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Abstract

Mixed-drove spatio-temporal co-occurrence patterns (MDCOPs) represent subsets of two or more

different object-types whose instances are often located in spatial and temporal proximity. Discovering

MDCOPs is an important problem with many applications such as identifying tactics in battlefields,

games, and predator-prey interactions. However, mining MDCOPs is computationally very expensive

becausethe interest measuresare computationally complex, datasetsare larger dueto the archival history,

and the set of candidate patterns is exponential in the number of object-types. We propose amonotonic

composite interest measure for discovering MDCOPs and novel MDCOP mining algorithms. Analytical

results show that the proposed algorithms are correct and complete. Experimental results also show that

the proposed methods are computationally more efficient than näıve alternatives.
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I . INTRODUCTION

As the volume of spatio-temporal data continues to increase significantly due to both the

growth of database archives and the increasing number and resolution of spatio-temporal sensors,

automated and semi-automated pattern analysis becomes more essential. As a result, spatio-

temporal co-occurrence pattern mining has been the subject of recent research. Given a moving

object database, our aim is to discover mixed-drove spatio-temporal co-occurrence patterns

(MDCOPs) representing subsets of different object-types whose instances are located close

together in geographic space for a significant fraction of time. Unlike the objectives of some

other spatio-temporal co-occurrence pattern identification approaches where the pattern is the

primary interest, in MDCOPs both the pattern and the nature of the different object-types are of

interest.

A simple example of an MDCOP is in ecological predator-prey relationships. Patterns of

movements of rabbits and foxes, for example, will t end to be co-located in many time-frames

which may or may not be consecutive. Rabbits may attempt to move away from foxes, and the

foxes may attempt to stay with the rabbits. Other factors such as available food and water may

also affect the patterns.

More example MDCOPs may be ill ustrated in American football where two teams try to

outscore each other by moving a football to the opponent’s end of the field. Various complex

interactions occur within one team and across teams to achieve this goal. These interactions

involve intentional and accidental MDCOPs, the identification of which may help teams to

study their opponent’s tactics. In American football , object-types may be defined by the roles

of the offensive and defensive players, such as quarterback, running back, wide receiver, kicker,

holder, linebacker, and cornerback. An MDCOP is a subset of these different object-types (such

as {kicker, holder} or {wide receiver, cornerback}) that occur frequently. One example MDCOP

involves offensive wide receivers, defensive linebackers, and defensive cornerbacks, and is called

a Hail Mary play. In this play, the objective of the offensive wide receivers is to outrun any

linebackers and defensivebacks and get behind them, catching an undefended passwhile running

untouched for a touchdown. This interaction creates an MDCOP between wide receivers and

cornerbacks. An example Hail Mary play is given in Figure 1. It shows the positions of four

offensivewide receivers (W.1, W.2, W.3, and W.4), two defensive cornerbacks (C.1 and C.2), two
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Fig. 1. An example Hail Mary play in American football

defensive linebackers (L.1 and L.2), and a quarterback (Q.1) in four time slots. The solid lines

between the players show the neighboring players. The wide receivers W.1 and W.4 crossover

each other and the wide receivers W.2 and W.3 run directly to the end zone of the field. Initially,

the wide receivers W.1 and W.4 are co-located with cornerbacks C.1 and C.2 respectively and the

wide receivers W2. and W.3 are co-located with linebackers L.1 and L.2 at time slot t=0 (Figure

1 (a)). In timeslot t=1, the four wide receivers begin to run, while the linebackers run towards the

quarterback and the cornerbacks remain in their original position, possibly due to a fake handoff

from the quarterback to the running back (Figure 1 (b)). In time slot t=2, the wide receivers W.1

and W.4 cross over each other and try to drift further away from their respective cornerbacks

(Figure 1 (c)). When the quarterback shows signs of throwing the football , both cornerbacks

and linebackers run to their respective wide receivers (Figure 1(d)). The overall sketch of the

game tactics can be seen in Figure 1(e). In this example, wide receivers and cornerbacks form

an MDCOP since they are persistent over time and they occur 2 out of 4 time slots. However,

wide receivers and linebackers do not form an MDCOP due to the lack of temporal persistence.

There are many applications for which discovering co-occurring patterns of specific combi-

nations of object-types is important. Some of these include milit ary (battlefield planning and

strategy), ecology (tracking species and pollutant movements), homeland defense (looking for

significant ”events”), and transportation (road and network planning) [10], [14].

However, discovering MDCOPs poses several non-trivial challenges. First, current interest

measures (i.e. the spatial prevalence measure) are not sufficient to quantify such patterns, so
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new composite interest measures must be created and formalized [12], [21]. Second, the set of

candidate patterns grows exponentially with the number of object-types. Finally, since spatio-

temporal datasets are huge, computationally efficient algorithms must be developed [22].

A. Contributions

This paper is an extended version of our paper published in the proceedings of the 6th

IEEE International Conference on Data Mining (ICDM) [5], where we introduced an MDCOP

mining problem, proposed a new monotonic composite interest measure, developed two MDCOP

algorithms, and evaluated these using real datasets. This extended paper makes the following

new contributions:

• It proposes a new and computationally efficient MDCOP mining algorithm (FastMDCOP-

Miner)

• It compares the proposed algorithm with those in the ICDM paper [5].

• It presentsadditional experimental resultswith synthetic datasets for all MDCOPalgorithms.

• It includes an expanded literature survey and a discussion of statistical spatio-temporal

interest measures.

• It includes revised comparisons of approaches and experimental design.

B. Scope and Outline

This paper focuses on MDCOPs (typed collections of moving objects) by extending interest

measures for spatial co-location patterns given a user-defined participation index threshold [12],

[21]. The following issues are beyond the scope of this paper: (i) determining thresholds for

MDCOP interest measures; (ii ) similarity measures for tracking moving objects due to the focus

on object-types rather than objects; (iii ) indexing and query processing issues related to mining

objects; (iv) discovering multisets (e.g.{A, A, B}).

The rest of the paper is organized as follows. Section II presents a discussion of related work.

Section III presents basic concepts to provide a formal model of MDCOPs and the problem

statement of mining MDCOPs. Section IV presents our proposed MDCOP mining algorithm.

Analysis of the algorithm is given in Section V. Section VI presents the experimental evaluation

and Section VII presents conclusions and future work.
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II . RELATED WORK

Data analysis can be broadly categorized into statistical approaches and data mining ap-

proaches. In statistical approaches, there are bodies of work in both spatial and temporal analysis.

Spatial point patterns are often described by metrics such as the intensity function and Ripley’s

K [19], [20]. Other measures such as complete spatial randomness (CSR) and spatial covari-

ance functions are used to describe the spatial relationships of adjacent areas and continuous

variables as random fields [6]. Temporal patterns have been extensively studied in models such

as moving averages, first and second order autoregression, integration, and periodic patterns

such as seasonality [24]. Granger has looked at co-occurring temporal patterns under an as-

sumption of cointegration [7]. There has also been some recent research in combining spatial

and temporal analysis, such as Brix and Diggle’s extended intensity function and the extended

K(r,t) function [1], [17]. Most attempts to combine the fields suffer from limitations such as the

inabilit y to model space-time interactions, treating time as merely another dimension of space

and assuming separabilit y and independence between space and time [20]. Statistical research

specifically focused onspatio-temporal co-occurrencepatterns and their possible interactions has

been limited.

Previous data mining studies for mining spatio-temporal co-occurrence patterns can be clas-

sified into two categories: mining of uniform groups of moving objects, and mining of mixed

groups of moving objects.

To mine uniform groups of moving objects, the problems of discovering flock patterns [16],

[9], [8] and moving clusters [13] are defined. A flock pattern is a moving group of the same

kind of objects, such as a sheep flock or a bird flock. Gudmundsson et al. proposed algorithms

for detection of the flock pattern in spatio-temporal datasets [9], [8]. Kalnis et al. defined the

problem of discovering moving clusters and proposed clustering-based methods to mine such

patterns [13]. In this approach, if there is a large enough number of common objects between

clusters in consecutive time slots, such clusters are called moving clusters. These methods do

not take object-types into account, and thus are not effective for mining MDCOPs [5]. To

mine mixed groups of moving objects, the problems of discovering collocation episodes [4]

and topological patterns [23] are important. Both generalize co-location patterns [12] (subsets

of object-types that are frequently located together in space) to the spatio-temporal domain.
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A collocation episode is a sequence of co-location patterns with some common object-types

across consecutive time slots. However, if there is no common object-type in consecutive time

slots, the proposed approach will not identify any pattern. For example, the collocation episodes

algorithm will not be able to find any pattern from the dataset given in Figure 1 if the window

length (which is used to find co-location patterns) is 2. For this case, the algorithm tries to find

co-location patterns that are persistent in 2 consecutive time slots, but there is no such pattern

in the dataset because wide receivers and cornerbacks are forming co-locations in time slots t=0

and t=3 and wide receivers and linebackers are forming co-locations in time slots t=0. Thus,

there may not be any co-location patterns and collocation episodes identified in the dataset.

A topological pattern [23] is a subset of object-types whose instances are close in space and

time. An interest measure for a topological pattern {A,B} (e.g. participation index or support) is

a spatio-temporal join of instances of A and instances of B [12]. This statistic may be high even

if many instances of A and many instances of B are not spatially together for a moment in time.

The semantics of topological patterns are not well -defined for moving objects. For example, this

approach can not find an answer to the question of what fraction of time the pattern occurs. The

answer of this approach may also be ”‘empty” ’ to the question of when (which time slots) the

pattern occurs since there is no time slot notion. In the dataset given in Figure 1, this approach

will discover the two patterns of {W, C} and {W, L}. Both patterns have the same support,

but pattern {W, C} occurs in 2 time slots out of 4 (a persistent pattern) and pattern {W, L}

occurs in 1 time slot out of 4 (a transient pattern) since tracks of objects are represented as

spatio-temporal instances. The persistent pattern {W, C} occurs in time slots t=0 and t=3 and

its instances {W1, C1} and {W4, C2} occur in time slot t=0 and {W1, C2} and {W4, C1} in

time slot t=1. The transient pattern {W, L} occurs in time slot t=0 and its instances {W2, L1},

{W3, L1}, {W2, L2}, and {W3, L2} occur in time slot t=0.

In contrast, our proposed interest measure and algorithms will efficiently mine mixed groups

of objects (e.g MDCOPs) which are close in space and persistent (but not necessarily close) in

time. Unlike a number of the techniques just described, our approach will discover persistent

patterns that co-occur in most but not all spatio-temporal intervals, so consecutive co-occurrences

are not mandatory. For example, our proposed MDCOP mining approach will find the MDCOP

{wide receiver, cornerback} pattern in Figure 1, if the fraction of time slots where the pattern

occurs over the total number of time slots is no less than a defined threshold, e.g., 0.5. It may
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reject the pattern {W,L} in Figure 1 given the lack of time persistence of the {wide receiver,

linebacker} pattern. In fact, instances of MDCOP {wide receiver, cornerback} are co-located in

2 time slots out of 4 and instances of {wide receiver, linebacker} are co-located in 1 time slot

out of 4. The instances of MDCOP {wide receiver, cornerback} are {W.1, C.1} and {W.4, C.2}

in time slot t=0, and {W.4, C.1} and {W.1, C.2} in time slot t=3.

III . BASIC CONCEPTS AND PROBLEM DEFINITION

A. Spatial Prevalence Measure

The focus of this study is to discover mixed-drove spatio-temporal co-occurrence patterns

(MDCOPs) over a spatio-temporal framework and a neighborhoodrelation R. First we explain

the modeling of mixed groups of object-types in space, e.g., spatial co-locations [21]. In the

next sections, we explain how we model MDCOPs by extending spatial co-location mining to

include time information and then propose algorithms to mine these MDCOPs.

Spatial co-location mining algorithms are used to discover sets of mixed object-types that

are frequently located together in a spatial framework for a given set of spatial object-types,

their instances, and a spatial neighbor relationship R [12], [21]. For example, in Figure 2(a), in

time slot t=0, {A.1, C.1} is an instance of a co-location if the distance between the objects is

no more than a given neighborhood distance threshold. In Figure 2(a), the solid lines show the

distancebetween the objects that satisfies the neighborhood distancethreshold. The participation

index is used to determine the strength of the co-location pattern, that is, whether the index is

greater than or equal to a threshold [12], [21]. Such a co-location is called spatial prevalent.

The participation index is defined as the minimum of the participation ratios (the fraction of

the number of instances of object-types forming co-location instances to the total number of

instances). For example, in Figure 2(a), {A, B} is a co-location in time slot t=0, and its instances

are {A.1, B.1}, {A.2, B.1}, {A.3, B.2}, and {A.3, B.3}. In the dataset, object-type A has 4

instances and three of them (A.1, A.2, and A.3) are contributing to the co-location {A, B}, so

the participation ratio of A is 3/4. The participation ratio of B is 3/5 since 3 out of 5 instances

are contributing to the co-location {A, B}. The participation index of the co-location {A, B}

is 3/5, which is the minimum of the participation ratios of object-types A and B. It has been

shown that the participation index is anti-monotone in the size of co-locations [12], [21]. In

other words, participation index(Pj) ≤ participation index(Pi) if Pi is a subset of Pj . In
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(a) An input spatio-temporal dataset

(b) A set of output mixed-drove spatio-temporal co-occurrence patterns

Fig. 2. An example spatio-temporal dataset

addition, [12], [21] show that the participation index has a spatial statistical interpretation as an

upper bound onthe cross-K function [6].

B. Modeling MDCOPs

Given a set of spatio-temporal mixed object-types and a set of their instances with a neighbor-

hoodrelation R, an MDCOP is a subset of spatio-temporal mixed object-types whose instances

are neighbors in space and time.

Definition 3.1: Given a spatio-temporal pattern and a set TF of time slots, such that TF =

[T0, ..., Tn−1], the time prevalence or persistence measure of the pattern is the fraction of time

slots where the pattern occurs over the total number of time slots.

For example, in Figure 2(a), the total number of time slots is 4 and pattern {A, B} occurs

in all 4 time slots, so its time prevalence is 4/4. Pattern {A, C} occurs in 3 time slots, namely,

time slots t=0, t=1, and t=2, and its time prevalence index is 3/4.
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Definition 3.2: Given a spatio-temporal dataset of mixed object-types ST , and a spatial

prevalence threshold θp, the mixed-drove prevalence measure of a spatio-temporal pattern Pi

is a composition of the spatial prevalence and the time prevalence measures as shown below.

Probtm∈all time slot(s prev(pattern Pi, time slot tm) ≥ θp) (1)

where Prob stands for probabilit y of overall prevalence time slots and s prev stands for spatial

prevalence, e.g., the participation index, described in Section III- A.

Definition 3.3: Given a spatio-temporal dataset of mixed object-types ST and a threshold

pair (θp, θtime), MDCOP Pi is a mixed-drove prevalent pattern if its mixed-drove prevalence

measure satisfies the following.

Probtm∈all time slot [s prev(pattern Pi, time slot tm) ≥ θp] ≥ θtime (2)

where Prob stands for probabilit y of overall prevalence time slots, s prev stands for spatial

prevalence, θp is the spatial prevalence threshold, and θtime is the time prevalence threshold.

For example, in Figure 2(a), {A,B} is an MDCOP because it has mixed object-types, is spatial

prevalent in time slots t=0, t=1, t=2, and t=3 since its participation indices are no less than the

given threshold 0.4 in these time slots, and is time prevalent since its time prevalence index of 1

is above the time prevalenceindex threshold 0.5. In contrast, {B,D} is not an MDCOP. Although

it has mixed object-types and is spatial prevalent in time slot t=2, it i s not time prevalent since

its time prevalence index is no more than the given time prevalence index threshold 0.5.

C. Problem statement

Given:

• A set P of distinct Boolean spatio-temporal object-types over a common spatio-temporal

framework STF .

• A neighbor relation R over locations.

• A spatial prevalence threshold, θP .

• A time prevalence threshold, θtime .

Find: {Pi|Pi is a subset of P and Pi is a prevalent MDCOP as in Definition 3.3}.

Objective: Minimize computation cost.
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Constraints: To find a correct and complete set of MDCOPs.

Example: In American football , each play (e.g., Figure 1) may represent a spatio-temporal

dataset and Boolean object-types may be identified by the role of the players (e.g., wide receiver,

cornerback, andlinebackers). Each object-typeisconsidered asBoolean becausewe are interested

in its presence or absence at any location and time. Figure 1(a)-(d) shows the position of

the Boolean object-types for four time units. The straight lines between the players show the

neighboring objects. The neighbor relation R may be defined by a distance lessthan one meter

or an average arm’s length. For example, in Figure 1(a), wide receiver W.1 is a neighbor of

cornerback C.1. However, these players are not neighbors in Figure 1(b) since they are separated

by more than a meter. In this example, {wide receiver, cornerback} forms a candidate MDCOP,

given θp=0.5, and θtime=0.5.

Threshold values selected for MDCOP interest measures (e.g. spatial prevalence measure and

time prevalence measure) have important implications on the mining processes and results. Se-

lection of a small i nterest measure threshold (close to 0) increases the computational complexity

of the algorithms and the number of generated prevalent patterns. This may cause generation

of insignificant patterns. Selection of a large interest measure threshold (close to 1) decreases

the computational complexity of the algorithms and the number of prevalent patterns. This may

cause pruning of some of the significant patterns. Neverthelessthe selection of interest measure

threshold values is dependent on the application and/or purpose of the analysis.

IV. M INING MDCOPS

In this section, we discuss a näıve approach and then propose two novel MDCOP mining

algorithms- MDCOP-Miner and FastMDCOP-Miner - to mineMDCOPs. We also give execution

traces of these algorithms.

A. Näıve approach

A näıve approach can use a spatial co-location mining algorithm for each time slot to find

spatial prevalent co-locations and then apply a post-processing step to discover MDCOPs by

checking their time prevalence. To mine co-locations, Huang, Shekhar and Xiong proposed a
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Fig. 3. Comparison of Näıve Approach, MDCOP-Miner, and FastMDCOP-Miner

join-based approach, Yoo, Shekhar and Celik proposed a partial join-based approach and a join-

lessapproach, and Zhang et al. proposed a multi -way spatial join-based approach [3], [12], [21],

[26], [27], [28], [29]. This study will be based on the join-based spatial co-location pattern

mining algorithm proposed by Huang et al., but it i s also possible to use other approaches.

The näıve approach will generate size k + 1 candidate co-locations for each time slot using

spatial prevalent size k subclasses until there are no more candidates. After finding all size

spatial prevalent co-locations in each time slot, a post-processing step can be used to discover

MDCOPs by pruning out time non-prevalent co-locations. Even thoughthis approach will prune

out spatial non-prevalent co-locations early, it will not prune out time non-prevalent MDCOPs

before the post-processing step (Figure (3(a)). This leads to unnecessary computational cost.

B. MDCOP-Miner

To eliminate the drawbacks of the Näıve approach, we propose an MDCOP mining algorithm

(MDCOP-Miner) to discover MDCOPs by incorporating a time-prevalence based filtering step

in each iteration of the algorithm. The algorithm, first, will discover all size k spatial prevalent

MDCOPs and then will apply a time-prevalence based filering to discover MDCOPS. Finally,

the algorithm will generate sizek + 1 candidate MDCOPs using size k MDCOPs (Figure 3(b)).

The participation index is used as a spatial prevalence interest measure to check if the pattern is

spatial prevalent at a time slot [12]. The time prevalence (i.e., persistence measure in definition
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3.1) is used as a timeprevalenceinterest measure. First we give the pseudocode of the algorithm,

and then we provide an execution traceof it using the dataset from Figure 2(a). Algorithm 1

gives the pseudo code of the MDCOP-Miner algorithm. This pseudo code is used to explain

two algorithms: MDCOP-Miner and FastMDCOP-Miner. FastMDCOP-Miner will be discussed

in the next section. The choiceof the algorithm is provided by the user. The inputs are algorithm

choice alg choice with value MDCOP-Miner, a set of distinct spatial object-types E, a spatio-

temporal dataset ST , a spatial neighborhoodrelationship R, and thresholds of interest measures,

i.e. spatial prevalence and time prevalence; the output is a set of MDCOPs. In the algorithm,

steps 1 include initialization of the parameters, steps 2 through 14 give an iterative process to

mine MDCOPs, and step 15 gives a union of the results. Steps 2 through 14continue until there

are no candidate MDCOPs to be generated. The functions of the algorithm are explained below.

Generating candidate co-occurrence patterns (step 3): This function uses an apriori-based

approach to generate size k + 1 candidate co-locations Ck+1 for each time slot, using all size k

mixed-drove co-occurrence patterns MDPk [2].

Generating spatial co-occurrence instances (step 5): The instances of candidate Ck+1 are

generated by joining neighbor instances of size k MDCOPs for each time slot. This is similar

to the instance generation step of the co-location miner algorithm [12].

Finding spatial prevalent co-occurrence patterns (step 6): All spatial prevalent size k + 1

patterns SPk+1 are found by pruning the ones whose spatial prevalenceindices, i.e., participation

indices, are lessthan agiven threshold for each timeslot. Computation of theparticipation indices

follows the same algorithmic ideas as those in the co-location mining algorithm [12].

In the for loop, the algorithm finds sizek + 1 spatial prevalent co-location for each time slot.

MDCOP-Miner skips steps 8, 9, and 10which are activated using the FastMDCOP-Miner.

Forming a time prevalence table (steps 8 and 12): In steps 8 and 12, the time prevalence

indicesof themined spatial prevalent patternsare calculated in FastMDCOP-Miner and MDCOP-

Miner algorithms respectively. The time prevalenceindex of a spatial prevalent co-location is the

fraction of the number of time slots where the pattern occurs over the total number of the time

slots. Step 8 is activated in FastMDCOP-Miner algorithm and it is used to calculate the time

prevalence index of the size k patterns before generating size k patterns of next time slot. Step

12 is activated in MDCOP-Miner and it is used to calculate time prevalence indices of patterns

after size k patterns of all ti me slots are generated .
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Algor ithm 1 MDCOP-Miner and FastMDCOP-Miner
Inputs:

alg choice: Choice of algorithm, "MDCOP-Miner" or "FastMDCOP-Miner"

E: a set of distinct spatial object-types

ST: a spatio-temporal dataset <object type, object id, x, y, time slot

R: spatial neighborhood relationship

TF: a time slot frame {t0, . . . , tn−1}

θp: a spatial prevalence threshold

θtime: a time prevalence threshold

Output: MDCOPs whose spatial prevalence indices, i.e., participation indices, are no

less than θp, for time prevalence indices are no less than θtime

Var iables:

k: co-occurrence size

t: time slots (0, . . . , n − 1)

Tk: set of instances size k co-occurrences

Ck: set of candidate size k co-occurrences

SPk: set of spatial prevalent size k co-occurrences

TPk: set of time prevalent size k co-occurrences

MDPk: set of mixed-drove size k co-occurrences

Algor ithm:

(1) initialization : co-occurrence size k = 1, Ck = E, MDPk(0) = ST

(2) while (not empty MDPk) {

(3) Ck+1(0) = gen candidate co − occur(Ck, MDPk)

(4) for each time slot t in (0, . . . , n − 1) {

(5) Tk+1(t) = gen co − occur instance(Ck+1(t), Tk(t), R)

(6) SPk+1(t) = find spatial − prevalent co − occur(Tk+1(t), Ck+1(t), θp)

(7) If (alg choice =="FastMDCOP-Miner") {

(8) TPk+1(t) = find time prevalence index(SPk+1(t))

(9) MDPk+1(t) = find time − prevalent co − occur(TPk+1(t), θtime)

(10) Ck+1(t) = MDPk+1(t) } }

(11) If alg choice=="MDCOP-Miner" {

(12) TPk+1 = find time prevalence index(SPk+1)

(13) MDPk+1 = find time − prevalent co − occur(TPk+1, θtime) }

(14) k = k + 1 }

(15) return union (MDP2, . . . , MDPk+1)

Finding mixed-drove co-occurrence patterns (step 9 and step 13): These steps discover

MDCOPs by checking the time prevalence indices of the spatial prevalent co-locations if they



14

are no less than a given time prevalence threshold θtime . The patterns whose time prevalence

indices do not satisfy the given threshold are pruned at this stage. The remaining patterns will be

MDCOPs and will be used to generate candidate supersets of the MDCOPs in step 3. In step 13,

MDCOP-miner prunes time non-prevalent patterns after all size k patterns in all ti me slots are

generated. In step 9, FastMDCOP-Miner prunes time non-prevalent patterns before generating

size k patterns in the next time slot.

The algorithm will run iteratively until there are no more candidate MDCOPs to be generated.

The algorithm outputs the union of all size MDCOPs.

An Execution Trace of MDCOP-Miner: The execution traceof the MDCOP-Miner is given

in Figure 4 using the dataset given in Figure 2. This dataset contains four object-types A, B,

C, and D and their instances in four time slots. A has 4 instances, B has 5 instances, C has 3

instances, and D has 4 instances. The instances of each object-type have aunique identifier, such

as A.1. Some of the patterns of these object-types form an MDCOP. To discover MDCOPs we

propose amonotonic composite interest measure (the mixed-drove prevalencemeasure) which is

a composition of the spatial prevalence and time prevalence measures applied to mixed object-

types. The spatial prevalence measure (participation index) shows the strength of the spatial

co-location when the index is greater than or equal to a given threshold [12], [21]. The time

prevalence measure (time prevalence index) shows the frequency of the pattern over time.

In Figure 4(a), in step 1, candidate pairs of the distinct object-types and their instances are

generated for each time slot. The spatial co-locations whose participation indices are less than

a given threshold are then pruned. A spatial non-prevalent pair {A,D} is pruned in time slot

t=0, {C, D} is pruned in time slots t=2 and t=3, and {B,D} is pruned in time slots t=3, because

their participation indices are lessthan the given threshold 0.4. A time prevalence table of pairs

of spatial prevalent co-locations is then formed by entering a 1 if the participation index of the

corresponding pattern satisfies a given participation index threshold. Time-prevalenceindices are

then found. For example, in the time prevalence table (step 2 in Figure 4(b)), spatial prevalent

pattern {A,B} is persistent for all ti me slots and its time prevalence index is 4/4, and spatial

prevalent pattern {A,C} is persistent in time slots t=0, t=1, and t=2 and its time prevalence

index is 3/4. The MDCOPs whose time prevalence indices are no less than a given threshold

are selected for generating superset candidate MDCOPs.
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Step 1: Generate pairs and find participation indices 

 time slot t=0 time slot t=1 time slot t=2 time slot t=3 
Co-occurrence 

patterns 
A B A C A D B C B D C D A B A C A D B C B D C D A B A C A D B C B D C D A B A C A D B C B D C D 

 A.1 B.1 A.1 C.1 A.4 D.4    A.1 B.1 A.1 C.1  B.1 C.1   A.1 B.1 A.1 C.1  B.1 C.1 B.1 D.1 C.3 D.4 A.1 B.1  A.1 D.2 B.1 C.1 B.1 D.1 C.1 D.1 
Co-occurrence A.2 B.1 A.3 C.2     A.2 B.1 A.3 C.2  B.3 C.2   A.2 B.1 A.3 C.2  B.3 C.2 B.2 D.3  A.2 B.1  A.3 D.3 B.3 C.2   

pattern A.3 B.2      A.3 B.2   B.4 C.3   A.3 B.2   B.4 C.3   A.3 B.2   B.4 C.3   
instances A.3 B.3      A.3 B.3      A.3 B.3      A.3 B.3      

                         
P. ratio 3/4   3/5 2/4  2/3 1/4  1/4    3/4   3/5 2/4  2/3  3/5 3/3   3/4   3/5 2/4  2/3  3/5 3/3 2/5 2/4 1/3 1/4 3/4   3/5  2/4  2/3 3/5 3/3 1/5 1/4 1/3 1/4 
P. index 3/5 2/4 1/4    3/5 2/4  3/5   3/5 2/4  3/5 2/5 1/4 3/5  2/4 3/5 1/5 1/4 

If  PI threshold 
is 0.4 

• {A ,D} is pruned  • {C,D} is pruned • {B ,D} and {C,D}  are pruned 

 
(a) Step 1

 

 
 

Step 2: Form time prevalence table 
 time slot 

t=0 
time slot 

t=1 
time slot 

t=2 
time slot 

t=3 
time 

prevalence 
index 

A B 1 1 1 1 4/4 
A C 1 1 1 0 3/4 
A D 0 0 0 1 1/4 
B C 0 1 1 1 3/4 
B D 0 0 1 0 1/4 
C D 0 0 0 0 0  

 Step 3 Generate superset patterns (triplets) 
 time slot 

t=0 
time slot 

t=1 
time slot 

t=2 
time slot 

t=3 
 A B C A B C A B C A B C 

  A.1 B.1 C.1 A.1 B.1 C.1  
  A.3 B.3 C.2 A.3 B.3 C.2  
     
PR  2/4  2/5  2/3 2/4  2/5  2/3  
PI  2/5 2/5   

• If  time prevalence index threshold 0.5 (50%) then prune {A ,D} and {B ,D}  
• {A ,B},  { A,C},  {B ,C} are mixed-drove co-occurrence patterns 
 

 
 
Step 4: Find mixed-drove co-occurrence patterns 

 time slot 
t=0 

time slot 
t=1 

time slot 
t=2 

time slot 
t=3 

time 
prevalence 

index 
A B C - 1 1 - 2/4 

• {A , B, C} is mixed-drove co-occurrence pattern 

 

 
 
 
 

(b) Steps 2, 3, and 4

Fig. 4. Execution traceof the MDCOP-Miner algorithm

Spatial prevalent patterns {A,B}, {A,C}, and {B,C} are selected as MDCOPs since they

are also time prevalent (their time prevalence indices satisfy the given time prevalence index

threshold 0.5). In contrast, spatial prevalent patterns {A,D}, {B,D}, and {C,D} are pruned since

they are time non-prevalent. Using MDCOPs {A,B}, {A,C}, and {B,C}, the next candidate

MDCOP {A,B,C} is generated. The next step is to generate instances of candidate {A,B,C}

in time slots where its subsets exist and to check its participation indices in these time slots.

Since all subsets of MDCOP {A,B,C} are MDCOPs and exist in time slots t=1 and t=2, there

is no need to generate instances of them for time slots t=0 and t=3. In step 3 (Figure 4(b)), the

instances of candidate MDCOP {A,B,C} are generated and participation indices are foundwhich

are 2/5 for time slots t=1 and t=2. In step 4 (Figure 4(b)), the time prevalence table is formed

for pattern {A, B, C} and its time prevalence index is checked to see if it satisfies the time

prevalence threshold. Candidate MDCOP {A, B, C} is an MDCOP since its time prevalence

index 0.5 is equal to the time prevalence threshold 0.5. Since there are not enoughsubsets to

generate the next superset patterns, the algorithm stops at this stage and outputs the union of all

size MDCOPs, i.e., {A, B}, {A, C}, {B, C}, and {A, B, C}.
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C. Modified MDCOP-Miner (FastMDCOP-Miner)

In this section, we propose anew algorithm, called FastMDCOP-Miner, which improves the

computational efficiency of the MDCOP-Miner discussed in Section IV-B. As can be seen in

Figure 3(b) and in Algorithm 1, MDCOP-Miner waits to prune time non-prevalent patterns until

all size k spatial prevalent patterns are generated for all ti me slots and then prunes time non-

prevalent patterns to discover MDCOPs. However, it i s possible to optimize the MDCOP-Miner.

We propose to prune time-non prevalent patterns as early as possible by moving ”prune non-

prevalent patterns” between the time slots shown in Figure 3(c) where candidate size 2 pattern

generation is ill ustrated. The pseudo-code of the FastMDCOP-Miner is given in Algorithm 1.

When the FastMDCOP-Miner is chosen, the algorithm will activate steps 8, 9, and 10 and

deactivate steps 12 and 13. This will allow the algorithm to check the time prevalence of a

pattern after every time slot is processed. The functions of the algorithm are as described in

Section IV-B. In step 8, FastMDCOP-Miner checks whether the time prevalence indices of size

k patterns (size 2 patterns in Figure 3(c)) satisfy the time prevalence index threshold before

generating size k patterns for the next time slot. Early discovered time non-prevalent patterns

are pruned in Step 9 and time prevalent patterns are used as candidate co-occurrences (Step 10)

in the next time slot. For example, assume that there are 10 time slots and the time prevalence

index threshold is 0.5. In this case, a size k pattern should be present for at least 5 time slots

to satisfy the threshold. If the time prevalence index of a pattern is 0 for the first (or any) 6

time slots, there is no need to generate this pattern and check the prevalence of it for the rest

of the time slots. Even if it i s time persistent for the remaining 4 time slots, it will not be able

to satisfy the given time prevalence index threshold.

An Execution Trace of FastMDCOP-Miner: The execution traceof the FastDCOP-Miner is

given in Figure 5 using the dataset given in Figure 2, which has four time slots. Assume that

the spatial prevalence index threshold is 0.4 and the time prevalence index threshold is 0.75. If

a pattern is not consistent in more than 1 out of 4 time slots, it can be pruned whenever it i s

discovered. In Step 1(a) pairs and their instances are generated. Pattern {A,D} is pruned at this

step since it is spatial non-prevalent. Based on the outcomes of Step 1(a), the prevalence table

is updated by entering a 1 for spatial prevalent patterns (Step 1(b)). The time prevalence table
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Step 1(a): Generate pairs and  
        find participation indices 

 time slot t=0 
Co-occurrence 

patterns 
A B 

 
A C A D B C B D C D 

 A.1 B.1 A.1 C.1 A.4 D.4    
Co-occurrence A.2 B.1 A.3 C.2     

pattern A.3 B.2      
instances A.3 B.3      

       
P. ratio 3/4   3/5 2/4  2/3 1/4  1/4    
P. index 3/5 2/4 1/4    

If  PI threshold 
is 0.4 

• {A ,D} is pruned 

 
 

Step 2(a): Generate pairs and  
        find participation indices 

time slot t=1 
A B 

 
A C A D B C B D C D 

A.1 B.1 A.1 C.1  B.1 C.1   
A.2 B.1 A.3 C.2  B.3 C.2   
A.3 B.2   B.4 C.3   
A.3 B.3      
      
3/4   3/5 2/4  2/3  3/5 3/3   

3/5 2/4  3/5   
 
 
 

Step 3(a): Generate pairs and  
       find participation indices 

time slot t=2 
A B 

 
A C B C 

A.1 B.1 A.1 C.1 B.1 C.1 
A.2 B.1 A.3 C.2 B.3 C.2 
A.3 B.2  B.4 C.3 
A.3 B.3   
   
3/4   3/5 2/4  2/3 3/5 3/3 

3/5 2/4 3/5 
• {A ,D},  {B ,D},  and 

{C,D} are not generated 
 

Step 4(a): Generate pairs and  
        find participation indices 

time slot t=3 
A B 

 
A C B C 

A.1 B.1  B.1 C.1 
A.2 B.1  B.3 C.2 
A.3 B.2  B.4 C.3 
A.3 B.3   
   
3/4   3/5  3/5 3/3 

3/5  3/5 
 
 
 

 
 

 
 Step 1(b): Update time prevalence table 

 time 
slot 
t=0 

time 
prevalence 

index 
A B 1 1/4 
A C 1 1/4 
A D 0 0 
B C 0 0 
B D 0 0 
C D 0 0 

 
 
 
 

 
Step 2(b): Update time prevalence table 

 time 
slot 
t=0 

time 
slot 
t=1 

time 
prevalence 

index 
A B 1 1 2/4 
A C 1 1 2/4 
A D 0 0 pruned 
B C 0 1 1/4 
B D 0 0 pruned 
C D 0 0 pruned 

If  time prevalence threshold is 0.75, 
patterns {A ,D},  {B ,D},  and {C,D} are pruned here 
since they are not consistent 2 out of 4 time slots 

 

 
Step 3(b): Update time prevalence table 

 time 
slot 
t=0 

time 
slot 
t=1 

time 
slot 
t=2 

time 
prevalence 

index 
A B 1 1 1 3/4 
A C 1 1 1 3/4 
A D already pruned 
B C 0 1 1 3/4 
B D already pruned 
C D already pruned 

 
 

 
Step 4(b): Update time prevalence table 

 time 
slot 
t=0 

time 
slot 
t=1 

time 
slot 
t=2 

time 
slot 
t=3 

time 
prevalence 

index 
A B 1 1 1 1 4/4 
A C 1 1 1 0 3/4 
A D already pruned 
B C 0 1 1 1 3/4 
B D already pruned 
C D already pruned 

 
 
 

 
 

 
Fig. 5. Execution traceof the FastMDCOP-Miner algorithm

initially contains all possible pairs of subsets of object-types. The algorithm checks if time non-

prevalent patterns can be discovered at this step. Since the result of one time slot are not enough

to make a decision, instances for patterns given in the time prevalence table are generated for

time slot t=2 (Step 2(a)) and the time prevalence table is updated (Step 2(b)). Patterns {A,D},

{B,D}, and {C,D} are pruned in Step 2(b), since they are not time consistent in time slot t=0

and t=1, (they will not be time prevalent even if they are spatial prevalent in the remaining time

slots t=2 and t=3). These patterns are not present in 2 or more of the 4 time slots. In Step 3(a)

instances are generated for patterns {A,B}, {A,C}, and {B,C} which are candidate MDCOPs

and their time prevalence indices are updated (Step 3(b)). At this step no pattern is pruned since

there is no possible time non-prevalent pattern. Similary, in Step 4(a) instances are generated

for patterns {A,B}, {A,C}, and {B,C} which are candidate MDCOPs and their time prevalence

indices are updated (Step 4(b)). At this step no pattern is pruned since there is no possible

time non-prevalent pattern and algorithm outputs MDCOPs {A,B}, {A,C}, and {B,C}. Next,

the algorithm continues to discover possible MDCOPs by generating candidate triple patterns.
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V. ANALYSIS OF THE MDCOP-M INER

This section gives the analysis of the mixed-drove prevalence index measure, and correctness

and completenessderviations for the MDCOP mining algorihtms.

A. The Mixed-Drove Prevalence Index Measure is Monotonic

Lemma 5.1: Spatial prevalencemeasure participation index and participation ratio are mono-

tonically non-increasing in the size of the MDCOPs at each time slot [12], [21].

Proof: The participation ratio pr is monotonically non-increasing because an instance of a

spatial object-type that is contributing to a co-location ci is also contributing to a co-location cj

where cj ⊆ ci. The spatial prevalence measure participation index pi is also monotonic because

1) participation ratio is monotonic and 2)

pi(c
⋃

fk+1) = mink+1

i=1 {pr(c
⋃

fk+1, fi)}

≤ mink
i=1{pr(c

⋃
fk+1, fi)} ≤ mink

i=1{pr(c
⋃

fi)} = pi(c)

Lemma 5.2: A mixed-drove prevalence index measure is monotonically non-increasing with

the size of MDCOP over space and time. In other words, it i s monotically non-increasing, if

MDCOP Pi is a subset of MDCOP Pj and

Probtm∈all time slot(s prev( Pi, tm) ≥ θp), and Probtm∈all time slot(s prev( Pj , tm) ≥ θp),

where Prob stands for the probabilit y of overall prevalence time units, s prev stands for spatial

prevalence, θp is the spatial prevalence threshold, and tm is the time slot.

Proof: The basic proof sketch follows. Let TS(Pj, θp) = {tm|pi(Pj , tm) ≥ θp}.

Lemma 5.1 implies that participation index pi(Pj , tm) ≥ θp for all tm ∈ TS(Pj, θp), since

Pi is a subset of Pj. Thus, Probtm∈all time slot [s prev( Pi, tm) ≥ θp)] ∈ θtime, where θtime is the

time prevalence threshold.

B. Correctnessand Completeness

Theorem 5.1: The FastMDCOP-Miner, MDCOP-Miner, and naive approach are complete.

Proof: The FastMDCOP-Miner, MDCOP-Miner, and naive approach are complete if they

find all MDCOPs that satisfy a given participation index threshold and timeprevalencethreshold.

We can show this by proving that none of the functions of the algorithm missany patterns, i.e.,

filter out a prevalent MDCOP.
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The gen candidate co-occur function does not miss any patterns given the anti-monotone

nature of the MDCOP interest measure. The input of this function is size k MDCOPs and the

output is candidate size k + 1 MDCOPs. If c1 = {f1, . . . , fk} and c2 = {f1, . . . , fk−1, fk+1} are

size k MDCOPs, candidate size k + 1 pattern Ck+1 = {f1, . . . , fk−1, fk, fk+1} will be produced

by joining size k MDCOPs.

The gen co-occur instanance function does not miss any patterns. This function generates

instances of candidate size k + 1 MDCOPs by joining instances of size k MDCOPs if they are

in the neighborhood distance and forming a clique.

The find spatial-prevalent co-oc function does not missany patterns. It finds spatial prevalent

patterns whose participation indices satisfy a given threshold.

The find time prevalence index function does not missany patterns. This function calculates

time prevalence indices of the patterns foundin steps 4 through 8and does not do any pruning.

The find time-prevalent co-occur function does not missany MDCOPs. The function finds all

the MDCOPs whose time prevalence indices are no less than a given threshold.

Theorem 5.2: The FastMDCOP-Miner, MDCOP-Miner, and naive approach are correct. In

other words, if a MDCOP pattern P is returned by MDCOP-Miner and FastMDCOP-Miner

algorithms, then P is a prevalent MDCOP.

Proof: The proof is easy to establish due to the pruning steps of find spatial prevalent co-

occur, and find time prevalent co-occur, which weed out candidates not meeting the given

thresholds.

C. Algebraic Cost Model

In this section, we give the algebraic cost models of the MDCOP-Miner and the FastMDCOP-

Miner algorithms. The cost model of the naive approach is not given since it is the worst case of

the MDCOP-Miner and FastMDCOP-Miner and applies the pruning strategy in a post processing

step. Let TMDCOP , and TFast represent the total computational costs of the MDCOP-Miner and

the FastMDCOP-Miner respectively. The total respective cost functions will be



20

TMDCOP =
∑

k>1

TMDCOP (k, θp, θtime, TF, Sinstance)

TFast =
∑

k>1

TFast(k, θp, θtime, TF, Sinstance) (3)

where TMDCOP (k, θp, θtime, TF, Sinstance) and TFast(k, θp, θtime, TF, Sinstance) represent the gen-

eration of the total cost of size k (k > 1) MDCOPs for parameters θp and θtime, time slots TF ,

and the average number of co-occurrence instances Sinstance.

TMDCOP (k, θp, θtime, TF, Sinstance) = Tgen candi(MDP MDCOP
k−1 , TF, Sinstance)

+Tprune sp co−occ(C SP MDCOP
k , θp, TF, Sinstance)

+Tprune time co−occ(SP MDCOP
k , θtime, TF, Sinstance)

≈ Tgen candi(MDP MDCOP
k−1 , TF, Sinstance) + Tprune sp co−occ(C SP MDCOP

k , θp, TF, Sinstance)

TFast(k, θp, θtime, TF, Sinstance) = Tgen candi(MDP Fast
k−1 , TF, Sinstance)

+Tprune sp co−occ(C SP Fast
k , θp, TF, Sinstance)

+Tprune time co−occ(SP Fast
k , θtime, TF, Sinstance)

≈ Tgen candi(MDP Fast
k−1 , TF, Sinstance) + Tprune sp co−occ(C SP Fast

k , θp, TF, Sinstance) (4)

MDPk−1 is the size k − 1 MDCOP sets. Tgen candi represents the total cost of generating

candidate MDCOPs for all ti me slots TF . C SPk represents the number of candidate size k

MDCOPs. Tprune sp co−occ represents the total cost of pruningcandidateMDCOPs. SPk represents

the number of sizek spatial co-location patterns of MDCOP mining algorithms. Tprune time co−occ

represents the total cost of pruning time non-prevalent patterns. MDCOP-Miner will generate

all size k spatial prevalent patterns and then it will prune size k time non-prevalent patterns. In

contrast, FastMDCOP-Miner will apply time non-prevalent pattern pruning as early as possible

to eliminate generating instances of some size k time non-prevalent patterns. The cost of gen-

erating size k patterns of FastMDCOP-Miner will be no more than that of MDCOP-Miner. The

FastMDCOP-Miner approach will run steps for the number of time slots in the dataset to find

all size k MDCOPs. The cost of this process is negligible since it only checks the count of the
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patterns whenever a new pattern is processed. If there is no pattern to be pruned early, the cost

of the both approaches will be same. As a result, the cost of MDP Fast
k−1

will be no more than

that of MDP MDCOP
k−1

and the cosf of C SP Fast
2 will be no more then that of C SP MDCOP

k .

Lemma 5.3: The total cost of time based pruning is negligible with respect to total cost of

spatial prevalence based pruning, such that,

TMDCOPorFast = Tgen candi + Tprune sp co−occ + Tprune time co−occ ≈ Tgen candi + Tprune sp co−occ (5)

Proof: The total cost Tgen candi+Tprune sp co−occ includes the cost of generating all candidate

patterns and their instances and the cost of calculating the participation index and ratio values

of the generated patterns and pruning the non-prevalent patterns, respectively. This process is

computationally complex due to the spatial join operation to generate the candidate patterns and

their instances in each time slot. That is, the bulk of time is consumed in generating instances

and pruning spatial non-prevalent MDCOPs.

In contrast, the total cost of Tprune time co−occ includes the cost of calculating the time preva-

lence indices of the patterns for all ti me slots. This process is computationally very cheap due

to the count of the existence of the patterns in whole dataset.

Lemma 5.4: The total cost of generating candidate MDCOPs of the proposed FastMDCOP-

Miner is no more than the total cost of generating MDCOPs of the MDCOP-Miner, assuming

the cost of the time prevalence based pruning is negligible (Lemma 5.3), such that,

Tgen candi(MDP Fast
k−1 , TF, Sinstance) ≤ Tgen candi(MDP MDCOP

k−1 , TF, Sinstance) (6)

Proof: Due to the early pruning of irrelevant candidates (steps 8 and 9 of Algorithm 1), the

number of sets of sizek MDCOPs generated by theFastMDCOP-Miner will benomore than that

of the MDCOP-Miner size k patterns, e.g., MDP Fast
k−1

≤ MDP MDCOP
k−1

, since size k patterns

of the FastMDCOP-Miner will prune time non-prevalent patterns earlier than MDCOP-Miner.

The other parameters affecting equation 6 are the number of time slots TF and average

number of co-occurrence instances Sinstance. If the number of time slots increases, the cost of

the MDCOP-Miner will i ncrease due to the increasing unnecessary generation of time non-

prevalent patterns. Similarly, for greater average numbers of co-occurrence instances, the cost of

the MDCOP-Miner increases. In the worst case, the number of sets of sizek patterns generated
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will be equal for both algorithms, if there is no early time prevalence based pruning. In that

case, equation 6 will be true.

Lemma 5.5: The total cost of pruning the spatial non-prevalent candidate patterns of the

FastMDCOP-Miner will be no more than that of MDCOP-Miner, assuming the cost of the time

prevalence based pruning is negligible (Lemma 5.3), such that

Tprune sp co−occ(C SP Fast
k , θp, TF, Sinstance) ≤ Tprune sp co−occ(C SP MDCOP

k , θp, TF, Sinstance)

(7)

Proof: Due to early pruning of irrelevant candidates (step 6 of Algorithm 1), the number

of size k + 1 candidate pattern sets generated by the FastMDCOP-Miner will be no more than

that of the MDCOP-Miner e.g., C SP Fast
k ≤ C SP MDCOP

k , and so equation 7 will be true.

Lemma 5.6: The total cost of pruning timenon-prevalent candidateMDCOPs of theproposed

FastMDCOP-Miner algorithm is no more than than the total cost of pruning time non-prevalent

candidate patterns of the MDCOP-Miner, assuming the cost of the timeprevalencebased pruning

is negligible (Lemma 5.3), such that

Tprune time co−occ(SP Fast
k , θtime, TF, Sinstance) ≤ T

post
NA (SP MDCOP

k , θtime, TF, Sinstance) (8)

Proof: Due to early pruning of irrelevant candidates (step 10 of Algorithm 1), the number

of size k spatial prevalent patterns generated by the FastMDCOP-Miner will be no more than

that of the MDCOP-Miner, e.g., SP Fast
k ≤ SP MDCOP

k and so equation 8 will be true.

Theorem 5.3: The total cost of the FastMDCOP-Miner is no more than the total cost of the

MDCOP-Miner assuming the cost of the time prevalence based pruning is negligible.

Proof: Based on Lemmas Lemma 5.3, 5.4, 5.5, and 5.6 the total cost of the FastMDCOP-

Miner algorithm will be no more than the total cost of the MDCOP-Miner.

VI. EXPERIMENTAL EVA LUATION

In this section, we present our experimental evaluations of several design decisions and

workload parameters on our MDCOP mining algorithms. We used a real-world training dataset

and synthetic datasets. We evaluated the behavior of the FastMDCOP-Miner, MDCOP-Miner

and näıve approach to answer the following questions:
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• What is the effect of the number of timeslots?

• What is the effect of the number of object-types?

• What is the effect of the spatial prevalence index threshold?

• What is the effect of the time prevalence index threshold?

• What is the effect of the number of noise instances?

• What is the effect of the average number of instances?

Figure 6 shows the experimental setup to evaluate the impact of design decisions on the

performance on the three algorithms. Experiments were conducted on an IBM Netfinity Linux

Cluster, 2.6 GHz Intel Pentium 4 with 1.5 GB of RAM.

Generate 

subsets of 

feature types

E , S c o � o c c u r , N m a x i m a l
Generate 

instances

Generate 

neighborhoods

T F , S i n s t a n c e
Add 

noise

D , R N o i s e i n s t , L n o i s e
Synthetic 

dataset

Separate 

persistent 

patterns 

L p e r s i s t e n t
Co-occurrence 

Mining 
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Fig. 6. Experimental setup and design

A. Datasets

1) Real Dataset: The real dataset contains the location and time information of moving

objects. It includes 15 time snapshots and 22 distinct vehicle types and their instances. The

minimum instance number is 2, the maximum instance number is 78, and the average number

of instances is 19.

2) Synthetic Dataset Generation: To evaluate the performance of the algorithms, spatio-

temporal datasets were generated based on the spatial data generator proposed by Huang et. al.

[12]. Synthetic datasets were generated for spatial frame size DxD (the first part of Figure 6).
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For simplicity, the datasets were divided into regular grids whose side lengths had neighborhood

relationship R. First, subsets of object-types were generated using the parameters average co-

occurrence size Sco−occur and number of maximal patterns Nmaximal. Object-types and sizes of

each pattern were chosen randomly. The generated patterns were then divided into two categories

- persistent patternsand transitory patterns- using thepersistent pattern ratio Lpersistent. Persistent

patterns are ones whose time prevalences are strong over time, while transitory patterns are ones

whose spatial prevalences are strong at a specific time slot. Next, instances of the patterns were

generated based on the average number of co-occurrence instances Sinstance. Instances were

chosen at randomly located grid cells. This processwas applied for each time slot TF . Finally,

using the parameters number of noise instances Noiseinst and ratio of noise objects over number

of features Lnoise, noise object and their instances were generated and added to the dataset.

The parameters of the synthetic dataset generator and their definitions are listed in Table I.

TABLE I

SYNTHETIC DATASET GENERATION PARAMETERS

Parameter Definition Experiments

Syn-1 Syn-2 Syn-3 Syn-4 Syn-5 Syn-6

E Number of object types 200 100-400 200

Sinstance Average number of co-occurrence instances* 10 5-20

Nmaximal Number of maximal co-occurrence patterns* 10

Sco−occur Minimum co-occurrence pattern size* 4

Lpersistent Ratio of persistent patterns over transitory patterns* 0.5 0.8 0.5 0.8

Lnoise Ratio of noise object-types over number of object-types 0.25

Noiseinst Number of noise instances 1000 1000-5000 1000

TF Number of timeslots 10-50 20 50 20

D Spatial framework size (DXD) 106 103 106 103

R Spatial Neighborhood relationship 10

* : For initial co-occurrence patterns

B. Experiment Results for Real Datasets

1) Effect of Number of Time Slots: In the first experiment, we evaluated the effect of the

number of time slots on the execution time of the MDCOP algorithms using the real dataset.

The participation index, time prevalence index, and distance were set at 0.2, 0.8, and 150m

respectively. Experiments were run for a minimum of 1 time slot and a maximum of 14 time
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slots. As can be seen in Figure 7(a), the FastMDCOP-Miner requires less execution time than

the MDCOP-Miner and näıve approaches, since it prunes out time non-prevalent MDCOPs as

early as possible. It can also be seen that as the number of time slots increases, the ratio of the

increase in execution time is smaller for FastMDCOP-Miner than for the MDCOP-Miner and

näıve approaches. Figure 7(b) shows the number of generated size 2 and size 3 instances for

algorithms. The FastMDCOP-Miner generates fewer patterns due to its early pruning of time

non-prevalent patterns. The MDCOP-Miner and näıve approaches generate the same number of

size 2 instances. The MDCOP-Miner applies time pruning after it generates all possible size 2

patterns and the näıve approach applies time pruning in the post-processing step.
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Fig. 7. Effect of number of time slots in MDCOP mining algorithms using real dataset

As discussed in Section V-C, the number of time slotsTF is one of the parameters that affects

the cost of the algorithms. As predicted in equation 3, the cost of the algorithms increases as

the number of time slots increases and the FastMDCOP-Miner outperforms the other approaches

due to the early pruning strategy (Theorem 5.3). The FastMDCOP-Miner algorithm examines

fewer instances than the other approaches since it deals with the MDCOP prevalent patterns as

early as possible (Lemmas 5.4, 5.5, and 5.6).

2) Effect of Number of Object-types: In the second experiment, we evaluated the effect of

the number of object-types on the execution time of the algorithms using the real dataset. The

participation index, time prevalence index, number of time slots and distance were set at 0.2,
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0.8, 15, and 150m respectively. The FastMDCOP-Miner outperforms the other approaches as the

number of object-types increases (Figure 8(a)-(b)). It is observed that the increase in execution

time for the näıve approach is bigger than that of the MDCOP-Miner and theFastMDCOP-Miner

as the number of object-types increases for datasets.
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Fig. 8. Effect of number of object-types in MDCOP mining algorithms using real dataset

The trends are consistent with the algebraic cost models given in equation 3. The cost of

the algorithms increases as the number of the object-types increases due to the increase in the

number of join operations. The MDCOP-Miner and näıve approaches generate the same number

of size 2 instances. MDCOP-Miner applies time pruning after it generates all possible size 2

patterns and näıve approach applies time pruning in the post-processing step (Figure 8(b)). In

contrast, The FastMDCOP-Miner generates patterns by pruning non-prevalent patterns as early

as possible (Lemmas 5.4, 5.5, and 5.6). Because of the early pruning strategy of FastMDCOP-

Miner, its cost is no more than that of the MDCOP-Miner and näıve approaches as shown in

Figure 8(a) (Theorem 5.3).

3) Effect of the Time Prevalence Index Threshold: In the third experiment, we evaluated the

effect of the time prevalence index threshold on the execution times of the MDCOP mining

algorithms for the real dataset. The fixed parameters were participation index, number of time

slots, and distance, and their values were 0.2, 15, and 150m respectively. For the näıve approach,

the effective cost in executiontimeto generatespatial prevalent co-locationswill be constant since
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it generates the same number of spatial prevalent patterns as the time prevalenceindex increases.

In that case, the cost of the post-processing step will reflect the trend of the näıve approach.

Experimental results show that the FastMDCOP-Miner is more computationally efficient than

the other approaches because of the early pruning strategy (Figure 9(a)). The execution times

of the FastMDCOP-Miner and MDCOP-Miner decrease as the time prevalence index threshold

increases. It is also observed that the näıve approach is computationally more expensive as the

time prevalence index threshold decreases because of the increase in the number of MDCOPs

to be discovered.
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Fig. 9. Effect of the time prevalence index threshold in MDCOP mining algorithms using real dataset

The trends are consistent with the algebraic cost models given in equation 3. The cost of

FastMDCOP-Miner is no more than that of MDCOP-Miner (Lemma 5.6 and Theorem 5.3). The

näıve approach is not sensitive to the time prevalence index threshold (Lemma 5.6). Without the

post-processing step, the cost of the näıve approach is constant. The trend of the näıve approach

in Figure 9 is characterized by the cost of the post-processing step.

4) Effect of the Spatial Prevalence Index Threshold: In the fourth experiment, we evaluated

the effect of the spatial prevalence index threshold on the execution times of the MDCOP

algorithms. The fixed parameters were time prevalenceindex, number of time slots, and distance,

with values of 0.2, 15, and 100m respectively. Figure 10(a) shows the execution times of the

algorithms and Figure 10(b) shows the number of generated size 2 and 3 instances for the
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algorithms. FastMDCOP-Miner and MDCOP-Miner do not generate more than size 3 instances

for a spatial prevalenceindex threshold of greater than 0.2. The FastMDCOP-Miner outperforms

the MDCOP-Miner and näıve approaches as the spatial prevalence index threshold increases

(Figure 10(a)-(b)). The cost of the näıve approach will be higher than that of the FastMDCOP-

Miner and MDCOP-Miner for low values of the spatial prevalence index threshold.
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Fig. 10. Effect of the spatial prevalence index threshold in MDCOP mining algorithms using real dataset

The trends are consistent with the algebraic cost models given in equation 3. The algorithms

are sensitive to the spatial prevalence index threshold (Lemma 5.5).

C. Experiment Results for Synthetic Datasets

1) Effect of Number of Time slots: In this experiment, we evaluated the effect of the number

of time slots on the execution time of the algorithms using synthetic datasets. To generate the

datasets, we used a framework size of 106x106, a square proximity neighborhoodsize of 10 x

10, a noise feature ratio of 0.25, a noise instance number of 1000, an average number of co-

occurrence instances of 10, and a maximal co-occurrence pattern number of 10 (Table I, column

syn-1). In the experiments, theparticipation index, timeprevalenceindex, and distancewereset at

0.3, 0.9, and 10m respectively. Experimentswere for a minimum of 10 timeslotsand a maximum

of 50 time slots. The results showed that the FastMDCOP-Miner requires less execution time

than the other approaches, since it prunes out time non-prevalent MDCOPs as early as possible
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(Figure 11(a)). The generated size 2 and size 3 instances are given in Figure 11(b). The naive

approach generated up to size 7 spatial prevalent subsets before the post-processing step. In

contrast, FastMDCOP-Miner and MDCOP-Miner generated up to size 4 subsets.

The trends are consistent with the algebraic cost models given in equation 3. The cost of

the algorithms increases as the number of time slots increases and the FastMDCOP-Miner

outperforms the other approaches due to its early pruning strategy ((Theorem 5.3). As can be

seen in Figure 11(b), the FastMDCOP-Miner algorithm examines fewer size 2 and 3 instances

than the other approaches due to the early pruning strategy (Lemmas 5.4, 5.5, and 5.6).
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Fig. 11. Effect of number of time slots in MDCOP mining algorithms using synthetic dataset

2) Effect of Number of Object-types: We evaluated the effect of the number of object-

types on the execution time of the algorithms for synthetic datasets. The parameters used to

generate the datasets are given in Table I, column syn-2. The participation index, time prevalence

index, number of time slots, and distance were set at 0.3, 0.8, 20, and 10m respectively. The

FastMDCOP-Miner outperforms the MDCOP-Miner and naive approaches as the number of

object-types increases (Figure 12(a)-(b)). The ratio of the increase in the execution time of the

näıve approach is greater than that of the MDCOP-Miner and FastMDCOP-Miner as the number

of object-types increases. Figure 12(b) shows the number of generated size 2 and 3 instances

for the algorithms.

The trends are consistent with the algebraic cost models given in equation 3. The cost of
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the algorithms increases as the number of the object-types increases due to the increase in the

number of join operations.
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Fig. 12. Effect of number of object-types in MDCOP mining algorithms using synthetic dataset

3) Effect of the Time Prevalence Index Threshold: We evaluated the effect of the time

prevalence index threshold on the execution times of the algorithms for synthetic datasets.

The parameters used to generate the datasets are given in Table I column syn-3. The fixed

parameters were participation index, distance, and number of time slots, and their values were

0.4, 10m, and 50 respectively. Experimental results show that the FastMDCOP-Miner is more

computationally efficient than the MDCOP-miner and näıve approaches because of the early

pruning strategy (Figure 13(a)). The execution time of the FastMDCOP-Miner decreases as the

time prevalence index threshold increases. The execution time of the näıve approach is almost

constant since it does not prune time non-prevalent pattern before the post-processing step and

it is computationally more expensive as the time prevalence index threshold decreases because

of the increase in the number of MDCOPs to be generated (Figure 13(b)).

The näıve approach is not sensitive to the time prevalenceindex threshold (Lemma 5.6) which

causes the increase of its cost. Without the post-processing step, the cost of the näıve approach

is constant. The trend of the näıve approach in Figure 9 is characterized by the cost of the

post-processing step (Figure 13(a)).
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Fig. 13. Effect of the time prevalence index threshold in MDCOP mining algorithms using synthetic dataset

4) Effect of the Spatial Prevalence Index Threshold: We evaluated the effect of the spatial

prevalence index threshold on the execution times of MDCOP mining algorithms. To generate

the dataset, we used a spatial framework size of 106x106, a square proximity neighborhoodsize

of 10 x 10, an average number of co-occurrence instances of 10, a noise feature ratio of 0.25,

a noise instance number of 1000, a maximal co-occurrence pattern number of 10, and a time

slot number of 50 (Table I, column syn-4). In the experiments, the value of the time prevalence

index was 0.8. The FastMDCOP-Miner outperforms the other approaches (Figure 14(a)-(b)). The

cost of the näıve approach will be higher than the MDCOP-Miner and FastMDCOP-Miner for

low values of the spatial prevalence index threshold since the näıve approach tends to generate

MDCOP non-prevalent patterns. For high values of the spatial prevalence index the cost of the

algorithms are closer. The generated size 2 and size 3 instances are given in Figure 14(b). The

naive approach generates up to size 8 spatial prevalent subsets for spatial prevalence thresholds

0.2 and 0.3, before the post-processing step. In contrast, the FastMDCOP-Miner and MDCOP-

Miner generate up to size 4 MDCOP prevalent subsets.

The trends are consistent with the algebraic cost models given in equation 3. The algorithms

are sensitive to the spatial prevalence index threshold (Lemma 5.5) but due to the early pruning

strategy of FastMDCOP-Miner, its cost is no more than that of the MDCOP-Miner and näıve

approach, as shown in Figure 14(a) (Lemma 5.5 and Theorem 5.3).
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Fig. 14. Effect of the spatial prevalence index threshold in MDCOP mining algorithms using synthetic dataset

5) Effect of the Number of Noise Instances: We evaluated the effect of the number of

noise instances on the execution times of the MDCOP mining algorithms using the synthetic

datasets. The parameters for data generation are listed in column syn-5 of Table I. The time

prevalence index threshold, the spatial prevalence index threshold, and distance were 0.3, 0.8,

and 10m respectively. The FastMDCOP-Miner is more robust than the MDCOP-Miner and näıve

approaches as the number of noise features increases (Figure 15(a)).

The trendsare consistent with the algebraic cost modelsgiven in equation 3. TheFastMDCOP-

Miner is more robust than that of the other approaches (Lemmas 5.6 and 5.5 and Theorem 5.3).

In other words, the näıve approach is more sensitive to the noise features, which causes both its

cost and the number of generated instances to increase (Figure 15(a)).

6) Effect of the Average Number of Instances: We evaluated the average number of total

instances on the execution times of the MDCOP mining algorithms using synthetic datasets.

The parameters for data generation are listed in column syn-6 of Table I. The time prevalence

index threshold, the spatial prevalence index threshold, and distance were 0.3, 0.8, and 10m

respectively. TheFastMDCOP-Miner algorithm outperformed theother approachesas the average

number of total instances increases (Figure 15(b)).
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Fig. 15. Effect of noise and average number of instances in MDCOP mining algorithms using synthetic dataset

VII . CONCLUSIONS AND FUTURE WORK

We defined mixed-drove spatio-temporal co-occurrence patterns (MDCOPs) and the MDCOP

mining problem and proposed a new monotonic composite interest measure which is the com-

position of distinct object-types, spatial prevalence measures, and time prevalence measures.

We presented a novel and computationally efficient algorithm (the MDCOP-Miner) for mining

these patterns. We also presented an improved MDCOP-Miner algorithm (the FastMDCOP-

Miner) which prunes time non-prevalent patterns at an early stage and offers even greater

computational efficiency than the MDCOP-Miner algorithm. We compared our algorithms with

a näıve approach, which runs the spatial co-location mining algorithm at each time slot and then

discovers MDCOPs using a post-processing step. We proved that the proposed algorithms are

correct and complete in finding mixed-drove prevalent (i.e., spatial prevalent and time prevalent)

MDCOPs. Our experimental results using a real and synthetic datasets provide further evidence

of the viabilit y of our approach.

For future work, we would like to explore the relationship between the proposed MDCOP

interest measures and spatio-temporal statistical measures of interaction [3]. Another problem

of interest is the characterization of the probabilit y distribution of the proposed interest measure

to help in making the choice of thresholds in the proposed measures. We plan to explore other

potential interest measures for MDCOPs by evaluating similarity measures for tracks of moving
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objects. We plan to investigate new monotonic composite interest measures and develop other

new computationally efficient algorithms for mining MDCOPs.

In the literature, there are also other studies that have focused on defining spatio-temporal

patterns and algorithms [9], [11], [13], [15], [18], [25]. Laube et al. defined several spatio-

temporal patterns, such as leadership and convergence [16]. Query processing algorithms have

been proposed to extract such patterns [16]. We hope to extend our algorithm to mine these

patterns.
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