13(b)
gives the same speedup chta over the decompased approach.
The DBLP data set is well-structured, and ou data centric
approach showed superior speedup for queries 1 and 3 ower
the DBLP data & it clustered all related data to the same
table. Thus, the queries were answered with a single table
access compared to multiple acceses and joins for the triple-
store and deacomposed approaches. For DBPedia queries 1
and 2 the data-centric gpproach showed speedup ower the
decomposed approach due to accessng the few n-ary tables
present to store this data. However, this data was mostly semi-
structured, thus queries 3 and 4 showed similar performance
as they involved the same table structure. The speedup ower
the triple-store for DBPedia was auperior as queries using
the data-centric approach involved tables (1) with smaller
cadinaity and (2) containing, on average, only the properties
necessary to answer the queries, as opposed to the high
seledivity joins used by the large triple-store. Our data-centric
approach showed a moderate speedup performance for the
Uniprot queries due to two main fadors: (1) some data-
centric tables contained extraneous properties and multi-val ued
attributes that caused redundancy, and (2) the semi-structured
nature of the Uniprot data set led to a similar number of
relative joins and table acceses. However, the speedup for
Uniprot was dill modest acdossthe board.

VII. CONCLUSION

This paper proposed a data-centric schema aedion ap-
proach for storing RDF data in relational databases. Our
approach derives a basic structure from RDF data and achieves
a good lalance between using nary tables (i.e., property
tables) and hinary tables (i.e., decomposed storage) to tune
RDF storage for efficient query processng. First, a clustering
phase finds al related properties in the data set that are
candidates to be stored together. Seand, the dusters are sent
to a partitioning phase to optimize for storage of extra data
in the underlying database. Furthermore, our approach han-
dles multi-valued properties and RDF reification effedively.
We compared our data-centric goproach with state-of-the at
approaches for RDF storage, namely the triple store and
decomposed storage, using queries over threered-world data
sets. Results how that our data-centric approach shows large
orders of magnitude performanceimprovement over the triple
store, and speadup fadors of up to 36 owr the decomposed
storage goproadh.
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