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Abstract

Mixed-drove spatio-temporal co-occurrence patterns (MDCOPS) represent subsets of two or more
different objed-types whaose instances are often located in spatial and temporal proximity. Discovering
MDCOPs is an important problem with many applicaions such as identifying tadics in battlefields,
games, and predator-prey interadions. However, mining MDCOPs is computationally very expensive
because the interest measures are computationally complex, datasets are larger due to the archival history,
and the set of candidate patterns is exporential in the number of objed-types. We propcse amondaonic
composite interest measure for discovering MDCOPs and novel MDCOP mining algorithms. Analyticd
results show that the propaosed algorithms are mrred and complete. Experimental results also show that
the proposed methods are computationally more dficient than naive dternatives.
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|. INTRODUCTION

As the volume of spatio-temporal data continues to increase significantly due to bah the
growth of database achives and the increasing number and resolution o spatio-temporal sensors,
automated and semi-automated pattern analysis beames more essential. As a result, spatio-
tempora co-occurrence pattern mining has been the subjed of recent research. Given a moving
objed database, our aim is to discover mixed-drove spatio-temporal co-occurrence patterns
(MDCOPs) representing subsets of different objed-types whaose instances are locaed close
together in geographic spacefor a significant fradion o time. Unlike the objedives of some
other spatio-temporal co-occurrence pattern identificaion approadches where the pattern is the
primary interest, in MDCOPs bath the pattern and the nature of the different objed-types are of
interest.

A simple example of an MDCOP is in emlogicd predator-prey relationships. Patterns of
movements of rabhits and foxes, for example, will tend to be a-located in many time-frames
which may or may not be conseautive. Rabbits may attempt to move avay from foxes, and the
foxes may attempt to stay with the rabbits. Other fadors auch as avail able food and water may
also affed the patterns.

More example MDCOPs may be illustrated in American football where two teams try to
outscore eat other by moving a football to the opporent’s end o the field. Various complex
interadions occur within ore tean and aaoss teams to achieve this goal. These interadions
invalve intentional and acddental MDCOPs, the identificaion o which may help teans to
study their opporent’s tadics. In American football, objea-types may be defined by the roles
of the offensive and defensive players, such as quarterbadk, running bad, wide receaver, kicker,
holder, linebadker, and cornerbadk. An MDCORP is a subset of these different objed-types (such
as {kicker, holder} or {wide_recever, cornerbad}) that occur frequently. One example MDCOP
involves off ensive wide recavers, defensive linebadkers, and defensive aornerbadks, andis cdled
a Hall Mary play. In this play, the objedive of the offensive wide recevers is to ourun any
linebadkers and defensive badks and get behind them, caching an undsfended passwhile running
untouched for a touchdown. This interadion creaes an MDCOP between wide receavers and
cornerbadks. An example Hail Mary play is given in Figure 1. It shows the positions of four
offensive wide recevers (W.1, W.2, W.3, and W.4), two defensive cornerbadks (C.1 and C.2), two
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Fig. 1. An example Hall Mary play in American foatball

defensive linebadkers (L.1 and L.2), and a quarterbadk (Q.1) in four time slots. The solid lines
between the players show the neighbaing payers. The wide recevers W.1 and W.4 cross over
eadt other and the wide recavers W.2 and W.3 run dredly to the end zone of the field. Initialy,
the wide recevers W.1 and W.4 are co-located with cornerbadks C.1 and C.2 respedively and the
wide recaevers W2. and W.3 are a-locaed with linebadkersL.1 and L.2 at time slot t=0 (Figure
1 (a@). Intime dlot t=1, the four wide recevers begin to run, whil e the linebadkers run towards the
guarterbadk and the cornerbads remain in their origina pasition, passbly due to a fake handdf
from the quarterbadk to the running bad (Figure 1 (b)). In time slot t=2, the wide recavers W.1
and W.4 cross over ead other and try to drift further away from their respedive mrnerbadks
(Figure 1 (c)). When the quarterbad shows sgns of throwing the football, both cornerbads
and linebaders run to their respedive wide recavers (Figure 1(d)). The overal sketch of the
game tadics can be seen in Figure 1(e). In this example, wide recevers and cornerbadks form
an MDCORP since they are persistent over time and they occur 2 ou of 4 time slots. However,
wide recavers and linebadkers do nd form an MDCOP due to the lack of temporal persistence

There ae many applications for which discovering co-occurring petterns of spedfic combi-
nations of objed-types is important. Some of these include military (battlefield planning and
strategy), emlogy (tradking spedes and pdlutant movements), homeland defense (looking for
significant "events’), and transportation (road and retwork planning) [10], [14].

However, discovering MDCOPs poses svera nontrivial challenges. First, current interest

measures (i.e. the spatial prevalence measure) are not sufficient to quantify such patterns, so



new composite interest measures must be aeded and formalized [12], [21]. Seaond the set of
candidate patterns grows exporentially with the number of objed-types. Finaly, since spatio-
tempora datasets are huge, computationaly efficient algorithms must be developed [22].

A. Contributions

This paper is an extended version o our paper pulished in the proceadings of the 6th
|IEEE International Conference on Data Mining (ICDM) [5], where we introduced an MDCOP
mining problem, proposed a new monaonic compasite interest measure, developed two MDCOP
algorithms, and evaluated these using red datasets. This extended paper makes the foll owing
new contributions:

« It propases a new and computationally efficient MDCOP mining algorithm (FastM DCOP-

Miner)

« It compares the proposed algorithm with those in the ICDM paper [5].

« It presents additional experimental results with synthetic datasets for all MDCOP agorithms.

« It includes an expanded literature survey and a discusson o statisticad spatio-temporal

interest measures.

« It includes revised comparisons of approadies and experimental design.

B. Scope and Outline

This paper focuses on MDCOPs (typed colledions of moving oljeds) by extending interest
measures for spatial co-locaion petterns given a user-defined participation index threshold [12],
[21]. The following issues are beyond the scope of this paper: (i) determining thresholds for
MDCOP interest measures; (i) similarity measures for tracking moving oljeds due to the focus
on oljed-types rather than oljeds; (iii) indexing and query processng isaues related to mining
objeds; (iv) discovering multisets (e.g.{A, A, B}).

The rest of the paper is organized as follows. Sedion Il presents a discusson o related work.
Sedion Ill presents basic concepts to provide aformal model of MDCOPs and the problem
statement of mining MDCOPs. Sedion IV presents our propcsed MDCOP mining algorithm.
Analysis of the dgorithm is given in Sedion V. Sedion VI presents the experimental evaluation

and Sedion VII presents conclusions and future work.



II. RELATED WORK

Data analysis can be broadly caegorized into statisticd approadies and data mining ap-
proaches. In statisticd approacdhes, there ae bodes of work in bah spatial and temporal analysis.
Spatial point patterns are often described by metrics such as the intensity function and Ripley’s
K [19], [20]. Other measures such as complete spatial randamness (CSR) and spatial covari-
ance functions are used to describe the spatial relationships of adjaceit aress and continuows
variables as randam fields [6]. Temporal patterns have been extensively studied in models such
as moving averages, first and second ader autoregresson, integration, and periodic patterns
such as sasondlity [24]. Granger has looked at co-occurring temporal patterns under an as-
sumption d cointegration [7]. There has also been some recent reseach in combining spatia
and tempora analysis, such as Brix and Diggle’s extended intensity function and the extended
K(r,t) function [1], [17]. Most attempts to combine the fields auffer from limitations such as the
inability to model spacetime interadions, treding time & merely another dimension d space
and asuming separability and independence between space ad time [20]. Statisticd reseach
spedficdly focused on spatio-temporal co-occurrence patterns and their passble interadions has
been limited.

Previous data mining studies for mining spatio-temporal co-occurrence patterns can be das-
sified into two caegories: mining o uniform groups of moving oljeds, and mining o mixed
groups of moving ohjeds.

To mine uniform groups of moving oljeds, the problems of discovering flock patterns [16],
[9], [8] and moving clusters [13] are defined. A flock pattern is a moving goup d the same
kind d objeds, such as a shee flock or a bird flock. Gudmundsson et al. proposed algorithms
for detedion o the flock pattern in spatio-temporal datasets [9], [8]. Kalnis et a. defined the
problem of discovering moving clusters and propcsed clustering-based methods to mine such
patterns [13]. In this approad, if there is a large enough number of common oljeds between
clusters in conseautive time slots, such clusters are cdled moving clusters. These methods do
not take objed-types into acourt, and thus are not effedive for mining MDCOPs [5]. To
mine mixed groups of moving oljeds, the problems of discovering coll ocaion episodes [4]
and topdogicd patterns [23] are important. Both generalize @-locaion petterns [12] (subsets
of objed-types that are frequently located together in spacg to the spatio-temporal domain.



A collocdion episode is a sequence of co-locaion petterns with some common oljed-types
aqaoss conseautive time slots. However, if there is no common oljed-type in conseautive time
slots, the propaosed approadch will not identify any pattern. For example, the all ocaion episodes
algorithm will not be ale to find any pattern from the dataset given in Figure 1 if the window
length (which is used to find co-locaion petterns) is 2. For this case, the dgorithm tries to find
co-locdion petterns that are persistent in 2 conseautive time slots, but there is no such pattern
in the dataset becaise wide recavers and cornerbadks are forming co-locations in time slots t=0
and t=3 and wide recavers and linebaders are forming co-locaions in time slots t=0. Thus,
there may not be any co-locaion petterns and coll ocaion episodes identified in the dataset.

A topdogicd pattern [23] is a subset of objed-types whaose instances are dose in space ad
time. An interest measure for atopdogicd pattern {A,B} (e.g. participationindex or suppat) is
a spatio-temporal join of instances of A and instances of B [12]. This datistic may be high even
if many instances of A and many instances of B are nat spatially together for a moment in time.
The semantics of topdogicd patterns are not well-defined for moving oljeds. For example, this
approach can na find an answer to the question o what fradion o time the pattern occurs. The
answer of this approach may also be ™empty”’ to the question o when (which time slots) the
pattern occurs dnce there is no time slot nation. In the dataset given in Figure 1, this approach
will discover the two patterns of {W, C} and {W, L}. Both patterns have the same suppat,
but pattern {W, C} occurs in 2 time dots out of 4 (a persistent pattern) and pettern {W, L}
occurs in 1 time dlot out of 4 (a transient pattern) since tracks of objeds are represented as
spatio-tempora instances. The persistent pattern {W, C} occurs in time slots t=0 and t=3 and
its instances {W1, C1} and {W4, C2} occur in time slot t=0 and {W1, C2} and {W4, C1} in
time slot t=1. The transient pattern {W, L} occurs in time slot t=0 and its instances {W2, L1},
{W3, L1}, {W2, L2}, and {W3, L2} occur in time slot t=0.

In contrast, our proposed interest measure and algorithms will efficiently mine mixed groups
of objeds (e.g MDCOPs) which are dose in space ad persistent (but not necessarily close) in
time. Unlike a number of the techniques just described, our approach will discover persistent
patterns that co-occur in most but nat all spatio-temporal i ntervals, so conseautive @-occurrences
are not mandatory. For example, our propased MDCOP mining approach will find the MDCOP
{wide_recaver, cornerbad} pattern in Figure 1, if the fradion o time slots where the pattern

occurs over the total number of time slots is no lessthan a defined threshald, e.g., 0.5. It may



rejed the pattern {W,L} in Figure 1 given the lad of time persistence of the {wide recaver,
linebadker} pattern. In fad, instances of MDCOP {wide_recéver, cornerbad} are co-located in
2 time dlots out of 4 and instances of {wide_recever, linebadker} are m-locaed in 1 time slot
out of 4. The instances of MDCOP {wide recever, cornerbadk} are {W.1, C.1} and {W.4, C.2}
in time slot t=0, and {W.4, C.1} and {W.1, C.2} in time slot t=3.

[1l. BASIC CONCEPTS AND PROBLEM DEFINITION
A. Spdial Prevalence Measure

The focus of this qudy is to discover mixed-drove spatio-temporal co-occurrence patterns
(MDCOPs) over a spatio-tempora framework and a neighbahoodrelation R. First we explain
the modeling d mixed groups of objed-types in space e.g., spatial co-locdions [21]. In the
next sedions, we explain hav we model MDCOPs by extending spatial co-locaion mining to
include time information and then propase dgorithms to mine these MDCOPs.

Spatial co-locaion mining algorithms are used to discover sets of mixed oljed-types that
are frequently locaed together in a spatial framework for a given set of spatial objed-types,
their instances, and a spatial neighba relationship R [12], [21]. For example, in Figure 2(a), in
time slot t=0, {A.1, C.1} is an instance of a m-locaion if the distance between the objeds is
no more than a given neighbahood dstance threshadd. In Figure 2(a), the solid lines show the
distance between the objeds that satisfies the neighbahood dstance threshold. The participation
index is used to determine the strength of the co-locaion pettern, that is, whether the index is
greder than or equa to a threshald [12], [21]. Such a c-location is cdled spatial prevalent.
The participation index is defined as the minimum of the participation ratios (the fradion o
the number of instances of objed-types forming co-locaion instances to the total number of
instances). For example, in Figure 2(a), {A, B} isa m-locaionin time slot t=0, and its instances
ae {A.1, B.1}, {A.2, B.1}, {A.3, B.2}, and {A.3, B.3}. In the dataset, objed-type A has 4
instances and three of them (A.1, A.2, and A.3) are mntributing to the a-locaion {A, B}, so
the participation ratio of A is 3/4. The participation ratio of B is 3/5 since 3 ou of 5 instances
are oontributing to the co-location {A, B}. The participation index of the m-locaion {A, B}
is 3/5, which is the minimum of the participation ratios of objed-types A and B. It has been
shown that the participation index is anti-monaone in the size of co-locaions [12], [2]]. In

other words, participation_index(P;) < participation_index(F;) if P; is a subset of P;. In
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(b) A set of output mixed-drove spatio-temporal co-occurrence patterns

Fig. 2. An example spatio-temporal dataset

addition, [12], [21] show that the participation index has a spatial statisticd interpretation as an

upper bound onthe aossK function [6].

B. Modeling MDCOPs

Given a set of spatio-temporal mixed objed-types and a set of their instances with a neighba-
hoodrelation R, an MDCOP is a subset of spatio-temporal mixed oljed-types whaose instances
are neighbas in space ad time.

Definition 3.1: Given a spatio-tempora pattern and a set T'F' of time dlots, such that TF =
[Ty, ..., T,,—1], the time prevalence or persistence measure of the pattern is the fradion o time
slots where the pattern occurs over the total number of time dots.

For example, in Figure 2(a), the total number of time slots is 4 and pettern {A, B} occurs
in al 4 time dots, so its time prevalence is 4/4. Pattern {A, C} occurs in 3 time slots, namely,

time slots t=0, t=1, and t=2, and its time prevalence index is 3/4.



Definition 3.2: Given a spatio-temporal dataset of mixed objed-types ST, and a spatial
prevalence threshold 6, the mixed-drove prevalence measure of a spatio-temporal pattern P

is a composition o the spatial prevalence and the time prevalence measures as shown below.

Proby,, cai_time_siot (s_prev(pattern Py, time_slot t,,) > 6,) Q)

where Prob stands for probability of overall prevalence time slots and s_prev stands for spatial
prevalence e.g., the participation index, described in Sedion IlI- A.

Definition 3.3: Given a spatio-temporal dataset of mixed oljed-types ST and a threshold
par (6,, 0iime), MDCOP P; is a mixed-drove prevalent pattern if its mixed-drove prevalence

measure satisfies the foll owing.

Proby,, cail_time.siot [S-prev(pattern P;, time_slot t,,) > 0,] > Otime 2

where Prob stands for probability of overall prevalence time dlots, s_prev stands for spatial
prevalence, 6, is the spatial prevalence threshold, and 6;;,,. is the time prevalence threshold.
For example, in Figure 2(a), {A,B} isan MDCOP becaise it has mixed oljed-types, is Patial
prevalent in time dlots t=0, t=1, t=2, and t=3 since its participation indices are no lessthan the
given threshald 0.4 in these time slots, and is time prevalent since its time prevalence index of 1
is abowve the time prevalenceindex threshold 0.5. In contrast, {B,D} isnot an MDCOP. Although
it has mixed ohjed-types and is gatia prevalent in time slot t=2, it is not time prevalent since

its time prevalence index is no more than the given time prevalence index threshold 0.5.

C. Problem statement
Given:
o A set P of distinct Bodean spatio-temporal objed-types over a common spatio-temporal
framework ST F.
« A neighba relation R over locdions.
« A gpatia prevalence threshald, 0p .
« A time prevalence threshald, 6. -
Find: {P;|P; isasubset of P and P; is a prevalent MDCOP as in Definition 33}.
Objedive Minimize mmputation cost.
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Constraints: To find a corred and complete set of MDCOPs.

Example: In American football, eat play (e.g., Figure 1) may represent a spatio-temporal
dataset and Boodlean oljed-types may be identified by the role of the players (e.g., wide recever,
cornerbadk, and linebadkers). Each oljed-typeis considered as Booean becaise we ae interested
in its presence or absence a any locaion and time. Figure 1(a)-(d) shows the position o
the Bodean ohjed-types for four time units. The straight lines between the players how the
neighbaing oljeds. The neighba relation R may be defined by a distance lessthan ore meter
or an average am’s length. For example, in Figure 1(a), wide recaver W.1 is a neighba of
cornerbadk C.1. However, these players are not neighbas in Figure 1(b) sincethey are separated
by more than a meter. In this example, {wide recever, cornerbad} forms a candidate MDCOP,
given 6,=0.5, and 6,;,,.=0.5.

Threshold values sleded for MDCOP interest measures (e.g. spatial prevalence measure and
time prevalence measure) have important implications on the mining processes and results. Se-
ledion o a small i nterest measure threshold (close to 0) increases the computational complexity
of the dgorithms and the number of generated prevalent patterns. This may cause generation
of insignificant patterns. Seledion o a large interest measure threshold (close to 1) deaeases
the computational complexity of the dgorithms and the number of prevalent patterns. This may
cause pruning o some of the significant patterns. Neverthelessthe seledion o interest measure

threshold values is dependent on the gpplicaion and/or purpose of the analysis.

V. MINING MDCOPs

In this ®dion, we discuss a naive gproadc and then propose two novel MDCOP mining
algorithms - MDCOP-Miner and FastM DCOP-Miner - to mine MDCOPs. We dso give exeaution
traces of these dgorithms.

A. Naive approach

A naive goproach can use a spatial co-locaion mining algorithm for ead time dlot to find
gpatial prevalent co-locaions and then apply a post-processng step to discover MDCOPs by
cheding their time prevalence To mine @-locaions, Huang, Shekhar and Xiong popcsed a
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Fig. 3. Comparison o Naive Approach, MDCOP-Miner, and FastMDCOP-Miner

join-based approad, Yoo, Shekhar and Celik propased a partia join-based approach and a join-
lessapproach, and Zhang et al. proposed a multi-way spatial j oin-based approad [3], [12], [2]],
[26], [27], [28], [29]. This gudy will be based on the join-based spatial co-locaion pettern
mining algorithm proposed by Huang et al., but it is also possble to use other approacdes.
The naive gproach will generate size k + 1 candidate ao-locations for ead time slot using
gpatial prevalent size k subclasses urtil there ae no more candidates. After finding al size
gpatial prevalent co-locaions in ead time slot, a post-processng step can be used to discover
MDCOPs by pruning ou time nonprevaent co-locaions. Even thoughthis approach will prune
out spatial non-prevalent co-locaions ealy, it will not prune out time nonprevalent MDCOPs
before the post-processng step (Figure (3(a)). This leads to unrecessary computational cost.

B. MDCOP-Miner

To eliminate the drawbadks of the Naive gpproad, we propase an MDCOP mining algorithm
(MDCOP-Miner) to discover MDCOPs by incorporating a time-prevalence based filtering step
in ead iteration d the dgorithm. The dgorithm, first, will discover al size k& spatial prevalent
MDCOPs and then will apply a time-prevalence based filering to discover MDCOPS Finally,
the dgorithm will generate size k + 1 candidate MDCOPs using size k MDCOPs (Figure 3(b)).
The participation index is used as a spatia prevalence interest measure to ched if the pattern is

gpatial prevalent at a time slot [12]. The time prevalence (i.e., persistence measure in definition
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3.1) isused as atime prevalenceinterest measure. First we give the pseudo code of the dgorithm,
and then we provide an exeaution traceof it using the dataset from Figure 2(a). Algorithm 1
gives the pseudo code of the MDCOP-Miner algorithm. This pseudo code is used to explain
two agorithms: MDCOP-Miner and FastM DCOP-Miner. FastMDCOP-Miner will be discussed
in the next sedion. The choice of the dgorithm is provided by the user. The inpus are dgorithm
choice alg_choice with value MDCOP-Miner, a set of distinct spatial objed-types £, a spatio-
temporal dataset ST, a spatia neighbahoodrelationship R, and thresholds of interest measures,
i.e. spatial prevalence and time prevalence the output is a set of MDCOPs. In the dgorithm,
steps 1 include initidizaion d the parameters, steps 2 through 14 gve an iterative processto
mine MDCOPs, and step 15 gves a union o the results. Steps 2 through 14continue until there
are no candidate MDCOPs to be generated. The functions of the dgorithm are explained below.

Generating candidate a-occurrence patterns (step 3): This function uses an apriori-based
approad to generate size k + 1 candidate co-locdions Cy.; for ead time slot, using all size &
mixed-drove co-occurrence patterns M D P, [2].

Generating spatial co-occurrence instances (step 5): The instances of candidate Cy., are
generated by joining neighba instances of size & MDCOPs for ead time dlot. This is gmilar
to the instance generation step of the m-locaion miner algorithm [12].

Finding spatial prevalent co-occurre nce patterns (step 6): All spatial prevalent sizek + 1
patterns S P, are found by puning the ones whaose spatial prevalenceindices, i.e., participation
indices, are lessthan a given threshaold for ead time slot. Computation o the participationindices
follows the same dgorithmic ideas as those in the co-locaion mining algorithm [12].

In the for loop the dgorithm finds 9ze k + 1 spatial prevalent co-locdion for ead time slot.
MDCOP-Miner skips deps 8, 9, and 10which are adivated using the FastMDCOP-Miner.

Forming a time prevalence table (steps 8 and 12): In steps 8 and 12 the time prevalence
indices of the mined spatial prevalent patterns are cdculated in FastM DCOP-Miner and MDCOP-
Miner algorithms respedively. The time prevalenceindex of a spatial prevalent co-locdionisthe
fradion d the number of time slots where the pattern occurs over the total number of the time
slots. Step 8 is adivated in FastMDCOP-Miner algorithm and it is used to cdculate the time
prevalence index of the size k patterns before generating size & patterns of next time sot. Step
12 is adivated in MDCOP-Miner and it is used to cdculate time prevalence indices of patterns

after size k patterns of al time slots are generated .
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Algorithm 1 MDCOP-Miner and FastM DCOP-Miner

Inputs:
alg-choice: Choi ce of al gorithm "MDCOP-M ner" or "Fast MDCOP-M ner"

E: a set of distinct spatial object-types

ST: a spatio-tenporal dataset <object_type, object.id, x, y, tinme slot
R: spatial neighborhood rel ationship
TF: atime slot frame {to,...,tn-1}
0,: a spatial preval ence threshold
Ouime: @ tinme preval ence threshol d
Output: MDCOPs whose spatial preval ence indices, i.e., participation indices, are no
less than 6,, for tine preval ence indices are no |ess than 6Ome
Variables:
k: co-occurrence size
t: time slots (0,...,n—1)
T,: set of instances size k co-occurrences
C,. set of candidate size k co-occurrences
SP,. set of spatial prevalent size k co-occurrences
TP,: set of time preval ent size k co-occurrences
MDP,: set of m xed-drove size k£ co-occurrences
Algorithm:
(1) initialization : co-occurrence size k=1,Cy=E,MDP,(0) =ST
(2) while (not enpty MDP;) {
(3) Cr+1(0) = gen_candidate_co — occur(Cl, M DPy)
(4) for each tineslot ¢in (0,...,n—1) {

(5) Tr+1(t) = gen_co — occur_instance(Cr41(t), T (t), R)
(6) SPr11(t) = find_spatial — prevalent_co — occur(Tr+1(t), Crt1(t),0p)
(7) I f (alg-choice =="Fast MDCOP-M ner") {
(8) T Pr41(t) = find_time_prevalence_index (S Py+1(t))
(9) MDPy+(t) = find_time — prevalent_co — occur (T Py41(t), Otime)
(10) Cri1(t) = MDPgya(t) } }
(112) I f alg-choice=="NDCOP- M ner" {
(12) T P41 = find_time_prevalence_index (S Py+1)
(13) MDPyy1 = find_time — prevalent_co — occur (T Py+1, Otime) }

(14) k=k+1}
(15) return union (MDPs,, ..., MDPxi1)

Finding mixed-drove @-occurrence patterns (step 9 and step 13): These steps discover
MDCOPs by cheding the time prevalence indices of the spatial prevalent co-locations if they
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are no lessthan a given time prevalence threshad 6,;,,. . The patterns whose time prevalence
indices do na satisfy the given threshold are pruned at this gage. The remaining petterns will be
MDCOPs and will be used to generate candidate supersets of the MDCOPs in step 3. In step 13
MDCOP-miner prunes time nonprevalent patterns after all size k& patterns in al time slots are
generated. In step 9, FastMDCOP-Miner prunes time nonprevalent patterns before generating
size k patterns in the next time dlot.

The dgorithm will runiteratively until there ae no more candidate MDCOPs to be generated.
The dgorithm outputs the union o al size MDCOPs.

An Exeaition Trace of MDCOP-Miner: The exeaution trace of the MDCOP-Miner is given
in Figure 4 using the dataset given in Figure 2. This dataset contains four objed-types A, B,
C, and D and their instances in four time slots. A has 4 instances, B has 5 instances, C has 3
instances, and D has 4 instances. The instances of ead oljed-type have aunique identifier, such
as A.1. Some of the patterns of these objed-types form an MDCOP. To discover MDCOPs we
propose amonaonic compaosite interest measure (the mixed-drove prevalence measure) which is
a composition o the spatial prevalence and time prevalence measures applied to mixed oljed-
types. The spatial prevalence measure (participation index) shows the strength of the spatial
co-locaion when the index is greaer than or equal to a given threshold [12], [21]. The time
prevalence measure (time prevalence index) shows the frequency of the pattern over time.

In Figure 4(a), in step 1, candidate pairs of the distinct objed-types and their instances are
generated for eath time slot. The spatial co-locations whose participation indices are less than
a given threshold are then pruned. A spatial nonprevalent pair {A,D} is pruned in time slot
t=0, {C, D} is pruned in time slots t=2 and t=3, and {B,D} is pruned in time slots t=3, becaise
their participation indices are lessthan the given threshold 0.4. A time prevalence table of pairs
of spatial prevalent co-locaions is then formed by entering a 1 if the participation index of the
correspondng pettern satisfies a given participation index threshold. Time-prevalenceindices are
then found For example, in the time prevalence table (step 2 in Figure 4(b)), spatia prevalent
pattern {A,B} is persistent for all time slots and its time prevalence index is 4/4, and spatia
prevalent pattern {A,C} is persistent in time slots t=0, t=1, and t=2 and its time prevalence
index is 3/4. The MDCOPs whase time prevalence indices are no less than a given threshold
are seleded for generating superset candidate MDCOPs.
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Step 1: Generate pairs and find participation indices

time dlot t=0 timedlot t=1 timedot t=2 timeslot t=3
Co-occurrencg AB | AC | AD [BC|BD|CD| AB | AC [AD| BC |[BD|CD| AB | AC |[AD| BC | BD | CD AB |[AC| AD | BC | BD | CD
patterns
A1B.1A1C1/A4D4 A1B.1AlC1 B.1C.1 Al1B1]AICI B.1C1B.1D.1/C3D4 [A1B.1 A1D.2jB.1C1B.1D.1[C.1D.1
Co-occurrenceA.2B.1 |A.3C.2 A2B.1 A3C2 B.3C.2 lA2B.1 A3C2 B.3C2B.2D.3 A.2B.1 IA.3D.3|B.3C.2
pattern  |A.3B.2 A.3B.2 B.4C3 A.3B.2 B.4C.3 A.3B.2 B.4C.3
instances |A.3B.3 A3B.3 A3B.3 A3B.3
P.ratio  [3/4 3/5[2/4 2/3 [1/4 14 3/4 3/5[2/4 2/3 3/53/3 B4 3/5[2/4 2/3 3/53/3 [2/52/4 [U31/4 314 35 2/4 2/3 [3/53/3 |1/51/4 |1/31/4
P. index 3/5 2/4 14 3/5 2/4 3/5 3/5 2/4 3/5 2/5 1/4 3/5 2/4 3/5 1/5 14
If PI threshold « {A D} ispruned « {C,D} ispruned « {B,D} and{C,D} are pruned
is0.4
(a) Step 1
Step 2: Form time prevalencetable Step 3 Generate superset patterns (triplets)
timeslot|timeslot|timedlot|timeslot|  time timedlot| timedlot | timeslot |timeslot
t=0 t=1 t=2 t=3 |prevalence t=0 t=1 t=2 t=3 Step 4: Find mixed-drove co-ocaurrence patterns
index ABC ABC ABC ABC time slottime slotftime slottime slot|  time
A B 1 1 1 1 414 A1B.1C1A1B.1C1 t=0 t=1 t=2 t=3 |prevalence
IAC 1 1 1 0 3/4 IA3B.3C2]|A.3B.3C2 index
A D 0 0 0 1 v4 ABC - 1 1 - 2/4
BC 0 1 1 1 3/4 PR 214 2/5 2/3 214 2/5 2/3 * {A, B, C} ismixed-drove co-occurrence pattern
B D 0 0 1 0 14 Pl 2/5 2/5
CD 0 0 0 0 0

« If time prevalenceindex threshad 0.5 (50%) then prune {A ,D} and{B,D}
« {A,B}, {A,C}, {B,C} are mixed-drove co-occurrence patterns

(b) Steps 2, 3, and 4

Fig. 4. Exeadtion traceof the MDCOP-Miner algorithm

Spatial prevalent patterns {A,B}, {A,C}, and {B,C} are seleded as MDCOPs dnce they
are dso time prevalent (their time prevalence indices satisfy the given time prevalence index
threshald 0.5). In contrast, spatial prevalent patterns {A,D}, {B,D}, and {C,D} are pruned since
they are time nonprevalent. Using MDCOPs {A,B}, {A,C}, and {B,C}, the next candidate
MDCOP {A,B,C} is generated. The next step is to generate instances of cendidate {A,B,C}
in time dlots where its subsets exist and to chedk its participation indices in these time dlots.
Since dl subsets of MDCOP {A,B,C} are MDCOPs and exist in time dots t=1 and t=2, there
is no real to generate instances of them for time slots t=0 and t=3. In step 3 (Figure 4(b)), the
instances of candidate MDCOP {A,B,C} are generated and participation indices are foundwhich
are 2/5 for time dlots t=1 and t=2. In step 4 (Figure 4(b)), the time prevalence table is formed
for pattern {A, B, C} and its time prevalence index is cheded to seeif it satisfies the time
prevalence threshold. Candidate MDCOP {A, B, C} is an MDCOP since its time prevalence
index 0.5 is equal to the time prevalence threshold 0.5. Since there ae not enough subsets to
generate the next superset patterns, the dgorithm stops at this gage and ouputs the union o all
size MDCOPs, i.e, {A, B}, {A, C}, {B, C}, and {A, B, C}.
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C. Modified MDCOP-Miner (FastMDCOP-Miner)

In this sdion, we propcse anew agorithm, cdled FastMDCOP-Miner, which improves the
computational efficiency of the MDCOP-Miner discussed in Sedion IV-B. As can be see in
Figure 3(b) and in Algorithm 1, MDCOP-Miner waits to prune time non-prevalent patterns urtil
al size k spatia prevalent patterns are generated for al ti me slots and then prunes time non
prevalent patterns to discover MDCOPs. However, it is passble to optimize the MDCOP-Miner.
We propase to prune time-non pevalent patterns as ealy as possble by moving ”prune norn
prevalent patterns’ between the time slots shown in Figure 3(c) where candidate size 2 pattern
generation is ill ustrated. The pseudo-code of the FastMDCOP-Miner is given in Algorithm 1.
When the FastMDCOP-Miner is chosen, the dgorithm will adivate steps 8, 9, and 10 and
deadivate steps 12 and 13 This will alow the dgorithm to chedk the time prevalence of a
pattern after every time dot is processed. The functions of the dgorithm are a described in
Sedion IV-B. In step 8, FastMDCOP-Miner chedks whether the time prevalence indices of size
k patterns (size 2 petterns in Figure 3(c)) satisfy the time prevalence index threshold before
generating size k patterns for the next time slot. Early discovered time nonprevalent patterns
are pruned in Step 9 and time prevalent patterns are used as candidate a-occurrences (Step 10)
in the next time slot. For example, assume that there ae 10 time slots and the time prevalence
index threshold is 0.5. In this case, a size k pattern shoud be present for at least 5 time slots
to satisfy the threshold. If the time prevalence index of a pattern is O for the first (or any) 6
time dlots, there is no neal to generate this pattern and chedk the prevalence of it for the rest
of the time slots. Even if it is time persistent for the remaining 4 time dots, it will not be ale
to satisfy the given time prevalence index threshold.

An Exealtion Trace of FastMDCOP-Miner: The exeaution trace of the FastDCOP-Miner is
given in Figure 5 using the dataset given in Figure 2, which has four time slots. Assume that
the spatial prevalence index threshald is 0.4 and the time prevalence index threshald is 0.75. If
a pattern is not consistent in more than 1 ou of 4 time sots, it can be pruned whenever it is
discovered. In Step 1(a) pairs and their instances are generated. Pattern {A,D} is pruned at this
step sinceit is gatia nonprevaent. Based on the outcomes of Step 1(a), the prevalence table
is updated by entering a 1 for spatial prevalent patterns (Step 1(b)). The time prevalence table
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Step 1(a): Generate pairs and Step 2(a): Generate pairs and Step 3(a): Generate pairs and Step 4(a): Generate pairs and
find participationindices find participation indices find participationindices find participationindices
time dlot t=0 timedot t=1 time dot t=2 timedot t=3
Co-occurrencg A B AC AD |BC|BD|CD AB AC |AD| BC |[BD|CD AB AC BC AB |AC| BC
patterns
lA.1B.1 A1C1A4D4 A.1B.1 A1C1 B.1C.1 A.1B.1 A1C1B.1C1 A.1B.1 B.1C.1
Co-occurrencegA.2B.1 A.3C.2 IA.2B.1 A3C.2 B.3C.2 iA.2B.1 A3C2B3C.2 A.2B.1 B.3C.2
pattern |A.3B.2 IA.3B.2 B.4C3 IA.3B.2 B4C3 A.3B.2 B.4C3
instances |A.3B.3 IA.3B.3 IA.3B.3 A.3B.3
P.ratio  [3/4 3/5[2/4 2/13 [U4 14 3/4 3/5 2/14 213 3/53/3 3/4 3/5 [2/4 2/13 [3/53/3 3/4 3/5 3/53/3
P. index 3/5 2/4 14 3/5 2/4 3/5 3/5 2/4 3/5 3/5 3/5
If Pl threshold| = {A D} is pruned « {A,D}, {B,D}, and
is0.4 {C,D} arenot generated
l / l / | / l
Step 1(b): Update time prevalencetable Step 2(b): Update time prevalencetable Step 3(b): Update time prevalencetable Step 4(b): Update time prevalencetable
time| time time | time| time time | time | time| time time| time|time|time| time
dlot |prevalence dot | slot |prevalence dot | slot | slot |prevalence dot | slot | slot | slot |prevalence
t=0 | index t=0 | t=1 | index t=0 | t=1 | t=2 | index t=0 | t=1 | t=2 | t=3 | index
AB| 1 14 AB| 1 1 24 AB| 1 1 1 3/4 AB| 1 1 1 1 4/4
AC| 1 14 AC| 1 1 24 AC| 1 1 1 3/4 AC| 1 1 1 0 3/4
AD| O 0 AD| O 0 pruned IAD aready pruned A D arealy pruned
BC| 0 0 BC| 0o [ 1 14 BC| o[ 1] 1] 34 BCl| o[ 1] 1[1] 34
BD| O 0 BD| O 0 pruned B D already pruned B D arealy pruned
CD| O 0 CD| O 0 pruned CD already pruned CD arealy pruned

If time prevalencethreshold is0.75,
patterns{A ,D}, {B D}, and{C,D} are pruned here
sincethey are not consistent 2 out of 4 time slots

Fig. 5. Exeaution traceof the FastMDCOP-Miner algorithm

initially contains al possble pairs of subsets of objed-types. The dgorithm cheds if time non
prevaent patterns can be discovered at this gep. Since the result of one time slot are not enough
to make adedsion, instances for patterns given in the time prevalence table ae generated for
time slot t=2 (Step 2(a)) and the time prevalence table is updated (Step 2(b)). Patterns {A,D},
{B,D}, and {C,D} are pruned in Step 2(b), since they are not time consistent in time slot t=0
and t=1, (they will not be time prevalent even if they are spatia prevalent in the remaining time
slots t=2 and t=3). These patterns are nat present in 2 a more of the 4 time dots. In Step 3(a)
instances are generated for patterns {A,B}, {A,C}, and {B,C} which are caxdidate MDCOPs
and their time prevalence indices are updated (Step 3(b)). At this dep no pattern is pruned since
there is no pasgble time nonprevalent pattern. Similary, in Step 4(a) instances are generated
for patterns {A,B}, {A,C}, and {B,C} which are candidate MDCOPs and their time prevalence
indices are updated (Step 4(b)). At this gep no pettern is pruned since there is no passble
time nonprevalent pattern and algorithm outputs MDCOPs {A,B}, {A,C}, and {B,C}. Next,
the dgorithm continues to discover possble MDCOPs by generating candidate triple patterns.



18

V. ANALYSIS OF THE MDCOP-MINER

This ®dion gves the analysis of the mixed-drove prevalence index measure, and corredness

and completeness derviations for the MDCOP mining algorihtms.

A. The Mixed-Drove Prevalence Index Measure is Monaonic

Lemma 5.1. Spatial prevalence measure participation index and participation ratio are mono-
tonicdly nonincreasing in the size of the MDCOPs at ead time slot [12], [2]].

Proof: The participation ratio pr is monaonicaly nonincreasing becaise an instance of a
spatial objed-type that is contributing to a co-location ¢; is also contributing to a a-locéion c;
where ¢; C ¢;. The spatial prevalence measure participation index p: is also monaonic becaise
1) participation ratio is monaonic and 2

pi(cU ferr) = minfif{pr(cU Ses1, fi)}
< min_y {pr(cU fir. f)} < minf_y {pr(cU £)} = pilc) .
Lemma 5.2: A mixed-drove prevalence index measure is monaonicdly nonincreasing with
the size of MDCOP over space ad time. In other words, it is mondicdly nonincreasing, if
MDCOP P, is a subset of MDCOP P; and
Proby,, caii_time_siot (S-prev( Py, ty,) > 60,), and Proby,,cau_time_siot (s-prev( Py, ty,) > 6,),
where Prob stands for the probability of overall prevalencetime units, s_prev stands for spatial
prevalence, 6, is the spatial prevalence threshold, and ¢, is the time slot.

Proof: The basic proof sketch follows. Let T'S(P;,0,) = {tm|pi(P}, tm) > 6,}.

Lemma 5.1 implies that participation index pi(P;,t.,) > 6, for dl ¢,, € T'S(P;,6,), since
P, isasubset of P;. Thus, Prob:,, cai_timesiot [S-prev( P, ty) > 0,)] € Bime, Where 6y, is the
time prevaence threshald. [ |

B. Corrednessand Completeness

Theorem 5.1: The FastMDCOP-Miner, MDCOP-Miner, and raive gproach are complete.
Proof: The FastMDCOP-Miner, MDCOP-Miner, and reive gpproac are complete if they
find all MDCOPs that satisfy a given participationindex threshold and time prevalence threshold.
We ca show this by proving that nore of the functions of the dgorithm missany petterns, i.e.,
filter out a prevaent MDCOP.
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The gen_canddate_co-occur function daes not miss any patterns given the anti-monaone
nature of the MDCOP interest measure. The inpu of this function is 9ze £ MDCOPs and the
output is candidate size k + 1 MDCOPs. If ¢; = {f1,..., fe} and co = {f1, ..., fe—1, frs1} @€
size k MDCOPs, candidate size k + 1 pattern Cy1 = {f1,-- -, frx—1, fx, frs1} Will be produced
by joining size K MDCOPs.

The gen_co-occur_instanarce function dees not miss any patterns. This function generates
instances of candidate size k + 1 MDCOPs by joining instances of size k MDCOPs if they are
in the neighbahood dstance and forming a dique.

The find_spatial-prevalent_co-oc function daes not missany patterns. It finds gatial prevalent
patterns whase participation indices stisfy a given threshold.

The find_time_prevalence.index function daes not missany patterns. This function cdculates
time prevalence indices of the patterns foundin steps 4 through 8and daes not do any pruning.

The find_time-prevalent_co-occur function dces nat missany MDCOPs. The function finds all
the MDCOPs whase time prevalence indices are no lessthan a given threshold. [ |

Theorem 5.2: The FastMDCOP-Miner, MDCOP-Miner, and raive gproach are corred. In
other words, if a MDCOP pattern P is returned by MDCOP-Miner and FastMDCOP-Miner
algorithms, then P is a prevalent MDCOP.

Proof: The proof is easy to establish due to the pruning steps of find_spatial _prevalent_co-
occur, and find_time_prewvalent_co-occur, which wead ou candidates not meding the given
thresholds. [ |

C. Algebraic Cost Model

In this ®dion, we give the dgebraic cost models of the MDCOP-Miner and the FastM DCOP-
Miner algorithms. The cost model of the naive gproad is not given sinceit is the worst case of
the MDCOP-Miner and FastM DCOP-Miner and appli es the pruning strategy in a post processng
step. Let Ty pcop, and Tr,,; represent the total computational costs of the MDCOP-Miner and
the FastMDCOP-Miner respedively. The total respedive st functions will be
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TMDC’OP - Z TMDCOP(ka epa etimea TFa Sinstance)
k>1

TFast = Z TFast(ka epa etimea TF, Sinstance) (3)

k>1
Where TJ\/[DCOP(ku 9p7 etimm TF7 Sinstance) and TFast(k7 epu etimeu TF7 Sinstance) represent the gen'

eration d the total cost of size k (k > 1) MDCOPs for parameters 6,, and 6;;,,., time slots T'F’,

and the average number of co-occurrence instances S;,stance-

Tripcop (K, Bp, Btime, TF, Sinstance) = Tyen_canai(MD P F T F, Sinstance)

+ T prune_sp-co—oce(C-SPIMPOY 6, TF, Sinstance)
+T v une time.co—oce (S P ,i” DEOP g ime, TF , Sinstance)
)

~ MDCOP MDCOP
~ Tgen_candi(MDP]g—l ) TFa Sinstance) + Tprune_sp_co—occ(C—SPk ) epa TF7 Sinstance

Trast(k, Op, Otime, TF, Sinstance) = Tyen-candi(MD P, TF, Sinstance)

+Tprune-sp-co—oce(C-S L 0y, TF, Sinstance)
+T prune time.co—oce(S B ;f * Otime, T'F, Sinstance)
)

~ Tgen_candi(MDPkF—alSta TFa Sinstance) + Tprune_sp_co—occ(C—SPkFaSta epa TF7 Sinstance (4)

MDP;_, is the size k — 1 MDCOP sets. Ty, candi represents the total cost of generating
candidate MDCORPs for al time dlots TF'. C_SP, represents the number of candidate size &
MDCOPS. T}, une_sp.co—oce FEPresents the total cost of pruning candidate MDCOPSs. S P represents
the number of size k spatial co-locaion petterns of MDCOP mining algorithms. T}y,.ne_time_co—oce
represents the total cost of pruning time nonprevaent patterns. MDCOP-Miner will generate
al size k spatial prevalent patterns and then it will prune size k£ time non-prevalent patterns. In
contrast, FastMDCOP-Miner will apply time nonprevalent pattern pruning as ealy as possble
to eliminate generating instances of some size k time nonprevalent patterns. The cost of gen-
erating size k patterns of FastMDCOP-Miner will be no more than that of MDCOP-Miner. The
FastMDCOP-Miner approach will run steps for the number of time slots in the dataset to find
all size k MDCOPs. The aost of this processis negligible since it only cheds the court of the
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patterns whenever a new pattern is processed. If there is no pettern to be pruned ealy, the st
of the both approaches will be same. As a result, the cost of M DPF*? will be no more than
that of M DPMPCOF and the cosf of C'_S P/ will be no more then that of C_SPMPCOP,

Lemma 5.3: The total cost of time based pruning is negligible with resped to total cost of
gpatial prevalence based pruning, such that,

TJ\/[DCOPorFast = Tgen_ccmdi + Tprune_sp_co—occ + Tprune_time_co—occ ~ Tgen_candi + Tprune_sp_co—occ (5)

Proof: Thetotal cost Tye,,_candi + L prune_sp.co—oce iINClUdES the aost of generating all candidate
patterns and their instances and the st of cdculating the participation index and ratio values
of the generated patterns and pruning the nonprevalent patterns, respedively. This processis
computationally complex due to the spatial join operation to generate the candidate patterns and
their instances in ead time dlot. That is, the bulk of time is consumed in generating instances
and pruning spatial non-prevalent MDCOPs.

In contrast, the total cost of T, une time_co—oce iINClUDES the cost of cdculating the time preva-
lence indices of the patterns for al time sots. This processis computationally very cheg due
to the count of the existence of the patterns in whole dataset. [ |

Lemma 5.4: The total cost of generating candidate MDCOPs of the proposed FastM DCOP-
Miner is no more than the total cost of generating MDCOPs of the MDCOP-Miner, assuming
the aost of the time prevalence based pruning is negligible (Lemma 5.3), such that,

Tyen_candi(MDP, L0 TE, Sinstance) < Tyen_candi(MDP, MPOOP T Sinstance) (6)
Proof: Dueto the ealy pruning o irrelevant candidates (steps 8 and 9 d Algorithm 1), the
number of sets of size k MDCOPs generated by the FastM DCOP-Miner will be no more than that
of the MDCOP-Miner size k patterns, e.g., M DPFst < MDPMPCOP | dnce size k patterns
of the FastMDCOP-Miner will prune time nonprevaent patterns ealier than MDCOP-Miner.
The other parameters affeding equation 6 are the number of time slots T'F and average
number of co-occurrence iNstances S, siance- |f the number of time dots increases, the cost of
the MDCOP-Miner will i ncrease due to the incressing unrecessary generation o time non
prevalent patterns. Similarly, for greaer average numbers of co-occurrence instances, the aost of

the MDCOP-Miner increases. In the worst case, the number of sets of size & patterns generated
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will be equal for both algorithms, if there is no ealy time prevalence based pruning. In that
case, equation 6 will be true. [ |

Lemma 5.5: The total cost of pruning the spatial nonprevalent candidate patterns of the
FastMDCOP-Miner will be no more than that of MDCOP-Miner, assuming the st of the time
prevalence based pruning is negligible (Lemma 5.3), such that

Tyrune_sp-co—occ(C-SPL™ 0y, TF, Sinstance) < Tprune_sp-co—occ(C-SPY PO 0, TF, Sinstance)

(7)

Prodf: Due to ealy pruning o irrelevant candidates (step 6 o Algorithm 1), the number

of size k + 1 candidate pattern sets generated by the FastMDCOP-Miner will be no more than

that of the MDCOP-Miner eg., C_SPF*t < C_SPMPCYOP and so equation 7 will be true. =

Lemma 5.6: Thetotal cost of pruningtime nonprevalent candidate MDCOPs of the proposed

FastMDCOP-Miner algorithm is no more than than the total cost of pruning time non-prevalent

candidate patterns of the MDCOP-Miner, assuming the aost of the time prevalence based pruning
is negligible (Lemma 5.3), such that

Torane-time-co—occ(SPL “", Opime, TF, Sinstance) < Thia (SP PP Opime, TF, Sinstance)  (8)
Proof: Due to ealy pruning d irrelevant candidates (step 10 d Algorithm 1), the number
of size k spatial prevalent patterns generated by the FastMDCOP-Miner will be no more than
that of the MDCOP-Miner, e.g., SPFt < SPMPCOP and so equation 8 will be true, |
Theorem 5.3: The total cost of the FastMDCOP-Miner is no more than the total cost of the
MDCOP-Miner assuming the st of the time prevalence based pruning is negligible.
Proof: Based onLemmas Lemma 5.3, 5.4, 5.5, and 56 the total cost of the FastM DCOP-
Miner algorithm will be no more than the total cost of the MDCOP-Miner. [ |

V1. EXPERIMENTAL EVALUATION

In this sdion, we present our experimental evaluations of severa design dedsions and
workload parameters on ou MDCOP mining algorithms. We used a red-world training dataset
and synthetic datasets. We evaluated the behavior of the FastMDCOP-Miner, MDCOP-Miner

and naive goproad to answer the following questions:
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What is the dfed of the number of timeslots?

What is the dfed of the number of objed-types?

« What is the dfed of the spatial prevalence index threshold?
« What is the dfed of the time prevalence index threshold?

« What is the dfed of the number of noise instances?

« What is the dfed of the avrerage number of instances?

Figure 6 shows the experimental setup to evaluate the impad of design dedsions on the
performance on the three agorithms. Experiments were condwcted on an IBM Netfinity Linux
Cluster, 2.6 GHz Intel Pentium 4 with 1.5 GB of RAM.

E: Sca-occur, ]vmaxima/ Lpers'.rlen/ TE S[”‘Y’””C" D; R NOlsein.sl 5 Lno[se

IR B

Generate Separate
p? Generate Generate Add
subsets of = persistent | . - i
instances neighborhoods noise
feature types patterns
Synthetic
dataset
M . Co-occurrence [
Analysis |« casurements Mining
Algorithms | g | Real Dataset

TF; E; Qp » 6lime; NOiseinsl » Sins/ance

Fig. 6. Experimental setup and design

A. Datasets

1) Real Dataset: The red dataset contains the locaion and time information o moving
objeds. It includes 15 time snapshots and 22 dstinct vehicle types and their instances. The
minimum instance number is 2, the maximum instance number is 78, and the arerage number
of instances is 19.

2) Synthetic Dataset Generation: To evaluate the performance of the dgorithms, spatio-
temporal datasets were generated based on the spatial data generator proposed by Huang et. al.
[12]. Synthetic datasets were generated for spatial frame size Dz D (the first part of Figure 6).
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For ssimplicity, the datasets were divided into regular grids whose side lengths had neighbahood
relationship R. First, subsets of objed-types were generated using the parameters average -
oceurrence size S.,_occwr @d number of maximal patterns V,,..imaq- Objed-types and sizes of
ead pattern were chosen randamly. The generated patterns were then divided into two categories
- persistent patterns and transitory patterns - using the persistent pattern ratio Ly, sistent. Persistent
patterns are ones whose time prevalences are strong ower time, whil e transitory patterns are ones
whose spatial prevalences are strong at a spedfic time slot. Next, instances of the patterns were
generated based on the average number of co-occurrence instances S, stance- INStaNces were
chosen at randamly locaed grid cdls. This processwas applied for ead time slot 7'F. Finally,
using the parameters number of noise instances Noise;,; and ratio of noise objeds over number
of feaures L., NOise objed and their instances were generated and added to the dataset.
The parameters of the synthetic dataset generator and their definitions are listed in Table I.

TABLE |

SYNTHETIC DATASET GENERATION PARAMETERS

Parameter Définition Experiments
sl | syn2 [syn3 | syna | sns | yne
E Number of object types 200 | 100400 | 200
Sinstance Average number of co-occurrence instances® 10 ‘ 5-20
Npazimal Number of maximal co-occurrence patterns* 10
Sco—occur Minimum co-occurrence pattern size* 4
Lpersistent | Ratio of persistent patterns over transitory patterns* 0.5 | 0.8 | 05 | 0.8
Lnoise Ratio of noise objed-types over number of objed-types 0.25
Noiseinst Number of noise instances 1000 10005000 | 1000
TF Number of timeslots 10-50 20 50 20
D Spatial framework size (DX D) 106 102 106 102
R Spatial Neighbahood relationship 10

* : For initid co-occurrence patterns

B. Experiment Results for Real Datasets

1) Effed of Number of Time Sots: In the first experiment, we evaluated the dfed of the
number of time slots on the exeaution time of the MDCOP algorithms using the red dataset.
The participation index, time prevalence index, and dstance were set at 0.2, 0.8, and 150n
respedively. Experiments were run for a minimum of 1 time slot and a maximum of 14 time



25

dlots. As can be seen in Figure 7(a), the FastMDCOP-Miner requires less exeaution time than
the MDCOP-Miner and reive goproaces, since it prunes out time nonprevaent MDCOPs as
ealy as possble. It can aso be seen that as the number of time slots increases, the ratio of the
increase in exeadtion time is gnaller for FastMDCOP-Miner than for the MDCOP-Miner and
naive goproacdhes. Figure 7(b) shows the number of generated size 2 and size 3 instances for
algorithms. The FastMDCOP-Miner generates fewer patterns due to its ealy pruning o time
nonprevaent patterns. The MDCOP-Miner and raive goproaches generate the same number of
size 2 instances. The MDCOP-Miner applies time pruning after it generates all possble size 2
patterns and the naive goproad applies time pruning in the post-processng step.

- 8 7000 Lo
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4 7} —=— MDCOP-Miner 3 S 6000} MDCOP size 2
5 —*— Nazive Approach 2 FastMDCOP size 2
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(a) Exeaution time of MDCOP algorithms (b) Number of generated instances

Fig. 7. Effea of number of time slots in MDCOP mining algorithms using red dataset

Asdiscussd in Sedion V-C, the number of time slots T'F' is one of the parameters that affeds
the st of the dgorithms. As predicted in equation 3 the st of the dgorithms increases as
the number of time dlots increases and the FastM DCOP-Miner outperforms the other approaches
due to the ealy pruning strategy (Theorem 5.3). The FastMDCOP-Miner algorithm examines
fewer instances than the other approaches snce it deds with the MDCOP prevalent patterns as
ealy as posgble (Lemmas 5.4, 5.5, and 56).

2) Effed of Number of Objed-types: In the second experiment, we evaluated the dfed of
the number of objed-types on the exeaution time of the dgorithms using the red dataset. The
participation index, time prevalence index, number of time slots and dstance were set at 0.2,
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0.8, 15, and 150n respedively. The FastMDCOP-Miner outperforms the other approades as the
number of objed-types increases (Figure 8(a)-(b)). It is observed that the increase in exeaution
time for the naive goproac is bigger than that of the MDCOP-Miner and the FastM DCOP-Miner

as the number of objed-types increases for datasets.
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Fig. 8. Effed of number of objed-types in MDCOP mining algorithms using red dataset

The trends are mnsistent with the dgebraic cost models given in equation 3 The st of
the dgorithms increases as the number of the objed-types increases due to the increase in the
number of join operations. The MDCOP-Miner and reive goproadches generate the same number
of size 2 instances. MDCOP-Miner applies time pruning after it generates all possble size 2
patterns and naive goproach applies time pruning in the post-processng step (Figure 8(b)). In
contrast, The FastMDCOP-Miner generates patterns by pruning nonprevaent patterns as ealy
as posshle (Lemmas 5.4, 5.5, and 56). Because of the ealy pruning strategy of FastM DCOP-
Miner, its cost is no more than that of the MDCOP-Miner and raive goproaches as hown in
Figure 8(a) (Theorem 5.3).

3) Effed of the Time Prevalence Index Threshold: In the third experiment, we evaluated the
effed of the time prevalence index threshold on the exeaution times of the MDCOP mining
algorithms for the red dataset. The fixed parameters were participation index, number of time
slots, and dstance, and their values were 0.2, 15, and 150n respedively. For the naive gproacd,

the dfedive st in exeautiontime to generate spatial prevalent co-locaionswill be constant since
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it generates the same number of spatial prevalent patterns as the time prevalence index increases.
In that case, the st of the post-processng step will refled the trend o the naive gproadc.
Experimental results how that the FastMDCOP-Miner is more computationally efficient than
the other approaches becaise of the ealy pruning strategy (Figure 9(a@)). The exeaution times
of the FastMDCOP-Miner and MDCOP-Miner deaease & the time prevalence index threshold
increases. It is also observed that the naive gproad is computationally more expensive & the
time prevalence index threshold deaeases becaise of the increase in the number of MDCOPs
to be discovered.
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Fig. 9. Effea of the time prevalence index threshold in MDCOP mining algorithms using red dataset

The trends are consistent with the dgebraic cost models given in equation 3 The st of
FastMDCOP-Miner is no more than that of MDCOP-Miner (Lemma 5.6 and Theorem 5.3). The
naive goproacd is not sensitive to the time prevalence index threshald (Lemma 5.6). Withou the
post-processng step, the cost of the naive goproac is constant. The trend o the naive gproach
in Figure 9 is charaderized by the st of the post-processng step.

4) Effed of the Spdial Prevalence Index Threshald: In the fourth experiment, we evaluated
the dfed of the spatial prevalence index threshold on the exeaution times of the MDCOP
algorithms. The fixed parameters were time prevalence index, number of time slots, and dstance,
with values of 0.2, 15, and 100n respedively. Figure 10(a) shows the exeaution times of the

algorithms and Figure 10(b) shows the number of generated size 2 and 3 instances for the
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algorithms. FastMDCOP-Miner and MDCOP-Miner do nd generate more than size 3 instances
for a gpatia prevalenceindex threshold of greaer than 0.2. The FastMDCOP-Miner outperforms
the MDCOP-Miner and reive gproadies as the spatia prevalence index threshold increases
(Figure 10(a)-(b)). The aost of the naive goproach will be higher than that of the FastM DCOP-
Miner and MDCOP-Miner for low values of the spatial prevalence index threshold.
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Fig. 10. Effed of the spatial prevalence index threshold in MDCOP mining algorithms using red dataset

The trends are consistent with the dgebraic cost models given in equation 3 The dgorithms
are sensitive to the spatial prevalence index threshold (Lemma 5.5).

C. Experiment Results for Synthetic Datasets

1) Effed of Number of Time slots: In this experiment, we evaluated the dfed of the number
of time dlots on the exeaution time of the dgorithms using synthetic datasets. To generate the
datasets, we used a framework size of 10210, a sguare proximity neighbahoodsize of 10 x
10, a noise fedure ratio of 0.25, a noise instance number of 100Q an average number of co-
ocaurrence instances of 10, and a maximal co-occurrence pattern number of 10 (Table I, column
syn-1). In the experiments, the participationindex, time prevalenceindex, and dstancewere set at
0.3, 0.9, and 10m respedively. Experiments were for aminimum of 10 time slots and a maximum
of 50 time dlots. The results showed that the FastMDCOP-Miner requires less exeaution time

than the other approaches, sinceit prunes out time nonprevalent MDCOPs as ealy as posshble
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(Figure 11(a)). The generated size 2 and size 3 instances are given in Figure 11(b). The naive
approadh generated up to size 7 spatial prevaent subsets before the post-processng step. In
contrast, FastMDCOP-Miner and MDCOP-Miner generated up to size 4 subsets.

The trends are mnsistent with the dgebraic cost models given in equation 3 The st of
the dgorithms increases as the number of time slots increasses and the FastMDCOP-Miner
outperforms the other approaches due to its ealy pruning strategy ((Theorem 5.3). As can be
seen in Figure 11(b), the FastMDCOP-Miner algorithm examines fewer size 2 and 3 instances

than the other approadies due to the ealy pruning strategy (Lemmas 5.4, 5.5, and 56).
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Fig. 11 Effed of number of time slots in MDCOP mining algarithms using synthetic dataset

2) Effea of Number of Objed-types. We evaluated the dfed of the number of objed-
types on the exeaution time of the dgorithms for synthetic datasets. The parameters used to
generate the datasets are given in Table I, column syn-2. The participation index, time prevalence
index, number of time dots, and dstance were set at 0.3, 0.8, 20, and 10m respedively. The
FastMDCOP-Miner outperforms the MDCOP-Miner and reive gproadies as the number of
objed-types increases (Figure 12(a)-(b)). The ratio of the increase in the exeaution time of the
naive gproad is greaer than that of the MDCOP-Miner and FastM DCOP-Miner as the number
of objed-types increases. Figure 12(b) shows the number of generated size 2 and 3 instances
for the dgorithms.

The trends are consistent with the dgebraic cost models given in equation 3 The st of
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the dgorithms increases as the number of the objed-types increases due to the increese in the

number of join operations.
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Fig. 12 Effed of number of objed-types in MDCOP mining algorithms using synthetic dataset

3) Effea of the Time Prewvalence Index Threshold: We evaluated the dfed of the time
prevalence index threshold on the exeaution times of the dgorithms for synthetic datasets.
The parameters used to generate the datasets are given in Table | column syn-3. The fixed
parameters were participation index, distance, and number of time slots, and their values were
0.4, 10m, and 50 respedively. Experimental results show that the FastMDCOP-Miner is more
computationally efficient than the MDCOP-miner and reive goproadhes because of the ealy
pruning strategy (Figure 13(a)). The exeaution time of the FastMDCOP-Miner deaeases as the
time prevalence index threshold increases. The exeaution time of the naive goproac is amost
constant since it does not prune time nonprevaent pattern before the post-processng step and
it is computationally more expensive & the time prevalence index threshold deaeases becaise
of the increase in the number of MDCOPs to be generated (Figure 13(b)).

The naive goproach is nat sensitive to the time prevalenceindex threshold (Lemma 5.6) which
causes the increase of its cost. Withou the post-processng step, the aost of the naive gproach
is constant. The trend d the naive gproach in Figure 9 is charaderized by the cost of the
post-processng step (Figure 13(a)).
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Fig. 13. Effed of the time prevalence index threshald in MDCOP mining algorithms using synthetic dataset

4) Effeda of the Spaial Prevalence Index Threshold: We evaluated the dfed of the spatial
prevalence index threshold on the exeaution times of MDCOP mining algorithms. To generate
the dataset, we used a spatial framework size of 106210, a square proximity neighbahoodsize
of 10 x 1Q an average number of co-occurrence instances of 10, a noise feaure ratio of 0.25,
a noise instance number of 100Q a maximal co-occurrence pattern number of 10, and a time
slot number of 50 (Table I, column syn-4). In the experiments, the value of the time prevalence
index was 0.8. The FastMDCOP-Miner outperforms the other approadies (Figure 14(a)-(b)). The
cost of the naive goproach will be higher than the MDCOP-Miner and FastMDCOP-Miner for
low values of the spatial prevalence index threshold since the naive gproad tends to generate
MDCOP nonprevalent patterns. For high values of the spatial prevalence index the aost of the
algorithms are doser. The generated size 2 and size 3 instances are given in Figure 14(b). The
naive goproach generates up to size 8 spatial prevalent subsets for spatial prevalence thresholds
0.2 and 0.3, before the post-processng step. In contrast, the FastMDCOP-Miner and MDCOP-
Miner generate up to size 4 MDCOP prevalent subsets.

The trends are consistent with the dgebraic cost models given in equation 3 The dgorithms
are sensitive to the spatial prevalence index threshold (Lemma 5.5) but due to the ealy pruning
strategy of FastMDCOP-Miner, its cost is no more than that of the MDCOP-Miner and reive
approad, as hown in Figure 14(a) (Lemma 5.5 and Theorem 5.3).



32

120000

6003 FastMDCOP-Miner—e— | Naive size 2 mmm—

MDCOP-Miner —&— 1000001 MDCOP size 2mmmm |

Naive Approach—x— FastMDCOP size 2=

500 ¢ 1 Naive size 3Ezzzz
80000 MDCOP size 3czz7a

400

FastMDCOP size 3=

60000 -
300 |
40000 -
200 |

10y ——— o
0

0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5

Execution time (seconds)

20000+

Number of generated instances

Spatial prevalence index threshold Spatial prevalence index threshold
(a) Exeaution time of the dgorithms (b) Number of generated instances

Fig. 14. Effed of the spatial prevalence index threshad in MDCOP mining algorithms using synthetic dataset

5) Effead of the Number of Noise Instances: We evaluated the dfed of the number of
noise instances on the exeaution times of the MDCOP mining algorithms using the synthetic
datasets. The parameters for data generation are listed in column syn-5 of Table I. The time
prevalence index threshald, the spatial prevalence index threshold, and dstance were 0.3, 0.8,
and 10m respedively. The FastMDCOP-Miner is more robust than the MDCOP-Miner and reive
approadies as the number of noise fedures increases (Figure 15(a)).

Thetrends are consistent with the dgebraic cost models given in equation 3 The FastM DCOP-
Miner is more robust than that of the other approaches (Lemmas 5.6 and 55 and Theorem 5.3).
In other words, the naive gproad is more sensitive to the noise feaures, which causes both its
cost and the number of generated instances to increase (Figure 15(@)).

6) Effea of the Average Number of Instances. We evaluated the average number of total
instances on the exeaution times of the MDCOP mining algorithms using synthetic datasets.
The parameters for data generation are listed in column syn-6 of Table I. The time prevalence
index threshold, the spatial prevalence index threshold, and dstance were 0.3, 0.8, and 10m
respedively. The FastM DCOP-Miner agorithm outperformed the other approaches as the arerage

number of total instances increases (Figure 15(b)).
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Fig. 15. Effed of noise and average number of instances in MDCOP mining algorithms using synthetic dataset

VIlI. CONCLUSIONS AND FUTURE WORK

We defined mixed-drove spatio-temporal co-occurrence patterns (MDCOPs) and the MDCOP
mining problem and proposed a new monaonic compasite interest measure which is the com-
position d distinct objed-types, spatial prevalence measures, and time prevalence measures.
We presented a novel and computationally efficient algorithm (the MDCOP-Miner) for mining
these patterns. We dso presented an improved MDCOP-Miner algorithm (the FastMDCOP-
Miner) which prunes time nonprevalent patterns at an ealy stage and dfers even greder
computational efficiency than the MDCOP-Miner agorithm. We compared our algorithms with
a naive goproad, which runs the spatia co-location mining algorithm at ead time slot and then
discovers MDCOPs using a post-processng step. We proved that the proposed agorithms are
corred and complete in finding mixed-drove prevalent (i.e., spatial prevalent and time prevalent)
MDCOPs. Our experimental results using a red and synthetic datasets provide further evidence
of the viability of our approacd.

For future work, we would like to explore the relationship between the propased MDCOP
interest measures and spatio-temporal statisticd measures of interadion [3]. Ancther problem
of interest is the charaderizaion d the probability distribution o the propased interest measure
to help in making the choice of threshaolds in the proposed measures. We plan to explore other

patential interest measures for MDCOPs by evaluating simil arity measures for tradks of moving
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objeds. We plan to investigate new monaonic compasite interest measures and develop aher
new computationally efficient algorithms for mining MDCOPs.

In the literature, there ae dso other studies that have focused on dcefining spatio-temporal
patterns and algorithms [9], [11], [13], [15], [18], [25]. Laube & &a. defined severa spatio-
temporal patterns, such as lealership and convergence [16]. Query processng algorithms have
been propaosed to extrad such patterns [16]. We hope to extend ou agorithm to mine these
patterns.
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