
Design of forwarder list selection scheme in opportunistic routing protocol

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 08-033

Design of forwarder list selection scheme in opportunistic routing

protocol

Yanhua Li, Wei Chen, and Zhi-li Zhang

October 22, 2008

Design of forwarder list selection scheme in
opportunistic routing protocol

Yanhua Li, Wei Chen, Zhi-Li Zhang

Abstract—Unlike traditional wireless routing protocols which
use a single fixed path, opportunistic routing explicitly takes
advantage of the broadcast nature of wireless communications
by using a set of forwarders to opportunistically perform packet
forwarding. A key issue in the design of oppor tunistic routing
protocols is the forwarder list selection problem. In this paper
we establish a general theory for analyzing the forwarder list
selection problem, and develop an optimal solution, the minimum
transmission selection (MTS) algor ithm, which minimizes the
expected number of t ransmissions. Through extensive simulations
using the MIT Roofnet dataset, we demonstrate that in more
than 90% cases the MTS algor ithm outperforms the forwarder
selection scheme used in ExOR, the best known oppor tunistic
routing protocol in the li terature.

I . INTRODUCTION

The opportunistic routing paradigm [2], [3] has opened a
new avenue for designing routing protocols in multi -hopwire-
less networks. Unlike traditional routing wireless protocols
such as DSR, AODV [6], [7] which rely on a (pre-selected)
single fixed path for delivering packets from a source to a
destination, opportunistic routing explicitly takes advantage
of the broadcast nature of wireless communications to allow
multiple (pre-selected) forwarders to opportunistically deliver
packets from a sourceto a destination. The path a packet takes
depends on which forwarders happen to receive it, and is thus
non-deterministic. As a result, opportunistic routing can better
cope with the lossy, unreliable and varying link qualiti es that
are typical of wirelessnetworks.

While the basic idea of opportunistic routing is fairly
straightforward, there are several key issues that must be
addressed in designing an opportunistic routing protocol. For
example, given a source and a destination in a multi -hop
wireless network, which nodes should be selected as (in-
termediate) forwarders for opportunistic packet forwarding?
When a packet is transmitted (or rather broadcasted), multiple
forwarders may receive it. Which one of them should forward
it so as to avoid unnecessary duplicate transmissions? These
questions are part of the forwarder list selection problem in
opportunistic routing. In a nutshell , in order to fully realize
the benefits of opportunistic routing, a list of forwarders must
be judiciously selected, and these forwardersmust co-ordinate
their packet forwarding–either explicitly or implicitly–in order
to successfully and efficiently deliver packets from the source
to the destination.

Yanhua Li is with Beiji ng U. of Posts & Telecommunications, Bei-
jing, China, Wei Chen is with U. of Electronic Sci. & Tech. of China,
Chengdu, China, and Zhi-li Zhang is with Dep. of CS, U. of Minnesota,
Minneapolis, USA. (Email: yanhua2008@gmail .com, chenwei@uestc.edu.cn,
and zhzhang@cs.umn.edu.)

Take ExOR [2], the seminal and primary opportunistic
routing protocol in the literature, as an example. Based on a
link metric, ETX1, ExOR ranks the potential forwarders using
their minimum path ETX, namely, the sum of the constituent
link ETX’salongthe “best path” (in termsof path ETX) from a
node to the destination. The nodes that have smaller minimum
path ETX’s than the source are selected as forwarders, and
they are ordered into a global prioritized forwarder list.
Using such a forwarder list, ExOR employscarefully designed
and elaborate packet forwarding mechanisms to realize the
benefits of opportunistic routing. We see that while ExOR is
an opportunistic routing protocol, it in fact utili zes a metric
defined on a single fixed path for forwarder list selection
and ordering, thereby ignoring the very effect of opportunistic
routing. As will be shown later in this paper, such a forwarder
list selection method is in general sub-optimal!

This paper is devoted to addressing the fundamental prob-
lem of forwarder list selection in opportunistic routing. We
establish a general event-based analysis methodology and
theory for studying the forwarder list selection problem, and
develop an optimal solution which minimizes the expected
number of transmissions under an ideal setting– the perfect
ACK assumption (see Section II) . To ill ustrate our analysis
methodology, we first consider two simpler scenarios, 3-node
and 4-node topologies in section III . In section IV we then
develop the general theory and present an optimal solution,
referred to as the minimum transmission selection (MTS) algo-
rithm, for solving the forwarder list selection problem. Given a
general topology, the MTS algorithm selects and computes the
optimal forwarder list for any node to a given destination that
minimizes the total expected number of transmissions, using
a dynamic programming formulation (an iterative procedure)
that is analogous to the one used in the Dijkstra’s shortest path
algorithm. In section V we discuss how to relax the perfect
ACK assumption by proposing two heuristics to address the
unreliable, asymmetric link qualiti es, thereby dealing with
the effect of imperfect ACKs. In section VI we evaluate
and compare the performances of the MTS algorithm and
the forwarder list selection scheme of ExOR using extensive
simulations. The paper is concluded in section VII .

II . BACKGROUND AND PROBLEM SETTING

As in ExOR [2], we assume that a global prioritized for-
warder list is used for opportunistic packet forwarding, and the

1The ETX of a link (say, from node i to node j) is the inverse of the packet
delivery probabilit y pij , from node i to node j (measured and estimated based
on some appropriate time interval).

2

same (batch mode-based, round-by-round, prioritized) packet
forwarding mechanisms are employed, which is described
below. Let {s, um, um−1, . . . , u1, d} be an (ordered) forwarder
list, where s is the source, d is the destination, and u1,. . . ,um

are aset of m (intermediate) forwarders. Thenodesareordered
based on their increasing priorities from left to right: namely,
the destination node d has the highest priority, s the lowest
priority, and for 1 ≤ i < j ≤ m, ui has higher priority over
uj . (If m = 0, no intermediate forwarder is used.) The priority
of the node in the forwarder list is important in coordinating
the packet forwarding in the (prioritized) packet forwarding
mechanisms used in ExOR. In [2], these mechanisms are
described using the batch mode, where a batch of packets,
say, 100 packets, are transmitted in a round-by-roundfashion
using tightly controlled packet scheduling. For clarity, we will
ill ustrate the ExOR packet forwarding mechanisms using a
single packet (i.e., a batch of one packet) below.

Suppose the source s has a single packet to de-
liver to the destination d, using the forwarder list
{s, um, um−1, . . . , u1, d}. The source s first transmits (or
rather, broadcasts) the packet. One or multiple nodes in the
forwarder list may receive the packet. If the destination d
(the highest priority node) receives, it immediately broadcasts
back2 an acknowledgement (ACK). All l ower priority nodes
“overhearing” the ACK would therefore cancel their trans-
mission and drop the packet, thereby completing the packet
delivery from the source to the destination. Now consider the
scenario where d does not receive the packet, and suppose
ui (1 ≤ i ≤ m) is the highest priority node that receives
it. The node ui would first defer its transmission by waiting
for i time slots (each time slot equals to the transmission
time of a single packet), while listening to any transmission
by higher priority nodes during these time slots. (Note that
such deferment thereby allows for the higher priority nodes
before ui to have a better chance to transmit first, just in
case one of them has received it also.) Since no transmission
is heard during the deferment, node ui would transmit the
packet immediately afterwards. Any lower priority node that
“overhears” this transmission from ui would then cancel its
transmission and drop the packet. Whereas, if some higher
priority nodes(but not thedestination) receivethetransmission
of ui, say, uj , j < i is the highest priority node that receives
the packet, then the packet has made forward progress from a
lower priority nodeui to a higher priority nodeuj towards the
destination d. The process (a new “round”3 of transmission)
would start anew at uj . If none of the higher priority nodes
“hear” its transmission from ui, i.e., receiving the packet, ui

would start re-transmitting the packet again after waiting for

2For simplicity, here we assume that all nodes have anonzero probabilit y of
“hearing” or “over-hearing” each other’s transmissions. In fact, the design of
ExOR implicitly posits a dense wirelessmesh network where all nodes in the
network are more or less connected, albeit with unreliable links, sometimes
with extremely low packet delivery probabilit y.

3Here we use the term “round” to indicate forward progress made by the
packet. With m+2 nodes in the forwarder list, a worst-case of m+1 rounds
may be needed. Multiple (re-)transmissions may be needed in each round to
make forward progress.

an appropriate amount of time. Whenever the destination d
receives the packet, it will broadcast an ACK, thus completing
the packet transmission process.

From the description above, we see that all of the nodes
in the forwarder lists must cooperate through appropriate
transmission deferment and constantly listening to (or “over-
hearing”) each other’s transmissions during such deferment,
and based on these transmissions (or lack thereof), coordinate
(start or abort) their own packet transmissions. Due to unreli -
able wireless communications, in general multiple rounds of
transmissions (when making forward progress from a lower
priority node to a higher priority node) and re-transmissions
(when noforward progressis made) are needed in order to op-
portunistically forward a packet from thesourceto thedestina-
tion. Hence the (expected) number of transmissions (including
retransmissions) required when using a given forwarder list
for opportunistic packet forwarding is an important metric to
measure the “ goodness” of a forwarding list. We note also
that unreliable wireless communications have another effect
on opportunistic packet forwarding: when a lower-priority
forwarder does not overhear the transmission of a higher-
priority node (a form of implicit ACK to the lower-priority
forwarder to abort its transmission of the same packet), it may
lead to unnecessary duplicate transmissions, thus affecting
the total number of packet transmissions. However, we argue
that this imperfect ACK problem is not crucial to, and in
a sense, orthogonal to, the forwarder list selection problem,
as appropriate mechanisms can be designed to alleviate this
problem which can be applied equally to any forwarder list
selection scheme. For instance, the batch mode used in ExOR
(and its enhancement we introduce in section V) is designed
specifically for eliminating or reducing unnecessary duplicate
transmissions due to this imperfect ACK problem.

In analyzing the forwarder list selection problem in this
paper, we therefore employ the expected number of trans-
missions (excluding duplicate transmissions due to unreliable
overhearing) as the key metric to compare forwarder lists,
and address the two basic questions: i) which forwarders
to select, and ii) how to order the forwarders selected? To
simpli fy our analysis and separate the effect of duplicate
transmissions due to unreliable overhearing, we introduce and
consider an ideal setting with the perfect ACK assumption,
namely, we assume that lower priority nodes can always
overhear the transmissions of higher priority nodes, thus there
will be no unnecessary duplicate transmissions. Under this
assumption, in this paper we develop a general methodology
and theory for analyzing the forwarder list selection problem,
and develop a dynamic programmingalgorithm for finding the
optimal forwarder list which minimizes the expected number
of transmissions for a packet to traverseopportunistically from
a source to a destination. We will relax this perfect ACK
assumption in section V by introducing two mechanisms to
handle unreliable and asymmetric packet delivery probabili -
ties.

We conclude this section by showing that the forwarder
list selection scheme used in ExOR is sub-optimal through

3

Fig. 1. An example showing that ExOR’s forwarder list selection scheme is
sub-optimal.

a simple example. Recall that ExOR uses the following two
rules to select and order forwarders: a) candidate set selection
rule: node with a smaller path ETX value (to the destination)
than the source will be chosen in the forwarder list; and
b) ordering rule: forwarders are ordered by their path ETX
values to the destination, where aforwarder with smaller path
ETX value has higher priority. To show that the forwarder list
selected based onthese two rules are sub-optimal, we consider
a simple example shown in Fig.1, where node s is the source,
d is the destination, and the number on each link indicates its
(symmetric) packet delivery probabilit y. Computing the path
ETX using the best path, we see that the path ETX for node
v2 (to d) is 1/0.8 = 1.25, for node v1 it i s 1/0.45 = 2.22, and
for the sourcenode s it i s 1/0.5 = 2. Hencethe forwarder list
selected byExOR is{s, v2, d}. However, it isnot hard to argue
that the forwarder list {s, v1, v2, d} is in fact a better choice,
as it is likely to reduce the total number of transmissions
to deliver packets from s to d. This is because that v1 has
two opportunistic paths, v1 → d and v1 → v2 → d, which
together yield a higher packet probabilit y than using either
path alone. The expected number of transmissions from v1

to d using both paths is roughly 1.742, which is far smaller
than the path ETX of v1 (2.22) and is also smaller than the
path ETX of s (2). The sub-optimality of the ETX forwarder
list selection scheme lies in that it uses the single path ETX
metric for selecting forwarders, and thus fails to account for
the opportunistic nature of packet forwarding.

III . BASIC THEORY: THREE- AND FOUR-NODE CASES

In this section we consider the problem of forwarder list
selection under two simplest scenarios, namely, networks with
3 and4 nodesrespectively. Under theperfect ACK assumption,
we establish several theorems to addressthe two fundamental
questionsregardingtheforwarder list selection: i) when should
an (intermediate) node be selected in a forwarder list, and ii)
if there are multiple forwarders, how should they be ordered?
As will be shown in the next section, these theorems provide
the key insights into, and lay the foundation for establishing
a general theory for solving the more general forwarder list
selection problem.

A. Three-Node Case

We first consider the 3-node case, the simplest possible
scenario, as shown in Fig. 2(a), where s and d are the source
and destination nodes, and v is the intermediatenode. The link
qualiti es are labeled in the figure. We assume all probabiliti es
are non-zero (otherwise the question become trivial), and we

are interested in the following question: suppose s has one
packet to transmit to d, when shall we includev asa forwarder
so as to minimize the total number of expected transmission
(under the perfect ACK assumption)?

To answer the above question, we need to compare the
expected number of transmissions under two possible options:
a) using the forwarder list {s, d} (i.e., do not include v), and
b) using the forwarder list {s, v, d} (i.e., includev). (Note that
the rightmost node has the highest priority.) Let Ns,d denote
the expected total number of transmissions under option a).
Clearly, Ns,d = 1/z. To derive the expected total number of
transmissions under option b), Ns,v,d, we proceed as follows.
Let E := v ∨ d denote the event that when s transmits the
packet, either d or v receives it. The probabilit y of thisevent is
Pr(E) = 1−(1−x)(1−z). Under the forwarding mechanism
described in Section II , the expected number of transmissions
s must perform until the event E holds, denoted by Ns→E , is

Ns→E =
1

Pr(E)
=

1

1 − (1 − x)(1 − z)
.

Given that the event E holds, we have two possibiliti es: i) d
receives the packet, in this case no additional transmissions
are needed; or ii) d does not receive the packet but v does
(denotethisevent by v∧d̄). In the latter case, v must repeatedly
transmit the packet until d receives it. The number of expected
transmissions v must perform is Nv→d = 1/y. Hence the
expected number of transmissions using the forwarder list
{s, v, d} is

Ns,v,d = Ns→E + Nv→d · Pr(v ∧ d̄|E) (1)

=
1 + x(1 − z) 1

y

1 − (1 − x)(1 − z)
.

With some simple algebraic manipulations, we can show
that Ns,v,d < Ns,d if and only if y > z. This yields the
following theorem.

THEOREM 1 (Three Nodes). In a three-node network as
shown in Fig. 2(a), the node v should be included in the
forwarder list, if and only if y > z so as to reduce the
expected number of transmissions. In addition, if y > z holds,
the expected number of transmissions using the forwarder list
{s, v, d} is

Ns,v,d =
1 + x(1 − z) 1

y

1 − (1 − x)(1 − z)
(2)

where we have 1
y < Ns,v,d < 1

z .

TABLE I
FORWARDER LISTS FOR TOPOLOGY 2(B)

Options Forwarder lists Condition to be best (where y1 ≥ y2)
List1 {s, d} z > y1 ≥ y2

List2 {s, v1, d} y1 > z, Nv2,v1,d > Ns,v1,d

List3 {s, v2, d} N/A
List4 {s, v2, v1, d} y1 > z, Nv2,v1,d < Ns,v1,d

List5 {s, v1, v2, d} N/A

4

(a) Three Nodes Topology.x, y, and z are
link qualiti es, which have value between 0
and 1.

(b) Four Nodes Topology.x1, y1,x2, y2, and
z are link qualiti es, which have value be-
tween 0 and 1.

(c) N intermediate nodes topology.

Fig. 2. Example topologies to show the forwarder list selection theory.

B. Four-Node Case

Wenow consider aslightly more complex scenario with four
nodes, as shown in Fig.2(b), where we have two intermediate
nodes v1 and v2 between the source s and the destination d.
The packet delivery probabiliti es are as labeled in the figure,
where the delivery probabilit y from v1 to v2 is h12, and that
from v2 to v1 is h21. Given this topology, we have atotal of 5
possible forwarder lists as listed in Table I. In the following,
we will analyzewhich of these forwarders lists is the best and
under what condition under the assumption of perfect ACK.
Without loss of generality, we assume y1 ≥ y2. In this case
from Theorem 1, the forwarder {s, v1, d} is always better than
{s, v2, d}, and from our analysis below, it will be clear that
{s, v1, v2, d} is always better than {s, v2, v1, d}. The condition
under which each forwarder list is the best is listed under the
last column in Table I, and is summarized in the following
theorem.

THEOREM 2 (Four Nodes). Given the four-node topology
with two intermediate nodes v1 and v2 as shown in Fig.2(b),
and assuming that y1 ≥ y2, we have the following forwarder
list selection criteria (under the perfect ACK assumption):

• If z ≥ y1(≥ y2), use the forwarder list {s, d} only. In
other words, using either v1 or v2 or both will not help
reduce the expected number of transmissions.

• If y1 > z, then always add v1 in the forwarder list, and
i) use the forwarder list {s, v1, d} if Ns,v1,d ≤ Nv2,v1,d;
otherwise, ii) use the forwarder list {s, v2, v1, d}. In other
words, v2 should be added in the forwarder list (always
after v1), if and only if Nv2,v1,d < Ns,v1,d.

This theorem can be proved through a systematic event-
based analysis below.

Given the four-node topology in Fig. 2(b), when s transmits
a packet to d, we have one of the following events:

1) None of the nodes v1, v2 or d receives it: this event is
denoted as Ē := (v̄1 ∧ v̄2 ∧ d̄), and the probabilit y of this
event occurring is Pr(Ē) = (1 − x1)(1 − x2)(1 − z). Given
this event, no matter what forwarder list is used, s needs to
retransmit the packet until at least one of them receives it.
The number of expected transmissions that s must perform

until at least either v1, v2 or d receives (i.e., until the event
E := v1 ∨ v2 ∨ d occurs) is

Ns→E =
1

Pr(E)
=

1

1 − (1 − x1)(1 − x2)(1 − z)
.

2) At least one of the nodes v1, v2 or d receives the packet:
this event is denoted by E := (v1 ∨v2 ∨d), and its probabilit y
is 1− (1− x1)(1− x2)(1− z). Given this event, we have the
following four possibiliti es:

a) if d receives the packet (and no matter whether v1

or v2 receives it or not), this (conditional) event is
denoted as (d|E). Given this event, no matter what
forwarder list is used, no additional transmission is
needed.

b) If d does not receive it but both v1 and v2 receive,
this (conditional) event is denoted as (v1∧v2∧ d̄|E).

c) If d and v2 do not receive it but v1 receives it, this
(conditional) event is (v1 ∧ v̄2 ∧ d̄|E).

d) If d and v1 does not receive it but v2 does, the
(conditional) event is (v̄1 ∧ v2 ∧ d̄|E).

Using the above event break-down, we first show that if
z > y1(≥ y2), then the best forwarder list is {s, d}. From
Theorem 1, it is clear that {s, d} is better than {s, v1, d}
and {s, v2, d}. The question left is then: under this condition,
would it be helpful to use both intermediate nodes v1 and
v2 as forwarders? The differencebetween using the forwarder
list {s, d} and {s, v2, v1, d} (or {s, v1, v2, d} lies in the last
three events, where the latter will use either v1 or v2 to
perform transmissions instead of s. Assuming we are using
the forwarder list {s, v2, v1, d}, let us see what the expected
transmissions will be required by using either v1 or v2. Note
that since we give v1 higher priority than v2, in the event
of 2b) we will use v1 to transmit instead of v2 (this is the
only differencebetween using the forwarder list {s, v2, v1, d}
as opposed to {s, v1, v2, d}). The conditional probabilit y that
either 2b) or2c) occurring given E is Pr(v1 ∧ d̄|E) = x1(1 −
z)/[1−(1−x1)(1−x2)(1−z)]. Under this event, the expected
number of transmissions by v1 until d receives is 1/y1, which
is lessthan or equal to 1/z, as z ≥ y1. This is straightforward
as the probabilit y of d eventually receiving the packet if

5

v1 keeps (re-)transmitting is less than the probabilit y of d
eventually receiving the packet if s keeps (re-)transmitting.

Similarly, in the event of 2d), we will use v2 to transmit the
packet (since v1 does not receive the packet). However, once
v2 transmits the packet, if d does not receive it but v1 receives
it, then v1 will resumethe transmission of thepacket instead of
v2. In this case, the expected number of total transmissions by
either v2 or v1 is given by the three-node scenario we studied
earlier, with v2 as the source, v1 the intermediate node, and
d the destination. Hence by Theorem 1, the expected number
of total transmissions by v1 or v2 is

Nv2,v1,d =
1 + h21(1 − y2)1/y1

1 − (1 − h21)(1 − y2)
≥

1

y1
>

1

z

where the last two inequaliti eshold becausez ≥ y1 ≥ y2. This
inequality implies that theprobabilit y of d eventually receiving
the packet if we have v1 and v2 to perform (re-)transmissions
is lessthan the probabilit y of d eventually receiving the packet
if s keeps (re-)transmitting the packet.

Using a similar argument, we can show that the forwarder
list {s, v1, v2, d} would in fact result in more transmissions
than {s, d}. Combining all the arguments above, we therefore
establish that if z > y1(≥ y2), the forwarder list {s, d} is the
best among all options.

Now we consider the scenario where y1 > z (and the rela-
tionship between z andy2 isarbitrary). Again from Theorem 1,
we know that the forwarder list {s, v1, d} is better than {s, d}.
The question is now whether and when using v2 will help
reduce the number of transmissions or not. In other words,
under what condition, is the forwarder list {s, v2, v1, d} better
than {s, v1, d}? We claim that {s, v2, v1, d} is better than
{s, v1, d} if and only if Nv2,v1,d < Ns,v1,d. Here Nv2,v1,d

is the expected number of transmissions in a 3-node (sub-
)topology (of the four-topology in Fig. 2(b)) where v2 is the
source, d is the destination, v1 is the intermediate node, and
the packet delivery probabiliti esbetween the nodesare labeled
as in Fig. 2(b). Ns,v1,d is similarly defined. As y1 ≥ y2 and
y1 > z, from Theorem 1 we have 1/y1 ≤ Nv2,v1,d ≤ 1/y2,
an 1/y1 < Ns,v1,d ≤ 1/z.

To see why if Nv2,v1,d < Ns,v1,d, then {s, v2, v1, d} is
better than {s, v1, d}, consider the three events 2b), 2c) and
2d) defined above. Clearly in the event of either 2b) or
2c), both forwarder lists would use v1 as the forwarder to
keep transmitting the packet until d receives it. The only
difference is in the case of event 2d). Using the forwarder
list {s, v2, v1, d}, v2 will t ransmit the packet, and it will
keep transmitting until either d receives it or v1 receives it
(in the latter v1 will t ake over the task of transmission to
d). Hence given the event 2d), the expected number of total
transmissions by v1 and v2 is Nv1,v2,d. Whereas using the
forwarder list {s, v1, d}, the source s needs to re-transmit
the packet. If Nv1,v2,d < Ns,v1,d, we see that under the
event 2d), using the forwarder list {s, v2, v1, d} would result
in a smaller expected number of total transmissions. Given
that under all other events, the two forwarder lists produce
the same number of total transmissions, we hence conclude

that the expected number of total transmissions using the
forwarder list {s, v2, v1, d} is lessthan that usingtheforwarder
list {s, v1, d}, namely, Ns,v2,v1,d < Ns,v1,d, if and only if
Nv1,v2,d < Ns,v1,d.

Using the same event-based analysis, we can in fact show
that given y1 > y2, the forwarder list {s, v2, v1, d} is always
better than {s, v1, v2, d}. In the event of 2b), using v1 instead
of v2 requires only 1/y1 < 1/y2 expected number of trans-
missions. In the event of 2c), using v1 to directly transmit to
d requires 1/y1 expected number of transmissions, which is
fewer than that if we use v2 as an intermediate forwarder. This
is because from Theorem 1 we have Nv1,v2,d > 1/y1 when
y1 > y2. On the other hand, in the event of 2d), using v1 as an
intermediate forwarder instead of using v2 to directly transmit
to d would reduce the expected number of transmissions, as
Nv2,v1,d < 1/y2 when y1 < y2. Hence in all these three
events, {s, v1, v2, d} would producefewer expected number of
transmissions. In fact, given y1 < y2, we know that {s, v1, d}
is always better than {s, v1, v2, d}. This is because given
y1 < y2, from Theorem 1 v2 does not help v1 in reaching d.
In contrast, given y1 > z but y1 > y2, whether y2 is larger or
smaller than z, v2 may in fact help the sources to reach the set
{v1, d}, thus reducing the expected number of transmissions.
This is the case if and only if Nv2,v1,d < Ns,v1,d, and
in this case the forwarder list {s, v2, v1, d} would be better
than {s, v1, d}. Clearly, if z = y1, {s, d} and {s, v1, d} are
equally good, and if z = y1 = y2, then {s, d}, {s, v1, d} and
{s, v2, v1, d} (and {s, v1, v2, d}) are equally good. Now, the
theorem.2 is proved completely.

IV. FORWARDER L IST SELECTION: GENERAL THEORY

Based onthe insights and results we obtained for the 3- and
4-node cases, we now extend them to a general topology with
n intermediate forwarders, and present the MTS algorithm for
finding the optimal forwarder list which provably minimizes
the expected number of transmissions needed to transmit a
packet from the source to the destination (under the perfect
ACK assumption). We start by establishinga recurrent formula
for computing the expected number of transmissions for a
given forwarder list.

A. Expected Number of Transmissions for a Given Forwarder
List

Consider a general topology as shown in Fig.2(c), where
we have a source s and a destination d, and n intermediate
nodes that are arbitrarily connected among themselves (and
with s and d). As noted in Fig. 2(c), we use z to denote
the packet probabilit y from the source node s directly to the
destination noded, xi thepacket probabilit y from nodes to the
(intermediate) node vi, yi the packet probabilit y from node vi

to node d, and hij the packet probabilit y delivery probabilit y
from node vi to node vj , where 0 ≤ z ≤ 1, 0 ≤ xi ≤ 1,
0 ≤ yi ≤ 1 and 0 ≤ hij ≤ 1 (note that some of these packet
delivery probabiliti escan be0). Given a total of n intermediate
nodes, we have a total of

∑n
i=0

n!
(n−i)! possible forwarder

lists (including {s, d}–the the default forwarder list without

6

using any intermediate node). Of these
∑n

i=0
n!

(n−i)! forwarder
lists, which one is the best and under what condition? Instead
of directly answering this question, we start by establishing
a recurrent formula for computing the expected number of
transmissions for a given forwarder list.

For m = 1, . . . , n, let um, . . . , u1 denote an arbitrary
(ordered) list of m intermediatesnodes taken from the set of n
intermediate nodes {v1, v2, . . . , vn}. Then {s, um, . . . , u1, d}
is a possible forwarder list. We would like to derive a
formula to compute the expected number of transmissions
to reach destination d using this particular forwarder list.
We denote this number by Ns,um,...,u1,d. More generally, for
k = 1, . . . , m, we use Nuk,...,u1,d to denote the expected
number of transmissionsto reach destinationd when thepacket
has reached node uk, but not uj, j = 1, . . . , k − 1. In other
words, Nuk,...,u1,d is the expected number of transmissions to
reach destinationd if uk is thesourcenode and{uk, . . . , u1, d}
is the forwarder list. Given these notations, we have the
following recurrent formula for computing Ns,um,...,u1,d.

THEOREM 3 (Recurrent Formula for Expected Number
of Transmissions). Consider a general topology with n in-
termediate nodes as depicted in Fig.2(c). For 1 ≤ m ≤ n,
let {s, um, . . . , u1, d} be an arbitrary forwarder list with m
(ordered) intermediate forwarders, ui ∈ {v1, . . . , vn}. Then
using this forwarder list, the expected number of transmissions
for transmitting a packet currently at the source node s to
reach thedestination noded isgiven by thefollowingrecurrent
formula (under the perfect ACK assumption):

Ns,um,...,u1,d =
1 +

∑m
k=1 xk

∏k−1
j=1 (1 − xj)(1 − z)Nuk,...,u1,d

1 −
∏m

k=1(1 − xk)(1 − z)
.

(3)

Proof: The theorem follows easily by using the following
event-based analysis. We use Em := um ∨ · · · ∨ u1 ∨ d to
denote the event that when s transmits the packet, either the
destination node d or (at least) one of the m intermediate
forwardersreceivesit, whereasweuse Ēm(:= ūm∧· · ·∧ū1∧d̄)
to denote the complement of this event, namely, when s
transmits the packet, neither the destination node d nor any
of the m intermediate forwarders receives it, For 1 ≤ k ≤ m,
let Ek, 6<k denote the event that when s transmits the packet,
uk receives it but none of the higher priority intermediate
forwarder, uj, 1 ≤ j < k, nor d, receives it, and (Ek, 6<k|Em) is
thisevent conditioned onEm occurring. Note that (Ek, 6<k|Em),
k = 1, . . . , m, plus the event (d|Em) (i.e., the conditional event
that the destination node d receives the packet), are mutually
exclusive events, and provide a partition of the event Em. In
other words,

∑m
k=1 Pr(Ek, 6<k |Em) + Pr(d|Em) = Pr(Em).

Let Ns→Em denote the expected number of transmissions that
the source node s has to perform until Em occurs, i.e., at
least one of the nodes in {um, . . . , u1, d} receives the packet.
Given these notations and recall the definition of Nuk,...,u1,d,

we have the following recurrent formula for Ns,um,...,u1,d:

Ns,um,...,u1,d = Ns→Em +
m∑

k=1

Pr(Ek, 6<k |Em)Nuk,...,u1,d.

(4)
Note that if (d|Em) occurs, then no additional transmis-
sions are needed. The above recurrent formula states that
the expected number of transmissions using the forwarder
list {s, um, . . . , u1, d} is the sum of the expected number of
transmissions by the sourcenode s until Em occurs, and given
the event, for 1 ≤ k ≤ m, if uk receives it but none of the
higher priority forwardersand nor does the destination node d
receive it, the expected number of transmissions, Nuk,...,u1,d

from the intermediate forwarder uk to reach d using the
forwarder list {uk, . . . , u1, d}. Clearly, Ns→Em = 1/Pr(Em)
and Pr(Em) = 1−

∏m
k=1(1 − xk)(1 − z). For k = 1, . . . , m,

Pr(Ek, 6<k|Em) = xk

∏k−1
j=1 (1−xj)(1−z)/Pr(Em). Plugging

these formulas into eq.(4) yields eq.(3).

B. Minimum Transmissions Selection Scheme

Firstly, let us introduce atheorem below, which is useful to
prove the optimality of our selection scheme later.

THEOREM 4 (When to Extend a Forwarder List). Given
an existing forwarder list {s, um−1, . . . , u1, d}, adding a
neighbor, um, of the source node s (i.e., xm > 0) as an
additional forwarder to the end of this forwarder list can
reduce the expected total number of transmissions if and only
if Num,um−1,...,u1,d < Ns,um−1,...,u1,d.

Proof: Using Theorem 3, we can compare two forwarder
lists, say, {s, um−1, . . . , u1, d} and {s, um, . . . , u1, d}, and
thus decide whether add an additional forwarder um to
(the end of) an existing forwarder list {s, um−1, . . . , u1, d}
would help or not. Using the notations defined in the
proof of Theorem 3, we note that the difference be-
tween the two forwarder lists {s, um−1, . . . , u1, d} and
{s, um, . . . , u1, d} lies in the fact that in the event of
(Em, 6<m|E), when using {s, um, . . . , u1, d}, um would take
over the packet transmissions from the source node s, while
using {s, um−1, . . . , u1, d}, s would continue to re-transmit
the packet until either d receives it, or one of the nodes
{u1, . . . , um−1} receives it and takes over the packet trans-
missions. Using some simple algebraic manipulations, we can
show the following holds:

Ns,um−1,...,u1,d = Ns→E + Pr(Em, 6<m|E)Ns,um−1,...,u1,d

+

m−1∑

k=1

Pr(Ek, 6<k |E)Nuk,...,u1,d. (5)

Comparing eq.(5) with eq.(4), it is easy to see
that Ns,um,...,u1,d < Ns,um−1,...,u1,d if and only if
Num,um−1,...,u1,d < Ns,um−1,...,u1,d and xm > 0, i.e.,
Um is a neighbor of the source node s (note that the latter is
necessary otherwise Pr(Em, 6<m|E) = 0).

We are now in a position to present the Minimum Transmis-
sions Selection(MTS) algorithm, which computes the optimal

7

forwarder list that minimizes the expected number of trans-
missions. In fact, given a general topology and the destina-
tion d, the MTS algorithm computes the optimal forwarder
lists from all sources to d, using a dynamic programming
formulation somewhat analogous to the Dijkstra’s algorithm
(which computes the shortest paths from a given source to all
destinations).

Algor ithm 1 The MTS algorithm for computing the optimal forwarder lists of all
sources v’s to the destination d.

1: //Initialization:
2: S := the set of all nodes except d
3: for each vertex v in S do
4: FLd[v] := {v, d}
5: if Pr(v → d) > 0 then
6: Nd[v] := 1/Pr(v → d)
7: else
8: Nd[v] := ∞
9: end if

10: end for
11: //I terations:
12: while S is not empty do
13: u := node in S with smallest Nd[·] (i.e., u := argminw∈SNd[w])
14: remove u from S
15: for each neighbor v of u and v is in S do
16: FLd[v] := merge(FLd[u], FLd[v]) // seethe text for definition of merge
17: Nd[v] := Nd

F Ld[v]
(where Nd

F Ld[v]
is computed using eq.(3))

18: end for
19: end while
20: RETURN FLd[v] for all nodes v

Given a general topology (e.g., Fig.2(c)), initially let S be
the set of all nodes except for a given destination node d.
The MTS algorithm for computing the optimal forwarder list
from any source node v ∈ S to d is described in pseudo-code
in Alg. 1. At each iteration of the algorithm, for any node
v in S, FLd[v] records the (best) forwarder list from v to d
discovered so far, and Nd[v] denotes the expected number of
transmissions using the (currently best) forwarder list FLd[v].
During the initialization stage (steps 1-9), for each v ∈ S,
clearly FLd[v] := {v, d} is the currently best forwarder list
for v, and Nd[v] = 1/Pr(v → d) if the packet delivery
probabilit y Pr(v → d) is non-zero.

At each subsequent iterationwhileS is not empty (steps12-
19), we pick the nodeu ∈ S such that u := argminv∈SNd[v]
(step 13), i.e., u is the node in S with the smallest expected
number of transmissions Nd[u], and remove it from S (step
14). It can be argued (see the next paragraph) that FLd[u]
contains the optimal forwarder list for u with the minimum
Nd[u] (among all possible forwarder lists for u to d), and it
is therefore removed from S for further consideration in the
future iterations. Given this, we now consider any neighbor
node v of u that is still i n S (step 15). If v is a neighbor
of u, we merge the current best forwarder list FLd[v] with
that of u, FLd[u], to obtain a new forwarder list for v (step
16). The merge operation combines and orders the nodes in
FLd[v] and FLd[u] (except for v and d) based on the order
at which these nodes are removed from the set S: the earlier
a node w in FLd[u] or FLd[v] is removed from S, the higher
the priority of w will be (clearly d has the highest priority,
and v the lowest), and the new merged forwarder list FLd[v]

is thus of the form {v, u, . . . , d}4. We then update Nd[v]
with the expected number of transmissions using this new
merged forwarder list FLd[v], computed via eq.(3) (step 17).
This procedure continues until the optimal forwarder list is
computed for all nodes (i.e., until S is empty).

The optimality of the MTS algorithm can be established
by induction and proof-by-contradiction. At the kth iteration,
let uk denote the node u selected in step 13 in Alg. 1, and
FLd[uk] be the corresponding optimal forwarder list for uk.

(1) For k = 1, it is clear that u1 := argmaxvPr(v → d)
and FLd[u1] = {u1, d}. We claim FLd[u1] = {u1, d} is
the optimal forwarder list for u1. Suppose it is otherwise.
Then the optimal forwarder list must contain at least another
node (besides u1 and d). Suppose the optimal forwarder list
is {u1, v, d} for some d, from theorem 1 we know that this
forwarder list is not optimal, as Nu1,v,d ≥ Nu1,d. Using
theorem 3 or the general formula eq.(3), it can be similarly
argued that any other forwarder list with more than 3 nodes
cannot be optimal.

(2) For more general k = 2, . . . , m, suppose that all of the
forwarder lists FLd[u2], . . . , FLd[um] are all optimal ones.
Then, for k = m + 1, there is um+1 := argminvN

d[v] and
FLd[um+1] = {um+1, vi, . . . , v1, d} is the optimal forwarder
list for um+1. Suppose it is otherwise. We know that it won’ t
be better than FLd[um+1] by removing some forwarders or
re-ordering the current forwarders, otherwise the forwarder
lists of k = 1, . . . , m won’t be optimal. Then the optimal
forwarder list of um+1 must contain at least another node
(besidesum+1, vi, . . . , v1, d) as the lowest forwarder. Suppose
the optimal forwarder list is {um+1, vi+1, . . . , v1, d}, we need
to prove Nd

um+1,vi+1,...,v1,d > Nd
um+1,vi,...,v1,d.

We have um+1 := argminvN
d[v], so for any other

node vi+1 ∈ S, there is Nd
vi+1,vi,...,v1,d > Nd

um+1,vi,...,v1,d.
Hence, based on theorem 4, we have FLd[um+1] =
{um+1, vi, . . . , v1, d} is optimal forwarder list for um+1, since
adding any additional forwarder wouldn’ t help reducing the
expected number of transmissions further.

Based on (1)and (2), we conclude that MTS algorithm can
select optimal forwarder list for any source-destination pair
under the perfect ACK assumption.

C. Illustration

Wenow ill ustratehow theMTSalgorithm worksusingsome
examples and compare the resulting optimal forwarder lists
with those obtained using the ExOR algorithm.

4In fact, unless the forwarding lists FLd[v] and {v, FLd[u]} contain
disjoint path segments from v to d (in other words, there exist nodes
in FLd[v] but not in {v, FLd[u]} or vice versa), the merge operation
would produce a straightforward new (merged) forwarder list, namely,
merge(FLd [v], FLd[u]) = {v, FLd[u]}. For example, this would be the
case when any node (except for v and d) in FLd[v] is a neighbor of some
node in FLd[u]—which is likely to be true in a reasonably dense network. In
any case, it can be shown that by including u and the intermediate forwarders
in its forwarder list FLd[u] into v’s current best forwarder list FLd[v],
the expected number of transmissions using the new merged forwarder list
Nd

F Ld[v]
will always besmaller than Nd[v] (computed using the best forward

list FLd[v] before the merge operation).

8

TABLE IV
FORWARDER LIST SELECTION FOR TOPOLOGY 3(B)

Iteration source s source v1 source v2 source v3

1 {s, d}, 2 {v1, d}, 1.3333 {v2, d}, 1.4268 {v3, d}, 1.0526
2 {s, v3, d}, 1.9139 - {v2, v3, d}, 1.3198 -
3 {s, v2, v3, d}, 1.8240 {v1, v2, v3, d}, 1.3314 - -
4 {s, v1, v2, v3, d}, 1.8083 - - -

TABLE V
FORWARDER LIST SELECTION FOR TOPOLOGY 4(A)

Iteration source s source v1 source v2 source v3

1 {s, d}, 5 {v1, d}, 3.33 {v2, d}, 1.11 {v3, d}, 1.177
2 - {v1, v2, d}, 1.8280 - {v3, v2, d}, 1.1742
3 {s, v3, v2, d}, 3.907 {v1, v3, v2, d}, 1.8183 - -
4 {s, v1, v3, v2, d}, 2.5015 - - -

TABLE VI
FORWARDER LIST SELECTION FOR TOPOLOGY 4(B)

Iteration source s source v1 source v2 source v3

1 {s, d}, 5 {v1, d}, 3.33 {v2, d}, 1.11 {v3, d}, 1.177
2 - {v1, v2, d}, 1.8280 - -
3 {s, v3, d}, 3.908 - - -
4 {s, v1, v3, v2, d}, 2.5083 - - -

TABLE II
FORWARDER LIST SELECTION FOR TOPOLOGY 1

Iteration source s source v1 source v2

1
{s, d} {v1, d} {v2, d}

2 2.222 1.25

2
{s, v2, d} {v1, v2, d}

1.9318 1.7416 -

3
{s, v1, v2, d}

1.8566 - -

TABLE III
FORWARDER LIST SELECTION FOR THE TOPOLOGY 3(A)

Iteration source s source v1 source v2

1
{s, d} {v1, d} {v2, d}

5 1.1 4.0

2
{s, v1, d} {v2, v1, d}
3.0556 - 3.333

3
{v2, s, v1, d}

- - 3.2856

(a) An example topology to
show when our theory can se-
lect lessforwarders than ExOR.

(b) An example topology to
show when our theory can
choose forwarder list with same
size but better orders over
ExOR.

Fig. 3. Example topologies

First consider the simple 4-node topology in Fig.1 with d

(a) (b)

Fig. 4. Example topologies to show the merge operation.

as the destination. The result of each iteration of the MTS
algorithm is shown in Table II , where the first item in each
cell i s the current best forwarder list for the corresponding
node, and the second item is the current smallest expected
transmission number using the said list. In the first iteration,
the optimal forwarder list {v2, d} (and Nv2,d = 1.25) is
computed for node v2; in the second iteration, the optimal
forwarder list {v1, v2, d} (andNv1,v2,d = 1.7416) is computed
for node v1; and in the third iteration, the optimal forwarder
list {s, v1, v2, d} (and Ns,v1,v2,d = 1.8566) is computed for
node s. In contrast, using ExOR’s forwarder list selection
scheme, the resulting forwarder lists for v2 and v1 are {v2, d},
{v1, v2, d}, the same as produced by the MTS algorithm. But
for source s, ExOR selects the forwarder list {s, v2, d}, a
shorter list than the optimal one ({s, v1, v2, d}) produced by
MTS, with a slightly larger expected number of transmissions
Ns,v2,d = 1.9318 (computed using Theorem3).

To further compare the MTS and ExOR algorithms, we
consider two more example topologies shown in Fig.3(a) and
Fig.3(b). For the topology in Fig.3(a), the iterative optimal
forwarder list selectioncomputationsusing theMTS algorithm
areshown in table III and table IV. For thesources in Fig.3(a),

9

the optimal forwarder list computed by the MTS algorithm
is {s, v1, d}. In contrast, ExOR selects the forwarder list
{s, v2, v1, d}, a longer forwarder list than the optimal one by
unnecessarily adding v2 into the forwarder list. For the source
s in Fig.3(b), the optimal forwarder list computed by the MTS
algorithm is {s, v1, v2, v3, d}, with Ns,v1,v2,v3,d = 1.8083. In
contrast, ExOR selects the forwarder list {s, v2, v1, v3, d}, of
the same length as the optimal one, but in different node order.
We see that because ExOR simply considers the “best path”
from each forwarder to the destination, it ranks v1 higher than
v2, ignoring the fact that node v2 has two opportunistic routes
v2 → v3 → d and v2 → d, which together yield a lower
number of transmissions than usingv1’s singlepath to d alone.

Now, we will use two topologies in fig 4 to show how to
do the merge operation during each iteration of MTS scheme.
The iterative optimal forwarder list selection computations
using the MTS algorithm are shown in table V and table VI,
respectively. In the topology in fig 4(a), at any time we do
the merge operation for FLd[v] = merge(FLd[v], FLd[u]),
we could simply merge them as FLd[v] = {v, FLd[u]}. For
example, when weupdatenodes’s forwarder list in iteration4,
we have FLd[s] = merge(FLd[s], FLd[v1]) = {s, FLd[v1]}.
That’s because for this merge operation, every forwarder in
FLd[s] is also in the FLd[v1]. However, if we remove two
links (v1 → v3 and v3 → v2), the topology transfers to that in
fig 4(b). In this case, there are two disjoint paths from node
s to d, when we do the merge operation at s in iteration 4,
this merge formula FLd[s] = {s, FLd[v1]} will not work any
more. That’s because there is some node(v3) in FLd[s] is not
in FLd[v1]. In this case, we need to use more general merge
operation to process.The exact merge operation should be

1) Select all the forwarders of two lists in the new for-
warder list.

2) Order these forwarders by their expected number of
transmissions to the destination.

In this way, node v1,v2,v3 are all selected into s’s forwarder
list in iteration 4, and based on their expected number of
transmissions,we successfully get FLd[s] = {s, v1, v3, v2, d}
as node s’s forwarder list.

V. HANDLING IMPERFECT ACKS

So far we have developed an optimal forwarder selec-
tion algorithm that minimizes the expected total number of
transmissions under the perfect ACK assumption. In practice,
due to unreliable transmissions (e.g., due to asymmetric link
qualiti es), there will be likely imperfect ACKs. Such imperfect
ACKs would lead to later forwarders no hearing the trans-
missions of the previous forwarders (or source), resulting in
(un-necessary) duplicate transmissions.To minimize imperfect
ACKs due to unreliable transmissions and asymmetric link
qualiti es, we adopt two heuristic mechanisms, batch mode
and two-way link quality formula, briefly described below. We
provide simulation results to show that these two mechanisms
together can indeed approximate the perfect ACK assumption
fairly well i n most scenarios.

Batch Mode. We adopt thebatch modedata forwardingmech-
anism and its associated (cumulative) bitmap ACK scheme.
Using the batch mode, packets are grouped in a batch of
certain size (e.g., b = 100 packets), and each packet carries a
batch id and packet id (its relative position in the batch) and
a batch map, where the ith entry of the map contains the id
of highest priority node (the destination or a forwarder, based
on their relative order in the forwarder list) that has received
packet i in the batch; originally it contains the id of the source.
When a forwarder broadcasts the packets of a batch it has
received, each of them carries the same batch map. Hence
upon receiving only one of these packets, a later forwarder
(in the forwarder list) will know the status of the packets
that have been received by previous forwarders (including
the destination) and update its batch map accordingly (please
refer to [2] for details). As a result, the batch mode enhances
the probabilit y of overhearing among the forwarders and
eliminates unnecessary duplicate transmissions.

To show the efficacy of batch mode, especially, the effect
of batch size on reducing unnecessary transmissions, Fig. 5
compares the expected total number of transmissions under
perfect ACK (i.e., assuming all nodes can hear each other’s
transmissions perfectly) (shown as the ideal no. of Tx in the
figure) with the (average) number of transmissions actually
required with unreliable and asymmetric links using batch
mode of varying size. Here the simulations are conducted
using theMIT Roofnet dataset (seeSectionVI for moredetails
regarding the simulation settings). For each source-destination
pair, the (optimal) forwarder list is computed using the MTS
algorithm, and the average number of transmissions is com-
puted over 100 simulation runs with different random seeds.
The x-axis is the source-destination pair id ordered based on
its ideal no. of Tx., and the y-axis is the averageor expected of
transmissions. From the figure we seethat as we increase the
batch size, the average number of actual transmissions (which
include duplicate transmissions) decreases, and approaches to
the ideal number of transmissions with perfect ACK. Similar
improvementscan beobserved also when we chooseforwarder
lists using ExOR.

Two-way Link Quali ty Formula. To deal specifically with
asymmetrical li nk qualiti es and discourage the use of links
with drastic different packet delivery probabiliti esalongits two
directions, we introduce the following two-way link quality
formula to re-define the packet delivery probabilit y from one
node to another and use it in the computation of expected
number of transmissions (e.g., as in eq.(3)):

p′ij = pij [1 − (1 − pji)
SACK

ij] (6)

where SACK
ij is a parameter that depends on the batch size. In

this paper, for batch size b=100, we set SACK
ij := SACK =

10

0 500 1000 1500
0

2

4

6

8

10

12

Source Destination Pair ID

E
xp

ec
te

d
N

o.
 o

f T
x

BS=1
BS=10
BS=100
Ideal No. of Tx

Fig. 5. Batch mode reduces the effect of imperfect
ACKs.

0 500 1000 1500
0

2

4

6

8

10

12

Source Destination Pair ID

E
xp

ec
te

d
N

o.
 o

f T
x

One Way Formula

Two Way Formula

Ideal No. of Tx

Fig. 6. Effect of two-way link formula 6 (batch size
b = 100 and SACK = 10).

0.1b = 10 for all li nks5. This formula takes into account the
link qualiti es of both directions as well as the effect of batch-
mode based cumulative ACKs. Comparing two links, one link
with the forward link quality p12 is 90% and backward link
quality p21 is 5%, and other link with p13 = p31 = 50%.
Using the two-way link formula, we have p′12 = 36.11% <
p′13 = 49.95% (using SACK = 10). In other words, in order
to reduce unnecessary duplicate transmissions due to ACK
losses, it would be better for node 1 to use node 3 as a higher
priority forwarder than node 2. Fig.6 shows the effect of using
the two-way link quality formula which discourages the use of
bad asymmetric links in our MTS algorithm, and as a result,
further the number of unnecessary retransmissions. (The same
observationalso holds when the ExOR forwarder list selection

5Note that the packets within a batch received by a node j (as an
intermediate forwarder) will differ, depending on the senders and rounds of
transmissions. Hence in general it will be difficult to precisely set SACK

ij
. To

be fairly conservative, we choose SACK
ij

= 0.1b in our study. Alternatively
for a fixed source-destination pair and batch size, we could conduct exper-
iments and use estimated average ACK size based on measurements to set
SACK

ij
for each link. Our simulation study in fact shows that with relatively

large batch size, say, b=100, varying SACK
ij

does not significantly affect the
ordering and selection of forwarder lists in most scenarios.

algorithm is used.) Hence with a relative large batch size
(e.g., 100 packets) and the two-way link quality formula, we
can reasonably approximate the perfect ACK assumption and
perform forwarder list selection accordingly.

VI . PERFORMANCE EVA LUATION AND COMPARISON

We conduct extensive simulations in ns2 [5] to evaluate the
performance of our MTS algorithm and compare it with the
performance of ExOR. The simulation results reported here
are based onthe MIT Roofnet topology and dataset [1]. There
are 38 nodes in the Roofnet topology, and the link quality
(or packet delivery probabilit y) between any two nodes is
derived from the Roofnet data. The simulation parameters are
listed in TableVII . There are atotal of 1406 source-destination
pairs in the Roofnet topology. For each source-destination (in
shorthand, src-dst) pair, we run 20 simulations with different
random seeds, and the averages of these 20 simulation runs
are reported in the discussion below.

TABLE VII
SIMULATION PARAMETERS

Parameters Values
Batch Size & SACK 100 & 10

Bandwidth 1Mbps
Forwarder list selection schemes MTS, ExOR

Topology Roofnet
Transmission protocol UDP
Period of simulation 150s for each simulation

Dataflow time 120s for each simulation

We first providesome statistics regarding the forwarder lists
selected by the MTS algorithm and the ExOR scheme. Out
of the 1406 src-dst pairs, MTS and ExOR select exactly the
same forwarder lists for only 225 pairs, about 16% of the total.
Among the 84% pairs that are different, MTS scheme selects
a smaller forwarder list than ExOR for 792 pairs (57%), and
a longer forwarder list for 274 pairs (19%). For the remaining
115 pairs (8%), the forwarder lists selected byMTS andExOR
are of the same size, but of different nodes or order. Fig.7
showsandcomparestheforwarder list sizesgenerated byMTS
and ExOR for all src-dst pairs in a scatter plot, where each
point (x, y) represents the sizes of forwarder list generated
by ExOR (x) and MTS (y) for a given src-dst pair. We now
compare the performances of the forwarder lists selected by
MTSvs. ExOR for each src-dst pair, in termsof both the(aver-
age) actual number of transmissions (including duplicates), as
shown in Fig.8, as well as the throughput (or goodput, i.e., the
number of bytes transmitted from the sourceto the destination
per unit time, measured in KB/sec), as shown in Fig.9. In the
figures, each dot corresponds to one src-dst pair, where its
coordinate (x, y) represent the results under ExOR and MTS,
respectively. We see that overall the forwarder lists selected
by MTS outperforms that by ExOR: 92.05% src-dst pairs
have fewer number of transmissions under MTS than under
ETX scheme, and90.89% src-dst pairshavelarger throughputs
under MTSthan under ETX. There are asmall number of pairs
for which MTS produces poorer performances than ExOR.

11

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

ExOR forwarder list size

M
T

S
 fo

rw
ar

de
r

lis
t s

iz
e

Forwarder list size comparison

Fig. 7. Forwarder list size comparison.

0 2 4 6 8 10
0

2

4

6

8

10

ExOR: no. of transmissions

M
T

S
: n

o.
 o

f t
ra

ns
m

is
si

on
s

no. of transmissions comparison in roofnet

Fig. 8. No. of transmissions.

0 50 100 150 200 250
0

50

100

150

200

250

ExOR: throughput(KB/sec)

M
T

S
: t

hr
ou

gh
pu

t(
K

B
/s

ec
)

Throughputs comparison in roofnet

Fig. 9. Throughput.

0 5 10 15 20 25 30 35
0

2

4

6

8

10

ExOR Forwarder list size

A
ve

ra
ge

 n
um

be
r

of
 n

o.
 o

f t
ra

ns
m

is
si

on
s Average no. of transmissions comparison in Roofnet

MTS
ExOR

Fig. 10. No. of transmissions comparison.

0 5 10 15 20 25 30 35
20

40

60

80

100

120

ExOR Forwarder list size

A
ve

ra
ge

 th
ro

ug
hp

ut
(K

B
/s

)

Throughput comparison in Roofnet

MTS
ExOR

Fig. 11. Throughputs comparison.

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

ExOR forwarder list size

P
er

ce
nt

ag
e

G
ai

n
of

 p
er

fo
rm

an
ce

s

Percentage Gain of performances over ExoR in Roofnet

No. of transmissions
Throughputs

Fig. 12. Percentage gain of performances.

Detailed analysis shows that this is mostly due to the effect of
imperfect ACKs, causing unnecessary duplicate transmissions.
To further analyze and compare the performances of MTS
and ExOR, we break down the results based on the size of
forwarder lists, as shown in Figs.10,Figs.11andFigs.12, where
in the Figs.12 the performance gains are computed using the
following formulas: GTx = (TxETX − TxMTS)/TxETX

and GThput = (ThputMTS−ThputETX)/ThputETX. From
these figures, we see that MTS produces the largest perfor-
mance gains, in terms of both reduced (average) number of
transmissions and increased throughput, when forwarder lists
(generated by ExOR) are fairly long. For these longforwarder
lists generated by ExOR, MTS can reduce the number of
transmissions by up to 32.2%, and increase the throughput
by up to 40.98%.

Related Work. Before we conclude this paper, we briefly dis-
cuss somerelated work. Zhonget al. [9] propose anew routing
metric EAX (expected anycast transmissions) to capture the
expected number of transmissions needed to opportunistically
deliver a packet between two nodes, and resort to heuristic al-
gorithms for computinga set of candidate forwarders. Dubois-
Ferriere et al. [4] introduces a specific cost function defined
with respect to a set of candidate forwarders, and propose the
LCOR (least-cost opportunistic routing) algorithm to identify
the best candidate set that minimizes the said cost function.
Due to its potentially exponential time complexity, heuristic
policies have to be incorporated in LCOR. [8] studies the
end-to-end throughput, or capacity, of opportunistic routing
in multi -rate wireless networks using a linear programming
framework. There are also a number of other studies and
protocols with various opportunistic routing flavors. Due to

spacelimitation, we will not discuss them here.

VII . CONCLUSION

In this paper we established a general theory for analyz-
ing the forwarder list selection problem, and developed an
optimal forwarder selection algorithm–the minimum transmis-
sion selection (MTS) algorithm–which minimizes the expected
number of transmissions under the perfect ACK assumption.
We showed how this assumption can be relaxed in practice to
account for unreliable and asymmetric link qualiti es. Through
extensive simulations using the MIT Roofnet dataset, we
demonstrated that in more than 90% cases the MTS algorithm
outperforms the forwarder selection scheme used in ExOR,
with performance gains up to 32% in terms of the (average)
number of transmissions and upto 41% in terms of through-
put.

REFERENCES

[1] MIT roofnet. http://pdos.csail .mit.edu/roofnet/.
[2] S. Biswas and R. Morris. Exor: Opportunistic routing in multi -hop wire-

less networks. In Proceedings of the ACM SIGCOMM ’05 Conference,
Philadelphia, Pennsylvania, August 2005.

[3] R. R. Choudhury and N. H. Vaidya. Mac-layer anycasting in ad hoc
networks. SIGCOMM Comput. Commun. Rev., 34(1):75–80, 2004.

[4] H. Dubois-Ferriere, M.Grossglauser, and M. Vetterli . Least-cost oppor-
tunistic routing. In Allerton Conference on Communication, Control, and
Computing, 2007.

[5] K. Fall and K. Varadhan. The ns-2 Manual. The VINT Project, UC
Berkeley, LBL, and Xerox PARC, 2003,.

[6] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc
wireless networks. In Mobile Computing. Kluwer Academic Publishers,
1996.

[7] C. Perkins and E. Royer. Ad hoc on demand distance vector routing,
mobile computing systemsandapplications. In In Proceedings of WMCSA
99, 1999.

12

[8] K. Zeng, W. Luo, and H. Zhai. On end-to-end throughput of oppor-
tunistic routingin multi rate and multihop wireless networks. In IEEE
INFOCOM’08 Conference, 2008.

[9] Z. Zhong and S. Nelakuditi . On the efficacy of opportunistic routing.
SECON ’07. 4th Annual IEEE Communications Society Conference on,
pages 441–450, 18-21 June 2007.

