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Proteins are the most essential and versatile macromolecules of life, and the knowledge of their functions is a cru-
cial link in the development of new drugs, better crops, and even the development of synthetic biochemicals such
as biofuels. Experimental procedures for protein functionprediction are inherently low throughput and are thus
unable to annotate a non-trivial fraction of proteins that are becoming available due to rapid advances in genome
sequencing technology. This has motivated the developmentof computational techniques that utilize a variety of
high-throughput experimental data for protein function prediction, such as protein and genome sequences, gene
expression data, protein interaction networks and phylogenetic profiles. Indeed, in a short period of a decade,
several hundred articles have been published on this topic.This survey aims to discuss this wide spectrum of
approaches by categorizing them in terms of the data type they use for predicting function, and thus identify the
trends and needs of this very important field. The survey is expected to be useful for computational biologists and
bioinformaticians aiming to get an overview of the field of computational function prediction, and identify areas
that can benefit from further research.
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1. INTRODUCTION

Proteins are macromolecules that serve as building blocks and functional components of a
cell, and account for the second largest fraction of the cellular weight after water. Proteins
are responsible for some of the most important functions in an organism, such as constitu-
tion of the organs (structural proteins), the catalysis of biochemical reactions necessary for
metabolism (enzymes), and the maintenance of the cellular environment (transmembrane
proteins). Thus, proteins are the most essential and versatile macromolecules of life, and
the knowledge of their functions is a crucial link in the development of new drugs, better
crops, and even the development of synthetic biochemicals such as biofuels.

The early approaches to predicting protein function were experimental and usually fo-
cused on a specific target gene or protein, or a small set of proteins forming natural groups
such as protein complexes. These approaches included gene knockout, targeted mutations
and the inhibition of gene expression [Weaver 2002]. However, irrespective of the details,
these approaches are low-throughput because of the huge experimental and human effort
required in analyzing a single gene or protein. As a result, even large-scale experimen-
tal annotation initiatives, such as the EUROFAN project [Oliver 1996], are inadequate for
annotating a non-trivial fraction of the proteins that are becoming available due to rapid
advances in genome sequencing technology. This has resulted in a continually expanding
sequence-function gap for the discovered proteins [Roberts 2004].

In an attempt to close this gap, numerous high-throughput experimental procedures have
been invented to investigate the mechanisms leading to the accomplishment of a protein’s
function. These procedures have generated a wide variety ofuseful data that ranges from
simple protein sequences to complex high-throughput data,such as gene expression data
sets and protein interaction networks. These data offer different types of insights into
a protein’s function and related concepts. For instance, protein interaction data shows
which proteins come together to perform a particular function, while the three-dimensional



4 · Pandey et al.

structure of a protein determines the precise sites to whichthe interacting protein binds
itself. Furthermore, recent years have seen the recording of this data in very standardized
and professionally maintained databases such as SWISS-PROT [Boeckmann et al. 2003],
MIPS [Mewes et al. 2002], DIP [Xenarios et al. 2002] and PDB [Berman et al. 2000].

The huge amount of data that has accumulated over the years has made biological dis-
covery via manual analysis tedious and cumbersome. This has, in turn, necessitated the use
of techniques from the field of bioinformatics, an approach that is crucial in today’s age
of rapid generation and warehousing of biological data. Bioinformatics focuses on the uti-
lization of techniques from computer science and the development of novel computational
approaches for addressing problems in molecular biology and associated disciplines. In-
deed, a more recently advocated path for biological research is the creation of hypotheses
by generating results from an appropriate bioinformatics algorithm in order to narrow the
search space, and the subsequent validation of these hypotheses to reach the final conclu-
sion [Rastan and Beeley 1997; Roberts 2004]. Standard sequence comparison tools such as
BLAST [Altschul et al. 1990; Altschul et al. 1997], and databases such as PROSITE [Hulo
et al. 2006], Pfam [Sonnhammer et al. 1997] and PRINTS [Attwood et al. 2003] serve as
testimonials to the benefits that bioinformatics can provide to molecular biology.

Following the success of computational approaches in solving important problems such
as sequence alignment and comparison [Altschul et al. 1997], and genome fragment as-
sembly [Shendure et al. 2004], and given the importance of protein function, numerous
computational techniques have also been proposed for predicting protein function. Early
approaches used sequence similarity tools such as BLAST [Altschul et al. 1990] to trans-
fer functional annotation from the most similar proteins. Subsequently, several other ap-
proaches have been proposed that utilize other types of biological data for computational
protein function prediction, such as gene expression data,protein interaction networks and
phylogenetic profiles. Indeed, in a short period of a decade,several hundred articles have
been published on this topic, including several survey articles that try to provide overviews
of different subsets of works at different time points.

According to Hodgman [2000], there were four distinct stages of the growth of this field,
namely pairwise sequence matching using BLAST [Altschul etal. 1990], the use of se-
quence signatures such as motifs, single sequence analysisusing data mining approaches,
and finally, genome-scale sequence analysis. Rost et al. [2003] analyzed the pros and cons
of exploiting biologically important signals, such as sequence homology, subcellular local-
ization, post-translational modifications and protein-protein interactions, for protein func-
tion prediction. They also stress the importance of establishing standardized databases such
as DIP (Database of Interacting Proteins) [Xenarios et al. 2002], and applying data min-
ing techniques to extract useful information from these databases. Seshasayee and Babu
[2005] present a more comprehensive survey of direct function prediction techniques. In
this article, the authors discuss the most well-known techniques exploiting genomic and
large-scale experimental data, such as protein-protein interaction networks, transcriptional
regulatory networks, and gene co-expression networks. They also discuss the earliest ap-
proaches that proposed an integration of multiple data types, such as [Marcotte et al. 1999].
Thus, the overall focus of this article is on reviewing approaches that exploit the context
information available about a protein. Finally, there has been a string of surveys of the field
of functional genomics, which involves the use of genome-wide information for predict-
ing the function and functional associations of proteins [Bork et al. 1998; Teichmann and
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Mitchison 2000; Marcotte et al. 2000; Eisenberg et al. 2000;Gabaldon and Huynen 2004;
Marcotte 2004]. In addition to discussing the most popular genome-based function predic-
tion techniques (Section 5), these articles also motivate the use of novel representations of
the genomic information, such as genome-wide protein functional networks, and biolog-
ically relevant features of genome sequences, such as nucleotide frequencies and repeats
and regulatory regions, for function prediction. Also, some recent surveys have focused on
the functions of more specific types of proteins, such as mitochondrial proteins [Gabaldon
2006] and proteins involved in cancer [Hu et al. 2007].

The early experience in the use of computational techniquesto predict protein function
from different types of biological data has been encouraging. However, although most
of the approaches developed so far highlight the potential of computational techniques
for protein function prediction, there have been several real successful cases of functional
inference in which the interactions or functions predictedby various computational tech-
niques were verified through experimental work. Table I presents such well-known success
cases for the gene fusion, gene neighborhood and phylogenetic profile (PP) approaches
(Section 5).

Technique Protein/Family Function and/or Reference
of Interest Interacting Protein

Fusion CHORD-containing proteins Sgt1 (Disease signaling proteins) [Shirasu et al. 1999]
Pur2 Pur3, Purine biosynthesis [Marcotte et al. 1999]

Neighborhood Cadherin proteins Cell adhesion [Wu and Maniatis 1999]
Human methylmalonyl-CoA Racemase enzyme [Bobik and Rasche 2000]

Phylo. Profile SmpB family Protein synthesis [Karzai et al. 1999]
Frataxin Iron-sulfur cluster assembly [Huynen et al. 2001]

Table I. Success stories of popular genomics techniques forfunction prediction

Given the wide variety of computational techniques that have been proposed for protein
function prediction, it can be very hard to keep track of the field and identify its strengths,
weaknesses and needs. Responding to this need, we undertakethis survey to provide an
extensive overview of the field of protein function prediction. In particular, following are
the goals and contributions of our survey:

(1) To provide a broad coverage of the field of computational prediction of protein func-
tion using multiple types of biological data. Many of the approaches covered have
shown promising results on test data sets, and the results ofother approaches are ex-
pected to improve with further enhancements.

(2) To highlight the inter-relationships between different types of biological data, and to
illustrate how ideas used for the analysis of one type of datacould influence those used
for the analysis of other data types. For instance, in order to realize the full potential
of the available genome sequence data, it would be beneficialto be informed of the
novel ideas behind approaches using protein sequence data as well. Similarly, it may
be very useful to combine multiple data types and analyze them collectively, rather
than analyzing them individually. Indeed, very promising results have been obtained
by approaches that have implemented this idea.

(3) To identify the open problems and pressing needs of the field. As will be seen, most of
the approaches in this field are ad-hoc in nature, and have several limitations, such as
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their applicability to only specific subsets of proteins and/or functional classes. Thus,
several conceptual and data issues have to be addressed in order to come up with more
complete approaches for the function prediction problem.

(4) To illustrate the potential of data mining and machine learning techniques for address-
ing the problem of protein function prediction by learning from a wide variety of noisy
data. Indeed, the best results in the field have been achievedby approaches based on
intelligent learning and prediction techniques.

We believe that this survey will be useful to both computational and experimental biolo-
gists working with a wide variety of biological data. The survey contains a section for each
of the main types of biological data, as well as their combinations, that have been used for
predicting protein function. These data types are as shown below:

(1) Amino acid sequences (Section 3)
(2) Protein structure (Section 4)
(3) Genome sequences (Section 5)
(4) Phylogenetic data (Section 6)
(5) Microarray expression data (Section 7)
(6) Protein interaction networks and protein complexes (Section 8)
(7) Biomedical literature (Section 9)
(8) Combination of multiple data types (Section 10)

However, before we proceed with the discussion of these approaches, it is important to
make a couple of notes about protein function. First, protein function is an elusive concept
and there has been considerable debate in molecular biologyabout its definition. Hence,
Section 2 includes a detailed discussion of various perspectives on this concept and how
different functional schemes embody these perspectives. Second, we do not distinguish
gene function, and refer to both of them as protein function.Technically, the true function
of a gene is to encode one or more proteins that actually perform the function [Gericke
2005]. However, since it is easier to perform experiments atthe genetic level, many times
the function of its products are taken as the function of the gene itself. Thus, we do not
distinguish gene function from protein function, and referto both of them as the latter.

2. WHAT IS PROTEIN FUNCTION?

The concept of protein function is highly context-sensitive and not very well-defined. In
fact, this concept typically acts as an umbrella term for alltypes of activities that a protein
is involved in, be it cellular, molecular or physiological.One such categorization of the
types of functions a protein can perform has been suggested by Bork et al. [1998]:

(1) Molecular function : The biochemical functions performed by a protein, such as lig-
and binding, catalysis of biochemical reactions and conformational changes.

(2) Cellular function : Many proteins come together to perform complex physiological
functions, such as operation of metabolic pathways and signal transduction, to keep
the various components of the organism working well.

(3) Phenotypic function: The integration of the physiological subsystems, consisting of
various proteins performing their cellular functions, andthe interaction of this inte-
grated system with environmental stimuli determines the phenotypic properties and
behavior of the organism.
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Fig. 1. A possible hierarchical organization of the categories of protein function (taken from [Bork et al. 1998])

Clearly, these three categories are not independent, but rather are hierarchically related
as shown in Figure 1. Also, this is not the only categorization that has been proposed.
For instance, the Gene Ontology classification scheme categorizes protein function into
cellular component, molecular function and biological process [Ashburner et al. 2000].
Confronted with such a variety of formalizations for the concept, we chose to follow the
following definition proposed by Rost et al. [2003] in this survey: function is everything
that happens to or through a protein. In fact, we extend this definition by considering func-
tional relationships and modules as forms of information about the function of a protein as
well.

2.1 Functional Classification Schemes

From the above discussion, protein function appears to be a very subjective concept, and
different researchers may denote the functions of proteinsdifferently. The first approach
to this naming may be to assign natural language labels to proteins, as and when their
function is determined. Indeed, this is the case, but such a naming convention sometimes
leads to highly atypical labels such asYippeeandStarry Night[Lan et al. 2002].

Clearly, such as naming system is not amenable to analysis bya human, much less a
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computer, because of its large variability. Thus, the need for a standardized functional
labeling scheme was paramount, and several groups responded to this need with very in-
novative proposals. Before discussing these proposed schemes, it is of merit to list some
desirable properties of such schemes [Riley 1998; Rison et al. 2000; Ouzounis et al. 2003].

(1) Wide coverage: This is the most important property, since any functional scheme
should cover as many of the functional phenomena across as many the organisms as
possible.

(2) Standardized format: Having minimal variability in the functional labels and adopt-
ing a standard data structure for the scheme makes the schemeeasily readable by
computer programs and signficantly enhances their impact.

(3) Hierarchical structure : As was seen [Bork et al. 1998], the possible functions do not
form a flat list, but are instead arranged hierarchically at aconceptual level. Func-
tional classes range from specific functions to very generalfunctional categories, thus
allowing a researcher to choose the appropriate level(s) for his analysis.

(4) Disjoint categories: Functions can be of different types, such as cellular component,
molecular function and biological process. Thus, a separate hierarchy should be con-
structed for each type, with no links between them. This allows the choice of the
appropriate type of function to be studied.

(5) Multiple functions : In order to model the biological possibility of a protein being
involved in multiple biological processes depending on thecontext, it is necessary for
a functional scheme to allow the labeling of a single proteinwith multiple functions.

(6) Dynamic nature: Last but not the least, the scheme should not be static, but should
be modified as and when new functional knowledge is discovered.

As mentioned, several functional schemes have been proposed to address these issues,
with each being successful to some extent, and each having a different scope. The earliest
systematic scheme proposed in this arena was the Enzyme Classification (EC) proposed
by the International Union of Biochemistry and Molecular Biology [Webb 1992]. This
scheme divides the class of enzymes, which are essential proteins responsible for the catal-
ysis of metabolic reactions, into six classes based on theirchemical composition. These
classes are then further subdivided into three hierarchical levels that further specify the
precise reaction a particular enzyme is involved in. However, this scheme had a limited
scope, since it was was essentially a classification of reactions and not properties of vari-
ous catalyst enzymes [Riley 1998].

Subsequent to EC, many functional schemes were proposed fora wider class of pro-
teins. Ouzounis et al. [2003] and Rison et al. [2000] presentexcellent reviews of some of
these schemes, listed in Table II. Many of these schemes, such as EcoCyc [Keseler et al.
2005] and SubtiList [Moszer et al. 2002], were originally designed for specific organisms,
in order to study the properties of their genomes and the consituent genes. However, they
were subsequently generalized and became more widely applicable. The most popular of
these functional schemes are those which were not designed for any specific organism, but
were based on general biological phenomena taking place in awide variety of organisms,
both eukaryotes. MIPS/PEDANT [Mewes et al. 2002] (now FunCat [Ruepp et al. 2004])
is currently one of the most popular scheme for the validation of function prediction tech-
niques because of its wide coverage and a standardized hierarchical structure. However, the
Gene Ontology (GO) [Ashburner et al. 2000; GO Consortium 2006] is a recently proposed
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Scheme Reference Scope

EcoCyc [Keseler et al. 2005] E. coli genes
TIGRFAM [Haft et al. 2003] Complete genomes
SubtiList [Moszer et al. 2002] B. subtilisgenes

MIPS/PEDANT [Mewes et al. 2002] General
FunCat [Ruepp et al. 2004] General
KEGG [Kanehisa et al. 2004] Metabolic Pathways
WIT [Jr et al. 1998] Metabolic Pathways

Gene Ontology [GO Consortium 2006] General

Table II. Popular functional schemes having varying scopes

functional classification system which is based on solid computer science and biological
principles and is rapidly being recognized as the most general scheme for functional anno-
tation techniques across a wide variety of biological data [Jensen et al. 2003; Letovsky and
Kasif 2003; Hvidsten et al. 2001]. TIGR FAMilieS (TIGRFAMs)[Haft et al. 2003] is an-
other scheme designed for the functional annotation of complete genomes. Overall, almost
all of these schemes posess a good subset of above mentioned properties of a global func-
tional classification scheme, and the validation of an approach according to one of them
gives a reasonably good estimate of the general applicability, thus alleviating the concern
of overfittingto a particular labeling scheme.

A very interesting one-of-a-kind quantitative comparisonof the first six schemes listed in
Table II is reported by Rison et al. [2000]. This is a hard task, since all these schemes were
developed almost independently of each other, and thus, it is hard to compare one against
the other. Still, Rison et al. [2000] worked out a two-step unification-based strategy for
this comparison. In the first step, a combined scheme (CS) is created by manually mapping
functional classes up to level three in each of the schemes, and applying filtering techniques
to reduce the bias towards any particular scheme. In the second step, a representative
subset of each the original schemes was selected by mapping CS back to the scheme.
Thus, a representative and comparable version of all the schemes was retrieved. Upon
evaluation, it was found that MIPS had the largest overlap with CS, showing that it had
the best coverage and generality. This is a quantitative justification for the wide usage of
the MIPS functional classification in the protein function prediction literature. Another
conclusion of this study was that the overall overlap of all the schemes with CS was high,
thus showing that all of them are reasonably similar to each other at the conceptual level.
This conclusion is echoed by Ouzounis et al. [2003], who remark that the overlap between
functional classification schemes is much higher than that between structural classifications
such as SCOP [Andreeva et al. 2004] and CATH [Orengo et al. 2002], though the variability
is much higher in the former than in the latter. Thus, these studies provide a justification for
the above remarks that the evaluation of a function prediction technique made according
to any of these schemes, if conducted correctly, will provide robust results. However, an
effort should always be made to use the best available alternative.

Today, any review of functional classification schemes would be incomplete without the
discussion of GO and its many desirable properties. These properties have been exhibited
by the large number of studies which have used GO for different types of functional classes.
A quantitative proof of this popularity is the fact that the GO bibliography1 currently lists

1http://www.geneontology.org/cgi-bin/biblio.cgi
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1081 publications describing studies following Gene Ontology (as of Oct 19, 2006), which
is impressive. Here, we intend to provide a detailed discussion of why the Gene Ontology
is the most appropriate scheme for the functional analysis of genes and proteins.

2.2 GO is the Way to Go!

An ontology is defined as a systematic arrangement of all of the important categories of ob-
jects and concepts that exist in some field of discourse, together with the relations between
them2. This concept, which comes originally from philosophy [Smith 2003], is a very ef-
fective approach for the organization of the available knowledge in a domain. Owing to
these merits, ontologies have found wide applicability in various fields of computer science
such as data mining, artificial intelligence, software engineering, electronic commerce and
e-commerce [Tan et al. 2005; Davies et al. 2003; Gomez-Perezet al. 2004].

The recognition of the ability to effectively organize knowledge, which is crucial for
biology, where the research is highly decentralized, led tothe constitution of the Gene
Ontology (GO) [GO Consortium 2006]. At the highest level, GOis a functional classifi-
cation system composed of three disjoint functional ontologies corresponding tocellular
component(Figure 2(a)),molecular function(Figure 2(b)) andbiological process(Fig-
ure 2(c)), each of which addresses a different aspect of a protein’s function, as mentioned
earlier [Ashburner et al. 2000]. Each of these ontologies ishierarchically structured and is
modeled as a directed acyclic graph (DAG), in which each nodecorresponds to a functional
label and each directed edge correponds to either anis:a or apart:of relationship. Thus,
even though GO seems similar in methodolgy and scope to the other functional schemes
such as MIPS and TIGR, there is a fundamental difference which makes GO much more
general than the others. Almost all the other schemes were designed to aid the functional
annotation of specific genome(s), and were generalized later. However, the designers of
GO set out with the goal of creating a common multi-dimensional functional ontology
which could be applied irrespective of the genome being considered [Bada et al. 2004],
thus ensuring the wide applicability of the scheme. This underlying shift in ideology led
to the recognition of Gene Ontology as a radical rethink of gene product functional classi-
fication [Rison et al. 2000].

Interestingly, GO posesses all the desirable properties ofa functional classification sys-
tem listed earlier. In fact, its design ideology incorporated all these properties. The follow-
ing description of how GO satisfies these properties also illustrates its various aspects and
provides historical information.

(1) Wide coverage: GO was formed by a collaboration of three leading organism-specific
genomic databases FlyBase [FlyBase Consortium 2003], SGD [Dwight et al. 2002]
and MGI [Blake et al. 2003], who first realized the need to create a cross-species
functional classification system in order to solve the data integration problem created
by the huge number of indepedent genome projects in the earlygenome sequencing
period [Lewis 2005]. Very soon, other databases, such as TAIR [Huala et al. 2001],
also joined the GO consortium, and thus, the coverage of GO became very wide,
since biological phenomena occurring in a wide variety of biological systems were
considered when adding new labels to the ontology. A proof ofthis coverage is the
large number of genomes, including the human genome, that have been annotated with

2http://http://www.answers.com/topic/ontology-computer-science
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(a) Cellular component ontology

(b) Molecular function ontology

(c) DNA Metabolism portion of biological process
ontology

Fig. 2. Snapshots of the three GO functional ontologies (Figure adapted from [Ashburner et al. 2000])
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GO labels [Camon et al. 2003].
(2) Standardized format: The ontologies constituting GO are modeled as a generic cat-

egory of graphs known as directed acyclic graphs (DAGs), which have numerous ap-
plications in computer science, such as Bayesian networks and parse trees created by
compilers [Edwards 2000]. Each node in these graphs represents a specific functional
label and is assigned a unique GO id of the formGO : XXXXXXX , and each edge
represents either anis:a or apart:of relationship. This well-defined structure makes
GO easily usable by both humans and computers.

(3) Hierarchical structure : As shown in Figure 2, all the ontologies in GO are hierar-
chical in nature. However, they are more complex than other schemes such as MIPS,
which model this hierarchy as a tree [Mewes et al. 2002; Rueppet al. 2004]. The
ontologies in GO are modeled as DAGs, which allows a node to have more than one
parent. This is biologically appropriate, since a specific function can be a part of more
than one higher functions.

(4) Disjoint categories: GO is comprised of three disjoint ontologies corresponding to
cellular component(Figure 2(a)),molecular function(Figure 2(b)) andbiological pro-
cess(Figure 2(c)), each of which is a different aspect of a protein’s function. There
does not exist a link between any two of these ontologies, thus satisfying the disjoint-
ness condition. This is also in accordance with the multi-dimensional nature of a clas-
sification scheme as justified by Riley [1998], in order to treat the different functional
aspects of a protein separately, depending on the context ofthe study.

(5) Multiple functions : The structure of GO is inherently multi-dimensional, as discussed
above. In addition, within a single ontology, a protein may be labeled with multiple
nodes at different levels in hierarchy. The well-defined structure of each hierarchy
makes it possible to either extend an annotation to all the ancestors, or subsume them
in the opposite direction. In fact, the extension of annotation to all parents is the basis
of the validation of several function prediction strategies.

(6) Dynamic nature: Last but not the least, GO is an open-source endeavour and has a
public interface at the Sourceforge website3, which acts as the channel for submitting
new functional labels and other forms of functional knowledge. These submissions
are continuously reviewed by the curators and scientifically correct information is in-
corporated into the GO database [Bada et al. 2004; GO Consortium 2006].

The above discussion enumerates a detailed list of reasons that made Gene Ontology a
success [Bada et al. 2004; Clark et al. 2005]. This success has not been achieved only due
to the strong conceptual foundations of GO, but also becauseits applications in function
prediction that have produced great results, both in a quantitative and qualitative sense.
Numerous protein function prediction strategies that haveused Gene Ontology as a source
of functional classes and for the purpose of validation [Jensen et al. 2003; Letovsky and
Kasif 2003; Hvidsten et al. 2001], and now the use of these classes is almost a de-facto
standard. Also, the rapidly expanding army of easy-to-use tools for manipulating GO,
such as the AmiGO browser [GO Consortium 2006], has enhancedthe utility of GO for
experimental and computational biologists substantially.

The rich knowledge embedded in GO, and its more complex structure as compared to
other simpler schemes, has motivated studies that focus on making a better use of this

3http://geneontology.sourceforge.net
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knowledge and structure. Lord et al. [2003; Lord et al. [2003] performed a unique study
of GO, where they investigated whether proteins with similar characteristics, such as sim-
ilar amino acid sequences, are annotated withsimilar functional classes in GO. While the
similarity of sequences is reasonably easy to estimate using BLAST, the estimation of sim-
ilarity between GO classes that are arranged in a DAG-based hierarchy is considerably
harder. Thus, for this task, Lordet al used several semantic similarity measures, such as
that of Lin [1998], that have been used for a similar purpose in other ontologies, such as
WordNet [Fellbaum 1998]. Using these measures, they determined that there is a signif-
icant correlation between the similarity between the biological characteristics of proteins
and the similarity of their GO annotations. Similar resultswere reported for microarray
data [Sevilla et al. 2005]. This is important from a functionprediction viewpoint, since
now models for a function can utilize data not only from the proteins annotated with the
same function, but also fromsimilar functions.

A related issue in the use of GO in functional genomics studies is the fact that most of the
ontologies in GO contain several thousand functional termsat different levels of specificity.
In this situation, a hard task for function prediction studies is to choose which terms should
be used to evaluate the efficacy of the proposed prediction method. Myers et al. [2006]
have made useful suggestions for this choice, by evaluatingterms in the biological process
ontology for their relevance to experimental studies. Thisevaluation is done by obtaining
votes from biologists in response to the following questions: ”Given a proteinp and a
functionf , if a methodM predicts thatp performsf in an organism, can this prediction be
tested in wet-lab experiments?”. This evaluation is very important for the field of protein
function prediction, since the real utility of the computational methods in this field lies
in making predictions that can be verified experimentally. Thus, although the results of
this evaluation are currently available only for yeast4 and human proteins5 for the GO
biological process ontology, this study marks a significantadvance in the use of GO for
function prediction studies.

Motivated by these advances in making an effective use of theknowledge-rich but com-
plicated Gene Ontology, several machine learning methods have been proposed for explic-
itly incorporating the structure of GO into function prediction methods. Following is a list
of some of the methods used for this problem:

(1) Bayesian network modeling of the hierarchical DAG structure [Barutcuoglu et al.
2006].

(2) Probabilistic chain graphs for modeling the hierarchical DAG structure [Carroll and
Pavlovic 2006].

(3) Incorporation of the semantic similarities between functional classes into standard
classification algorithms [Pandey and Kumar 2007; Tao et al.2007].

In particular, Barutcuoglu et al. [2006] were able to achieve significant improvements in
performance over several classes, by augmenting a standardSVM classifier with hierar-
chical relationships between classes using their Bayesiannetwork. Even better results are
expected as more rigorous methods of complementing biological data with the information
in the structure and contents of GO are developed.

4http://www.biomedcentral.com/content/supplementary/1471-2164-7-187-s1.txt
5Unpublished
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Fig. 3. The central dogma of molecular biology: conversion of gene to protein via mRNA [Alberts et al. 2003]

This discussion makes it clear that the use of Gene Ontology in any function prediction
project, whether for validation or for algorithm design, naturally incorporates important
biological concepts into the strategy, thus making it more robust and biologically useful, in
addition to providing other advantages such as the improvement of coverage and accuracy.
This is why we suggest thatGO is the way to gofor the field of protein function prediction.

2.3 Discussion

In the preceding discussions, an attempt was made to more precisely define the meaning
of protein function. However, protein function is an umbrella concept that has various
aspects such as molecular function, cellular function and phenotypic function, and the most
appropriate formalization in general is to treat function as a hierarchical, multi-dimensional
concept. This model has been adopted by numerous functionalclassification schemes, each
with their own strengths and weakness. The most important conclusion of this section is
the superiority of the Gene Ontology over all the other classification schemes with respect
to an extensive list of desirable properties that any biological meaningful scheme should
posess. Because of its coverage, generality and biologicalrelevance, it would be beneficial
for protein function approaches to incorporate GO into their strategy in some form or the
other.

3. PROTEIN SEQUENCES

3.1 Introduction

The central dogma of molecular biology is the conversion of agene to protein via the
transcription and translation phases, as shown in Figure 3.The result of this process is
a sequence constructed from twenty amino acids, and is knownas the protein’s primary
structure. This sequence is the most fundamental form of information available about the
protein since it determines different characteristics of the protein such as its sub-cellular
localization, structure and function.

The most popular experimental method for the identificationof protein sequences is
mass spectrometry [Sickmann et al. 2003], which, in combination with algorithms such as
ProFound [Zhang and Chait 2000], comes in various flavors, such as peptide mass finger-
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printing, peptide fragmentation and other comparative methods. However, these methods
are low-throughput, and thus, with the exponential generation of genome sequences, the
focus has shifted to computational approaches that can identify genes from these genomes.
Once a gene has been identified, it is a trivial task to apply the codon-to-amino acid trans-
lation code [Weaver 2002] to predict the sequence of the protein encoded by the gene.
Some of the most popular tools for this gene identification task in eukaryotic organisms
are GenScan [Burge and Karlin 1997] and GeneParser [Snyder and Stormo 1995], which
employ hidden Markov models and dynamic programming, respectively, to combine the
signals corresponding to the various components of a gene’sstructure.

Since its amino acid sequence is the most fundamental information available about a
protein, such sequences have been accumulated in large numbers in several standardized
databases. The most popular of these are the SWISS-PROT and TrEMBL databases [Boeck-
mann et al. 2003]. SWISS-PROT is a comprehensive, manually curated database that
provides a wide variety of information about the constituent proteins, such as their func-
tional annotation, amino acid sequence and other information in the form of keywords and
features. TrEMBL (Translated EMBL) is an automatically curated supplement of SWISS-
PROT that contains the resultant translations of all nucleotide sequences present in the
EMBL/GenBank/DDBJ databases [Brunak et al. 2002], as well as their automated clas-
sification and annotation. As of May 2, 2006, the number of entries in SWISS-PROT
and TrEMBL were217551 and2851442 respectively. Because of the associated confi-
dence in the assigned functional classes, several approaches that employ data from these
two databases use SWISS-PROT as the source of the training sequences, while a subset
of TrEMBL is used as the test set. Other extensive databases of protein sequences are
MIPS [Mewes et al. 2002], PIR [Wu et al. 2003] and IPI [Kersey et al. 2004].

Database Reference Organism
SGD [Dwight et al. 2002] S. cerevisiae

FlyBase [FlyBase Consortium 2003] D. melanogaster
WormBase [Harris et al. 2004] C. elegans

TAIR [Huala et al. 2001] A. thaliana
TubercuList [Camus et al. 2002] M. tuberculosis
GenProtEC [Serres et al. 2004] E. coli
EnsEMBL [Hubbard et al. 2005] Several mammals

Table III. Organism-specific databases of protein sequences

Database Reference Type of proteins
GPCRDB [Horn et al. 2003] G-coupled protein receptors
MEROPS [Rawlings and Barrett 1999] Peptidases

TCDB [Saier Jr. 2000] Transport membrane proteins
LGICdb [Novre and Changeux 2001] Ligand-gated ion channels

BRENDA [Schomburg et al. 2004] Enzymes
NucleaRDB [Horn et al. 2001] Nuclear receptors

Table IV. Type-specific databases of protein sequences

Besides the above general-purpose databases, many groups have created organism- and
type-specific databases of protein sequences. Tables III and IV present a list of some
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of these databases. Most of these databases also contain functional annotations for the
member proteins. Finally, yet another category of databases consists of those that provide
functional annotations for genes, such as GOA [Camon et al. 2003] and GenBank [Benson
et al. 2004]. This widespread availability of information about and associated with protein
sequences has lead to a rapid increase in the use of protein sequences in bioinformatics
research.

3.2 Annotation transfer from homologues: How good is it for function prediction?

The first major breakthrough in the field of computational biology was the design of se-
quence similarity systems such as FASTA [Pearson and Lipman1988] and BLAST [Altschul
et al. 1990] (which was later enhanced into PSI-BLAST [Altschul et al. 1997]). These sys-
tems search standard databases such as SWISS-PROT to find proteins homologous to the
subject protein, i.e., a similar protein in another organism, using approximate sequence
alignment algorithms. In addition, BLAST and PSI-BLAST also produce an E-value for
each matchS in the database, which denotes the probability of achievingan alignment
scores equivalent to or better thanS in a database of random sequences of the same size
as the target database6, and can be used as a metric for ranking the search results. This
probability is calculated using an extreme value distribution [Gumbel 2004]. An imme-
diate consequence of the development of these systems was a method for the prediction
of function of unclassified proteins, namely annotation transfer from homologues. In this
method, the functions of the most homologous proteins (the results in a BLAST search
with an E-value greater than a pre-specified threshold) are transferred to the protein under
consideration. Though early applications of this method produced promising results, sub-
sequent studies discovered several limitations [Gerlt andBabbitt 2000; Devos and Valencia
2000; Whisstock and Lesk 2003].

The most significant factor causing an inconsistency of function between homologues is
duplication during evolution, where a duplicate of the original gene adopts a new function
in response to selective pressure [Gerlt and Babbitt 2000].For such genes and their prod-
ucts, annotation transfer by homology produces erroneous results, as has been confirmed
by several studies [Gerlt and Babbitt 2000; Whisstock and Lesk 2003].

In order to quantify the early indications that sequence homology is not equivalent to
functional identity, some studies were conducted to systematically evaluate the correlation
between sequence and functional similarity [Devos and Valencia 2000; Wilson et al. 2000].
Devos and Valencia [2000] evaluated this correlation for four distinct levels of protein
function:

—Enzymatic function classification, represented by the enzyme classification (EC) number

—Functional annotations in the form of SWISS-PROT keywords

—Cell functional class

—Conservation of the type of amino acid in the binding site

In addition, the authors of this study also evaluated how sequence homology is correlated
with the conservation of three-dimensional protein structure. The structure of a protein
is considered closer to its sequence than its function, as discussed in Section 4. Indeed,
structural comparison is considered the gold standard in the evaluation of remote sequence

6http://www.ncbi.nlm.nih.gov/blast/tutorial
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homology [Kuang et al. 2005; Rangwala and Karypis 2005], which operates primarily on
sequence data.

In this framework, the evaluation on theE. coli genome resulted in the following order
for the sequence-function correlation

Structure ≻ EC number ≻ SwissProt Keyword ≻ Functional class ≻ Binding site

which shows that sequence similarity is more highly correlated with structural than more
specific notions of functional similarity. This result is inagreement with those reported
by other researchers [Whisstock and Lesk 2003], and thus highlights the limitations of
the annotation transfer strategy. However, on the positiveside, it suggests a new route
for function prediction from sequence, i.e.sequence → structure → function, since
the two segments of this route have been reported to have a strong correlation than the
whole [Whisstock and Lesk 2003].

Finally, on the computational side of things, the inabilityof the annotation transfer tech-
nique to accurately determine protein function had an indirect effect of database contam-
ination [Devos and Valencia 2000], also sometimes referredto as propagation of error.
Since a major fraction of the annotations provided in the sequence databases that are au-
tomatically annotated, were derived using this technique,this led to the creation of an
erroneous reference set for function prediction approaches. Due to these issues, the focus
shifted from to using more sophisticated forms of sequence similarity than simple align-
ment to predict function. The following section describes these approaches in detail.

3.3 Existing Approaches Beyond Simple Homology-based Annotation Transfer

In the domain of automated function prediction, sequences have been heavily utilized,
in both direct homology-based and indirect subsequence- and feature-based approaches.
Specifically, techniques that predict protein function from sequence can be categorized
into three classes, namely, sequence homology-based approaches, subsequence-based ap-
proaches and feature-based approaches, which are explained below:

—Homology-based approaches: As discussed in Section 3.2, the results from simple
homology-based approaches are not always accurate. Hence,approaches in this category
attempt to make the homology search process more sensitive by multiple means, such
as making the search probabilistic and adding evidence fromother sources of data to
obtain more accurate and confident annotations for the queryproteins.

—Subsequence-based approaches: It has been shown in several studies that often not the
whole sequence, but only some segments of it are important for determining the function
of a given protein. Consequently, the approaches in this category treat these segments
or subsequences as features of a protein sequence and construct models for the mapping
of these features to protein function. These models are thenused to predict the function
of a query protein.

—Feature-based approaches: The final category of approaches attempts to exploit the
perspective that the amino acid sequence is a unique characterization of a protein, and
determines several of its physical and functional features. These features are used to
construct a predictive model which can map the feature-value vector of a query protein
to its function.

An important observation that may be observed from the abovecategorization is that
the subsequence- and feature-based approaches are very similar at the fundamental level,
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Feature
Extraction Selection

Feature Classification
Model

Fig. 4. General route adopted by the model-based approaches

since all these approaches involve construction of a model for the feature-to-function map-
ping. Hence, these categories can be grouped into the category of model-based approaches,
which essentially follow the route shown in Figure 4. Following is a description of the three
stages in this route:

—Feature Extraction: This stage involves the definition of features from a sequence, that
can be used to encode the desired properties of a protein. Some of the popularly used
features are motifs derived from a set of functionally or evolutionarily related proteins,
functional domains, n-grams and more biologically meaningful features such as the iso-
electric point, the Van der Waals volume and post-translational modifications.

—Feature Selection: Often, all the features used to encode a protein are not useful, since
some features may be noisy and/or redundant. To handle this,some, but not all, ap-
proaches use feature selection techniques from data mining, such asχ2 and Backward
Elimination [Dash and Liu 1997].

—Classification Model: Finally, a classification model is constructed by traininga clas-
sifier with feature-values vectors and their correponding functional classes. This model
can then be used to assign functional labels to query proteins that have been converted
into their corresponding feature-value vectors. Some classifiers that have been popularly
used in this field are support vector machines (SVMs), neuralnetworks (NNs) and the
naive Bayesian classifier.

However, there are also significant differences between subsequence- and feature-based
approaches, the most fundamental of them being that subsequence-based approaches ex-
tract the features, i.e., meaningful subsequences, such asmotifs and domains, from a set
of functionally related sequences. On the other hand, feature-based approaches derive and
evaluate their features on the basis of individual protein sequences. Thus, the latter ap-
proaches are more “direct” than those based on subsequences. Another related difference
is that the features used by the feature-based approaches are more biologically meaningful,
since they are defined on the basis of the available knowledgeabout protein function, and
model factors which may affect a protein’s function. On the other hand, it is known that
subsequences such as motifs and domains represent biologically meaningful portions of a
protein, but it is hard to attach a specific meaning with them.As will be discussed in subse-
quent sections, this is the primary reason for the success ofthe feature-based approaches.

Now, with a high-level view of the field of sequence-based function prediction, we pro-
ceed to discuss in detail the approaches falling within the three categories of homology-
based, subsequence-based and feature-based approaches.

3.3.1 Homology-based approaches.In Section 3.2, it was discussed that simple trans-
fer of annotation from the most homologous sequence may not produce very accurate re-
sults, primarily because of the weak correlation between a protein’s sequence and function.
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This section discusses several approaches that attempt to make this technique more accu-
rate by using various methods that make the homology search process more sensitive.

GeneQuiz [Andrade et al. 1999] was the first completely automated system for sequence
analysis and annotation. The annotation module of GeneQuizused the standard sequence
comparison systems such as FASTA and PSI-BLAST, but also performed additional func-
tions such as sequence filtering to identify the most significant portions of a sequence, us-
ing methods such as pattern discovery, multiple alignment and structural inference. Thus,
this system focused both on utilizing off-the-shelf software for function prediction, as well
as adding multiple evidence for the inferences made. The result was a more confident
estimation of the function of the query protein. PEDANT [Riley et al. 2005] and Auto-
FACT [Koski et al. 2005] are other genome database systems focussed on similar goals
and based on similar techniques. Together, these systems have enabled an integrated com-
parative analysis of sequences, often including proteins from other organisms a well.

The next major development in homology-based function prediction was the integra-
tion of Gene Ontology (GO) categories into the annotation process. The use of GO stan-
dardized the process since now organism-independent and hierarchically-structured func-
tional categories were used. Consequently, several homology-based annotation systems
were proposed on the basis of this idea, such as GOblet [Hennig et al. 2003], Onto-
Blast [Zehetner 2003], GOFigure [Khan et al. 2003], GoAnno [Chalmel et al. 2005] and
GOPET [Vinayagam et al. 2006], which are essentially simpleextensions of the similarity-
based annotation technique. GOtcha [Martin et al. 2004] is amore sophisticated system
that utilizes the GO hierarchical structure to find the most relevant annotations for a query
sequence. For this process, first a set of homologues is foundfor the sequence using a
BLAST search across various organisms, and the annotation set for these homologues is
arranged in a set of GO-like DAGs (Directed Acyclic Graphs) [West 2001]. Based on the
frequency of occurrence of the respective annotations and the E-values of the correspond-
ing matches, a new score called the P-score is calculated foreach annotation. This score
acts as a measure of the confidence attached to the annotationof the query sequence with
that term, and thus, the final set of annotations are retrieved by simply thresholding this
score. Experiments onD. melanogaster(Malaria parasite) showed that the results were
more sensitive and specific than those obtained by transferring the annotations of the top
BLAST match. Thus, compared to the earlier systems, GOtcha was better able to integrate
GO categories into the annotation process.

Besides direct annotation transfer, sequence homology hasalso been used in more indi-
rect approaches for function prediction. Abascal and Valencia [2003] discuss some of the
problems with the traditional annotation process, which are as follows:

—Function prediction errors introduced into the standard protein databases by the “classi-
cal” annotation strategies [Devos and Valencia 2000].

—Presence of multiple domains in a sequence, which contribute individually to the pro-
tein’s function, thus making it essential for any function prediction strategy to take into
account the domain structure of a protein.

—Inconsistency between the levels of detail in different functional annotations.

In order to overcome these obstacles,several approach haveproposed a multi-step strat-
egy for functional annotation based on clustering of protein sequences according to their
sequence similarities [Xie et al. 2002; Abascal and Valencia 2003; Sasson et al. 2006]. Fig-
ure 5 shows the flowchart of the basic strategy adopted in these two studies. The algorithm
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starts with the construction of the a similarity matrix thatstores the BLAST similarity val-
ues between the protein sequences in the original training set. This matrix is then used
to cluster these sequences, and the annotation of a sequencein these approaches depends
not on individual homologous sequences but a cluster composed of many such sequences.
This makes the process more robust to errors in individual entries. Thus, at a higher level, it
can be observed that these two approaches use homology detection only as an intermediate
step in the complete annotation process, thus reducing the effect of the problems associated
with the traditional annotation process.

         recursive BLAST search
   Similarity matrix construction using 

   Clustering  of homologous sequences

  Mining of representative text/keywords
       for members of the target cluster

    Final functional annotationInput  query sequence Annotation Model

Fig. 5. Basic strategy adopted by approaches based on clustering of protein sequences according to their pairwise
sequence similarities [Xie et al. 2002; Abascal and Valencia 2003; Sasson et al. 2006]

Another direction in which homology-based function transfer can be improved is by
making the process probabilistic. Levy et al. [2005] do thisby hypothesizing that a protein
can only belong to a functional class if its BLAST score distribution with the members of
the class is the same as that of these members themselves. In order to model this hypoth-
esis, a univariate and a multivariate probabilistic schemeis proposed. The former scheme
makes predictions simply on the basis of the total score of the target protein, by assigning
it a probability of belonging to each class. However, this often leads to ambiguous results,
and hence this scheme is extended to a multivariate one by constructing a vector of scores
for all classes for the target protein and then comparing it against the distribution in each
class. Results on a set of enzymes indicated a high accuracy of 90.6%. However, these
results should be seen in the light of the fact that enzyme functions are more tightly corre-
lated with their sequences than other proteins. Also, this scheme is expected to work only
for very specific classes, for example, the most specific level of GO, since more general
classes have significant overlap between them and thus the prediction may become am-
biguous. Hence, more work is needed in this direction to rid homology-based prediction
of its conceptual problems.

3.3.2 Subsequence-based approaches.Often only specific parts of whole sequence are
crucial for the protein to perform its functions. A related example is that ofexonsin
a gene sequence, which are substrings that are translated into an amino acid chain, and
introns, which are subsequences that are excluded from translation, and hence do not have
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a clear function in the sequence. Thus, in order to accurately model a protein’s function,
many approaches try to identify useful portions of the protein sequence that may contribute
to the accomplishment of the function by the protein. This section reviews several such
approaches. However, these approaches define ”useful portions” in different ways, and
some definitions are discussed before continuing with the discussion:

—Motif: Motifs are defined as sub-sequences which are conserved across a set of protein
sequences belonging to a family [Bork and Koonin 1996]. Owing to their conservation
property, they are candidates for functional sites in proteins, such as sites for ligand
binding, DNA binding and interactions with other proteins,and thus are useful as clues
for predicting the function of a protein [Bork and Koonin 1996; Huang and Brutlag
2001].

—Domain: It has been strongly hypothesized that the multiple functions performed by
a protein are due to different regions of the protein sequence having different struc-
tural and functional characteristics [Servant et al. 2002]. These regions are known as
functional domains, and a protein’s function is a combination of the functions of each
of these domains. However, this gives rise to the multi-domain problem, since now it
is important to identify all the domains in a protein sequence in order to elucidate its
function completely.

The above definitions indicate that identifying domains andmotifs can be useful for
predicting protein function. As mentioned earlier, these subsequences provide a new way
of encoding the protein sequence in terms of features that encode whether a certain motif or
domain is present in a sequence, and a confidence value of the match if desired. Once such
a feature vector has been calculated for each protein in the target set, various statistics and
data mining techniques, such as classfication, could be used. Many approaches based on
this idea have been proposed, starting with [Hannenhalli and Russell 2000]. This approach
tried to identify regions of a sequence that best distinguish a certain function or sub-type.
This is done by identifying positions in a multiple sequencealignment of proteins in a
family s, and finding the relative entropy of each position with respect tos ands̄. The most
discriminating positions are those having the highest total relative entropy with respect to
each family considered. Thus, once this set of discriminating positions, which are the
features in this case, has been constructed, the classification of a new sequence is carried
out using the HMMER program [Eddy 1998]. Experiments on fourparticular enzyme
classes and42 Pfam [Sonnhammer et al. 1997] families showed that this method almost
always had a higher accuracy than HMMER, though the difference was not very high.

The solution proposed by Wang et al. [2001] represents a mid-point betweenn-gram [Wu
et al. 1992] and motif-based approaches, since they use boththese types of features for clas-
sification using a Bayesian neural network (BNN) [MacKay 1992]. The features that were
used encode two types of similarities between sequences, namelyglobalandlocal similar-
ity, modeled via n-grams and motifs respectively. Appropriate feature selection techniques
are also used to reduce the total number of features. The finalclassification is carried
out using the resulting features. The results on a set of foursuperfamilies from the PIR
database [Wu et al. 2003] are better than BLAST [Altschul et al. 1997] and two version
of SAM [Karplus et al. 1998]. However, for each class, a negative class is explicitly used,
which may make the classification easier. Nevertheless, this study showed the merit of
combining motif-based features with sequence-based features for protein classification.



22 · Pandey et al.

Moving forward, a completely motif-based strategy is adopted by Liu and Califano
[2001]. This is a decision tree-inspired approach to cluster proteins into functional families.
Since motifs are strong signals for common family membership, the set of given sequences
are characterized in terms of presence or absence of motifs derived by the SPLASH algo-
rithm [Califano 2000]. This initial set of motifs is refined and expanded to find a sub-
stantial number of statistically significant motifs. An unsupervised top-down tree is then
constructed by dividing the set of proteins at each node according to whether they contain
the next most significant motif or not. The leaves so obtainedare hypothesized to con-
tain sets of proteins belonging to the same functional family, which represents a top-down
clustering of the sequences. Upon validation using the set of G protein-coupled receptors
(GPCRs), a classification rate in the range of57 − 72% is achieved. This is a reasonable
performance since GPCRs are known to be a highly diverse family at the sequence level,
and thus are hard to classify using automated methods [Moriyama and Kim 2006].

A very similar approach is presented in [Wang et al. 2003], which also proposes the
characterization of proteins using the motifs they may or may not contain. However, this
approach differs from from [Liu and Califano 2001] in that this is a supervised approach in
which training examples are labeled with functional classes. Thus, once the proteins have
been converted into binary vectors using the approach above, a decision tree is constructed
on the training set, and is used for the classification of the test set. The use of manually
curated protein families (from the MEROPS database [Rawlings and Barrett 1999]) and
motifs (from the PROSITE database [Hulo et al. 2006]) for training gave this approach a
significant edge over [Califano 2000] in terms of classification accuracy.

Another motif-based approach to protein classification that uses neural networks is pre-
sented in [Blekas et al. 2005]. Here, two ways of using motifsare proposed:

—Class-independent motifs: Motifs extracted from the entire set of training sequences.
—Class-dependent motifs: Motifs extracted separately for each class and then combined

to make a global set.

In both cases, the MEME [Bailey et al. 1999] algorithm was used to extract about30 such
motifs were used to construct vectors for each sequence, which were fed into a neural net-
work to build a classification model. In experiments on PROSITE [Hulo et al. 2006], it is
found that class-dependent motifs form the best encoding scheme, which is expected since
the motifs calculated are more class-sensitive. For the classification of the GPCR super-
family, this approach was shown to surpass SAM [Karplus et al. 1998] and MAST [Bailey
et al. 1999] with respect to the ROC50 measure. However, now it has been shown that the
naive Bayes classifier, in combination with theχ2 feature selection algorithm is the most
effective technique for the GPCR superfamily [Cheng et al. 2005]. This work is discussed
in Section 3.3.3

A rigorous machine learning-oriented study of motif-basedprotein classification is re-
ported in [Ben-Hur and Brutlag 2005]. Here, amotif kernelthat simply uses the occurrence
count of each motif in a sequence as a similarity measure between the motif and the se-
quence, is proposed, and is used for classification with an SVM. In addition, this paper
also investigated issues such as feature selection for SVM,multiclass classification using
SVM, and the multifunctional nature of proteins. The most optimal configuration was de-
termined to be composed of (i) feature selection using the RFE method [Guyon et al. 2002],
(ii) combination of many one-against-the rest classifiers [Rifkin and Klautau 2004] and (iii)
counting the multiple classes of a protein as a single class.In this optimal configuration, on
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a data set of enzymes, the results showed that SVM performs better than a k-NN classifier.
Though enzymes are not the best benchmark for this application, the performance tuning
of an SVM using a motif kernel will be valuable for future motif-based approaches. Yet
another appproach that reports good results for motif-based SVM classification of enzymes
is presented by Kunik et al. [2005].

The above descriptions show that motif-based approaches have come a long way from
the initial idea that sequence motifs may represent functional units of a protein. However,
a more direct approximation of these units are protein domains, whose use for the function
prediction task is discussed next.

The first use of domains for funtion prediction appears to have been made in the sim-
ple strategy presented in [Schug et al. 2002]. In this approach, domains were extracted
from two standard databases, namely ProDom [Servant et al. 2002] and CDD (Conserved
Domain Database) [Marchler-Bauer et al. 2005], and rules for function assignment were
constructed on the basis of BLAST searches on a set of11, 679 GO annotated proteins
from three popular genomes, namelyD. melanogaster, M. musculusandS. cerevisiae. Ap-
plication of these rules to a set of4357 manually curated human proteins resulted in a recall
of 81% and a precision of74%, while on data sets for other organisms, both these figures
were around the50% mark. In a similar approach [Cai and Doig 2004], domains fromthe
SBASE library of protein domains [Vlahovicek et al. 2002] are used as attributes, and vec-
tors constructed the values of these attributes are classified using both the nearest neighbor
algorithm (NNA) and support vector machines (SVM). The results obtained for thirteen
functional classes from the MIPS database indicate that NNAis better for this task than
SVM. This reversed order of classification accuracy (in mostapplications related to protein
sequences, SVMs have produced better results than NNA) may be an artifact of the simple
vector representations of proteins adopted in this study, i.e., binary vectors, which may not
be the most informative input for a classification algorithm. Yet another approach based
on the idea of domains is presented in [Perez et al. 2002]. However, in this case, instead
of experimentally determined domains, constant-length statistically significant amino acid
patterns calledprotomotifs[Thode et al. 1996] are used. Correlations between SWISS-
PROT keywords assigned to the sequences and the positions ofthese patterns are found,
and these are used to establish rules for function assignment. Coverage and precision close
to [Schug et al. 2002] are obtained for a set of PROSITE [Hulo et al. 2006] sequences.
Similarly, a low sensitivity of less than50% for the three GO ontologies is achieved by the
decision tree based classification of sequences [Hayete andBienkowska 2005] expressed
in terms of the PFAM domains [Sonnhammer et al. 1997], indicating the insufficiecy of the
assumption of independent behavior of domains. Thus, even though substantial work has
been done on the idea of predicting protein function using functional domains, the results
obtained have not been very exciting . A fundamental reason for this is the assumption
made by all the above approaches that each domain contributes a function to the protein
independent of the other domains, which may not always be true. This assumption needs
to be relaxed in order to get better results from this approach.

From the above discussion of the approaches for protein function prediction based on
the identification of significant subsequences, it can be observed that the results obtained
are not as impressive as expected. One of the reasons for thisis the lack of a precise
definition of subsequences such as motifs and domains. For instance, each of the above
approaches modeled these patterns in a manner different from the others, and the results
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varied accordingly. In addition, the programs used to extract these newly-defined patterns
are only approximations, and hence, add a degree of error to the prediction process. Also,
this two-step procedure leads to the additional issue of themost optimal encoding of se-
quences with respect to motifs and domains, which is acknowledged to be a hard problem.
Hence, there is a severe need for a unified standard mathematical definition of sequence
patterns, and standard databases containing high-confidence sets of such patterns.

The WILMA system [Prlic et al. 2004] addresses the above problems, and thus em-
ploys a different route for improving the accuracy of subsequence- or pattern-based func-
tional classification. WILMA integrates various protein databases such as SWISS-PROT,
IPI [Kersey et al. 2004] and WORMPEP [Harris et al. 2004] withsequence pattern databases,
such as PROSITE [Hulo et al. 2006], Pfam [Sonnhammer et al. 1997], and PRINTS [Attwood
et al. 2003]. The searching of patterns in sequences is also performed using an ensem-
ble of methods such as RPS-BLAST [Altschul et al. 1997], PROSITE scans and Finger-
PRINTScan [Scordis et al. 1999]. This design amounts to sequence searching at multiple
levels, and thus leads to a more confident annotation.

Yet another problem of subsequence-based methods is their coverage, i.e., the fraction
of the entire protein sequence space covered by these subsequences. Just as the dictionary
helps us make sense of any text in a language, a dictionary of sequence patterns that covers
the entire sequence space can be used for annotating proteins with functions. This view is
adopted by the creators of Bio-Dictionary [Rigoutsos et al.1999]. The Bio-Dictionary con-
sists of amino acid patterns known asseqlets, that are subsequences of a certain maximum
length containing a number of don’t care characters, thus making seqlets more flexible
than strict subsequences. Interestingly, the TEIRESIAS algorithm [Rigoutsos and Floratos
1998] used to discover these pattern is inspired by frequentpattern discovery algorithms
from the field of association analyis, which is a part of the subject of data mining [Tan
et al. 2005]. The primary merit of seqlets is their extensivecoverage of the protein se-
quence space, which is illustrated by the fact that the version of BioDictionary constructed
for the May 14, 2001 release of SWISS-PROT, contained42, 996, 454 seqlets, which cov-
ered98.2% of the processed input at amino acid level.

Rigoutsos et al. [2002] used these seqlets for annotating protein sequences using the
approach shown in Figure 6. Essentially, this figure denotesthe transfer of the attached
field values of a seqlet to all the query sequences that it matches strongly. The approach
is validated rigorously using the DE7 field of SwissProt as the annotation, and it is found
that many kinds of sequences and fragments, both long (humanproteinUL78 HCMV A)
and short (V V V TAHAF ) were annotated correctly. In addition, the generalization ca-
pabilities of the algorithm were shown by an annotation accuracy of about90% for three
genomes which were not used in the construction of the Bio-Dictionary. Thus, this ap-
proach illustrates the benefits that data mining in particular, and computer science in gen-
eral, can provide to the systematic study of biology.

Finally, it is important to mention a recent class of techniques that have been pro-
posed for the detection of remote homologies among proteins. These are sequence- and
motif-based approaches that use machine learning techniques such as SVMs [Kuang et al.
2005; Rangwala and Karypis 2005; Rangwala et al. 2006; Ben-Hur and Brutlag 2003] and
HMMs [Jaakkola et al. 2000]. An extensive survey of these techniques appears in [French
2005]. Although in principle, these approaches can be used for function prediction, this

7http://www.expasy.org/sprot/userman.html#DEline
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Fig. 6. Dictionary-driven protein annotation [Rigoutsos et al. 2002]

is not the preferred validation methodology for them. Instead, since it is more widely ac-
knowledged that sequence and structural similarities are more tightly correlated, the SCOP
superfamily classification [Andreeva et al. 2004] is considered the gold standard for val-
idation here [Riley 1998]. Consequently, an estimate of theefficacy of these approaches
for function prediction is not readily available, and hencethese approaches are not covered
in detail here. Nevertheless, SVMs have been shown to give the best performance in this
field [French 2005], and an extension to function predicition may yield useful results.

3.3.3 Feature-based approaches.The approaches discussed in the above sections pre-
dict protein function from sequences in their raw form, i.e.as a string of characters. How-
ever, it is possible to transform these sequences into more biologically meaningful features,
which make it easier to distinguish between proteins from different functional classes. This
is the perspective adopted by this category of feature-based approaches, which use standard
classification algorithms to learn models of functional classes from the transformed set of
features, and then utilize this model to make predictions for uncharacterized proteins. The
most commonly used classifiers in this class of approaches are support vector machines
(SVM), neural networks (NN) and the naive Bayesian classifier. This section describes
several such approaches.

It is well known that neural networks [Duda et al. 2000] were one of the earliest clas-
sification models. Hence, in early research in this field, ProCANS (Protein Classification
Artificial Neural System) and its successors [Wu et al. 1992;Wu et al. 1995] were de-
signed to used n-grams of protein sequences as features for aone hidden layer neural
network. However, because of the limited availability of protein sequences, these systems
were tested only on classes of enzymes. The observed performance of these models on
these limited sets showed that choosing the right representation for sequences is an impor-
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tant issue for this problem, a conclusion which was echoed inrecent research studies [King
et al. 2001].

In another study, King et al. [2000] attempt to demonstrate the utility of data mining for
solving biological problems by proposing a solution for thefunction prediction problem
via inductive logic programming (ILP). Their approach works on protein sequences and
creates a binary feature vector for each of them. The features used for this transformation
correspond to a certain form of frequent item sets, which essentially are sets of character-
istics that are common to a significant fraction of proteins in the consideration set. Once
these feature vectors have been created for all the proteins, the C4.5 decision tree learn-
ing algorithm is used to construct a rule set for predicting function from these features.
Thus, this strategy is a combination of ILP and propositional data mining algorithms. Ex-
periments on ORFs fromM. tuberculosisandE. coli showed that the prediction accuracy
achieved was about65%, which was encouraging as this was among the first applications
of data mining to protein sequences for the function prediction problem.

In an interesting extension of the above work, the same authors investigated the most
suitable representation of a protein sequence for functionprediction [King et al. 2001].
The three types of representations evaluated were the following:

—Sequence based attributes (SEQ) such as the number of residues of typeR in the se-
quence, the length of the sequence, the molecular weight etc.

—Phylogeny based attributes (SIM) computed through the results of a PSI-BLAST search.

—Structure based attributes (STR) computed from the secondary structure prediction made
by the Prof program [Ouali and King 2000].

The strategy proposed in [King et al. 2000] is applied to these representations, as well as
their combinations, namely SEQ+STR, SEQ+SIM, SEQ+SIM and the last one consisting
of all of them. Evaluation of the results onE. coli ORFs indicated that SIM is the most
accurate representation of a protein sequence for functionprediction. This is further evi-
dence for the hypothesis presented in Section 6 that modeling evolution adds great strength
to the prediction process.

PRED-CLASS is another feature-based approach to function classification of protein
sequences [Pasquier et al. 2001]. However, it is more focused in scope since it models only
the transmembrane (TM), fibrous (FIB) and globular (GLOB) classes. The model adopted
is a three-level cascaded neural network, with TM proteins being classified at the first
level, FIB at the next and the last level classifying betweenGLOB and undecided classes
of proteins. The features used at the first level only depict the compositional features of
the sequence, while the second level additionally employs the top thrity Fourier transform
intensities, which model the periodicities of residues or groups in a sequence. Training and
testing are carried out using small sets of proteins,11 and387 in size respectively, and a
fairly high sensitivity-selectivity figure is achieved.

By far, the most cited work in this category of approaches is [Jensen et al. 2002]. This
paper presents the ProtFun method for predicting function from sequence, which is based
on the hypothesis that a protein has to undergo different types of modifications and sortings
using the cellular machinery, before it performs its function. These are knowns as post-
translational modifications (PTMs) [Mann and Jensen 2003],some of which include N-
and O-glycosylation, (S/T/Y) phosphorylation and cleavage of N-terminal signal peptides
controlling the entry to the secretory pathway. ProtFun uses 14 such attributes computed
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for various tools available for measuring individual factors, and trains a set of neural net-
works on such attribute-value pairs for the available training set.

Another interesting component of this paper was that the validation of ProtFun was
performed on a set of5500 human proteins from the TrEMBL database. The functional
categories were automatically assigned on the basis of their SWISS-PROT keywords using
the EUCLID system [Tamames et al. 1998]. The results of theseexperiments were very
encouraging, with a sensitivity of90% and a10% false positive rate being achieved for
some functional categories. Similar results were obtainedwhen ProtFun was extended to
cover GO categories corresponding to human protein functions [Jensen et al. 2003], thus
further validating the strength of the PTM approach to function prediction.

SVM-Prot [Cai et al. 2003] is another function prediction tool based on SVMs. Here
also, every protein sequence is represented by a set of residue-specific features such as
normalized Van der Waals volume, polarity, charge and surface tension, which are av-
eraged over all the residues to in the sequence obtain the feature-value vector for the
protein. Two-way classification (positive or negative) is then carried out for each func-
tional family considered using an SVM. Accuracies obtainedon standard databases such
as BRENDA [Schomburg et al. 2004], GPCRDB [Horn et al. 2003] and NucleaRDB [Horn
et al. 2001] are in the high range of69.1 − 99.6%. The capability of SVM-Prot is also
shown in the classification of49 novel plant proteins, of which it was able to predict the
classes of31 accurately and approximately accurately for4, thus leading to a reasonable
accuracy of71.4% [Han et al. 2005].

In a recent publication, Eisner et al. [2005] performed a detailed machine learning-
oriented study of the problem of assigning hierarchical GO classes to proteins effectively.
Their CHUGO (Classification in a Hierarchy Under Gene Ontology) system employs the
following three ways of handling this problem. It should be noted that, in general, these
are important issues for any classification study and thus should be addressed carefully in
order to obtain accurate results.

—Training set design: Since a protein being assigned to a GO nodeN implicitly assigns
it to all the ancestors ofN , the ideal training set for a learning algorithm should label
the protein with the whole GO subgraph terminating atN . This naturally, leads to an
improvement in recall, and hopefully in precision as well.

—Classification model: Each GO node in CHUGO is attached to a separate binary classi-
fier, which is actually an ensemble of classifiers, since a protein can belong to multiple
functional classes.

—Evaluation methodology: As in the training set design, expanded label sets should be
used for all the proteins for calculating the evaluation metrics such as precision and
recall.

Though the above ideas have intellectual merit, they were not supported substantially
by the experimental results. For instance, the classifier had almost the same performance
as BLAST for89% of the proteins, which does not illustrate the power of classification
for functional annotation. Similarly, the most appropriate method for training set design,
i.e. the all inclusive approach, led to an obvious improvement in recall, with no noticable
improvement in precision, but instead, a significant increase in computation time. These
results suggest that these ideas need to be formulated more carefully for effective use.

The PANTHER database [Mi et al. 2005] expands the general framework of protein se-
quence analysis databases by indexing protein families andsubfamilies according to their
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GO functional labels. In its basic form, it consists of two parts: PANTHER/LIB, a library
of protein families and subfamilies, andPANTHER/X, a set of ontology terms describing
protein function. The families and subfamilies are createdby clustering the256, 413 con-
stituent proteins using a single-link hierarchical clustering algorithm, and are manually
annotated with functional labels. A SAM profile [Karplus et al. 1998] is constructed for
each family, and is used for classifying novel proteins. Efforts are currently underway to
integrate PANTHER with the InterPro [Apweiler et al. 2000] and PIR [Wu et al. 2003]
databases.

One of the most important of these classes is that of the G-protein coupled receptor pro-
teins (GPCR), since they are the largest family of proteins found in the human body, and
are the targets of approximately60% of the approved drugs in the market [Gether 2000]. In
addition, this superfamily is known to be very diverse in terms of sequence homology, and
hence are particularly attractive targets for sequence classification research [Moriyama and
Kim 2006]. Until recently, the state-of-the-art classification technique for this family was
considered to be SVM, as concluded by Karchin et al. [2002], who showed that a complex
classifier such as an SVM is more effective for the classification of diverse families such as
GPCRs, than simpler classifiers such as HMMs, which are more suitable for coarser clas-
sification tasks, such as superfamily classification. However, in a systematically revealing
study inspired by document classification techniques [Cheng et al. 2005], it was shown that
even a simple classifier such as the naive Bayesian classifier, in combination with theχ2

feature selection technique, was able to surpass the performance of SVM at the task, with a
lower computational cost. Theχ2-based technique was used here since it has been shown
to work best for text classification applications [Yang and Pedersen 1997]. Also, this study
showed that in combination with feature selection algorithms, simple encoding schemes
such as n-grams, as used in very early studies [Wu et al. 1992], may be more effective
than alignment-based schemes that also take into account the ordering of amino acids in a
protein sequence. Indeed, the utility of feature selectionfor creating better encodings of
protein sequences has also been shown by other systematic studies [Al-Shahib et al. 2005],
this time for a wider set of functional classes and with a morediverse set of features.

Overall, from the above discussion of the approaches, it is clear that feature-based ap-
proaches are better able to handle the function prediction task than homology- or subsequence-
based approaches, because of the inclusion of more biologically meaningful features, such
as post-translational modifications [Jensen et al. 2002]. This enables the construction of a
more robust model for the sequence-function mapping. However, there is still much scope
for work and better results in this field.

3.4 Discussion

Previous sections showed how protein sequence data can be exploited for function predici-
ton using various homology-, subsequence- and feature-based approaches. In many cases,
good results were also obtained at the task. However, an important caveat that should
be stated here is that even though a sequence forms a unique characterization of pro-
tein, it is still a weak representation for complex operations such as the prediction of
its function. In comparison, more complex forms of data suchas gene expression and
protein interaction networks offer a deeper insight into the mechanisms leading to the
performance of a protein’s function, and are thus more useful for predicting function
(See Sections 7 and 8 for details). In fact, it has been suggested in the literature that
the sequence- structure correlation is much stronger than the sequence- function correla-
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tion [Devos and Valencia 2000; Whisstock and Lesk 2003], andhence many approaches
take thesequence → structure → function route for function prediction [Fetrow and
Skolnick 1998]. Details of such approaches can be found in the next section.

4. PROTEIN STRUCTURE

4.1 Introduction

A protein is an organic biopolymer that is comprised of a set of amino acids, and assumes
a configuration in three-dimensional space due to interactions between these constituents.
Protein structure may be specified at multiple levels. Usually, it is specified at three levels,
with a fourth level being specified for some cases [Schulz andSchirmer 1996]. Following
is a brief description of these levels, which are also illustrated graphically in Figure 7:

(1) Primary structure : The primary structure of a protein is simply a sequence of amino
acids. This level has been discussed earlier in Section 3.

(2) Secondary structure: The sequence of a protein influences its conformation in three-
dimensional space via the formation of bonds between spatially close amino acids in
the sequence. This process is popularly known asprotein folding, and leads to the
creation of substructures such asα-helices,β-sheets, turns and random coils, of which
the first two are the most common, while the last two are formedvery rarely. The
collection of these substructures forms the secondary structure of a protein.

(3) Tertiary structure : The attractive and repulsive forces among the substructures caused
by the folding balance each other and provide the protein with a relatively stable,
though complicated, three-dimensional structure. This structure is known as theter-
tiary structureof the protein.

(4) Quarternary structure : Some proteins, such as thespectrinprotein [Fuller et al.
1974], consist of multiple amino acid sequences, also knownas protein subunits. Each
of these sequences folds to form its own tertiary structure,which come together to
produce thequarternary structureof the protein.

Owing to the relatively systematic nature of the protein structure formation process,
several experimental methods have been devised for the determination of the tertiary struc-
ture of a protein, including X-ray crystallography [Drenth1999] and nuclear magnetic
resonance (NMR) [Cavanagh et al. 1996]. However, the cost ofthese approaches have
prompted a rapid growth of automated structure prediction techniques, such as PHD [Rost
1996], PROF [Ouali and King 2000] and NNSSP [Salamov and Solovyev 1995]. Many of
these tools have been integrated into the ProteinPredict server [Rost et al. 2003].

In addition to these individual systems, a particularly interesting initiative in the field
of protein structure prediction is the CASP8 (Critical Assessment of Structure Prediction)
experiment [Bourne 2003; Moult 2005]. CASP is a bi-annual contest, in which several
participants submit potential structures for a given set ofproteins, which have been pre-
classified into three classes on the basis of the expected level of difficulty: comparative
modeling, fold recognition or threading, and new fold recognition or ab initio methods.
Recently, an additional event called CAFASP (Critical Assessment of Fully Automated
Structure Prediction) has been initiated, which focuses onevaluating the fully automated
techniques for predicting the structure of a given set of proteins within a limited amount of

8http://predictioncenter.gc.ucdavis.edu/
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Fig. 7. Four levels of protein structure (image taken from [Campbell and Reece 2004])

time (two days). Together, CASP and CAFASP have played an integral role in identifying
the issues and future needs of protein structure prediction.

Owing to the significance of protein structure, structural data collected using these exper-
imental and computational methods have been collected in several standardized databases.
However, since structural bioinformatics [Bourne and Weissig 2003] is a relatively new
field compared to its sequence counterpart, the sources for protein structural data are not
as diverse as those for sequences. Three standard databasesdominate the structure data
landscape: PDB [Berman et al. 2000], SCOP [Andreeva et al. 2004] and CATH [Orengo
et al. 2002]:

—PDB (Protein Data Bank): PDB [Berman et al. 2000] is by far the most extensive
and popular repository of experimentally determined protein 3D structures. As of May
11, 2006, it contains structures determined by various experimental methods such as
X-ray crystallography, NMR spectroscopy and electron microscopy, for about33, 300
proteins. In addition, there are about3000 structures of other large molecules such as
nucleic acids, protein complexes and others. There are additional tools for structural
analysis available on the PDB website.

—SCOP (Structural Classification of Proteins): SCOP [Andreeva et al. 2004] can be
considered an extension of PDB since it supplements a subsetof the latter with useful
functional information. The main motive of SCOP is to organize the available structures
in a hierarchy so as to elicit the evolutionary relationships between them. The three
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levels of hierarchy are:
—Family: Clear evolutionary relationship observed from high sequence similarity.
—Superfamily: Probable common evolutionary origin despite low sequencesimilarity,

observed from similar structural and functional features.
—Fold: Major structural similarity, observed from the same secondary structure ele-

ments arranged in the same manner with the same topological connections.
The functional underpinnings of this hierarchy are clear, and for this reason, SCOP has
become a gold standard for remote homology detection techniques [Jaakkola et al. 2000;
Ben-Hur and Brutlag 2003; Kuang et al. 2005; Rangwala and Karypis 2005; Rangwala
et al. 2006].

—CATH (Class, Architecture, Topology and Homologous superfamily): The expan-
sion of the acronym CATH itself describes the primary purpose of this database, which
is to organize a subset of the structures in PDB according to their similarity [Orengo
et al. 2002]. The main differences from SCOP are the more detailed nature of the classi-
fication and the automated method for classifying structures according to this hierarchy.

Together, these databases form the core of data sources for structural proteomics and bioin-
formatics studies. Additional specialized databases are also available, such as DALI [Di-
etmann et al. 2001] and FSSP [Holm and Sander 1994].

Finally, having seen a detailed description of protein structure and how it can be in-
ferred using experimental and computational methods, the interesting issue is how to use
it for inferring the function(s) of the corresponding protein. The subsequent sections dis-
cuss this issue from several angles, namely the different forms and sources of structural
data, the relationship between protein structure and function, and approaches that exploit
this relationship to infer function from structure. However, before we proceed with these
discussions, it is important to make a special mention of [Bartlett et al. 2003], which is
a review article that has systematically studied the field ofstructural genomics and pro-
vides significantly useful information about its various aspects. In particular, it covers the
following aspects:

—Forms of Structural Data: Three-dimensional structure and protein-ligand complexes.

—Structure-Function Relationship: Relations between function and structural classes,
folds, homologous families and analogues.

—Assigning Function from Structure: Ab initio prediction, structural comparisons and
structural motifs, and several programs to find the latter, such as TESS [Wallace et al.
1997], FFF [Fetrow and Skolnick 1998] and SPASM [Kleywegt 1999].

This discussion of function prediction from structure is a more detailed and updated version
of [Bartlett et al. 2003].

4.2 Is Structure Tied to Function?

In many biological processes, the interacting entities have to come into physical contact
in order to accomplish the desired task. This indicates a connection between structure and
function, since the structure of a protein determines several of its functional features, such
as it cellular location, the types of ligands it binds to and other proteins it can interact with.
A very important example of these features, which can be discovered effectively on the ba-
sis of protein structure, is that of active sites in enzymes.These are parts of the enzyme to
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which the reaction substrate binds itself, and thus are fundamental for catalysis by the en-
zyme, which is the basic function of an enzyme. This example illustrates that the structure
of a protein is expected to be of great utility in inferring its biological function [Skolnick
et al. 2000]. This section presents a review of several approaches that present evidence for
thestructure → function route for function prediction.

In a landmark paper, Martin et al. [1998] broke the ground forthis field by exploring if
the structural fold of a protein is correlated to its function. This work was conducted in the
restricted domain of enzymes, since they are very well studied and their structures are abun-
dant in PDB [Berman et al. 2000]. Also, the analysis procedure was very simple, namely
the construction of a specialized form of pie charts known asCATH wheels [Orengo et al.
2002], which essentially show the distribution of the different types of folds among a given
set of related proteins. When this procedure was applied to the six Enzyme Classifica-
tion classes [Serres and Riley 2000] individually, it was seen that the enzyme function,
represented by the first digit of the EC number, could not be tightly correlated with the
over-representation of any of the three structural classes, α, β andαβ. This indicated that
there isn’t a very strong correlation between the structural and functional classes of an en-
zyme. Zooming further, for some important types of enzymes,this analysis indicated that
there is significant correlation between structural class and lower level functional features
such as the type of ligand the enzyme binds, and whether it is an intra- or extra-cellular
enzyme. Combining the above findings for enzymes, Martin et al. [1998] concluded that
even though the structure of a protein is not tightly correlated directly with its biologi-
cal function, it is correlated with lower-level functionalfeatures. Indeed, researchers have
advocated the use of these features for predicting the function of a protein from its struc-
ture [Thornton et al. 2000], as shown in Figure 8.

The conclusions made in [Martin et al. 1998] were further confirmed by several subse-
quent studies [Hegyi and Gerstein 1999; Orengo et al. 1999; Thornton et al. 1999]. Hegyi
and Gerstein [1999] conducted approximately the same correlation analysis as Martin et al.
[1998] for all the single-domain single-function proteinsin SWISS-PROT. From this anal-
ysis, it was found that more than half of the functions are associated with at least two
different structural classes, while almost half of the structural classes are association with
least two functions. Very similar results were obtained when the analysis was subjected to
the following variations in the base data:

—Individual genomes, such as Yeast and E. Coli.
—Different functional classification schemes, such as MIPS[Mewes et al. 2002] and

COGs [Tatusov et al. 1997] and ENZYME [Bairoch 2000].
—Different structural classification schemes, such as SCOP[Andreeva et al. 2004] and

CATH [Orengo et al. 2002].

Thus, this study confirmed the findings of Martin et al. [1998]at a more global scale. Fi-
nally, Orengo et al. [1999] and Thornton et al. [1999] discuss the construction of the CATH
database [Orengo et al. 2002], and report that they did not observe any strong correlation
between structure and function during this construction. Overall, these studies demon-
strated that the structure-function correlation is not strong enough to enable the inference
of function directly from a protein’s structure. However, apossible path suggested was
the conversion of protein’s structure into lower-level functional features, which could be
mapped to its function more robustly [Martin et al. 1998; Orengo et al. 1999; Thornton
et al. 1999].
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,

Fig. 8. Possible approaches for deriving functional information from protein structure (Figure taken from [Thorn-
ton et al. 2000])

In light of the results mentioned above, new ideas for inferring functional features from
the structure of a protein were proposed. Moult and Melamud [2000] discussed the deriva-
tion of function from three forms of structural information, namely fold, structural features
and models of protein structure, and various sub-categories thereof. Jones and Thornton
[2004] zoomed in on the second category, namely the use of structural features, and dis-
cussed approaches such as identifying functionally important sites in proteins, predicting
enzyme active sites, and predicting DNA-binding sites suchas the helix-turn-helix (HTH)
motif, which is found widely in DNA-binding proteins [Luscombe et al. 2000]. Skolnick
and Fetrow [2000] and Fetrow et al. [2001] also discuss the importance of active site iden-
tification for function prediction. However, their analysis is more tied to their Fuzzy Func-
tional Form (FFF) technique [Fetrow and Skolnick 1998], which is discussed in detail in
Section 4.3.2. Najmanovich et al. [2005] promote the use of local similarity measures to
predict protein function and popular techniques used for this task. Finally, Wild and Saqi
[2004] complete the spectrum by reviewing the major hints provided by structure for deter-
mining function, and cites biological examples from the literature as evidence for each of
these hints. An apt summary of the ideas discussed in these studies is presented graphically
in Figure 8, which identifies eight different types of information that can be derived from
the structure of a protein and can be used to derive various types of functional information
about it [Thornton et al. 2000]. Thus, motivated by the immense potential shown by the
field of structural genomics for function prediction, several techniques based on different
representations of protein structure have been proposed. We review these techniques in the
next section.
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4.3 Existing Approaches

After the discussion presented in the previous section, it is clear that structure can be uti-
lized in various ways to predict protein functions. Correspondingly, many groups have
proposed various structural features and approaches for exploiting them for prediction.
These approaches can be largely classified into the following four categories:

—Similarity-based approaches: Given the structure of a protein, these approaches iden-
tify the protein with the most similar structure using structural alignment techniques,
and transfer its functional annotations to the query protein.

—Motif-based approaches: The approaches in this category attempt to identify three-
dimensional motifs, that are substructures conserved in a set of functionally related pro-
teins, and estimate a mapping between the function of a protein and the structural motifs
it contains. This mapping is then used to predict the functions of unannotated proteins

—Surface-based approaches: It is sometimes necessary to analyze the structure of a pro-
tein at a higher resolution than that of distances between consecutive amino acids. This
corresponds to the modeling of a continuous surface for the structure and identifying
features such as voids or holes in these surfaces. The approaches in this category utilize
these features to infer a protein’s function.

—Learning-based approaches: This category of recent approaches employ effective clas-
sification methods, such as SVM and k-nearest neighbor, to identify the most appropriate
functional class for a protein from its most relevant structural features.

In the subsequent sections, we review each of these categories in detail. However, a
caveat that must be made before we proceed with this discussion is that the form of func-
tion that most of the approaches below work with is the biochemical function of a pro-
tein [Laskowski et al. 2003] (molecular function in GO [Ashburner et al. 2000]), since the
structure gives clues only to the chemical processes a protein undergoes before achieving
its function. Of course, information like this could be extended to other forms of function,
such as biological process.

Also, from the above description, it may be noted that some ofthese categories, such
as those corresponding to similarity-based and motif-based approaches, are motivated by
ideas from protein sequences, since the three-dimensionalstructure of a protein may also
be considered as a sequence of tuples of coordinates, each tuple corresponding to an amino
acid in the protein sequence. With this background, we now proceed to the discussion of
the approaches in the above categories and how they exploit various structural features to
infer the function of a given protein.

4.3.1 Structural Similarity-based Approaches.The easiest way of functionally anno-
tating a protein based on its structure is to find another protein with a similar structure
and transferring the latter’s function to the former, just as in the case of protein sequences
(Sections 3.2 and 3.3.1). A useful insight here, as mentioned above, is that a protein’s
structure is a sequence of tuples of three coordinates corresponding to the location of each
of its amino acids (or their constituent atoms) in space. Oneway of solving this similarity
estimation problem is by mapping it to the well-known alignment problem, that has re-
ceived significant attention in the sequence alignment case, and for which many tools are
now available [Altschul et al. 1997; Higgins et al. 1996]. Several programs have been de-
signed for solving the structure alignment problem [Wolfson et al. 2005], the most popular
of which are listed in Table V.
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Program Reference
DaliLite [Holm and Park 2000]
CE-MC [Shindyalov and Bourne 1998]
SSAP [Orengo and Taylor 1996]
SSM [Krissinel and Henrick 2004]

STRUCTAL [Kolodny and Linial 2004]
LSQMAN [Kleywegt 1996]
MultiProt [Shatsky et al. 2004]
3DCoffee [O’Sullivan et al. 2004]

Table V. Popular structure alignment programs

The first six entries in Table V are pairwise alignment algorithms, while the last two are
designed for multiple alignment. Kolodny et al. [2005] provide an extensive and systematic
comparison of pairwise alignment programs, concluding that STRUCTAL [Kolodny and
Linial 2004] and SSM [Krissinel and Henrick 2004] perform the best. This result and
the comparison procedure can significantly aid the identification of the most appropriate
structure alignment algorithm for a given application, such as function prediction.

However, for the function prediction task, even though moreinformation is available
from the use of structure, alignment-based approaches suffer from problems similar to
their sequence counterparts. Some of these problems include the unavailability of a suf-
ficiently similar protein that has been annotated with a function, and the not-so-tight cor-
relation between structural and functional similarity, which was discussed in Section 4.2.
Hence, more specialized approaches have been proposed for solving this problem. These
approaches adopt more sensitive similarity estimation methods, and derive their inferences
from a larger set of similar proteins, instead of a single protein in a simple alignment-
based approach. Thus, the ideas used here are similar to those used by advanced sequence
homology-based approaches discussed in Section 3.3.1.

The PHUNCTIONER system [Pazos and Sternberg 2004] utilizedthe structural align-
ments from the FSSP database [Holm and Sander 1994] to find thepositions in a structure
of a protein which are functionally most important for a particular GO category. This
importance is calculated using a Z-score based on the conservation of residues in these
alignments. In cross-validation experiments on121 GO terms at different levels of the hi-
erarchy, an accuracy in the range of75% to > 90% was obtained, which is much higher
than that obtained by simply using sequence identity. ROC analysis of the two methods
also gives similar results. These results proved the highersensitivity obtained by using
structural instead of sequence profiles for similarity searching.

Hou et al. [2005] build upon their earlier work on constructing a protein structure space
map (SSM) [Hou et al. 2003] using the multi-dimensional scaling (MDS) technique. The
hypothesis underlying this mapping is that proteins sharing similar molecular function are
located in the vicinity of each other in this structure spacemap. The implementation con-
sists of the conversion of the structure data into a dissimilarity matrix using the DaliLite
scores [Holm and Park 2000] and selection of the most informative dimensions in this ma-
trix using the strategy proposed by Williams [2002]. Finally, in the constructed structure
space, a novel protein is classified as the GO category of the proteins lying within a dis-
tance threshold. The ROC analysis on the proteins in the PDBSELECT data set [Hobohm
and Sander 1994], which is a representative subset of size1949 of the PDB database,
showed that the SSM method is superior to those based on simple sequence similarity
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(BLAST [Altschul et al. 1997]) and DALI scores [Dietmann et al. 2001]. Thus, this ap-
proach presented an effective Cartesian embedding of protein structures, which could be
useful for many other purposes such as evaluating the pairwise similarity and subsequent
clustering of these structures.

Some studies have also tried to combine structural similarity measures with other mea-
sures of similarity. One such study [Shakhnovich 2005] analyzed the correlation of the
functional similarity of two protein, with their phylogenetic and structural similarity. It
was concluded from this analysis that even though phylogenetic similarity is a better deter-
minant of functional similarity than structural similarity, a combination of the two methods,
i.e. considering structural similarity in a phylogenetic context can improve the precision
of functional annotation. Thus, this study attempts to build a case for combining structural
information with other forms of data in order to solve the function prediction problem
accurately.

4.3.2 Three-dimensional Motif-based Approaches.Another category of approaches
that closely mirror their sequence counterparts are those based on motifs in protein struc-
tures (Section 3.3.2). Just like a sequence motif, a structural motif is a three dimensional
substructure of a protein that occurs in the structures of several related proteins. A very
well known example of a structural motif is the helix-turn-helix (HTH) motif, which is
found in many DNA-binding proteins [Luscombe et al. 2000]. However, it is notable that
structural motif finding programs, such as TESS [Wallace et al. 1997], FFF [Fetrow and
Skolnick 1998] and SPASM [Kleywegt 1999] rely on their own definitions of a structural
motif, since there does not exist a universally accepted definition of the concept. This also
holds for approaches that infer function from such motifs, as will be seen below.

By far, the most widely cited work in this area is the use of Fuzzy Functional Forms
(FFFs) [Fetrow and Skolnick 1998] for the prediction of function from structure using the
sequence → structure → function paradigm, which has been motivated by the finding
that the sequence similarity is correlated more with structural similarity than functional
similarity [Devos and Valencia 2000; Whisstock and Lesk 2003] (Section 3.2). FFFs are
fuzzy three-dimensional descriptors of specific protein functions, and are based on the
geometry, residue identity and confirmation of protein active sites. They are constructed
by superimposing structural information from several functionally related sequences, using
the algorithm shown in Figure 9.

The specificity and uniqueness of FFFs, even when constructed from low-resolution
structural data obtained fromab initio and threading experiments, was shown via their
application to the glutaredoxin/thioredoxin and T1 ribonuclease classes of enzymes. In
subsequent papers [Skolnick and Fetrow 2000; Fetrow et al. 2001; Gennaroa et al. 2001],
very impressive results were obtained on larger and more varied sets of protein structures,
thus demonstrating the ability of this technique to build characterization of function from
structure. However, it must be noted that even though the algorithm for the construction
of FFFs is very systematic, the action(s) in each step has (have) to be performed by a
human expert. For instance, the very first step in the algorithm, i.e., the identification of
residues important for a function, and the examination of functionally related structures,
require a structural biologist. This extensive human involvement reduces the coverage of
the approach, and explains why the above results are only presented for a couple of enzyme
classes. Thus, in order to extend the coverage of this technique, automated methods for
extracting active sites from structures, such as those presented by Pazos and Sternberg
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Fig. 9. The FFF construction algorithm (Figure taken from [Fetrow and Skolnick 1998])

[2004], are urgently needed. This will ensure the generation of FFFs on a large scale.
In a similar approach, Suzuki et al. [2005] used their FCANAL(Fast Calculable protein

function ANALyzer) system to define a few (two to four) functionally important residues
constituting the core of a functional site for a given function, construct a local similarity
matrix for the other residues, and then assign a novel protein to the function correspond-
ing to functional site most similar to it. Their technique was tested on a small set of31
enzymes, on which it gave reasonable results. However, for amore robust evaluation, a
bigger test set needs to be used.

Finally, the PROCAT database, which is constructed from the3D enzyme active site
templates extracted using the TESS algorithm [Wallace et al. 1997], is a significant step
in the direction of enhancing the scalability of structuralmotif-based function predic-
tion algorithms, and can be considered the structural counterpart of the commonly used
PROSITE [Hulo et al. 2006] and PRINTS [Attwood et al. 2003] sequence motif databases.
SMoS (Structural Motifs of Superfamilies) [Chakrabarti etal. 2003] and DSMP (Database
of Structural Motifs in Proteins) [Guruprasad et al. 2000] are other useful structural motif
databases. These databases will greatly assist in identifying regions of protein structures
that are essential for the accomplishment of a given function and the subsequent annotation
of novel proteins.

4.3.3 Surface-based Approaches.Traditionally, the structure of a protein has been de-
fined as a sequence of tuples of three coordinates, each tuplecorresponding to the location
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of each of its amino acids (or their constituent atoms) in space. This definition indicates that
the intermolecular interactions that lead to a certain biochemical function being performed
occur at the level of amino acids or their atoms. However, in many cases, such interactions
occur due to the complementarity of the molecular surfaces of the proteins. For instance,
it has been shown in studies that hydrophobic surfaces oftenact as the interfaces between
interacting molecules [Oda et al. 1998], and electrostaticmolecular surfaces are also often
used to explain protein functions [Honig and Nicholls 1995;Nakamura 1996]. These stud-
ies have motivated the need to model protein surfaces, whichessentially is the specification
of protein structure at a resolution finer than that of distances between consecutive amino
acids, and computational approaches for this task have beenproposed [Connolly 1983;
Ferre et al. 2004]. Also, the additional information provided by this higher-resolution
structure of a protein has been utilized by several approaches for the prediction of function
prediction. These approaches, are based essentially on theidea of matching local patterns
between two protein surfaces.

The first of these approaches adopts a graph theoretical approach to the problem of
surface matching [Kinoshita et al. 2001]. In this work, the surfaces for a set of proteins
structures from PDB is calculated using the MSP program [Connolly 1983], and points at
small distances (1.4̊A here) are annotated with their electrostatic potential andhydropho-
bicity, properties that are important for the accomplishment of biochemical functions. A
database known aseF-site(electrostatic-surface ofFunctionalsite) was developed, consist-
ing of such annotated surfaces for important functional sites of commonly found proteins,
such as enzymes. Overall, this database currently containsa rich collection of molecular
surfaces corresponding to over19, 000 functional sites [Kinoshita and Nakamura 2004].
As for the matching stage, the global similarity of two protein surface is calculated by
converting the surface comparisons at each point into a graph, from which a clique is then
extracted, denoting the portion of maximum match between the surfaces. Two proteins are
said to be similar if their largest clique has a similarity score above a certain threshold.
Since the clique operation may become intractable due to thepotentially large number of
vertices in the comparison graph, two heuristics were also applied to the search procedure.
The robustness of the algorithm was shown by individual examples of success for each of
the four components of the eF-site database. and is a useful structural genomics resource
for future studies.

In another approach, Binkowski et al. [2003] focus on the voids and pockets in a protein
surface, working under the hypothesis that these are regions in a protein structure to which
a solvent or a ligand can gain access, and thus aid the proteinin performing its function(s).
The pockets are computed from a protein structure using the approach of Edelsbrunner
et al. [1998], and the amino acid residues composing them arecomposed into motifs known
aspvSOARpatterns, which are in turn collected in the pvSOAR database. This database
can now be used to perform one-against-all and all-against-all alignment-based searches
for prediction and evaluation respectively. Indeed, in thelatter type of experiments, with
SCOP [Andreeva et al. 2004] and CATH [Orengo et al. 2002] classifications as gold stan-
dard, numerous examples were found that could be functionally classified just on the basis
of pocket surface patterns. However, many cases were found in which the matching pat-
terns belonged to different folds or functional families which may indicate a remote rela-
tionship between the two groups. Another useful contribution of this work was a method
for calculating the statistical significance of the match between two short residue patterns,
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based on the extreme value distribution (EVD). This could also be useful for other studies.
Ferre et al. [2004] also adopt the same strategy as Binkowskiet al. [2003], i.e., the iden-

tification of local surface patterns(known ascleftshere) which could be used for the func-
tional annotation of query proteins. However, it differed from Binkowski et al. [2003]’s
approach in three ways. First, the SURFNET algorithm [Laskowski 1995] was used to find
surface clefts. Second, the patterns were annotated with GOcodes using the PROSITE
database [Hulo et al. 2006]. Finally, the matching algorithm considered both the structural
and residue similarity, measured using the RMSD measure andthe PAM matrix [Day-
hoff et al. 1978], respectively. An all-against-all evaluation on the set of patterns con-
structed from the structures in the PDBSELECT [Hobohm and Sander 1994] data set
gave an accuracy of about90%. This whole system has been organised into the SURFACE
database [Ferre et al. 2004], which is freely accessible viathe web.

In the latest approach in this category, Espadaler et al. [2006] proposed the use of loop
motifs for the identification of protein function from its three-dimensional structure. These
loops are responsible for connecting the elements of the secondary structure of a protein,
and there is sufficient experimental evidence for these loops being involved in important
protein functions such as tyrosine sulfation and prohormonal cleavage [Fetrow 1995]. This
motivated Espadaleret al to investigate if the presence of loop motifs in a set of proteins
indicated their enrichment with one or more GO functions. For this task, they identified
several loop motifs from a a non-redundant set of proteins structures in the SCOP database,
and obtained the most probable amino acid sequence patternsrepresenting these motifs.
Next, they identified73 protein families in the Pfam database, whose protein signatures
matched the sequence pattern of the different loop motifs identified, and investigated the
enrichment of these families with certain GO functional classes. Indeed, a strong corre-
lation was observed. The results on prediction of functionsof unannotated proteins using
the loop-derived patterns was also found to produce more accurate results than a BLAST
sequence similarity search. This showed the utility of using loops, which are less studied
as compared toα-helices andβ-plates, for inferring protein function.

Overall, it can be seen that approaches which make use of structural surfaces achieve
higher specificity since they are more aligned to known biological knowledge about ligand
binding and functional sites. However, this also requires more computation since surfaces
are also harder to model than the coordinates of individual residues. Hence, approaches
in this category must address both considerations to be effective. However, the brighter
side of the picture is that several features of a protein structure’s surface that are related
to protein function have been identified, that can be combined to enhance the effictiveness
of each individual feature. Research in this direction is expected to yield accurate and
biologically meaningful results.

4.3.4 Learning-based Approaches.We have seen, or will see, in other places in this
survey, such as Sections 3, 7 and 9, that machine learning-based approaches have achieved
great success in function prediction, because of the natural mapping of this problem to the
problem of building classification models that have been studied extensively by the data
mining and machine learning communities [Tan et al. 2005]. In particular, kernel- and
SVM-based techniques have been shown to be very effective for the functional classifica-
tion problem [Brown et al. 2000; Cai et al. 2003; Tsuda and Noble 2004], owing to their
flexibility of modeling the similarity between two data objects. Maintaining this trend,
some kernel-based techniques have also been proposed for predicting function from struc-
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ture. Here also, the structure of a protein can be treated as its attribute-value vector and its
functional class as the class label. The techniques discussed below adopt this perspective
in various forms.

Kin et al. [2004] discuss a mathematically sound solution for using sequence similarity
results to estimate a structural similarity kernel matrix,which can then be used for predict-
ing functional class using an SVM. Specifically, a sequence kernel matrixKB is estimated
for the training set of proteins using the marginalized count kernel (MCK) [Tsuda et al.
2002]. Similarly, a structure kernel matrixKI is estimated using the MATRAS program
[Kawabata 2003]. However,KI is incomplete, since structural data may not be available
for all proteins in the data set. Hence, an EM-algorithm based algorithm is used to estimate
KI accurately, based on the hypothesis that such a matrix should minimize the Kullback-
Leibler divergence between itself andKB, i.e. KL(KB, KI) should be minimum [Amari
1995]. In experiments on three classes from the SCOP database [Andreeva et al. 2004], it
was found that this solution works best for cases in which less than50% entries ofKI are
missing. Nevertheless, the ability to estimate structuralsimilarity from sequence similarity
can be useful for many applications.

A more application-oriented study is presented in [Dobson and Doig 2005], in which
the authors used a simple SVM classifier for classifying the enzymes into the six classes
at the top level of the Enzyme Classification [Webb 1992]. Thefocus of this study is on
the definition of attributes that can be easily extracted from the sequence and structure of a
protein using various methods, and subsequent supervised attribute subset selection using
the Backward Elimination algorithm [Dash and Liu 1997]. With these subsets of attributes,
and a one-against-one classification of the six classes, average accuracies of35% and60%
were obtained when considering the first and the first two choices as the classification for
a test protein.

In a recent paper, Wang and Scott [2005] propose three kernels for comparing two pro-
teins structures are proposed, as discussed below:

—KPattern Sim(S,T): This kernel defines the similarity between two substructures on
the basis of the best corresponding pairs of amino acids in them and their proximity.

—KRedox Func(S,T): This kernel is a tailored version of the one above for the thiol/disulfide
oxidoreductase proteins, based on the fact that all such proteins contain aCxxC motif.

—K3Dball(P1,P2): The previous kernels were limited in that they were defined only
with respect to amino acid positions in the structure. This kernel tries to relax this
limitation by considering the protein as a set of balls of a given radius around each
amino acid. The final similarity is a sum of the similarities between the best pairs of
balls in the two structures.

These kernels model the similarity between two structures in different ways, and were used
as the backbone of two classifiers in this paper, namelyk-NN (k-nearest neighbor) and
SVM. The validation was conducted in two separate experiments, one on ten superfamilies
from SCOP [Andreeva et al. 2004], and the other on21 thiol/disulfide oxidoreductase
structures from PDB [Berman et al. 2000]. In the first experiment, usingK3Dball, k-NN
showed a significantly higher true positive rate than SVM. Inthe second,KRedox Func

gave the best results, since it was customized for the class being tested. In general, all the
above kernels gave results better than using sequence-based HMMs or alignment methods
such as DALI [Holm and Sander 1994] and CE [Shindyalov and Bourne 1998]. Thus, in
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addition to providing three novel kernels for comparing protein structures, this study also
suggested the superiority of thek-NN classifier over SVM for functional classification
using protein structure.

Finally, Bandyopadhyay et al. [2006] have proposed a novel approach for finding struc-
tural templates in functional families, using techniques from the area of frequent subgraph
mining, which falls within the larger field of association analysis in data mining [Tan et al.
2005]. Here, using a previously published technique, the three-dimensional structures of
proteins within a SCOP family are converted in a graph representation. Next, using the
fast frequent subgraph mining algorithm [Huan et al. 2005],several frequently occuring
subgraphs in this set of graphs are derived. Additional selection of these subgraphs is also
performed so as to ensure their statistical significance forthis family, by comparing their
frequency to the frequency of their occurrence in the entireset of proteins across all fami-
lies. The resultant set of subgraphs are expected to be functionally important substructures
for the concerned family, and thus can be used for the predicting which families an unan-
notated protein belongs to by matching them with its structure. Indeed, in an evaluation
of 442 novel proteins that were added to94 SCOP families, this approach could automati-
cally discover the true family assignments of as many as71% of these proteins, while the
corresponding number for BLAST was only53%. Overall, this study showed the utility
of association mining for analysis of protein structure, due to the computationally efficient
methods available and the biological relevance of the substructures derived.

The above discussions show that data mining techniques, such as classification, kernel
estimation and association analysis, have great potentialfor functional classification using
structural data. However, the main hindrance for this potentially accurate method is the not-
so-extensive availability of protein structures. Once more data is available, the performance
of these approaches is expected to surpass that of approaches in other categories.

4.4 Discussion

The previous sections discussed various perspectives on the prediction of function from
structure, and the ways these perspectives have been formulated in various approaches.
Some systems, such as ProFunc [Laskowski et al. 2003; 2005] have now started integrating
the most popular of these approaches in order to infer a consensus annotation for the query
protein. Thus, with further research in this field, more successful results are expected in
the near future.

5. GENOMIC SEQUENCES

5.1 Introduction

The basic hereditary information about an organism is encoded in DNA molecules, which
are dominantly organized as chromosomes in the cell, and arealso found in the mitochon-
dria of the cell to some extent. This set of chromosomal and mitochondrial DNA con-
stitutes the genome of an organism. DNA itself is typically adouble stranded molecule,
where one of the strands is constituted of four characters, namelyA, T , C andG, which
denote the four nucleotides adenosine, guanine, cytosine and thymine, and other strand is
complimentary to the first, owing to the complimentarity of theA−C andT−G nucleotide
pairs. An illustration of a DNA molecular is shown in Figure 10.

Genomes contain genes and non-coding regions, both of whichcan be represented as
strings of the four charactersA, T , C andG. Proteins are synthesized from genes through
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Fig. 10. Illustration of a DNA molecule (Figure taken from [Secko 2007])

a process consisting of two steps, namely transcription andtranslation. The genomes of eu-
karyotic organisms are typically several million base pairs in length, and typically contain
several thousand genes. For instance, the yeast genome is14 million base pairs in length,
and contains about6000 genes, while the human genome is over3 billion base pairs long,
and contains over20000 genes. Also, the positions of these genes in the genome are typ-
ically known, thus providing information about the contextof a gene in an organism’s
genome.

The genomes of nearly a thousand organisms have been sequenced till date, and hun-
dreds others are now in progress. Several public data sources have been established, which
make the public access to these sequences very convenient. The most prominent of these
databases are the NCBI Entrez Genome database [Tatusova et al. 1999], the Genome Se-
quence DataBase of the National Center for Genome Resources[Harger et al. 1998] and the
Genome Sequencing Project of the Sanger Institute9. Several useful tools have also been
developed for visualizing and analyzing these large databases, such as the UCSC Genome
Browser [Hinrichs et al. 2006] and databases such as GenBank[Benson et al. 2004] that
organise these genomes into their constituent genes, and accompanying information. This
wide availability of genome sequence data has spurred research in the field of genomic
context-based protein function prediction.

5.2 Existing Approaches

This section discusses some fundamental ideas that have arisen from the new genome
resource, and several approaches that have utilized these ideas for function prediction.
However, it should be noted that in this domain, most of the studies fall in the field of

9http://www.sanger.ac.uk/Projects/
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comparative genomics [Marcotte 2000], since they involve the comparison of genes across
several genomes. As a result, the primary form of results derived from these studies is that
of functional associations between genes or proteins rather than annotations for individual
proteins. Also, it must be remarked that the approaches in this field are often justified on
the basis of evolutionary mechanisms, since the availability of the complete genomes for a
wide variety of organisms offers an insight into the ways in which genes may have evolved
from each other [Koonin and Galperin 2002].

Several approaches have been proposed to accomplish the target of deriving functional
associations from genomic data, and possible function prediction subsequently. These
approaches largely fall into one of the following three categories [Marcotte 2000]:

—Genome-wide homology-based annotation transfer: This category consists simply of
the use of larger databases for searching proteins homologous to the query proteins, and
the transfer of functional annotation from the closest results.

—Gene neighborhood- or gene order-based approaches: These approaches are based
on the hypothesis that proteins, whose corresponding genesare located “close” to each
other in multiple genomes, are expected to interact functionally. This hypothesis is
supported by the concept of anoperon, and its relevance to protein function [Salgado
et al. 2000].

—Gene fusion-based approaches: These approaches attempt to discover pairs or sets of
genes in one genome that are merged to form a single gene in another genome. The
underlying hypothesis here is that these sets of genes are functionally related, and is
supported by biochemical and structural evidence [Marcotte et al. 1999].

As can be seen, approaches in the latter two categories exploit genomic context, i.e. the
location of a gene on the genome with respect to that of other genes [Huynen et al. 2000].

Yet another category of approaches that make heavy use of multiple genomes simulta-
neously are those based on the concept of phylogenetic profiles. However, because of the
distinct evolutionary underpinnings of these approaches,and since much more work has
been done in this category as compared to the others, it is discussed separately in Section 6.
Hence, the following subsections discuss the details of thecategories of approaches listed
above, followed by a discussion of the comparative advantages and disadvantages of each
of them against the other.

5.2.1 Genome-wide homology-based annotation transfer.The most immediate im-
pact of large-scale genome sequencing projects has been thewider application of exist-
ing sequence-homology based approaches for functional annotation transfer. The avail-
ability of complete genomes of many organisms led to the creation of databases of gene
sequences, such as GenBank [Benson et al. 2004], and proteinsequences, such as Swis-
sProt [Boeckmann et al. 2003] and PIR [Wu et al. 2003]. These databases also contained
the available experimental knowledge about some of these genes and proteins in the form
of keywords and descriptions. Thus, it was straightforwardto use sequence search systems,
such as PSI-BLAST [Altschul et al. 1997], for searching homologous sequences in these
large databases. Thus, functional information could be obtained from a larger number of
proteins and organisms, and this became a popular method forthe prediction of protein
function.

Another very significant development in this category was the creation of the database
of Clusters of Orthologous Genes (COGs) [Tatusov et al. 1997]. This study aimed at
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constructing gene families by identifying orthologous genes across several genomes. The
underlying idea was that orthologs, which are genes in different organisms that evolved
from a common ancestor through speciation events, are expected to perform the same
function, and thus each COG would represent a functionally coherent group of genes. This
idea was implemented using a simple clustering scheme that ensured that there was a high
pairwise similarity between any two genes in the same cluster. Upon validation, it was
found that, for most of the720 COGs so constructed, a specific cellular function could
be deduced from available functional knowledge and high levels of sequence similarity.
Also, the constituent genes of many clusters showed very consistent phylogenetic profiles,
indicating a common evolutionary origin of the cluster. Thus, the COG database [Tatusov
et al. 2003] marked an important starting point for functional genomics, and have been used
for the validation of other function prediction algorithms[Zheng et al. 2002]. However,
one important problem with this database was that most of thefunctional categories were
split into several clusters, which may complicate their usein further studies.

5.2.2 Approaches exploiting gene neighborhood.One of the most basic signals of-
fered by the genomic data is the relative positioning of genes on a genome. It may be
hypothesized that two or more proteins, whose correpondinggenes are “close” to each
other on a genome, are functionally related [Dandekar et al.1998]. This hypothesis finds
evidence in the well-known concept of anoperon, which is a contiguous portion of the
DNA that includes an operator, a common promoter, and one or more genes that are ex-
pressed as a unit to produce messenger RNA (mRNA)10. Interestingly, proximity between
the constituent genes is the dominant strategy for identifying operons in a genome [Salgado
et al. 2000]. Thus, this is a viable strategy for inferring functional associations between
genes and their corresponding proteins.

Dandekar et al. [1998] were the first group to explore the use of this signal for discov-
ering pairs of proteins that are expected to interact functionally. In this study, they found
all the pairs of genes in a set of nine genomes, such that the two genes were close to each
other and occurred in the same order in at least three genomes. Among the small number
of gene pairs so discovered, at least75% were known to interact physically, and the others
also represented potential interactions. Thus, even though the scope of this strategy was
not very broad, it made a strong case for the gene neighborhood idea.

The first extensive study based on this idea was reported by Overbeek et al. [1999a],
where they used it to infer functional coupling between genes in 24 genomes, and then
conducted an extended analysis of the approach and its results [Overbeek et al. 1999b].
Their analysis is based on the concept of a Pair of Close Bidirectional Best Hits (PCBBHs),
which are essentially a pair of gene pairs(Xa, Y a) and(Xb, Y b) such thatXa andY a
in genomeGa are orthologous toXb andY b in genomeGb, respectively, andXa and
Y a andXb andY b are close to each other inGa andGb respectively. This formulation
of a PCBBH is depicted graphically in Figure 11. Notably, theorder to genes is not sig-
nificant in a PCBBH, thus ensuring a larger coverage for this approach as compared to
that of [Dandekar et al. 1998]. The occurrence of such a PCBBHindicates that evolution
has preferred to keepXa andY a close in the genome since they are expected to interact
functionally, and the strength of this deduction increaseswith the number of PCBBHs that
a pair of genes participates in. Thus, a score is calculated for each PCBBH on the basis

10http://en.wikipedia.org/wiki/Operon
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of the evolutionary distance between the original genome containing the PCBBH and the
genome in which a match is found. This score denotes the strength of the functional re-
lationship between the two genes, and the predictions are those PCBBHs whose score is
above a pre-defined threshold. However, though this was a feasible approach, an important
weakness of the assumption was that gene proximity is not sufficient for functional cou-
pling. As a result, a precision of less than35% was obtained when this idea was applied to
a set of31 genomes [Overbeek et al. 1999b].

Fig. 11. A graphical illustration of the concept of PCBBHs (Taken from [Overbeek et al. 1999a])

In a complementary study [Korbel et al. 2004], it was hypothesized that neighboring
genes which are bidirectionally transcribed, i.e. whose transcription start sites are very
close, and whose direction of transcription are opposite ofeach other, may be functionally
associated. The motivation for this hypothesis came from a study of the human genome,
which showed that for certain classes of genes, such as the DNA repair genes, bidirection-
ally transcribed pairs of genes are functionally linked [Adachi and Lieber 2002]. From
experiments on theE. Coli genome, the observed accuracy and coverage of this method
was not very high, since examples of such bidirectionally transcribed gene pairs are not
too common, except for few classes [Adachi and Lieber 2002].

An innovative system that tries to relax the proximity definition of [Overbeek et al.
1999a] is SNAPper [Kolesova et al. 2001; 2002]. This system builds an SN-graph for the
genes in the given set of genomes by iteratively finding similarity or orthology (S) and
neighborhood (N) relations between genes and adding corresponding an edges for each
relationship to the graph. The authors’ hypothesis says that all genes involved in a cycle
in this graph, named as an SN-cycle, are functionally related. Intuitively, this hypothesis is
viable since such a cycle corresponds to groups of close genes which are conserved across
several genomes, and thus, these genes may be related functionally. Formal experimental
verification of the claim was done by measuring two coefficients, Kp andKf , based on
the KEGG [Kanehisa et al. 2004] and FunCat [Ruepp et al. 2004]databases respectively,
for all the SN-cycles found. These coefficients respectively estimate the fraction of an
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SN-cycle involved in the same metabolic pathway and functional class respectively. This
validation showed that the claim was reasonably valid for a good fraction of the cycles.
However, the results were better for theKp as compared toKf , indicating that SNAPper
is more effective at reconstructing metabolic pathways than directly predicting functions
for unannotated proteins.

Fig. 12. Data mining approach to inferring gene function from gene order information

Finally, Li et al. [2007] have presented an innovative approach involving the application
of data mining techniques to the inference of gene function using genomic context infor-
mation. This is useful since these techniques are better able to capture the variability in the
input data, and are robust to noise, issues that initial ad-hoc approaches for this problem
did not address very robustly. Figure 12 shows an overview ofthe approach adopted by Li
et al. The first step of this approach is the selection of genes in the given set of genomes by
searching in the available literature for genes that are known to be annotated with the func-
tions of interest. Once this step is complete, two data mining steps are applied to predict
gene function:

(1) Clustering: In the first step, the complete set of genomes is clustered into clusters,
such that the genomes in each cluster has similar patterns ofdistances between the
genes identified in the first step. This helps identify groupsof evolutionarily close
genomes, which are most useful for inferring gene function.

(2) Classification: Next, a classification model is built for each functional class of interest
within each gene cluster. Several biological features relevant to protein function, such
as amino acid composition, van der Waals volume, hydrophobicity and polarity, are
extracted from the sequence of the all the gene products. Also, in order to obtain a
highly discriminative classifier, the positive examples for each function are chosen to
be the genes identified in the first step, while the negative examples are composed of
genes in the neighborhood of the positive examples, which are not yet annotated with
that function. With this setup, an SVM classifier is constructed for each functional
class in each cluster, and is used for predicting the functions of currently unannotated
genes.

The overall system, named SynFPS (Synteny-based Function Prediction System), is
tested on296 bacteriophage genomes for nine functional classes that arerelevant for these
genomes. A high accuracy of80% is achieved in cross-validation experiments, which vali-
dates the utility of using data mining and machine learning methods for analyzing genomic



Computational Techniques for Protein Function Prediction: A Survey · 47

context data. Also, several novel functional annotations are obtained, that are otherwise
impossible to find using simple sequence similarity techniques.

It is evident from the above discussions that gene neighborhood has been defined in
different ways by different groups. However, it is interesting to find that variations based
on this simple concept have been able to find functional linksbetween genes more accu-
rately [von Mering et al. 2003; Mellor et al. 2002; Bowers et al. 2004] than some methods,
such as gene fusion and phylogenetic profiles, that are discussed in the next few sections.

5.2.3 Approaches exploiting gene fusion.Gene fusion is another very innovative method
for exploiting the relative gene positioning on a genome, and was proposed for the first
time by Marcotte et al. [1999]. This idea simply states that if two separate genes in one
genome are merged, or “fused”, as a single gene in another, then these genes are expected
to be functionally related. Interestingly, this hypothesis is backed by very strong biological
reasoning [Marcotte et al. 1999]:

—The fusion of two genes greatly reduces their entropy of dissociation [Erickson 1989],
which indicates that they may have existed very stably as twodomains of a polypeptide
in another organism, and consequently evolved into independent genes in a descendant
organism. A possible mechansim for the evolution of protein-protein interactions is also
proposed in [Marcotte et al. 1999] on the basis of this reasoning.

—At a structural level, protein-protein interfaces have strong similarity to interdomain
interfaces within single protein molecules [Tsai and Nussinov 1996]. This basically
implies that two separate proteins may interact in the same way as two domains interact
within the same protein.

Fig. 13. Example of pairs ofE. coli proteins predicted to interact functionally by the gene fusion method (Taken
from [Marcotte et al. 1999])

In order to validate the hypothesis using real data, a rigorous procedure consisting of
three independent tests was adopted by Marcotte et al. [1999], and was applied to6809
pairs of non-homologous genes found in theE. coli genome by this method. These tests
were based on SWISS-PROT keywords, the Database of Interacting Proteins [Xenarios
et al. 2002] and phylogenetic profiles [Pellegrini et al. 1999], respectively. Results showed
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that a very significant fraction of the pairs were actually reported to interact physically
or functionally, thus demonstrating the practical efficacyof the method. Figure 13 shows
five examples of pairs ofE. coli proteins predicted to interact functionally by the gene
fusion method. Also, owing to the information hidden in the fused protein sequence, and
its utility for function prediciton, this approach has alsobeen given the interesting name of
the Rosetta Stone method11.

The scope of the above study was expanded by Yanai et al. [2001], who systematically
applied the Rosetta Stone method to30 microbial genomes. Upon validation of the pre-
dicted functional links using the COGs database [Tatusov etal. 2003], very high average
sensitivity and specificity [Tan et al. 2005] of72% and90% respectively were observed,
which is significantly higher than those observed for a random distribution of fusion links.
A parallel study working with a reference set of24 genomes reported similar results [En-
right and Ouzounis 2001]. Together, these studies illustrated both the wide coverage and
high accuracy of this method, which may be extended easily tofunction prediction for
individual genes.

Finally, Marcotte and Marcotte [2002] presented some very interesting enhancements
to the basic fusion method. First, they argued that using orthology as the basis for find-
ing fusions lowers the coverage significantly, and does not necessarily discover accurate
linkages. Hence, in this study, the more general concept of homology was used for find-
ing fusion, in order to increase the coverage, and hence the likelihood of finding correct
functional linkages. Next, a scoring function for the discovered fusions, was formulated,
based on the hypergeometric distribution. This score reflects the probability of the chance
occurrence of a given number of fusion events between a givenpair of genes. Thus, the
smaller this score, the more reliable is a functional linkage discovered by this method.
Also, the functional similarity of two genes was found to be linearly related to the log of
their association score, thus showing that the scoring function is indeed a robust estimator
of the reliability of a functional association found by the gene fusion method. In essence,
this study provided a framework for the design of algorithmsbased on gene fusion, and
more such algorithms are expected in the future.

5.3 Comparison and Assimilation of the Approaches

The previous section presented details of the two most common categories of approaches
in functional genomics: neighborhood- or order-based, andfusion-based. An obvious
question to ask then is: Given the same initial set of genomes, which kind of approach is the
most effective at finding functional associations? Here, wediscuss some studies that have
tried to answer this question. It should be noted that these studies consider phylogenetic
profiles also as a functional genomics method, but for reasons mentioned earlier, we have
covered these in detail elsewhere (Section 6).

Huynen et al. [2000] report a comparison of the approaches for the genes in theM. gen-
italium genome, which has been used in many other benchmarking studies because of its
favourable characteristics [Teichmann et al. 1999; Brenner 1999; Hutchison III et al. 1999].
The results of the analysis of the the functional linkages detected in this genome using the
above methods are shown graphically in Figure 14, which shows the distribution of these
linkages among seven types of interations that may provide aclue to a protein’s function.
It is evident from these distributions that for all the approaches that a large fraction of

11http://en.wikipedia.org/wiki/Rosetta Stone#Use as metaphor
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Fig. 14. Distribution of the links discovered by various genomic context methods (Taken from [Huynen et al.
2000]). Note that methods IIa and IIb refer individually to the approaches presented in [Dandekar et al. 1998]
and [Overbeek et al. 1999b] respectively, and collectivelyrefer to the gene neighborhood method. Also, method
III refers to the phylogenetic profile approach.

the detected interactions are functionally meaningful, since they either represent physical
interactions, or co-membership in a complex, a metabolic/non-metabolic pathway or a bi-
ological process. Thus, this study qualitatively justifiedthe potential of these approaches
for discovering functional links between proteins and protein function.

A very useful development in the field of functional genomicshas been the develop-
ment of databases which collect and compare functional associations discovered by each
of these approaches. Table VI captures the various characteristics of these databases. These
databases are available freely to the research community for their use.

Name Reference # Genomes Validation Method(s)

STRING [von Mering et al. 2003] 89 KEGG [Kanehisa et al. 2004]
Prolinks [Bowers et al. 2004] 83 COG [Tatusov et al. 2003]

Predictome [Mellor et al. 2002] 44 KEGG [Kanehisa et al. 2004],
COG [Tatusov et al. 2003],

GeneQuiz [Andrade et al. 1999]
Phydbac ”Gene [Enault et al. 2005] E. coli COG [Tatusov et al. 2003]

Function Predictor”

Table VI. Popular databases of functional links discoveredby functional genomics methods

A few words about these databases are in order concerning thestrategies they adopt to
detect functional associations. Interestingly, all of them used the gene order (neighbor-
hood), gene fusion and phylogenetic profile approaches. However, while the others were
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based on traditional implementations of these methods, Phydbac ”Gene Function Predic-
tor” (PGFP) [Enault et al. 2005] was built on top of Phybac database [Enault et al. 2003b],
which is based on the idea of consensus phylogenetic profiles(CPPs), a more sensitive
version of the basic phylogenetic profiles (PPs). However, it should also be noted from the
third column of Table VI that while STRING, Prolinks and Predictome derive their results
from a significant number of genomes, while those of PGFP are based only theE. coli
genome. Thus, the results of PGFP are less reliable than the others.

Finally, and most importantly, as mentioned in the last column of Table VI, these databases
also adopted certain methodologies for the validation of the collected links. The most com-
mon of these methodogies are COGs [Tatusov et al. 2003] whichis a functional classifi-
cation, and KEGG [Kanehisa et al. 2004], which indicates that the detected functional as-
sociations may be used to reconstruct metabolic pathways. Interestingly, all the databases
reported thatgene neighborhoodor gene order [Dandekar et al. 1998; Overbeek et al.
1999b] was the most accurate approach for both the tasks, which is a significant result and
can be used to guide further research in this field.

6. PHYLOGENETIC DATA

6.1 Introduction

The biological species existing today have evolved from primitive forms of life over mil-
lions of years [Darwin 1909], and this process of evolution continues today. The changes
in the physiologies of different organisms have been drivenby the changes at the cellular
level, which include the adoption and surrender of functions by proteins due to the changes
in the genes encoding them. Thus, it is essential to include the evolutionary perspective
in any complete understanding of protein function. As a result, several approaches for
predicting protein function using evolution-based data have recently been proposed. The
two most common forms of this data are known as phylogenetic profiles and phylogenetic
trees, and the field of biology that deals with the evolutionary relationships among living
organisms is also known as phylogenetics [Bittar and Sonderegger 2004].

The phylogenetic profile of a protein is (generally) a binaryvector whose length is the
number of available genomes. The vector contains a1 in theith position if theith genome
contains a homologue of the corresponding gene, else a0. Some variations of these vec-
tors use real numbers that reflect the extent of similarity between the original gene and
the best match in the genome being searched, instead of0s and1s. Thus, these profiles
provide a way of capturing the evolution of genes across various organisms. This informa-
tion becomes useful for functional genomics when seen in thelight of the phenomenon of
speciation, which is the evolutionary mechanism by which new species are created from
currently existing ones [Coyne and Orr 2004]. Now, it may be hypothesized that proteins
which interact functionally are under strong selective pressure, and thus their correspond-
ing genes are inherited across several genomes during speciation events [Gaasterland and
Ragan 1998]. Phylogenetic profiles are a powerful mathematical way of modeling this
phenomenon, and thus offer a very innovative method for inferring functional associations
between proteins, since functionally associated proteinsare expected to have very similar
phylogenetic profiles [Pellegrini et al. 1999]. This is the basic assumption made by all the
approaches for function prediction on the basis of phylogenetic profiles. In addition, it can
be seen that the construction of these profiles involves running a simple BLAST [Altschul
et al. 1997] search again well known databases of completed genomes mentioned in Sec-
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Fig. 15. Phylogenetic tree constructed for twenty six completed genomes (each represented by a letter) constitut-
ing the PhylProM database [Thoren 2000]

tion 5, such as TIGR and NCBI, thus enhancing the appeal of phylogenetic profiles further.
In several other studies, a more extensive representation of evolutionary knowledge

is used [Bittar and Sonderegger 2004]. This representationis known as a phylogenetic
tree [Baldauf 2003], which is a standard tree with respect tothe graph theoretical defini-
tion, but whose nodes and branches carry special meaning. Its leaves correspond to the
organisms that were used to build the tree. The internal nodes denote the hypothetical last
common ancestor (LCA) of all its descendents and the branches representhas evolved from
relationship. This indicates the complexity of the problemof constructing phylogenetic
trees from genomes. Most available tools for this construction, such as PHYLIP [Felsen-
stein 1989], PAML [Yang 1997] and BETE [Sjolander 1997], apply various data mining
and probabilistic methods for the task, and are mostly basedon a hierarchical clustering of
the given set of sequences from different organisms. One such reconstructed phylogenetic
tree for twenty four fully sequenced organisms is shown in Figure 15.

It is easy to see that phylogenetic trees embody a much richersource of knowledge than
phylogenetic profiles since the latter are constructed onlyon the basis of the leaf nodes of
the former, hence ignoring the hierarchical structure of the evolutionary knowledge. This
additional knowledge of the internal nodes tree can be used to extract further information
about the pattern of evolution of a set of proteins. In addition, this knowledge is multi-level
in nature, since the information extracted depends on the depth of the node in the tree.
Thus, phylogenetic trees, if constructed accurately, can provide strictly richer information
than simple profiles. Still, both these forms of phylogenetic data together constitute a very
rich pool of knowledge about evolution that can be utilized effectively for the prediction of
protein function [Kensche et al. 2007].

6.2 Existing Approaches

The evolution of one species of organisms from another has been an active area of research
in biology [Darwin 1909], and, of late, has come to be known asthe field ofphylogenetics.
Recently, several studies have been conducted for utilizing and predicting the implications
of evolution at the molecular and cellular levels [Bittar and Sonderegger 2004]. Of most
interest to us are the studies that try to uncover gene/protein functions and functional link-
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ages using phylogenetic data such as profiles and trees. Thissection describes several such
studies. However, before we embark on this discussion, it would be useful to categorize
these studies into three categories:

—Approaches Using Phylogenetic Profiles: This category consists of a large number
of approaches that are based on the hypothesis that proteinswith similar phylogenetic
profiles are functionally related. Thus, most of the approaches here are comparative in
nature, and model this hypothesis using ways to measure the similarity of two profiles.

—Approaches Using Phylogenetic Trees: As noted earlier, phylogenetic trees embody
a richer knowledge of genetic evolution than simple profiles. Thus, a recent category
of approaches have started using this knowledge to predict function. Most of these
approaches use various data mining and machine learning approaches to achieve this
task, and produce better results than those based only on profiles.

—Hybrid Approaches: Recently, some approaches have started using SVM-based tech-
niques to combine the two forms of evolutionary knowledge inphylogenetic profiles and
trees. This category corresponds to these approaches.

The following sections discuss the approaches in each of these categories in detail, and
also propose ideas for enhancing these approaches further.

6.2.1 Approaches Using Phylogenetic Profiles.The first study to analyze protein func-
tion using phylogenetic profiles was presented by Pellegrini et al. [1999]. The underlying
hypothesis was that proteins that function together in a pathway or a protein complex, are
likely to have a similar evolutionary path. To test this hypothesis, phylogenetic profiles
were constructed from the fully sequenced genomes of sixteen organisms, other thanE.
coli, which was the model organism used in this study. Using threeE. coli proteins,RL7,
FlgL andHis5, it was verified that proteins with profiles differing by at most one out
of sixteen bits are indeed functionally related as per the SwissProt annotation. Similar en-
couraging results were derived from the EcoCyc database [Keseler et al. 2005] of metabolic
pathways. This was a seminal study in this area, and it openedthe floodgates for protein
function prediction using phlogenetic profiles.

A further examination of the feasibility of prediction function from phylogenetic profiles
is reported by Liberles et al. [2002], wherein many important conclusions were made. First
and foremost, phylogenetic profiles were shown to perform much better than homology-
based approaches for the SwissProt keyword recovery task [Marcotte et al. 1999]. With
respect to the same measure, it was also concluded that profiles that are constructed using
a larger number of genomes are more informative for the function prediction task. Finally,
another type of profile, known as an inverse phylogenetic profile, was proposed to model
those gene families whose members may have undergone replacement by each other dur-
ing evolution, and thus occur in disjoint sets of organisms.In many case, this replacement
occurs since the genes perform the same function, and thus become redundant, are eventu-
ally lost in a genome. Thus, genes which have complementary phylogenetic profiles may
belong to the same functional family. Indeed, this was shownto be true for three functional
classes, DNA-directed DNA polymerases, DNA repair proteins and Isomerases. These re-
sults and other useful phylogenetic data has been compiled into the PhylProM database by
the authors [Thoren 2000].

Wu et al. [2003] advocate the use of more general measures of similarity for pairs of phy-
logenetic profiles. Three popularly used measures of similarity [Tan et al. 2005], namely
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the Hamming distance (D), Peason’s Correlation Coefficient (r) and mutual information
(MI) are evaluated for this task. It is concluded from the analysis that, although the three
measures are strongly related to each other,MI is the most informative measure of profile
similarity for inferring functional relationship betweentwo proteins. This relationship is
judged by membership of the proteins in the same metabolic pathway in KEGG [Kanehisa
et al. 2004]. In addition, it is argued that proteins with complimentary profiles may suggest
that they are functionally similar, which is likely to be missed if exact similarity of profiles
is required.

The idea of relaxing phylogenetic profiles is carried forward by Enault et al. [2003a],
particularly for the annotation of bacterial genomes. The modification suggested here is
to use the normalized BLAST score [Altschul et al. 1997] denoting the best match for
a protein in a genome, instead of using a0 or 1. Annotation is carried out by finding
the statistically dominant class of the MultiFun database [Serres and Riley 2000] in the
neighborhood of a protein induced using cosine similarity.Results better than [Pellegrini
et al. 1999] are shown, thus showing the potetial of real-valued phylogenetic profiles. This
annotation procedure is available via the website of the Phydbac database [Enault et al.
2003b]. In Phydbac2 [Enault et al. 2004], a more recent version of the original database,
the annotation procedure is strengthened further by combining predictions based on other
comparative genomics methods discussed in Section 5. Here,a consensus phylogenetic
profile (CPP) is constructed for a protein by incorporating the profiles of other genes that
are detected to be “close” to this protein by gene neighborhood or gene fusion methods
described in Sections 5.2.2 and 5.2.3.

Two modifications of phylogenetic profiles are proposed in [Bilu and Linial 2002] in
order to improve the inference of functional linkages. The first modifications is to use
partially complete genomes also for the construction of phylogenetic profiles, so as to en-
hance the knowledge contained in these profiles. This idea, though useful, is less relevant
today when several hundred genomes have been sequenced, as compared to the total of85
genomes used in this study. The more important contributionof this paper were two modi-
fications that are suggested for the basic Hamming distance measure. These modifications
are based on the following novel ideas:

(1) The distance between two profiles that are constructed using a larger number of genomes
should be assigned greater significance than that between profiles constructed using
fewer number of genomes.

(2) This distance should also take into account the evolutionary history of the proteins.
More specifically, the column in the profile corresponding toa genome that is evo-
lutionarily distant from the one containing the query gene should be assigned higher
weight in distance calculations.

Experiments to test these ideas are carried out for all theE. coli enzymes and functional
relationship is measured by co-occurrence in a pathway of the KEGG database [Kanehisa
et al. 2004]. Results derived using two tests designed specifically for this study suggest
that the first modified similarity measure has a much more positive impact on the perfor-
mance of the linkage annotation procedure than the second. However, the reconstruction
of metabolic pathways using the proposed similarity measure is not very encouraging.

Date and Marcotte [2005] describe the PLEX (Protein Link EXplorer) system, that
adopts an iterative strategy for searching proteins with similar phylogenetic profiles. This
approach simply uses the results for one iteration of similarity search as input for the next
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iteration, and thus iteratively searches for proteins withphylogenetic profiles similar to
that of the query protein. By combining the predicted functional links with gene fusion
links and gene neighborhood links, PLEX was able to reconstruct two important protein
systems inM. tuberculosis, namely the urease enzyme complex and the isoprenoid biosyn-
thesis pathway.

Lastly, an innovative method for improving the predictionsfrom simple phylogenetic
profiles is proposed by Zheng et al. [2002]. The hypothesis here is that, due to selective
pressure, pairs of genes close to each other on a genome are expected to be preserved
across genomes, since such genes are expected to be functionally related [Overbeek et al.
1999a; 1999b]. This hypothesis is modeled by finding severalpairs ofE. coli genes that
are close to each other and constructing a single phylogenetic profile for each of these
pairs. This profile simply records whether the pair is found to be close in each genome or
not. Finally, all the pairs with exactly the same profiles arecollected, and the functional
coherence of these clusters is tested with respect to COGs functional categories [Tatusov
et al. 2003]. Quantitative evaluation using the purity and Jaccard coefficient show the
superiority of the method over single gene phylogenetic profiles. Another conclusion of
this study was that mutual information is the most appropriate measure for the similarity
of two profiles. This agrees with the general perception thatproteins occurring in very few
or too many organisms are not very informative for predicting other proteins’ functions.
However, one surprising finding of this study was that using alarger set of organisms
for constructing the profiles does not necessary improve prediction. The reason for this is
hypothesized to be the simultaneous amplification of both the coevolution and noise signals
when more genomes are used. This finding needs to be investigated further, since it may
have implications for the number and choice of genomes used to construct these profiles.

Having covered a wide range of approaches that attempt to predict protein function using
phylogenetic profiles, it is important to observe that none of the above approaches involve
significant application of techniques from the field of data mining [Tan et al. 2005], which
has been extensively made use of for the analysis of other types of biological data, such as
protein sequences (Section 3) and gene expression profiles (Section 7). Data mining has
significant potential for the analysis of phlogenetic profiles, since these profiles are binary
vectors, to which an entire field of data mining known asassociation analysis[Tan et al.
2005] has been dedicated. Two ideas that demonstrate how theapplication of association
analysis principles can aid in the use of phylogenetic profiles are as follows:

—Several studies have concluded that mutual information (MI) is the most appropriate
similarity measure for phylogenetic profiles [Wu et al. 2003; Date and Marcotte 2003;
Zheng et al. 2002]. These studies directly map to the data mining problem of finding the
right objective measure for association patterns. Tan et al. [2004] have discussed several
objective measures in detail, including five properties that a measure should posess.
Some of these properties are null invariance, symmetry under variable permutation and
invariance to scaling. It turns out that measures such as oddratio and its normalized
versions Yule’s Q and Yule’s Y, the Piatetsky-Shapiro measure and collective strength,
satisfy more of these properties than MI. Thus, it may be useful to investigate these
similarity measures also, in order to improve the useful results already obtained using
MI as the measure.

—As noted earlier, a set of phylogenetic profiles can be treated as a binary matrix, which
maps directly to the concept of amarket basketin association analysis [Tan et al. 2005].
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Many algorithms have been designed for accurately and efficiently extracting frequently
occurring and meaningful patterns from these baskets. In the domain of phylogenetic
analysis, these patterns could reveal important biological knowledge such as groups of
genes following the same evolutionary rate and genes evolving through the same set of
organisms. Such knowledge could aid in the construction of the global evolutionary tree,
which is one of the most important goals of biological research.

These ideas demonstrate the utility of data mining in general, and association analysis
in particular, for phylogenetic analysis. However, no suchstudy has been reported in the
literature yet.

Finally, as an ending note, the following high-level conclusions can be drawn about the
use of the phylogenetic profile paradigm on the basis of the approaches discussed above:

(1) In general, the use of a large number of genomes for constructing phylogenetic pro-
files improves the performance of function prediction methods [Bilu and Linial 2002;
Liberles et al. 2002].

(2) Real-valued profiles offer more flexibity and hence more reliability in function predic-
tion [Wu et al. 2003; Enault et al. 2003a].

(3) Mutual information (MI) is the most appropriate similarity measure for phylogenetic
profiles [Wu et al. 2003; Date and Marcotte 2003; Zheng et al. 2002].

(4) Phylogenetic profiles are effective at the task of the reconstruction of metabolic path-
ways, since the proteins appearing together in a pathway arehighly likely to evolve
together [Pellegrini et al. 1999; Bilu and Linial 2002].

These conclusions are expected to be useful for future research involving phylogenetic
profiles. Nevertheless, the use of phylogenetic profiles hasalready helped uncover useful
functional information about several proteins. For a detailed list of proteins for which
predictions were made using their phylogenetic profiles, and were experimentally verified,
see [Kensche et al. 2007].

6.2.2 Approaches Using Phylogenetic Trees.As was discussed in Section 6.2, ap-
proaches that use phylogenetic trees are far fewer than those that use phylogenetic pro-
files. Two major factors contribute to this. First, trees aremore difficult to use than simple
profiles, and hence demand more intricate algorithms, as justified in Section 6.1. Second,
the precise evolutionary tree for a set of organisms is not known apriori and is constructed
from their genomic sequences using systems such as PHYLIP [Felsenstein 1989]. This
creates to an additional source of error. However, if these issues are handled appropriately,
more reliable predictions can be made about protein function and/or functional linkage, as
shown by the following approaches.

In an early theoretical study of the use phylogenomic data [Eisen 1998], a possible
approach for finding the functions of uncharacterized proteins from phylogenetic trees is
outlined. In this approach, a phylogenetic tree is constructed for the protein under consider-
ation by finding their homologs, and using one of the known methods for tree construction.
Next, events such as gene duplication and gene speciation may be identified on this tree,
and using the structure of the tree, functional predictionscan be made. The author also
identified some conditions under which this method is expected to perform better than
homoogy-based methods, such as the following:

—Functional change between homologs during evolution.
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—Variation of the rate of functional change during evolution.

—Variation of the rate at which gene duplication occurs.

Soon after the publication of the above arguments, it was quantitatively shown by a
subsequent study [Doerks et al. 1998] that the inclusion of phylogenetic trees led to an
improvement in the annotation of the currently uncharacterized protein families (UPFs) in
SWISS-PROT [Boeckmann et al. 2003]. Iterative BLAST searches were unable toanno-
tate these diverse families, due to well-known problems with sequence homology-based
approaches [Whisstock and Lesk 2003]. However, when phylogenetic trees were con-
structed for a set consisting of selected members of these UPFs and other characterized
families, many of the unannotated proteins clustered amazingly well with proteins that
performed the same function, thus providing a confident annotation for the former. Thus,
this study quantitatively exhibited the potential of phylogenetic trees for providing accurate
functional predictions.

Following this strategy, the earliest approaches attempted to identify functional inter-
actions between proteins. Pazos and Valencia [2001] attempted to identify these these
interactions at three possible levels, namely interactions between structural domains of
proteins, between individual proteins and between all the proteins in a complete genome.
This approach involved the derivation of phylogenetic similarity matrices from a multiple
sequence alignment of the set of entities being studied, using the appraoch of Goh et al.
[2000]. The following results were obtained from the analysis of these matrices:

(1) Domains: Nine of thirteen known interactions were identified [Pazoset al. 1997].

(2) Proteins: Again, Seven out of eight experimentally known interactions among Dan-
dekar et al. [1998]’s test set of53 E. coli proteins.

(3) Genome: Here, functional associations were sought between all the4300 proteins in
theE. coli genome, and2700 strong interactions were proposed, some of which were
previously well known, such as the ATP synthasesα andβ.

Thus, this approach showed both high accuracy and good coverage, in addition to demon-
strating the applicability of the phylogenetic approach atvarious levels.

A more direct use of phylogenetic trees for classification ismade by Qian et al. [2003],
where a tree-based HMM (T-HMM [Qian and Goldstein 2003]) is learnt for the class of
GPCR proteins. It is hard to construct a classifier for this class of proteins since they are
very diverse at the sequence level and hence are hard to annotate using sequence homology-
based methods. However, Qian et al. [2003] handle this problem by modeling the evolu-
tionary history of this class by a phylogenetic-tree based HMM [Qian and Goldstein 2003].
This model essentially constructs a hidden Markov model at each node of the tree by using
the multiple sequence alignment of the reconstructed sequences at its child nodes. Since it
is unknown apriori which class and evolutionary stage a novel protein comes from, a score
is calculated for each node of each tree, and the protein is classified as the class whose
tree scores the highest. This model is suitable for diverse families such as GPCR, where
the sequences are not similar and the members are at different evolutionary stages. Indeed,
almost99% accuracy is achieved for a set of1749 GPCRs, which is impressive.

So far, the largest project involving phylogenetic analysis was undertaken by the Berke-
ley Phylogenomic Group, and a detailed review of the strategy developed by them for the
inference of molecular function appears in [Sjolander 2004]. This multi-step strategy is
implemented in the GTREE software and its various steps are listed in Figure 16 along
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Fig. 16. (Left flowchart) The approach adopted by Sjolander [2004] (Right flowchart) The techniques used to
accomplish the corresponding task in the left flowchart (Figure adapted from [Sjolander 2004])

with the techniques used to accomplish these steps. This complete system is a testimony
of the strengths of phylogenomic data, particulary phylogenetic trees, when applied to the
protein function prediction task.

By far, the best results in the function prediction problem via phylogenetic analysis
have been reported by Engelhardt et al. [2005], and subsequently improved in [Engel-
hardt et al. 2006]. In their papers, they describe SIFTER (Statistical Inference of Function
Through Evolutionary Relationships), which is based on thegeneral formalism of prob-
abilistic graph models. SIFTER defines a transition probability function for the transfer
of molecular function from a parent to a child node in a singlephylogenetic tree and uses
standard probabilistic propagation algorithms for computing the posterior probability of
a node having a certain molecular function. Various types ofvalidation of SIFTER’s re-
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sults, such as ROC analysis, suggested that this approach was more accurate than the most
significant sequence similarity-based algorithms, and wassuperior to its closest counter-
part. In particular, using 100 Pfam [Sonnhammer et al. 1997]families supplemented with
GO annotations as the test and training data, SIFTER achieved a very high precision with
complete coverage. Thus, this work comprehensively showedthe benefits of incorporating
phylogenetic trees into the function prediction process.

6.2.3 Hybrid Approaches.It can be seen from the previous two sections that phylo-
genetic profiles and phylogenetic trees represent diverse forms of evolutionary knowledge
and have differing abilities in predicting protein function. In such a situation, a promising
idea, which has worked for several other problems, is to combine these two forms of data,
thus leading to a hybrid of the approaches discussed above.

The first paper which presented such a strategy was [Vert 2002]. It proposes the use
of support vector machines (SVM) for learning protein functions from their phylogenetic
profiles. However, instead of the common kernel functions used for SVMs, such as the
linear or the radial basis kernel, a tree kernel is proposed to calculate the similarity of the
profiles in the higher dimensional space used by the SVM. Thishigh-dimensional feature
space is defined on the basis of the patterns of evolution of genes among the (hypothetical)
ancestors of the organisms under consideration, in a pre-specified phylogenetic tree, such
as the one shown in Figure 15. A linear time algorithm in the number of organisms, based
on a post-order traversal of the tree, is also derived and itscorrectness proved. Upon an
ROC analysis of the classification performance on the genes of S. cerevisiae, it is found
that the tree kernel works significantly better than the naive linear kernel, particularly for
the smaller and more heterogenous classes. Thus, this approach combines the previously
proposed approaches under the aegis of a very powerful mathematical framework.

The above approach is adapted in [Narra and Liao 2005] to use extended real-valued
profiles. Here, all the internal nodes of the phylogenetic trees are also assigned scores
equal to the average of the scores at their children. An extended profile is now constructed
for each protein by a post-order traversal of the tree. An SVMwith a polynomial kernel
is trained with these profiles and is used for function prediction. In evaluations using
three-fold cross validation on the same data, performance better than that of [Vert 2002] is
reported.

6.3 Discussion

The previous sections discuss several approaches which incorporated evolutionary knowl-
edge into the function prediction process, leading to improvements in the results. In par-
ticular, the more extensive the knowledge, the more accurate are the predictions, as shown
by projects such as [Sjolander 2004] and [Engelhardt et al. 2005]. Specifically, Brown
and Sjlander [2006] cite several technical challenges in phylogenomic inference of protein
function, such as the inaccuracy in phylogenetic tree construction, the reliability of existing
database annotations and functional inference from orthology without taking evolutionary
distance into consideration. From a more evolutionary perspective, Kensche et al. [2007]
argue that for effectively addressing the problem of predicting protein function using evo-
lutionary methods, it is critical to examine the effect of evolution on the multi-functionality
of proteins, higher order functional relationships between proteins, the functional context
of a protein, and the modularity of functional modules. Addressing these challenges and
subsequent improvements in the current state-of-the-art in this relatively new field will
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lead us closer to validation of Dobzhansky’s statement that“Nothing in biology makes
sense except in the light of evolution”[Dobzhansky 1973].

7. GENE EXPRESSION DATA

7.1 Introduction

Protein synthesis from genes occurs in prokaryotic organisms in two phases [Weaver 2002],
as shown in Figure 3. In the transcription phase, an mRNA is created from the original gene
by converting the latter to the corresponding RNA code. The protein is then synthesized
from mRNA by translating the RNA code to the corresponding amino acid sequence ac-
cording to the codon translation rules.

Gene expression experiments are a method to quantitativelymeasure the transcription
phase of protein synthesis [Nguyen et al. 2002]. The most common category of these
experiments use square-shaped glass chips measuring as little as1 inch on either side, also
known as cDNA microarrays, and hence the alternate name microarray experiments. The
experiment is carried out in the following stages. In the first stage, the chip is laid out
with a matrix of dots of cDNAs, usually several thousands in number, one corresponding
to each of the gene being measured. In parallel, mRNA is extracted from both the normal
as well as the cells of the organism that have been exposed to the condition being studied.
Next, these mRNA are reverse transcripted to cDNA and colored with green and red colors
respectively. These colored cDNAs are then spread on the microarray chip, leading to a
hybridization of the cDNA already on the chip with those produced by the genes in the
two types of cells. This generates a spot of a certain color onthe chip for each gene
which denotes its expression level. In the final stage of the experiment, the intensity of this
region is measured by a laser scanners connected to a computer, which generates a real
valued measurement of the expression of each gene as the ratio of the log intensities of red
and blue colors in the region. The result of the experiment thus is a measurement of the
transcription activity of the genes under the specified condition. A detailed illustration of
this procedure is shown in Figure 17. Recently, single-channel experimental procedures
have also become popular in the microarray community. However, the nature of the data
and the approaches used to analyze them are usually very similar in nature. So we do not
describe this experimental process in detail for brevity.

The primary advantage of gene expression experiments are that they offer an effective
method for observing the simultaneous activity of thousands of genes under a given exper-
imental condition. Using these activity measurements, several important inferences can be
drawn about the underlying biological phenomena, such as the active pathways under the
given condition. This ability to observe a global pattern ofactivity of genes, particularly
when observed over several multiple related experimental conditions, has motivated the use
of microarrays for a variety of biological studies [Slonim 2002]. Also, since data gener-
ated from one experiment can be useful for several other studies, several repositories have
been set up in order to make such data publicly accessible. Several important organism-
and phenomenon-specific databases are listed in Table VII. A(slightly dated) comparison
of several such microarray databases appears in [Gardiner-Garden and Littlejohn 2001].
This paper presents important details of these databases, such as their commercial aspects,
analytical capabilities and system requirements, and is a useful resource for researchers
working with microarray data.

In conclusion, a few words about the nature of gene expression data are in place. Usu-
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Fig. 17. An illustration of the microarray experimental procedure (Figure taken from [Duggan et al. 1999])

Name Short Description Reference

GEO Largest general repository [Barrett et al. 2005]
ArrayExpress General repository [Parkinson et al. 2005]

SMD General repository [Sherlock et al. 2001]
GeneNote Automated human genes database [Safran et al. 2003]
BodyMap Several human and mouse tissues [Sese et al. 2001]

GXD Laboratory mouse [Hill et al. 2004]
yMGV S. cerevisiae and S. pombe [Lelandais et al. 2004]

BarleyDB Various plant species [Shen et al. 2005]
Drosophila Drosophila melanogaster (FruitFly) [Neal et al. 2003]

CGED Cancerous tissues in humans [Kato et al. 2005]
BGED Processes in mouse brain [Matoba et al. 2000]
MEPD Medaka fish [Henrich et al. 2003]

Table VII. Some important organism- and phenomenon-specific gene expression
databases. A more extensive list can be obtained from the MetaDB website
(http://www.neurotransmitter.net/metadb/index.php).

ally, the format of gene expression data is very simple, i.e., a rectangular matrix, in which
the rows correspond to genes, the columns to conditions, andthe entries denote the ex-
pression measurement of a gene under a particular condition. However, since the data is
generated experimentally, there may be several phenomena that may affect the quality of
data produced by an experiment. Some such problems are varying degrees of hybridiza-
tion across the chip, background noise in the images produces, and a difference of scale
between the different experiments constituting a microarray data set. Several statistical
methods have been developed for addressing these problems [Quackenbush 2002], which
use the information in the experimental design, as well as the data generated, in order to
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reduce the effects of these factors in the processed data set. Another important factor to
consider in microarray data analysis is that the data used inresearch is generally of two
kinds: static and temporal [Lee 2004]. The first category consists of data sets containing
snapshots of the expression of certain genes in different samples under the same condi-
tions, while the latter, also known as time-series gene expression data [Bar-Joseph 2004],
consists of data sets capturing the expression of certain genes of the same organism at dif-
ferent instances of time. It is important to consider these characteristics of the data when
it is used for computational analyses, such as running analysis algorithms to infer protein
function from gene expression data.

7.2 Existing Approaches

Gene expression experiments are targeted at the simultaneous observation of the activities
of thousands of genes under a certain condition. Since transcription is an intermediate step
in protein synthesis, the expression measurements give an indication of which genes are
active and producing proteins for a the function(s) to be performed under that condition.
Thus, due to the ability to simultaneously observe thousands of genes, microarray data
holds great promise for determining the function and functional associations of proteins.
Also, the matrix format of the data makes it easily processedby computer algorithms. Ac-
cordingly, several computational approaches have been proposed for predicting the func-
tion of a protein from gene expression data, which will be discussed in this section.

Early approaches identified functional associations between genes by measuring the
similarity between their expression profiles using statistical methods. In a study focused
on identifying novel genes which may contribute to prostrate cancer in humans [Walker
et al. 1999],40, 000 genes were examined for co-expression with five genes known to be
associated with prostrate cancer using the Guilt by Association (GBA) principle. As a re-
sult, eight novel genes that are significantly co-expressedwith at least one known prostrate
cancer causing gene are identified and are verified as being related to processes leading
to the disease. However, these studies were usually very narrow in scope, and involved
significant human intervention in identifying the seed or the target genes. This allowed
the application of more generic techniques from data miningfor this task. These can be
grouped into the following three categories:

—Clustering-based approaches: An underlying hypothesis of gene expression analysis is
that functionally similar genes have similar expression profiles, since they are expected
to be activated and repressed under the same conditions. Because clustering is a natural
approach for grouping similar data points, approaches in this category cluster genes on
the basis of their gene expression profiles, and assign functions to the unnannotated
proteins using the most dominant function for the respective clusters containing them.

—Classification-based approaches: A more direct solution to the problem of predicting
protein function from gene expression profiles is the data mining approach of classifica-
tion. Thus, approaches in this category build various typesof models for the expression-
function mapping using classifiers, such as neural networks, SVMs and the naive Bayes
classifier, and use these models to annotate novel proteins.

—Temporal analysis-based approaches: As mentioned earlier, temporal gene expression
experiments measure the activity of genes at different instances of time, for instance,
during a disease. This behaviour can also be used to predict protein function. Thus,
approaches in this category derive features from this temporal data and use classification
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Fig. 18. Visualization of the clustering dendrogram proposed by Eisen et al. [1998]. Members of a cluster are
observed to have consistent color codes

techniques to predict the functions of unannotated proteins.

7.2.1 Clustering-based approaches.The first category of data mining approaches ap-
plied to microarray data was that of unsupervised learning techniques, particularly cluster-
ing [Jain and Dubes 1988]. Clustering of gene expression data has been in practice for a
long time [Jiang et al. 2004], and algorithms such as CAST [Ben-Dor et al. 1999], which
are aimed specifically towards clustering of expression data, are widely used. However,
predicting functions of genes from clusters generated by these algorithms using measures
such as majority [Guthke et al. 2000], has not yielded good results [Zhou et al. 2005].
Hence, in this section, we survey several approaches that are focused towards creating
clusters that can be used for function prediction.

Eisen et al. [1998] reported the first exploration of clustering for gene expression data,
and laid the ground for research in this area. They clusteredthe budding yeast expression
data using a hierarchical average-linkage clustering algorithm, with a variant of the corre-
lation coefficient as the similarity measure. However, the main focus was not to determine
the best clustering algorithm for gene expression data, butto study the following aspects
of the clusters produced:

—Visualization: For the purpose of visualizing the cluster memberships of alarge number
of genes, a color coding scheme was adopted for the data, and the genes were ordered in
the hierarchical clustering dendrogram, thus giving the popularly used clustering display
of the type shown in Figure 18.

—Functional analysis: This was the main target of the study. Once the clusters could be
visualized, it was clearly seen that most of the large clusters showed a strong tendency
to contain genes involved in common cellular processes. Foryeast, some of the most
prominent patterns were seen for genes encoding ribosomal proteins, mitochondrial pro-
tein synthesis genes and genes involved in ATP synthesis andoxidative phosphorylation.
Similar functional coherence was seen for a human expression data set also, though the
analysis here was obscured by the limited annotation available for the human genes.

The systematically derived conclusions of this study [Eisen et al. 1998] showed that
clusters of coexpressed genes are also functionally coherent. This was a landmark dis-
covery in the field of bioinformatics, and it generated a lot of interest in the clustering of
biological data.

In order to exploit the conclusions of Eisen et al. [1998], Ben-Dor et al. [1999] proposed
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a heuristic clustering algorithm known as Cluster Affinity Search Technique (CAST),
geared towards gene expression data. CAST has two phases, namely theadd phase, in
which elements with high affinity to the current cluster are added to the cluster, and the
removephase, in which elements with low affinity are removed from the cluster. The
clusters are constructed incrementally one by one, and the process terminates when no
more changes occur. This way, CAST is different fromK-means since it constructs only
one cluster at a time, whileK-means updates allK clusters in each iteration. Results
on both static and temporal expression data showed CAST’s ability to preserve functional
categories. In an interesting experiment involving the clustering of gene expression data
obtained from40 tumors and22 normal tissues, rich clusters, both of normal (19/22) and
tumor (36/40) samples, were obtained. Thus, the ability of the algorithmto extract knowl-
edge about diseases from expression data was shown. This algorithm has been widely used
in other studies [Bellaachia et al. 2002; Swift et al. 2004].

Ng et al. [2004] proposed the use of the popular latent semantic indexing technique [Letsche
and Berry 1997] to eliminate noisy and redundant dimensionsfrom the data. Only the di-
mensions that contribute significantly to the data are retained. The final data set is clustered
using the concept of neighborhood such that the similarity between any two genes in a clus-
ter is above a certain threshold and is significantly higher than their similarity with a gene
from some other cluster. Finally, the majority annotation of the characterised genes in a
cluster is predicted to be the function for the uncharacterised genes in the same cluster. A
high precision and recall is reported, though this is due to the relaxed definition of recall,
which is satisfied even if only one of the several functions ofa gene is recovered.

The application of clustering to gene expression data is often confounded by decisions
such as which clustering algorithm to use, how many clustersto find, which similarity
measure to use etc. In order to increase confidence in the results derived from cluster-
ing, Zhou et al. [2005] proposed the use of the novel ontology-based pattern identification
(OPI) strategy. The goal of OPI is to enable the clustering process to identify the best
decisions to be made in order to identify the best cluster corresponding to a functional
category. This is achieved by embedding all the decisions, such as the attribute weights,
the choice of mean or median to represent the cluster and the similarity threshold, in a
Euclidean space, and defining an objective function, that reflects the characteristics of the
most appropriate clustering, on it. Next, a hill climbing process is used to minimize this
function for all the GO functional categories and identify the best cluster for this category.
Finally, the uncharacterized genes in a cluster are hypothesized to be functionally linked
to the annotated ones in the same cluster, in many cases having the same function. This
procedure is applied to the gene expression data describingthe life cycle of the malarial
parasitePlasmodium falciparum[Bahl et al. 2003]. As evidence of the validity of their
procedure, it is noted that12 of the50 genes predicted in an earlier version of the study
to have the Antigenic Variation function had now been verified. Also, OPI was able to
identify more statistically significant clusters comparedto those obtained in the an earlier
study of the same data [Roch et al. 2003], where thek-means algorithm was used. Thus,
OPI makes the clustering process more flexible.

Another way in which confident results can be derived from clustering of gene expres-
sion data is by considering overlaps of clusters derived forthe same data set by various
algorithms. In [Wu et al. 2002], a database of clusters is constructed by applying multi-
ple clustering algorithms, such as K-means, self-organizing maps (SOMs) and hierarchical
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clustering [Tan et al. 2005]. These clusters are annotated with the class having the least
p-value, which is calculated using the fractions of various functional classes in the cluster.
For the purpose of function prediction, each uncharacterised gene is assigned the annota-
tion of each cluster it belongs to, in addition to a confidencevalue for the prediction. The
method is validated quantitatively by treating each characterised gene as uncharacterised,
analyzing the overall results so obtained, and qualitatively by showing that the functions
of individual genes are predicted accurately.

This strategy is carried forward by Swift et al. [2004], who propose the use of robust
clustering (RC) and consensus clustering (CC) for functionprediction. Robust clustering
provides an incremental clustering algorithm for clustering those genes that are consis-
tently clustered together with at least one other gene. As isapparent, RC has low coverage,
though the accuracy obtained is high, thus illustrating theaccuracy-coverage tradeoff. Con-
sensus clustering relaxes the condition of complete agreement by introducing aminimum
agreement parameter. Using this parameter, an objective function foreach cluster is de-
fined, which rewards clusters containing instances having high agreement and penalizes
those with low agreement. A simulated annealing procedure is then applied to minimize
this function globally and thus obtain a clustering of the genes with high agreement. When
evaluated in terms of theweighted − κ measure [Altman 1997], it is found that CC im-
proves on the performance of each of the individual clustering algorithms. It was also
concluded that the clusters identified for ten functional classes were more likely to be an-
notated with the same classes, as compared to the individualclustering algorithms.

From the previous descriptions, it is clear that an inherentassumption of all the cluster-
ing approaches is that functionally associated genes will have similar expression profiles.
This may be a necessary condition for association, but is definitely not sufficient. This
problem is addressed using a graph-theoretic approach by Zhou et al. [2002]. Here, it
is proposed that shortest paths between genes in a network constructed on the basis of
strongly correlated expression profiles suggest a way of identifying transitively related
genes. These shortest paths are constructed between genes of the same GO category (only
”informative” GO categories are used here), and a test is applied to check if the genes
lying on these paths are annotated with the same or a parent orchild function in Sac-
charomyces Genome Database (SGD) [Dwight et al. 2002]. Results on the Rosetta com-
pendium [Hughes et al. 2000] indicate a high accuracy for mitochondrial and cytoplasmic
genes, but only medium accuracy for nuclear genes. Nevertheless any case, a significant re-
sult of this study was the assignment of functions to146 yeast genes which were otherwise
weakly correlated to other genes.

Finally, in another attempt to relax the coherent profiles requirement of clustering, a new
form of clustering, known asbiclusteringor coclustering, is increasingly being applied to
biological data [Madeira and Oliveira 2004]. In this form ofclustering, both genes and
schemes are simultaneously clustered to produce blocks of entries in the original rectangu-
lar data matrix. Several variants of biclusters in such a matrix are shown in Figure 19. It
is easy to see that gene expression data, because of its rectangular format, is highly suited
for the application of this technique. In addition, the underlying biological motivation for
this application is that some groups of genes may be expressed only under a certain set
of conditions, and the rest of the conditions act as noisy attributes when these genes are
clustered using a traditional clustering algorithm. Basedon this motivation, a good deal of
work has been done in biclustering gene expression data [Cheng and Church 2000; Yang
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Fig. 19. Different variations of biclustering (Figure taken from [Madeira and Oliveira 2004])

et al. 2003], though these early works did not particularly aim at discovering functionally
coherent (bi)clusters. Bryan et al. [2005] developed a simulated annealing based approach
for this problem and validated their results on the yeast cell cycle data set [Cho et al. 1998]
using annotations from the KEGG database [Kanehisa et al. 2004]. Indeed, it was seen
that the two largest clusters were enriched with members of two families, namely riboso-
mal proteins and nucleotide metabolism, thus demonstrating the potential of biclustering
for function prediction.

The tightest coupling of biclustering and protein annotation can be seen in [Liu et al.
2004], where the structure of GO is incorporated into the hierarchical biclustering process,
thus making the clusters obtained functionally enriched. In this approach, the genes are
originally clustered using a hierarchical clustering algorithm, and each node in the hierar-
chy is annotated with the GO functional class it is most enriched with. The result of the
complete process is a Smart HTP-tree (SHTP-tree), since it intelligently includes GO in-
formation in the clusters. An added attraction of this approach is that it allows overlapping
clusters, which makes sense biologically. In the experiments, it is verified, both quantita-
tively and qualitatively, that the nodes in the SHTP-tree are indeed enriched with at least
one GO class. An example of a successful mapping from TP-clusters to their Ontology
SubTrees (OSTs) is shown in Figure 20.

After this detailed discussion of the various forms of clustering that have found applica-
tion in microarray data analysis, one may overestimate the potential of clustering for the
function prediction task. Clustering suffers from some obvious drawbacks, which have to
be addressed in order to realize the full potential of this very powerful technique. Note that
these issues are algorithm-independent and affect the analysis over and above the perfor-
mance of the specific clustering algorithm used.

(1) Traditional algorithms find disjoint clusters of genes,which is not always the right
thing to do since genes are known to be involved in multiple functional classes si-
multaneously. Overlapping clustering [Banerjee et al. 2005; Liu et al. 2004] offers a
potential a solution to this problem.

(2) A group of genes may only be expressed in a subset of the conditions, which causes
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Fig. 20. A successful result from the SHTP-clustering algorithm [Liu et al. 2004]

the appearance of dense regions in the gene expression matrix. However, most algo-
rithms do not consider this phenomenon, and feature selection algorithms are unable
to perform a per-example analysis. Only biclustering [Madeira and Oliveira 2004]
handles this issue to some extent.

(3) It is hard to judge the most appropriate proximity (similarity or distance) measure
that should be used when clustering biological data. Euclidean distance suffers from
the curse of dimensionality when the number of conditions ina data set exceeds a
small number, as is usually the case. Similarly, correlation accounts for co-repression
the same way as co-expression, which may not be very suitablefor some applications,
particularly those which transform the gene expression data into a binary format. Thus,
even though correlation is the most widely used measure, thecosine measure may be
more appropriate for gene expression data, because of its focus on the shape of the
profile and not its magnitude [Kuramochi and Karypis 2001].

(4) The general method of transferring annotation from the majority genes in a cluster
to the unannotated ones may not be useful if very few genes in acluster have been
annotated earlier.

(5) A related weakness of clustering algorithms is that theydo not make use of the class
label information available in many data sets. As a result, annotation can only be
indirectly achieved via clustering, and in cases where thisroute is adopted, the results
are prone to two levels of error.

Recent approaches have started addressing some of these issues. For instance, Pan
[2006] proposed an approach for incorporating functional annotations into the clustering
process for gene expression data. Here, the commonly used mixture model-based cluster-
ing algorithm [Duda et al. 2000] is modified so as to increase the probability of clustering
together genes belonging to the same functional class. Thisis achieved by assigning the
same prior probability to all the genes in a given functionalclass, during the expectation-
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maximization (EM) process for computing posterior probabilities of genes belonging to
different clusters. Through experiments on simulated data, as well as Hughes et al. [2000]’s
large yeast microarray data set, it is shown that this incorporation of functional labels in-
deed improves the performance of standard clustering algorithms. This illustrates the merit
of using a supervised version of clustering for inferring protein function from microarray
data.

Nevertheless, the above issues are very strong points to be considered when applying
clustering to gene expression data in particular. Added to them are the problems due to
noise and the choice of the right algorithm and the right parameters, which are valid for
many other applications. Handling these issues effectively will make the task of function
prediction easier and more achievable.

7.2.2 Classification-based approaches.As explained in Section 7.1, the basic format
of a gene expression data set is a gene-condition matrix, where each gene is denoted by
a vector (row) and each condition by an attribute (column). In some applications, the
functions of some of the genes in a study may be known, and act as the class labels for the
corresponding vectors. The other genes remain unlabeled, and it is desired to assign a label
to them. This problem can be solved using classification algorithms in data mining, such
as neural networks and support vector machines [Tan et al. 2005]. This section discusses
several approaches that have been proposed in this direction, and also examines the factors
influencing their success or failure at the task of function prediction

One of the most cited works in the field of protein function prediction, or bioinformatics,
for that matter, is [Brown et al. 2000], which describes the application of support vector
machines for learning functions from yeast gene expressiondata. Various kernel functions
are used for the SVM and these versions are compared with three other popular classifiers,
namely Parzen windows, Fisher’s linear discriminant [Dudaet al. 2000] and two decision
tree classifiers, C4.5 [Quinlan 1993] and MOC1 [Wu et al. 1999]. With respect to the con-
sideration set of five functional classes (and another comprising the rest), it was concluded
that SVMs with a radial basis kernel were the most suitable technique for the purpose.
Also, it was observed that many of the false positives generated by SVM were known to
be related to the functional class assigned to them by the SVM. It was argued that this may
be due to various factors such as noisy data, overlaps between functional classes, and the
fact that some genes are not regulated at the transcription level and hence were hard to
characterize using gene expression data.

A more extensive study of the issues in the classification of gene expression data is pre-
sented in [Mateos et al. 2002]. Two major points of departurefrom [Brown et al. 2000]
are as follows. First, Mateos et al. [2002] use multilayer perceptrons (MLP), or neural
networks, for the learning and prediction tasks. Second, a wider set consisting of96 func-
tion classes are considered for the yeast genome. For the sake of comparison with SVM,
an MLP network is also trained and tested for the same five classes used in [Brown et al.
2000]. It was found that while SVM and MLP are comparable in terms of false negatives
(FN), the latter performed systematically worse in terms offalse positives (FP). In order to
analyse the factors contributing to the poor performance ofmachine learning techniques,
a one-against-all learning and testing procedure using MLPwas followed for all the96
classes considered. The results obtained indicated that only 8 classes were learnt with a
true positive (TP) rate≥ 40%, which proves that not only the learning technique, but also
the nature of the data set dictates how well the relationshipbetween the gene expression
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variables and the functional class can be learnt.
The main merit of [Mateos et al. 2002] was the systematic and quantitative study of

the causes for poor learning performance when gene expression data is used. They iden-
tified and quantitatively verified three main factors, besides noisy data, which determined
learning performance. These factors are as follows:

—Class size: In general, learning performance, measured here in terms ofthe TP rate,
tends to improve with class size. This is not surprising since the larger classes tend to
act as attracters for the instances belonging to the smallerclasses.

—Class heterogeneity:A class is homogeneous when all its members follow the same be-
haviour and hence act as good examples of each other during learning. Clearly, the more
homogeneous a class it, the better learning performance it will give. Using a measure
defined in terms of the divergence between consecutive genesin a class, Mateos et al.
[2002] observed that there is a linear relationship betweenthe TP rate and the hetero-
geneity measure. Also, it is suggested that larger classes tend to be more homogeneous
than smaller ones, though this needs more rigorous verification.

—Borges effect:It is common knowledge that a protein participates in multiple functions
and hence there are numerous interconnections between functional classes in terms of si-
multaneous memberships of genes. This heavy interaction nature of biological functions
leads to poor learning rate of individual classes. For the problem of protein function pre-
diction, this seems to be the most important factor affecting learning performance. This
effect is named theBorges effect[Mateos et al. 2002], crediting an observation made by
the philosopher Jorge Luis Borges in his widely cited work [Borges 1964]. Again, using
quantitative measures of this effect, it is verified that thelearning accuracy decreases
with an increase of overlaps between functional classes.

The identification of these factors is significant since addressing these issues indepen-
dently may be expected to lead to better classification performance using gene expression
data. Mateos et al. [2002] utilize these insights to proposean iterative learning procedure
for individual classes and this algorithm gives significantly better performance than a one-
pass learning procedure.

In a complimentary work, Kuramochi and Karypis [2001] analyzed the feasibility of
using supervised learning techniques in general, and the SVM and thek-nearest neighbor
(k-NN) classifiers in particular. This study used the cosine similarity measure, which ap-
pears to be the more appropriate measure than Euclidean distance for gene expression data,
as noted earlier. Similar to [Brown et al. 2000], the resultsfor one-against-all classification
were better for SVM, and a further analysis of the results ledto conclusions consistent
with [Mateos et al. 2002]. In addition, the problem of the prediction ofm most appropriate
classes for a test gene was addressed. For this,k-NN appeared to be the most appropriate
solution, since the annotations of them closest genes can be directly transferred to the
gene in question. At a higher level, this study concludes that for confident prediction, it is
necessary for the activity of the characterized genes to be observed under a wide variety of
condition, resulting in a diverse and more informative dataset.

As mentioned before, one way of increasing the confidence in the prediction of gene
functions is the combination of multiple expression data sets [Hughes et al. 2000]. Moving
forward from [Hughes et al. 2000], which involved significant manual interpretation, Ng
et al. [2003] analyse the feasibility of combining multipledata sets for learning with
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SVMs, and present a strategy to select the most informative data sets for learning individ-
ual classes. In terms of the learning cost savings measure defined in [Brown et al. 2000], it
was concluded that blindly combining all the available datasets is not the most appropriate
method of data preparation. Hence, a simple hill-climbing algorithm was devised, which
incrementally adds the data set that provides the maximum learning cost savings, continu-
ing this way till the maxima is achieved. Evaluation of this algorithm and its comparison
with other feature selection algorithms showed the superiority of the former with respect
to learning performance.

Finally, it should be observed that all the above techniqueswere tested for small model
organisms such asS. cerevisiaeandC. elegans, which have few thousand genes in their
genome. The complexity of the problem increases in mammalian species, which have tens
of thousands of genes. One such study of the functional classification of the mouse gene
expression data set, which covers over 40,000 genes, appears in [Zhang et al. 2004]. The
first part of this paper, using a methodology similar to [Eisen et al. 1998], concludes that
genes in the same functional category were indeed co-expressed, and in the second part,
this observation was used to classify about10000 unannotated genes. This classification
was conducted using a support vector machine, and an individual model was learnt for each
of the992 GO Biological Process categories considered. The classification accuracy was
not very high, though about1000 genes were annotated with more than50% probability
(calculated from the discriminant value of the SVM). This may indicate that mammalian
gene expression data needs more sophisticated analysis in order to improve the prediction
coverage and precision.

In conclusion, the nature of gene expression data has created huge interest in the machine
learning community, especially researchers in classification, and there is much work being
performed in the field of classification-based gene expression analysis. As of now, it would
be safe to say that the state of the art in this field is support vector machines (SVMs),
since they have shown the best performance with microarray data for several classification
problems [Mukherjee 2003]. However, this field is still in its early stages of maturity and
more advanced classification techniques such as boosting and active learning [Duda et al.
2000] are expected to be applied to this data in the future, leading to better results.

7.2.3 Temporal analysis-based approaches.The wide variety of approaches presented
till now adopted a static view of the gene expression data. However, as was noted in the
Section 7.1, this data can also be viewed as a temporal data set if each experiment tracks
the activity of different genes at different points of time.Some researchers have used this
temporal nature of some gene expression data sets for function prediction, and this is the
topic of discussion in this section.

The first cut at analyzing time series expression data were made via clustering [Bar-
Joseph 2004; Moller-Levet et al. 2003], since it is an unsupervised technique and does not
require the assignment of functional labels to the genes. A detailed discussion of the issues
involved in this approach can be found in [Moller-Levet et al. 2003]. In recent studies,
further issues regarding the temporal clustering of gene expression have been addressed,
such as the short lengths of the profiles [Ernst et al. 2005], sampling [Jiang et al. 2004],
co-clustering [Heard et al. 2005] and appropriate similarity measures [Butte et al. 2001].

A more direct use of the temporal nature of gene expression profiles is made in [Hvid-
sten et al. 2001; Laegreid et al. 2003], in which the data is transformed into a suitable
attribute-value vector format, so that a rough set based classifier could be used to extract
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Gene Ontology biological process (BP) labels for unknown genes. These attributes are
constructed by calculating the increase or decrease of expression values between two in-
stances separated by an interval of three time points, and then categorizing them into three
classeshigh, mediumand low. This is necessary since rule-based classifiers, such as the
rough set-based classifier here, can only handle nominal attributes robustly. Next, the clas-
sifier is learnt from this transformed set, in the same manneras [Hvidsten et al. 2001], and
is tested on the human serum response expression data set of Iyer et al. [1999]. The cover-
age of the derived rule set is excellent, since it is able to predict labels for211 of the213
unannotated human genes in this data set, of which a small number of predictions could
be verified from the literature. In addition, cross-validation tests on the training set gave
an AUC score (Area Under the ROC Curve) of0.88, which shows the robustness of the
classifier function prediction from gene expression data.

A similar approach that employs inductive logic programming for learning the classifi-
cation rule set from gene expression patterns which are defined in terms of sets of differ-
entially expressed genes between individual classes is outlined in [Badea 2003]. The use
of description logics (DL) [Baader et al. 2003] is also proposed for the purpose of making
more fine-grained predictions than the systems are currently capable of. Finally, another
rule-based classification system is presented in [Midelfart et al. 2001], which improves
upon the performance of [Hvidsten et al. 2001] by including all the members of the sub-
class of a Gene Ontology class into its member set while learning classification rules for
it. The training is more robust, since there are more representative examples available for
each class.

Deng and Ali [2004] used hidden Markov models (HMMs) to modelthe temporal in-
terdependence between the conditions under which the expression experiments are per-
formed, and the dependence of the functional class on them. Analysis of the yeast gene
expression data using this strategy suggested that a dual HMM modeling both expression
values and experiment order was the best for this application. A more statistical approach
was adopted by Gui and Li [2003], which is motivated by the observation that the tem-
poral expression profiles of genes belonging to the same class are highly similar. To cap-
ture this observation, each individual class is modeled as amixture of sub-classes and the
parameters of the model are learnt using the EM algorithm [Duda et al. 2000]. This ap-
proach, named mixture functional discriminant analysis (MFDA) was compared against
other known discriminant analysis methods on the yeast cellcycle expression data set, and
MFDA was found to be marginally better than the others. Thesepreliminary approaches
suggest the need for further examination of the relationship between the functional class
of a gene and its temporal expression profile.

Another interesting way of looking at the temporal behaviour of gene expression is to
view it in the light of evolution. van Noort et al. [2003] exploit this view and hypothe-
sizes that the conservation of co-expression between pairsof genes that have a common
evolutionary development path can enable more confident prediction of their functional
association and the pathways they are involved in. Using thetest cases ofS. cerevisiaeand
C. elegansand using correlation as measure of co-expression, two types of conservation of
co-expression were defined. Paralogous conservation refers to two pairs of genesA − B
andA′−B′ in the same organism, whereA andA′, andB andB′ are homologues of each
other respectively, and both pairs have a high correlation between their gene expression
profiles. The definition of orthologous conservation is similar, with the only difference
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being that the two pairs belong to different organisms. Whenthe correlation threshold for
co-expression was0.6, an accuracy of93% and82% are obtained forS. cerevisiae using
orthologous and paralogous conservation respectively, thus showing the promise of the
approach for the prediction of functional association between genes.

More generally, temporal gene expression analysis faces many of the same problems as
the analysis of other time series [Bar-Joseph 2004]. For instance, responses for different
genes may be offset in time and need to be aligned. Also, responses may be stretched
or shrunk with respect to one another or may only be related toone another over various
periods. Furthermore, the times series may be missing values at some times. These and
other issues have been addressed by various researchers in time series analysis, although it
is probably fair to say that none of these problems can be considered as being completely
solved.

7.3 Discussion

The previous subsections detailed the numerous approachesthat have been proposed for
the inference of protein function from the microarray analysis of the coding genes for these
proteins. The matrix format of the data yields itself naturally to classical data mining algo-
rithms such as clustering and classification, with much moreactivity being seen the latter
category in recent years. It should be noted that microarraytechnology has come of age
very recently [van de Goor 2005], and the immense popularityit has already gathered,
even in data mining publications, is an indication of the potential it possesses for inferring
different forms of biological knowledge, such as function,metabolic pathways and evolu-
tionary paths, from the information available about the simultaneous activity of thousands
of genes.

However, to extend the usefulness of function prediction from gene expression data,
a number of significant issues need to be addressed. One issueis the complexity of the
class structure. Genes can have more than one function, and these functional classes are
often organized in a hierarchy. In addition, the size of functional classes is often very
different, with some being common, while others are rare. Other important issues are data
preprocessing and data quality. Extracting information from gene expression data requires
the proper choice of normalization and other preprocessingsteps. Furthermore, the amount
of information available from gene expression data is oftenlimited by the large amount of
noise and the fact that the conditions present in a data set may not be the ones needed to
identify the functional similarity for some groups of genes.

8. PROTEIN INTERACTION NETWORKS

8.1 Introduction

A protein almost never performs its function in isolation. Rather, it usually interacts with
other proteins in order to accomplish a certain function. However, in keeping with the
complexity of the biological machinery, these interactions are of various kinds. At the
highest level, they can be categorized into genetic and physical interactions. Genetic in-
teractions occur when the mutations in one gene cause a modifications in the behavior of
another gene, which implies that these interactions are only conceptual and do not occur
physically in a genome. These interactions are mostly detected using computational tech-
niques, that are discussed in detail in Section 5. Of particular interest in this section are
the physical interactions between proteins, since they aremore directly related to the pro-
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cess through which a protein accomplishes its functions. These interactions are of various
kinds, such as the simultaneous membership of two proteins in the following biological
systems [Xenarios and Eisenberg 2001]:

—A metabolic and/or signaling pathway.

—A morphogenic pathway in order to perform a developmental function.

—A protein complex and other such molecular machines.

Since a protein generally interacts with more than one otherprotein, these interactions
can be structured to form a network, and hence the nameprotein interaction networks.
An example of such a protein network, the PX domain protein interaction network in
yeast [Voller and Uetz 2004], is shown in Figure 22. A very common way of visualiz-
ing these networks is as undirected graphs, with the proteins acting as the nodes and the
pairwise interactions acting as the edges of the graph. Sucha representation can enable
researchers to infer characteristics of proteins from those of proteins not even directly in-
teracting with it.

Due to the importance of the knowledge of these interactions, several high-throughput
methods have been proposed for discovering them [Legrain etal. 2001]. Again, depending
on the final output, these methods can be categorized into twotypes [Chen and Xu 2003;
Droit et al. 2005], namely the discovery of pairwise interactions and extraction of pro-
tein complexes. While two-hybrid systems, protein chips and phage display are the most
commonly known methods in the former category, the Tandem Affinity Purification (TAP)
approach is commonly used for extracting complexes. Figure21 illustrates some of these
methods diagrammatically.

The huge number of interactions discovered by the various experimental techniques dis-
cussed above have been organized into numerous databases that have been placed in the
public domain. Table VIII presents a summary of some of thesedatabases commonly used
by the function prediction approaches discussed below. Xenarios and Eisenberg [2001]
present a more detailed description of some of the earlier databases, such as GRID, BIND
and DIP.

Though most of the data sets in Table VIII are commonly used, there are several issues
associated with them, as discussed by Salwinski and Eisenberg [2003]. The most impor-
tant of these is the large amount of noise present in high-throughput interaction data. Deng
et al. [2003] showed quantitatively that the efficacy at the task of function prediction varies
between different data sets, primarily due to the presence of different levels of noise. This
consideration should be kept in mind during any analysis of interaction data, and tech-
niques such as [Deane et al. 2002] may be used for retrieving the true interactions from
this data. Deane et al. [2002]’s technique relies on the use of external data about the pro-
teins, such as their expression profiles and amino acid sequences to determine the reliability
of the input set of interactions, and is available for use at the DIP database’s website12.

Recently, some data mining techniques have been proposed for estimating the reliability
of a given interaction using the inter-connectivity structure of the complete network [Chen
et al. 2007; Pandey et al. 2007]. These techniques utilize the concept of shared neighbors,
which is the set of neighbors shared by two proteins, in orderto estimate the reliability
of an interaction between them. [Chen et al. 2007] discuss several measures based on this

12http://dip.doe-mbi.ucla.edu/dip/Services.cgi?SM=1
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(a) The two-hybrid method (b) The protein chip method

(c) The Tandem Affinity Purification (TAP)
method.

Fig. 21. Popular experimental methods for the discovery of protein-protein interactions. The first two
figures have been taken fromhttp://www.dualsystems.com/technologies/yeast.asp and
http://bioinfo.mbb.yale.edu/proteinchip/db/FIG1.html, respectively
, while the third is from [Puig et al. 2001].
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Fig. 22. Network of protein interactions (solid links) and predicted functional links (dashed links) involving si-
lencing information regulator (SIR) proteins (Figure adapted from [Eisenberg et al. 2000]). Note that the network
contains several functionally coherent clusters

Name Ref. Organism Type #Interactions #Proteins
Ito et al [Ito et al. 2001] S. cerevisiae Physical 4549 3278
CuraGen [Uetz et al. 2000] S. cerevisiae Physical 957 1004
CYGD [Guldener et al. 2005] S. cerevisiae Physical 9103 7̃000

S. cerevisiae Genetic 6385 7000
S. cerevisiae Complexes 2876+ 7000

MIPS [Pagel et al. 2005] 10 mammals Physical 1800+ 900+
YPD [Costanzo et al. 2000] S. cerevisiae Physical N.A. N.A.
DIP [Xenarios et al. 2002] S. cerevisiae Physical 18224 4919

D. melanogaster Physical 20988 7052
E. coli Physical 7100 1631

PIM [Rain et al. 2001] H. Pylori Physical 1200+ 261
LIGAND [Goto et al. 2002; Vert 2002] S. cerevisiae Pathways 16650 774

TAP [Gavin et al. 2002] S. cerevisiae Complexes 232 1739
Lehner et al [Lehner et al. 2004] H. Sapiens Physical 91 15

GRID [Breitkreutz et al. 2003] S. cerevisiae Physical 19791 6713
D. melanogaster Physical 28406 26148

C. elegans Physical 4453 22268
BIND [Alfarano et al. 2005] Several Interactions 201882 51087

Several Complexes 3703 51087
HMS-PCI [Ho et al. 2002] S. cerevisiae Complexes 3617 725
Giot et al [Giot et al. 2003] D. melanogaster Physical 4780 4679

Table VIII. Popular protein interaction datasets used for the function prediction task and associated features
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concept for estimating the reliability of a given interaction in a network, and illustrate that
the functional content of the network containing the edges rated as highly confident is
significantly higher than that of the original network. In fact, in subsequent studies [Chua
et al. 2006; 2007], the same measures were used to extract accurate functional information
from interaction networks.

Pandey et al. [2007] took a slightly different approach to the problem of identifying
noisy interactions in a given network. They used the h-confidence measure [Xiong et al.
2006] from the field of association analysis in data mining [Tan et al. 2005], which when
viewed in the context of a graph, can be used to estimate the similarity between two pro-
teins on the basis of the number of their shared neighbors. Thus, h-confidence is used to
estimate the likelihood of an interaction between all pairsof proteins in the network. How-
ever, it is not necessary that a an interaction is already known between a pair of proteins
whose h-confidence score is high, which indicates that an interaction is probable between
these proteins. Thus, the computation of this measure between all pairs of proteins pro-
vides a way of indicating the reliability of the edges already present in the network, and
the likelihood of including an edge that is currently absentfrom it. Thus, in addition to
addresing the problem of noise, Pandey et al. [2007]’s approach also addresses the prob-
lem of incompletenessin interaction data, which has been recently suggested to beanother
important problem for interaction data [Hart et al. 2006]. Indeed, in experiments on sev-
eral well-known interaction datasets, significantly more accurate inferences about protein
function could be obtained from the transformed interaction network, where interactions
are weighted by their likelihood of occurrence, as comparedto the original network.

These algorithms are of great value to function prediction approaches, given the impor-
tance of the problem of false positive interactions in interaction data sets, even the most
popular ones.

8.2 The Promise of Protein Interaction Networks

It has long been known that a protein does not perform its function in isolation, but as a part
of a group of proteins that cooperate to perform that function. Thus, the arrangement of
the known protein-protein interactions to construct a protein interaction network provides a
global view of the functions of the proteins, and how they cooperate to achieve higher goals
in an organism. Fraser and Marcotte [2004] suggested that the strongest point in favour of
interaction networks is that the function of a gene (protein) can be defined precisely by the
topological features of the network it is a part of. In addition, protein interaction networks
provide several other benefits, which may be useful for the study of protein function:

—Experimental data directly determines these networks.

—The noise inherent in experiments can be modeled by assigning weights to the edges
corresponding to the reliability of the experimental method used to extract them.

—These networks represent an integrative approach, in the sense that different types of
interaction data, whether genetic or physical, can be imported with equal ease to con-
struct an all-encompassing interaction network. This integration iteratively improves the
overall quality of the network.

—Networks have “features” such as areas of high connectivity separated by more sparsely
connected regions. These features can be utilized for clustering to discover cellular
machines such as functional modules [Snel et al. 2002].
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—At a more abstract level, these networks, by their very nature, reflect the interconnected
nature of biological processes.

—Interaction networks can be studied under a mathematical framework to discover precise
functions for each gene/protein.

Due to the above benefits, several approaches have adopted the route of predicting func-
tion by observing the patterns of interaction of each protein in a network, as discussed in
Section 8.3.

The above description shows qualitatively that protein interaction networks are a rich
source of information about thecontextof a protein, i.e., the position of an individual
protein in a larger view of the biological processes in a organism. For instance, in an in-
teraction network, the context of a protein is the set of proteins that it interacts with. Huy-
nen et al. [2003] suggested that exploiting this context information is more effective for
predicting functional associations and specific functionsthan pairwise comparison-based
approaches such as mRNA co-expression. This hypothesis is validated by the analysis
of thirteen cases of functional associations predicted by genomic context methods (Sec-
tion 5), that were later verified in the laboratory. A prominent example of this analysis
was the discovery that thefrataxin protein is involved in iron-sulfur cluster assembly on a
protein, which is a well-known fact in genetics [Duby et al. 2002]. The authors also postu-
late that the construction of networks from these associations may also help in discovering
functional modules, which is only a step away from protein-specific function prediction.
Overall, the authors strongly suggest that if such interaction networks can be analyzed in
depth, then the functional modules discovered from them canhave the same potential as
functional domains for protein sequences [Huynen et al. 2003].

Finally, [Fraser and Marcotte 2004] can also be interpretedas an invitation to the more
mathematically-oriented research communities to addressthe problem of protein function
prediction from protein interaction networks. However, even before the publication of
this informal invitation, the data mining community had identified the great potential of
these networks for solving this problem. The KDD Cup 2001 [Cheng et al. 2002], the
most well known research contest in the data mining community, specifically included
the task of accurately predicting the functions of several yeast genes/proteins from a set of
interactions from the MIPS repository [Mewes et al. 2002]. Several innovative data mining
solutions were submitted for this task, thus showing that there is considerable interest in
the community for this problem of protein function prediction from interaction networks.
A discussion of the submission with the best performance canbe found in Section 8.3.1.

These developments show that protein interaction networkshold great potential for ac-
curately discovering functions of proteins and this viewpoint was adopted by several re-
searchers who have proposed very innovative solutions to this problem. Section 8.3 dis-
cusses these approaches in detail. Other reviews discussing some of these approaches and
issues relate to them have also been published Sharan et al. [2007].

8.3 Existing approaches

Approaches that attempt to predict function from a protein interaction network can be
broadly categorized into the following four categories:

—Neighborhood-based approaches: These approaches utilize the neighborhood of the
query protein in the interaction network and the most “dominant” annotations among
these neighbors to predict its function.



Computational Techniques for Protein Function Prediction: A Survey · 77

—Global optimization-based approaches: In many cases, the neighborhood of the query
protein may not contain enough information, such as annotated proteins, for determining
the function of the query protein robustly. Under these conditions, it may be advanta-
geous to consider the structure of the entire network and usethe annotations of the
proteins indirectly connected to the query protein also. The approaches in this category
are based on this idea, and in most cases, are based on the optimization of an objective
function based on the annotations of the proteins in the network.

—Clustering-based approaches: The approaches in this category were based on the hy-
pothesis that dense regions in the interaction network represented functional modules,
which are natural units in which proteins perform their function. Thus, these approaches
apply graph clustering algorithms to these networks and then determine the functions of
unannotated proteins in the extracted modules using measures such as majority.

—Association-based approaches: Recently, several computationally efficient algorithms
have been proposed for finding frequently occurring patterns in data, in the field of
association analysis in data mining [Tan et al. 2005]. The approaches in this category
use these algorithms to detect frequently occurring sets ofinteractions in interaction
networks of protein complexes, and hypothesize that these subgraphs denote function
modules. Function prediction from these modules is performed as in the clustering-
based approaches.

It should be noted that, despite the above categorization, the underlying theme of all ap-
proaches in this field is that a graph-based representation enable the analysis of several
topological features of an interaction network, that can befurther analyzed for studying
various characteristics of proteins. Hence, the accuracy of any approach is determined by
the biological relevance and coverage of the features used.This is the aspect most of the
following approaches differ in, and also explains the varying levels of precision and cov-
erage reported by them. Another important factor contributing to the accuracy of these
approaches is the amount of noise present in the data, which is a well-known side effect
of the experimental approaches used for collecting these data. Several function prediction
approaches in this field thus make it a point to demonstrate the robustness of their results
when some noise, in the form of spurious interactions, is added to the original network.
These issues will be clarified in the following sections thatdiscuss the approaches in the
above categories in detail.

8.3.1 Neighborhood-based approaches.Given a set of interconnections among a set
of entities, the most intuitively straightforward approach for inferring the characteristics
of these entities is to extrapolate the characteristics of their neighbors. This idea directly
addresses the problem of protein function prediction from protein interaction networks and
was used by a very early paper which addressed this problem [Schwikowski et al. 2000].
In this study, a network of2709 interactions among2039 yeast proteins were assembled
from various sources such as MIPS [Mewes et al. 2002] and DIP [Salwinski et al. 2004].
Even though the prediction method was simple: the functionsof a protein are assigned as
the (at most) three most frequent functions among its neighbors, an accuracy of72% was
achieved for1393 characterized proteins. Another interesting discovery made in this study
was that35% of the interactions were between proteins with no common functional anno-
tation, some of which were shown to connected related functional classes, such as protein
folding and protein translocation. This illustrates the well-known concept ofcrosstalkbe-
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tween biological processes [Kunkel and Brooks 2002; Poytonand McEwen 1996]. Over-
all, this exploratory study established the utility of protein interaction networks for making
biological inferences, particularly protein function prediction.

A strategy to improve the statistical significance of these predications was proposed
by Hishigaki et al. [2001]. First, instead of just the immediate neighbors, a set ofn-
neighboring proteins consisting of proteins reached vian links is considered for predic-
tion. Second, the frequencies of all the functions in this neighborhood is recorded. Finally,
the most “significant” function in this set is assigned to theprotein of interest. This sig-
nificance is tested using aχ2-test, that compares the frequency of the function in this
neighborhood with that expected according to its occurrence probability across the whole
interaction network. Thus, the functions assigned by this approach are more significant
than those by [Schwikowski et al. 2000], where some of the assignments may be spurious
due to noise in the data. This claim is also validated using a set of 2112 physical interac-
tions assembled in a manner similar to Schwikowski et al. [2000], and three categories of
functional classification from YPD [Costanzo et al. 2000], namely subcellular localization,
cellular role and biochemical function. From this validation procedure, it was found that
the highest accuracies were obtained either forn = 1 or 2, depending on the functional
class under consideration. This suggests that there might be noise and redundancies in this
approach, if too many neighbors are considered. This is intuitively true, since the functions
of proteins very far in the network are expected to only indirectly influence the function of
the query protein, and thus they should not be weighted the same as the functions of im-
mediate neighbors in the frequency calculations. Global optimization-based approaches,
discussed in the next section, implement this observation more robustly.

Another approach for increasing the confidence in predictions made using the annota-
tions in the neighborhood of a proteins has been presented byKirac et al. [2006]. Here,
instead of looking at only the immediate neighbors, a model is built for the sequence of
annotations on the paths in the network that lead to the target protein. This model is ca-
pable of predicting the possible annotations of the target protein using the sequence of
annotations of the proteins lying on paths that terminate atthe target protein. This model
is implemented for a set of GO functional classes using the probabilistic suffix tree data
structure [Ron et al. 1996], which enables the efficient computation of the probability of
a certain protein having a certain function. The algorithm is evaluated on a variety of
protein interaction datasets, and results better than other neighborhood-based methods are
obtained. Thus, this approach provides a robust method for implementing the extended
neighborhood-based inference of protein function.

Another useful way of defining neighborhood in a network is through the concept of
shared neighborhood, which denotes the set of neighboring proteins that are common to
two proteins. The use of this concept helps identify the confidence in an interaction be-
tween two proteins, as has been done for identifying noisy edges in an interaction net-
work [Pandey et al. 2007; Chen et al. 2007]. An approach for protein function prediction
using shared neighbors is adopted in [Samanta and Liang 2003]. Here, the most significant
protein pairs are identified in the order of increasingp-values of their association. This
p-value is calculated using a formula derived for the probability of the two proteins having
the specified number of shared neighbors, assuming this association follows a bionomial
distribution. Considering thesep-values as similarities between instances, the proteins are
then clustered using the hierarchical clustering technique. When this algorithm is applied
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to the budding yeast interaction data set taken from DIP [Xenarios et al. 2002],163 clusters
are discovered. Of these,149 clusters are found to be subsets of some functional complex
or pathway according to theSaccharomycesGenome Database (SGD) [Dwight et al. 2002].
Novel functions were also assigned for81 previously unannotated yeast proteins.

A very similar strategy has been adopted in PRODISTIN [Brun et al. 2003], which uses
the Czekanovski-Dice distance for calculating the distance between two proteins, and the
BioNJ algorithm [Gascuel 1997] for clustering them. This strategy was able to cluster
proteins more effectively according to their cellular function, which is the most relevant
for function prediction. Using yet another strategy, the same group extended PRODISTIN
by replacing the BioNJ algorithm with a density based clustering algorithm [Brun et al.
2004]. Using these new clusters, new functions were predicted for37 proteins, of which
12 were novel predictions that could potentially be tested in the laboratory.

Both the above approaches utilize the concept of shared neighbors for clustering pro-
teins in interaction networks, and derive functional modules from these clusters. A more
direct approach has been adopted by Lin et al. [2006], who proposed a supervised learning
approach for inferring protein function from interaction networks using the share neighbor
idea. They show that the likelihood of two protein sharing a function becomes signifi-
cantly higher if they have a high number of shared neighbors,as compared to just having
a direct interaction between them. Motivated by this observation, they developed a prob-
abilistic model for estimating the probability of a given protein being annotated with a
certain function, by looking at the annotation of all proteins in the network that are known
to be annotated with that function. The model estimates thisprobability conditional on at
the number of shared neighbors between the target protein and each of these already anno-
tated proteins, by modeling this as a set of independent normal distributions. In a training
step, the parameters of these distributions are estimated for each function, and in the test-
ing step, a probability is computed for each proteins carrying, as well as not carrying, the
given function. A ratio of these two probabilities are then treated as likelihood scores for
the protein-function pair, and are used as the final prediction. By evaluating this algorithm
on an integration of several standard yeast interaction datasets for a set of FunCat func-
tional classes, it is shown that the performance is better than the methods based on direct
neighborhood-based annotation transfer. Thus, the use of common neighbors appears to
be more beneficial than direct neighbors, since the former provides an effective method for
incorporating the reliability of the interactions in the function prediction algorithm.

Finally, before moving on, it is important to note that the previous approaches [Samanta
and Liang 2003; Brun et al. 2003; Lin et al. 2006] are very close in spirit to the shared
nearest neighbor clustering algorithms in data mining [Ertoz et al. 2003; Jarvis and Patrick
1973]. These algorithms are based on a different similaritymeasure for the data points: the
similarity between two points is the number of neighbors that they share in an intercon-
nection network. These algorithms are known to be robust with respect to noise, regions
of varying densities and clusters of varying sizes in the data [Tan et al. 2005]. Also, they
are based on the paradigm of graph-based clustering, and thus may be useful for clustering
protein interaction networks and making functional inferences from them.

McDermott et al. [2005] discuss a very innovative approach to function prediction that
addresses a practical problem with protein interaction networks. It is known that the exper-
imental procedure used to construct these networks are significantly labor-intensive, and
thus, interaction networks are available only for some model organisms, such as yeast, fruit
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Fig. 23. Flowchart of the algorithm used to derive functional annotations from predicted protein interaction
networks [McDermott et al. 2005]

fly and worm. As a result of this paucity of protein interaction data, it may become hard
for research to exploit the rich knowledge they encode. Thus, McDermott et al. [2005] pro-
pose the use ofin silico predicted protein interaction networks for function prediction using
neighborhood-based approaches. Figure 23 shows a schematic flowchart of this approach.
Initially, an interaction network is generated for the target organism using interaction in-
formation compiled from databases such as DIP [Xenarios et al. 2002], GRID [Breitkreutz
et al. 2003] and PDB [Berman et al. 2000], through theinterolog approach [Matthews
et al. 2001; Yu et al. 2004]. The majority-in-the-neighborhood method [Schwikowski et al.
2000], and a more sensitive weighted version thereof that takes into account the link and
functional annotation quality of a neighbor, were then applied to this network. The perfor-
mance of the algorithm was evaluated using the precision andrecall measures formulated
in [Deng et al. 2004]. In the experiments, interaction networks for D. melanogaster(fly)
and50 other organisms were generated and annotated under this setup. Evaluation showed
that the functions could be predicted with an average precision of about70% with the
weighted method, though the coverage was only13% considering just the top-ranked pre-
diction. However, even with this low coverage, GO primary annotations could be assigned
for 60 and132 previously unannotated fly and human proteins with an estimated precision
of at least65%. This showed that for organisms, such as fly and human, where not much
interaction information is available, robust annotation can be derived from predicted net-
works. The authors have also set up the Bioverse web server [McDermott and Samudrala
2005] containing such predictions for a variety of organisms. In these respects, this was a
path breaking piece of research.

It was mentioned earlier that one of the tasks in KDD Cup 2001 was the prediction
of protein function from protein-protein interaction data[Cheng et al. 2002]. Since this
was a contest, several groups submitted possible approaches for solving this problem. The
entry that achieved the best performance adopted a two-stepapproach for this task. In
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the first step, the original data was pre-processed using theRELAGGS system [Krogel
and Wrobel 2001] to retrieve various attribute-value pairsfor each gene, thus producing
a new data set consisting of a real-valued vector for all the genes in the original data set.
Since the original data was a relational data set, with each interaction being an individual
entry, these new attributes were based on the immediate neighborhood of each gene, thus
making this approach appropriate for the current category.This new data set was then learnt
using an SVM classifier, and tested on a separate set of genes,which produced results
as high as93.6% accuracy for function prediction. However, more significant than the
success of this strategy was the fact that41 distinct data mining solutions were submitted
for this task [Cheng et al. 2002], thus showing that data mining techniques have potential
for solving the problem of predicting protein function frominteraction networks.

Finally, the richness of protein interaction networks and the simplicity of the neighbor-
hood approach has also motivated their use as an intermediate step in the function predic-
tion process. In a study that uses machine learning techniques [Vert and Kanehisa 2002],
these networks were used to extract meaningful features from gene expression data. The
hypothesis adopted is that genes close to each other in a network are more likely to exhibit
similar expression patterns, and hence have similar functions. Using rigorous kernel-based
techniques, the problem is formulated mathematically, andsolved to extract a similarity
kernel from the network. In experiments, which employed networks derived from the
LIGAND yeast pathway database [Goto et al. 2002], successful classification using SVM
was achieved for classes earlier thought to be hard to identify through expression data, such
as fermentation and nucleus organization [Brown et al. 2000]. In a similar study [Altaf-
Ul-Amin et al. 2003], proteins identified as belonging to thesamek-core of the interac-
tion graph [West 2001], as well as to the same cluster derivedfrom phylogenetic profiles,
are assigned the same function. Finally, some recent studies have also tried to combine
interaction networks with homology-based approaches to identify functionally related pro-
teins [Espadaler et al. 2005; Okada et al. 2005]. The basic hypothesis in these studies is
that if two proteins are interaction partners in a network ofinteractions, and also show se-
quence or domain homology, then there is substantial evidence that these proteins interact
functionally. Thus, it can be seen from this discussion thatthe intuitively simple neigh-
borhood approach has significantly impacted both the directand indirect use of protein
interaction networks for function prediction.

8.3.2 Global optimization-based approaches.Though the neighborhood approach is
very attractive because of its simplicity, it suffers from some obvious limitations. For ex-
ample, if a protein has an insufficient number of neighbors inthe network, or its neighbors
are not annotated, then it is difficult to make significant predictions about its function. The
presence of contradictory annotations among neighbors also makes it difficult to arrive at
a coherent prediction. To address these issues, severalglobal approaches have been pro-
posed. These approaches try to optimize, either directly orindirectly, an objective function
defined on the whole network, which measures some global property that the network
should possess once all its nodes have been annotated. Further details of these approaches
follow.

One of the first papers that approached the problem from this viewpoint [Deng et al.
2003] used the theory of Markov random fields (MRF) to determine the probability of a
protein having a certain function. This theory is used to determine the joint probability of
the entire network with respect to a certain function. This formulation is transformed to that
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of the conditional probability of a protein having a certainfunction given the annotations
of its interaction partners. Finally, the Gibbs sampling technique is used iteratively to
determine the stable values of this probability for each protein. As expected, this strategy
outperforms the neighborhood-basedapproaches [Schwikowski et al. 2000; Hishigaki et al.
2001] in the functional annotation task for the MIPS interaction data for yeast. In one of
the extension of this work, the same strategy was applied forthe mapping of GO codes to
proteins, with similar results [Deng et al. 2004]. In another extension [Lee et al. 2006],
the MRF approach was generalized by using a diffusion kernel-based similarity between
proteins in the network. This enabled the approach to transfer annotations from farther
away proteins, in addition to only the neighboring proteins, weighted by their diffusion
kernel-based similarity with the query protein. This generalized produced a non-trivial
improvement in the accuracy of performance over several GO functional classes.

Another strategy based on MRFs is presented in [Letovsky andKasif 2003]. This solu-
tion departs from [Deng et al. 2003] in the following two ideas:

(1) The probability of having a certain number of neighbors with a certain function is
determined by a binomial probability distribution.

(2) Instead of Gibbs sampling, a heuristic version of the belief propagation algorithm is
used to find stable values of these probabilities.

Notably, the first idea implies that the assignment of a labelto a protein is a random process
which satisfies the neighborhood constraints imposed by thenetwork. This is unlike [Deng
et al. 2003], which explicitly uses the number of interaction partners with the same and
different labels to define the same probability. Hence, the results from [Letovsky and
Kasif 2003] were expected to be inferior to those of [Deng et al. 2003], though a direct
comparison is not possible since the former reported its results on the GRID interaction
data [Breitkreutz et al. 2003]. On this data set, the algorithm achieved a high precision of
98.6% but a low recall of21%.

Probably the most widely cited approach in this category is [Vazquez et al. 2003], which
was also covered briefly above. Here, an objective function is defined for the whole net-
work, which is a sum of the following variables:

(1) The number of neighbors of a protein having the same function as itself.
(2) The number of neighbors of a protein having the function under consideration.

Thus, this function estimates the number of pairs of interacting proteins with no common
functional annotation. Since a high value of this function is biologically undesirable, it
is minimized using a simulated annealing procedure. As expected, this approach outper-
formed the majority rule-based strategy on theS. cerevisiaeinteraction data from [Schwikowski
et al. 2000], since the latter tries to optimize only the second factor above. An additional
advantage of this approach was that multiple annotations ofall proteins were obtained
in one shot, unlike earlier approaches which ran independent optimization procedures for
different functions.

In a recent paper, Sun et al. [2006] have described the MFGO (modified and faster global
optimization) approach, that tries to reduce the computation requirements of [Vazquez et al.
2003]. The idea here is to redefine the objective function such that a protein is assigned
multiple functions in one optimization run, as against a separate run for each function, as
proposed in [Vazquez et al. 2003]. From experiments on four datasets, significant savings
in computational time are observed by using MFGO, though theaccuracy remains nearly
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the same. Yet another approach [Leone and Pagnani 2005], motivated by the principle of
Gibbs potential from physics, uses the same objective function as [Vazquez et al. 2003].
Here, belief propagation algorithm [Mezard and Parisi 2001] is employed to assign the
probabilities of annotation of the proteins in the network with a certain function. However,
due to the requirement of many more iterations to reach a stable solution, this strategy
could not outperform [Vazquez et al. 2003] in a comparable number of iterations.

Another approach which attempts to achieve agreement between annotations of neigh-
bors in interaction networks is presented in [Karaoz et al. 2004]. This study models in-
teraction graphs as Hopfield networks, which are neural architectures often used in com-
putational neuroscience [Hopfield and Tank 1986]. Under this model, an energy function
is defined for each function in the GO hierarchy in terms of theweights of the edges in
the network and the functional annotations of various proteins. Minimizing this function
using an iterative gradient descent procedure leads to a maximally consistent assignment
of the function to the proteins. The fundamental issue here was the method used to as-
sign weights to the edges. Two such methods were implemented, namely a default weight
of one and a weight equal to the absolute value of the correlation coefficient between the
expression profiles of the two interacting genes. The whole procedure was run for each
function in GO and results were evaluated in terms of the F-measure. This evaluation
showed that, for168 functions, more accurate predictions were made using the integrated
network compared to those made using just the protein-protein interaction network taken
from GRID [Breitkreutz et al. 2003]. New plausible annotations were also suggested for
some proteins, thus illustrating the merit in integrating multiple information sources.

An abstract problem that has been proposed in the literatureis the estimation of distances
between proteins in Euclidean space from their relative positioning the interconnection
network. This clearly is a hard problem and can not be solved using an ad-hoc technique.
Hence, Tsuda and Noble [2004] learn this inter-protein distance matrixK by maximizing
its von Neumann entropy−tr(K log K) [Nielsen and Chuang 2000]. Under pre-defined
local and global constraints, this problem is transformed into its dual and is solved using
standard convex optimization methods. Feeding this kernelmatrix as input to an SVM
program, function prediction is carried out using two yeastnetworks, namely the biological
pathway-based network constructed by Vert and Kanehisa [2002] and the protein-protein
interaction data reported by von Mering et al. [2002]. Similar results with an ROC score
of about0.80 are obtained, which justifies the accuracy of the derived distances, which can
be utilized fruitfully by data mining techniques such as clustering and outlier detection.

It has been mentioned several times in this discussion that avery natural representation
of interaction networks is a graph consisting of proteins asnodes and pairwise interactions
as edges. Hence, it is expected that several approaches would apply graph-theoretic tech-
niques to deduce functions from these graphs. However, reality is far from expectation.
An innovative, and rare approach for this problem is described by Nabieva et al. [2005].
In this approach, the traditional max-flow min-cut algorithm for directed graphs [West
2001] is modified into an iterative flow algorithm for undirected graphs, such as inter-
action networks. In this algorithm, named FunctionalFlow,the sinks are proteins which
are annotated with the function under consideration, whilethe others are sinks. Capaci-
ties of the edges are determined by the reliabilities of the experimental or computational
techniques used to detect the corresponding interaction. Simulating this flow for a certain
number of iterations allows the function to flow into all target nodes. A contribution of this
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study is its comparative evaluation with respect to three other popular algorithms, namely
Majority [Schwikowski et al. 2000], Neighborhood [Hishigaki et al. 2001] and GenMulti-
Cut [Vazquez et al. 2003; Karaoz et al. 2004]. This evaluation is carried out on the GRID
yeast interactions data set [Breitkreutz et al. 2003] with respect to72 functional categories
at depth2 of the biological process hierarchy in GO. In terms of the ROCmeasure, Func-
tionalFlow shows the best overall performance. In particular, it outperforms Majority (and
the others) for proteins with very few annotated interaction partners. Hence, this study
overall has several significant contributions, namely a newfunction prediction method
based on interaction networks, a novel implementation for an existing approach [Vazquez
et al. 2003; Karaoz et al. 2004] and a comprehensive evaluation strategy.

Finally, the representation of protein networks as graphs has also resulted in the applica-
tion of techniques from other fields, particularly from social network analysis [Wasserman
and Faust 1994]. A social network is constructed by observing the entities interacting in a
given environment and their patterns of interaction. Owingto the similarities in the struc-
ture of social networks and protein interaction networks, techniques from social network
mining [Staab et al. 2005] have now found their way into the prediction of function from
protein interaction networks. One such simple approach, namely the estimation of the role
similarity of two individuals [Wasserman and Faust 1994], which correspond to proteins in
this case, has already been applied for this task [Holme and Huss 2005]. In this approach,
given two proteins, a simple iterative procedure is used to estimate how many pairs of pro-
teins to which they are connected, either directly or indirectly, share a common annotation.
Though this approach suffers from a quadratic time complexity in the number of nodes in
the graph, and its results on the MIPS interaction data set [Mewes et al. 2002] are only
slightly better than the very simple neighborhood countingmethod [Schwikowski et al.
2000], this study still makes an important contribution of demonstrating how techniques
from distant fields such as social network analysis could be conveniently mapped to the
field of protein function prediction from interaction networks.

Another field of computer science research that this field could benefit from is that of
web search algorithms. Currently, an assumption underlying all the approaches for pro-
tein network analysis is that all the proteins have the same reliability for the information
they provide. This may not always be appropriate, since in some cases, some neighbors
of a protein may be providing redundant information, and it may make more sense to give
a higher weight to the suggestions of the more informative neighbors. Algorithms de-
signed for searching the web, such as findinghubsandauthorities[Kleinberg 1999] and
PageRank [Brin and Page 1998], that drive most of the successful search engines such as
Google13, handle this problem very well by techniques such as weighting heavily highly
hyperlinked pages and adjusting redundant information coming from the same network
domain. Though studies have now started applying such techniques for analysing various
properties of protein sequences, such as remote homologs and motifs [Noble et al. 2005;
Kuang et al. 2005], they have not yet been applied for function prediction. Given the
immense success of search engines such as Google, both in accuracy and scalability, the
application of appropriate modifications of their underlying algorithms may lead to useful
solutions for the problem of function prediction.

The above discussion shows that a wide variety of approachesbased on principles of
global optimization have been proposed in the literature and many more are in the pipeline.

13http://www.google.com
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Fig. 24. Two examples oflinkers identified in the clustering study of [Snel et al. 2002]. In these examples,uGhB
andhofBconnect two orthologous groups each shown by ellipses. (Figure taken from [Snel et al. 2002])

The most accurate results in the field of function predictionfrom interaction networks have
also been achieved by these approaches, which is intuitively acceptable since they extract
the maximum benefit from the knowledge of the structure of theentire network.

8.3.3 Clustering-based approaches.It has been reported by earlier studies that pro-
tein interaction networks often contain dense regions thatcontain large number of connec-
tions between the constituent proteins [Schwikowski et al.2000]. These regions are often
hypothesized to represent functional modules, which are natural units in which proteins
perform their function. Clustering is a very effective approach for finding groups of sim-
ilar points in a given data set, corresponding to a suitable definition of similarity. When
the original data consists of points laid out as a graph, these clusters correspond to sets
of highly interconnected connected points, and several algorithms have been designed for
extracting these clusters from graph-based data [Brandes et al. 2003]. Since this form of
clustering can be directly applied to protein interaction networks, some approaches have
been proposed in the literature, that model the interactionnetwork as a graph and ap-
ply graph clustering algorithms to it to group functionallysimilar proteins into modules.
These modules can then be used for the annotation of uncharacterized proteins in them.
The following discussion describes these approach in detail.

Snel et al. [2002] constructed a network from genomic associations detected on the basis
of conserved gene order in genomes [Huynen et al. 2000], motivated by the conjecture that
these associations reflect functional association betweenproteins [Dandekar et al. 1998].
Using a previously devised methodology [Snel et al. 2000], the genes in this network were
clustered into orthologous groups. Again, when these groups were clustered using single
linkage, a giant cluster of1611 groups emerged. In the process of analyzing this large clus-
ter, several genes named aslinkerswere identified. These linkers essentially are low-degree
nodes in the interaction graph, as shown in Figure 24, that are members of two clusters (or-
thologous groups in this study) and thus lead to the merging of two sub-clusters in the giant
cluster when the single linkage clustering algorithm is used. Thus, when425 such linkers
were eliminated,265 sub-clusters of the large cluster were discovered, about70% of which
had a uniform functional composition according to COGs categories [Tatusov et al. 2003].
These subclusters can now be used for functional classification.
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In another application of clustering [Dunn et al. 2005], theEdge-Betweenness algo-
rithm [Girvan and Newman 2002] was used to cluster the Lehnerdataset of human protein
interactions [Lehner et al. 2004] to derive21 clusters, that differed reasonably well in the
GO annotations assigned to them, such as transcription, cell cycle regulation and mRNA
processing. It is found that the method is robust to false-positive interactions, since multi-
ple interactions are used to identify a cluster in the Edge-Betweenness algorithm. Hence,
this study successfully extended the clustering-based functional analysis methods to human
protein interaction networks, which is significant from a medical point of view. However,
a significant disadvantage of this scheme is that the deletion of edges implies the loss of
experimental knowledge, which is not advisable in this domain.

Besides prediction of individual protein functions, clustering can also be used for finding
functional modules, which are groups of proteins that function together. Corresponding to
this idea, Rives and Galitski [2003] present one such strategy for discovering functional
modules in yeast protein networks. In this paper, a single-link hierarchical clustering al-
gorithm was used to cluster the proteins in a network, with the length of the shortest path
being the distance between two proteins. This algorithm is expected to resist the effect of
false positives since spurious interactions are more likely to lie on spurious longer paths be-
tween proteins rather than the shortest ones. This algorithm was applied to three different
types of yeast networks and successful results were obtained:

—Protein signaling network: Discovered clusters correspond to modules of signaling path-
ways such as theRas-pathway.

—High-throughput interaction network: Some known modulessuch asLsm8also emerged.
Also, in conjunction with cellular localization data,hubproteins, which are highly con-
nected nodes in the interaction graph, were also discovered

—Filamentation network: Known modules such asSnf andCdc28emerged, and new pro-
teins were associated with known clusters, such asYer124Cwith fMAPK.

Thus, the versatility of the algorithm was shown through itseffectiveness on multiple types
of protein interaction networks.

In another clustering-based analysis of the yeast interaction network [Pereira-Leal et al.
2003], a different perspective was adopted. Here, the original interaction graph was trans-
formed to its line graph [West 2001], which was clustered using the flow simulation-based
TribeMCL algorithm [Enright et al. 2002]. Upon transformation back into the original
graph, overlapping protein clusters were obtained, corresponding to the general biological
understanding that one protein can be involved in multiple functions. Using interactions
from DIP [Xenarios et al. 2002] and a weighted entropy metric, it was concluded that the
clusters were homogeneous according to several functionalschemes.

Overall, the success of these strategies in a wide range of networks, and an equally varied
set of classification schemes reinforces the utility of clustering for interaction networks.

8.3.4 Association Analysis-based Approaches.Clustering is the most widely used mem-
ber of the general category of unsupervised data mining algorithms. Another significant
member of this category is association analysis, which comprises of techniques for the
identification of frequently occurring patterns in the given data set, where the definition
of a patterndepends on the type of the data being considered [Tan et al. 2005]. In the
context of graphs, these patterns correspond to frequentlyoccurring subgraphs in a set of
graphs [Kuramochi and Karypis 2004]. Extending this concept further to a set of pro-
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Fig. 25. GO annotations of the hyperclique pattern{Cus1, Msl1, Prp3, Prp9, Sme1, Smx2, Smx3, Yhc1} found
via the methodology of [Xiong et al. 2005]. The annotations in both the cases are fairly coherent, particularly in
the biological process, which is the most relevant for function prediction from complexes.

tein interaction networks leads to the idea that these patterns may correspond to functional
modules and may be used for functional discovery.

This idea was adopted by [Hu et al. 2005], who proposed CODENSE, an algorithm to
discover coherent, dense and possibly overlapping subgraphs which occur frequently in a
set of graphs. CODENSE constructs a summary graph for the setand a subset of frequent
dense subgraphs from this graph, and then, the MODES algorithm [Hartuv and Shamir
2000] is used to extract the true frequent subgraphs in the original set. In order to ensure
sufficient data, an indirect method of protein network construction was used in which39
microarray datasets for yeast were transformed to networksusing the correlation between
expression profiles of pairs of proteins. For evaluation of performance, functions were
assigned to448 genes in the derived subgraphs using the majority rule, and the resulting
accuracy was50%

In another recent application of association analysis for finding coherent functional mod-
ules, Xiong et al. [2005] extract functional modules from protein complex data using the
concept of hypercliques [Xiong et al. 2003]. Ahypercliqueis a set of frequently occurring
objects (proteins in this case), such that the confidence of every rule formed using these
objects exceeds a certain threshold. Also, efficient algorithms exist to extract these hyper-
cliques from a large binary data sets. These binary data setscan be easily generated for
protein complex data by treating each protein in the complexas an attribute with value1,
and each absent protein as0. Upon running the hyperclique algorithm on binary versions
of benchmark protein complex data sets [Ho et al. 2002; Gavinet al. 2002], several accu-
rate functional modules were extracted. The functional coherence of these modules was
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shown via their annotation with GO codes, both from the molecular function and biological
process ontologies (see Figure 25).

The above approaches focused on identifying sub-networks of proteins that are highly
conserved between a set of interactions networks. Another perspective on the frequent sub-
network problem that can be considered is that of finding frequent sub-networks within a
given interaction network, which may represent structurally important groups of interac-
tions. A brute force solution to this problem is exponentialin computational complexity.
Hence, Chen et al. [2006] proposed an efficient algorithmNeMoFinder, inspired by the
Apriori algorithm [Tan et al. 2005], for this problem, and showed that these motifs were
generally constituted of highly reliable interactions. A uniqueness property was also de-
fined for these motifs, in order to ensure that they were not randomly produced, which
may be a problem for motifs of small size. However, this algorithm is not directly usable
for inferring protein function, since it only identifies frequent subgraphs in the interaction
graph whose nodes are not labeled by the proteins they represent. Thus, in order to use
these motifs for function prediction Chen et al. [2007] presented a modified version of the
NeMoFinder algorithm, where each motif was labeled by the proteins the nodes represent,
and these proteins were annotated by their annotations. Then, these motifs we clustered
on the basis of the similarity of the GO terms that they were enriched with, thus producing
a set of groups of proteins, each of which carried similar GO annotations, and occurred
frequently in the input network. These groups were generally enriched with related GO
terms, thus showing the ability of this idea to extract functionally important components
of an interaction network, even if the components are disjoint in the network. Thus, this
algorithm marked a difference from the rest of the algorithms, particularly those based on
clustering, which are heavily dependent on the connectivity of an interaction network.

Overall, these studies have highlighted the potential of the application of association pat-
tern discovery algorithms to the problem of functional discovery from protein interaction
networks, and more such studies can be expected in the future.

8.4 Discussion

From the above discussion, it can be observed that numerous innovative approaches have
been proposed for the computational analysis of protein interactions networks, particularly
for the prediction of protein function, and more are being published by the day. In particu-
lar, the results obtained from global optimization-based approaches for this problem have
been impressive. These are expected to improve further as more techniques from computer
science for the analysis of such networks, such as social network mining and web search
techniques, are adapted into this domain.

9. LITERATURE AND TEXT

9.1 Introduction

As in all other research communities, researchers in the fields of biology and medicine
publish the results of their research in various journals and conferences. As a result, over
the past, a huge repository of knowledge has been created in the form of papers, books,
reports, theses and other such texts. Clearly, these repositories contain a huge amount of
information about important biological concepts such as protein structure and function,
cancer-causing genes and several others. Thus, there is great utility in the mining of these
repositories and retrieval of useful information.
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Fig. 26. The general architecture of a literature mining-based function prediction system

The most widely used database of research articles is MEDLINE14, which currently
contains about4 twelve million articles published in various journals and conferences of
biomedical research, and also provides a web-based interface named PubMed15. Each
document in MEDLINE is assigned a unique ID and prominent databases, such as SWISS-
PROT [Boeckmann et al. 2003], SGD [Dwight et al. 2002] and FlyBase [FlyBase Consor-
tium 2003], are linked to it through these id’s. In addition,each document is annotated with
representative MeSH16 terms that are derived from a manually-designed ontology-based
thesaurus. Owing to its extensive coverage and well-connected structure, MEDLINE is by
far the most widely used source of articles describing biomedical research.

9.2 Existing Approaches

The primary target of the field of biomedical literature mining is to extract useful and
valid biological information from the vast repositories ofbiomedical research literature
such as PubMed. The form of information we are most interested in are the functions
of various genes and proteins. Function prediction via literature mining aims to uncover
those functions that have not been reported in the literature, and several approaches have
been proposed in this direction [Nair and Rost 2004]. These approaches are the subject of
discussion in this section.

The general architecture of a literature mining-based function prediction system is shown
in Figure 26. The various “identification” modules in the architecture represent the prime
challenge for such systems, namely the variation in the use of language by different au-
thors. This variation is observed not only in the organization of the text in the articles,

14http://www.nlm.nih.gov/pubs/factsheets/medline.html
15http://www.pubmed.gov
16http://www.nlm.nih.gov/mesh/
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but also in the nomenclature. For instance,EphB2, a protein involved in signaling in the
brain, was known by various names such asCek5, Nuk, Erk, Qek5, Tyro6, Sek3, Hek5
andDrt in the literature, before its official name was adopted [Nature Editorial 1999]. It
is widely recognized that such variations make the task of uncovering useful information
from literature very challenging [Blaschke and Valencia 2003; Nair and Rost 2004].

Despite these challenges, several powerful text analysis approaches exist in data mining,
that can be used to extract useful knowledge about protein function from research articles
and other texts. This analysis can be performed at various levels:

—Shallow: Only the abstract or introductory text is used in the analysis.

—Deep:The complete document or text is utilized.

Text analysis approaches for biomedical literature exist at both levels. Another classifi-
cation is based on the extent of English vocabulary considered for this analysis. The two
classes here are the following:

—Free: The analysis is performed on the complete unstructured textfrom the articles/abstracts.

—Restricted: Only a fixed-size vocabulary, such as the set of GO codes, is analyzed.

Though the above categorizations are useful, a more useful categorization of the ap-
proaches that predict function from biological literatureis based on the underlying tech-
niques and the fields these techniques are adopted from. The most dominant fields that
have influenced function prediction from literate are as follows:

—Information Retrieval (IR) : The field of information retrieval deals with the automatic
extraction of information from a large source of data, a repository of research articles in
our case, starting with a natural language query issued by a human [Rijsbergen 1979].
Given this data, IR approaches essentially involve the estimation of the relevance of
documents in this data set to the given query, mostly at a syntactic level, and then ranking
them to find the most relevant results.

—Text Mining : Text mining is defined as the process of extraction of semantically in-
teresting and non-trivial knowledge from unstructured text [Weiss et al. 2004]. The
techniques in this field involve the use of intelligent data analysis techniques, such as
clustering and classification, for analyzing text data. Thus, these techniques are more ro-
bustly able to handle large variations in data, which is a significant problem for research
literature because of the different writing styles of the authors of different articles.

—Natural Language Processing (NLP): In many cases, the use of text mining techniques
is not enough, and it is pertinent to incorporate natural language understanding [Allen
1995] into the analysis algorithm. The techniques in this field deals with the modeling
and analysis of natural language use by humans, so as to retrieve semantically interesting
knowledge from text.

We have categorized the approaches proposed for predictingprotein function from litera-
ture into the above three categories, which are discussed inthe following sections.

9.2.1 IR-based approaches.As mentioned above, information retrieval deals with the
retrieval of the most relevant documents in response to a query. This paradigm can be
easily applied to the problem of function prediction from literature, where the query is the
name of the gene/protein, and the data source is a repositoryof research articles.
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The earliest solution to this problem was proposed by Tamames et al. [1998]. In this
approach, which is mostly statistical, the frequency of various keywords are recorded for
proteins, which were categorized into three functional classes: Energy, Communication
and Information. These keywords are obtained from the SWISS-PROT database, in which
the entry for each protein also contains some keywords manually identified from the litera-
ture. Using these frequencies, unclassified proteins are assigned to one of the three classes.
Next, the keyword frequencies are updated using this new setof classified proteins. This
process is carried on till there is no significant change in the frequencies. Using this ap-
proach, a coverage of52% and a precision of82% was estimated for a data set consisting
of the proteins in theMycoplasma genitaliumgenome. Though the coverage appears to be
low on this data set, it becomes significant when compared to the manual classification of
these proteins, which resulted in a moderate coverage of63%.

The next step in this direction was the ProFAL (PROtein Functional Annotation through
Literature) system [Couto et al. 2003]. In the retrieval phase, the documents in PubMed
linked to the entries of GenBank [Benson et al. 2004], SWISS-PROT [Boeckmann et al.
2003] and PDB [Berman et al. 2000] databases are retrieved. In the extraction phase, the
enzyme under consideration is annotated with all the GO terms occuring in these docu-
ments. The validation of these annotations are mostly manual, and one such evaluation of
173 annotations for enzymes in the CAZy database [Coutinho and Henrissat ] by an ex-
pert curator reported55% precision. The recall of the system was also low (40%), mostly
because of the lack of bibliographic references for some enzymes.

MILANO [Rubinstein and Simon 2005] is another system which links multiple databases
to annotate genes. It takes as input a set of gene identifiers and a set of custom terms. In
order to handle the variation in the gene names, the gene names are expanded using the
LocusLink database17 , and the co-occurrences of these new names with the custom terms
are counted in the PubMed and GeneRIF [Mitchell et al. 2003] document databases. The
resulting associations are ranked according to the frequency of co-occurrence and pre-
sented to the user on a web-page. In a case study, it is verifiedthat MILANO can indeed
identify the genes most affected by the over-expression of thep53 gene. Besides being a
sucessful application of a software engineering architecture in literature mining, the two
biggest strengths of MILANO are its ability to use aliases for gene names, and its use of
the GeneRIF database [Mitchell et al. 2003], which containsabout90, 000 summaries of
articles about known genes.

As can be seen from the above descriptions, IR-based approaches mostly use the syn-
tactic information in documents to extract useful information from text. The need to use
semantics in these approaches led to the application of solutions based on text mining to
the problem of automated function prediction from the literature. These techniques are
reviewed next.

9.2.2 Text mining-based approaches.As mentioned before, text mining holds great
potential for the analysis of biomedical literature because of its ability to utilize the seman-
tic content of a document, and robustness to variations in writing styles and nomenclature.
This section discusses several text mining-based approaches that enable the prediction of
the functions of proteins from literature.

For a long time, the most popular technique for predicting protein function was the trans-

17www.ncbi.nlm.nih.gov/LocusLink
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,

Fig. 27. Cross-species annotation procedure adopted in [Stoica and Hearst 2006]

fer of annotation from a homologous protein to the query protein (Sections 3.2 and 3.3.1).
Hence, it was natural for early text mining approaches to utilize this notion for making
confident predictions. One such approach is presented by Renner and Aszodi [2000], who
propose a pipeline for the prediction of functions of novel gene products. The portion of
this pipeline of interest to us are its final two steps. In the first step, a novel protein is
input to a similarity search across multiple databases, such as SWISS-PROT [Boeckmann
et al. 2003], PIR [Wu et al. 2003] and PROSITE [Hulo et al. 2006]. The results of these
searches are stored as HTML documents. Next, the representative terms from all the doc-
uments are extracted and clustered on the basis of frequencyof co-occurrence. Guided
by the hypothesis that two documents are similar if they contain terms that are related to
the same biomedical concept, the documents related to each protein are clustered using
the term clusters derived earlier. An inspection of the clusters can then be used to assign
function(s) to a protein. It was observed that, for most of the proteins, all the documents
clustered into a single cluster, illustrating their conceptual coherence. Thus, even though
the final step needed user intervention, this approach was a successful application of doc-
ument clustering to the bioinformatics domain.

The idea of orthology has been used for cross-species annotations in an interesting recent
paper [Stoica and Hearst 2006]. Here, the final GO annotations of a gene are assigned on
the basis of the annotations of its orthologs. Two methods for doing this are proposed here,
namely Cross Species Match (CSM) and Cross Species Correlation (CSC). CSM uses the
GO annotations of an ortholog also as annotations of the query gene, CSC only uses those
annotations that are significantly correlated with the dominant annotations of the query
gene’s orthologs. The complete algorithm is depicted in Figure 27. It is expected that
CSM will have a high precision, while CSC will improve the recall at the cost of precision.
This is indeed the pattern observed for the annotation of EBIHuman [Camon et al. 2003]
and MGI Mouse [Blake et al. 2003] databases, where the final set of annotations is the
union of CSM and CSC annotations. This work could be especially valuable for genes of
organisms that are not as well documented.

Raychaudhari et al. [2002] apply the data mining technique of classification to the pre-
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diction of functions of genes on the basis of the documents they are associated with.
In the first part of this study, three document classifiers, namely, the maximum entropy,
naive Bayes and nearest neighbor classifiers, were constructed for21 classes using train-
ing abstracts extracted from PubMed. Words co-occurring with the GO codes denoting
the classes were identified using aχ2-test and were used as features. After classifying a
held-out test set, it was concluded that the maximum entropyclassifier, with an accuracy
of 72.8% is most appropriate for the functional classification task.In addition, it was ver-
ified that the probability of each classification being correct, as assigned by the maximum
entropy classifier, can be used to rank the predictions. These conclusions are in agreement
with results reported earlier in the statistical NLP community [Nigam et al. 1999]. Thus,
this study presents a strong case of the use of text classification for function prediction.

In another simple approach, the nearest neighbor classification algorithm is applied for
functional classification of proteins [Keck and Wetter 2003]. Upon receiving a query,
a simple text-based similarity is calculated between its documents and those of proteins
identified in a BLAST [Altschul et al. 1997] search, and the top functional keywords are
transferred. The results obtained for a variety of databases such as GenProtEC [Serres et al.
2004] and MIPS [Mewes et al. 2002] are not impressive, with a precision over0.9 being
obtained only for a low recall of about0.4. The suggested reasons for these results are
the presence of homologues and inconsistent examples. However, the basic weakness of
the approach is the crude similarity function, which is the backbone of any instance-based
learning algorithm such ask-nearest neighbor.

Finally, a problem related to function prediction is the prediction of functional relation-
ships between genes. Shatkay et al. [2000] addressed this problem by representing each
gene by a set of abstracts and then comparing the representative sets of all pairs of genes
to determine which ones are functionally related. Each set of documents, which are in turn
assembled using a document similarity algorithm is converted into a binary vector, and
the similarity between these vectors is calculated using cosine similarity. If the similarity
is higher than a certain threshold, the two corresponding genes are declared to be func-
tionally related. Upon testing on a set of cell cycle-regulated genes in yeast, it was found
that the clusters corresponded directly to those experimentally determined by Spellman
et al. [1998] for the same set. An additional advantage of this algorithm is that it yields an
executive summary in the form of the most relevant terms for every gene.

9.2.3 NLP-based approaches.In some cases, text mining techniques are not effective
for extracting protien functoin information from documents, since they are essentially un-
guided, and are thus unable to assign specific meanings to individual components of the
content of a document. Thus, in order to perform a more guidedanalysis of the docu-
ments, it is necessary to incorporate natural language understanding into such an analysis
system [Allen 1995]. The approaches discussed next attemptto achieve this goal.

Koike et al. [2005] try to capture the protein-functional term relationship as an ACTOR-
OBJECT one, thus eliminating the false positives generatedby hypothesising just on the
basis of the co-occurrence of the protein and functional term in a number of documents.
This strategy essentially consists of two steps. In the firststep, same and similar meaning
terms for each GO class are extracted from the available textusing various techniques.
This component thus handles the variability in function name in the literature and hence
increases the recall. In the next step, gene names are identified in the text, and the sentences
in which they appear are subjected to shallow parsing. If thegene appears in the ACTOR
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Fig. 28. NLP-based approach followed by Chiang and Yu [2005]

position and the functional term appears as the OBJECT, thena gene-function hypothesis
is presented. In order to handle complicated sentence structures, some rules are defined
for identifying the ACTOR(S) and OBJECT(S) in the parsed structure. Besides generating
reasonably accurate hypotheses for the yeast and human genes, which are verified manu-
ally, the main reasons for low recall (less than50%) are discussed. Some such factors are
parser errors, gene name recognition errors and function and gene name not occurring in
the same sentence. Addressing these problems will lead to animprovement in the system’s
recall.

Some of these issues are addressed by Chiang and Yu [2005], whose strategy for solving
the function prediction problem is shown in Figure 28. Here,three types of variants of
GO terms are defined, namelymorphological, syntacticandsemanticvariants, and are ex-
tracted using various tools and techniques such as lexicons, mining of variation rules from
literature and mapping of other classification systems to GO, respectively. Next, sentences
in which a protein name and GO term co-occur are extracted andsubjected to shallow pars-
ing. It is observed that the descriptions of protein functions in natural language patterns
follow certain patterns such as<protein> participates in<GO> and<protein> is lo-
calized to<GO>. These sentence patterns are mined using sentence alignment [Barzilay
and Elhadad 2003], and patterns with a high support and confidence are used for find-
ing the functions of uncharacterized proteins described ina separate set of test sentences.
These patterns, like association patterns in data mining [Tan et al. 2005], capture the con-
sistency in variability feature of language use by authors.In a quantitative evaluation of
the system, it is concluded that processing morphological,syntactic and semantic variants
indeed assists in achieving the best performance. At certain values of minimum support
and confidence, the precision, recall and F-measure values obtained are better than the best
submission in the BioCreAtIvE competition [Blaschke et al.2005], thus illustrating the
power of this approach.
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The discussion above details well-designed systems that are able to handle greater vari-
ation in the content of the texts analysed than their counterparts in the text mining and IR
domains since they are explicitly equipped with knowledge about natural language use, and
thus have a greater precision at the task of function prediction. However, recall is a major
issue for these systems as it is very difficult to capture all possible variations in grammat-
ical rules. Future research in this field is expected to concentrate primarily on improving
the recall of such systems.

9.2.4 Keyword search.In addition to the approaches discussed in the previous sec-
tions, which perform afreeanalysis of the text of research articles to prediction function,
there exist keyword extraction/annotation systems that examine a restricted vocabulary
used in certain databases such as SWISS-PROT [Boeckmann et al. 2003] and SGD [Spell-
man et al. 1998], unlike the vast vocabulary of unstructuredtext targeted by the former
approaches. These keywords usually contain information about the function of a protein,
and thus the results of these keyword extraction systems canbe treated as hints for protein
function prediction. Some such systems are discussed in this section.

The earliest study in this area is described in [Andrade and Valencia 1997], where a
simple strategy for ranking keywords for a set of disjoint protein families is proposed. Sets
of abstracts for these families are obtained from MEDLINE, and az-score is calculated for
all the words (except the stop words) using their normalizedfrequency of appearance in
the abstracts correponding to each family. For each family,words and sentences are ranked
and extracted according to thez-score and the averagez-score of the constituent words, re-
spectively. Examination of theplastocyaninandxylose isomeraseclasses indicates that the
algorithm performs well in terms of the number of keywords and the relevance of the sen-
tences extracted. The results are analyzed further in [Andrade and Valencia 1998], and it
was found that, for the71 classes considered, more informative keywords than the SWISS-
PROT keywords are extracted for16 classes, andz-score is able to discriminated between
words characteristic of some classes and those that occur generally in the literature. How-
ever, the test set considered for this algorithm is too limited, in terms of ambiguity, for any
reliable conclusion to be drawn.

Fleischmann et al. [1999] restrict themselves to SWISS-PROT keywords and attempt to
annotate uncharacterized proteins in the TrEMBL database with relevant keywords. In the
first step of this approach, annotated proteins in the SWISS-PROT database are grouped
on the basis of which PROSITE patterns [Hulo et al. 2006] theymatch, and the common
annotations from each group are retrieved. In the annotation step, the common annotations
are transferred to the unannotated proteins that satisfy the condition of a rule. Since pat-
tern matching is the integral step in this approach, some methods, such as ensuring high
statistical significance of the match, are adopted to eliminate false positive matches. Using
this approach, the annotated fraction of TrEMBL [Boeckmannet al. 2003] increased from
32% to over51%, which is a significant improvement in coverage.

Kretschmann et al. [2001] explore the use of the C4.5 decision tree construction al-
gorithm to automate the assignment of keywords to protein entries in the SWISS-PROT
database. Once again, the features used are patterns from the Pfam [Sonnhammer et al.
1997] and PROSITE [Hulo et al. 2006] databases. In order to provide substantial training
data to the learner, proteins from SWISS-PROT are categorized into ten classes on the basis
of the signatures in the InterPro database [Apweiler et al. 2000]. For each class, decision
trees are constructed for all keywords, if possible, and rules are derived from these trees,
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and their confidence is estimated using stastical methods. The validity of these rules is
tested by a ten-fold cross-validation experiment. Not surprisingly, it was concluded that
rules with a higher confidence have a high precision and low recall, and vice-versa. More
significant is the fact that almost100% precision is obtained for all classes. However, this
may be a result of the fact that the ten classes used for testing are disjoint, and hence, there
is not much ambiguity in the assignment of keywords.

Another application of keyword classification to function prediction is presented by King
et al. [2003]. In this approach, a binary matrix is constructed from the training data, indi-
cating which genes (rows) are annotated with which GO codes (columns). The hierarchical
structure of GO was also taken into account by using the idea that a gene annotated with
a certain GO node should also be annotated with all ancestorsof the latter. Using this ma-
trix, a decision tree classifierMDT and a bayesian network classifierMBN were learnt. In
order to test these classifiers, a ten-fold cross validationexperiment was conducted on the
SGD [Dwight et al. 2002] and FlyBase [FlyBase Consortium 2003] annotation databases.
ROC analysis indicated thatMDT outperformsMBN at low false positive rates, and vice
versa at high false positive rates. Manual assessment also indicated that in many cases, the
predictions made led the assessor to related literature. This is a significant step towards
automated database curation [Seki and Mostafa 2004].

The latest study in this direction appears in [Perez et al. 2004]. The basic methodology
behind this approach is the establishment of links between literature databases such as
MEDLINE and protein databases such as SWISS-PROT. Particular use of MeSH terms,
which are ontology-based annotations of abstracts in MEDLINE, is made. Using the fuzzy
thesaurus model [Miyamoto 1990], three mappings are derived: between MeSH terms and
GO annotations of the SWISS-PROT entries (obtained from theGOA project [Camon et al.
2003]), between MeSH terms and SWISS-PROT keywords, and between keywords derived
from the abstracts to the SWISS-PROT keywords. Once these mappings are available, it
is easy to annotate uncharacterized protein sequences. It is specifically noted that, though
precision and recall results are inferior to those reportedby Kretschmann et al. [2001], the
results are still substantial since only literature and no supporting databases are used to
annotate proteins. This is an advantage of this approach.

From the detailed description of the various keyword annotation systems, it can be ob-
served that the underlying methodology here is significantly simpler than that adopted for
function prediction. This is a consequence of the use of a restricted vocabulary that elim-
inates the need to handle variations of different kinds. However, this research is still im-
portant in order to disseminate and assimilate research results quickly, a task that becomes
substantially harder if every researcher adopts a different terminology.

9.3 Standardization Initiatives

In the previous few sections, we saw how different approaches for mining the functions
of proteins try to handle the problems arising out of the freeuse of language in biomed-
ical literature, usually. These approaches are based on different hypotheses, and are also
evaluated on different test data. This makes it difficult to perform a comparative evaluation
of the various literature mining techniques for protein function prediction. To make this
comparison possible, it is necessary that all the algorithms be altered to address the same
task and the evaluation be carried out on a common test data set. This necessity led to the
organization of two literature mining contests, namely BioCreAtIvE [Blaschke et al. 2005]
and the genomics track of the Text REcognition Conference (TREC) held in 2003 [Hersh
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Fig. 29. Statistics-based approach followed by Ray and Craven [2005]. This was the general scheme followed by
all submissions to BioCreAtIvE, with variations in individual modules

2004]. These contests are discussed in detail in this section.

9.3.1 BioCreAtIvE. The Critical Assessment for Information Extration in Biology (BioCre-
AtIvE) contest [Blaschke et al. 2005] was organized by a teamof curators of biological
databases and text mining researchers working on the problem of automatic information
extraction from biomedical literature. The main motivation behind BioCreAtIvE was the
development of common standards and shared evaluation criteria to enable comparison
across various literature mining techniques. Two tasks were defined as a part of the con-
test, the first of which was the identification of gene (or protein) names in a given data set.
Owing to the popularity of this task, and the high number of submissions [Yeh et al. 2005],
a more detailed task further consisting of three sub-tasks was defined for the contest. These
subtasks were:

Task 2.1. : Find pieces of relevant in article text that support a givenGO annotation for
a certain protein.

Task 2.2. : Given an article, find the most appropriate GO annotation for a certain pro-
tein and relevant text supporting it.

Task 2.3. : From the whole set of articles, find the most relevant articles and the most
appropriate GO annotation for a given protein.

Thus, essentially, the solution for each sub-task requiredan extension of the solution
for the previous sub-task. The training data for the whole task was essentially the entire
GOA database [Camon et al. 2003], which provides GO annotations for various proteins
as well as the MEDLINE id’s of the documents(s) which supportthis annotation. The test
set was a set of212 full text articles from theJournal of Biological Chemistry(JBC)18. A
common training and test set ensured that the best approach wins. The most successful of
these approaches are dicussed below.

A fully statistical approach to the problem is taken by Ray and Craven [2005]. A
schematic diagram of the strategy followed in this work is shown in Figure 29. To initial-
ize, the original training set is supplemented by incorporating similar data from the SGD
(yeast) [Dwight et al. 2002], FlyBase (Drasophila) [FlyBase Consortium 2003], WormBase
(C. elegans) [Harris et al. 2004] and TAIR (Arabidopsis) [Huala et al. 2001] databases. Us-
ing this augmented training set, the mostinformative termsare identified for each GO code

18http://www.jbc.org/
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using aχ2-test on the contigency table recording the co-occurrence and non-co-occurrence
of all the unigrams, bigrams and trigrams across documents associated with a certain GO
code. When given a novel protein, the most appropriate GO assignment is assigned by
summing theχ2 values of all the informative terms for a GO code. This model is further
enhanced by combining it with a naive Bayes classifier based on features extracted from
raw text that capture the notion of protein name-GO code association. The resultant system
is shown to be very competitive compared to the other submission, with respect to preci-
sion and recall. The most significant conclusion from this study is that supervised learning
methods can be effective for the task of function predictionfrom textual data if sufficient
data is provided at the learning stage.

Rice et al. [2005] approached Task 2 from a document classification perspective and
used support vector machines (SVM) for the assignment of GO terms to proteins. For this
purpose, features in the form of significant terms were extracted from each document using
the C-value method [Frantzi et al. 2000]. This method combines linguistic patterns with
statistical analysis to suggest the most significant terms in a document. Next, a feature-
value vector for each document is then constructed using inverse document frequency (idf )
weighting [Rijsbergen 1979] for each synterm. Finally, oneSVM was trained for each
GO term using the initial training data provided by the organizers. During the testing
phase, these classifiers were used to rank the entity considered in the correponding sub-
task. Unfortunately, performance was poor, with low precion for tasks 2.1 and 2.2, and
only average precision for task 2.3, which was evaluated fora very small number of test
cases. Still, a significant conclusion from this study was that relevant knowledge can be
extracted from a set of documents even if it has not be explicity stated in a single document,
using intelligent text indexing schemes such asidf.

Some other groups only presented solutions to the first two subtasks of Task 2, i.e., they
addressed only the problem of assigning a function to a gene given an article of interest
about it. [Ehrler et al. 2005] present the solution that achieved the best results for Task
2.2. This solution carries out both a vector space- as well a regular expression-based re-
trieval of the best GO terms corresponding to a document, andthen merges the two lists
of recommendations. Another solution is FiGO (Finding GeneOntology) [Couto et al.
2005], which is based on the idea that the higher the frequency of a term in a document,
the lower its significance. Correspondingly, all possible variations of a GO term are found,
their confidence is calculated, and those annotations are transferred to the gene whose con-
fidence exceeds a certain thresholdα. However a very low precision of10% is obtained in
experiments on the benchmark data set.

Another algorithm known as the sentence sliding window algorithm [Krallinger et al.
2005] was designed to address only Task 2.1, i.e., extraction of the most relevant passage
for a given protein annotation. The strength of the algorithm was in the foundation, i.e., the
set of synonyms constructed for protein names and GO labels.These synonyms, known as
sub-tags, were collected both from standard databases suchas LocusLink, SWISS-PROT
and GOA, in addition to rule-based natural language variants. Next, a score is calculated for
each sub-tag in a manually chosen abstracts, using a sentence sliding approach. Finally, an
overall score is calculated for a set of sentences by multiplying the score of a protein name
and a GO label, which are in turn obtained by summing the respective sub-tag scores. The
highest scoring set is returned as the best passage. Owing tothis context-based estimation,
this submission received the highest number of correct predictions for Task 2.1.
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The above descriptions show the complexity of the task of annotation from biomedical
literature. More such issues were brought forth by the TREC genomics track held in 2003,
which is discussed next.

9.3.2 TREC 2003 Genomics Track.The Text REtrieval Conference (TREC) is a well-
regarded series of conferences discussion issues related to information extraction from
unstructured text. Looking at the exponential growth in research towards information ex-
traction from biomedical literature, the conference managers were motivated to establish
a genomics track at the conference in 2003 [Hersh 2004], and it has been conducted ever
since. The tasks in this track were similar to that of BioCreAtIvE. Specifically, the primary
task of the track was to find all MEDLINE references that discuss the basic biology of a
give gene X, which includes isolation, structure, geneticsand function of genes/proteins in
various conditions. The second task was to construct GeneRIF [Mitchell et al. 2003] entries
for the given genes, which provide a certain piece of text describing the function of a gene
and reference of the source of this text. Training data consisted of a file describing naming
variations for50 genes from four organisms, a large chunk of MEDLINE records,and a
set of GeneRIFs corresponding to these genes for validation. Testing was performed with
respect to a similar set of50 genes and their GeneRIF entries. The track attracted several
submissions and inspired many other approaches, some of which are discussed here.

One of the most successful approaches was proposed by the BioText team [Bhalotia
et al. 2003]. The two tasks were targeted separately. The first module was a systematically
weighted combination of judgements whether a certain document references a given gene.
For making these judgements, rule-based expansions were applied to the gene names, and
using a character-basedn-gram model [Allen 1995] and the Dice coefficient [Rijsbergen
1979], it is estimated if the abstract, the title and the MeSHdescriptor of a document
contain the gene name. This estimation is combined with the probability that the document
has been assigned to a GeneRIF, and the documents are finally ranked to produce results for
the first task. For the second task, it is observed that GeneRIF texts generally come either
from the title of a document or the last sentence of its abstract. A naive Bayes classifier
was used for this classification, and the final results produced were ranked second among
all the submissions to the track.

Another very successful approach, which was ranked third atthe track, was presented
by de Bruijn and Martin [2003]. This system consisted of seven modules, most of which
were similar in spirit to corresponding components of [Bhalotia et al. 2003]’s solution.
In addition, two specific ideas were also implemented, namely the use of thetf − idf
weighting scheme to represent the documents, and an iterative procedure to identify the
documents most similar to a given text query. The overall system is found to be very suc-
cessful and was ranked third among all submissions. In addition, some failure conditions
were identified, such as overly complex gene names, over-representation of a certain gene
in the training set, gene names close to English words and failure of the evaluation metrics.

Yet another approach inspired by the track, though not published in TREC’s proceed-
ings, appears in [Seki and Mostafa 2004]. Here, an algorithmproposed by the same au-
thors [Seki and Mostafa 2003] was used to identify gene/protein names in the texts. The
documents selected were broken up into sentences and using aprobabilistic score called the
g-score, the likelihood of each sentence being included in a GeneRIF record is estimated.
This score is motivated by the observation that GeneRIF and non-GeneRIF sentences fol-
low distinctg-score distributions. Though initially the precision was very low, linking of
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this algorithm with LocusLink entries resulted in a better precision-recall curve for the
overall system.

9.4 Discussion

The wide variety and innovativeness of solutions submittedto the BioCreAtIvE and TREC
contests demonstrate the potential that literature miningholds for gene/protein function
prediction in particular, and for biological knowledge discovery in general. In addition,
these events also emphasized the most significant problems in this task. For instance, the
maximum number of submissions to BioCreAtIvE focused on themost basic task, i.e.,
gene name identification in text [Blaschke et al. 2005], which indicates that there is still
a long way to go before perfection is achieved in this field. Asthis is recognized, further
research and consequently better results are expected in this field.

10. MUTIPLE DATA TYPES

10.1 Introduction

With a plethora of data being generated by a wide spectrum of proteomics experiments,
it may be hypothesized that sometimes what can’t be discovered from one source of in-
formation may become obvious when multiple sources are analysed simultaneously. This
intuition has been concretized by Kemmeren and Holstege [2003], who have suggested the
following distinct advantages achieved by integrating functional genomics data:

(1) Usually, individual biological data sets provide information about complimentary bi-
ological processes, such as gene expression and protein interaction networks. Thus,
combining them provides a global picture of the biological phenomena a set of genes
is involved in.

(2) Often, data quality varies between different types of data, as well as within different
sources of data of the same type. For instance, studies have shown significant varia-
tions between the quality of different protein interactiondata sets [Deng et al. 2003].
Thus, the combination of several data sources/types improves the quality of the overall
data set, since the errors in one data set may be corrected in another.

(3) The most important advantage of the integrative approach is that since only conclu-
sions valid over a set of data types are accepted, the predictions made by this approach
are usually more confident than those made on the basis of individual data sets.

Corresponding to these prominent advantages, several computational approaches have
been proposed, that address the problem of protein functionprediction by an integrated
analysis of a variety of data types discussed in previous sections (Sections 3-9). In addi-
tion, some approaches also utilize other forms of data such as cellular localization, protein
fusion and trancription factor binding sites. However, irrespective of the types and formats
of the data used, it has been generally observed in this field that the results obtained by
these approaches are better than those obtained using individual sources of data, thus mak-
ing them very important in the landscape of protein functionprediction techniques. The
following section discusses several approaches based on this data integration idea.

10.2 Existing Approaches

It was discussed in the previous section that it is beneficialto combine different forms
of biological data in different ways, as may be appropriate for the particular study and
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its goal. This section discusses several approaches that adopt this strategy in order to
predict protein function effectively. However, for the purpose of a better understanding
of these approaches, we categorize them into the following categories, on the basis of the
underlying ideas in each of these approaches:

(1) Common format: This category consists of those approaches in which the original
data types are transformed into a single format by using appropriate pre-processing
strategies. This pool of data can then be analyzed in one of two ways:
—Same technique: Application of the same technique to the whole data set to derive

a single set of predictions.
—Different techniques: Application of different techniques to different data types to

derive multiple sets of predictions, from which a consensusis generated.

(2) Independent formats: The approaches in this category retain the original formatof
the contributing data sets, which implies the use of separate techniques for handling
each of these data sets. However, the two sub-categories handle this analysis procedure
in the following different ways:
—Simple Combination of results: This may also be referred to aspost-processing

of results, where the results of each individual analyses are combined to derive a
consensus set of predictions.

—Intelligent data fusion: Approaches in this category adopt intelligent machine
learning techniques such as Bayesian networks and suitablekernel methods for
modeling the dependence between the results derived from the individual analyses.

Owing to the possibility of applying different techniques for different data types, tech-
niques that belong to the second category are much more popular than the ones in
the first category. Another advantage is that this approach avoids the loss incurred in
transforming all the data types into a common format, for which well-established ap-
proaches are not available yet. Further difference betweenthe two will become evident
during the course of their discussion.

In subsequent sections, we review several approaches proposed in each of the above
categories.

10.2.1 Approaches Using a Common Data Format.This section covers both of the
above the types of approaches which apply the same techniqueto this data, and those that
apply a variety of techniques, and then derive a consensus ofthe individual results. How-
ever, a downside of this category of approaches is that methods of transforming different
data types to a common type, say protein networks, are not well-established, and this in-
troduces a source of error in the analysis. Thus, not many approaches follow this strategy.

One of the first instances of the first type of approach, i.e. same format-same tech-
nique, is detailed by Schlitt et al. [2003]. Here, three novel forms of biological data were
converted into gene networks. These original data sources were as follows:

—Mutant network : A network of genes where an interaction means that a deletion of a
gene from a mutant leads to a significant change in the expression level of the interacting
gene [Rung et al. 2002].

—In-silico network : A network of functional associations, where a gene is a transcription
factor whose binding site is found in the promoter region of the interacting gene [Pilpel
et al. 2001].
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—ChIP network : Four networks constructed from genome-wide transcription factor lo-
calization data based on ChIP experiments [Lee et al. 2002].

The hypothesis in this study was that interacting genes in the resultant combined network
will be functionally related. For the validation of this hypothesis, three reference networks,
separate from those used as input to the prediction algorithm, were used: protein-protein
physical interaction networks, protein complexes expressed as networks and a co-citation
network extracted from the biomedical literature. The comparison of the generated and
reference networks was conducted by calculating thep-value for the similarity of the ad-
jacency lists of two genes in two different networks, calculated using a hypergeometric
distribution. Under the best configuration of the referencenetworks, a true-positive rate of
82%, and a false-positive rate of32% was obtained. Thus, this study presents a proof of
concept for the same format-same technique idea.

Strong et al. [2003] provide an instance of the approaches that follow the same format-
different techniques idea. Here, the authors combined their Operon method with other
methods of genome comparison, namely gene neighborhood, phylogenetic profiles and
gene fusion (Section 5). The Operon method consists simply of grouping all uni-directional
genes on a single DNA strand, whose internucleotide distance is less than a certain thresh-
old, into a single operon, and thus is a simplification of the gene neighborhoodmethod [Over-
beek et al. 1999b]. This is so since the latter needs multiplegenomes for making an
inference, as opposed to the requirement of a single genome of the former. The more
interesting part of this study was validation of the combined algorithm using theM. tuber-
culosisgenome. This validation showed that the signal-to-noise ratio (SNR), calculated
using the keyword recovery ratio of functionally linked (signal) and random (noise) gene
pairs, of the combined methods (between 10 and 13) was significantly higher than that of
any individual method (maximum of 9.5 for gene fusion).

A similar strategy has been adopted for the construction of the EFICAz [Tian et al. 2004]
database. However, the proposed technique here, known as CHIEFc, is more intricate than
the Operon method, and is geared towards identifying functionally discriminating residues
(FDRs) in enzyme sequences, and classifying them accordingto the FDRs discovered.
CHIEFc is a multistep method, which essentially splits a pre-specified enzyme family into
subfamilies using single-linkage clustering, and then builds an all-inclusive HMM-based
multiple sequence alignment (MSA) for each subfamily by including those enzymes also
which are not assigned to this enzyme family, but is well aligned with this subfamily.
Thus, CHIEFc also accounts for functional heterogeneity. The functionally discrimanting
residues (FDRs) are the ones with the lowestZ-score based on the entropy at the corre-
sponding position in the MSA. Finally, an unannoted enzyme is assigned to one of the
enzyme classes if it is perfectly aligned and has the same FDRs in the corresponding posi-
tions. In its integrative version, namely EFICAz, the results of four different techniques are
combined, which are as follows (details omitted for brevity, but can be easily extrapolated
from the nature of the databases used; SIT = sequence identity):

—CHIEFc family based FDR recognition [Schomburg et al. 2004]
—CHIEFc family based SIT evaluation [Schomburg et al. 2004]

—High specificity multiple Prosite pattern recognition [Hulo et al. 2006]

—Multiple Pfam family based FDR recognition [Sonnhammer etal. 1997]

While the first method shows high accuracy on the ENZYME database [Schomburg et al.
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2004] on its own, requiring a consensus of at least two techniques pumps the accuracy
to 100%, while accepting results from all of them leads to a much higher coverage than
any of the techniques individually. Finally, an extensive prediction on theE. coli genome
produced132 novel predictions, few of which could be verified from the literature. This
success of EFICAz, though on the comparatively simpler benchmark of enzymes, shows
the potential of applying several variations of the same approach on a common data set.

Similar to Schlitt et al. [2003], Chen and Xu [2004] present another approach in which
three different data types, namely protein interaction (B), protein complexes (C) and mi-
croarray data (M), are combined to build an all-inclusive network. The reliability of an
edge in this network is simply calculated as the probabilityof functional linkage according
to atleast one of these data sources. Once, this weighted network has been constructed,
two techniques from Section 8.3 are used for function prediction, one function at a time:

—Local prediction: Only those neighbors of the protein under consideration which have
been annoted with that particular function are used for calculating the reliability score,
that is in turn used to rank the final GO assignments.

—Global prediction: This approach is similar to that adopted by Vazquez et al. [2003],
where a simple objective function measuring the number of differentially annotated
edges is minimized using simulated annealing.

The testing of these two techniques was conducted on the set of 4044 GO-annotated yeast
genes. A ten-fold cross-validation procedure showed that global prediction is more effec-
tive than local prediction since predictions can be made even for proteins with unannotated
neighbors. In addition, the global method was able to make1802 novel predictions, of
which about half had a reliability score over0.9 (on a scale of0 to 1). Thus, this study
showed how previously well-established techniques could be used for the effective utiliza-
tion of multiple data sources.

The latest paper in this category [Kemmeren et al. 2005] describes an approach that
constructs a large network of protein interactions from four types of data, namely protein-
protein interactions, phenotype data, cellular localization, and mRNA expression. Function
predictions are made on the basis of relationships in this network which are supplemented
by a reliability value calculated from the information content of each contributing data set.
Though some cases of success were reported, the overall results were not very impressive
because of the simple analysis technique used.

Finally, the Protein Information Resource (PIR) [Wu et al. 2003] is one of the most
popular source of various data about proteins, particularly protein sequences, via its Protein
Sequence Database (PSD). A very important part of PIR is its iProClass protein functional
classification system [Wu et al. 2004], which integrates standard databases of the various
biological data types discussed in this survey, via database links, as well as some others
such as post-translational modification and ontologies (Figure 30). The classification is
rule-based [Wu et al. 2003], where the rules are based on siteidentification, protein name
checking, keyword checking and protein classification. Wu et al. [2003] cite several cases
of misannotation just on the basis of sequence identity, while Wu et al. [2004] discuss
several cases of how such misannotations could be correctedand enhanced information be
extracted about them through the integrated databases. Thus, PIR presents a very high-
profile case in favour of integrative bioinformatics.
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Fig. 30. Architecture of the iProClass database [Wu et al. 2003]

10.2.2 Approaches Using Independent Data Formats.Many more studies than those
discussed in the previous section have concentrated on utilizing different forms of biologi-
cal data (almost) independently, which has the advantage that different analysis techniques
can be used for different types of data and the results can be combined in an appropriate
way. This combination may be a simple merging of results or anintelligent modeling of
the interdependencies between different sets of results derived from different sources. Both
these combination strategies will be discussed in this section.

Simple Combination of Results

In a landmark paper, Marcotte et al. [1999] laid the foundations of the field of integra-
tive functional genomics. This paper reports the first integration of the results of three
independent techniques, namely phylogenetic profiles, gene fusion and correlated mRNA
expression, in order to derive functionally related pairs of proteins. In yeast, upon valida-
tion using experimental interaction and pathway data, a good percentage of the links found
were of the ‘highest’ and ‘high’ quality. For human genes, the evaluation was based on
the SwissProt keyword recovery rate. The signal-to-noise ratio calculated according to this
ratio showed that consensus links made by at least two methods were almost as reliable as
those found from experimental data. Thus, this study laid a very strong foundation for this
field of integrative function prediction.

The GO Engine system [Xie et al. 2002] integrates sequence homology with text data for
function prediction. Here, predictions made on the basis ofsequence homology searches
are combined with predictions made from a simple linguisticanalysis of PubMed abstracts.
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This analysis simply consists of choosing the GO-gene associations with the highest log
likelihood (LOD) score. The test set consisted of670, 130 proteins taken from multiple
databases, and GO was used as the source of functional classification. A cross-validation
test on this data set showed almost complete coverage, whilethe precision was between
65% and80%. In an additional experiment,500 of these predictions were manually vali-
dated, and90% accuracy was achieved. Thus, the main point made by this study was that
the coverage of an annotation technique could be significantly increased, without a huge
loss in precision, by combining it with other techniques based on similar ideas.

Clare and King [2003b] built upon their previous work on yeast functional classifica-
tion, mainly from protein sequence data [King et al. 2001], to explore the usefulness of
other forms of data for this task. The data sets used includedgene expression, phenotype,
sequence homology and predicted secondary structure data,the last two of which had been
used in previous work [King et al. 2001]. All the data here wasin a relational format, and
thus their composition involved simply concatenating the respective attribute value vec-
tors. The same approach as in [King et al. 2001] was used for functional classification.
However, suitable modifications were made for ensuring the scalability, such as a more
efficient frequent itemset discovery algorithm, named PolyFARM [Clare and King 2003a].
Even with these extensions, the accuracy was only around50% for most of the data types
and reached the70% mark only for the sequence and expression data sets. However, since
the classification algorithm used was rule-based, some useful rules with biological insight,
such as the structure-based rule for the Mitochondrial Carrier Family (MCF) [Kuan and
Jr 1993], were derived. This overall approach was also used for a functional analysis of
the Arabidopsis Thalianagenome [Clare et al. 2006]. Here also, the overall precision
was about50%, although some interesting rules, which are either known orviable from a
functional genomics viewpoint, could be derived.

ProKnow [Pal and Eisenberg 2005] is a database that integrates sequence and structure
information in order to predict protein function using a probabilistic approach. Sequence
information is represented as such and as motifs, while structural data is converted into
folds and 3D-motifs. ProKnow also uses functional linkagesfrom the Database of Inter-
acting Proteins [Xenarios et al. 2002]. These features of a protein are used to deriveclues
about its function, which are used to train a naive Bayesian classifier for GO categories.
Cross-validation tests on ProKnow showed about85% precision at level1 and40% preci-
sion at level9 in GO, which are not very encouraging. The reasons for this low precision
could be the incompleteness of the feature set or the inappropriateness of the clues and the
features used to derive them.

Finally, the JAFA server [Friedberg et al. 2006] has been setup recently to integrate the
results of a variety of protein sequence-based algorithms for predicting protein function.
This server collects the results of a variety of such algorithms, such as GOFigure [Khan
et al. 2003], GOtcha [Martin et al. 2004], GOblet [Hennig et al. 2003], Phydbac2 [Enault
et al. 2005] and InterProScan [Zbodnov and Apweiler 2001], for all the three GO ontolo-
gies, and presents them to the user in a user-friendly manner. In particular, for each GO
term predicted, the output shows which algorithms agree with the prediction. Thus, JAFA
is a significant effort in enhancing the utility of availabletools for protein function predic-
tion. However, the use of straightforward consensus may notbe sufficient for obtaining
consensus between results, particularly when used for a diverse classification scheme as
GO, and may need to the use of more sophisticated consensus methods, such as semantic
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similarity measures [Lord et al. 2003] for evaluating the similarity of predictions made by
different algorithms.

From the above descriptions, it is evident that simple merging of results from indepen-
dent sources of data and techniques has so far not yielded very good results, except in
cases such as the GO Engine [Xie et al. 2002]. The reason for this is similar to the pos-
sible reasons for the failure of the naive Bayesian classifier [Duda et al. 2000]. Just as in
the latter, the conditional independence assumption for the attributes may break down for
real data sets, the independence assumption underlying theapproaches in this section may
also be invalidated since it is known that most of the biological data are complimentary.
Thus, even though it is advantageous to be able to apply a different analysis technique for
each type of the data, the fusion of their results or their intermediate data should be done
intelligently. The next section focusses on several techniques that adopt this strategy.

Intelligent Data Fusion

As discussed above, there is a great need for techniques for the intelligent fusion of data so
as to exploit the interdependencies between them in order topredict protein function confi-
dently. Responding to this need, a large number of approaches have been proposed to carry
out this fusion effectively. In fact, among those considered, this is the most populated cat-
egory of integrative functional genomics approaches. Also, as will be seen as each of these
approaches is discussed, data mining approaches have been used heavily because of their
ability of identifying previously unknown relationships between data sets and objects [Tan
et al. 2005].

Pavlidis et al. [2002] laid the foundation of this field of intelligent data fusion for func-
tion prediction through their exploratory study of the effectiveness of SVMs for this prob-
lem. In this study, mRNA expression profiles for2465 yeast genes [Eisen et al. 1998]
were integrated with their real-valued phylogenetic profiles [Pellegrini et al. 1999]. Three
SVM-based kernel methods were used for this integration:

—Early integration : Both the attribute-value vectors were concatenated and a single
SVM constructed from them for each functional class.

—Intermediate integration: The overall kernel function is a sum of the kernels functions
calculated separately for each of the two sets of vectors. A single SVM is constructed
for each class using this global kernel.

—Late integration: Two separate SVMs are constructed for gene expression and phylo-
genetic profiles respectively, and the overall discriminant value is simply the sum of the
value produced by these two SVMs.

Using a cost measure which penalizes false negatives [Brownet al. 2000], it was found
that the intermediate integration method gave the best results for the108 functional classes
considered. This makes sense since such an integration creates local features that are poly-
nomial relationships between attributes within a single type of data, and the global features
are formed by a linear combination of these local features. This is the strategy adopted by
several feature generation techniques such as SVD and PCA [Tan et al. 2005]. Another
interesting finding of this study was that it may be beneficialfor the classification process
if the algorithm can identify the best data set for a class before training. This systematic
study thus made several useful conclusions, besides raising several important questions, to
which the other approaches attempted to propose a solution.
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Fig. 31. General architecture of the MAGIC Bayesian network[Troyanskaya et al. 2003]

Another widely cited work in this category is the MAGIC (Multisource Association
of Genes by Integration of Clusters) system [Troyanskaya etal. 2003], which employs a
Bayesian belief network [Heckerman 1995] to combine the various types of data consid-
ered. These data types include clusters derived from diverse forms of data, namely gene
expression, colocalization, transcription factor binding, physical associations and gene as-
sociations. The general architecture of the MAGIC Bayesiannetwork is shown in Fig-
ure 31. The prior probabilities and the conditional probability tables of this network are
provided by experts on the basis of their knowledge about thedependence of protein func-
tion on each of the data types. Thus, MAGIC combines the results of each of the inter-
mediate analysis techniques with expert knowledge to make its predictions of functional
associations between yeast genes. Indeed, using yeast genomics data and considering the
hierarchical nature of GO for validation, it is shown that MAGIC outperforms all the major
gene expression clustering algorithms as well as the results for using any one of the types
of data as input. The effectiveness of this approach is shownby the case of the biosynthe-
sis cluster constructed from functional associations identified by MAGIC, where49 of the
58 known genes are annotated with protein biosynthesis, indicating a100% recall for this
cluster. Another desirable characteristic of this approach is that it can include any form of
data since it takes as input gene-gene relationship matrices, where the relationship may be
either binary or of some real strength.

Using a similar probabilistic approach, Huttenhower et al.[2006] proposed a scalable
method for integrating several microarray datasets, in order to extract knowledge about
protein function from them. For this, forty microarray datasets forS. cerevisiaewere
pre-processed, and correlations between the expression profiles of different genes were
obtained from them. Next, a Bayesian network is trained for each functional class, using
the correlations of gene pairs in which both genes are known to be involved in this func-
tion. Thus, a Bayesian model is obtained for predicting functional relationships between
genes, based on their coexpression across a variety of microarray datasets. Indeed, this
approach is able to uncover several known relationships very accurately, and also predicts
other such relationships. The success of MAGIC and this approach shows the potential of
Bayesian networks as a strategy for the large-scale combination of different sources of data
for function prediction.

Syed and Yona [2003] report a detailed analysis of another popular classification al-
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gorithm, the decision tree [Tan et al. 2005], for the problemof function prediction from
multiple sources of data. However, the fusion here is in terms of individual attributes in-
stead of complete data sets, as in other approaches. This is accomplished by learning, for
each functional class, an ensemble ofprobabilistic decision trees(PDT), which are con-
structed by choosing a splitting attribute with a probability proportional to the information
gain it provides. Thus, each tree provides a probabilistic classification for each sample,
and the overall probability of assignment is calculated by weighting each probability by
the performance of the corresponding tree on a separate validation data set. Furthermore,
many minor yet important issues concerning decision trees were addressed carefully in
this study, such as missing values, binary splitting and post-pruning using the MDL princi-
ple [Hansen and Yu 2001]. Upon evaluation, the approach was able to outperform BLAST
on several enzyme families that are weakly related by homology. Also, the detailed analy-
sis of decision trees could be useful to other function prediction approaches based on this
model [Clare and King 2003b; Wang et al. 2003; Kretschmann etal. 2001].

The kernel summation idea proposed by Pavlidis et al. [2002]is heuristically general-
ized by Li et al. [2003] using a procedure inspired by the co-training algorithm [Blum and
Mitchell 1998]. The objective of this procedure is to minimize the disagreement between
classifications assigned by two classifiers. In this study, two SVMs were constructed, one
each from the gene expression and phylogenetic profile data sets used by Pavlidis et al.
[2002]. Then, an iterative randomized procedure was used toreduce the disagreement
between the two sets of labels generated for both labeled andunlabeled examples by ran-
domly modifying the labels in case of a mismatch. Though there is no explicit comparison
in the evaluation against any other approach, the strongestadvantage of this approach is
that it is able to use both labeled and unlabeled examples fortraining. This is very useful
for function prediction since even in the most well studied genomes, a significant fraction
of the proteins are still unannotated.

Deng et al. [2004] extended their earlier work on probabilistic function inference from
protein interaction networks [Deng et al. 2003] in order to incorporate other types of net-
works and features for this task. Though the same Markov random field (MRF) model
is still used for propagating functional annotation throughout the networks, three specific
modifications are made to the approach in [Deng et al. 2003]:

—The prior probabilities of functional classes are now computed from the protein complex
data [Gavin et al. 2002] and not from frequencies of annotation.

—Three types of networks are used: physical interactions, protein complexes and mRNA
coexpression. Separate MRF models are constructed for these networks.

—Pfam domains [Sonnhammer et al. 1997] are also used as protein features and probabil-
ities conditional on them are also incorporate into the finalformula for probability.

The same Gibbs sampling procedure as in [Deng et al. 2003] is still used for estimating
the annotation probabilities. Indeed, the results on yeastgenes improved with increasing
amount of information, with the precision-recall equalitypoint appearing at about76%.

Another approach which integrates as many as eight different categories of data into a
global network and then analyzes them is presented by Lee et al. [2004]. This approach
is focused on deriving functionally coherent clusters of genes from this network using the
algorithm shown in Figure 32(a). Here, the edges in the original networks constructed from
individual data sets are weighted according to a log-likelihood score, and these edges are
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(a) Integration algorithm (b) Strongest gene (sub)network generated

Fig. 32. Probabilistic functional network of yeast genes [Lee et al. 2004]: Algorithm and results

merged into a global network. Further incorporation of context information produced more
compact versions of the network calledContextNetandFinalNet. Figure 32(b) shows the
strong edges in the FinalNet generated from yeast genomics data. Functionally coherent
clusters of genes, such as DNA damage response/repair, energy metabolism and mRNA
splicing, can clearly be identified in this network.

[Lee et al. 2004] and other studies showed the potential of using networks of genes or
proteins as the basic representation for integrating different types of biological data for
functional inference. An effective approach in this direction is to supplement the edges
and/or nodes in a given physical interaction network with other information about the con-
stituent proteins, such as their amino acid sequences and expression profiles. This per-
spective was first adopted for the development of the PathBLAST algorithm [Kelley et al.
2003], which performed a BLAST-like pairwise alignment of input interaction networks
using sequence similarity information. Here, a new graph isconstructed from the two input
interaction networks using the following transformation:

—A new vertex, sayA/a, is created in the new graph if two proteins in the two networks,
sayA anda respectively, have a significant sequence similarity.

—An edge is created between two nodesA/a andB/b in the transformed graph if the
nodes(A, B) and (a, b) are connected by a path of length atmost2 in their original
networks, and the edge is labeled as follows:
—Direct if (A, B) and(a, b) are interacting nodes in their original networks.
—Gap if (A, B) is a direct interaction and(a, b) are connected by a path of length2 in

their original networks, or vice versa.
—Mismathif both (A, B) and(a, b) are connected by a path of length2 in their original

networks.

This transformation prepares the input networks in a formatsimilar to sequence alignment
used by BLAST. Next, a scoring function is defined for a path, which is computed as a
combination of the likelihoods of observing the sequence similarities in nodes, and the
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constituent edges, as compared to randomly generated data.Finally, interesting paths are
derived from this resultant network using a dynamic programming algorithm for finding
high scoring paths. The final pathways are constructed by combining paths that overlap or
a separated from each other by just one interaction in the original networks. In an eval-
uation study comparing the networks ofS. cerevisiaeand the bacteriaH. pylori, several
interesting pathways, such asprotein synthesis and cell rescue, cytoplasmic and nuclear
membrane transportandprotein degradation and DNA repair, observed to be substantially
conserved in the two specieis. This is very interesting froma function prediction point of
view, since interesting groups of proteins, such as proteincomplexes, in a less studied or-
ganism (such asH. pylori) can be aligned against the network of a well-studied organism
(such asS. cerevisiae) to identify well represented pathways. Indeed, in an extension of
this algorithm to incorporate networks of more than two organisms [Sharan et al. 2006],
the conserved groups of proteins were found to be highly enriched by several GO biolog-
ical process terms. Thus, PathBLAST and its extensions provide an efficient comparative
method of identifying evolutionarily conserved pathways betweend different organisms,
and the functions of the constituent proteins.

Another approach for the augmentation of interaction networks for function prediction is
to use an organism’s interaction network and weight the edges to reflect the biological via-
bility of the corresponding interactions. The co-expression of interacting genes, measured
as the correlation of their expression profiles across several microarray datasets, provides
a useful measure for this viability [Kemmeren and Holstege 2003]. This has motivated
the development of function prediction methods that use interaction networks weighted
according to microarray data. VIRGO [Massjouni et al. 2006]is a useful webserver that
adopts this approach. The GAIN algorithm [Karaoz et al. 2004] is used as the underlying
technique for extracting functional information from the stored interaction datasets ofS.
cerevisiaeandH. sapiens. However, the basic purpose of VIRGO is to provide a service
for biologists to be able to derive functional annotations for the protein(s) of their interest,
and is not a novel technique for function prediction by itself.

Nariai et al. [2007] presented a more rigorous integration approach, wherein they in-
tegrated five different data types, namely protein interaction data, gene expression data,
protein motif information, gene knock-out phenotype data and protein localization data.
The basic input to the prediction algorithm consists of two network, one being the inter-
action network, and the second being a co-expression network containing edges between
proteins that had a correlation of over0.85 in their expression profiles. Also, the other
data types were represented as categorical variables, where for each type, a vector of all
possible values is created, and for each protein, a1 is recorded for the corresponding entry
if the protein is known to have that value for that type. With this mathematical represen-
tation of the data, a naive Bayesian classification model [Tan et al. 2005] that predicts the
probability of a protein having a certain function, conditional on the number of its neigh-
bors annotated with this function in the two networks, and its feature values obtained from
the other data types. Using a large set of functional annotations from the GO biological
process ontology for several yeast proteins, an evaluationof the predictions generated by
the integrated model was performed, in comparison to those generated by the protein inter-
action data alone. It was shown that if recall is the primary requirement (precision=50%),
there is a huge improvement in the number of true positive predictions. However, inter-
estingly, if a high precision of predictions is required (precision=50%), the number of true
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positive predictions is not significantly different from those produced by the interaction
data alone, and this number increases as more and more interaction data is included in the
integrated model. Thus, in addition to providing a robust method for integrating diverse
types of data for function prediciton, this study showed that the use of protein interaction
data is almost indispensable for obtained precise predictions from an integrated model of
protein function.

Ulitsky and Shamir [2007] considered a different version ofthe problem of integrat-
ing interaction data with microarray data. Here, microarray data was treated as the basic
data for discovering functional modules, while the input interaction network was used as
a constraint graph, which ensured that only connected modules were discovered. The
problem considered was one of finding modules showing strongcoexpression between
the constituent proteins, while maintaining connectivityas per the input interaction net-
work. This problem is addressed by developing a probabilistic mixture model [Duda et al.
2000], which comprises of two Gaussian distributions, one for genes expected to be co-
expressed, and one for those that are not. The parameters of this model are estimated using
an Expectation-Maximization procedure [Duda et al. 2000] at the begining of the algo-
rithm. Using this model, a likelihood score is defined for each module, indicating whether
this module is expected to consist of co-expressed genes, ornot. Now, using this score, a
greedy clustering-type algorithm is executed, which starts with a seed cluster of proteins
and keeps growing it until termination. The two constraintsthat are satisfied at each step
are that the current cluster should be connected as per the topology of the interaction net-
work, and the likelihood score of the cluster should increase at each step. The final cluster
is termed as a functional module, and is evaluated for enrichment with different GO cate-
gories. Indeed, using a cell cycle-based gene expression data set for human proteins, and
a large scale set of interactions between human proteins, the algorithm is able to precisely
uncover a significantly large module containing several proteins known to be involved in
the cell cycle operation, thus validating the algorithm’s efficacy at finding biologically rel-
evant modules. Also, significant improvements are observedover a competing clustering
algorithm for microarray data, which are evidently due to the use of interaction networks as
a constraint graph. This again validates the utility of protein interaction data for integrative
genomics projects.

It was noted earlier in Section 8.2 that the interest in data mining for function prediction
had inspired the inclusion of this problem in the KDD Cup 2001[Cheng et al. 2002], which
is an annual contest held in conjunction with the SIGKDD conference19. The precise
tasks assigned in this version of the contest were the predicition of protein function and
subcellular location from protein interaction and other forms of proteomics data provided
in a relational format, with some of the proteins having being annotated by the organizers.
The winning solution [Cheng et al. 2002] for the function prediction problem used the
RELAGGS algorithm [Krogel and Wrobel 2001] to convert the multi-relational data into
an attribute vector format, from which an SVM classificationmodel was learnt and used
for prediction on the test set. In an extension of this solution, the winning team attempted
to utilize the unlabeled data in order to improve the precision of the classifier [Krogel and
Scheffer 2004], as also attempted earlier by Li et al. [2003]. However, it was surprisingly
found that the popular transductive SVM learning [Joachims1999] and co-training [Blum
and Mitchell 1998] algorithms failed to improve the classifier’s performance for this task. It

19http://www.acm.org/sigs/sigkdd/
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was found that the reason for failure was the dependence between any two sets of attributes
extracted from the original data. Thus, it was established that if two independent sets
of functional genomics data can be identified, then a co-training based approach [Blum
and Mitchell 1998] could be used to design an effective classification scheme that uses
unlabeled data as well.

Previous studies [Pavlidis et al. 2002; Li et al. 2003] have shown the utility of deriving
separate kernel functions for different types of biological data and combining them in dif-
ferent ways to achieve effective genomic data fusion. In their work, Pavlidis et al. [2002]
used the simple summation operation to derive the overall kernel function. This work is
generalized by [Lanckriet et al. 2004], both in terms of the types of data used, the indi-
vidual kernels and the combination procedure. Table IX lists the types of data used and
the novel kernels used to model similarities between proteins on their basis. The motiva-
tion of using these kernels is their success in learning withthe corresponding type of data.
Next, these kernels are optimally weighted, to derive a global kernel function for the fused
data. The results obtained with this kernel were better thanthose obtained from the MRF-
based approach of Deng et al. [2004] on the data set used by thelatter for evaluation. In
a more focused application of this approach [Lanckriet et al. 2004], ribosomal and mem-
brane proteins inS. cerevisiaewere more accurately classified than by using each kernel
individually.

Type of data Kernels used

Protein sequences Smith-Waterman, BLAST and Pfam HMM-based
Protein interactions Linear and diffusion kernels [Vert and Kanehisa 2002]

Gene expression Radial basis kernel

Table IX. Genomic data types and corresponding kernels usedin [Lanckriet et al. 2004]

A similar kernel combination approach is proposed in [Borgwardt et al. 2005]. Here,
a unified graph is constructed from protein sequence and structure data, with the nodes
and edges being labeled by the type of data they are derived from, and the corresponding
continuous attributes that can best capture the data at thatnode. The popular random walk
kernel for graphs [Gärtner et al. 2003] is generalized by decomposing it into individual
kernels for the nodes, edges and node attributes, and the hyperkernel approach [Ong et al.
2005] is used to derive an optimal kernel for the data with respect to a specified cost func-
tion. Using this approach, only the most useful node attributes are used for classification,
reducing the information collection effort. This claim wasvalidated through evaluation of
the approach on the enzyme+non-enzyme data set used in [Dobson and Doig 2003], and
experiments focussed on the enzyme/non-enzyme class showed that the modified graph
kernel was indeed able to outperform the simple attribute vector-based SVM classification
used in [Dobson and Doig 2003]. In addition, a high accuracy of 90.83% on average was
achieved for the Enzyme Classification top-level class prediction problem on a data set of
600 enzymes from the BRENDA database [Schomburg et al. 2004].

The latest work in the direction of graph-based data fusion [Tsuda et al. 2005] com-
bines four different types of biological networks, by assigning a weight to each of them.
Each graph is represented by a cost equation, which is a quadratic functional representing
the smoothnessandconsistencyconditions. The first condition implies that the function
assignment score should not be too different between adjacent vertices, as defined at the
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attribute level by Vert and Kanehisa [2002], while the second enforces consistency be-
tween the labels of the training set and those assigned by thealgorithm. This way, the
approach is able to use data both from the labeled examples, i.e., functional labels, and
unlabeled examples, i.e., the connectivity structure of the combined graphs. Finally, the
overall cost function is obtained as a linear combination ofthose of each of the constituent
graphs, and is minimized using an EM-like procedure [Duda etal. 2000]. The approach
showed a significant improvement over using the technique with any of the networks indi-
vidually. Thus, this approach showed an efficient way of incorporating unlabeled data into
the learning process to improve classification performance.

Looking back, the approaches described in this section wereable to achieve an improve-
ment not only in terms of coverage as reported for the approaches in the previous sections,
but also in precision and accuracy. This improvement is primarily because of the fact that
the approaches in this section allow the knowledge derived from one source, such as gene
expression data, to compliment knowledge from other sources such as phylogenetic pro-
files, thus allowing the flow of information from one source toanother. With improvement
in data fusion algorithms [Hall 2001], much better results are expected from this category
of approaches.

10.3 Discussion

As was discussed earlier, this fusion of data gives us advantages such as more reliable
predictions and less disruption of the results due to the lowquality of individual sources
of data. Now, after a detailed discussion of the numerous approaches which have been
proposed in this direction, it can be said confidently that nearly all of them were able to
achieve their target, though different approaches in different categories achieve this to dif-
ferent extents. Several other conclusions can be drawn fromthe descriptions of approaches
above, a consideration of which could lead to better results:

(1) The combination of multiple sources of data in a manner that exploits the dependencies
between individual data types is more effective for function prediction than the simple
merging of data types or the inferences drawn individually from them. In particular,
Bayesian networks and kernel-based techniques have gainedpopularity for this task,
because of these reasons:
—Bayesian networks [Heckerman 1995] have a graph structurewhich makes it possi-

ble to model various types of dependencies such as hierarchies and independence.
Also, these networks allow the flow of information between nodes, which is impor-
tant for fusion-based prediction.

—Kernel methods [Shawe-Taylor and Cristianini 2004] capture the similarity between
two proteins on the basis of the evidence provided. Thus, in the domain of multiple
data sources, this can be extended to the construction of separate similarity matrices
on the basis of the different data types, and their consequent merger to derive an
overall similarity matrix. This procedure can be seen as first capturing the local
patterns in individual data sets and their subsequent generalization to derive global
patterns, which can be used for function prediction.

Of late, there has been a greater interest in kernel-based methods [Lanckriet et al.
2004; Borgwardt et al. 2005] because they allow the use of anyclassifier based on the
similarity between examples, though some approaches have tried to combine the two
frameworks for more accurate prediction of protein function [Barutcuoglu et al. 2006].
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(2) By far, protein networks have been established as a unifying framework for all forms
of functional genomics data, as was advocated by [Fraser andMarcotte 2004]. Some
recent approaches have focussed on fusion methods based on protein networks [Borg-
wardt et al. 2005; Deng et al. 2004; Tsuda et al. 2005], while others have used them
simply as a visual tool for diverse forms of data [Lee et al. 2004]. Irrespective of
the mode of their use, networks can be used effectively for representing functional
genomics data and combining them if appropriate.

(3) Several recent studies [Nariai et al. 2007; Ulitsky and Shamir 2007] have shown that
the use of protein interaction data within an integration model leads to very significant
improvement in the precision of predictions made from a model that aims to integrate
different genomic data sets for function prediction. Thus,wherever possible, such data
should be considered in studies on integration of diverse genomics data.

(4) Many of the approaches discussed in this section were simple extensions or general-
izations of studies that have been conducted by authors on individual data types, such
as [Marcotte et al. 1999; Deng et al. 2004; Clare and King 2003b; Krogel and Schef-
fer 2004]. This indicates that the fusion of multiple sources of data does not require a
completely new methodology, but can be achieved by simple extensions of approaches
focussing on a single form of data.

The conclusions, in combination with the progress being made in machine learning-
based data fusion techniques will ensure that more accurateand extensive results are ob-
tained from approaches targeting a fusion of genomics data in order to make predicitions
about protein function.

11. CONCLUSIONS

In the previous sections, numerous approaches for the computational prediction of protein
function from various types of biomedical data were discussed. Even though this is an
immensely diverse field, as can be seen from the wide spectrumof data types, as well as
algorithms covered in this survey, the following general conclusions can be made:

(1) In most categories, the best results were obtained from approaches that employed tech-
niques from the fields ofdata mining andmachine learning. Nonetheless, the anal-
ysis of biological data involves handling a number of challenges, many of which have
only been partly addressed. Some of the most prominent challenges are as follows:
—Identification of the most relevant subset of the data for the functional classes being

addressed.
—Possibility of a protein performing multiple functions, and thus having multiple

functional labels.
—Widely varying sizes of functional classes, most classes being very small.
—Hierarchical arrangement of functional labels, as in GeneOntology.
—Incompleteness and various types and extents of noise in biological data.
—High dimensionality of the data.
Advances in data mining to address these challenges are necessary to exploit the avail-
able biological data to predict protein function more accurately and effectively.

(2) Several approaches covered in this survey obtained verygood results on a wide variety
of functional classes. However, several other approaches that did not achieve compa-
rable results still deserve discussion because of several reasons, such as the following:
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—Their results may improve when more data is available for training their models.
—Improvements made to the underlying technique may lead to better results.
—The approach may have a specific area of application, for instance classification of

proteins belonging to the G-protein coupled receptors superfamily [Qian et al. 2003;
Cheng et al. 2005].

—A combination of these approaches with more powerful one may lead to better re-
sults than those obtained by any one of them individually, asillustrated in Sec-
tion 10.

(3) The incorporation ofdomain knowledge is the most promising approach to make
the algorithms for function prediction biologically robust, as shown by several suc-
cessful studies based on this idea [Jensen et al. 2002; Barutcuoglu et al. 2006]. Such
knowledge may come in the form of mechanisms underlying the accomplishment of
protein functions, such as post-translational modifications [Mann and Jensen 2003], or
a hierarchy of functional classes, such as the Gene Ontology[Ashburner et al. 2000],
or for that matter, any relevant experimentally or computationally determined knowl-
edge. A particularly effective method of integrating domain knowledge for protein
function prediction is the intelligent fusion of diverse types of genomic data (Chap-
ter 10), which has enabled the enhancement of the precision as well as coverage of the
predictions, as compared to those produced by any single data type.

(4) Eachtype of biological datausually has astrong correspondencewith a certaintype
of function that can be best predicted using data sets of that type. For instance, individ-
ual protein-level data, such as protein structure, are bestcapable of finding molecular
function [Laskowski et al. 2003], while genome-level data,such as protein interaction
networks and gene expression data, offer good insights intothe biological process a
protein participates in [Nabieva et al. 2005]. Further still, phylogenetic profiles have
been shown to be appropriate for the task of reconstructing preserved working units
of proteins, such as metabolic pathways [Pellegrini et al. 1999]. Thus, a knowledge
of the nature of the available biological data may aid the identification of the form of
protein function that can be predicted from it, and vice versa.

(5) TheGene Ontologyis increasingly being established as the most appropriate func-
tional classification scheme for protein function prediction research because of its sev-
eral desirable properties (Section 2.2), and the forward looking attitude of its curators
who are keeping it up-to-date with latest research. In particular, several GO-friendly
approaches have recently been proposed, which incorporatethe hierarchical structure
of GO in the prediction technique so as to exploit the parent-child relationships be-
tween various functional classes [Engelhardt et al. 2005; Barutcuoglu et al. 2006; Liu
et al. 2004; Eisner et al. 2005]. The above discussion of the correspondence between
data and function type also lends support to the utility of GO. This is so since GO
contains separate ontologies for three different types of protein function, namelycel-
lular component, molecular functionandbiological process, thus making it easier to
identify the most appropriate functional hierarchy to be used for making predictions
from biological data of a certain type.

(6) Even though many advances have been made in the field of protein function predic-
tion, there is still a lack of understanding of the most appropriate prediction technique
for any particular category of proteins. Some attempts havebeen made to perform an
evaluation of the current available prediction methods, such as the function prediction
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component at CASP6 [Pellegrini-Calace et al. 2006], CASP7 [Lpez et al. 2007] and
the Automated Function Prediction meeting in 2005 [Godzik et al. 2007]. Although a
great deal was learnt from these evaluations, they were conducted on a small selected
set of target proteins, which may not reflect the generalization ability of a certain func-
tion prediction technique. Thus, there is a great need for the creation ofbenchmark
datasetsand the adoption of a consistentevaluation methodology, as has occurred
in the field of remote homology prediction [Rangwala and Karypis 2005; Kuang et al.
2005]. This standardization will help in the identificationof both the most appro-
priate function predictions strategy in a certain context,and the current weaknesses
and needs of the field. Datasets such as [Tetko et al. 2005] andrigorous evaluations
methodologies such as those adopted by Nabieva et al. [2005]are positive steps in this
direction.

Last but not the least, we firmly believe that an efficient scientific workflow can be
established, in which, first, hypotheses are generated by executing the appropriate function
prediction prediction algorithm on the available biological data, and then, these hypotheses
are validated experimentally, thus leading to confident predictions of a protein’s function.
Table I, presented earlier, lists several examples where this approach has produced both
useful and valid results. We hope that this survey aids both computational and experimental
practitioners in molecular biology in accomplishing this task more effectively.
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