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Abstract

In recent years, co-clustering has emerged as a powerful data mining tool that can analyze
dyadic data connecting two entities. However, almost all existing co-clustering techniques are
partitional, and allow individual rows and columns of a data matrix to belong to only one clus-
ter. Several current applications, such as recommendation systems and market basket analysis,
can substantially benefit from a mixed membership of rows and columns. In this paper, we
present Bayesian co-clustering (BCC) models, that allow a mixed membership in row and col-
umn clusters. BCC maintains separate Dirichlet priors for rows and columns over the mixed
membership and assumes each observation to be generated by an exponential family distribu-
tion corresponding to its row and column clusters. We propose a fast variational algorithm for
inference and parameter estimation. The model is designed to naturally handle sparse matrices
as the inference is done only based on the non-missing entries. In addition to finding co-cluster
structure in observations, the model outputs a low dimensional co-embedding, and accurately
predicts missing values in the original matrix. We demonstrate the efficacy of the model through
experiments on both simulated and real data.

1 Introduction

The application of data mining methods to real life problems has led to an increasing realization
that a considerable amount of real data is dyadic, capturing a relation between two entities of
interest. For example, users rate movies in recommendation systems, customers purchase products
in market-basket analysis, etc. Such dyadic data are represented as a matrix with rows and columns
representing each entity respectively. An important data mining task pertinent to dyadic data is
to get a clustering of each entity, e.g., movie and user groups in recommendation systems, product
and consumer groups in market-basket analysis, etc. Traditional clustering algorithms do not
perform well on such problems because they are unable to utilize the relationship between the two
entities. In comparison, co-clustering [13], i.e., simultaneous clustering of rows and columns of a
data matrix, can achieve a much better performance in terms of discovering the structure of data [8]
and predicting the missing values [1] by taking advantage of relations between two entities.

Co-clustering has recently received significant attention in algorithm development and applica-
tions. [10], [8], and [12] applied co-clustering to text mining, bioinformatics and recommendation
systems respectively. [3] proposed a generalized Bregman co-clustering algorithm by considering
co-clustering as a matrix approximation problem. While these techniques work reasonably on real
data, one important restriction is that almost all of these algorithms are partitional [16], i.e., a
row/column belongs to only one row/column cluster. Such an assumption is often restrictive since
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objects in real world data typically belong to multiple clusters possibly with varying degrees. For
example, a user might be an action movie fan and also a cartoon movie fan. Similar situations
arise in most other domains. Therefore, a mixed membership of rows and columns might be more
appropriate, and at times essential for describing the structure of such data. It is also expected to
substantially benefit the application of co-clustering in such domains.

In this paper, we propose Bayesian co-clustering (BCC) by viewing co-clustering as a generative
mixture modeling problem. We assume each row and column to have a mixed membership to row
and column clusters respectively. To generate an entry of the data matrix, we first generate the
row and column clusters from the corresponding mixed memberships, and then generate the entry
given that row-column cluster, i.e., the co-cluster. We introduce separate Dirichlet distributions
as Bayesian priors over mixed memberships of rows and columns, effectively averaging the mix-
ture model over all possible mixed memberships. Further, BCC can use any exponential family
distribution [4] as the generative model for the co-clusters, which allows the proposed model to be
applied to a wide variety of data types, such as real, binary, or discrete matrices. For inference
and parameter estimation, we propose an efficient variational EM-style algorithm that preserves
dependencies among entries in the same row/column. The model is designed to naturally handle
sparse matrices as the inference is done only based on the non-missing entries. Moreover, as a useful
by-product, the model accomplishes co-embedding, i.e., simultaneous dimensionality reduction of
individual rows and columns of the matrix, leading to a simple way to visualize the row/column
objects. The efficacy of BCC is demonstrated by the experiments on simulated and real data.

The rest of paper is organized as follows: In Section 2, we present a brief review of generative
mixture models. In Section 3, we propose the Bayesian co-clustering model. A variational approach
for learning BCC is presented in Section 4. The experimental results are presented in Section 5,
and a conclusion is given in Section 6.

2 Generative Mixture Models

In this section, we give a brief overview of existing generative mixture models (GMMs) and co-
clustering models based on GMMs as a background for BCC.

Finite Mixture Models. Finite mixture models (FMMs) [9, 4] are one of the most widely studied
models for discovering the latent cluster structure from observed data. The density function of a
data point x in FMMs is given by:

p(x|π, Θ) =
k∑

z=1

p(z|π)p(x|θz) ,

where π is the prior over k components, and Θ = {θz, [z]k1} ([z]k1 ≡ z = 1, . . . , k) are the parameters
of k component distributions p(x|θz), [z]k1. In practice, p(x|θz) could be any exponential family dis-
tribution [6] with a density function pψ(x|θ) = exp(〈x, θ〉 − ψ(θ)) p0(x) [4], where θ is the natural
parameter, ψ(·) is the cumulant function, and p0(x) is a non-negative base measure. ψ determines a
particular family, such as Gaussian, Poisson, etc., and θ determines a particular distribution in that
family. Given a set of observations, the model parameter could be learned by maximum-likelihood
estimation using an EM style algorithm [20, 17].
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Latent Dirichlet Allocation. One key assumption of a finite mixture model is that the prior
π over k components is fixed across all data points. Latent Dirichlet allocation (LDA) [7] relaxes
this assumption by assuming there is a separate mixing weight π for each data point, and π is
sampled from a Dirichlet distribution Dir(α). For a sequence of tokens x = x1 · · ·xd, LDA with k
components has a density of the form

p(x|α,Θ) =
∫

π
Dir(π|α)




d∏

l=1

k∑

zl=1

p(zl|π)p(xl|θzl
)


 dπ .

Getting a closed form expression for the marginal density p(x|α, Θ) is intractable. Variational infer-
ence [7] and Gibbs sampling [11] are two most popular approaches proposed to address the problem.

Bayesian Naive Bayes. While the LDA model relaxes the assumption on the prior, it brings in a
limitation on the conditional distribution: LDA can only handle discrete data as tokens. Bayesian
naive Bayes (BNB) generalizes LDA to allow the model to work with arbitrarily exponential family
distributions [5]. Given a data point x = x1 · · ·xd, the density function of the BNB model is as
follows:

p(x|α, Θ, F )=
∫

π
p(π|α)




d∏

l=1

k∑

zl=1

p(zl|π)pψ(xl|zl, fl, Θ)


dπ ,

where F is the feature set, fl is the feature for the lth non-missing entry in x, pψ(xl|zl, fl, Θ) could
be any exponential family distribution for the component zl and feature fl. BNB is able to deal
with different types of data, and is designed to handle sparsity.

Co-clustering based on GMMs. The existing literature has a few examples of generative
models for co-clustering. Nowicki et al. [19] proposed a stochastic blockstructures model that builds
a mixture model for stochastic relationships among objects and identifies the latent cluster via
posterior inference. Kemp et al. [14] proposed an infinite relational model that discovers stochastic
structure in relational data in form of binary observations. Airoldi et al. [2] recently proposed a
mixed membership stochastic blockmodel that relaxes the single-latent-role restriction in stochastic
blockstructures model. Such existing models have one or more of the following limitations: (a) The
model only handles binary relationships; (b) The model deals with relation within one type of
entity, such as a social network among people; (c) There is no computationally efficient algorithm
to do inference, and one has to rely on stochastic approximation based on sampling. The proposed
BCC model has none of these limitations, and actually goes much further by leveraging the good
ideas in such models.

3 Bayesian Co-Clustering

Given an n1×n2 data matrix X, for the purpose of co-clustering, we assume there are k1 row clusters
{z1 = i, [i]k1

1 } and k2 column clusters {z2 = j, [j]k2
1 }. Bayesian co-clustering (BCC) assumes two

Dirichlet distributions Dir(α1) and Dir(α2) for rows and columns respectively, from which the
mixing weights π1u and π2v for each row u and each column v are generated. Row clusters for
entries in row u and column clusters for entries in column v are sampled from discrete distributions
Disc(π1u) and Disc(π2v) respectively. A row cluster i and a column cluster j together decide a
co-cluster (i, j), which has an exponential family distribution pψ(x|θij), where θij is the parameter
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Figure 1: Bayesian co-clustering model.

of the generative model for co-cluster (i, j). For simplicity, we drop ψ from pψ(x|θij), and the
generative process for the whole data matrix is as follows (Figure 1):

1. For each row u,[u]n1
1 , choose π1u ∼ Dir(α1).

2. For each column v,[v]n2
1 , choose π2v ∼ Dir(α2).

3. To generate an entry in row u and column v,

(a) choose z1 ∼ Disc(π1u), z2 ∼ Disc(π2v),

(b) choose xuv ∼ p(x|z1, z2, θz1z2).

For this proposed model, the marginal probability of an entry x in the data matrix X is given
by:

p(x|α1, α2,Θ) =
∫

π1

∫

π2

p(π1|α1)p(π2|α2)
∑
z1

∑
z2

p(z1|π1)p(z2|π2)p(x|θz1z2)dπ1dπ2 .

The probability of the entire matrix is, however, not the product of all such marginal probabilities.
That is because π1 for any row and π2 for any column are sampled only once for all entries in
this row/column. Therefore, the model introduces a coupling between observations in the same
row/column, so they are not statistically independent. Note that this is a crucial departure from
most mixture models, which assume the joint probability of all data points to be simply a product
of the marginal probabilities of each point.

The overall joint distribution over all observable and latent variables is given by

p(X, π1u, π2v, z1uv, z2uv, [u]n1
1 , [v]n2

1 |α1, α2,Θ) (1)

=

(∏
u

p(π1u|α1)

)(∏
v

p(π2v|α2)

) (∏
u,v

p(z1uv|π1u)p(z2uv|π2v)p(xuv|θz1uv,z2uv)
δuv

)
,

where δuv is an indicator function which takes value 0 when xuv is missing and 1 otherwise, so
only the non-missing entries are considered, z1uv ∈ {1, . . . , k1} is the latent row cluster and z2uv ∈
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{1, . . . , k2} is the latent column cluster for observation xuv. Since the observations are conditionally
independent given {π1u, [u]n1

1 } for all rows and {π2v, [v]n2
1 } for all columns, the joint distribution

p(X, π1u, π2v, [u]n1
1 , [v]n2

1 |α1, α2, Θ)

=

(∏
u

p(π1u|α1)

)(∏
v

p(π2v|α2)

)(∏
u,v

p(xuv|π1u, π2v, Θ)δuv

)
,

where the marginal probability

p(xuv|π1u, π2v, Θ) =
∑
z1uv

∑
z2uv

p(z1uv|π1u)p(z2uv|π2v)p(xuv|θz1uv,z2uv) .

Marginalizing over all possible {π1u, [u]n1
1 ,} and {π2v, [v]n2

1 }, the probability of observing the entire
matrix X is:

p(X|α1, α2, Θ) =
∫

π1u
u=1,...,n1

∫
π2v

v=1,...,n2

(∏
u

p(π1u|α1)

)(∏
v

p(π2v|α2)

)
(2)

(∏
u,v

∑
z1uv

∑
z2uv

p(z1uv|π1u)p(z2uv|π2v)p(xuv|θz1uv ,z2uv)
δuv

)
dπ11 · · · dπ1n1dπ21 · · · dπ2n2 .

It is easy to see (Figure 1) that one-way Bayesian clustering models such as BNB and LDA are
special cases of the proposed Baysian co-clustering (BCC) model. Further, BCC inherits all the
advantages of BNB and LDA—ability to handle sparsity, applicability to diverse data types using
any exponential family distribution, and flexible Bayesian priors with Dirichlet distributions.

4 Inference and Learning

Given the data matrix X, the learning task for the Bayesian co-clustering model is to estimate the
model parameters (α∗1, α

∗
2, Θ

∗) such that the likelihood of observing the matrix X is maximized.
A general way is using the expectation maximization (EM) family of algorithms [9]. However,
computation of log p(X|α1, α2,Θ) is intractable for BCC, implying that a direct application of
EM is not feasible. In this section, we propose a variational inference method, which alternates
between obtaining a tractable lower bound of true log-likelihood log p(X|α1, α2, Θ), and choosing
the model parameters (α1, α2, Θ) to maximize the lower bound. To obtain a tractable lower bound,
we consider an entire family of parameterized lower bounds with a set of free variational parameters,
and pick the best lower bound from this family by optimizing the lower bound with respect to the
free variational parameters.

4.1 Variational Approximation

To get a tractable lower bound for log p(X|α1, α2, Θ), we introduce q(z1, z2, π1,π2|γ1, γ2, φ1, φ2)
as an approximation of the latent variable distribution p(z1, z2, π1, π2|α1, α2,Θ):

q(z1, z2,π1, π2|γ1,γ2,φ1,φ2)

=

(
n1∏

u=1

q(π1u|γ1u)

)(
n2∏

v=1

q(π2v|γ2v)

) (
n1∏

u=1

n2∏

v=1

q(z1uv|φ1u)q(z2uv|φ2v)

)
,
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Figure 2: q(z1, z2, π1, π2|γ1, γ2, φ1, φ2) is the variational distribution. γ1, γ2 are Dirichlet parameters.
φ1, φ2 are discrete parameters.

where γ1 = {γ1u, [u]n1
1 } and γ2 = {γ2v, [v]n2

1 } are variational Dirichlet distribution parameters with
k1 and k2 dimensions respectively for rows and columns, and φ1 = {φ1u, [u]n1

1 } and φ2 = {φ2v, [v]n2
1 }

are variational discrete distribution parameters with k1 and k2 dimensions for rows and columns.
Figure 2 shows the approximating distribution q(z1, z2, π1,π2|γ1, γ2, φ1, φ2) as a graphical model,
where mu and mv are the number of non-missing entries in row u and v. As compared to the
variational approximation used in BNB [5] and LDA [7], where the cluster assignment z for every
single feature has a variational discrete distribution, in our approximation there is only one vari-
ational discrete distribution for an entire row/column. There are at least two advantages of our
approach: (a) A single variational discrete distribution for an entire row or column helps maintain
the dependencies among all the entries in a row or column; (b) The inference is fast due to the
smaller number of variational parameters over which optimization needs to be done.

By a direct application of Jensen’s inequality [18], we obtain a lower bound for the true log-
likelihood log p(X|α1, α2, Θ):

logp(X|α1, α2,Θ) (3)
≥ Eq[log p(X, z1, z2, π1,π2|α1, α2, Θ)]−Eq[log q(z1, z2, π1, π2|γ1, γ2, φ1, φ2)] .

We use L(γ1, γ2, φ1, φ2; α1, α2, Θ), or L for brevity, to denote the lower bound. Our algorithm
maximizes the family of parameterized lower bounds with respect to the variational parameters
(γ1, γ2, φ1, φ2) and the model parameters (α1, α2, Θ) alternately.

4.1.1 Inference

In the inference step, given a choice of model parameters (α1, α2, Θ), the goal is to get the tight-
est possible lower bound to log p(X|α1, α2, Θ). It is achieved by maximizing the lower bound
L(γ1,γ2,φ1, φ2; α1, α2, Θ) over variational parameters (γ1, γ2, φ1, φ2). While there is no closed
form, by taking derivative of L and setting it to zero, the solution can be obtained by iterating over
the following set of equations (See Appendix for details):

φ1ui∝exp

(
Ψ(γ1ui)+

∑n2
v=1

∑k2
j=1 δuvφ2vj log p(xuv|θij)

mu

)
(4)

φ2vj∝exp

(
Ψ(γ2vj)+

∑n1
u=1

∑k1
i=1 δuvφ1ui log p(xuv|θij)

mv

)
(5)
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γ1ui = α1i + muφ1ui (6)
γ2vj = α2j + mvφ2vj (7)

where [i]k1
1 , [j]k2

1 , [u]n1
1 , [v]n2

1 , φ1ui is the ith component of φ1 for row u, φ2vj is the jth component
of φ2 for column v, and similarly for γ1ui and γ2vj , and Ψ(·) is the digamma function [7]. From a
clustering perspective, φ1ui denotes the degree of row u belonging to cluster i, for [u]n1

1 and [i]k1
1 ;

and similarly for φ2vj .
For our experiments, we use simulated annealing [15] in the inference step to avoid bad local

minima. In particular, instead of using (4) and (5) directly for updating φ1ui and φ2vj , we use

φ
(t)
1ui ∝ (φ1ui)1/t, φ

(t)
2vj ∝ (φ2vj)1/t

at each “temperature” t. At the beginning, t = ∞, so the probabilities of row u/column v belonging
to all row/column clusters are almost equal. When t slowly decreases step by step, the peak(s) of
φ

(t)
1ui and φ

(t)
2vj gradually show(s) up until we reach t = 1, where φ

(1)
1ui and φ

(1)
2vj become φ1ui and φ2vj ,

as in (4) and (5). We then stop decreasing the temperature and keep on updating φ1 and φ2 until
convergence. After that, we go on to update γ1 and γ2 following (6) and (7).

4.1.2 Parameter Estimation

Since choosing parameters to maximize log p(X|α1, α2,Θ) directly is intractable, we use the optimal
lower bound L(γ∗1, γ

∗
2, φ

∗
1, φ

∗
2; α1, α2, Θ) as the surrogate objective function to be maximized, where

(γ∗1, γ
∗
2, φ

∗
1, φ

∗
2) are the optimum values obtained in the inference step. To estimate the Dirichlet

parameters (α1, α2), one can use an efficient Newton update as shown in [7, 5] for LDA and BNB.
One potential issue with such an update is that an intermediate iterate α(t) can go outside the
feasible region α > 0. In our implementation, we avoid such a situation using an adaptive line
search (See Appendix for details).

For estimating Θ, in principle, a closed form solution is possible for all exponential family
distributions. We first consider a special case when the component distributions are univariate
Gaussians. The update equations for Θ = {µij , σ

2
ij , [i]

k1
1 , [j]k2

1 } are:

µij =
∑n1

u=1

∑n2
v=1 δuvxuvφ1uiφ2vj∑n1

u=1

∑n2
v=1 δuvφ1uiφ2vj

(8)

σ2
ij =

∑n1
u=1

∑n2
v=1 δuv(xuv − µij)2φ1uiφ2vj∑n1
u=1

∑n2
v=1 δuvφ1uiφ2vj

. (9)

Following [4], we note that any regular exponential family distribution can be expressed in terms
of its expectation parameter m as p(x|m) = exp(−dφ(x,m))p0(x), where φ is the conjugate of the
cumulant function ψ of the family and m = E[X] = ∇ψ(θ), where θ is the natural parameter.
Using the divergence perspective, the estimated mean M = {µij , [i]k1

1 , [j]k2
1 } parameter is given by:

mij =
∑n1

u=1

∑n2
v=1 δuvxuvφ1uiφ2vj∑n1

u=1

∑n2
v=1 δuvφ1uiφ2vj

, (10)

and θij = ∇φ(mij) by conjugacy [4].
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4.2 EM Algorithm

Variational inference and parameter estimation lead us to an EM-style alternating maximization
algorithm to find the optimal model parameters (α∗1, α

∗
2, Θ

∗) that maximize the lower bound on
log p(X|α1, α2,Θ). In particular, given an initial guess of (α(0)

1 , α
(0)
2 , Θ(0)), the algorithm alternates

between two steps till convergence:
1. E-step: Given the model parameters (α(t)

1 , α
(t)
2 , Θ(t)), find the variational parameters

(γ(t+1)
1 , γ

(t+1)
2 , φ

(t+1)
1 ,φ

(t+1)
2 )

= argmax
(γ1,γ2,φ1,φ2)

L(γ1,γ2,φ1,φ2; α
(t)
1 , α

(t)
2 , Θ(t)) .

Then, L(γ(t+1)
1 , γ

(t+1)
2 , φ

(t+1)
1 , φ

(t+1)
2 ;α1, α2, Θ) serves as the lower bound function for the true log-

likelihood log p(X|α1, α2, Θ).
2. M-step: An improved estimate of the model parameters can now be obtained as follows:

(α(t+1)
1 , α

(t+1)
2 ,Θ(t+1))

= argmax
(α1,α2,Θ)

L(γ(t+1)
1 , γ

(t+1)
2 , φ

(t+1)
1 , φ

(t+1)
2 ; α1, α2, Θ) .

5 Experiments

In this section, we present the experimental results on simulated datasets and on real datasets
including Movielens, Foodmart, and Jester.

5.1 Simulated Data

Three 80 × 100 data matrices are generated with 4 row clusters and 5 column clusters, i.e., 20
co-clusters in total, such that each co-cluster generates a 20× 20 submatrix. We use one of three
exponential family distributions—Gaussian, Bernoulli, and Poisson—as the generative model for
each data matrix respectively and each submatrix is generated from the generative model with a
predefined parameter, which is set to be different for different submatrices. After generating the
data matrix, we randomly permute its rows and columns to yield the final dataset.

For each data matrix, we do semi-supervised initialization by using 5% data in each co-cluster.
The results include two parts: parameter estimation and cluster assignment. We compare the
estimated parameters with the true model parameters used to generate the data matrix. Fur-
ther, we evaluate the cluster assignment in terms of cluster accuracy. Cluster accuracy (CA) for
rows/columns is defined as: CA = 1

n

∑k
i=1 nci, where n is the number of rows/columns, k is the

number of row/column clusters and nci is for the ith row/column result cluster, the largest number
of rows/columns that fall into a same true cluster. Since the variational parameters φ1 and φ2 give
us the mixing weights for rows and columns, we pick the component with the highest probability
as its result cluster.

For all three generative models, we run the algorithm three times and pick the estimated
parameters with the highest log-likelihood. Log-likelihood measures the fit of the model to the
data, so we are using the model that fits the data best among three runs. Note that no “class
label” is used while choosing the model. The comparison of true and estimated parameters after
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(a) True (b) Estimated
Figure 3: Parameter estimation for Gaussian.

Gaussian Bernoulli Poisson
Row 100% 99.5833% 100%
Column 100% 98.5833% 100%

Table 1: Cluster accuracy on simulated data.

alignment for Gaussian case is in Figure 3. The color of each sub-block represents the parameter
value for that co-cluster (darker is higher). The result of cluster accuracy is shown in Table 1,
which is the average over three runs. From these results, we observe two things: (a) Our algorithm
is applicable to different data types by simply choosing an appropriate generative model; (b) We
are able to get an accurate parameter estimation and a high cluster accuracy, with semi-supervised
initialization by using only 5% of data.

5.2 Real Data

Three real datasets are used in our experiments: (a) Movieles:1 Movielens is a movie recommen-
dation dataset created by the Grouplens Research Project. It contains 100,000 ratings in a sparse
data matrix for 1682 movies rated by 943 users. The ratings are ranged from 1 to 5 with 5 the best.
We also construct a binarized dataset such that entries whose ratings are higher than 3 become 1
and others become 0. (b) Jester:2 Jester is a joke rating dataset. The original dataset contains
4.1 million continuous ratings of 100 jokes from 73,421 users. The ratings are ranged from -10 to
10 with 10 the best. We pick 1000 users who rate all 100 jokes and use this dense data matrix in
our experiment. We also binarize the dataset such that the non-negative entries become 1 and the
negative entries become 0. (c) Foodmart: Foodmart data comes with Microsoft SQL server. It
contains transaction data for a fictitious retailer. In particular, there are 164,558 sales records in a
sparse data matrix for 7803 customers and 1559 products. Each record is the number of products
bought by the customer. Again, we binarize the dataset such that entries whose number of products
are below median are 0 and others are 1. Further, we remove rows and columns with less than
10 non-missing entries. For all three datasets, we use both the binarized and original data in our
experiments.

1http://www.grouplens.org/node/73
2http://goldberg.berkeley.edu/jester-data/
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Figure 4: Perplexities of BCC, BNB and LDA with varying number of clusters on binarized Jester.
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Figure 5: Perplexities of BCC and BNB with varying number of clusters on original Movielens.

5.2.1 Methodology

For binarized datasets, we use bernoulli distribution as the generative model. For original datasets,
we use Discrete, Poisson, and Gaussian as the generative models for Movielens, Foodmart and
Jester respectively. For Foodmart data, there is one unit right shift of Poisson distribution since
the value of non-missing entries starts from 1 instead of 0, so we substract 1 from all non-missing
entries to shift the distribution back.

We train the model from the training set to obtain model parameters. By training, we mean
alternating E-step and M-step on training set as described in Section 4 till convergence, so as to
obtain model parameters (α∗1, α

∗
2, Θ

∗) that (locally) maximize the variational lower bound on the
log-likelihood. We then use the model parameters to do inference, that is, inferring the mixed
membership for rows/columns. In particular, there are two steps in our evaluation: (a) Combine
training and test data together and do inference (E-step) to obtain variational parameters; (b) Use
model parameters and variational parameters to obtain the perplexity on the test set. In addition,
we also report the perplexity on the training set. Recall that the perplexity of a dataset X is defined
as [7]:

perp(X) = exp(− log p(X)/N) ,

where N is the number of non-missing entries in X. Perplexity monotonically decreases with log-
likelihood, implying that lower perplexity is better since higher log-likelihood on training set means

10



Train set Test set Test set
perplexity perplexity p-value

LDA BNB BCC LDA BNB BCC
BCC BCC
-LDA -BNB

Movielens 439.6 1.70 1.98 1557.0 3.93 2.86 <0.001 <0.001
Foodmart 1461.7 1.87 1.95 6542.9 6.48 2.11 <0.001 <0.001
Jester 98.3 1.79 1.82 98.9 4.02 2.55 <0.001 <0.001

(a) On binarized datasets

Train set Test set Test set
perplexity perplexity p-value

BNB BCC BNB BCC
BCC
-BNB

Movielens 3.15 0.81 38.24 1.03 <0.001
Foodmart 4.59 4.59 4.66 4.60 <0.001
Jester 15.46 18.25 39.94 24.82 <0.001

(b) On original datasets

Table 2: Perplexity of BCC, BNB, and LDA on binary and original datasets with 10 clusters. The p-value
is obtained from a paired t-test on the differences of test set perplexities between BCC and LDA, as well as
between BCC and BNB.

that the model fits the data better, and a higher log-likelihood on the test set implies that the
model can explain the data better. For example, in Movielens, a low perplexity on the test set
means that the model captures the preference pattern for users such that the model’s predicted
preferences on test movies for a user would be quite close to his actual preferences; on the contrary,
a high perplexity indicates that the user’s preference on test movies would be quite different from
model’s prediction. A similar argument works for Foodmart and Jester as well.

Let Xtrain be the original training set and Xtest be the original test set. We evaluate the
model’s prediction performance as follows: We computes variational parameters (γ1, γ2, φ1, φ2)
based on (Xtrain, Xtest), and use them to compute perp(Xtest). We then repeat the process by
modifying a fixed percentage of the test set to create X̃test (noisy data), compute the variational
parameters (γ̃1, γ̃2, φ̃1, φ̃2) corresponding to (Xtrain, X̃test), and compute perp(X̃test) using these
variational parameters. If the model yields a lower perplexity on the true test set than on the
modified one, i.e., perp(Xtest) < perp(X̃test), the model explains Xtest better than X̃test. If used
for prediction based on log-likelihood, the model will accurately predict Xtest. For a good model,
we would expect the perplexity to increase with increasing percentages of test data being modified.
Ideally, such an increase will be monotonic, implying that the true test data Xtest is the most-likely
according to the model and a higher perplexity could be used as a sign of more noisy data. In our
experiments, since Xtrain is fixed, instead of comparing perp(Xtest) with perp(X̃test) directly, we
compare perp(Xtrain, Xtest) with perp(Xtrain, X̃test).

We compare BCC with BNB and LDA in terms of perplexity and prediction performance. Each
user/customer is treated as one data point in a row. The comparison with BNB is done on both
binarized and original datasets. Similar to BCC, for BNB, we first train the model to estimate
model parameters, and then do inference to obtain variational parameters to compute perplexity.
The comparison of BCC with LDA is done only on binarized datasets since LDA is not designed
to handle real values. To apply LDA, we consider the features with feature value 1 as the tokens
appearing in each data point, like the words in a document. For simplicity, we use “row cluster”
or “cluster” to refer to the user/customer cluster, and use “column cluster” to refer to the movie,
product and joke clusters for BCC on Movielens, Foodmart and Jester datasets respectively. To
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Figure 6: Perplexity curves for Movielens, Foodmart and Jester with increasing noise.

ensure a fair comparison, we do not use simulated annealing for BCC in these experiments.

5.2.2 Results

In this section, we present three main experimental results: (a) Perplexity comparison among BCC,
BNB and LDA; (b) The prediction performance comparison between BCC and LDA; (c) The vi-
sualization obtained from BCC.

Perplexity Comparison. We compare the perplexity among BCC, BNB and LDA on three
datasets with varying number of row clusters from 5 to 25 in steps of 5, and a fixed number of
column clusters for BCC to be 20, 10 and 5 for Movielens, Foodmart and Jester respectively.
We perform a 10-cross validation with a random initialization, and the results are reported as an
average perplexity of 10 runs in Figures 4, 5 and Table 2.

Figure 4 compares the perplexity of BCC, BNB, and LDA on binarized Jester dataset with the
number of clusters varying from 5 to 25, and Figure 5 compares the perplexity of BCC and BNB
on original Movielens dataset again with varying number of clusters. Note that due to the distinct
differences of perplexity among three models, to present the result better, y-axes are not continuous
and the unit scales are not all the same. Table 2 presents the perplexities on both binarized and
original datasets with fixed 10 row clusters. From these results, there are two observations: (a) For
BCC and LDA, the results show that the perplexities of BCC on both training and test sets are
2-3 orders of magnitude lower than that of LDA, and the paired t-test shows that the distinction
is statistically significant with an extremely small p-value. The lower perplexity of BCC indicates
that BCC fits the data and explains the data better than LDA substantially. (b) For BCC and
BNB, although BNB sometimes has a lower perplexity than BCC on training sets, on test sets, the
perplexities of BCC are lower than BNB in all cases. Again, the difference is significant based on
the paired t-test. BNB’s high perplexities on test sets indicate overfitting, especially on the original
Movielens data as an example. In comparison, BCC behaves much better than BNB on test sets,
possibly because of two reasons: (i) BCC uses much less number of variational parameters than
BNB, so as to avoid overfitting; (ii) BCC is able to capture the co-cluster structure which is missing
in BNB.
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Figure 7: Perplexity curves of BCC and LDA with increasing noise on binarized Jester.

Prediction Comparison. To evaluate the prediction performance for BCC, we test the perplexity
on (Xtrain, Xtest), as well as on (Xtrain, X̃test) with a certain percentage p of data modified in X̃test.
We only compare the prediction on the binarized dataset, which is a reasonable simplification
because in real recommendation systems, we usually only need to know whether the user likes
(1) the movie/product/joke or not (0), in order to decide whether we should recommend the
movie/product/joke. To add noise to binarized data, we flip the entries of 1 to 0 and 0 to 1. We
record the perplexities with the percentage of noise p increasing from 1% to 10% in steps of 1%
and report the average perplexity of 10 cross validation at each step. The perplexity curves for
Movielens, Foodmart and Jester are shown in Figure 6.

At the starting point, with no noise, we have perplexity of data with the true test set Xtest.
At the other extreme end, 10% of the entries in the test set have been modified. As shown in
Figure 6, all three lines go up steadily with an increasing percentage of test data modified. This is
a surprisingly good result, implying that our model is able to detect increasing noise and convey
the message through increasing perplexities. The most accurate result, i.e., the one with the lowest
perplexity, is exactly the true test set at the starting point. Therefore, BCC can be used to
accurately predict missing values in a matrix.

We add noise at a finer step of modifying 0.1% and 0.01% test data each time, and compare the
prediction performance of BCC with LDA. The results on binarized Jester and Movielens datasets
are presented in Figure 7 and 8. In both figures, the first row is for adding noise at steps of 0.01%
and the second row is for adding noise at steps of 0.1%. The trends of the perplexity curves show
the prediction performance. On Jester, we can see that the perplexity curves for BCC in both
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Figure 8: Perplexity curves of BCC and LDA with increasing noise on binarized Movielens.

Figure 7(a) and 7(c) go up steadily at almost all times. However, the perplexity curves for LDA go
up and down from time to time, especially in Figure 7(b), which means that sometimes LDA fits
the data with more noise better than that with less noise, indicating a lower prediction accuracy
compared with BCC. The difference in prediction performance is even more distinct on the Movie-
lens dataset. When adding noise at steps of 0.01%, there is no clear trend in perplexity curves in
Figure 8(a) and 8(b), implying that neither BCC nor LDA is able to detect the noise at this resolu-
tion. However, when the step size increases to 0.1%, perplexity curve of BCC starts to go up as in
Figure 8(c) but the perplexity curve of LDA goes down as in Figure 8(d). The decreasing perplex-
ity with addition of noise indicates LDA does not have a good prediction performance on Movielens.

Visualization. The co-clustering results give us a compressed representation of the original matrix.
We can visualize such compressed matrix to study the relationship between row and column clusters.
Figure 10 is an example of user-movie co-clusters on Movielens. There are 10 × 20 sub-blocks,
corresponding to 10 user clusters and 20 movie clusters. The shade for each sub-block shows the
user-movie preference. The darker the sub-block is, the more the corresponding movie cluster is
preferred by the user cluster. Based on Figure 10, we can see that users in cluster 2 (U2) are a big
fan of all kinds of movies, and users in U5 seem uninterested in all movies except those in movie
cluster 13 (M13). Moreover, movies in M18 are very popular and preferred by most of the users.
In comparison, movies in M4 seems to be far from best sellers. We can also tell that users in U1
prefer M18 the best and M8 the worst. U2 and U6 share several common favorite types of movies.

The variational parameters φ1, with dimension k1 for rows, and φ2, with dimension k2 for
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Figure 9: Co-embedding and signatures for users (φ1) and movies (φ2) on Movielens dataset.

columns, give a low-dimensional representation for all the row and column objects. They can be
considered as the result of a simultaneous dimensionality reduction over row and column feature
vectors. We call the low-dimensional vectors φ1 and φ2 a “co-embedding” since they are two
inter-dependent low-dimensional representations of the row and column objects derived from the
original data matrix. Co-embedding is a unique and novel by-product of our algorithm, which
accomplishes dimensionality reduction while preserving dependencies between rows and columns.
None of partitional co-clustering algorithms is able to generate such an embedding, since they do
not allow mixed membership to row and column clusters. To visualize the co-embedding, we apply
ISOMAP [21] on φ1 and φ2 to further reduce the space to 2 dimensions.3

The results of co-embedding for users and movies on binarized Movielens dataset are shown in
Figure 9(a) and 9(c). Each point in the figure denotes one user/movie. We mark three clusters
with red, blue and green for users and movies respectively; other points are colored pink. By
visualization, we can see how the users/movies are scattered in the space, where the clusters are
located, and how far one cluster is from another, etc. Such information goes far beyond clusters of
objects only. In addition, we choose several points from the co-embedding to look at their properties.
In Figure 9(a) and 9(c), we mark four users and four movies, and extract their “signatures”. In
general, we can use a variety of methods to generate signature. In our experiment, we do the
following: For each user, among all the movies she rates “1”, we get the number of movies in movie
cluster 1-20 respectively. After normalization, this 20-dim unit vector is used as the signature for
the user. Similarly, for each movie, among all the users giving it a rating of “1”, we get the number

3An alternative approach would be to set k1 and k2 to 2, so that φ1 and φ2 are themselves 2 dimensional.
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of users in user cluster 1-10 respectively. The normalized 10-dim unit vector is used as the signature
for the movie. The signatures are shown in Figure 9(b) and 9(d) respectively. The numbers on
the right are user/movie IDs corresponding to those marked points in co-embedding plots, showing
where they are located. We can see that each signature is quite different from others in terms of
the value on each component.

6 Conclusion

In this paper, we have proposed Bayesian co-clustering (BCC) which views co-clustering as a gen-
erative mixture modeling problem. BCC inherits the strengths and robustness of Bayesian mod-
eling, is designed to work with sparse matrices, and can use any exponential family distribution
as components of the generative model, thereby making it suitable for a wide range of matrices.
Unlike existing partitional co-clustering algorithms, BCC generates mixed memberships for rows
and columns, which seem more appropriate for a variety of applications. A key advantage of the
proposed variational approximation approach for BCC is that it is expected to be significantly
faster than a stochastic approximation based on sampling, making it suitable for large matrices
in real life applications. Finally, the co-embedding obtained from BCC can be effectively used for
visualization, subsequent predictive modeling, and decision making.
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A Variational Inference

The lower bound of log p(X|α1, α2, Θ) could be obtained from Eq. 3 and represented as

L = Eq[log p(π1|α1)] + Eq[log p(π2|α2)] + Eq[log p(z1|π1)] + Eq[log p(z2|π2)]
+ Eq[p(X|z1, z2, Θ)]
−Eq[log q(π1|γ1)]− Eq[log q(π2|γ2)]− Eq[log q(z1|φ1)]− Eq[log q(z2|φ2)],

We denote the lower bound with L for brevity. Each term in L could be expanded as in Table 3.

Term Expression
Eq[log p(π1|α1)]

∑n1
u=1

∑k1
i=1(α1i − 1)(Ψ(γ1ui)−Ψ(

∑k1
l=1 γ1ul)) + n1 log Γ(

∑k1
i=1 α1i)− n1

∑k1
i=1 log Γ(α1i)

Eq[log p(π2|α2)]
∑n2

v=1

∑k2
j=1(α2j − 1)(Ψ(γ2vj)−Ψ(

∑k2
l=1 γ2vl)) + n2 log Γ(

∑k2
j=1 α2j)− n2

∑k2
j=1 log Γ(α2j)

Eq[log p(z1|π1)]
∑n1

u=1

∑k1
i=1 muφ1ui(Ψ(γ1ui)−Ψ(

∑k1
l=1 γ1ul))

Eq[log p(z2|π2)]
∑n2

v=1

∑k2
j=1 mvφ2vj(Ψ(γ2vj)−Ψ(

∑k2
l=1 γ2vl))

Eq[log q(π1|γ1)]
∑n1

u=1

∑k1
i=1(γ1ui − 1)(Ψ(γ1ui)−Ψ(

∑k1
l=1 γ1ul)) +

∑n1
u=1 log Γ(

∑k1
i=1 γ1ui)−

∑n1
u=1

∑k1
i=1 log Γ(γ1ui)

Eq[log q(π2|γ2)]
∑n2

v=1

∑k2
j=1(γ2vj − 1)(Ψ(γ2vj)−Ψ(

∑k2
l=1 γ2vl)) +

∑n2
v=1 log Γ(

∑k2
j=1 γ2vj)−

∑n2
v=1

∑k2
j=1 log Γ(γ2vj)

Eq[log q(z1|φ1)]
∑n1

u=1

∑n2
v=1

∑k1
i=1

∑k2
j=1 δuvφ1uiφ2vj log φ1ui

Eq[log q(z2|φ2)]
∑n1

u=1

∑n2
v=1

∑k1
i=1

∑k2
j=1 δuvφ1uiφ2vj log φ2vj

Eq[log p(X|z1, z2, Θ)]
∑n1

u=1

∑n2
v=1

∑k1
i=1

∑k2
j=1 δuvφ1uiφ2vj log pψ(xuv|θij)

Table 3: Expression for terms in L(γ1, γ2, φ1, φ2; α1, α2, Θ)

A.1 Inference

For inference, we first maximize L with respect to φ1u. It is a constrained optimization with the
constraint

∑k1
i=1 φ1ui = 1. We construct the Lagrangian by isolating the terms containing φ1ui and

adding the Lagrange multipliers:

L[φ1u] =
n2∑

v=1

k1∑

i=1

k2∑

j=1

δuvφ1uiφ2vj

(
Ψ(γ1ui) + Ψ(γ2vj)−Ψ(

k1∑

l=1

γ1ul)−Ψ(
k2∑

l=1

γ2vj)

+ log p(xuv|θij)− log φ1ui − log φ2vj

)
+ λ1u(

k1∑

i=1

φ1ui − 1) .

By taking derivative w.r.t. φ1ui and setting it to zero, we have:

φ1ui∝exp

(
Ψ(γ1ui)+

∑n2
v=1

∑k2
j=1 δuvφ2vj log p(xuv|θij)

mu

)
.

Similarly, for φ2v, we have

φ2vj∝exp

(
Ψ(γ2vj)+

∑n1
u=1

∑k1
i=1 δuvφ1ui log p(xuv|θij)

mv

)
.

Next, we maximize L with respect to γ1u. The terms containing γ1u are:

L[γ1u] =
k1∑

i=1

(
Ψ(γ1ui)−Ψ(

k1∑

l=1

γ1ul)
)
(α1i + muφ1ui − γ1ui) +

k1∑

i=1

log Γ(γ1ui)− log Γ(
k1∑

i=1

γ1ui) .
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Again, taking derivative w.r.t. γ1ui and setting it to zero yields:

γ1ui = α1i + muφ1ui .

Similarly,
γ2vj = α2j + mvφ2vj .

A.2 Parameter Estimation

For parameter estimation, we first maximize L with respect to Θ, which is specific to the generative
model we choose. In Gaussian case, we have:

L[µ,σ] =
n1∑

u=1

n2∑

v=1

k1∑

i=1

k2∑

j=1

δuvφ1uiφ2vj

(
−(xuv − µij)2

2σ2
ij

− log
√

2πσ2
ij

)

We take derivative respect to µij and σ2
ij , and set it to zero to get:

µij =
∑n1

u=1

∑n2
v=1 δuvxuvφ1uiφ2vj∑n1

u=1

∑n2
v=1 δuvφ1uiφ2vj

σ2
ij =

∑n1
u=1

∑n2
v=1 δuv(xuv − µij)2φ1uiφ2vj∑n1
u=1

∑n2
v=1 δuvφ1uiφ2vj

.

To estimate α1 and α2, the terms containing α1 are:

L[α1] =
n1∑

u=1

k1∑

i=1

(α1i − 1)(Ψ(γ1ui)−Ψ(
k1∑

l=1

γ1ul)) + n1 log Γ(
k1∑

i=1

α1i)− n1

k1∑

i=1

log Γ(α1i).

Taking derivation w.r.t. α1i yields:

∂L

∂α1i
=

n1∑

u=1

(
Ψ(γ1ui)−Ψ(

k1∑

l=1

γ1ul)

)
+ n1

(
Ψ(

k1∑

i=1

α1i)−Ψ(α1i)

)
.

The derivation depends on {α1l, [l]k1
1 , l 6= i}, so we could not obtain a close form solution for α1i.

Following [7], we adopt Newton-Raphson algorithm to find α1i iteratively, where

∂L

∂α1iα1i
= n1Ψ

′
(

k1∑

i=1

α1i)− n1Ψ
′
(α1i) (11)

∂L

∂α1iα1l
= n1Ψ

′
(

k1∑

i=1

α1i) (l 6= i) . (12)

So the Hessian matrix has (11) on diagonal and (12) everywhere else. Given gradient g(·) and
Hessian H(·), Newton-Raphson finds the optimal solution by using the following updating function:

α′1 = α1 + H(α1)−1g(α1) .

However, what we are actually dealing with is a constrained optimization problem since α1 > 0.
Iterating using Newton-Raphson without constraint sometimes takes the updated value outside the
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feasible range. Therefore, we are using an adaptive line search in the direction of of updating by
iterating:

α′1 = α1 + ηH(α1)−1g(α1) .

Multiplying the second term by η, we are performing a line search to prevent α1 to go out the
feasible range (α1 > 0). At each updating step, we first assign η to be 1. If α′1 is inside the feasible
range, we go on to the next step, otherwise, we decrease η by a factor of 0.5 until α′1 becomes valid.
The objective function is guaranteed to be improved since we are not change the update direction
but only the scale. Similar strategy is performed on α2.
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