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Abstract—Unlike traditional wireless routing protocols which
use a single fixed path, opportunistic routing explicitly takes
advantage of the broadcast nature of wireless communications
by using a set of forwarders to opportunistically perform packet
forwarding. A key isae in the design of opportunistic routing
protocols is the forwarder list selection problem. In this paper
we establish a general theory for analyzing the forwarder list
seledion problem, and develop an optimal solution, the minimum
transmission selection (MTS) algorithm, which minimizes the
expeded number of transmissons. Through extensive ssmulations
using the MIT Roofnet dataset, we demonstrate that in more
than 90% cases the MTS algorithm outperforms the forwarder
seledion scheme used in EXOR, the best known opportunistic
routing protocol in the literature.

I. INTRODUCTION

The oppatunistic routing paradigm [2], [3] has opened a
new avenue for designing routing protocols in multi-hopwire-
less networks. Unlike traditional routing wireless protocols
such as DSR, AODV [6], [7] which rely on a (pre-seleded)
single fixed path for delivering pacets from a source to a
destination, oppatunistic routing explicitly takes advantage
of the broadcast nature of wireless communications to all ow
multi ple (pre-seleded) forwarders to oppatunistically deliver
padkets from a sourceto a destination. The path a padet takes
depends on which forwarders happen to receave it, andis thus
non-deterministic. As aresult, oppatunistic routing can better
cope with the losgy, unreliable and varying link qualiti es that
are typicd of wireless networks.

While the basic idea of oppatunistic routing is fairly
dtraightforward, there ae severa key isaes that must be
addressed in designing an oppatunistic routing protocol. For
example, given a source axd a degtination in a multi-hop
wireless network, which nodes shoud be sedleded as (in-
termediate) forwarders for oppatunistic padket forwarding?
When a padket is transmitted (or rather broadcasted), multiple
forwarders may receave it. Which ore of them shoud forward
it so as to avoid unrecessry dugicate transmissons? These
guestions are part of the forwarder list seledion problem in
oppatunistic routing. In a nutshell, in order to fully redize
the benefits of oppatunistic routing, a list of forwarders must
be judiciously seleded, and these forwarders must co-ordinate
their padket forwarding-either explicitly or implicitly—in order
to succesdully and efficiently deliver padkets from the source
to the destination.
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Take ExOR [2], the semina and primary oppatunistic
routing protocol in the literature, as an example. Based on a
link metric, ETX!, ExOR ranks the potential forwarders using
their minimum path ETX, namely, the sum of the constituent
link ETX’salongthe “best path” (in terms of path ETX) froma
noce to the destination. The nodes that have small er minimum
path ETX’s than the source ae seleded as forwarders, and
they are ordered into a globd prioritized forwarder list.
Using such a forwarder list, EXOR employs carefully designed
and elaborate padket forwarding mechanisms to redize the
benefits of oppatunistic routing. We see that while EXOR is
an oppatunistic routing protocol, it in fad utilizes a metric
defined on a singe fixed path for forwarder list seledion
and ardering, thereby ignaring the very effed of oppatunistic
routing. As will be shown later in this paper, such a forwarder
list seledion methodis in general sub-optimal!

This paper is devoted to addressng the fundamental prob-
lem of forwarder list seledion in oppatunistic routing. We
establish a general event-based analysis methoddogy and
theory for studying the forwarder list seledion problem, and
develop an optimal solution which minimizes the expeded
number of transmissons under an ided setting— the perfed
ACK asauumption (see Sedion Il). To illustrate our analysis
methoddogy, we first consider two simpler scenarios, 3-node
and 4-noce topdogies in sedion lll. In sedion IV we then
develop the general theory and present an optimal solution,
referred to as the minimum transmisson seledion (MTS) algo-
rithm, for solving the forwarder list seledion problem. Given a
general topdogy, the MTS algorithm seleds and computes the
optimal forwarder list for any noce to a given destination that
minimizes the total expeded number of transmissons, using
a dynamic programming formulation (an iterative procedure)
that is analogous to the one used in the Dijkstra’'s shortest path
algorithm. In sedion V we discuss how to relax the perfed
ACK asaumption by popasing two heuristics to address the
unreliable, asymmetric link qualities, thereby deding with
the dfea of imperfed ACKs. In sedion VI we evaluate
and compare the performances of the MTS algorithm and
the forwarder list seledion scheme of EXOR using extensive
simulations. The paper is concluded in sedion VII.

Il. BACKGROUND AND PROBLEM SETTING
As in EXOR [2], we assume that a globd prioritized for-
warder list isused for oppatunistic padet forwarding, and the

1The ETX of alink (say, from noce i to nock j) is the inverse of the packet
delivery probability p;;, from node ¢ to nock j (measured and estimated based
on some gppropriate time interval).



same (batch mode-based, roundby-round prioritized) packe
forwarding mechanisms are employed, which is described
below. Let {s, tm, um—1,...,u1,d} be an (ordered) forwarder
list, where s is the source, d is the destination, and u1,. . . um,
are aset of m (intermediate) forwarders. The nodes are ordered
based ontheir increasing priorities from left to right: namely,
the destination nock d has the highest priority, s the lowest
priority, and for 1 < i < j < m, u; has higher priority over
u;. (If m = 0, nointermediate forwarder is used.) The priority
of the nocke in the forwarder list is important in coordinating
the padket forwarding in the (prioritized) packet forwarding
medchanisms used in EXOR. In [2], these medchanisms are
described using the batch mode, where a batch of padkets,
say, 100 mdkets, are transmitted in a round-by-roundfashion
using tightly controlled padet scheduling. For clarity, we will
illustrate the EXOR padket forwarding medhanisms using a
single padket (i.e., a batch of one padket) below.

Suppcse the source s has a singe padket to de
liver to the dedtination d, using the forwarder list
{8, Um,Um—1,...,u1,d}. The source s first transmits (or
rather, broadcasts) the padet. One or multiple nodes in the
forwarder list may receave the padet. If the destination d
(the highest priority noce) receves, it immediately broadcasts
badk? an adknowledgement (ACK). All lower priority nodes
“overheaing” the ACK would therefore caxcd their trans-
misdon and drop the padet, thereby completing the padket
delivery from the source to the destination. Now consider the
scenario where d does nat receve the padket, and suppese
u; (1 < i < m) is the highest priority node that receves
it. The node u; would first defer its transmisson by waiting
for ¢ time dots (ead time dot equals to the transmisdgon
time of a single padket), while listening to any transmisgon
by higher priority nodes during these time dots. (Note that
such deferment thereby allows for the higher priority nodes
before u; to have a better chance to transmit first, just in
case one of them has recaved it also.) Since no transmisson
is head duing the deferment, node w; would transmit the
padket immediately afterwards. Any lower priority node that
“overheas’ this transmisson from u; would then cancd its
transmisson and dop the padket. Wheress, if some higher
priority nodes (but not the destination) receve the transmisson
of u;, say, u;,j < ¢ isthe highest priority node that receves
the padket, then the padket has made forward progressfrom a
lower priority node u; to a higher priority node u; towards the
destination d. The process (a new “round® of transmisson)
would start anew at w;. If nore of the higher priority nodes
“hea” its transmisdon from wu,, i.e., recaving the padet, u;
would start re-transmitting the padket again after waiting for

2For simplicity, here we sssume that all nodes have anorzero probability of
“heaing’ or “over-heaing’ each ather's transmissons. In fad, the design o
ExOR implicitly posits a dense wireless mesh network where dl nodes in the
network are more or less conreded, abeit with urreliable links, sometimes
with extremely low padet delivery probability.

SHere we use the term “round’ to indicate forward progress made by the
padket. With m + 2 nodes in the forwarder list, a worst-case of m + 1 rounds
may be needed. Multiple (re-)transmissons may be nealed in ead roundto
make forward progress

an appropriate amourt of time. Whenever the destination d
receaves the padket, it will broadcast an ACK, thus completing
the padket transmisson process

From the description above, we see that all of the nodes
in the forwarder lists must cooperate through appropriate
transmisson deferment and constantly listening to (or “over-
heaing’) ead other's transmissons during such deferment,
and based onthese transmissons (or lad thereof), coordinate
(start or abort) their own padket transmissons. Due to urreli-
able wireless communicdions, in general multiple rounds of
transmissons (when making forward progress from a lower
priority node to a higher priority node) and re-transmissons
(when noforward progressis made) are needed in order to op-
portunisticaly forward a padket from the sourceto the destina-
tion. Hence the (expeded) number of transmissons (including
retransmissons) required when using a gven forwarder list
for oppatunistic packe forwarding is an important metric to
measure the “ goodress’ of a forwarding list. We note dso
that unreliable wireless communications have ancther effed
on oppatunistic padket forwarding: when a lower-priority
forwarder does not overhear the transmisson o a higher-
priority node (a form of implicit ACK to the lower-priority
forwarder to abort its transmisson o the same padet), it may
lead to unrecessary dugicate transmissons, thus affeding
the total number of padet transmissons. However, we ague
that this imperfed ACK problem is nat crucia to, and in
a sense, orthogord to, the forwarder list seledion problem,
as appropriate mechanisms can be designed to aleviate this
problem which can be gplied equally to any forwarder list
seledion scheme. For instance, the batch mode used in EXOR
(and its enhancement we introduce in sedion V) is designed
spedficdly for eliminating o reducing unrecessary dugicate
transmisgons due to this imperfed ACK problem.

In analyzing the forwarder list seledion problem in this
paper, we therefore employ the expeded number of trans-
missons (excluding dupicate transmissons due to urreliable
overheaing) as the key metric to compare forwarder lists,
and address the two basic questions: i) which forwarders
to seled, and ii) how to order the forwarders seleded? To
simplify our analysis and separate the dfed of dupicae
transmissons due to urreliable overheaing, we introduce ad
consider an ideal setting with the perfeda ACK asaumption,
namely, we asaime that lower priority nodes can aways
overhea the transmissons of higher priority nodes, thus there
will be no unrecessry dupicate transmissons. Under this
assumption, in this paper we develop a genera methoddogy
and theory for analyzing the forwarder list seledion problem,
and develop a dynamic programming algorithm for finding the
optimal forwarder list which minimizes the expeded number
of transmisgonsfor a padet to traverse oppatunisticaly from
a source to a destination. We will relax this perfed ACK
assumption in sedion V by introducing two mechanisms to
hande unreliable and asymmetric padket delivery probabili -
ties.

We oonclude this sdion by showing that the forwarder
list seledion scheme used in EXOR is sub-optimal through



Fig. 1. An example showing that EXOR's forwarder list seledion scheme is
sub-optimal.

a simple example. Recdl that EXOR uses the following two
rulesto seled and arder forwarders: a) canddate set seledion
rule: node with a smaller path ETX value (to the destination)
than the source will be chosen in the forwarder list; and
b) ordering rule: forwarders are ordered by their path ETX
values to the destination, where aforwarder with smaller path
ETX value has higher priority. To show that the forwarder list
seleded based onthese two rules are sub-optimal, we consider
a simple example shown in Fig.1, where noce s is the source,
d is the destination, and the number on ead link indicates its
(symmetric) padket delivery probability. Computing the path
ETX using the best path, we see that the path ETX for node
vy (tod) is1/0.8 = 1.25, for node vy itis1/0.45 = 2.22, and
for the sourcenode s it is 1/0.5 = 2. Hencethe forwarder list
seleded by EXOR is{s, vo, d}. However, it isnat hard to argue
that the forwarder list {s,v1,vq,d} isin fad a better choice,
as it is likely to reduce the total number of transmissons
to deliver padkets from s to d. This is becaise that v; has
two oppatunistic paths, v; — d and v; — vy — d, which
together yield a higher padket probability than using either
path alone. The expeded number of transmisgons from v,
to d using bah paths is rougHy 1.742, which is far smaller
than the path ETX of »; (2.22) and is also smaller than the
path ETX of s (2). The sub-optimality of the ETX forwarder
list seledion scheme lies in that it uses the single path ETX
metric for seleding forwarders, and thus fails to acount for
the oppatunistic nature of padet forwarding.

Il1. BASIC THEORY: THREE- AND FOUR-NODE CASES

In this sdion we consider the problem of forwarder list
seledion under two simplest scenarios, namely, networks with
3 and4 nodesrespedively. Under the perfed ACK asumption,
we establish several theorems to addressthe two fundamental
guestions regarding the forwarder list seledion: i) when shoud
an (intermediate) nocke be seleded in a forwarder list, and ii)
if there ae multiple forwarders, how shoud they be ordered?
As will be shown in the next sedion, these theorems provide
the key insights into, and lay the foundition for establishing
a general theory for solving the more general forwarder list
seledion problem.

A. ThreeNode Case

We first consider the 3-node cae, the simplest posshle
scenario, as shown in Fig. 2(a), where s and d are the source
and destination nocks, and v isthe intermediate node. The link
qualiti es are labeled in the figure. We assume dl probabiliti es
are non-zero (otherwise the question become trivial), and we

are interested in the following question: suppase s has one
padket to transmit to d, when shall we include v as aforwarder
so as to minimize the total number of expeded transmisson
(under the perfed ACK asaumption)?

To answer the aowve question, we need to compare the
expeded nunber of transmisgons under two possble options:
a) using the forwarder list {s,d} (i.e., do na include v), and
b) using the forwarder list {s, v, d} (i.e., include v). (Note that
the rightmost node has the highest priority.) Let N, 4 denote
the expeded total number of transmissons under option a).
Clealy, Ny, 4 = 1/z. To derive the expeded total number of
transmissons under option b), N, , 4, we proceel as follows.
Let £ := v V d denote the event that when s transmits the
padket, either d or v recavesit. The probability of thisevent is
Pr(€) =1—(1-2)(1—2z). Under the forwarding mechanism
described in Sedion I, the expeded number of transmissons
s must perform until the event £ holds, denoted by Ns_.¢ , is

1 1

Noee = g " T-0-n0—2

Given that the event £ holds, we have two possbiliti es: i) d
recaves the padet, in this case no additional transmissons
are nedaled; or ii) d does not recave the padket but v does
(denatethis event by vAd). Inthelatter case, v must repeaedly
transmit the padket until d recavesit. The number of expeded
transmissons v must perform is N,_4 = 1/y. Hence the
expeded number of transmissons using the forwarder list
{s,v,d} is

Ns,v,d - NS**E +N1,*>d PT(U/\CZ|5) (1)
1+ z(1— z)%

1-(1—-2)(1-2)"

With some simple dgebraic manipulations, we can show
that N, ,q < Nsgq if and oy if y > z. This yields the
following theorem.

THEOREM 1 (Three Nodes). In a threenode network as
shown in Fig. 2(a), the node v shoud be included in the
forwarder list, if and orly if y > z so as to reduce the
expeded number of transmissons. In addtion, if y > z halds,
the expeded number of transmissons using the forwarder list
{s,v,d} is

1+2(1—2)2

- @

Nsva = 1= (1T—2)(1—2)

where we have% < Ngwa < 1.

TABLE |
FORWARDER LISTS FOR TOPOLOGY 2(B)

Options | Forwarder lists | Condtion to be best (where y1 > y2)
Listl {s,d} zZ2>yY1 > Y2

List2 s,v1,d Y1 > 2, Nyy vy ,d > N vy .d
List3 s,v2,d N/A

Listd s,v2,v1,d Y1 > 2, Ny vy d < Ns vy .d
Listh s,v1,v2,d N/A




(8 Three Nodes Topdogy.xz, y, and z are
link qualities, which have vaue between 0

and 1. tween 0 and 1.

(b) Four Nodes Topdogy.z1, y1,22, y2, and
z are link qualities, which have value be-

(c) N intermediate nodes topdogy.

Fig. 2. Example topdogies to show the forwarder list seledion theory.

B. Four-Node Case

We now consider adlightly more complex scenario with four
nodes, as hown in Fig.2(b), where we have two intermediate
nodes v; and v, between the source s and the destination d.
The padket delivery probabiliti es are & labeled in the figure,
where the delivery probability from vy to vy is hio, and that
from vy to vy IS hoy. Given this topdogy, we have atotal of 5
possble forwarder lists as listed in Table I. In the following,
we will analyzewhich of these forwarderslistsis the best and
under what condtion under the assumption o perfead ACK.
Without loss of generaity, we assume y; > y». In this case
from Theorem 1, the forwarder {s, vy, d} is always better than
{s,v2,d}, and from our analysis below, it will be dea that
{s,v1,v2,d} isaways better than {s, v, v1,d}. The condtion
under which ead forwarder list is the best is listed uncer the
last column in Table I, and is summarized in the following
theorem.

THEOREM 2 (Four Nodes). Given the four-node topdogy
with two intermediate nodes v; and v, as shown in Fig.2(b),
and ssuming that y; > y», we have the following forwarder
list seledion criteria (under the perfed ACK asaumption):

o If 2z > y1(> y2), use the forwarder list {s,d} only. In
other words, using either v; or vy or both will not help
reduce the expeded number of transmisgons.

o If y; > 2z, then dways add v; in the forwarder list, and
i) use the forwarder list {s,v1,d} if Nsu.a < Nuyor.di
otherwiseg, ii) use the forwarder list {s, v2,v1,d}. In other
words, v, shoud be added in the forwarder list (always
after vy), if and ony if Ny, 4,0 < Ns,.d-

This theorem can be proved through a systematic event-
based analysis below.

Given the four-node topdogyin Fig. 2(b), when s transmits
a padet to d, we have one of the following events:

1) None of the nodes vy, vy Or d recaves it: this event is
denoted as € := (v; A vz A d), and the probability of this
event ocaurring is Pr(€) = (1 — z1)(1 — 22)(1 — 2). Given
this event, no matter what forwarder list is used, s needs to
retransmit the padket urtil at least one of them receves it.

The number of expeded transmissons that s must perform

until at least either v1, vo or d recaves (i.e., until the event
E:=wv1 Ve Vdocaurs) is

1 1
P& 1-(1-a)(1—-a2)(1—2)

2) At least one of the nodes vy, v2 Or d recaves the padket:
this event is denoted by £ := (v1 Vo Vd), and its probability
is1—(1—xz1)(1 —xz2)(1—2). Given this event, we have the
following four posshiliti es:

a) if d recaves the padket (and no matter whether v,
or vy receaves it or nat), this (condtional) event is
dencted as (d|&). Given this event, no matter what
forwarder list is used, no additional transmisson is

No_e=

needed.
b) If d does nat recave it but both v; and vy receve,
this (condtional) event is denoted as (vy Ava Ad|E).
C) If d and v, do na receave it but v; recaves it, this

(condtional) event is (v A Ta A d|E).
d) If d and v; does not recave it but vy does, the
(condtional) event is (v; A vg A d|E).

Using the &owe event brek-down, we first show that if
z > y1(> y2), then the best forwarder list is {s,d}. From
Theorem 1, it is clea that {s,d} is better than {s,v,d}
and {s, ve, d}. The question left is then: under this condition,
would it be helpful to use both intermediate nodes v; and
vo as forwarders? The diff erence between using the forwarder
list {s,d} and {s,ve,v1,d} (Or {s,v1,v2,d} liesin the last
three events, where the latter will use dther v; or vy to
perform transmissons instead of s. Asauming we ae using
the forwarder list {s, va,v1,d}, let us ewhat the expeded
transmisgons will be required by wsing either v; or v2. Note
that since we give v, higher priority than vy, in the event
of 2b) we will use v; to transmit instead of v, (this is the
only difference between using the forwarder list {s, va, v1, d}
as oppcsed to {s, vy, v2,d}). The condtiona probability that
either 2b) or2c) occurring gven &€ is Pr(vy Ad|€) = z1(1 —
2)/[1—(1—21)(1—z2)(1—2)]. Under this event, the expeded
number of transmisdons by v; urtil d recevesis 1/y;, which
islessthan or equal to 1/z, as z > y;. Thisis graightforward
as the probability of d eventually receving the padket if



vy kegs (re-)transmitting is less than the probability of d
eventually receaving the padket if s keegs (re-)transmitting.

Similarly, in the event of 2d), we will use v, to transmit the
padket (since v; does not recave the pacdket). However, once
vo transmits the padket, if d does not recaveit but v, receves
it, then v, will resumethe transmisson o the padket instead of
vo. In this case, the expeded number of total transmissons by
either v, or v; is given by the threenode scenario we studied
ealier, with v, as the source, v; the intermediate node, and
d the destination. Hence by Theorem 1, the expeded number
of total transmissons by v; or vy is

sz,m,d = L h21(1 — y2)1/y1 > i > 1

1= =ha)A=y2) "1 2
where the last two inequaliti es hold because z > y1 > 9. This
inequality implies that the probabilit y of d eventually recaving
the padket if we have v; and v, to perform (re-)transmissons
is lessthan the probability of d eventually recaving the packet
if s kegos (re-)transmitting the padket.

Using a similar argument, we can show that the forwarder
list {s,v1,v2,d} would in fad result in more transmissons
than {s, d}. Combining al the aguments abowe, we therefore
establish that if z > y1(> y2), the forwarder list {s,d} isthe
best among all options.

Now we oonsider the scenario where y; > z (and the rela
tionship between z and y, isarbitrary). Again from Theorem 1,
we know that the forwarder list {s, v1, d} is better than {s, d}.
The question is now whether and when using vy will help
reduce the number of transmissons or not. In other words,
under what condtion, is the forwarder list {s, v, v1,d} better
than {s,v1,d}? We daim that {s,v2,v1,d} is better than
{s,v1,d} if and ony if Ny, y,.a < Nsu, 4. Here Ny, o, 4
is the expeded number of transmissons in a 3-node (sub-
Jtopdogy (of the four-topdogy in Fig. 2(b)) where v, is the
source, d is the destination, v; is the intermediate node, and
the padket delivery probabiliti es between the nodes are labeled
as in Fig. 2(b). N v, ,q4 is Smilarly defined. As y; > y, and
y1 > z, from Theorem 1 we have 1/y1 < Ny, v1.d < 1/,
an l/yl < Ns,vl,d < 1/2

To see why if Ny, 1.0 < Nsuy,a, then {s,ve,v1,d} is
better than {s, vy, d}, consider the three eents 2b), 2c) and
2d) defined abowe. Clealy in the event of either 2b) or
2c¢), both forwarder lists would use v; as the forwarder to
keep transmitting the padket until d receves it. The only
difference is in the cae of event 2d). Using the forwarder
list {s,ve,v1,d}, vy will transmit the padket, and it will
keep transmitting urtil either d recaves it or v; receves it
(in the latter v; will take over the task of transmisson to
d). Hence given the event 2d), the expeded number of total
transmisgons by v; and vy iS N, 4, 4. Whereas using the
forwarder list {s,v1,d}, the source s neels to re-transmit
the padket. If Ny, v, < Nso.d, We see that under the
event 2d), using the forwarder list {s,vs,v1,d} would result
in a smaller expeded number of total transmisdons. Given
that under all other events, the two forwarder lists produce
the same number of total transmissons, we hence @nclude

that the expeded number of total transmissons using the
forwarder list {s, va, v1, d} islessthan that using the forwarder
list {s,v1,d}, namely, Ny, 0.4 < Nsv,a, if and ony if
Nvl,vg,d < Ns,vl,d-

Using the same event-based analysis, we can in fad show
that given y; > yo, the forwarder list {s, v2,v1,d} is aways
better than {s, v1, v2,d}. In the event of 2b), using v; instead
of vy requires only 1/y; < 1/y» expeded number of trans-
misgons. In the event of 2c¢), using v; to diredly transmit to
d requires 1/y; expeded number of transmissons, which is
fewer than that if we use vy as an intermediate forwarder. This
is because from Theorem 1 we have N,, ,,4 > 1/y1 when
11 > y2. On the other hand, in the event of 2d), usingv; asan
intermediate forwarder instead of using v, to diredly transmit
to d would reduce the expeded number of transmissons, as
Ny, vi.a < 1/y2 when y; < yo. Hence in al these three
events, {s, v1,v2,d} would producefewer expeded number of
transmissons. In fad, given y; < yo, we know that {s,v;,d}
is always better than {s,v1,v9,d}. This is becaise given
y1 < yz2, from Theorem 1 vy does not help v; in reading d.
In contrast, given y; > z but y; > y2, whether y- is larger or
smaller than z, vo may in fad help the source s to read the set
{v1, d}, thus reducing the expeded number of transmissons.
This is the cae if and orly if Ny, 4,0 < Nsu, 4, and
in this case the forwarder list {s,vo,v1,d} would be better
than {s,v1,d}. Clealy, if z = y1, {s,d} and {s,v1,d} are
equaly good and if z = y; = ys, then {s,d}, {s,v1,d} and
{s,v2,v1,d} (and {s,v1,vs,d}) are equally good Now, the
theorem.2 is proved completely.

IV. FORWARDER LIST SELECTION: GENERAL THEORY

Based onthe insights and results we obtained for the 3- and
4-nodke cases, we now extend them to a general topdogy with
n intermediate forwarders, and present the MTS algorithm for
finding the optimal forwarder list which provably minimizes
the expeded number of transmissons needed to transmit a
padket from the source to the destination (under the perfed
ACK assumption). We start by establi shing a reaurrent formula
for computing the expeded number of transmisdons for a
given forwarder list.

A. Expeded Number of Transmisgons for a Given Forwarder
List

Consider a general topdogy as shown in Fig.2(c), where
we have asource s and a destination d, and n intermediate
nodes that are abhitrarily connreded among themselves (and
with s and d). As noted in Fig. 2(c), we use z to dencte
the pacdket probability from the source noce s diredly to the
destination noce d, x; the padket probability from node s to the
(intermediate) node v;, y; the padet probability from node v;
to noce d, and h;; the padket probability delivery probability
from node v; to nock v;, where 0 < z < 1,0 < z; < 1,
0<y; <land0 < hy; <1 (note that some of these padket
delivery probabiliti es can be 0). Given atotal of n intermediate
nodes, we have atota of > nl_ possble forwarder

i=0 Tn—2)1

lists (including {s, d}-the the default forwarder list withou



using ary intermediate node). Of these """ #'1, forwarder
lists, which oreis the best and under what condtion? Instead
of diredly answering this question, we start by establishing
a reaurrent formula for computing the expeded number of

transmisdons for a given forwarder list.

For m = 1,...,n, let u,,,...,u; denote an arbitrary
(ordered) list of m intermediates nodes taken from the set of n
intermediate nodes {v1,va,...,v,}. Then {s, uy,, ..., u1,d}
is a posdble forwarder list. We would like to derive a
formula to compute the expeded number of transmissons
to read destination d using this particular forwarder list.
We denate this number by N .. ., 4. More generaly, for
_____ ui,d t0 denote the expeded
number of transmissonsto read destination d when the packet
has reached noce uy, but not w;, j = 1,...,k — 1. In other
words, Ny,....u,.qd 1S the expeded number of transmisgons to
reat destinationd if uy, isthe sourcenode and {ug, . .., u1, d}
is the forwarder list. Given these notations, we have the

THEOREM 3 (Reaurrent Formula for Expeded Number
of Transmisgons). Consider a general topdogy with n in-
termediate nodes as depicted in Fig.2(c). For 1 < m < n,
let {s,um,...,u1,d} be an abitrary forwarder list with m
(ordered) intermediate forwarders, u; € {vi,...,v,}. Then
using this forwarder list, the expeded number of transmissons
for transmitting a packd currently at the source node s to
reach the destination noce d is given by the foll owing recurrent
formula (under the perfed ACK assumption):

N I+ ZZ’L:l Lk Hlj;ll(l - xj)(l - Z)Nuk-,---7u17d

No,oooiurd = - (A —ap)(1—2)
©)

Proof: The theorem foll ows easily by using the following
event-based analysis. We use €™ := u,, V --- Vuy V d to
denate the event that when s transmits the padket, either the
destination noce d or (at least) one of the m intermediate
forwardersrecévesit, wheresswe use £™ (:= i, A- - -Atiy Ad)
to denote the complement of this event, namely, when s
transmits the padket, neither the destination nock d nor any
of the m intermediate forwarders recavesit, For 1 < k < m,
let £F#F dencte the event that when s transmits the padket,
uy receves it but nore of the higher priority intermediate
forwarder, u;, 1 < j < k, nor d, recavesit, and (£¥#k|E™) is
this event condtioned on£™ occurring. Note that (%% |£™),
k=1,...,m,plusthe event (d|E™) (i.e., the condtional event
that the destination noce d receves the padet), are mutually
exclusive events, and provide apartition o the event £™. In
other words, >°;L, Pr(E&#F|Em) + Pr(d|E™) = Pr(E™).
Let Ns_ ¢n denote the expeded number of transmissons that
the source noce s has to perform until €™ occurs, i.e., at
least one of the nodes in {u,, ...,u1,d} recaves the padet.
Given these notations and recdl the definition o Ny, . 4.4,

.....

m
N57um7~~~;u17d = Nogm + ZPr(gkﬁék|5m)Nuk7m,u1,d'

k=1

4
Note that if (d|€™) occurs, then no additional transmis-
sions are needed. The aowve reaurrent formula states that
the expeded number of transmissons using the forwarder
list {s,wm,...,us,d} is the sum of the expeded number of
transmissons by the sourcenode s until £ occurs, and gven
the event, for 1 < k < m, if u, recaves it but nore of the
higher priority forwarders and na does the destination noce d
receave it, the expeded number of transmissons, Ny, . v, .4
from the intermediate forwarder wu; to read d using the
forwarder list {ug,...,u1,d}. Clealy, Ny_gm = 1/Pr(E™)
and Pr(&™) =1—[[-,(1—ax)(1—2). Fork=1,...,m,
Pr(gbAF|em) = ay [];—; (1 —=;)(1—=2)/Pr(€™). Pluggng
these formulas into eq.(4) yields eq.(3). [ ]

B. Minimum Transmissons Seledion Sheme

Firstly, let us introduce atheorem below, which is useful to
prove the optimality of our seledion scheme later.

THEOREM 4 (When to Extend a Forwarder List). Given
an exsting forwarder list {s,um—1,...,u1,d}, addng a
neighba, w.,,, of the source noce s (i.e, z,, > 0) as an
addtiond forwarder to the end d this forwarder list can
reduce the expeded total number of transmissonsif and orly

If Num;um—l7~~-;ul7d < Ns,um,l,...,uhd'

Proof: Using Theorem 3, we can compare two forwarder
lists, say, {s,wm-1,...,u1,d} and {s,um,...,u1,d}, and
thus dedde whether add an additional forwarder w,, to
(the end d) an existing forwarder list {s,um—1,...,u1,d}

‘would help or nat. Using the notations defined in the

proof of Theorem 3, we note that the difference be-
tween the two forwarder lists {s,u;—1,...,u1,d} and
{s,um,...,u1,d} lies in the fad that in the event of
(Em#m ), when using {s, U, . .., u1,d}, u, would take
over the padet transmissons from the source node s, while
using {s, um—1,...,u1,d}, s would continue to re-transmit
the padket until either d receves it, or one of the nodes
{u1,...,um—1} receves it and takes over the padket trans-
misgons. Using some simple dgebraic manipulations, we can
show the following hdds:

Ns,um—l,»»»,ul,d = Ns—>£ + Pr(5m7¢m|5)N57um71 »»»»» u1,d

m—1
+ Y PrEP ) Nuy, . ur (5)
k=1
Comparing eg.(5) with eq.(4), it is esy to see
that Nowoowrd <  Nswup_1..u,a 1t and oy if

N —1romrd < Nowpv,ms,d @d zp, > 0, i€,
U, is aneighba of the source nock s (note that the latter is
necessary otherwise Pr(E™%™|&) = 0). ]

We ae now in aposition to present the Minimum Transmis-
sions Seledion(MTS) algorithm, which computes the optimal



forwarder list that minimizes the expeded number of trans-
missons. In fad, given a general topdogy and the destina-
tion d, the MTS algorithm computes the optimal forwarder
lists from all sources to d, using a dynamic programmning
formulation somewhat analogous to the Dijkstra’s algorithm
(which computes the shortest paths from a given source to all
destinations).

Algorithm 1 The MTS agorithm for computing the optimal forwarder lists of all
sources v's to the destination d.
1: /nitialization:
1 S := the set of all nodes except d

2
3: for ead vertex v in S do

4 FLv] := {v,d}

5 if P.(v — d) > 0 then

6: Név] :=1/Pp.(v — d)

7 else

8 Nv] := oo

9 endif

10: end for

11 /hterations:

12 while S is not empty do

13 w:=nocein S with smalest N¢[] (i.e, u := argming,csN%[w])
14:  remove u from S

15.  for eath neighba v of uw and v isin S do

16 FLv] := merge(FL%[u], FLv]) /I seethe text for definition of merge
17: Niv] := N;{Ld[v] (where N;{Ld[u] is computed using eq.(3))

18 end for
19 end while
20. RETURN FL%[v] for all nodes v

Given a genera topdogy (e.g., Fig.2(c)), initidly let S be
the set of all nodes except for a given destination nock d.
The MTS algorithm for computing the optimal forwarder list
from any sourcenode v € S to d is described in pseudo-code
in Alg. 1. At ead iteration o the dgorithm, for any noce
v in S, FL%v] records the (best) forwarder list from v to d
discovered so far, and N%[v] denotes the expeded number of
transmissons using the (currently best) forwarder list F'L%[v].
During the initializaion stage (steps 1-9), for eat v € S,
clealy FLv] := {v,d} is the arrently best forwarder list
for v, and N%v] = 1/Pr(v — d) if the padket delivery
probability Pr(v — d) is nonzero.

At ead subsequent iteration while S is not empty (steps 12-
19), we pick the node u € S such that u := argmin,csN%[v]
(step 13), i.e., u isthe noce in S with the smallest expeded
number of transmissons N¢[u], and remove it from S (step
14). It cen be agued (see the next paragraph) that FL[u]
contains the optimal forwarder list for « with the minimum
N9u] (among al possble forwarder lists for u to d), and it
is therefore removed from S for further consideration in the
future iterations. Given this, we now consider any neighba
noce v of « that is dill in S (step 19. If v is a neighba
of u, we merge the aurrent best forwarder list F'L4[v] with
that of u, FL%u], to oktain a new forwarder list for v (step
16). The merge operation combines and aders the nodes in
FL4w] and FL%u] (except for v and d) based on the order
at which these nodes are removed from the set S: the ealier
anodew in FL4[u] or FL%v] is removed from S, the higher
the priority of w will be (clealy d has the highest priority,
and v the lowest), and the new merged forwarder list F'L%[v]

is thus of the form {v,u,...,d}*. We then update N%[v]
with the expeded number of transmissons using this new
merged forwarder list F'L%[v], computed via &.(3) (step 17).
This procedure cntinues until the optimal forwarder list is
computed for al nodes (i.e., until S is empty).

The optimality of the MTS algorithm can be established
by induction and proof-by-contradiction. At the kth iteration,
let u; denote the node u seleded in step 13in Alg. 1, and
FL%uy) be the correspondng ogimal forwarder list for uy.

(1) For k =1, it is clea that u; := argmaz, Pr(v — d)
and FLd[ul] = {ul,d}. We dam FLd[ul] = {ul,d} is
the optimal forwarder list for u;. Suppcse it is otherwise.
Then the optimal forwarder list must contain at least another
nocke (besides u; and d). Suppcse the optimal forwarder list
is {uy,v,d} for some d, from theorem 1 we know that this
forwarder list is not optimal, as Ny, v,a > Ny,.qa. Using
theorem 3 or the general formula &.(3), it can be similarly
argued that any other forwarder list with more than 3 nocks
cannd be optimal.

(2) For more genera k = 2,...,m, suppcse that al of the
forwarder lists FL%us),..., FL%u,,] are dl optimal ones.
Then, for k = m + 1, there is u,, 1 := argmin,N%[v] and
FL%upmi1] = {tms1,0i,...,v1,d} isthe optimal forwarder
list for u,,+1. Suppcse it is otherwise. We know that it won't
be better than FL%[u,,.1] by removing some forwarders or
re-ordering the aurrent forwarders, otherwise the forwarder
lists of £ = 1,...,m won't be optimal. Then the optimal
forwarder list of w,,+; must contain at least another node
(besides w41, vi, - - -, v1, d) 8Sthe lowest forwarder. Suppcse
the optimal forwarder listis {um+1, vit1, ..., v1,d}, we nee

d

d
to prove Nuerl-,'UiJrl-,---v'Ul-,d > Um+1,Viyee,V1,d"
We have u,,.; := argmin,N%v], so for any other
H d d
node Vit1 € S, there is NUiJrl-,Uiswalsd > NUm«Fl-,”i-,---v”l-,d.

Hence based on theorem 4, we have FL%u,41] =
{Um+1, 04, - ..,v1,d} isoptimal forwarder list for w,,+1, Since
adding any additional forwarder wouldn't help reducing the
expeded number of transmissons further.

Based on (1)and (2), we conclude that MTS algorithm can
seled optimal forwarder list for any source-destination pair
uncer the perfed ACK assumption.

C. llustration

We now ill ustrate how the MTS algorithm works using some
examples and compare the resulting ogimal forwarder lists
with those obtained using the EXOR algorithm.

4In fad, unless the forwarding lists FL%[v] and {v, FL%[u]} contain
disoint path segments from v to d (in other words, there eist nodes
in FL?v] but nat in {v, FL%u]} or vice versa), the merge operation
would prodwce a straightforward new (merged) forwarder list, namely,
merge(FLe[v], FL?[u]) = {v, FL%[u]}. For example, this would be the
case when any node (except for v and d) in FL%[v] is a neighba of some
nocein F'L[u]—which is likely to be true in areaonably dense network. In
any case, it can be shown that by including v and the intermediate forwarders
in its forwarder list FL%u] into v's current best forwarder list FL%[v],
the expeded number of transmissons using the new merged forwarder list

NE L () Will always be smaller than N%[v] (computed using the best forward
list FLJ [v] before the merge operation).



TABLE IV

FORWARDER LIST SELECTION FOR TOPOLOGY 3(B)

Iteration source s source v source vo source vs
1 {s,d},2 {v1,d}, 1.3333 {v2, d}, 1.4268 {vs, d}, 1.0526
2 {s,v3,d},1.9139 - {v2,v3,d}, 1.3198 -
3 {s,v2,v3,d}, 1.8240 {v1,v2,v3,d},1.3314 - -
4 {s,v1,v2,v3,d},1.8083 - - -
TABLE V
FORWARDER LIST SELECTION FOR TOPOLOGY 4(A)
Iteration source s source vy source vo source v3
1 {s,d},5 {v1,d},3.33 {va,d}, 1.11 {vs,d}, 1.177
2 - {v1, va,d}, 1.8280 - {vs,va,d}, 1.1742
3 {s,v3,v2,d}, 3.907 {v1,vs3,v2,d},1.8183 - -
4 {s,v1,v3,v2,d}, 2.5015 - - -
TABLE VI
FORWARDER LIST SELECTION FOR TOPOLOGY 4(B)
Iteration source s source vy source va source v3
1 {s,d},5 {v1,d},3.33 {v2,d},1.11 | {vs,d},1.177
2 - {v1, v2,d}, 1.8280 - -
3 {s,v3,d}, 3.908 - - -
4 {s,v1,v3,v2,d}, 2.5083 - - -
TABLE 1l
FORWARDER LIST SELECTION FOR TOPOLOGY 1
Iteration source s source v source vs
1 {s,d} {v1,d} {va, d}
2 2.222 1.25
2 {S,Ug,d} {U17U27d}
1.9318 1.7416 -
3 {57 V1,02, d}
1.8566 - - @ (b)
TABLE Il Fig. 4. Example topdogies to show the merge operation.

FORWARDER LIST SELECTION FOR THE TOPOLOGY 3(A)

lteration | sources | Source ug SOUrce v
1 {s,d} {v1,d} {va,d}
5 1.1 4.0
2 {s7v17d} {v27v17d}
3.0556 - 3.333
3 {v2,s,v1,d}
- - 3.2856

(@ An example topdogy to
show when ou theory cen se-
led lessforwarders than EXOR.

(b) An example topdogy to
shov when ou theory cen
choacse forwarder list with same
size but better orders over
ExOR.

Fig. 3. Example topdogies

as the degtination. The result of ead iteration o the MTS
algorithm is shown in Table I, where the first item in eadh
cdl is the aurrent best forwarder list for the correspondng
node, and the second item is the aurrent smallest expeded
transmisson number using the said list. In the first iteration,
the optimal forwarder list {vs,d} (and N,, 4 = 1.25) is
computed for noce vs; in the second iteration, the optimal
forwarder list {v1, v, d} (and Ny, 4,.a = 1.7416) is computed
for noce v;; and in the third iteration, the optimal forwarder
list {s,v1,v2,d} (@A N4y 0.0 = 1.8566) is computed for
noce s. In contrast, using ExOR’s forwarder list seledion
scheme, the resulting forwarder lists for v and vy are {vq, d},
{v1, v2,d}, the same & produced by the MTS agorithm. But
for source s, EXOR seleds the forwarder list {s,vq,d}, a
shorter list than the optimal one ({s, v1, v2, d}) produced by
MTS, with a dightly larger expeded number of transmissons
N vy.a = 1.9318 (computed using Theorem3).

To further compare the MTS and EXOR algorithms, we
consider two more example topdogies shown in Fig.3(a) and
Fig.3(b). For the topdogy in Fig.3(a), the iterative optimal
forwarder list seledion computationsusing the MTS algorithm

First consider the ssmple 4-node topdogy in Fig.1 with d areshownintablelll andtable!V. For the sources in Fig.3(a),



the optimal forwarder list computed by the MTS agorithm
is {s,v1,d}. In contrast, EXOR seleds the forwarder list
{s,v2,v1,d}, alonger forwarder list than the optimal one by
unrecessarily adding vs into the forwarder list. For the source
s in Fig.3(b), the optimal forwarder list computed by the MTS
agorithm is {s,v1, va, v3,d}, With N 4, 4, .05,¢ = 1.8083. In
contrast, EXOR seleds the forwarder list {s, va, vy, v3,d}, Of
the same length as the optimal one, but in diff erent node order.
We seethat becaise EXOR simply considers the “best path”
from ead forwarder to the destination, it ranks v; higher than
ve, ignaring the fad that node v, has two oppatunistic routes
vg — vy — d and vy — d, which together yield a lower
number of transmissonsthan using v;’'s sngle path to d alone.
Now, we will use two topdogies in fig 4 to show how to
do the merge operation duing ead iteration of MTS scheme.
The iterative optimal forwarder list seledion computations
using the MTS algorithm are shown in table V and table VI,
respedively. In the topdogy in fig 4(a), a any time we do
the merge operation for FLY[v] = merge(FLv], FLu)]),
we could simply merge them as FL4[v] = {v, FL%u]}. For
example, when we updete node s’s forwarder list in iteration 4,
we have FL4[s] = merge(FL%[s], FLv1]) = {s, FLv1]}.
That's because for this merge operation, every forwarder in
FL%s] is dso in the FL%v;]. However, if we remove two
links (v; — v3 and vs — v3), the topdogy transfers to that in
fig 4(b). In this case, there ae two digoint paths from node
s to d, when we do the merge operation a s in iteration 4,
this merge formula FL4[s] = {s, FL[v;]} will not work any
more. That's because there is ome node(vs) in FLY[s] is not
in FL%v;]. In this case, we need to use more general merge
operation to processThe exad merge operation shoud be

1) Selea all the forwarders of two lists in the new for-
warder list.

2) Order these forwarders by their expeded number of
transmissons to the destination.

In this way, node vy,v9,03 are dl seleded into s's forwarder
list in iteration 4, and based on their expeded number of
transmissons,we successully get FL[s] = {s,vq,v3, v, d}
as nock s’s forwarder list.

V. HANDLING IMPERFECT ACKSs

So far we have developed an optimal forwarder selec
tion agorithm that minimizes the expeded total number of
transmissons uncer the perfed ACK assumption. In pradice,
due to urreliable transmissons (e.g., due to asymnetric link
quditi es), there will be likely imperfed ACKs. Such imperfed
ACKs would lea to later forwarders no heaing the trans-
misgons of the previous forwarders (or source), resulting in
(un-necessary) dudicate transmissons.To minimize imperfed
ACKs due to urreliable transmissons and asymmetric link
qualities, we aopt two heuristic medchanisms, batch mode
and two-way link qudity formula, briefly described below. We
provide simulation results to show that these two mecdhanisms
together can indeed approximate the perfed ACK assumption
fairly well in most scenarios.

Batch Mode. We aopt the batch mode data forwarding mecd-
anism and its associated (cumulative) bitmap ACK scheme.
Using the batch mode, padets are grouped in a batch of
certain size (e.g., b = 100 padkets), and ead padet caries a
batch id and padket id (its relative pasition in the batch) and
a batch map, where the ith entry of the map contains the id
of highest priority node (the destination o a forwarder, based
on their relative order in the forwarder list) that has receved
padket ¢ in the batch; originaly it containsthe id of the source.
When a forwarder broadcasts the padkets of a batch it has
recaved, eat of them caries the same batch map. Hence
uponrecaving orly one of these padkets, a later forwarder
(in the forwarder list) will know the status of the packets
that have been receved by previous forwarders (including
the destination) and updite its batch map acordingly (please
refer to [2] for details). As a result, the batch mode enhances
the probability of overheaing among the forwarders and
eliminates unrecessary dugicate transmissons.

To show the dficag/ of batch mode, espedally, the dfed
of batch size on reducing unrecessary transmissons, Fig. 5
compares the expeded total number of transmissons under
perfea ACK (i.e., asauming al nodes can hea ead cother's
transmisdons perfedly) (shown as the ideal no. of Tx in the
figure) with the (average) number of transmissons adualy
required with urreliable and asymmetric links using hetch
mode of varying size Here the simulations are condwcted
usingthe MIT Roofnet dataset (seeSedion VI for more detail s
regarding the simulation settings). For ead source-destination
pair, the (optimal) forwarder list is computed using the MTS
algorithm, and the average number of transmissons is com-
puted over 100 simulation runs with different random seeds.
The x-axis is the source-destination pair id ordered based on
itsideal no. of Tx., and the y-axisis the average or expeded of
transmisgons. From the figure we seethat as we increase the
batch size the average number of adual transmissons (which
include dupicate transmissons) deaeases, and approaches to
the ided number of transmissons with perfea ACK. Similar
improvements can be observed also when we choase forwarder
lists using EXOR.

Two-way Link Quality Formula. To ded spedficdly with
asymmetricd link qualities and dscourage the use of links
with drastic diff erent padket delivery probabiliti esalongitstwo
diredions, we introduce the following two-way link quality
formula to re-define the padket delivery probability from one
noce to ancther and wse it in the computation of expeded
number of transmissons (e.g., as in eg.(3)):

ACK

Pij =il — (1 —pji)®s ] (6)

where 51X is a parameter that depends on the batch size. In
this paper, for batch size b=100, we set S;¢K := SACK —
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Fig. 5. Batch mode reduces the dfed of imperfed
ACKs.
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Fig. 6. Effed of two-way link formula 6 (batch size
b=100 and Sacx = 10).

0.1b = 10 for al links®. This formula takes into acourt the
link qualiti es of both diredions as well as the dfed of batch-
mode based cumulative ACKs. Comparing two links, one link
with the forward link quality pio is 90% and badckward link
quallty P21 is 5%, and aher link with P13 = P31 = 50%.
Using the two-way link formula, we have pi, = 36.11% <
phs = 49.95% (using SAYK = 10). In other words, in order
to reduce unrecessry dugicae transmissons due to ACK
losses, it would be better for node 1 to use node 3 as a higher
priority forwarder than noce 2. Fig.6 shaws the dfed of using
the two-way link quality formulawhich discourages the use of
bad asymmetric links in o MTS algorithm, and as a result,
further the number of unrecessary retransmissons. (The same
observation also hdds when the EXOR forwarder list seledion

5Note that the padets within a batch recéved by a node j (as an
intermediate forwarder) will differ, depending onthe senders and rounds of
transmissons. Hencein general it will be difficult to predsely set SZ:‘}CK. To
be fairly conservative, we choose SACK = 0.1b in our study. Alternatively
for a fixed source-destination peir and betch size we muld condict exper-
iments and wse estimated average ACK size based on measurements to set
S;‘;CK for ead link. Our simulation study in fact shows that with relatively
large batch size, say, b=100, varying SSCK does nat significantly affed the
ordering and seledion o forwarder listS in most scenarios.
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algorithm is used.) Hence with a relative large batch size
(e.g., 100 padkets) and the two-way link quality formula, we
can reasonably approximate the perfed ACK assumption and
perform forwarder list selecion acordingly.

VI. PERFORMANCE EVALUATION AND COMPARISON

We conduct extensive simulations in ns2 [5] to evaluate the
performance of our MTS algorithm and compare it with the
performance of ExOR. The simulation results reported here
are based onthe MIT Roofnet topdogy and dataset [1]. There
are 38 nodks in the Roofnet topdogy, and the link quality
(or padket delivery probability) between any two nodes is
derived from the Roofnet data. The simulation parameters are
listed in TableVIl. There ae atotal of 1406 source-destination
pairs in the Roofnet topdogy. For eat source-destination (in
shorthand, src-dst) pair, we run 20 simulations with diff erent
random seeads, and the averages of these 20 simulation runs
are reported in the discusson below.

TABLE VII
SIMULATION PARAMETERS
Parameters Values
Baich Size & SACK 100 & 10
Bandwidth 1Mbps
Forwarder list seledion schemes MTS, ExOR
Topdogy Roofnet
Transmisson protocol UDP
Period o simulation 150s for ead simulation
Dataflow time 120s for ead simulation

We first provide some statistics regarding the forwarder lists
seleded by the MTS algorithm and the EXOR scheme. Out
of the 1406 src-dst pairs, MTS and EXOR seled exadly the
same forwarder lists for only 225 pairs, about 16% of the total.
Among the 84% pairs that are different, MTS scheme seleds
a smaller forwarder list than EXOR for 792 pairs (57%), and
alonger forwarder list for 274 pairs (19%). For the remaining
115 pairs (8%), the forwarder lists €leded by MTS and EXOR
are of the same size but of different nodes or order. Fig.7
shaws and compares the forwarder list sizes generated by MTS
and ExOR for al src-dst pairs in a scatter plot, where eat
point (z,y) represents the sizes of forwarder list generated
by EXOR (z) and MTS (y) for a given src-dst pair. We now
compare the performances of the forwarder lists ®leded by
MTSvs. EXOR for ead src-dst pair, in terms of bath the (aver-
age) actual number of transmissons (including dugicates), as
shown in Fig.8, as well as the throughp (or goodpd, i.e., the
number of bytes transmitted from the sourceto the destination
per unit time, measured in KB/seg), as shown in Fig.9. In the
figures, ead da corresponds to ore src-dst pair, where its
coordinate (x,y) represent the results under EXOR and MTS,
respedively. We see that overall the forwarder lists sleded
by MTS outperforms that by ExOR: 92.05% src-dst pairs
have fewer number of transmisdgons under MTS than uncer
ETX scheme, and 90.89% src-dst pairs have larger throughpus
under MTSthan under ETX. There ae asmall number of pairs
for which MTS produces poaer performances than ExXOR.
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Detailed analysis shows that thisis mostly due to the dfed of
imperfed ACKs, causing unrecessary dupi cate transmissons.
To further anadyze and compare the performances of MTS
and ExXOR, we bre& down the results based on the size of
forwarder lists, as shown in Figs.10,Figs.11and Figs.12, where
in the Figs.12 the performance gains are computed using the
fO”O\NIng formulas: Gr, = (TIETX — TIMTS)/TIETX
and GThput = (ThputMTS —ThputETX)/ThputETX. From
these figures, we see that MTS produces the largest perfor-
mance gains, in terms of both reduced (average) number of
transmisdons and increased throughpu, when forwarder lists
(generated by EXOR) are fairly long For these longforwarder
lists generated by EXOR, MTS can reduce the number of
transmisgons by up to 32.2%, and increase the throughpu
by upto 40.98%.

Related Work. Before we conclude this paper, we briefly dis-
cuss ®me related work. Zhonget al. [9] propcse anew routing
metric EAX (expeded anycast transmissons) to cgpture the
expeded number of transmissons nealed to oppatunisticaly
deliver a padket between two noces, and resort to heuristic d-
gorithms for computing a set of candidate forwarders. Dubas-
Ferriere et al. [4] introduces a spedfic cost function defined
with resped to a set of candidate forwarders, and propose the
LCOR (least-cost oppatunistic routing) algorithm to identify
the best candidate set that minimizes the said cost function.
Due to its patentially exporential time complexity, heuristic
policies have to be incorporated in LCOR. [8] studies the
end-to-end throughpu, or cgpadty, of oppatunistic routing
in multi-rate wireless networks using a linea programming
framework. There ae dso a number of other studies and
protocols with various oppatunistic routing flavors. Due to
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spacelimitation, we will not discussthem here.

VIlI. CONCLUSION

In this paper we established a general theory for analyz-
ing the forwarder list seledion problem, and developed an
optimal forwarder seledion agorithm—the minimum transmis-
sion seledion (MTS) algorithm—which minimizes the expeded
number of transmissons under the perfed ACK asaumption.
We showed haw this assumption can be relaxed in pradiceto
acourt for unreliable and asymmetric link qualiti es. Through
extensive simulations using the MIT Roofnet dataset, we
demonstrated that in more than 90% cases the MTS algorithm
outperforms the forwarder seledion scheme used in EXOR,
with performance gains up to 32 in terms of the (average)
number of transmissons and upto 41% in terms of through
put.
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