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Abstract

Spatial database research has continued to advance greatly since three decades ago, addressing the

growing data management and analysis needs of spatial applications. This research has produced a

taxonomy of models for space, conceptual models, spatial query languages and query processing, spatial

file organization and indexes, and spatial data mining. However, emerging needs for spatial database

systems include the handling of 3D spatial data, temporal dimension with spatial data, and spatial data

visualization. In addition, the rise of new systems such as sensor networks and multi-core processors is

likely to have an impact in spatial databases. The goal of this paper is to provide a broad overview of

the recent advancements in spatial databases and research needs in each area.

1 Introduction

Spatial database management systems [63, 80, 99, 128, 154, 155] aim at the effective and efficient management

of data related to

• space in the physical world (geography, urban planning, astronomy, human anatomy, fluid flow or an

electromagnetic field);

• biometrics (fingerprints, palm measurements, facial patterns);

• engineering design (very large scale integrated circuits, layout of a building, or the molecular structure

of a pharmaceutical drug); and
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• conceptual information space (virtual reality environments, multidimensional decision support sys-

tems).

A Spatial Database Management System (SDBMS) can be characterized as follows:

• A SDBMS is a software module that can work with an underlying database management system, for

example, an Object-Relational database management system, or Object-oriented database management

system.

• SDBMSs support multiple spatial data models, commensurate spatial abstract data types (ADTs),

and a query language from which these ADTs are callable.

• SDBMSs support spatial indexing, efficient algorithms for spatial operations, and domain-specific rules

for query optimization.

Spatial database research has been an active area for several decades. The results of this research are

being used in a number of areas. To cite a few examples, the filter-and-refine technique used in spatial query

processing has been applied to subsequence mining; multidimensional-index structures such as R-tree and

Quad-tree used in accessing spatial data are applied in the field of computer graphics and image processing;

and space-filling curves used in spatial query processing and data storage are applied in dimension reduction

problems. The field of spatial databases can be defined by its accomplishments; current research is aimed at

improving its functionality, extensibility, and performance. The impetus for improving functionality comes

from the needs of existing application such as Geographic Information Systems (GIS), Location Based

Services (LBS) [122], sensor Networks [140], ecology and environmental management [120], public safety,

transportation [88], Earth science, epidemiology [48], crime analysis [91], and climatology.

Commercial examples of spatial database management include ESRI’s ArcGIS Geodatabase [24], Oracle

Spatial [32], IBM’s DB2 Spatial Extender and Spatial Datablade, and future systems such as Microsoft’s

SQL Server 2008 (code-named Katmai) [79]. Spatial databases have played a major role in the commercial

industry such as Google Earth [59] and Microsoft’s Virtual Earth [100]. Research prototype examples of

spatial database management systems include spatial datablades with PostGIS [111], MySQL’s Spatial Ex-

tensions [103], Sky Server [17] and spatial extensions. The functionalities provided by these systems include

a set of spatial data types such as a points, line-segments and polygons, and a set of spatial operations such as

inside, intersection, and distance. The spatial types and operations may be made a part of a query language

such as SQL, which allows spatial querying when combined with an object-relational database management

system [42, 141]. The performance enhancement provided by these systems includes a multi-dimensional

spatial index and algorithms for spatial database modeling such as OGIS [107] and 3D Topological model-
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ing; spatial query processing including point, regional, range, and nearest neighbor queries; and spatial data

methods using a variety of indexes such as quad trees and grid cells.

1.1 Related Work and Our Contributions

Published work related to spatial databases can broadly be classified as follows:

• Textbooks [128, 155, 112, 99], which explain in detail various topics in spatial databases such as logical

data models for spatial data, algorithms for spatial operations, and spatial data access methods. Recent

textbooks [155, 62] deal with research trends in spatial databases such as spatio-temporal databases,

and moving objects databases.

• Reference books [133, 119], which are useful for studying areas related to spatial databases, for example,

multidimensional data structures, and Geographic Information Systems (GIS).

• Journals and conference proceedings [1, 2, 3, 4, 5, 6, 8, 7, 9, 11], which are a source of in-depth technical

knowledge of specific problem areas in spatial databases.

• Research surveys [138, 63, 19], which summarize key accomplishments and identify research needs in

various areas of spatial databases at that time.

Spatial database research has continued to advance greatly since the last survey papers in this area were

published [138, 63, 19]. Our contribution in this chapter is to summarize the most recent accomplishments in

spatial database research, a number of which were identified as research needs in earlier surveys. For instance,

bulk loading techniques and spatial join strategies are rereferenced here as well as other advances in spatial

data mining and conceptual modeling of spatial data. In addition, this chapter provides an extensive updated

list of research needs in such areas as management of 3D spatial data, visibility queries, and many others.

The bibliography section at the end of this chapter contains a list of over 100 references, updated with the

latest achievements in spatial databases.

1.2 Scope and Outline

The goal of this chapter is to provide the reader with a broad introduction to spatial database systems.

Spatial databases are discussed in the context of object-relational databases [42, 141, 143], which provide

extensibility to many components of traditional databases to support the spatial domain. Three major

areas that receive attention in the database context - conceptual, logical and physical data models - are

discussed(see Table 1). In addition, applications of spatial data for spatial data mining are also explored.
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Emerging needs for spatial database systems include the handling of 3D spatial data, spatial data with

temporal dimension, and effective visualization of spatial data. The emergence of hardware technology such

as Storage Area Networks and the availability of multi-core processors are two additional fields likely to have

an impact on spatial databases. Such topics of research interest are introduced at the end of each section.

References are provided for further exploration.

The rest of this chapter is organized as follows: Fundamental concepts helpful to understand spatial

databases are presented in section 2. Sections 3 and 4 describe spatial database modeling at the conceptual

and logical levels. Techniques for spatial query processing are discussed in section 5. File organizations and

index data structures are presented in section 6. Spatial data mining patterns and techniques are explored

in section 7.

2 Mathematical Framework

2.1 Accomplishments

Spatial data are relatively more complex compared with traditional business data. Specific features of spatial

data include: i) rich data types (e.g., extended spatial objects), ii) implicit spatial relationships among the

variables, iii) observations that are not independent, and iv) spatial autocorrelation among the features.

Spatial data can be considered to have two types of attributes: non-spatial attributes and spatial at-

tributes. Non-spatial attributes are used to characterize non-spatial features of objects, such as name,

population, and unemployment rate for a city. Spatial attributes are used to define the spatial location

and extent of spatial objects [35]. The spatial attributes of a spatial object most often include information

related to spatial locations, e.g., longitude, latitude, elevation, as well as shape. Relationships among non-

spatial objects are explicit in data inputs, e.g., arithmetic relation, ordering, instance of, subclass of, and

membership of. In contrast, relationships among spatial objects are often implicit, such as overlap, intersect,

and behind.

Space is a framework to formalize specific relationships among a set of objects. Depending on the

relationships of interest, different models of space such as set-based space, topological space, Euclidean

Mathematical Framework

Trends: Spatial Data Mining
Conceptual Data Model
Logical Data Model
Query Languages
Query Processing
File Organizations and Indices

Table 1: Spatial Database topics
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space, metric space and network space can be used [155]. Set-based space uses the basic notion of elements,

element-equality, sets, and membership to formalize the set relationships such as set-equality, subset, union,

cardinality, relation, function, and convexity. Relational and object-relational databases use this model of

space.

Topological space uses the basic notion of a neighborhood and points to formalize the extended object

relations such as boundary, interior, open, closed, within, connected, and overlaps, which are invariant

under elastic deformation. Combinatorial topological space formalizes relationships such as Euler’s formula

(number of faces + number of vertices - number of edges = 2 for planar configuration). Network space is a

form of topological space in which the connectivity property among nodes formalizes graph properties such

as connectivity, isomorphism, shortest-path, and planarity.

Euclidean coordinatized space uses the notion of a coordinate system to transform spatial properties

and relationships to properties of tuples of real numbers. Metric spaces formalize the distance relationships

using positive symmetric functions that obey the triangle inequality. Many multidimensional applications

use Euclidean coordinatized space with metrics such as distance.

2.2 Research Needs

Many spatial applications manipulate continuous spaces of different scales and with different levels of dis-

cretization. A sequence of operations on discretized data can lead to growing errors similar to the ones

introduced by finite-precision arithmetic on numbers. There are preliminary results [63] on the use of dis-

crete basis and bounding errors with peg-board semantics. Another related problem concerns interpolation

to estimate the continuous field from a discretization. Negative spatial autocorrelation makes interpolation

error-prone. Further work is needed on a framework to formalize the discretization process, its associated

errors, and on interpolation.

3 Spatial Database Conceptual Modeling

3.1 Accomplishments

Entity Relationship (ER) diagrams are commonly used in designing the conceptual model of a database.

Many extensions [65] have been proposed to extend ER to make the conceptual modeling of spatial ap-

plications easier and more intuitive. One such extension is the use of pictograms [132]. A pictogram is

a graphical icon that can represent a spatial entity or a spatial relationship between spatial entities. The

idea is to provide constructs to capture the semantics of spatial applications and at the same time to keep
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the graphical representation simple. Figure 2 provides different types of pictograms for spatial entities and

relationships. In the following text we define pictograms to represent spatial entities and relationships, and

their grammar in graphical form.

Pictogram: A pictogram is a representation of the object inserted inside of a box. These iconic represen-

tations are used to extend ER diagrams and are inserted at appropriate places inside the entity boxes. An

entity pictogram can be of a basic shape or a user-defined shape.

Shape: Shape is the basic graphical element of a pictogram that represents the geometric types in the

spatial data model. It can be a basic shape, a multishape, a derived shape, or an alternate shape. Most

objects have simple(basic) shapes (Figure 1 B).

Basic Shape: In a vector model the basic elements are point, line and polygon. In a forestry example,

the user may want to represent a facility as a point (0-D), a river or road network as lines (1-D) and forest

areas as polygons (2-D) (Figure 1 D).

Multi-Shape: To deal with objects which cannot be represented by the basic shapes, we can use a set

of aggregate shapes. Cardinality is used to quantify multi-shapes. For example, a river network that is

represented as a line pictogram scale will have cardinality 0 (Figure 1 B and E).

Derived Shape: If the shape of an object is derived from the shapes of other objects, its pictogram

is italicized. For example, we can derive a forest boundary (polygon) from its “forest type” boundaries

(polygon), or a country boundary from the constituent state boundaries (Figure 1 C and G).

Alternate Shape: Alternate shapes can be used for the same object depending on certain conditions;

for example, objects of size less than x units are represented as points while those greater than x units

are represented as polygons. Alternate shapes are represented as a concatenation of possible pictograms.

Similarly, multiple shapes are needed to represent objects at different scales; for example, at higher scales

lakes may be represented as points, and at lower scales as polygons (Figure 1 D and H).

Any Possible Shape: A combination of shapes is represented by a wild card * symbol inside a box,

implying that any geometry is possible (Figure 1 E).

User-Defined Shape: Apart from the basic shapes of point, line and polygon, user-defined shapes are

possible. User-defined shapes are represented by an exclamation symbol (!) inside a box (Figure 1 A).

Relationship Pictograms: Relationship pictograms are used to model the relationship between entities.

For example, part of is used to model the relationship between a route and a network, or it can be used to

model the partition of a forest into forest stands (Figure 1 C).

The popularity of object-oriented languages such as C++ and Java has encouraged the growth of object-

oriented database systems (OODBMS). The motivation behind this growth in OODBMS is that the direct

mapping of the conceptual database schema into an object-oriented language leads to a reduction of im-
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Figure 1: Pictograms

pedance mismatch encountered when a model on one level is converted into a model on another level.

UML is one of the standards for conceptual level modeling for object-oriented software design. It may

also be applied to an OODBMS to capture the design of the system conceptually. A UML design consists

of the following building blocks.

Class: A class is the encapsulation of all objects which share common properties in the context of the

application. It is the equivalent of the entity in the ER model. The class diagrams in a UML design can be

further extended by adding pictograms. In a forestry example, classes can be Forest, Facility, Forest Stand,

etc.

Attributes: Attributes characterize the objects of the class. The difference between an attribute ER and a

UML model design is that there is no notion of a key attribute in UML. This is because in an object-oriented

system, each object has an implicit system-generated unique identification. In UML, attributes also have

a scope that restricts the attributes access by other classes. There are three levels of scope, and each has

a special symbol: + Public: This allows the attribute to be accessed and manipulated from any class. -

Private: Only the class that owns the attribute is allowed to access the attribute. # Protected: Other than

the class that owns the attribute, classes derived from the class that owns can access the attibute.

Methods: Methods are functions and a part of class definition. They are responsible for modifying the
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behavior, or state of the class. The state of the class is embodied in the current values of the attributes. In

object-oriented design, attributes should only be accessed through methods.

Relationships: Relationships relate one class to another or to itself. This is similar to the concept of

relationship in the ER model. There are three important categories of relationships:

• Aggregation: This is a specific construct to capture the part-whole relationship. For instance, a group

of Forest-Stand classes may be aggregated into a Forest class.

• Generalization: This is a relationship in which a child class can be generalized to a parent class. For

example, classes such as Point, Line and Polygon can be generalized to a Geometry class.

• Association: This shows how objects of different classes are related. An association is binary if it

connects two classes or ternary if it connects three classes. An example of a binary association is

supplies water to between the classes River and Facility.

Figures 2 and 3 provide an example for modeling a State-Park using ER and UML with pictograms,

respectively.

3.2 Research Needs

Conceptual modeling for spatio-temporal and moving-object data needs to be researched. Pictograms as

introduced in this section may be extended to handle such data. Models used in the spatial representation of

data can be extended to conside the time dimension. For instance, the 9-intersection matrix used to represent

topology can be differentiated to consider the change in topology over a period of time. Similarly, other

spatial properties such as position, orientation and shape can be differentiated to consider effects over time

such as motion, rotation, and deformation of a spatial object. Similarly, series of points can be accumulated

to represent time-varying spatial data and properties.

Another area of research is the use of ontology for knowledge management. An ontology defines a common

vocabulary that allows knowledge to be shared and reused across different applications. Ontologies provide a

shared and common understanding of some domain that can be communicated across people and computers.

Geospatial ontology [54] is specific to the geospatial domain. Research in geospatial ontology is needed

to provide interoperability between geospatial data and software. Developing geospatial ontologies is one

of the long-term research challenges for the University Consortium for Geographic Information Systems
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Figure 2: Example ER diagram with pictograms

(UCGIS) [11]. Research in this area is also being carried out by companies such as CYC for geospatial

ontology.

Geospatial ontology can be further extended to include the temporal dimension. The ontology of time has

been researched in the domain of artificial intelligence as situation calculus. OWL-Time [14] is an ontology

developed to represent time.

Semantic web [34] is widely known as an efficient way to represent data on the world wide web. The wealth

of geographic information currently available on the web has prompted research in the area of GeoSpatial

Semantic Web [46, 53]. In this context, it becomes necessary to create representations of the geographic

information resources. This must lead to a framework for information retrieval based on the semantics

of spatial ontologies. Developing the geo-spatial ontology that is required in a geo-spatial semantic web

is challenging because the defining properties of geographic entities are very closely related to space. In

addition, each entity may have several sub-entities resulting into a complex object [53]. One popular data

model used in representing Semantic web is the Resource Description Framework (RDF) [151]. RDF is

being extended (GeoRDF) [148] to include spatial dimensions and hence to provide the necessary support

for geographica data on the web.
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4 Spatial Data Models and Query Languages

4.1 Accomplishments

Data Models A spatial data model provides the data abstraction necessary to hide the details of data

storage. The two commonly used models are the field-based model and the object-based model. While the

field-based model adopts a functional viewpoint, object-based models treat the information space as a collec-

tion of discrete, identifiable, spatially-referenced entities. Based on the type of data model used, the spatial

operations may change. Table 2 lists the operations specific to the field-based and object-based models. In

the context of object-relational databases, a spatial data model is implemented using a set of spatial data

types and operations. Over the last two decades, an enormous amount of work has been done in the design

and development of spatial abstract data types and their embedding in a query language. Serious efforts are

being made to arrive at a consensus on standards through the OGIS consortium [75].

OGIS proposed the general feature model [75] where features are considered to occur at two levels, namely,

feature instances and feature types. A geographic feature is represented as a discrete phenomenon charac-

terized by its geographic and temporal coordinates at the instance level, and the instances with common
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Data Model Operator Group Operation
Vector Object Set-Oriented equals, is a member of, is empty, is a subset of, is disjoint

from, intersection, union, difference, cardinality
Topological boundary, interior, closure, meets, overlaps, is inside, covers,

connected, components, extremes, is within
Metric distance, bearing/angle, length, area, perimeter
Direction east, north, left, above, between
Network successors, ancestors, connected, shortest-path
Dynamic translate, rotate, scale, shear, split, merge

Raster Field Local Point-wise sums, differences, maximums, means, etc
Focal slope, aspect, weighted average of neighborhood
Zonal sum or mean or maximum of field values in each zone

Table 2: Data Model and Operations

Figure 4: Modeling Geographic Information(Source: [75])

characteristics are grouped into classes called feature types. Direction is another important feature used in

spatial applications. A direction feature can be modeled as a spatial object [125]. Research has also been

done to efficiently compute the cardinal direction relations between regions that are composed of sets of

spatial objects [135].

Query Languages

When it comes to database sytems, spatial database researchers prefer object-based models because the

data types provided by object-based database sytems can be extended to spatial data types by creating

abstract data types (ADT). OGIS provides a framework for object-based models. Figure 4 shows the

OpenGIS approach to modeling geographic features. This framework provides conceptual schemas to define

abstract feature types and provides facilities to develop application schemas that can capture data about

feature instances. Geographic phenomena fall into two broad categories, discrete and continuous. Discrete

phenomena are objects that have well-defined boundaries or spatial extent, examples being buildings and

streams. Continuous phenomena vary over space and have no specific extent (e.g., temperature,elevation).

A continuous phenomenon is described in terms of its value at a specific position in space (and possibly

time). OGIS represents discrete phenomena (also called vector data) by a set of one or more geometric

primitives (points, curves, surfaces, or solids). A continuous phenomenon is represented through a set of

values, each associated with one of the elements in an array of points. OGIS uses the term ”coverage” to

refer to any data representation that assigns values directly to spatial position. A coverage is a function
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Basic Functions
SpatialReference() Returns the underlying coordinate system of the geometry
Envelope() Returns the minimum orthogonal bounding rectangle of the geometry
Export() Returns the geometry in a different representation
IsEmpty() Returns true if the geometry is an empty set.
IsSimple() Returns true if the geometry is simple (no self-intersection)
Boundary() Returns the boundary of the geometry

Topological/ Set Operators
Equal Returns true if the interior and boundary of the two

geometries are spatially equal
Disjoint Returns true if the boundaries and interior do not intersect.
Intersect Returns true if the interiors of the geometries intersect
Touch Returns true if the boundaries intersect but the interiors do not.
Cross Returns true if the interior of the geometries intersect but the

boundaries do not
Within Returns true if the interior of the given geometry does not intersect

with the exterior of another geometry.
Contains Tests if the given geometry contains another given geometry
Overlap Returns true if the interiors of two geometries

have non-empty intersection
Spatial Analysis

Distance Returns the shortest distance between two geometries
Buffer Returns a geometry that consists of all points

whose distance from the given geometry is less than or equal to the
specified distance

ConvexHull Returns the smallest convex set enclosing the geometry
Intersection Returns the geometric intersection of two geometries
Union Returns the geometric union of two geometries
Difference Returns the portion of a geometry which does not intersect

with another given geometry
SymmDiff Returns the portions of two geometries which do

not intersect with each other

Table 3: A sample of operations listed in the OGIS standard for SQL

from a spatio-temporal domain to an attribute domain. OGIS provides standardized representations for

spatial characteristics through geometry and topology. Geometry provides the means for the quantitative

description of the spatial characteristics including dimension, position, size, shape, and orientation. Topology

deals with the characteristics of geometric figures that remain invariant if the space is deformed elastically

and continuously. Figure 5 shows the hierarchy of geometry data types. Objects under Primitive will be

open (i.e., they will not contain their boundary points) and the objects under Complex will be closed.

In addition to defining the spatial data types, OGIS also defines spatial operations. Table 3 lists basic

operations operative on all spatial data types. The topological operations are based on the ubiquitous nine-

intersection model. Using the OGIS specification, common spatial queries can be intuitively posed in SQL.

For example, the query Find all lakes which have an area greater than 20 sq. km. and are within 50 km.

from the campgrounds can be posed as shown in Table 4 and Figure 6. Other example GIS and LBS

queries are provided in Table 5. The OGIS specification is confined to topological and metric operations on

vector data types. Also, several spatio-temporal query languages have been studied that are trigger based

for relational-oriented models [12], moving objects [15], future temporal languages [10], and constraint-based

query languages [13].
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Figure 5: Hierarchy of Data Types

SELECT L.name
FROM Lake L, Facilities Fa
WHERE Area(L.Geometry) > 20 AND
Fa.name = ‘campground’ AND
Distance(Fa.Geometry, L.Geometry) < 50

Table 4: SQL Query with spatial operators

For spatial networks, commonly used spatial data types include objects such as Node, Edge, and Graph.

They may be constructed as an ADT in a database system. Query languages based on relational algebra are

unable to express certain important graph queries without making certain assumptions about the graphs.

For example, the transitive closure of a graph may not be determined using relational algebra. In the SQL3,

a recursion operation RECURSIVE has been proposed to handle the transitive closure operation.

4.2 Research Needs

Map algebra

Map Algebra [43] is a framework for raster analysis that has now evolved to become a preeminent language

for dealing with field-based models. Multiple operations can be performed that take multiple data layers that

are overlayed upon each other to create a new layer. Some common groups of operations include local, focal,

and zonal. However, research is needed to account for the generalization of temporal or higher dimensional

datasets (e.g., 3D data).
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GIS Queries
Grouping Recode all land with silty soil to silt-loadm soil
Isolate Select all land owned by Steve Steiner
Classify If the population density is less than 100 people / sq. mi., land is acceptable
Scale Change all measurement’s’ to the metric system
Rank If the road is an Interstate, assign it code 1; if the road

is a state or US highway, assign it code 2; otherwise assign it code 3
Evaluate If the road code is 1, then assign it Interstate; if the road code is 2,

then assign it Main Artery; if the road code is 3, assign it Local Road
Rescale Apply a function to the population density
Attribute Join Join the Forest layer with the layer containing forest-cover codes
Zonal Produce a new map showing state populations given county population
Registration Align two layers to a common grid reference
Spatial Join Overlay the land-use and vegetation layers to produce a new layer

LBS Queries
Nearest Neighbor List the nearest gas stations
Directions Display directions from a source to a destation

(e.g. Google Maps, Map Quest)
Local Search Search for restaurants in the neighborhood

(e.g. Microsoft Live Local, Google Local)

Table 5: Typical Spatial Queries from GIS and LBS

Modeling 3D Data

The representation of volumetric data is another field to be researched. Geographic attributes such as

Clouds, Emissions, Vegetation, etc. are best described as point fields on volumetric bounds. Sensor data from

sensor technologies such as LADAR (Laser Detection and Ranging), 3D SAR (Synthtic Arperture Radar),

and EM collect data volumetrically. Since volumetric data is huge, current convention is to translate the

data into lower dimensional representations such as B-reps, Point clouds, NURBS, etc. This results in loss of

intrinsic 3-dimensional information. Efforts [77] have been made to develop three dimensional data models

that emphasize the significance of the volumetric shapes of physical world objects. This topological 3D data

model relies on Poincaré algebra. The internal structure is based on a network of simplexes, and the internal

data structure used is a Tetrahedronized Irregular Network (TIN) [26, 77], which is the three-dimensional
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variant of the well-known Triangulated Irregular Network (TIN).

Modeling Spatial Temporal Networks Graphs have been extensively used to represent spatial networks.

Considering the time-dependence of the network parameters and their topology, it has become critically

important to incorporate the temporal nature of these networks into their models to make them more

accurate and effective. For example, in a transportation network the travel times on road segments are

often dependent on the time of the day and there can be intervals when certain road segments are not

available for service. In such, time-dependent networks modeling the time variance becomes very important.

Time expanded graphs [82] and time aggregated graphs [57] have been used to model time varying spatial

networks. In the time expanded representation, a copy of the entire network is maintained for every time

instant, whereas the time aggregated graphs maintain a time series of attributes, associated to every node

and edge.

Network modeling can be further extended to consider 3D spatial data. Standard road network features

do not represent 3D structure and material properties. For instance, while modeling a road tunnel, we

might want to represent its overpass clearance as a spatial property. Such properties will help take spatial

constraints into account while selecting routes.

Modeling Moving Objects A moving object database is considered to be a spatio-temporal database in

which the spatial objects may change their position and extent over a period of time. To cite a few examples,

the movement of taxi cabs, the path of a hurricane over a period of time, and geographic profiling of serial

criminals are a few examples where a moving objects database may be considered. [62, 47] have provided a

data model to support the design of such databases.

Markup Languages The goals of markup languages, such as Geography Markup Language (GML) [58],

are to provide a standard for modeling language and data exchange formats for geographic data. GML is an

XML based markup language to represent geographic entities and the relationships between them. Entities

associated with geospatial data such as geometry, coordinate systems, attributes, etc. can be represented in

a standard way using GML. CityGML [16] is a subclass of GML useful for representing 3D urban objects,

such as buildings, bridges, tunnels, etc. CityGML allows modeling of spatial data at different levels of detail

regarding both geometry and thematic differentiation. It can be used to model 2.5D data (e.g., digital terrain

model), as well as 3D data (walkable architecture model). Keyhole Markup Language (KML) [81] is another

XML based markup language popular with commercial spatial software from Google. Based on a structure

similar to GML, KML allows representation of points, polygons, 3D objects, attributes, etc.
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Figure 7: Entity relationship diagrams for common representations of spatial data

5 Spatial Query Processing

5.1 Accomplishments

The efficient processing of spatial queries requires both efficient representation and efficient algorithms.

Common representations of spatial data in an object model include spaghetti, the node-arc-node (NAA)

model, the doubly connected-edge-list (DCEL), and boundary representation, some of which are shown in

Figure 7 using entity-relationship diagrams. The NAA model differentiates between the topological concepts

(node, arc, areas) and the embedding space (points, lines, areas). The spaghetti-ring and DCEL focus on the

topological concepts. The representation of the field data model includes a regular tessellation (triangular,

square, hexagonal grid), as well as triangular irregular networks (TIN).

Query processing in spatial databases differs from that of relational databases because of the following

three major issues:

• Unlike relational databases, spatial databases have no fixed set of operators that serve as building

blocks for query evaluation.

• Spatial databases deal with extremely large volumes of complex objects. These objects have spatial

extensions and cannot be naturally sorted in a one-dimensional array.
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• Computationally expensive algorithms are required to test for spatial predicates, and the assumption

that I/O costs dominate processing costs in the CPU is no longer valid.

In this section, we describe the processing techniques for evaluating queries on spatial databases, and

discuss open problems in spatial query processing and query optimization.

5.1.1 Spatial Query Operations

Spatial query operations can be classified into four groups [56].

• Update Operations: These include standard database operations such as modify, create, delete.

• Spatial Selection: These can be of two types:

– Point Query: Given a query point, find all spatial objects that contain it. An example is the

following query, “Find all river flood-plains which contain the SHRINE.”

– Regional Query: Given a query polygon, find all spatial objects which intersect the query

polygon. When the query polygon is a rectangle, this query is called a window query. These

queries are sometimes also referred to as range queries. An example query could be “Identify the

names of all forest stands that intersect a given window.”

– Spatial Join: Like the join operator in relational databases, the spatial join is one of the more

important operators. When two tables are joined on a spatial attribute, the join is called a spatial

join. A variant of the spatial join and an important operator in GIS is the map overlay. This

operation combines two sets of spatial objects to form new ones. The “boundaries” of a set of these

new objects are determined by the non-spatial attributes assigned by the overlay operation. For

example, if the operation assigns the same value of the non-spatial attribute to two neighboring

objects, then the objects are “merged”. Some examples of spatial join predicates are intersect,

contains, is enclosed by, distance, northwest, adjacent, meets, overlap. A query example of a

spatial join is “Find all forest-stands and river flood-plains which overlap”.

– Spatial Aggregate: An example of a spatial aggregate is “Find the river closest to a camp-

ground”. Spatial aggregates are usually variants of the Nearest Neighbor [70, 116, 109] search

problem: given a query object, find the object having minimum distance from the query object.

A Reverse Nearest Neighbor (RNN) [83, 78, 139, 104, 156] query is another example of a spatial

aggregate. Given a query object, a RNN Query finds objects for which the query object is the
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nearest neighbor. Applications of RNN include army strategic planning where a medical unit, A,

in the battlefield is always in search of a wounded soldier for whom A is the nearest medical unit.

5.1.2 Visibility Queries

Visibility has been widely studied in Computer Graphics. Visibility may be defined as the parts of objects

and the environment that are visible from a point in space. A visibility query can be thought of as a query

that returns the objects and part of the environment visible at the querying point. For example, within

a city, if the coverage area of a wireless antenna is considered to be the visible area, then the union of

coverage areas of all the antennas in the city will provide an idea about the area which is not covered. Such

information may be used to strategically place a new antenna at an optimal location. In a visibility query,

if the point in space moves, the area of visibility changes. Such a query may be called a continuous visibility

query. For example, security for the President’s motorcade involves cordoning off the buildings which have

route visibility. In such a case, the visibility query may be thought of as a query that returns the buildings

visible at different points on the route.

5.1.3 Visual Querying

Many spatial applications present results visually, in the form of maps which consist of graphic images, 3D

displays, and animations. These applications allow users to query the visual representation by pointing to

the visual representation using pointing devices such as a mouse or a pen. Such graphical interfaces are

needed to query spatial data without the need by users to write any SQL statements. In recent years, map

services, such as Google Earth and Microsoft Earth, have become very popular. Further work is needed to

explore the impact of querying by pointing and visual presentation of results on database performance.

5.1.4 Two-Step Query Processing of Spatial Operations

Since spatial query processing involves complex data types, a lake boundary might need a thousand vertices

for exact representation. Spatial operations typically follow a two-step algorithm (filter and refinement)

as shown in Figure 8 to efficiently process complex spatial objects [37]. Approximate geometry such as the

minimal orthogonal bounding rectangle of an extended spatial object is first used to filter out many irrelevant

objects quickly. Exact geometry is then used for the remaining spatial objects to complete the processing.

• Filter step: In this step, the spatial objects are represented by simpler approximations like the

minimum bounding rectangle(MBR). For example, consider the following point query, “Find all rivers

whose flood-plains overlap the SHRINE”. In SQL this will be:

18



    

load   object   geometry

refinement stepfilter step

test on exact

Query result

Query

candidate set

spatial index

hitsfalse hits

geometry

Figure 8: Two-step processing

SELECT river.name

FROM river

WHERE overlap(river.flood-plain, :SHRINE)

If we approximate the flood-plains of all rivers with MBRs, then it is less expensive to determine

whether the point is in a MBR than to check if a point is in an irregular polygon, that is, in the exact

shape of the flood-plain. The answer from this approximate test is a superset of the real answer set.

This superset is sometimes called the candidate set. Even the spatial predicate may be replaced by an

approximation to simplify a query optimizer. For example, touch(river.flood-plain, :SHRINE) may be

replaced by overlap(MBR(river.flood-plain, :SHRINE), and MBR(:SHRINE)) in the filter step. Many

spatial operators, for example, inside, north-of and buffer, can be approximated using the overlap

relationship among corresponding MBRs. Such a transformation guarantees that no tuple from the

final answer using exact geometry is eliminated in the filter step.

• Refinement step: Here, the exact geometry of each element from the candidate set and the exact

spatial predicate is examined. This usually requires the use of a CPU-intensive algorithm. This step

may sometimes be processed outside the spatial database in an application program such as GIS, using

the candidate set produced by the spatial database in the filter step.

5.1.5 Techniques for Spatial Operations

This section presents several common operations between spatial objects: selection, spatial join, aggregates,

and bulk loading.
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Selection Operation

Similar to traditional database systems, the selection operation can be performed on indexed or non-

indexed spatial data. The difference is in the technique used to evaluate the predicate and the type of

index. As discussed in the previous section, a two-step approach, where the geometry of a spatial object

is approximated by a rectangle, is commonly used to evaluate a predicate. Popular indexing techniques

for spatial data are R-tree, and space-filling curves. An R-tree is a height-balanced tree that is a natural

extension of a B-tree for k-dimensions. It allows a point search to be processed in O(log n) time. Hash

filling curves provide one-to-one continuous mappings which map points of multi-dimensional space into one-

dimensional space. This allows the user to impose order on higher dimensional spaces. Common examples

of space-filling curves are row-order Peano, Z-order, and Hilbert curves. Once the data has been ordered

by a space-filling curve, a B-tree index can be imposed on the ordered entries to enhance the search. Point

search operations can be performed in O(log n) time.

Spatial Join Operation

Conceptually a join is defined as a cross-product followed by a selection condition. In practice, this

viewpoint can be very expensive, because it involves materializing the cross-product before applying the

selection criterion. This is especially true for spatial databases. Many ingenious algorithms have been

proposed to preempt the need to perform the cross-product. The two-step query processing technique

described in the previous section is the most commonly used. With such methods, the spatial join operation

can be reduced to a rectangle-rectangle intersection, the cost of which is relatively modest compared to the

I/O cost of retrieving pages from secondary memory for processing.

A number of strategies have been proposed for processing spatial joins. Interested readers are encouraged

to refer to [27, 97, 90, 130, 159].

Aggregate Operation: Nearest Neighbor, Reverse Nearest Neighbor

Nearest Neighbor queries are common in many applications. For example, a person driving on the road

may want to find the nearest gas station from his current location. Various algorithms exist for nearest

neighbor queries [70, 116, 109, 73, 157]. Techniques based on Voronoi diagrams, Quad-tree indexing, and

Kd-trees have been discussed in [119]

Reverse Nearest Neighbor queries were introduced in [83] in the context of decision support systems. For

example, a RNN query can be used to find a set of customers who can be influenced by the opening of a

new store outlet location.
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5.1.6 Bulk Loading

Bulk operations affect potentially a large set of tuples, unlike other database operations, such as insert into

a relation, which affects possibly one tuple at a time. Bulk loading refers to the creation of an index from

scratch on a potentially large set of data. Bulk loading has its advantages because the properties of the data

set may be known in advance. These properties may be used to efficiently design the space-partitioning index

structures commonly used for spatial data. An evaluation of generic bulk loading techniques is provided in

[45].

5.1.7 Parallel GIS

A High Performance Geographic Information System (HPGIS) is a central component of many interactive

applications like real-time terrain visualization, situation assessment, and spatial decision-making. The

Geographic Information System (GIS) often contains large amounts of geometric and feature data (e.g.

location, elevation, soil type, etc.) represented as large sets of points, chains of line segments, and polygons.

This data is often accessed via range queries. The existing sequential methods for supporting GIS operations

do not meet the realtime requirements imposed by many interactive applications.

Hence, parallelization of GIS is essential for meeting the high performance requirements of several real-

time applications. A GIS operation can be parallelized either by function-partitioning [20, 22, 137] or

by data-partitioning [28, 38, 55, 71, 72, 87, 152, 158, 126] . Function-partitioning uses specialized data

structures (e.g. distributed data structures) and algorithms which may be different from their sequential

counterparts. Data-partitioning techniques divide the data among different processors and independently

execute the sequential algorithm on each processor. Data-partitioning in turn is achieved by declustering

[51, 94] the spatial data. If the static declustering methods fail to equally distribute the load among different

processors, the load-balance may be improved by redistributing parts of the data to idle processors using

Dynamic Load-Balancing (DLB) techniques.

5.2 Research Needs

This section presents the research needs for spatial query processing and query optimization.

Query processing

Many open research areas exist at the logical level of query processing, including query-cost modeling

and queries related to fields and networks. Cost models are used to rank and select the promising processing

strategies, given a spatial query and a spatial data set. However, traditional cost models may not be accurate

in estimating the cost of strategies for spatial operations, due to the distance metric as well as the semantic
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gap between relational operators and spatial operation. Comparison of the execution-costs of such strategies

required that new cost models be developed to estimate the selectivity of spatial search and join operations.

Preliminary work in the context of the R-tree, tree-matching join, and fractal-model is promising [33, 147],

but more work is needed.

Many processing strategies using the overlap predicate have been developed for range queries and spatial

join queries. However, there is a need to develop and evaluate strategies for many other frequent queries

such as those listed in Table 6. These include queries on objects using predicates other than overlap, queries

on fields such as slope analysis, and queries on networks such as the shortest path to a set of destinations.

Depending on the type of spatial data and the nature of the query, other research areas also need to be

investigated. A moving objects query involves spatial objects that are mobile. Examples of such queries

include “Which is the nearest taxi cab to the customer?”, “Where is the hurricane expected to hit next?”,

and “What is a possible location of a serial criminal?” With the increasing availability of streaming data

from GPS devices, continous queries has become an active area of research. Several techniques [49, 61, 62]

have been proposed to execute such queries.

A skyline query [36] is a query to retrieve a set of interesting points (records) from a potentially huge

collection of points (records) based on certain attributes. For example, considering a set of hotels to be

points, the skyline query may return a set of interesting hotels based on a user’s preferences. The set of hotels

returned for a user who prefers cheap hotel may be different from the set of hotels returned for a user who

prefers hotels which are closer to the coast. Research needed for skyline query operation includes computation

of algorithms, and processing for higher dimensions (attributes). Other query processing techniques where

research is required are querying on 3D spatial data and spatio-temporal data.

Query optimization

The query optimizer, a module in database software, generates different evaluation plans and determines

the appropriate execution strategy. Before the query optimizer can operate on the query, the high level

Table 6: Difficult Spatial Queries from GIS

V oronoize Classify households as to which supermarket they are closest to

Network Find the shortest path from the warehouse to all delivery stops

T imedependentnetwork Find the shortest path where the road network is dynamic

Allocation Where is the best place to build a new restaurant

Transformation Triangulate a layer based on elevation

BulkLoad Load a spatial data file into the database

Raster ↔ Vector Convert between raster and vector representations

V isibility Find all points of objects and environment visible from a point

EvacuationRoute Find evacuation routes based on capacity and availability constraints

PredictLocation Predict the location of a mobile person based on personal route patterns
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declarative statement must be scanned through a parser. The parser checks the syntax and transforms

the statement into a query tree. In traditional databases, the data types and functions are fixed and the

parser is relatively simple. Spatial databases are examples of an extensible database system and have

provisions for user-defined types and methods. Therefore, compared to traditional databases, the parser

for spatial databases has to be considerably more sophisticated to identify and manage user-defined data

types and map them into syntactically correct query trees. In the query tree, the leaf nodes correspond to

the relations involved and the internal nodes correspond to the basic operations that constitute the query.

Query processing starts at the leaf nodes and proceeds up the tree until the operation at the root node has

been performed.

Consider the query, “Find all lakes which have an area greater than 20 sq. km. and are within 50 km.

from the campground.” Let us assume that the Area() function is not pre-computed and that its value is

computed afresh every time it is invoked. A query tree generated for the query is shown in Figure 9 (a).

In the classical situation, the rule “select before join” would dictate that the Area function be computed

before the join predicate function, Distance()(Figure 9 (b)), the underlying assumption being that the

computational cost of executing the select and join predicate is equivalent and negligible compared to the

I/O cost of the operations. In the spatial situation, the relative cost per tuple of Area() and Distance()

is an important factor in deciding the order of the operations [69]. Depending upon the implementation of

these two functions, the optimal strategy may be to process the join before the select operation(Figure 9 (c)).

This approach thus violates the main heuristic rule for relational databases, which states “Apply select and

project before the join and binary operations” are no longer unconditional. There is a cost-based optimization

technique to determine the optimal execution strategy from a set of execution plans. A quantitative analysis

of spatial index structures is used to calculate the expected number of disk accesses that are required to

perform a spatial query [146]. Nevertheless, in spite of these advances, query optimization techniques for

spatial data need further study.

6 Spatial File Organization and Indices

6.1 Accomplishments

6.1.1 Space-Filling Curves

The physical design of a spatial database optimizes the instructions to storage devices for performing common

operations on spatial data files. File designs for secondary storage include clustering methods as well as

spatial hashing methods. Spatial clustering techniques are more difficult to design than traditional clustering
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Figure 10: Space-filling curves to linearize a multidimensional space

techniques because there is no natural order in multidimensional space where spatial data resides. This is

only complicated by the fact that the storage disk is a logical one-dimensional device. Thus, what is needed

is a mapping from a higher dimensional space to a one-dimensional space which is distance–preserving: this

ensures that elements that are close in space are mapped onto nearby points on the line, and no two points in

the space are mapped onto the same point on the line [29]. Several mappings, none of them ideal, have been

proposed to accomplish this. The most prominent ones include row-order, Z-order and the Hilbert-curve

(Figure 10).

Metric clustering techniques use the notion of distance to group nearest neighbors together in a metric

space. Topological clustering methods like connectivity clustered access methods [124] use the min-cut parti-

tioning of a graph representation to efficiently support graph traversal operations. The physical organization

of files can be supplemented with indices, which are data structures to improve the performance of search

operations.

Classical one-dimensional indices such as the B+-tree can be used for spatial data by linearizing a multi-
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dimensional space using a space-filling curve such as the Z-order. A large number of spatial indices [119] have

been explored for multidimensional euclidean space. Representative indices for point objects include grid

files, multidimensional grid files [89], Point-Quad-Trees, and Kd-trees. Representative indices for extended

objects include the R-tree family, the Field-tree, Cell-tree, BSP-tree, and Balanced and Nested grid files.

6.1.2 Grid Files

Grid files were introduced by Nievergelt [106]. A grid file divides the space into n-dimensional spaces which

can fit into equal-size buckets. The structures are not hierarchical and can be used to index static uniformly

distributed data. However, due to its structure the directory of a grid file can be so sparse and large that

a large main memory is required. There are several variations of grid files to index data efficiently and to

overcome these limitations [108, 153]. An overview of grid files is given in [119].

6.1.3 Tree indexes

R-tree aims to index objects in a hierarchical index structure [64]. The R-tree is a height-balanced tree

which is the natural extension of the B-tree for k-dimensions. Spatial objects are represented in the R-tree

by their minimum bounding rectangle (MBR). Figure 11 illustrates spatial objects organized as an R-tree

index. R-trees can be used to process both point and range queries.

Several variants of R-trees exist for better performance of queries and storage utilization. The R+-tree

[123] is used to store objects by avoiding overlaps among the MBRs, which increases the performance of the

searching. R∗-trees [31] relies on the combined optimization of the area, margin, and overlap of each MBR

in the intermediate nodes of the tree, which results in better storage utilization.

Many R-tree based index structures [145, 117, 150, 105, 105, 118, 144] have been proposed to index

spatio-temporal objects. A survey of spatio-temporal access methods has been provided in [101].

Quad tree [52] is a space-partitioning index structure in which the space is recursively divided into

quads. This recursive process is implemented until each quad is homogeneous. There are several variations

of quad trees to store point data, raster data, and object data. There are also other quad tree structures

to index spatio-temporal datasets, such as Overlapping Linear Quad Trees [149], and Multiple Overlapping

Features (MOF) trees [98].

The Generalized Search Tree (GiST) [68] provides a framework to build almost any kind of tree index

on any kind of data. Tree index structures, such as B+-tree and R-tree, can be built using GiST. A Spatial-

Partitioning Generalized Search Tree (SP-GiST) [25] is an extensible index structure for space-partitioning

trees. Index trees such as Quad tree, and kd-tree can be built using SP-GiST.
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Figure 11: Spatial Objects (d, e, f, g, h, i) arranged in an R-tree hierarchy

6.1.4 Graph indexes

Most of the spatial access methods provide methods and operators for point and range queries over collections

of spatial points, line segments, and polygons. However, it is not clear if spatial access methods can efficiently

support network computations which traverse line-segments in a spatial network based on connectivity

rather than geographic proximity. A Connectivity-Clustered Access Method for Spatial Network

(CCAM) is proposed to index spatial networks based on graph partitioning [124] by supporting network

operations. An auxiliary secondary index, such as B+-tree, R-tree, and Grid File, is used to support network

operations such as Find(), get-a-Successor(), and get-Successors().

6.2 Research Needs

Concurrency Control The R-link tree [84] is among the few approaches available for concurrency control

on the R-tree. New approaches for concurrency-control techniques are needed for other spatial indices. Con-

currency is provided during operations such as search, insert, and delete. The R-link tree is also recoverable

in a write-ahead logging environment. [85] provides general algorithms for concurrency control for GiST

that can also be applied to tree-based indexes. Research is required for concurrency control on other useful

spatial data structures.
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7 Trends: Spatial Data Mining

7.1 Accomplishments

The explosive growth of spatial data and widespread use of spatial databases emphasize the need for the

automated discovery of spatial knowledge. Spatial data mining is the process of discovering interesting

and previously unknown, but potentially useful patterns from spatial databases. Some of the applications

are: location-based services, studying the effects of climate, land-use classification, predicting the spread of

disease, creating high resolution three-dimensional maps from satellite imagery, finding crime hot spots, and

detecting local instability in traffic. A detailed review of spatial data mining can be found in [134].

The requirements of mining spatial databases are different from those of mining classical relational

databases. The difference between classical and spatial data mining parallels the difference between classical

and spatial statistics. One of the fundamental assumptions that guides statistical analysis is that the data

samples are independently generated, as with successive tosses of a coin, or the rolling of a die. When it

comes to the analysis of spatial data, the assumption about the independence of samples is generally false.

In fact, spatial data tends to be highly self-correlated. For example, changes in natural resources, wildlife,

and temperature vary gradually over space. The notion of spatial autocorrelation, the idea that similar

objects tend to cluster in geographic space, is unique to spatial data mining.

For detailed discussion of spatial analysis, readers are encouraged to refer to [18, 66].

7.1.1 Spatial Patterns

This section presents several spatial patterns, specifically those related to location prediction, Markhov

random fields, spatial clustering, spatial outliers, and spatial co-location.

Location Prediction

Location prediction is concerned with the discovery of a model to infer locations of a spatial phenom-

enon from the maps of other spatial features. For example, ecologists build models to predict habitats for

endangered species using maps of vegetation, water bodies, climate, and other related species. Figure 12

shows the learning dataset used in building a location prediction model for red-winged blackbirds in the Darr

and Stubble wetlands on the shores of Lake Erie in Ohio. The dataset consists of nest location, vegetation

durability, distance to open water and water depth maps. Spatial data mining techniques that capture the

spatial auto-correlation [76, 136] of nest location such as the Spatial Autoregression Model (SAR) and

Markov Random Fields (MRF) are used for location prediction modeling.

Spatial Autoregression Model

Linear regression models are used to estimate the conditional expected value of a dependent variable
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(a) Nest Locations (b) Vegetation Durability

(c) Water Depth (d) Distance to Open Water

Figure 12: (a) Learning dataset: The geometry of the Darr wetland and the locations of the nests, (b) The
spatial distribution of vegetation durability over the marshland, (c) The spatial distribution of water depth,
and (d) The spatial distribution of distance to open water.

y given the values of other variables X . Such a model assumes that the variables are independent. The

Spatial Autoregression Model [18, 60, 92, 127] is an extension of the linear regression model that takes

spatial autocorrelation into consideration. If the dependent values y and X are related to each other, then

the regression equation [23] can be modified as

y = ρWy + Xβ + ǫ (1)

Here W is the neighborhood relationship contiguity matrix and ρ is a parameter that reflects the strength

of the spatial dependencies between the elements of the dependent variable. Notice that when ρ = 0, this

equation collapses to the linear regression model. If the spatial autocorrelation coefficient is statistically

significant, then SAR will quantify the presence of spatial autocorrelation. In such a case, the spatial
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autocorrelation coefficient will indicate the extent to which variations in the dependent variable (y) are

explained by the average of neighboring observation values.

Markov Random Field

Markov Random Field-based [93] Bayesian classifiers estimate the classification model, f̂C , using MRF

and Bayes’ rule. A set of random variables whose interdependency relationship is represented by an undi-

rected graph (i.e., a symmetric neighborhood matrix) is called a Markov Random Field. The Markov property

specifies that a variable depends only on its neighbors and is independent of all other variables. The loca-

tion prediction problem can be modeled in this framework by assuming that the class label, li = fC(si),

of different locations, si, constitutes an MRF. In other words, random variable li is independent of li if

W (si, sj) = 0.

The Bayesian rule can be used to predict li from feature value vector X and neighborhood class label

vector Li as follows:

Pr(li|X, Li) =
Pr(X |li, Li)Pr(li|Li)

Pr(X)
(2)

The solution procedure can estimate Pr(li|Li) from the training data, where Li denotes a set of labels

in the neighborhood of si excluding the label at si. It does this by examining the ratios of the frequencies of

class labels to the total number of locations in the spatial framework. Pr(X |li, Li) can be estimated using

kernel functions from the observed values in the training dataset.

A more detailed theoretical and experimental comparison of these methods can be found in [50]. Although

MRF and SAR classification have different formulations, they share a common goal, estimating the posterior

probability distribution. However, the posterior probability for the two models is computed differently with

different assumptions. For MRF, the posterior is computed using Bayes’ rule, while, in SAR, the posterior

distribution is directly fitted to the data.

Spatial Clustering

Spatial clustering is a process of grouping a set of spatial objects into clusters so that objects within a

cluster have high similarity in comparison to one another, but are dissimilar to objects in other clusters.

For example, clustering is used to determine the “hot spots” in crime analysis and disease tracking. Many

criminal justice agencies are exploring the benefits provided by computer technologies to identify crime hot

spots in order to take preventive strategies such as deploying saturation patrols in hot spot areas.

Spatial clustering can be applied to group similar spatial objects together; the implicit assumption is that

patterns in space tend to be grouped rather than randomly located. However, the statistical significance of

spatial clusters should be measured by testing the assumption in the data. One of the methods to compute
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Figure 13: Spatial outlier (Station ID 9) in traffic volume data

this measure is based on quadrats (i.e., well defined areas, often rectangular in shape). Usually quadrats of

random location and orientations in the quadrats are counted, and statistics derived from the counters are

computed. Another type of statistics is based on distances between patterns; one such type is Ripley’s K-

function [44]. After the verification of the statistical significance of the spatial clustering, classical clustering

algorithms [67] can be used to discover interesting clusters.

Spatial Outliers

A spatial outlier [30] is a spatially referenced object whose non-spatial attribute values differ significantly

from those of other spatially referenced objects in its spatial neighborhood. Figure 13 gives an example of

detecting spatial outliers in traffic measurements for sensors on highway I-35W (North bound) for a 24-hour

time period. Station 9 seems to be a spatial outlier as it exhibits inconsistent traffic flow as compared with its

neighboring stations. The reason could be that the sensor at Station 9 is malfunctioning. Detecting spatial

outliers is useful in many applications of geographic information systems and spatial databases, including

transportation, ecology, public safety, public health, climatology, and location-based services.

Spatial attributes are used to characterize location, neighborhood, and distance. Non-spatial attribute

dimensions are used to compare a spatially referenced object to its neighbors. Spatial statistics literature pro-

vides two kinds of bi-partite multidimensional tests, namely graphical tests and quantitative tests. Graphical

tests, which are based on the visualization of spatial data, highlight spatial outliers i.e., Variogram clouds [44]

and Moran scatterplots [96]. Quantitative methods provide a precise test to distinguish spatial outliers from

the remainder of data. A unified approach to detect spatial outliers efficiently is discussed in [131]. [95]

provides algorithms for multiple spatial outlier detection.

Spatial Co-location The co-location pattern discovery process finds frequently co-located subsets of spatial

event types given a map of their locations. For example, the analysis of the habitats of animals and plants
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Figure 14: Co-location between roads and rivers in a hilly terrain (Courtesy: Architecture Technology
Corporation)

may identify the co-locations of predator-prey species, symbiotic species, or fire events with fuel, ignition

sources etc. Figure 14 gives an example of the co-location between roads and rivers in a geographic region.

Approaches to discovering co-location rules can be categorized into two classes, namely spatial statistics,

and data mining approaches. Spatial statistics-based approaches use measures of spatial correlation to

characterize the relationship between different types of spatial features. Measures of spatial correlation

include the cross K-function with Monte Carlo simulation, mean nearest-neighbor distance, and spatial

regression models.

Data mining approaches can be further divided into transaction-based approaches and distance-based

approaches. Transaction-based approaches focus on defining transactions over space so that an Apriori-like

algorithm can be used. Transactions over space can be defined by a reference-feature centric model. Under

this model, transactions are created around instances of one user-specified spatial feature. The association

rules are derived using the Apriori [21] algorithm. The rules formed are related to the reference feature.

However, it is non-trivial to generalize the paradigm of forming rules related to a reference feature to the

case where no reference feature is specified. Also, defining transactions around locations of instances of all

features may yield duplicate counts for many candidate associations.

In a distance-based approach [102, 129, 74], instances of objects are grouped together based on their

Euclidean distance from each other. This approach can be considered to be an event-centric model which

finds subsets of spatial features likely to occur in a neighborhood around instances of given subsets of event

types.
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7.2 Research Needs

This section presents several research needs in the area of spatio-temporal data mining and spatial-temporal

network mining.

7.2.1 Spatio-temporal Data Mining

Spatio-temporal (ST) data mining aims to develop models and objective functions as well as to discover

patterns which are more suited to spatio-temporal databases and their unique properties [115]. An extensive

survey of spatio-temporal databases, models and languages, and access methods can be found in [86]. A

bibliography of spatio-temporal data mining can be found in [114].

Spatio-temporal pattern mining focuses on discovering knowledge that is frequently located together in

space and time. [39, 41, 40] defined the problems of discovering mixed-drove and sustained emerging spatio-

temporal co-occurrence patterns and proposed interest measures and algorithms to mine such patterns. Other

research needs include conflation, where a single feature is obtained from several sources or representations.

The goal is to determine the optimal or best representation based on a set of rules. Problems tend to occur

during maintenance operations and cases of vertical obstruction.

In several application domains such as sensor networks, mobile networks, moving object analysis and

image analysis, the need for Spatio-temporal data mining is increasing drastically. It is vital to develop

new models and techniques, to define new spatio-temporal patterns, and to formulize monotonic interest

measures to mine these patterns [113].

7.2.2 Spatio-temporal Network Mining

In the post-9/11 world of asymmetric warfare in urban area, many human activities are centered about

ST infrastructure networks, such as transportation, oil/gas-pipelines, and utilities (e.g. water, electricity,

telephone). Thus, activity reports, e.g. crime/insurgency reports, may often use network based location ref-

erences, e.g. street address such as ”200 Quiet Street, Scaryville, RQ 91101”. In addition, spatial interaction

among activities at nearby locations may be constrained by network connectivity and network distances (e.g.

shortest path along roads or train networks) rather than geometric distances (e.g., Euclidean or Manhattan

distances) used in traditional spatial analysis. Crime prevention may focus on identifying subsets of ST

networks with high activity levels, understanding underlying causes in terms of ST-network properties, and

designing ST-network-control policies.

Existing spatial analysis methods face several challenges (e.g., [121]). First, these methods do not model

the effect of explanatory variables to determine the locations of network hot spots. Second, existing methods
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Figure 15: Topics driving future research needs in spatial database systems

for network pattern analysis are computationally expensive. Third, these methods do not consider the

temporal aspects of the activity in the discovery of network patterns. For example, the routes used by

criminals during the day and night may differ. The periodicity of bus/train schedules can have an impact on

the routes traveled. Incorporating the time-dependency of transportation networks can improve the accuracy

of the patterns.

8 Summary

In this chapter we presented the major research accomplishments and techniques which have emerged from

the area of spatial databases in the past decade. These include spatial database modeling, spatial query

processing, and spatial access methods. We have also identified areas where more research is needed, such

as spatio-temporal databases, spatial data mining, and spatial networks.

Figure 15 provides a summary of topics which continue to drive the research needs of spatial database

systems. Increasingly available spatial data in the form of digitized maps, remotely sensed images, spatio-

temporal data (for example, from videos), and streaming data from sensors have to be managed and processed

efficiently. New ways of querying techniques to visualize spatial data in more than one dimension are needed.

A number of advances have been made in computer hardware over the last few years, but many have yet to

be fully exploited, including increases in main memory, more effective storage using Storage Area Networks,
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greater availability of multi-core processors, and powerful graphic processors. A huge impetus for these

advances has been spatial data applications such as land navigation systems and location based services.

To measure the quality of spatial database systems, new benchmarks have to be established. Some of the

benchmarks [142, 110] established earlier have become dated. Newer benchmarks are needed to characterize

the spatial data management needs of other systems and applications such as spatio-temporal databases,

moving objects databases, and location based services.
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