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Proteins are the most essential and versatile macromegeoiilife, and the knowledge of their functions is a cru-
cial link in the development of new drugs, better crops, armhehe development of synthetic biochemicals such
as biofuels. Experimental procedures for protein funcpoediction are inherently low throughput and are thus
unable to annotate a non-trivial fraction of proteins thratl@ecoming available due to rapid advances in genome
sequencing technology. This has motivated the developofer@mputational techniques that utilize a variety of
high-throughput experimental data for protein functioediction, such as protein and genome sequences, gene
expression data, protein interaction networks and phyletie profiles. Indeed, in a short period of a decade,
several hundred articles have been published on this tafiiés survey aims to discuss this wide spectrum of
approaches by categorizing them in terms of the data typeuse for predicting function, and thus identify the
trends and needs of this very important field. The surveypeeted to be useful for computational biologists and
bioinformaticians aiming to get an overview of the field ofqautational function prediction, and identify areas
that can benefit from further research.
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1. INTRODUCTION

Proteins are macromolecules that serve as building blawtk$umctional components of a
cell, and account for the second largest fraction of theutzllweight after water. Proteins
are responsible for some of the most important functionsiiarganism, such as constitu-
tion of the organs (structural proteins), the catalysisioEbemical reactions necessary for
metabolism (enzymes), and the maintenance of the cellolarament (transmembrane
proteins). Thus, proteins are the most essential and verszcromolecules of life, and
the knowledge of their functions is a crucial link in the deysment of new drugs, better
crops, and even the development of synthetic biochemiaals as biofuels.

The early approaches to predicting protein function wepeermental and usually fo-
cused on a specific target gene or protein, or a small set tfipeoforming natural groups
such as protein complexes. These approaches included geokdut, targeted mutations
and the inhibition of gene expression [Weaver 2002]. Howeuespective of the details,
these approaches are low-throughput because of the hugéregptal and human effort
required in analyzing a single gene or protein. As a resulindarge-scale experimen-
tal annotation initiatives, such as the EUROFAN projeciy& 1996], are inadequate for
annotating a non-trivial fraction of the proteins that asedming available due to rapid
advances in genome sequencing technology. This has rsuléecontinually expanding
sequence-function gap for the discovered proteins [Rel28@4].

In an attempt to close this gap, numerous high-throughmemémental procedures have
been invented to investigate the mechanisms leading toctana@plishment of a protein’s
function. These procedures have generated a wide varietyedtil data that ranges from
simple protein sequences to complex high-throughput datzh as gene expression data
sets and protein interaction networks. These data offéerdifit types of insights into
a protein’s function and related concepts. For instancetepr interaction data shows
which proteins come together to perform a particular fuorgtivhile the three-dimensional
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structure of a protein determines the precise sites to wiiehinteracting protein binds
itself. Furthermore, recent years have seen the recorditigsodata in very standardized
and professionally maintained databases such as SWISS-fB@ckmann et al. 2003],
MIPS [Mewes et al. 2002], DIP [Xenarios et al. 2002] and PDRijBan et al. 2000].

The huge amount of data that has accumulated over the yemredde biological dis-
covery via manual analysis tedious and cumbersome. Thjsrhiasn, necessitated the use
of techniques from the field of bioinformatics, an approdtdt s crucial in today’s age
of rapid generation and warehousing of biological datairBaymatics focuses on the uti-
lization of techniques from computer science and the dgveémnt of novel computational
approaches for addressing problems in molecular biologlyamsociated disciplines. In-
deed, a more recently advocated path for biological rekaarihe creation of hypotheses
by generating results from an appropriate bioinformatiger@hm in order to narrow the
search space, and the subsequent validation of these Iegestto reach the final conclu-
sion [Rastan and Beeley 1997; Roberts 2004]. Standard segeemparison tools such as
BLAST [Altschul et al. 1990; Altschul et al. 1997], and daaéales such as PROSITE [Hulo
et al. 2006], Pfam [Sonnhammer et al. 1997] and PRINTS [Adivet al. 2003] serve as
testimonials to the benefits that bioinformatics can prexa@molecular biology.

Following the success of computational approaches insglvportant problems such
as sequence alignment and comparison [Altschul et al. 128id] genome fragment as-
sembly [Shendure et al. 2004], and given the importance atiepr function, numerous
computational techniques have also been proposed forgpiregiprotein function. Early
approaches used sequence similarity tools such as BLASTdWI et al. 1990] to trans-
fer functional annotation from the most similar proteinsibSequently, several other ap-
proaches have been proposed that utilize other types afdigall data for computational
protein function prediction, such as gene expression gatéein interaction networks and
phylogenetic profiles. Indeed, in a short period of a decselegral hundred articles have
been published on this topic, including several surveglkedithat try to provide overviews
of different subsets of works at different time points.

According to Hodgman [2000], there were four distinct stagithe growth of this field,
namely pairwise sequence matching using BLAST [Altschudletl990], the use of se-
guence signatures such as motifs, single sequence anadysgsdata mining approaches,
and finally, genome-scale sequence analysis. Rost et @3][2Malyzed the pros and cons
of exploiting biologically important signals, such as sence homology, subcellular local-
ization, post-translational modifications and proteintpin interactions, for protein func-
tion prediction. They also stress the importance of esthivlg standardized databases such
as DIP (Database of Interacting Proteins) [Xenarios et@02}, and applying data min-
ing techniques to extract useful information from thesealdases. Seshasayee and Babu
[2005] present a more comprehensive survey of direct fangtrediction techniques. In
this article, the authors discuss the most well-known teples exploiting genomic and
large-scale experimental data, such as protein-protegraation networks, transcriptional
regulatory networks, and gene co-expression networksy @tse discuss the earliest ap-
proaches that proposed an integration of multiple datastygech as [Marcotte et al. 1999].
Thus, the overall focus of this article is on reviewing agmtoes that exploit the context
information available about a protein. Finally, there hasrba string of surveys of the field
of functional genomics, which involves the use of genomdeanformation for predict-
ing the function and functional associations of proteinerfBet al. 1998; Teichmann and
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Mitchison 2000; Marcotte et al. 2000; Eisenberg et al. 2@@f#bhaldon and Huynen 2004;
Marcotte 2004]. In addition to discussing the most poputarame-based function predic-
tion techniques (Section 5), these articles also motiveteise of novel representations of
the genomic information, such as genome-wide protein fanat networks, and biolog-
ically relevant features of genome sequences, such asatideldrequencies and repeats
and regulatory regions, for function prediction. Also, soracent surveys have focused on
the functions of more specific types of proteins, such asahdadrial proteins [Gabaldon
2006] and proteins involved in cancer [Hu et al. 2007].

The early experience in the use of computational technitpupeedict protein function
from different types of biological data has been encoumggiHowever, although most
of the approaches developed so far highlight the potenfiglbbmputational techniques
for protein function prediction, there have been severll saccessful cases of functional
inference in which the interactions or functions predidbgdrarious computational tech-
niques were verified through experimental work. Table | pn¢ssuch well-known success
cases for the gene fusion, gene neighborhood and phylaggmefile (PP) approaches
(Section 5).

Technique Protein/Family Function and/or Reference
of Interest Interacting Protein

Fusion CHORD-containing proteing Sgtl (Disease signaling proteing) [Shirasu et al. 1999]

Pur2 Pur3, Purine biosynthesis [Marcotte et al. 1999]
Neighborhood Cadherin proteins Cell adhesion [Wu and Maniatis 1999]
Human methylmalonyl-CoA Racemase enzyme [Bobik and Rasche 2000

Phylo. Profile SmpB family Protein synthesis [Karzai et al. 1999]
Frataxin Iron-sulfur cluster assembly [Huynen et al. 2001]

Table I. Success stories of popular genomics techniqudsifiotion prediction

Given the wide variety of computational techniques thaehasen proposed for protein
function prediction, it can be very hard to keep track of tleédfand identify its strengths,
weaknesses and needs. Responding to this need, we undéitakaervey to provide an
extensive overview of the field of protein function predicti In particular, following are
the goals and contributions of our survey:

(1) To provide a broad coverage of the field of computatiomedljztion of protein func-
tion using multiple types of biological data. Many of the emgches covered have
shown promising results on test data sets, and the resuitthef approaches are ex-
pected to improve with further enhancements.

(2) To highlight the inter-relationships between differgmpes of biological data, and to
illustrate how ideas used for the analysis of one type of daitid influence those used
for the analysis of other data types. For instance, in omlegalize the full potential
of the available genome sequence data, it would be beneficks informed of the
novel ideas behind approaches using protein sequencesiagalla Similarly, it may
be very useful to combine multiple data types and analyzm tbellectively, rather
than analyzing them individually. Indeed, very promisiegults have been obtained
by approaches that have implemented this idea.

(3) To identify the open problems and pressing needs of thik #es will be seen, most of
the approaches in this field are ad-hoc in nature, and haesaddwnitations, such as
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their applicability to only specific subsets of proteins @andunctional classes. Thus,
several conceptual and data issues have to be addresséeinamcome up with more
complete approaches for the function prediction problem.

(4) To illustrate the potential of data mining and machiragiéng techniques for address-
ing the problem of protein function prediction by learningrh a wide variety of noisy
data. Indeed, the best results in the field have been achiigvadproaches based on
intelligent learning and prediction techniques.

We believe that this survey will be useful to both computadicand experimental biolo-
gists working with a wide variety of biological data. Thewey contains a section for each
of the main types of biological data, as well as their comtiams, that have been used for
predicting protein function. These data types are as shalowb

(1) Amino acid sequences (Section 3)

(2) Protein structure (Section 4)

(3) Genome sequences (Section 5)

(4) Phylogenetic data (Section 6)

(5) Microarray expression data (Section 7)

(6) Protein interaction networks and protein complexest{Se 8)
(7) Biomedical literature (Section 9)

(8) Combination of multiple data types (Section 10)

However, before we proceed with the discussion of theseomgpees, it is important to
make a couple of notes about protein function. First, pndigmction is an elusive concept
and there has been considerable debate in molecular bialogyt its definition. Hence,
Section 2 includes a detailed discussion of various petisgscon this concept and how
different functional schemes embody these perspectivesorél, we do not distinguish
gene function, and refer to both of them as protein functi@chnically, the true function
of a gene is to encode one or more proteins that actually parfoe function [Gericke
2005]. However, since it is easier to perform experimenth@genetic level, many times
the function of its products are taken as the function of theegitself. Thus, we do not
distinguish gene function from protein function, and rateboth of them as the latter.

2. WHAT IS PROTEIN FUNCTION?

The concept of protein function is highly context-sensitand not very well-defined. In
fact, this concept typically acts as an umbrella term fotygdes of activities that a protein
is involved in, be it cellular, molecular or physiologicalne such categorization of the
types of functions a protein can perform has been suggegtBaikx et al. [1998]:

(1) Molecular function: The biochemical functions performed by a protein, suchgs |
and binding, catalysis of biochemical reactions and canédional changes.

(2) Cellular function: Many proteins come together to perform complex physiaali
functions, such as operation of metabolic pathways andabigansduction, to keep
the various components of the organism working well.

(3) Phenotypic function: The integration of the physiological subsystems, coimgjsbf
various proteins performing their cellular functions, ahd interaction of this inte-
grated system with environmental stimuli determines thenpltypic properties and
behavior of the organism.
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Fig. 1. A possible hierarchical organization of the categgof protein function (taken from [Bork et al. 1998])

Clearly, these three categories are not independent, therrare hierarchically related
as shown in Figure 1. Also, this is not the only categorizatimat has been proposed.
For instance, the Gene Ontology classification scheme @areg protein function into
cellular component, molecular function and biological gass [Ashburner et al. 2000].
Confronted with such a variety of formalizations for the cept, we chose to follow the
following definition proposed by Rost et al. [2003] in thisgey: function is everything
that happens to or through a proteim fact, we extend this definition by considering func-
tional relationships and modules as forms of informatioowdibhe function of a protein as
well.

2.1 Functional Classification Schemes

From the above discussion, protein function appears to lmasubjective concept, and
different researchers may denote the functions of prowifferently. The first approach
to this naming may be to assign natural language labels teipsy as and when their
function is determined. Indeed, this is the case, but sudmang convention sometimes
leads to highly atypical labels suchdppeeandStarry Night[Lan et al. 2002].

Clearly, such as naming system is not amenable to analysisHyman, much less a
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computer, because of its large variability. Thus, the needafstandardized functional
labeling scheme was paramount, and several groups respptmttas need with very in-
novative proposals. Before discussing these proposedrs&ét is of merit to list some
desirable properties of such schemes [Riley 1998; Risoh 2080; Ouzounis et al. 2003].

(1) Wide coverage This is the most important property, since any functioreiesne
should cover as many of the functional phenomena across @ tha organisms as
possible.

(2) Standardized format: Having minimal variability in the functional labels andagat-
ing a standard data structure for the scheme makes the satesiteg readable by
computer programs and signficantly enhances their impact.

(3) Hierarchical structure : As was seen [Bork et al. 1998], the possible functions do not
form a flat list, but are instead arranged hierarchically abaceptual level. Func-
tional classes range from specific functions to very gerfaraitional categories, thus
allowing a researcher to choose the appropriate level{$)iscanalysis.

(4) Disjoint categories Functions can be of different types, such as cellular carept
molecular function and biological process. Thus, a sepdrararchy should be con-
structed for each type, with no links between them. Thisvadlthe choice of the
appropriate type of function to be studied.

(5) Multiple functions: In order to model the biological possibility of a proteinirg
involved in multiple biological processes depending ondbmetext, it is necessary for
a functional scheme to allow the labeling of a single proteith multiple functions.

(6) Dynamic nature: Last but not the least, the scheme should not be static howtd
be modified as and when new functional knowledge is discavere

As mentioned, several functional schemes have been proposeidress these issues,
with each being successful to some extent, and each haviifigieedt scope. The earliest
systematic scheme proposed in this arena was the Enzymsificition (EC) proposed
by the International Union of Biochemistry and MoleculaoBigy [Webb 1992]. This
scheme divides the class of enzymes, which are essenttelqsoesponsible for the catal-
ysis of metabolic reactions, into six classes based on t&imical composition. These
classes are then further subdivided into three hierarthduals that further specify the
precise reaction a particular enzyme is involved in. Howethgs scheme had a limited
scope, since it was was essentially a classification of isectind not properties of vari-
ous catalyst enzymes [Riley 1998].

Subsequent to EC, many functional schemes were proposedvidder class of pro-
teins. Ouzounis et al. [2003] and Rison et al. [2000] pres&nellent reviews of some of
these schemes, listed in Table Il. Many of these schemek,aIEcoCyc [Keseler et al.
2005] and SubtiList [Moszer et al. 2002], were originallystimed for specific organisms,
in order to study the properties of their genomes and theittmmt genes. However, they
were subsequently generalized and became more widelycapfdi The most popular of
these functional schemes are those which were not designedy specific organism, but
were based on general biological phenomena taking placevidevariety of organisms,
both eukaryotes. MIPS/PEDANT [Mewes et al. 2002] (now Furf@aepp et al. 2004])
is currently one of the most popular scheme for the valigedibfunction prediction tech-
nigues because of its wide coverage and a standardizeddhima structure. However, the
Gene Ontology (GO) [Ashburner et al. 2000; GO Consortiunt2@0a recently proposed
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| Scheme | Reference | Scope |
EcoCyc [Keseler et al. 2005] E. coligenes
TIGRFAM [Haft et al. 2003] Complete genomes|
SubtiList [Moszer et al. 2002] B. subtilisgenes
MIPS/PEDANT [Mewes et al. 2002] General
FunCat [Ruepp et al. 2004] General
KEGG [Kanehisa et al. 2004]| Metabolic Pathways
WIT [Jr et al. 1998] Metabolic Pathways|
Gene Ontology | [GO Consortium 2006] General

Table Il. Popular functional schemes having varying scopes

functional classification system which is based on solid pot@r science and biological
principles and is rapidly being recognized as the most gdseheme for functional anno-
tation techniques across a wide variety of biological da¢m$en et al. 2003; Letovsky and
Kasif 2003; Hvidsten et al. 2001]. TIGR FAMilieS (TIGRFAMBaft et al. 2003] is an-
other scheme designed for the functional annotation of ¢etmgenomes. Overall, almost
all of these schemes posess a good subset of above mentimpedties of a global func-
tional classification scheme, and the validation of an apgnaccording to one of them
gives a reasonably good estimate of the general applitgliius alleviating the concern
of overfittingto a particular labeling scheme.

A very interesting one-of-a-kind quantitative comparisbthe first six schemes listed in
Table Ilis reported by Rison et al. [2000]. This is a hard ta@kce all these schemes were
developed almost independently of each other, and thushiiid to compare one against
the other. Still, Rison et al. [2000] worked out a two-stejifivation-based strategy for
this comparison. In the first step, a combined scheme (C$¢#&ed by manually mapping
functional classes up to level three in each of the schemédsplying filtering techniques
to reduce the bias towards any particular scheme. In thendestep, a representative
subset of each the original schemes was selected by map@ngack to the scheme.
Thus, a representative and comparable version of all thensek was retrieved. Upon
evaluation, it was found that MIPS had the largest overlah WIS, showing that it had
the best coverage and generality. This is a quantitatiéifadion for the wide usage of
the MIPS functional classification in the protein functioregiction literature. Another
conclusion of this study was that the overall overlap ofta schemes with CS was high,
thus showing that all of them are reasonably similar to eadbbrat the conceptual level.
This conclusion is echoed by Ouzounis et al. [2003], who rértieat the overlap between
functional classification schemes is much higher than thiatéen structural classifications
such as SCOP [Andreeva et al. 2004] and CATH [Orengo et aRR@0tugh the variability
is much higher in the former than in the latter. Thus, theseiss provide a justification for
the above remarks that the evaluation of a function premidiechnique made according
to any of these schemes, if conducted correctly, will previdbust results. However, an
effort should always be made to use the best available aligeen

Today, any review of functional classification schemes wdnd incomplete without the
discussion of GO and its many desirable properties. Theggepties have been exhibited
by the large number of studies which have used GO for diftayges of functional classes.
A quantitative proof of this popularity is the fact that th©®ibliography currently lists

Ihtt p: / / www. geneont ol ogy. or g/ cgi - bi n/ bi bl i 0. cgi
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1081 publications describing studies following Gene Ontology ¢f Oct 19, 2006), which
is impressive. Here, we intend to provide a detailed disonssf why the Gene Ontology
is the most appropriate scheme for the functional analyfgieiees and proteins.

2.2 GO is the Way to Go!

An ontology is defined as a systematic arrangement of alleiitiportant categories of ob-
jects and concepts that exist in some field of discoursethegevith the relations between
then?. This concept, which comes originally from philosophy [8m2003], is a very ef-
fective approach for the organization of the available kieolge in a domain. Owing to
these merits, ontologies have found wide applicabilitydarious fields of computer science
such as data mining, artificial intelligence, software eegring, electronic commerce and
e-commerce [Tan et al. 2005; Davies et al. 2003; Gomez-FRe¢z2004].

The recognition of the ability to effectively organize knedge, which is crucial for
biology, where the research is highly decentralized, leth®constitution of the Gene
Ontology (GO) [GO Consortium 2006]. At the highest level, &G functional classifi-
cation system composed of three disjoint functional orfi@e corresponding toellular
componen{Figure 2(a)),molecular function(Figure 2(b)) andiological procesgFig-
ure 2(c)), each of which addresses a different aspect oftaipt®function, as mentioned
earlier [Ashburner et al. 2000]. Each of these ontologiégasarchically structured and is
modeled as a directed acyclic graph (DAG), in which each modesponds to a functional
label and each directed edge correponds to eithés:aror apart:of relationship. Thus,
even though GO seems similar in methodolgy and scope to thex @itnctional schemes
such as MIPS and TIGR, there is a fundamental differencetwmiakes GO much more
general than the others. Almost all the other schemes wesigrikl to aid the functional
annotation of specific genome(s), and were generalized |ek@awever, the designers of
GO set out with the goal of creating a common multi-dimenaidanctional ontology
which could be applied irrespective of the genome beingidensd [Bada et al. 2004],
thus ensuring the wide applicability of the scheme. Thisaulyihg shift in ideology led
to the recognition of Gene Ontology as a radical rethink efegeroduct functional classi-
fication [Rison et al. 2000].

Interestingly, GO posesses all the desirable propertiadwfictional classification sys-
tem listed earlier. In fact, its design ideology incorperhall these properties. The follow-
ing description of how GO satisfies these properties alsstithtes its various aspects and
provides historical information.

(1) Wide coverage GO was formed by a collaboration of three leading orgarsgmeific
genomic databases FlyBase [FlyBase Consortium 2003], S®iight et al. 2002]
and MGI [Blake et al. 2003], who first realized the need to tzem cross-species
functional classification system in order to solve the dategration problem created
by the huge number of indepedent genome projects in the garlgme sequencing
period [Lewis 2005]. Very soon, other databases, such aR TAuala et al. 2001],
also joined the GO consortium, and thus, the coverage of Ggarbe very wide,
since biological phenomena occurring in a wide variety @idgical systems were
considered when adding new labels to the ontology. A prodhisf coverage is the
large number of genomes, including the human genome, thattde®en annotated with

2http://http://ww. answers. cont t opi ¢/ ont ol ogy- conput er - sci ence
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GO labels [Camon et al. 2003].

(2) Standardized format: The ontologies constituting GO are modeled as a generic cat
egory of graphs known as directed acyclic graphs (DAGs)ciwhiave numerous ap-
plications in computer science, such as Bayesian netwoikparse trees created by
compilers [Edwards 2000]. Each node in these graphs repeaepecific functional
label and is assigned a unique GO id of the f@r® : X X X X X X X, and each edge
represents either @s:a or apart:of relationship. This well-defined structure makes
GO easily usable by both humans and computers.

(3) Hierarchical structure: As shown in Figure 2, all the ontologies in GO are hierar-
chical in nature. However, they are more complex than otbleermes such as MIPS,
which model this hierarchy as a tree [Mewes et al. 2002; Ruegmd. 2004]. The
ontologies in GO are modeled as DAGs, which allows a node e h#re than one
parent. This is biologically appropriate, since a specifitction can be a part of more
than one higher functions.

(4) Disjoint categories GO is comprised of three disjoint ontologies correspogdm
cellular componenffFigure 2(a))molecular functior{Figure 2(b)) andbiological pro-
cess(Figure 2(c)), each of which is a different aspect of a proseiunction. There
does not exist a link between any two of these ontologies, $atisfying the disjoint-
ness condition. This is also in accordance with the multitisional nature of a clas-
sification scheme as justified by Riley [1998], in order tatrhe different functional
aspects of a protein separately, depending on the contéx¢ study.

(5) Multiple functions : The structure of GO is inherently multi-dimensional, excdissed
above. In addition, within a single ontology, a protein mayl&beled with multiple
nodes at different levels in hierarchy. The well-defineditire of each hierarchy
makes it possible to either extend an annotation to all tieestors, or subsume them
in the opposite direction. In fact, the extension of annoteto all parents is the basis
of the validation of several function prediction strategie

(6) Dynamic nature: Last but not the least, GO is an open-source endeavour and ha
public interface at the Sourceforge web3jtehich acts as the channel for submitting
new functional labels and other forms of functional knovged These submissions
are continuously reviewed by the curators and scientificarect information is in-
corporated into the GO database [Bada et al. 2004; GO Caunso?006].

The above discussion enumerates a detailed list of reasahmfide Gene Ontology a
success [Bada et al. 2004; Clark et al. 2005]. This succesadtadbeen achieved only due
to the strong conceptual foundations of GO, but also becisisgplications in function
prediction that have produced great results, both in a dfatiné and qualitative sense.
Numerous protein function prediction strategies that hesexl Gene Ontology as a source
of functional classes and for the purpose of validation $éanet al. 2003; Letovsky and
Kasif 2003; Hvidsten et al. 2001], and now the use of thesssek is almost a de-facto
standard. Also, the rapidly expanding army of easy-to-oséstfor manipulating GO,
such as the AmiGO browser [GO Consortium 2006], has enhatheedtility of GO for
experimental and computational biologists substantially

The rich knowledge embedded in GO, and its more complextsira@s compared to
other simpler schemes, has motivated studies that focusakinma better use of this

3htt p: // geneont ol ogy. sour cef or ge. net
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knowledge and structure. Lord et al. [2003; Lord et al. [J0@&formed a unique study
of GO, where they investigated whether proteins with sintlzaracteristics, such as sim-
ilar amino acid sequences, are annotated witthilar functional classes in GO. While the
similarity of sequences is reasonably easy to estimatg BliAST, the estimation of sim-
ilarity between GO classes that are arranged in a DAG-bamsgdrbhy is considerably
harder. Thus, for this task, Lomt al used several semantic similarity measures, such as
that of Lin [1998], that have been used for a similar purposether ontologies, such as
WordNet [Fellbaum 1998]. Using these measures, they datedhthat there is a signif-
icant correlation between the similarity between the ljalal characteristics of proteins
and the similarity of their GO annotations. Similar resultsre reported for microarray
data [Sevilla et al. 2005]. This is important from a functjorediction viewpoint, since
now models for a function can utilize data not only from thetpins annotated with the
same function, but also frosimilar functions.

Arelated issue in the use of GO in functional genomics stigithe fact that most of the
ontologies in GO contain several thousand functional texidéfferent levels of specificity.
In this situation, a hard task for function prediction sesglis to choose which terms should
be used to evaluate the efficacy of the proposed predictiadhadeMyers et al. [2006]
have made useful suggestions for this choice, by evalutgings in the biological process
ontology for their relevance to experimental studies. Bviagluation is done by obtaining
votes from biologists in response to the following questiofGiven a proteirp and a
functionf, if a methodM predicts thap performsf in an organism, can this prediction be
tested in wet-lab experiments?”. This evaluation is vergontant for the field of protein
function prediction, since the real utility of the compidagl methods in this field lies
in making predictions that can be verified experimentallfiug, although the results of
this evaluation are currently available only for ye4sind human proteifisfor the GO
biological process ontology, this study marks a signifiahance in the use of GO for
function prediction studies.

Motivated by these advances in making an effective use dftbevledge-rich but com-
plicated Gene Ontology, several machine learning methads been proposed for explic-
itly incorporating the structure of GO into function pretifim methods. Following is a list
of some of the methods used for this problem:

(1) Bayesian network modeling of the hierarchical DAG stnwe [Barutcuoglu et al.
2006].

(2) Probabilistic chain graphs for modeling the hierarahi2AG structure [Carroll and
Pavlovic 2006].

(3) Incorporation of the semantic similarities betweenchional classes into standard
classification algorithms [Pandey and Kumar 2007; Tao é2QG07].

In particular, Barutcuoglu et al. [2006] were able to achisignificant improvements in
performance over several classes, by augmenting a staBdévidclassifier with hierar-
chical relationships between classes using their Bayemamork. Even better results are
expected as more rigorous methods of complementing bicdbdata with the information
in the structure and contents of GO are developed.

4htt p: // www. bi omedcent ral . conf cont ent/ suppl enent ary/ 1471- 2164- 7- 187-s1. t xt
5Unpublished
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Fig. 3. The central dogma of molecular biology: conversibgene to protein via mRNA [Alberts et al. 2003]

This discussion makes it clear that the use of Gene Ontologyy function prediction
project, whether for validation or for algorithm designtuvally incorporates important
biological concepts into the strategy, thus making it motaust and biologically useful, in
addition to providing other advantages such as the imprewntof coverage and accuracy.
This is why we suggest th&O is the way to gofor the field of protein function prediction.

2.3 Discussion

In the preceding discussions, an attempt was made to moecesehedefine the meaning
of protein function. However, protein function is an umbaetoncept that has various
aspects such as molecular function, cellular function dhptypic function, and the most
appropriate formalization in general is to treat functismanierarchical, multi-dimensional
concept. This model has been adopted by numerous functiassification schemes, each
with their own strengths and weakness. The most importamtlusion of this section is
the superiority of the Gene Ontology over all the other dfesdion schemes with respect
to an extensive list of desirable properties that any bicigneaningful scheme should
posess. Because of its coverage, generality and biolagieatance, it would be beneficial
for protein function approaches to incorporate GO intorteategy in some form or the
other.

3. PROTEIN SEQUENCES
3.1 Introduction

The central dogma of molecular biology is the conversion gleae to protein via the
transcription and translation phases, as shown in Figuréh& result of this process is
a sequence constructed from twenty amino acids, and is kiaswhe protein’s primary
structure. This sequence is the most fundamental form ofiimétion available about the
protein since it determines different characteristicshef protein such as its sub-cellular
localization, structure and function.

The most popular experimental method for the identificatibprotein sequences is
mass spectrometry [Sickmann et al. 2003], which, in contlmnavith algorithms such as
ProFound [Zhang and Chait 2000], comes in various flavoxd) as peptide mass finger-
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printing, peptide fragmentation and other comparativehods$. However, these methods
are low-throughput, and thus, with the exponential gemaraif genome sequences, the
focus has shifted to computational approaches that catifiyggenes from these genomes.
Once a gene has been identified, it is a trivial task to ap@yctdon-to-amino acid trans-
lation code [Weaver 2002] to predict the sequence of theeprancoded by the gene.
Some of the most popular tools for this gene identificaticek fia eukaryotic organisms
are GenScan [Burge and Karlin 1997] and GeneParser [Snhpde8@mrmo 1995], which
employ hidden Markov models and dynamic programming, retsgay, to combine the
signals corresponding to the various components of a gstresture.

Since its amino acid sequence is the most fundamental irsfibom available about a
protein, such sequences have been accumulated in largeemsimbseveral standardized
databases. The most popular of these are the SWISS-PROTEMIBL databases [Boeck-
mann et al. 2003]. SWISS-PROT is a comprehensive, manuatiyted database that
provides a wide variety of information about the constituyamteins, such as their func-
tional annotation, amino acid sequence and other infoomati the form of keywords and
features. TTEMBL (Translated EMBL) is an automaticallyated supplement of SWISS-
PROT that contains the resultant translations of all nuidecssequences present in the
EMBL/GenBank/DDBJ databases [Brunak et al. 2002], as wethair automated clas-
sification and annotation. As of May 2, 2006, the number ofieatin SWISS-PROT
and TrEMBL were217551 and 2851442 respectively. Because of the associated confi-
dence in the assigned functional classes, several apsétat employ data from these
two databases use SWISS-PROT as the source of the trairgugrsees, while a subset
of TTEMBL is used as the test set. Other extensive databdsgstein sequences are
MIPS [Mewes et al. 2002], PIR [Wu et al. 2003] and IPI [Kerségle 2004].

Database Reference Organism
SGD [Dwight et al. 2002] S. cerevisiae
FlyBase [FlyBase Consortium 2003] D. melanogaster
WormBase [Harris et al. 2004] C. elegans
TAIR [Huala et al. 2001] A. thaliana
TubercuList [Camus et al. 2002] M. tuberculosis
GenProtEC [Serres et al. 2004] E. coli
EnsEMBL [Hubbard et al. 2005] Several mammalg
Table lll. Organism-specific databases of protein sequence
Database Reference Type of proteins
GPCRDB [Horn et al. 2003] G-coupled protein receptorg
MEROPS | [Rawlings and Barrett 1999] Peptidases
TCDB [Saier Jr. 2000] Transport membrane proteins
LGICdb [Novre and Changeux 2001] Ligand-gated ion channels
BRENDA [Schomburg et al. 2004] Enzymes
NucleaRDB [Horn et al. 2001] Nuclear receptors

Table IV. Type-specific databases of protein sequences

Besides the above general-purpose databases, many gengsrieated organism- and
type-specific databases of protein sequences. TablesdIlNarpresent a list of some
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of these databases. Most of these databases also contatiofah annotations for the

member proteins. Finally, yet another category of databesasists of those that provide
functional annotations for genes, such as GOA [Camon ef@BPand GenBank [Benson

et al. 2004]. This widespread availability of informatidsoait and associated with protein
sequences has lead to a rapid increase in the use of protgierezes in bioinformatics

research.

3.2 Annotation transfer from homologues: How good is it for function prediction?

The first major breakthrough in the field of computationaldgy was the design of se-
guence similarity systems such as FASTA [Pearson and Lifdré88] and BLAST [Altschul

et al. 1990] (which was later enhanced into PSI-BLAST [Altsloet al. 1997]). These sys-
tems search standard databases such as SWISS-PROT to fieitigrmmologous to the
subject protein, i.e., a similar protein in another orgamisising approximate sequence
alignment algorithms. In addition, BLAST and PSI-BLAST@lgroduce an E-value for
each matchS in the database, which denotes the probability of achieaimglignment
scores equivalent to or better th&rnn a database of random sequences of the same size
as the target datab&send can be used as a metric for ranking the search results. Th
probability is calculated using an extreme value distidou{Gumbel 2004]. An imme-
diate consequence of the development of these systems wathadfor the prediction

of function of unclassified proteins, namely annotationsfar from homologues. In this
method, the functions of the most homologous proteins @selts in a BLAST search
with an E-value greater than a pre-specified thresholdyansferred to the protein under
consideration. Though early applications of this methamipced promising results, sub-
sequent studies discovered several limitations [GerltEaiubitt 2000; Devos and Valencia
2000; Whisstock and Lesk 2003].

The most significant factor causing an inconsistency oftiondetween homologues is
duplication during evolution, where a duplicate of the oréd gene adopts a new function
in response to selective pressure [Gerlt and Babbitt 208d such genes and their prod-
ucts, annotation transfer by homology produces erronegaigts, as has been confirmed
by several studies [Gerlt and Babbitt 2000; Whisstock arskl2003].

In order to quantify the early indications that sequence dlogy is not equivalent to
functional identity, some studies were conducted to syateally evaluate the correlation
between sequence and functional similarity [Devos andnéde2000; Wilson et al. 2000].
Devos and Valencia [2000] evaluated this correlation farrfdistinct levels of protein
function:

—Enzymatic function classification, represented by the/arezclassification (EC) number
—TFunctional annotations in the form of SWISS-PROT keywords

—Cell functional class

—Conservation of the type of amino acid in the binding site

In addition, the authors of this study also evaluated howerge homology is correlated
with the conservation of three-dimensional protein stitet The structure of a protein

is considered closer to its sequence than its function, suged in Section 4. Indeed,
structural comparison is considered the gold standarceiealuation of remote sequence

6http://ww. ncbi. nl mni h. gov/ bl ast/tutori al
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homology [Kuang et al. 2005; Rangwala and Karypis 2005] ciiiperates primarily on
sequence data.

In this framework, the evaluation on tiie coli genome resulted in the following order
for the sequence-function correlation

Structure = EC number > SwissProt Keyword = Functional class > Binding site

which shows that sequence similarity is more highly coteslavith structural than more
specific notions of functional similarity. This result is agreement with those reported
by other researchers [Whisstock and Lesk 2003], and thusligigs the limitations of
the annotation transfer strategy. However, on the postigle, it suggests a new route
for function prediction from sequence, i.ecquence — structure — function, since
the two segments of this route have been reported to haveagstorrelation than the
whole [Whisstock and Lesk 2003].

Finally, on the computational side of things, the inabitifithe annotation transfer tech-
nigue to accurately determine protein function had an edieffect of database contam-
ination [Devos and Valencia 2000], also sometimes refetoeds propagation of error.
Since a major fraction of the annotations provided in thaisage databases that are au-
tomatically annotated, were derived using this technidhis, led to the creation of an
erroneous reference set for function prediction approsicbee to these issues, the focus
shifted from to using more sophisticated forms of sequeimoéagity than simple align-
ment to predict function. The following section descriliessie approaches in detail.

3.3 Existing Approaches Beyond Simple Homology-based Annotation Transfer

In the domain of automated function prediction, sequenee® been heavily utilized,
in both direct homology-based and indirect subsequenafeature-based approaches.
Specifically, techniques that predict protein functionnireequence can be categorized
into three classes, namely, sequence homology-basedahe® subsequence-based ap-
proaches and feature-based approaches, which are expheaioav:

—Homology-based approachesAs discussed in Section 3.2, the results from simple
homology-based approaches are not always accurate. Hgpreaches in this category
attempt to make the homology search process more sensjtisauliiple means, such
as making the search probabilistic and adding evidence &trar sources of data to
obtain more accurate and confident annotations for the quretgins.

—Subsequence-based approaches has been shown in several studies that often not the
whole sequence, but only some segments of it are importadefermining the function
of a given protein. Consequently, the approaches in thegoay treat these segments
or subsequences as features of a protein sequence andiconsidels for the mapping
of these features to protein function. These models areubed to predict the function
of a query protein.

—Feature-based approachesThe final category of approaches attempts to exploit the
perspective that the amino acid sequence is a unique cbaration of a protein, and
determines several of its physical and functional featurdsese features are used to
construct a predictive model which can map the featureevefictor of a query protein
to its function.

An important observation that may be observed from the alsategorization is that
the subsequence- and feature-based approaches are viay atrthe fundamental level,
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Feature Feature Classification
Extraction Selection Model

Fig. 4. General route adopted by the model-based approaches

since all these approaches involve construction of a mad¢hé feature-to-function map-
ping. Hence, these categories can be grouped into the cgt@gnodel-based approaches,
which essentially follow the route shown in Figure 4. Foliogis a description of the three
stages in this route:

—Feature Extraction: This stage involves the definition of features from a seqaethat
can be used to encode the desired properties of a proteine 8bthe popularly used
features are motifs derived from a set of functionally orlationarily related proteins,
functional domains, n-grams and more biologically meafuhfgatures such as the iso-
electric point, the Van der Waals volume and post-trarmtati modifications.

—Feature Selection Often, all the features used to encode a protein are notliseice
some features may be noisy and/or redundant. To handlestirise, but not all, ap-
proaches use feature selection techniques from data misirty asy? and Backward
Elimination [Dash and Liu 1997].

—Classification Model Finally, a classification model is constructed by trainanglas-
sifier with feature-values vectors and their correpondintfional classes. This model
can then be used to assign functional labels to query psoteat have been converted
into their corresponding feature-value vectors. Somesiflass that have been popularly
used in this field are support vector machines (SVMs), nenetorks (NNs) and the
naive Bayesian classifier.

However, there are also significant differences betweesesience- and feature-based
approaches, the most fundamental of them being that subsegtbased approaches ex-
tract the features, i.e., meaningful subsequences, suctotifs and domains, from a set
of functionally related sequences. On the other hand, fediased approaches derive and
evaluate their features on the basis of individual proteiquences. Thus, the latter ap-
proaches are more “direct” than those based on subsequeXueather related difference
is that the features used by the feature-based approache®es biologically meaningful,
since they are defined on the basis of the available knowlabgat protein function, and
model factors which may affect a protein’s function. On tlieeo hand, it is known that
subsequences such as motifs and domains represent ballpgieaningful portions of a
protein, but it is hard to attach a specific meaning with th&swill be discussed in subse-
guent sections, this is the primary reason for the succefeedtature-based approaches.

Now, with a high-level view of the field of sequence-basectfion prediction, we pro-
ceed to discuss in detail the approaches falling within tineg categories of homology-
based, subsequence-based and feature-based approaches.

3.3.1 Homology-based approacheB Section 3.2, it was discussed that simple trans-
fer of annotation from the most homologous sequence maynodiLjge very accurate re-
sults, primarily because of the weak correlation betweemtem’s sequence and function.
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This section discusses several approaches that attempke tis technique more accu-
rate by using various methods that make the homology seaociegs more sensitive.

GeneQuiz [Andrade et al. 1999] was the first completely aatechsystem for sequence
analysis and annotation. The annotation module of Geneed the standard sequence
comparison systems such as FASTA and PSI-BLAST, but aldonpeed additional func-
tions such as sequence filtering to identify the most sigmitiportions of a sequence, us-
ing methods such as pattern discovery, multiple alignmedtsaructural inference. Thus,
this system focused both on utilizing off-the-shelf softefor function prediction, as well
as adding multiple evidence for the inferences made. Thdtrems a more confident
estimation of the function of the query protein. PEDANT Egilet al. 2005] and Auto-
FACT [Koski et al. 2005] are other genome database systemss$ed on similar goals
and based on similar techniques. Together, these systaraghabled an integrated com-
parative analysis of sequences, often including proteora bther organisms a well.

The next major development in homology-based function iptiesh was the integra-
tion of Gene Ontology (GO) categories into the annotatiatess. The use of GO stan-
dardized the process since now organism-independent anatthically-structured func-
tional categories were used. Consequently, several hgydiased annotation systems
were proposed on the basis of this idea, such as GOblet [getnal. 2003], Onto-
Blast [Zehetner 2003], GOFigure [Khan et al. 2003], GoAn@bdlmel et al. 2005] and
GOPET [Vinayagam et al. 2006], which are essentially sinegtensions of the similarity-
based annotation technique. GOtcha [Martin et al. 2004]riwee sophisticated system
that utilizes the GO hierarchical structure to find the me&tvant annotations for a query
sequence. For this process, first a set of homologues is ffmurttie sequence using a
BLAST search across various organisms, and the annotatdioisthese homologues is
arranged in a set of GO-like DAGs (Directed Acyclic Graphajpt 2001]. Based on the
frequency of occurrence of the respective annotationstané&tvalues of the correspond-
ing matches, a new score called the P-score is calculatezhfiir annotation. This score
acts as a measure of the confidence attached to the annatbtimquery sequence with
that term, and thus, the final set of annotations are retlibyesimply thresholding this
score. Experiments oD. melanogaste(Malaria parasite) showed that the results were
more sensitive and specific than those obtained by trairgfettre annotations of the top
BLAST match. Thus, compared to the earlier systems, GOtasabetter able to integrate
GO categories into the annotation process.

Besides direct annotation transfer, sequence homologgleadeen used in more indi-
rect approaches for function prediction. Abascal and \&#e[R2003] discuss some of the
problems with the traditional annotation process, whiehas follows:

—TFunction prediction errors introduced into the standaodgin databases by the “classi-
cal” annotation strategies [Devos and Valencia 2000].

—Presence of multiple domains in a sequence, which con¢riimgividually to the pro-
tein’s function, thus making it essential for any functioegiction strategy to take into
account the domain structure of a protein.

—Inconsistency between the levels of detail in differemidiional annotations.

In order to overcome these obstacles,several approactphawesed a multi-step strat-
egy for functional annotation based on clustering of prossquences according to their
sequence similarities [Xie et al. 2002; Abascal and Vake26i03; Sasson et al. 2006]. Fig-
ure 5 shows the flowchart of the basic strategy adopted ir tinesstudies. The algorithm
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starts with the construction of the a similarity matrix tetdres the BLAST similarity val-
ues between the protein sequences in the original trairehgEhis matrix is then used
to cluster these sequences, and the annotation of a seguethese approaches depends
not on individual homologous sequences but a cluster coetposmany such sequences.
This makes the process more robust to errors in individuaksn Thus, at a higher level, it
can be observed that these two approaches use homologtioetedy as an intermediate
step in the complete annotation process, thus reducindf ef the problems associated
with the traditional annotation process.

Similarity matrix construction using
recursive BLAST search

Clustering of homologous sequences

Mining of representative text/keywords
for members of the target cluster

Input query sequence Annotation Model 4,[Final functional annotatior}

Fig. 5. Basic strategy adopted by approaches based onrahgsté protein sequences according to their pairwise
sequence similarities [Xie et al. 2002; Abascal and Va2€03; Sasson et al. 2006]

Another direction in which homology-based function tramstan be improved is by
making the process probabilistic. Levy et al. [2005] do tyidwypothesizing that a protein
can only belong to a functional class if its BLAST score di®ttion with the members of
the class is the same as that of these members themselveslelrt@model this hypoth-
esis, a univariate and a multivariate probabilistic schenpeoposed. The former scheme
makes predictions simply on the basis of the total scoreefdlget protein, by assigning
it a probability of belonging to each class. However, thigofleads to ambiguous results,
and hence this scheme is extended to a multivariate one Isgraating a vector of scores
for all classes for the target protein and then comparingairest the distribution in each
class. Results on a set of enzymes indicated a high accufaxy6y. However, these
results should be seen in the light of the fact that enzymetioms are more tightly corre-
lated with their sequences than other proteins. Also, tthigme is expected to work only
for very specific classes, for example, the most specifid le&0, since more general
classes have significant overlap between them and thus ¢uécpon may become am-
biguous. Hence, more work is needed in this direction to dthblogy-based prediction
of its conceptual problems.

3.3.2 Subsequence-based approach@ten only specific parts of whole sequence are
crucial for the protein to perform its functions. A relatexhaeple is that ofexonsin
a gene sequence, which are substrings that are translatedriramino acid chain, and
introns, which are subsequences that are excluded from translatiobhence do not have
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a clear function in the sequence. Thus, in order to accyratedel a protein’s function,
many approaches try to identify useful portions of the grotequence that may contribute
to the accomplishment of the function by the protein. Thidiea reviews several such
approaches. However, these approaches define "usefubpsitin different ways, and
some definitions are discussed before continuing with theudision:

—Motif: Motifs are defined as sub-sequences which are conservessacset of protein
sequences belonging to a family [Bork and Koonin 1996]. @umtheir conservation
property, they are candidates for functional sites in pnstesuch as sites for ligand
binding, DNA binding and interactions with other proteiaad thus are useful as clues
for predicting the function of a protein [Bork and Koonin B9%Huang and Brutlag
2001].

—Domain: It has been strongly hypothesized that the multiple fum&iperformed by
a protein are due to different regions of the protein seqadraving different struc-
tural and functional characteristics [Servant et al. 200ijese regions are known as
functional domains, and a protein’s function is a comboratf the functions of each
of these domains. However, this gives rise to the multi-dampeoblem, since now it
is important to identify all the domains in a protein sequeeircorder to elucidate its
function completely.

The above definitions indicate that identifying domains amatifs can be useful for
predicting protein function. As mentioned earlier, theskesequences provide a new way
of encoding the protein sequence in terms of features tltaikrwhether a certain motif or
domain is present in a sequence, and a confidence value ofitieh ihdesired. Once such
a feature vector has been calculated for each protein iratgettset, various statistics and
data mining techniques, such as classfication, could be WMady approaches based on
this idea have been proposed, starting with [HannenhallRussell 2000]. This approach
tried to identify regions of a sequence that best distingaisertain function or sub-type.
This is done by identifying positions in a multiple sequeatignment of proteins in a
family s, and finding the relative entropy of each position with respes ands. The most
discriminating positions are those having the highest tetative entropy with respect to
each family considered. Thus, once this set of discrimmgafiositions, which are the
features in this case, has been constructed, the classificita new sequence is carried
out using the HMMER program [Eddy 1998]. Experiments on fparticular enzyme
classes and2 Pfam [Sonnhammer et al. 1997] families showed that this atetimost
always had a higher accuracy than HMMER, though the diffezemas not very high.

The solution proposed by Wang et al. [2001] represents gaoidtbetweem-gram [Wu
etal. 1992] and motif-based approaches, since they usé¢hmsth types of features for clas-
sification using a Bayesian neural network (BNN) [MacKay 2RI he features that were
used encode two types of similarities between sequencegnglobal andlocal similar-
ity, modeled via n-grams and motifs respectively. Apprataifeature selection techniques
are also used to reduce the total number of features. Thediasgification is carried
out using the resulting features. The results on a set of$aperfamilies from the PIR
database [Wu et al. 2003] are better than BLAST [Altschulle1897] and two version
of SAM [Karplus et al. 1998]. However, for each class, a niegatlass is explicitly used,
which may make the classification easier. Nevertheless,stinidy showed the merit of
combining motif-based features with sequence-basedrfesafar protein classification.
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Moving forward, a completely motif-based strategy is aédpby Liu and Califano
[2001]. Thisis a decision tree-inspired approach to chysteteins into functional families.
Since motifs are strong signals for common family membegrghe set of given sequences
are characterized in terms of presence or absence of metiiged by the SPLASH algo-
rithm [Califano 2000]. This initial set of motifs is refinechéh expanded to find a sub-
stantial number of statistically significant motifs. An upgrvised top-down tree is then
constructed by dividing the set of proteins at each noderdeugto whether they contain
the next most significant motif or not. The leaves so obtamedhypothesized to con-
tain sets of proteins belonging to the same functional fgmihich represents a top-down
clustering of the sequences. Upon validation using thefsgtrotein-coupled receptors
(GPCRs), a classification rate in the rang&df- 72% is achieved. This is a reasonable
performance since GPCRs are known to be a highly diversdyfainihe sequence level,
and thus are hard to classify using automated methods [ia@yand Kim 2006].

A very similar approach is presented in [Wang et al. 2003]icivlalso proposes the
characterization of proteins using the motifs they may oy mat contain. However, this
approach differs from from [Liu and Califano 2001] in thaistis a supervised approach in
which training examples are labeled with functional clasSénus, once the proteins have
been converted into binary vectors using the approach abalecision tree is constructed
on the training set, and is used for the classification of éis¢ $et. The use of manually
curated protein families (from the MEROPS database [Rasliand Barrett 1999]) and
motifs (from the PROSITE database [Hulo et al. 2006]) fomireg gave this approach a
significant edge over [Califano 2000] in terms of classifmatccuracy.

Another motif-based approach to protein classification tisas neural networks is pre-
sented in [Blekas et al. 2005]. Here, two ways of using matiésproposed:

—Class-independent motifs Motifs extracted from the entire set of training sequences

—Class-dependent motifsMotifs extracted separately for each class and then cosabin
to make a global set.

In both cases, the MEME [Bailey et al. 1999] algorithm wasdugeextract about0 such
motifs were used to construct vectors for each sequencehw¥ere fed into a neural net-
work to build a classification model. In experiments on PRIES]Hulo et al. 2006], it is
found that class-dependent motifs form the best encodimgrse, which is expected since
the motifs calculated are more class-sensitive. For thesifleation of the GPCR super-
family, this approach was shown to surpass SAM [Karplus.t388] and MAST [Bailey
et al. 1999] with respect to the ROC50 measure. However, hbas been shown that the
naive Bayes classifier, in combination with tié feature selection algorithm is the most
effective technique for the GPCR superfamily [Cheng et@D5). This work is discussed
in Section 3.3.3

A rigorous machine learning-oriented study of motif-bapeatein classification is re-
ported in [Ben-Hur and Brutlag 2005]. Heregratif kernelthat simply uses the occurrence
count of each motif in a sequence as a similarity measuredsgtwhe motif and the se-
guence, is proposed, and is used for classification with all.9¥ addition, this paper
also investigated issues such as feature selection for $MMtjclass classification using
SVM, and the multifunctional nature of proteins. The modiropl configuration was de-
termined to be composed of (i) feature selection using tHe REthod [Guyon et al. 2002],
(i) combination of many one-against-the rest classifiRifkjn and Klautau 2004] and (iii)
counting the multiple classes of a protein as a single claghis optimal configuration, on
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a data set of enzymes, the results showed that SVM perforties kiean a k-NN classifier.
Though enzymes are not the best benchmark for this applicatie performance tuning
of an SVM using a motif kernel will be valuable for future nfdbiased approaches. Yet
another appproach that reports good results for motifdb8s#M classification of enzymes
is presented by Kunik et al. [2005].

The above descriptions show that motif-based approachesdmene a long way from
the initial idea that sequence motifs may represent funatianits of a protein. However,
a more direct approximation of these units are protein domavhose use for the function
prediction task is discussed next.

The first use of domains for funtion prediction appears tcehaeen made in the sim-
ple strategy presented in [Schug et al. 2002]. In this apgrodomains were extracted
from two standard databases, namely ProDom [Servant ed@2]2and CDD (Conserved
Domain Database) [Marchler-Bauer et al. 2005], and rulegufioction assignment were
constructed on the basis of BLAST searches on a séli gd79 GO annotated proteins
from three popular genomes, namBlymelanogasteM. musculusandS. cerevisiacAp-
plication of these rules to a set4$57 manually curated human proteins resulted in a recall
of 81% and a precision 0f4%, while on data sets for other organisms, both these figures
were around th60% mark. In a similar approach [Cai and Doig 2004], domains fthen
SBASE library of protein domains [Vlahovicek et al. 2002 aised as attributes, and vec-
tors constructed the values of these attributes are ckasifing both the nearest neighbor
algorithm (NNA) and support vector machines (SVM). The hssabtained for thirteen
functional classes from the MIPS database indicate that Ngetter for this task than
SVM. This reversed order of classification accuracy (in napgtications related to protein
sequences, SVMs have produced better results than NNA) maw hrtifact of the simple
vector representations of proteins adopted in this stuely,iinary vectors, which may not
be the most informative input for a classification algorith¥et another approach based
on the idea of domains is presented in [Perez et al. 2002].ederyin this case, instead
of experimentally determined domains, constant-lengttissically significant amino acid
patterns callegprotomotifs[Thode et al. 1996] are used. Correlations between SWISS-
PROT keywords assigned to the sequences and the positidthesef patterns are found,
and these are used to establish rules for function assign@enerage and precision close
to [Schug et al. 2002] are obtained for a set of PROSITE [Htilal.e2006] sequences.
Similarly, a low sensitivity of less thas0% for the three GO ontologies is achieved by the
decision tree based classification of sequences [Hayet8i@nttowska 2005] expressed
in terms of the PFAM domains [Sonnhammer et al. 1997], indigahe insufficiecy of the
assumption of independent behavior of domains. Thus, dwargh substantial work has
been done on the idea of predicting protein function usimgfional domains, the results
obtained have not been very exciting . A fundamental reasothfs is the assumption
made by all the above approaches that each domain congibatenction to the protein
independent of the other domains, which may not always e ffliis assumption needs
to be relaxed in order to get better results from this apgroac

From the above discussion of the approaches for proteirtibmprediction based on
the identification of significant subsequences, it can bemasl that the results obtained
are not as impressive as expected. One of the reasons fds tthie lack of a precise
definition of subsequences such as motifs and domains. Btanice, each of the above
approaches modeled these patterns in a manner differenttire others, and the results
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varied accordingly. In addition, the programs used to extiteese newly-defined patterns
are only approximations, and hence, add a degree of errbetprediction process. Also,

this two-step procedure leads to the additional issue ofrthst optimal encoding of se-

guences with respect to motifs and domains, which is ackedgdd to be a hard problem.
Hence, there is a severe need for a unified standard matloaidgifinition of sequence

patterns, and standard databases containing high-cooéidets of such patterns.

The WILMA system [Prlic et al. 2004] addresses the above lerob, and thus em-
ploys a different route for improving the accuracy of suhsage- or pattern-based func-
tional classification. WILMA integrates various proteinaaases such as SWISS-PROT,
IPI[Kersey et al. 2004] and WORMPEP [Harris et al. 2004] veilguence pattern databases,
such as PROSITE [Hulo et al. 2006], Pfam [Sonnhammer et QrJ1&nd PRINTS [Attwood
et al. 2003]. The searching of patterns in sequences is a&iformed using an ensem-
ble of methods such as RPS-BLAST [Altschul et al. 1997], PR@Scans and Finger-
PRINTScan [Scordis et al. 1999]. This design amounts toesagpisearching at multiple
levels, and thus leads to a more confident annotation.

Yet another problem of subsequence-based methods is thairage, i.e., the fraction
of the entire protein sequence space covered by these sidverss. Just as the dictionary
helps us make sense of any text in a language, a dictionaggoksice patterns that covers
the entire sequence space can be used for annotating gref¢finfunctions. This view is
adopted by the creators of Bio-Dictionary [Rigoutsos e1899]. The Bio-Dictionary con-
sists of amino acid patterns knownseqletsthat are subsequences of a certain maximum
length containing a number of don'’t care characters, thusingaseglets more flexible
than strict subsequences. Interestingly, the TEIRESI48rahm [Rigoutsos and Floratos
1998] used to discover these pattern is inspired by freqo@itérn discovery algorithms
from the field of association analyis, which is a part of thbjsat of data mining [Tan
et al. 2005]. The primary merit of seglets is their extengiggerage of the protein se-
guence space, which is illustrated by the fact that the @ersf BioDictionary constructed
for the May 14, 2001 release of SWISS-PROT, contaitizd96, 454 seqlets, which cov-
ered98.2% of the processed input at amino acid level.

Rigoutsos et al. [2002] used these seqglets for annotatiogiprsequences using the
approach shown in Figure 6. Essentially, this figure dentttegransfer of the attached
field values of a seqlet to all the query sequences that itheatstrongly. The approach
is validated rigorously using the DHEield of SwissProt as the annotation, and it is found
that many kinds of sequences and fragments, both long (hpnoé&inU L78_HC MV A)
and short YVVTAH AF) were annotated correctly. In addition, the generaliratia-
pabilities of the algorithm were shown by an annotation eacy of about0% for three
genomes which were not used in the construction of the Baidiary. Thus, this ap-
proach illustrates the benefits that data mining in paric@nd computer science in gen-
eral, can provide to the systematic study of biology.

Finally, it is important to mention a recent class of teclueis| that have been pro-
posed for the detection of remote homologies among protdihese are sequence- and
motif-based approaches that use machine learning teatmgych as SVMs [Kuang et al.
2005; Rangwala and Karypis 2005; Rangwala et al. 2006; BenaHd Brutlag 2003] and
HMMs [Jaakkola et al. 2000]. An extensive survey of thes@néques appears in [French
2005]. Although in principle, these approaches can be usetlifiction prediction, this

7http://www.expasy.org/sprot/userman. html#ihiie
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Fig. 6. Dictionary-driven protein annotation [Rigoutsask 2002]

is not the preferred validation methodology for them. ladtesince it is more widely ac-
knowledged that sequence and structural similarities aretightly correlated, the SCOP
superfamily classification [Andreeva et al. 2004] is coesidl the gold standard for val-
idation here [Riley 1998]. Consequently, an estimate ofdffieacy of these approaches
for function prediction is not readily available, and hettoese approaches are not covered
in detail here. Nevertheless, SVMs have been shown to gavedist performance in this
field [French 2005], and an extension to function prediaitiay yield useful results.

3.3.3 Feature-based approache$he approaches discussed in the above sections pre-
dict protein function from sequences in their raw form, &ae.a string of characters. How-
ever, itis possible to transform these sequences into maolagically meaningful features,
which make it easier to distinguish between proteins frdifiedint functional classes. This
is the perspective adopted by this category of featureebaseroaches, which use standard
classification algorithms to learn models of functionabksks from the transformed set of
features, and then utilize this model to make predictionsifcharacterized proteins. The
most commonly used classifiers in this class of approacteeswgport vector machines
(SVM), neural networks (NN) and the naive Bayesian classifiehis section describes
several such approaches.

It is well known that neural networks [Duda et al. 2000] were @f the earliest clas-
sification models. Hence, in early research in this field GANS (Protein Classification
Artificial Neural System) and its successors [Wu et al. 1982; et al. 1995] were de-
signed to used n-grams of protein sequences as featuresdioe didden layer neural
network. However, because of the limited availability obfgin sequences, these systems
were tested only on classes of enzymes. The observed pearficarof these models on
these limited sets showed that choosing the right repraentfor sequences is an impor-
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tant issue for this problem, a conclusion which was echoeeldant research studies [King
et al. 2001].

In another study, King et al. [2000] attempt to demonstrageutility of data mining for
solving biological problems by proposing a solution for foaction prediction problem
via inductive logic programming (ILP). Their approach wern protein sequences and
creates a binary feature vector for each of them. The femused for this transformation
correspond to a certain form of frequent item sets, whickresally are sets of character-
istics that are common to a significant fraction of protemghie consideration set. Once
these feature vectors have been created for all the prothies<4.5 decision tree learn-
ing algorithm is used to construct a rule set for predictingction from these features.
Thus, this strategy is a combination of ILP and propositioia@a mining algorithms. Ex-
periments on ORFs froml. tuberculosiandE. coli showed that the prediction accuracy
achieved was abo6t%, which was encouraging as this was among the first applitstio
of data mining to protein sequences for the function preatighroblem.

In an interesting extension of the above work, the same asithvestigated the most
suitable representation of a protein sequence for fungifedliction [King et al. 2001].
The three types of representations evaluated were theviolip

—Sequence based attributes (SEQ) such as the number afiessifl typeR in the se-
qguence, the length of the sequence, the molecular weight etc

—Phylogeny based attributes (SIM) computed through thdtsesf a PSI-BLAST search.

—Structure based attributes (STR) computed from the seggstiucture prediction made
by the Prof program [Ouali and King 2000].

The strategy proposed in [King et al. 2000] is applied to éhrepresentations, as well as
their combinations, namely SEQ+STR, SEQ+SIM, SEQ+SIM &edast one consisting
of all of them. Evaluation of the results da coli ORFs indicated that SIM is the most
accurate representation of a protein sequence for funptiediction. This is further evi-
dence for the hypothesis presented in Section 6 that mapeliolution adds great strength
to the prediction process.

PRED-CLASS is another feature-based approach to functassification of protein
sequences [Pasquier et al. 2001]. However, it is more fatinsscope since it models only
the transmembrane (TM), fibrous (FIB) and globular (GLOBssks. The model adopted
is a three-level cascaded neural network, with TM proteigisidp classified at the first
level, FIB at the next and the last level classifying betw&&®©B and undecided classes
of proteins. The features used at the first level only depietdompositional features of
the sequence, while the second level additionally emplogddp thrity Fourier transform
intensities, which model the periodicities of residuesrougs in a sequence. Training and
testing are carried out using small sets of protelisand387 in size respectively, and a
fairly high sensitivity-selectivity figure is achieved.

By far, the most cited work in this category of approachedéngen et al. 2002]. This
paper presents the ProtFun method for predicting functiom fsequence, which is based
on the hypothesis that a protein has to undergo differeestg modifications and sortings
using the cellular machinery, before it performs its fuocti These are knowns as post-
translational modifications (PTMs) [Mann and Jensen 208&ine of which include N-
and O-glycosylation, (S/T/Y) phosphorylation and cleavafjN-terminal signal peptides
controlling the entry to the secretory pathway. ProtFursddesuch attributes computed
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for various tools available for measuring individual fastcand trains a set of neural net-
works on such attribute-value pairs for the available trajrset.

Another interesting component of this paper was that thalatin of ProtFun was
performed on a set df500 human proteins from the TTEMBL database. The functional
categories were automatically assigned on the basis af$héiSS-PROT keywords using
the EUCLID system [Tamames et al. 1998]. The results of tlegperiments were very
encouraging, with a sensitivity #0% and a10% false positive rate being achieved for
some functional categories. Similar results were obtawleen ProtFun was extended to
cover GO categories corresponding to human protein fungtidensen et al. 2003], thus
further validating the strength of the PTM approach to fiorcprediction.

SVM-Prot [Cai et al. 2003] is another function predictiolitbased on SVMs. Here
also, every protein sequence is represented by a set ofieesjubcific features such as
normalized Van der Waals volume, polarity, charge and sertension, which are av-
eraged over all the residues to in the sequence obtain therdeaalue vector for the
protein. Two-way classification (positive or negative)hen carried out for each func-
tional family considered using an SVM. Accuracies obtainadstandard databases such
as BRENDA [Schomburg et al. 2004], GPCRDB [Horn et al. 200®] BlucleaRDB [Horn
et al. 2001] are in the high range 69.1 — 99.6%. The capability of SVM-Prot is also
shown in the classification af9 novel plant proteins, of which it was able to predict the
classes oB1 accurately and approximately accurately 4otthus leading to a reasonable
accuracy ofr1.4% [Han et al. 2005].

In a recent publication, Eisner et al. [2005] performed aaitled machine learning-
oriented study of the problem of assigning hierarchical Ga8ses to proteins effectively.
Their CHUGO (Classification in a Hierarchy Under Gene Orgglessystem employs the
following three ways of handling this problem. It should beted that, in general, these
are important issues for any classification study and thaseldtbe addressed carefully in
order to obtain accurate results.

—Training set designSince a protein being assigned to a GO nddemplicitly assigns
it to all the ancestors alV, the ideal training set for a learning algorithm should labe
the protein with the whole GO subgraph terminatingVat This naturally, leads to an
improvement in recall, and hopefully in precision as well.

—Classification modelEach GO node in CHUGO is attached to a separate binary classi
fier, which is actually an ensemble of classifiers, since égpmaan belong to multiple
functional classes.

—Evaluation methodologyAs in the training set design, expanded label sets should be
used for all the proteins for calculating the evaluation nmstsuch as precision and
recall.

Though the above ideas have intellectual merit, they wetesapported substantially
by the experimental results. For instance, the classifidrai@ost the same performance
as BLAST for89% of the proteins, which does not illustrate the power of ¢fasgion
for functional annotation. Similarly, the most appropeiatethod for training set design,
i.e. the all inclusive approach, led to an obvious improvenierecall, with no noticable
improvement in precision, but instead, a significant insesia computation time. These
results suggest that these ideas need to be formulated mu@feity for effective use.

The PANTHER database [Mi et al. 2005] expands the genenaldveork of protein se-
guence analysis databases by indexing protein familiesabfamilies according to their
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GO functional labels. In its basic form, it consists of twatpaPANTHER/LIB a library
of protein families and subfamilies, amANTHER/Xa set of ontology terms describing
protein function. The families and subfamilies are credtgdlustering the56, 413 con-
stituent proteins using a single-link hierarchical clusitg algorithm, and are manually
annotated with functional labels. A SAM profile [Karplus ét #998] is constructed for
each family, and is used for classifying novel proteins.oEf are currently underway to
integrate PANTHER with the InterPro [Apweiler et al. 2000]jdaPIR [Wu et al. 2003]
databases.

One of the most important of these classes is that of the @&ijprooupled receptor pro-
teins (GPCR), since they are the largest family of proteinsf in the human body, and
are the targets of approximatel9% of the approved drugs in the market [Gether 2000]. In
addition, this superfamily is known to be very diverse imisrof sequence homology, and
hence are particularly attractive targets for sequenasitieation research [Moriyama and
Kim 2006]. Until recently, the state-of-the-art classifioa technique for this family was
considered to be SVM, as concluded by Karchin et al. 2008 showed that a complex
classifier such as an SVM is more effective for the classifioadf diverse families such as
GPCRs, than simpler classifiers such as HMMs, which are motatde for coarser clas-
sification tasks, such as superfamily classification. H@xen a systematically revealing
study inspired by document classification techniques [@leml. 2005], it was shown that
even a simple classifier such as the naive Bayesian classifiebmbination with they?
feature selection technique, was able to surpass the pafare of SVM at the task, with a
lower computational cost. The?-based technique was used here since it has been shown
to work best for text classification applications [Yang ard@sen 1997]. Also, this study
showed that in combination with feature selection algongh simple encoding schemes
such as n-grams, as used in very early studies [Wu et al. 1888} be more effective
than alignment-based schemes that also take into accauatdlering of amino acids in a
protein sequence. Indeed, the utility of feature selediorcreating better encodings of
protein sequences has also been shown by other systerndiiessfAl-Shahib et al. 2005],
this time for a wider set of functional classes and with a nttiverse set of features.

Overall, from the above discussion of the approaches, lesrthat feature-based ap-
proaches are better able to handle the function predia&kthan homology- or subsequence-
based approaches, because of the inclusion of more bialbgimeaningful features, such
as post-translational modifications [Jensen et al. 200 &nables the construction of a
more robust model for the sequence-function mapping. Hewdévere is still much scope
for work and better results in this field.

3.4 Discussion

Previous sections showed how protein sequence data caploied for function predici-
ton using various homology-, subsequence- and featuredsgsproaches. In many cases,
good results were also obtained at the task. However, anrtanggocaveat that should
be stated here is that even though a sequence forms a uniguacthization of pro-
tein, it is still a weak representation for complex openagicuch as the prediction of
its function. In comparison, more complex forms of data saslgene expression and
protein interaction networks offer a deeper insight inte thechanisms leading to the
performance of a protein’s function, and are thus more uidefupredicting function
(See Sections 7 and 8 for details). In fact, it has been stegjés the literature that
the sequence- structure correlation is much stronger thasegquence- function correla-
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tion [Devos and Valencia 2000; Whisstock and Lesk 2003], laentce many approaches
take thesequence — structure — function route for function prediction [Fetrow and
Skolnick 1998]. Details of such approaches can be foundam#xt section.

4. PROTEIN STRUCTURE
4.1 Introduction

A protein is an organic biopolymer that is comprised of a $etnoino acids, and assumes
a configuration in three-dimensional space due to inteyastbetween these constituents.
Protein structure may be specified at multiple levels. Uguials specified at three levels,
with a fourth level being specified for some cases [SchulzZetdrmer 1996]. Following
is a brief description of these levels, which are also itistd graphically in Figure 7:

(1) Primary structure : The primary structure of a protein is simply a sequence aham
acids. This level has been discussed earlier in Section 3.

(2) Secondary structure The sequence of a protein influences its conformation ethr
dimensional space via the formation of bonds between dlyatlase amino acids in
the sequence. This process is popularly knowmprasein folding and leads to the
creation of substructures such@aselices,3-sheets, turns and random coils, of which
the first two are the most common, while the last two are forverg rarely. The
collection of these substructures forms the secondargtstreiof a protein.

(3) Tertiary structure : The attractive and repulsive forces among the substrestaused
by the folding balance each other and provide the proteih witelatively stable,
though complicated, three-dimensional structure. Thiscire is known as theer-
tiary structureof the protein.

(4) Quarternary structure : Some proteins, such as tlspectrinprotein [Fuller et al.
1974], consist of multiple amino acid sequences, also kremprotein subunits. Each
of these sequences folds to form its own tertiary structwtéch come together to
produce thejuarternary structuref the protein.

Owing to the relatively systematic nature of the proteiucure formation process,
several experimental methods have been devised for therdatdion of the tertiary struc-
ture of a protein, including X-ray crystallography [DrertB99] and nuclear magnetic
resonance (NMR) [Cavanagh et al. 1996]. However, the costtede approaches have
prompted a rapid growth of automated structure predicgohniques, such as PHD [Rost
1996], PROF [Ouali and King 2000] and NNSSP [Salamov and\§eh 1995]. Many of
these tools have been integrated into the ProteinPrediatiggRost et al. 2003].

In addition to these individual systems, a particularlyenesting initiative in the field
of protein structure prediction is the CASECritical Assessment of Structure Prediction)
experiment [Bourne 2003; Moult 2005]. CASP is a bi-annuaitest, in which several
participants submit potential structures for a given sgproteins, which have been pre-
classified into three classes on the basis of the expectetidéwifficulty: comparative
modeling, fold recognition or threading, and new fold remitign or ab initio methods.
Recently, an additional event called CAFASP (Critical Asseent of Fully Automated
Structure Prediction) has been initiated, which focuseswatuating the fully automated
techniques for predicting the structure of a given set ofgins within a limited amount of

8http://predictioncenter.gc.ucdavis.edu/
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Fig. 7. Four levels of protein structure (image taken frorarf@bell and Reece 2004])

time (two days). Together, CASP and CAFASP have played a&giat role in identifying
the issues and future needs of protein structure prediction

Owing to the significance of protein structure, structuedbctollected using these exper-
imental and computational methods have been collectedieralestandardized databases.
However, since structural bioinformatics [Bourne and \&igi2003] is a relatively new
field compared to its sequence counterpart, the sourcesdieip structural data are not
as diverse as those for sequences. Three standard datdbaseste the structure data
landscape: PDB [Berman et al. 2000], SCOP [Andreeva et &48nd CATH [Orengo
et al. 2002]:

—PDB (Protein Data Bank): PDB [Berman et al. 2000] is by far the most extensive
and popular repository of experimentally determined pno3® structures. As of May
11, 2006, it contains structures determined by various raxatal methods such as
X-ray crystallography, NMR spectroscopy and electron oscopy, for abou83, 300
proteins. In addition, there are abd@@00 structures of other large molecules such as
nucleic acids, protein complexes and others. There ardiandl tools for structural
analysis available on the PDB website.

—SCORP (Structural Classification of Proteins): SCOP [Andreeva et al. 2004] can be
considered an extension of PDB since it supplements a sab#e latter with useful
functional information. The main motive of SCOP is to orgathe available structures
in a hierarchy so as to elicit the evolutionary relationshigtween them. The three
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levels of hierarchy are:

—Family: Clear evolutionary relationship observed from high sempeesimilarity.

—Superfamily: Probable common evolutionary origin despite low sequeairodarity,
observed from similar structural and functional features.

—TFold: Major structural similarity, observed from the same selzog structure ele-
ments arranged in the same manner with the same topologicaéctions.

The functional underpinnings of this hierarchy are clead #or this reason, SCOP has

become a gold standard for remote homology detection tqubsi[Jaakkola et al. 2000;

Ben-Hur and Brutlag 2003; Kuang et al. 2005; Rangwala ang{ar2005; Rangwala

et al. 2006].

—CATH (Class, Architecture, Topology and Homologous superfamily The expan-
sion of the acronym CATH itself describes the primary pugpokthis database, which
is to organize a subset of the structures in PDB accordindiv similarity [Orengo
et al. 2002]. The main differences from SCOP are the morelddtaature of the classi-
fication and the automated method for classifying strustaseording to this hierarchy.

Together, these databases form the core of data sourcésictusal proteomics and bioin-
formatics studies. Additional specialized databases laceawvailable, such as DALI [Di-
etmann et al. 2001] and FSSP [Holm and Sander 1994].

Finally, having seen a detailed description of proteinctrce and how it can be in-
ferred using experimental and computational methods,ntezasting issue is how to use
it for inferring the function(s) of the corresponding prioteThe subsequent sections dis-
cuss this issue from several angles, namely the differeamigand sources of structural
data, the relationship between protein structure and immcand approaches that exploit
this relationship to infer function from structure. Howeueefore we proceed with these
discussions, it is important to make a special mention offB# et al. 2003], which is
a review article that has systematically studied the fieldtnictural genomics and pro-
vides significantly useful information about its varioupeasts. In particular, it covers the
following aspects:

—Forms of Structural Data: Three-dimensional structure and protein-ligand comgsex

—Structure-Function Relationship: Relations between function and structural classes,
folds, homologous families and analogues.

—Assigning Function from Structure: Ab initio prediction, structural comparisons and
structural motifs, and several programs to find the latiechsas TESS [Wallace et al.
1997], FFF [Fetrow and Skolnick 1998] and SPASM [Kleyweg®ap

This discussion of function prediction from structure isarendetailed and updated version
of [Bartlett et al. 2003].

4.2 |Is Structure Tied to Function?

In many biological processes, the interacting entitiesehtavcome into physical contact
in order to accomplish the desired task. This indicates aection between structure and
function, since the structure of a protein determines séwdits functional features, such
as it cellular location, the types of ligands it binds to atfteo proteins it can interact with.
A very important example of these features, which can beogliesed effectively on the ba-
sis of protein structure, is that of active sites in enzyniémse are parts of the enzyme to
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which the reaction substrate binds itself, and thus aredomahtal for catalysis by the en-
zyme, which is the basic function of an enzyme. This exaniistrates that the structure
of a protein is expected to be of great utility in inferring Biological function [Skolnick
et al. 2000]. This section presents a review of several ambres that present evidence for
the structure — function route for function prediction.

In a landmark paper, Martin et al. [1998] broke the groundtiis field by exploring if
the structural fold of a protein is correlated to its funatid@ his work was conducted in the
restricted domain of enzymes, since they are very well stlidnd their structures are abun-
dant in PDB [Berman et al. 2000]. Also, the analysis proceduas very simple, namely
the construction of a specialized form of pie charts know@A§H wheels [Orengo et al.
2002], which essentially show the distribution of the difiet types of folds among a given
set of related proteins. When this procedure was applietidasix Enzyme Classifica-
tion classes [Serres and Riley 2000] individually, it waers¢hat the enzyme function,
represented by the first digit of the EC number, could not gletly correlated with the
over-representation of any of the three structural clagse$ anda3. This indicated that
there isn’t a very strong correlation between the strutamd functional classes of an en-
zyme. Zooming further, for some important types of enzyrtigs,analysis indicated that
there is significant correlation between structural clamklawer level functional features
such as the type of ligand the enzyme binds, and whether it iatea- or extra-cellular
enzyme. Combining the above findings for enzymes, Martin.1898] concluded that
even though the structure of a protein is not tightly cotesladirectly with its biologi-
cal function, it is correlated with lower-level functiorfelatures. Indeed, researchers have
advocated the use of these features for predicting theiumof a protein from its struc-
ture [Thornton et al. 2000], as shown in Figure 8.

The conclusions made in [Martin et al. 1998] were furtherfcored by several subse-
guent studies [Hegyi and Gerstein 1999; Orengo et al. 1988¢riion et al. 1999]. Hegyi
and Gerstein [1999] conducted approximately the sameletioe analysis as Martin et al.
[1998] for all the single-domain single-function proteinsSWISS-PROT. From this anal-
ysis, it was found that more than half of the functions areeissed with at least two
different structural classes, while almost half of the ctuwal classes are association with
least two functions. Very similar results were obtained wtiee analysis was subjected to
the following variations in the base data:

—Individual genomes, such as Yeast and E. Coli.

—Different functional classification schemes, such as M[F8wes et al. 2002] and
COGs [Tatusov et al. 1997] and ENZYME [Bairoch 2000].

—Different structural classification schemes, such as S(XEreeva et al. 2004] and
CATH [Orengo et al. 2002].

Thus, this study confirmed the findings of Martin et al. [1988h more global scale. Fi-
nally, Orengo et al. [1999] and Thornton et al. [1999] disctiie construction of the CATH
database [Orengo et al. 2002], and report that they did negreb any strong correlation
between structure and function during this constructiover@ll, these studies demon-
strated that the structure-function correlation is natrsgrenough to enable the inference
of function directly from a protein’s structure. Howeverpassible path suggested was
the conversion of protein’s structure into lower-level dtional features, which could be
mapped to its function more robustly [Martin et al. 1998; @ye et al. 1999; Thornton
etal. 1999].
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Fig. 8. Possible approaches for deriving functional infation from protein structure (Figure taken from [Thorn-
ton et al. 2000])

In light of the results mentioned above, new ideas for infgrfunctional features from
the structure of a protein were proposed. Moult and Melar2060] discussed the deriva-
tion of function from three forms of structural informatioramely fold, structural features
and models of protein structure, and various sub-categthiereof. Jones and Thornton
[2004] zoomed in on the second category, namely the usewdtstal features, and dis-
cussed approaches such as identifying functionally ingmbigites in proteins, predicting
enzyme active sites, and predicting DNA-binding sites saagthe helix-turn-helix (HTH)
motif, which is found widely in DNA-binding proteins [Lusatbe et al. 2000]. Skolnick
and Fetrow [2000] and Fetrow et al. [2001] also discuss thpoitance of active site iden-
tification for function prediction. However, their analg$s more tied to their Fuzzy Func-
tional Form (FFF) technique [Fetrow and Skolnick 1998], ethis discussed in detail in
Section 4.3.2. Najmanovich et al. [2005] promote the useddll similarity measures to
predict protein function and popular techniques used fisrttisk. Finally, Wild and Saqi
[2004] complete the spectrum by reviewing the major hintsjated by structure for deter-
mining function, and cites biological examples from therkitture as evidence for each of
these hints. An apt summary of the ideas discussed in thediesis presented graphically
in Figure 8, which identifies eight different types of infaation that can be derived from
the structure of a protein and can be used to derive variquestgf functional information
about it [Thornton et al. 2000]. Thus, motivated by the imgepotential shown by the
field of structural genomics for function prediction, seldechniques based on different
representations of protein structure have been proposedeW¥iéw these techniques in the
next section.
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4.3 Existing Approaches

After the discussion presented in the previous sectios,dtéar that structure can be uti-
lized in various ways to predict protein functions. Cor@sgingly, many groups have
proposed various structural features and approaches fdoigrg them for prediction.
These approaches can be largely classified into the follpfaar categories:

—Similarity-based approaches Given the structure of a protein, these approaches iden-
tify the protein with the most similar structure using stural alignment techniques,
and transfer its functional annotations to the query protei

—Motif-based approaches The approaches in this category attempt to identify three-
dimensional motifs, that are substructures conservedét af Sunctionally related pro-
teins, and estimate a mapping between the function of aipraitel the structural motifs
it contains. This mapping is then used to predict the fumstiof unannotated proteins

—Surface-based approachedt is sometimes necessary to analyze the structure of a pro-
tein at a higher resolution than that of distances betweasamutive amino acids. This
corresponds to the modeling of a continuous surface for tituetsire and identifying
features such as voids or holes in these surfaces. The ay@om this category utilize
these features to infer a protein’s function.

—Learning-based approachesThis category of recent approaches employ effective clas-
sification methods, such as SVM and k-nearest neighborettify the most appropriate
functional class for a protein from its most relevant stouat features.

In the subsequent sections, we review each of these catsgaoridetail. However, a
caveat that must be made before we proceed with this discuissthat the form of func-
tion that most of the approaches below work with is the biogical function of a pro-
tein [Laskowski et al. 2003] (molecular function in GO [Ashiber et al. 2000]), since the
structure gives clues only to the chemical processes aipratelergoes before achieving
its function. Of course, information like this could be extied to other forms of function,
such as biological process.

Also, from the above description, it may be noted that somihese categories, such
as those corresponding to similarity-based and motifdagproaches, are motivated by
ideas from protein sequences, since the three-dimenstmature of a protein may also
be considered as a sequence of tuples of coordinates, gdelcturesponding to an amino
acid in the protein sequence. With this background, we nawged to the discussion of
the approaches in the above categories and how they explaits structural features to
infer the function of a given protein.

4.3.1 Structural Similarity-based Approache$he easiest way of functionally anno-
tating a protein based on its structure is to find anothergmmatith a similar structure
and transferring the latter’'s function to the former, jusirathe case of protein sequences
(Sections 3.2 and 3.3.1). A useful insight here, as menti@im®ve, is that a protein’s
structure is a sequence of tuples of three coordinatesspwneling to the location of each
of its amino acids (or their constituent atoms) in space. @a of solving this similarity
estimation problem is by mapping it to the well-known aliggmh problem, that has re-
ceived significant attention in the sequence alignment, asefor which many tools are
now available [Altschul et al. 1997; Higgins et al. 1996]v&el programs have been de-
signed for solving the structure alignment problem [Watfgb al. 2005], the most popular
of which are listed in Table V.
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Program Reference
DaliLite [Holm and Park 2000]
CE-MC [Shindyalov and Bourne 1998
SSAP [Orengo and Taylor 1996]
SSM [Krissinel and Henrick 2004]
STRUCTAL [Kolodny and Linial 2004]
LSQMAN [Kleywegt 1996]
MultiProt [Shatsky et al. 2004]
3DCoffee [O’Sullivan et al. 2004]

Table V. Popular structure alignment programs

The first six entries in Table V are pairwise alignment altjons, while the last two are
designed for multiple alignment. Kolodny et al. [2005] pidevan extensive and systematic
comparison of pairwise alignment programs, concluding 8&RUCTAL [Kolodny and
Linial 2004] and SSM [Krissinel and Henrick 2004] performetbest. This result and
the comparison procedure can significantly aid the ideatifin of the most appropriate
structure alignment algorithm for a given application,tsas function prediction.

However, for the function prediction task, even though miafermation is available
from the use of structure, alignment-based approachesrsiufim problems similar to
their sequence counterparts. Some of these problems athedunavailability of a suf-
ficiently similar protein that has been annotated with a fiom; and the not-so-tight cor-
relation between structural and functional similarity,igéhwas discussed in Section 4.2.
Hence, more specialized approaches have been proposeadvioigsthis problem. These
approaches adopt more sensitive similarity estimatiomoud, and derive their inferences
from a larger set of similar proteins, instead of a singletgiroin a simple alignment-
based approach. Thus, the ideas used here are similar toubed by advanced sequence
homology-based approaches discussed in Section 3.3.1.

The PHUNCTIONER system [Pazos and Sternberg 2004] utiliaedstructural align-
ments from the FSSP database [Holm and Sander 1994] to firpb#itions in a structure
of a protein which are functionally most important for a jpartar GO category. This
importance is calculated using a Z-score based on the oaigar of residues in these
alignments. In cross-validation experimentsl@i GO terms at different levels of the hi-
erarchy, an accuracy in the range7f% to > 90% was obtained, which is much higher
than that obtained by simply using sequence identity. RO&lyais of the two methods
also gives similar results. These results proved the higlesitivity obtained by using
structural instead of sequence profiles for similarity skig.

Hou et al. [2005] build upon their earlier work on constragta protein structure space
map (SSM) [Hou et al. 2003] using the multi-dimensional sgp{MDS) technique. The
hypothesis underlying this mapping is that proteins stgegimilar molecular function are
located in the vicinity of each other in this structure sparag. The implementation con-
sists of the conversion of the structure data into a disamityl matrix using the DaliLite
scores [Holm and Park 2000] and selection of the most infawadimensions in this ma-
trix using the strategy proposed by Williams [2002]. Figalh the constructed structure
space, a novel protein is classified as the GO category ofrthteips lying within a dis-
tance threshold. The ROC analysis on the proteins in the BEBECT data set [Hobohm
and Sander 1994], which is a representative subset ofl$ize of the PDB database,
showed that the SSM method is superior to those based onesisegluence similarity
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(BLAST J[Altschul et al. 1997]) and DALI scores [Dietmann dt 2001]. Thus, this ap-
proach presented an effective Cartesian embedding ofiprstireictures, which could be
useful for many other purposes such as evaluating the sarsimilarity and subsequent
clustering of these structures.

Some studies have also tried to combine structural sirtyilareasures with other mea-
sures of similarity. One such study [Shakhnovich 2005] yaed the correlation of the
functional similarity of two protein, with their phylogetie and structural similarity. It
was concluded from this analysis that even though phyldiEsienilarity is a better deter-
minant of functional similarity than structural similagi. combination of the two methods,
i.e. considering structural similarity in a phylogenetamtext can improve the precision
of functional annotation. Thus, this study attempts todaitase for combining structural
information with other forms of data in order to solve the dtion prediction problem
accurately.

4.3.2 Three-dimensional Motif-based Approachésiother category of approaches
that closely mirror their sequence counterparts are thasedon motifs in protein struc-
tures (Section 3.3.2). Just like a sequence motif, a stralctootif is a three dimensional
substructure of a protein that occurs in the structures wéra¢related proteins. A very
well known example of a structural motif is the helix-turalix (HTH) motif, which is
found in many DNA-binding proteins [Luscombe et al. 2000pw¢ver, it is notable that
structural motif finding programs, such as TESS [Wallacd.e1297], FFF [Fetrow and
Skolnick 1998] and SPASM [Kleywegt 1999] rely on their owrfidi&ions of a structural
motif, since there does not exist a universally accepteditiefi of the concept. This also
holds for approaches that infer function from such motiéswél be seen below.

By far, the most widely cited work in this area is the use of uEunctional Forms
(FFFs) [Fetrow and Skolnick 1998] for the prediction of ftinn from structure using the
sequence — structure — function paradigm, which has been motivated by the finding
that the sequence similarity is correlated more with stnadtsimilarity than functional
similarity [Devos and Valencia 2000; Whisstock and LeskZ0&ection 3.2). FFFs are
fuzzy three-dimensional descriptors of specific proteinctions, and are based on the
geometry, residue identity and confirmation of proteinvectites. They are constructed
by superimposing structural information from several tiorally related sequences, using
the algorithm shown in Figure 9.

The specificity and uniqueness of FFFs, even when constrdcien low-resolution
structural data obtained fromb initio and threading experiments, was shown via their
application to the glutaredoxin/thioredoxin ang fibonuclease classes of enzymes. In
subsequent papers [Skolnick and Fetrow 2000; Fetrow edall;2Gennaroa et al. 2001],
very impressive results were obtained on larger and moied/aets of protein structures,
thus demonstrating the ability of this technique to buildrettterization of function from
structure. However, it must be noted that even though theritilgn for the construction
of FFFs is very systematic, the action(s) in each step hase)ha be performed by a
human expert. For instance, the very first step in the algworii.e., the identification of
residues important for a function, and the examination atfionally related structures,
require a structural biologist. This extensive human imeoient reduces the coverage of
the approach, and explains why the above results are ordgpted for a couple of enzyme
classes. Thus, in order to extend the coverage of this tgagbnautomated methods for
extracting active sites from structures, such as thoseepted by Pazos and Sternberg
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[2004], are urgently needed. This will ensure the genemaifd-FFs on a large scale.

In a similar approach, Suzuki et al. [2005] used their FCANA&hAst Calculable protein
function ANALyzer) system to define a few (two to four) furarially important residues
constituting the core of a functional site for a given fuonti construct a local similarity
matrix for the other residues, and then assign a novel pratethe function correspond-
ing to functional site most similar to it. Their techniquesmasted on a small set 81
enzymes, on which it gave reasonable results. However, foor@ robust evaluation, a
bigger test set needs to be used.

Finally, the PROCAT database, which is constructed from3Beenzyme active site
templates extracted using the TESS algorithm [Wallace.et337], is a significant step
in the direction of enhancing the scalability of structumabtif-based function predic-
tion algorithms, and can be considered the structural evpatt of the commonly used
PROSITE [Hulo et al. 2006] and PRINTS [Attwood et al. 2003jsence motif databases.
SMoS (Structural Motifs of Superfamilies) [Chakrabartaét2003] and DSMP (Database
of Structural Motifs in Proteins) [Guruprasad et al. 200@ ather useful structural motif
databases. These databases will greatly assist in idiexgtifggions of protein structures
that are essential for the accomplishment of a given funetia the subsequent annotation
of novel proteins.

4.3.3 Surface-based Approachesraditionally, the structure of a protein has been de-
fined as a sequence of tuples of three coordinates, eachctupésponding to the location
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of each of its amino acids (or their constituent atoms) irtepahis definition indicates that
the intermolecular interactions that lead to a certainlémeical function being performed
occur at the level of amino acids or their atoms. However,amyrcases, such interactions
occur due to the complementarity of the molecular surfaééiseoproteins. For instance,
it has been shown in studies that hydrophobic surfaces afteas the interfaces between
interacting molecules [Oda et al. 1998], and electrostatiecular surfaces are also often
used to explain protein functions [Honig and Nicholls 1988kamura 1996]. These stud-
ies have motivated the need to model protein surfaces, velsisentially is the specification
of protein structure at a resolution finer than that of distmbetween consecutive amino
acids, and computational approaches for this task have pegosed [Connolly 1983;
Ferre et al. 2004]. Also, the additional information praddby this higher-resolution
structure of a protein has been utilized by several appesifr the prediction of function
prediction. These approaches, are based essentially atethef matching local patterns
between two protein surfaces.

The first of these approaches adopts a graph theoreticabagipto the problem of
surface matching [Kinoshita et al. 2001]. In this work, thefaces for a set of proteins
structures from PDB is calculated using the MSP program f@ty 1983], and points at
small distances (1.2& here) are annotated with their electrostatic potentialtgrfopho-
bicity, properties that are important for the accomplishiva biochemical functions. A
database known a&f--site(electrostatic-surface dfunctionalsite) was developed, consist-
ing of such annotated surfaces for important functionaksitt commonly found proteins,
such as enzymes. Overall, this database currently cordaiict collection of molecular
surfaces corresponding to ovEy, 000 functional sites [Kinoshita and Nakamura 2004].
As for the matching stage, the global similarity of two pinteurface is calculated by
converting the surface comparisons at each point into ahgfegam which a clique is then
extracted, denoting the portion of maximum match betweerstifaces. Two proteins are
said to be similar if their largest clique has a similaritpseabove a certain threshold.
Since the clique operation may become intractable due tpdkentially large number of
vertices in the comparison graph, two heuristics were gigtied to the search procedure.
The robustness of the algorithm was shown by individual g{emof success for each of
the four components of the eF-site database. and is a usefalsal genomics resource
for future studies.

In another approach, Binkowski et al. [2003] focus on thels@nd pockets in a protein
surface, working under the hypothesis that these are regianprotein structure to which
a solvent or a ligand can gain access, and thus aid the pinteérforming its function(s).
The pockets are computed from a protein structure using ppecach of Edelsbrunner
etal. [1998], and the amino acid residues composing therwoangosed into motifs known
aspvSOARpatterns, which are in turn collected in the pvSOAR databasés database
can now be used to perform one-against-all and all-agaihstignment-based searches
for prediction and evaluation respectively. Indeed, inldteer type of experiments, with
SCOP [Andreeva et al. 2004] and CATH [Orengo et al. 2002]sifigations as gold stan-
dard, numerous examples were found that could be functioclaksified just on the basis
of pocket surface patterns. However, many cases were founthich the matching pat-
terns belonged to different folds or functional familiesigfhmay indicate a remote rela-
tionship between the two groups. Another useful contrdyutf this work was a method
for calculating the statistical significance of the matcthwisen two short residue patterns,
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based on the extreme value distribution (EVD). This cout &le useful for other studies.

Ferre et al. [2004] also adopt the same strategy as Binkaetski [2003], i.e., the iden-
tification of local surface patterns(known eftshere) which could be used for the func-
tional annotation of query proteins. However, it differedm Binkowski et al. [2003]'s
approach in three ways. First, the SURFNET algorithm [LasHo 1995] was used to find
surface clefts. Second, the patterns were annotated witlt@al®s using the PROSITE
database [Hulo et al. 2006]. Finally, the matching alganitonsidered both the structural
and residue similarity, measured using the RMSD measuraten®AM matrix [Day-
hoff et al. 1978], respectively. An all-against-all evdloa on the set of patterns con-
structed from the structures in the PLEELECT [Hobohm and Sander 1994] data set
gave an accuracy of abod%. This whole system has been organised into the SURFACE
database [Ferre et al. 2004], which is freely accessibléheéaveb.

In the latest approach in this category, Espadaler et abgpproposed the use of loop
motifs for the identification of protein function from itsrée-dimensional structure. These
loops are responsible for connecting the elements of thenskecy structure of a protein,
and there is sufficient experimental evidence for theseddiging involved in important
protein functions such as tyrosine sulfation and prohorholeavage [Fetrow 1995]. This
motivated Espadalest alto investigate if the presence of loop motifs in a set of grste
indicated their enrichment with one or more GO functionsr thés task, they identified
several loop motifs from a a non-redundant set of protenugsires in the SCOP database,
and obtained the most probable amino acid sequence pategresenting these motifs.
Next, they identifiedr3 protein families in the Pfam database, whose protein sigaat
matched the sequence pattern of the different loop motéstified, and investigated the
enrichment of these families with certain GO functionaksks. Indeed, a strong corre-
lation was observed. The results on prediction of functimingnannotated proteins using
the loop-derived patterns was also found to produce mongrateresults than a BLAST
sequence similarity search. This showed the utility of g$aops, which are less studied
as compared ta-helices ands-plates, for inferring protein function.

Overall, it can be seen that approaches which make use afwtal surfaces achieve
higher specificity since they are more aligned to known lgjmal knowledge about ligand
binding and functional sites. However, this also requiresexcomputation since surfaces
are also harder to model than the coordinates of individesiiues. Hence, approaches
in this category must address both considerations to bete#e However, the brighter
side of the picture is that several features of a proteircsire’s surface that are related
to protein function have been identified, that can be combinenhance the effictiveness
of each individual feature. Research in this direction ipested to yield accurate and
biologically meaningful results.

4.3.4 Learning-based ApproachedVe have seen, or will see, in other places in this
survey, such as Sections 3, 7 and 9, that machine learnisedizgproaches have achieved
great success in function prediction, because of the Hahapping of this problem to the
problem of building classification models that have beedistliextensively by the data
mining and machine learning communities [Tan et al. 200%5].particular, kernel- and
SVM-based techniques have been shown to be very effectitadédunctional classifica-
tion problem [Brown et al. 2000; Cai et al. 2003; Tsuda and IN@®04], owing to their
flexibility of modeling the similarity between two data objs. Maintaining this trend,
some kernel-based techniques have also been proposeeédtiectprg function from struc-
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ture. Here also, the structure of a protein can be treated a#tiibute-value vector and its
functional class as the class label. The techniques disdussiow adopt this perspective
in various forms.

Kin et al. [2004] discuss a mathematically sound solutianufsing sequence similarity
results to estimate a structural similarity kernel matnkjch can then be used for predict-
ing functional class using an SVM. Specifically, a sequersradd matrixk 5 is estimated
for the training set of proteins using the marginalized ¢dwernel (MCK) [Tsuda et al.
2002]. Similarly, a structure kernel matriX; is estimated using the MATRAS program
[Kawabata 2003]. Howevers; is incomplete, since structural data may not be available
for all proteins in the data set. Hence, an EM-algorithm dadgorithm is used to estimate
K accurately, based on the hypothesis that such a matrixéhainimize the Kullback-
Leibler divergence between itself afds, i.e. K L(K g, K;) should be minimum [Amari
1995]. In experiments on three classes from the SCOP da&dhadreeva et al. 2004], it
was found that this solution works best for cases in whick 1ean50% entries of K are
missing. Nevertheless, the ability to estimate structsirallarity from sequence similarity
can be useful for many applications.

A more application-oriented study is presented in [Dobsat Boig 2005], in which
the authors used a simple SVM classifier for classifying theymes into the six classes
at the top level of the Enzyme Classification [Webb 1992]. fdwis of this study is on
the definition of attributes that can be easily extractethftbe sequence and structure of a
protein using various methods, and subsequent supentisdulite subset selection using
the Backward Elimination algorithm [Dash and Liu 1997]. Wihese subsets of attributes,
and a one-against-one classification of the six classemg&accuracies 86% and60%
were obtained when considering the first and the first twoadwas the classification for
a test protein.

In a recent paper, Wang and Scott [2005] propose three lesforetomparing two pro-
teins structures are proposed, as discussed below:

—Kpattern_sim (S, T): This kernel defines the similarity between two substriegion
the basis of the best corresponding pairs of amino acidsim @#nd their proximity.

—KRedox_Func(S, T): This kernel is a tailored version of the one above for thelttisulfide
oxidoreductase proteins, based on the fact that all sudkipsocontain &'zzC' motif.

—Kspban(P1,P2): The previous kernels were limited in that they were definely o
with respect to amino acid positions in the structure. Thasnkl tries to relax this
limitation by considering the protein as a set of balls of wegiradius around each
amino acid. The final similarity is a sum of the similaritiestlveen the best pairs of
balls in the two structures.

These kernels model the similarity between two structurégferent ways, and were used
as the backbone of two classifiers in this paper, namkdiN (k-nearest neighbor) and
SVM. The validation was conducted in two separate experisaene on ten superfamilies
from SCOP [Andreeva et al. 2004], and the other2dnthiol/disulfide oxidoreductase
structures from PDB [Berman et al. 2000]. In the first experitn usingK's ppair, k-NN
showed a significantly higher true positive rate than SVMtha secondX redor_Func
gave the best results, since it was customized for the ckisg lbested. In general, all the
above kernels gave results better than using sequencd-Ha&ds or alignment methods
such as DALI [Holm and Sander 1994] and CE [Shindyalov andrBed 998]. Thus, in
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addition to providing three novel kernels for comparingtpho structures, this study also
suggested the superiority of thheNN classifier over SVM for functional classification
using protein structure.

Finally, Bandyopadhyay et al. [2006] have proposed a ngwet@ach for finding struc-
tural templates in functional families, using techniquesf the area of frequent subgraph
mining, which falls within the larger field of associationadysis in data mining [Tan et al.
2005]. Here, using a previously published technique, theetldimensional structures of
proteins within a SCOP family are converted in a graph repriegion. Next, using the
fast frequent subgraph mining algorithm [Huan et al. 208B},eral frequently occuring
subgraphs in this set of graphs are derived. Additionatsele of these subgraphs is also
performed so as to ensure their statistical significancéhisrfamily, by comparing their
frequency to the frequency of their occurrence in the estiteof proteins across all fami-
lies. The resultant set of subgraphs are expected to beduaadly important substructures
for the concerned family, and thus can be used for the piadiethich families an unan-
notated protein belongs to by matching them with its stmgctundeed, in an evaluation
of 442 novel proteins that were addedtbSCOP families, this approach could automati-
cally discover the true family assignments of as manyids of these proteins, while the
corresponding number for BLAST was oriig%. Overall, this study showed the utility
of association mining for analysis of protein structureg ttuthe computationally efficient
methods available and the biological relevance of the sudtsires derived.

The above discussions show that data mining techniqueb,agiclassification, kernel
estimation and association analysis, have great potdatifnctional classification using
structural data. However, the main hindrance for this pid#iyaccurate method is the not-
so-extensive availability of protein structures. Onceedata is available, the performance
of these approaches is expected to surpass that of appsdadbtber categories.

4.4 Discussion

The previous sections discussed various perspectiveseoprétiction of function from
structure, and the ways these perspectives have been fiaduh various approaches.
Some systems, such as ProFunc [Laskowski et al. 2003; 2@98]riow started integrating
the most popular of these approaches in order to infer a cgnsennotation for the query
protein. Thus, with further research in this field, more sssful results are expected in
the near future.

5. GENOMIC SEQUENCES
5.1 Introduction

The basic hereditary information about an organism is eedad DNA molecules, which
are dominantly organized as chromosomes in the cell, analssdound in the mitochon-
dria of the cell to some extent. This set of chromosomal antdehondrial DNA con-
stitutes the genome of an organism. DNA itself is typicallgauble stranded molecule,
where one of the strands is constituted of four charactammety A, T', C andG, which
denote the four nucleotides adenosine, guanine, cytosidhéhgmine, and other strand is
complimentary to the first, owing to the complimentarityloéd — C and?— G nucleotide
pairs. An illustration of a DNA molecular is shown in Figure.1

Genomes contain genes and non-coding regions, both of vdaietbe represented as
strings of the four characters, T', C andG. Proteins are synthesized from genes through
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Fig. 10. lllustration of a DNA molecule (Figure taken fromef&o 2007])

a process consisting of two steps, namely transcriptiorirandlation. The genomes of eu-
karyotic organisms are typically several million base pairlength, and typically contain
several thousand genes. For instance, the yeast gendrhenilion base pairs in length,
and contains abo@)00 genes, while the human genome is ofdillion base pairs long,
and contains ove20000 genes. Also, the positions of these genes in the genomere ty
ically known, thus providing information about the contexXta gene in an organism’s
genome.

The genomes of nearly a thousand organisms have been sedquéhdate, and hun-
dreds others are now in progress. Several public data sbhese been established, which
make the public access to these sequences very convenfentndst prominent of these
databases are the NCBI Entrez Genome database [Tatusdvd @99, the Genome Se-
guence DataBase of the National Center for Genome Resdtifarser et al. 1998] and the
Genome Sequencing Project of the Sanger InstituBeveral useful tools have also been
developed for visualizing and analyzing these large daeasuch as the UCSC Genome
Browser [Hinrichs et al. 2006] and databases such as GenBamison et al. 2004] that
organise these genomes into their constituent genes, anthganying information. This
wide availability of genome sequence data has spurred nes@athe field of genomic
context-based protein function prediction.

5.2 Existing Approaches

This section discusses some fundamental ideas that haendrom the new genome
resource, and several approaches that have utilized theas for function prediction.
However, it should be noted that in this domain, most of theliss fall in the field of
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comparative genomics [Marcotte 2000], since they invdimedomparison of genes across
several genomes. As a result, the primary form of resultivel@from these studies is that
of functional associations between genes or proteinsirétha annotations for individual
proteins. Also, it must be remarked that the approachedsrfitd are often justified on
the basis of evolutionary mechanisms, since the avaitglofithe complete genomes for a
wide variety of organisms offers an insight into the ways ek genes may have evolved
from each other [Koonin and Galperin 2002].

Several approaches have been proposed to accomplish gle¢ adderiving functional
associations from genomic data, and possible functionigtied subsequently. These
approaches largely fall into one of the following three gatiées [Marcotte 2000]:

—Genome-wide homology-based annotation transfeiThis category consists simply of
the use of larger databases for searching proteins homaddgdhe query proteins, and
the transfer of functional annotation from the closestltesu

—Gene neighborhood- or gene order-based approache3hese approaches are based
on the hypothesis that proteins, whose corresponding gerdecated “close” to each
other in multiple genomes, are expected to interact funeflg. This hypothesis is
supported by the concept of aperon and its relevance to protein function [Salgado
et al. 2000].

—Gene fusion-based approachesThese approaches attempt to discover pairs or sets of
genes in one genome that are merged to form a single gene thesrgenome. The
underlying hypothesis here is that these sets of genes aotidnally related, and is
supported by biochemical and structural evidence [Magcettal. 1999].

As can be seen, approaches in the latter two categoriesiegplmmic context, i.e. the
location of a gene on the genome with respect to that of othieeg [Huynen et al. 2000].

Yet another category of approaches that make heavy use tipralgenomes simulta-
neously are those based on the concept of phylogeneticgwoflowever, because of the
distinct evolutionary underpinnings of these approached,since much more work has
been done in this category as compared to the others, itdastied separately in Section 6.
Hence, the following subsections discuss the details of#tegories of approaches listed
above, followed by a discussion of the comparative advastagd disadvantages of each
of them against the other.

5.2.1 Genome-wide homology-based annotation transfdre most immediate im-
pact of large-scale genome sequencing projects has beeavidbe application of exist-
ing sequence-homology based approaches for functionaitation transfer. The avail-
ability of complete genomes of many organisms led to thetime®f databases of gene
sequences, such as GenBank [Benson et al. 2004], and psetgiences, such as Swis-
sProt [Boeckmann et al. 2003] and PIR [Wu et al. 2003]. Thedalthses also contained
the available experimental knowledge about some of thesesgend proteins in the form
of keywords and descriptions. Thus, it was straightforvtangse sequence search systems,
such as PSI-BLAST [Altschul et al. 1997], for searching htogous sequences in these
large databases. Thus, functional information could baiobt from a larger number of
proteins and organisms, and this became a popular methdtdqrediction of protein
function.

Another very significant development in this category wasdreation of the database
of Clusters of Orthologous Genes (COGs) [Tatusov et al. 199his study aimed at
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constructing gene families by identifying orthologous geacross several genomes. The
underlying idea was that orthologs, which are genes in miffeorganisms that evolved
from a common ancestor through speciation events, are wgéa perform the same
function, and thus each COG would represent a functionaliygcent group of genes. This
idea was implemented using a simple clustering scheme tisated that there was a high
pairwise similarity between any two genes in the same aluston validation, it was
found that, for most of th&20 COGs so constructed, a specific cellular function could
be deduced from available functional knowledge and higklteef sequence similarity.
Also, the constituent genes of many clusters showed versistamt phylogenetic profiles,
indicating a common evolutionary origin of the cluster. $hihe COG database [Tatusov
et al. 2003] marked an important starting point for funcéibgenomics, and have been used
for the validation of other function prediction algorithifheng et al. 2002]. However,
one important problem with this database was that most ofuthetional categories were
split into several clusters, which may complicate their imsfeirther studies.

5.2.2 Approaches exploiting gene neighborhodhe of the most basic signals of-
fered by the genomic data is the relative positioning of geme a genome. It may be
hypothesized that two or more proteins, whose correpongéargs are “close” to each
other on a genome, are functionally related [Dandekar €i918]. This hypothesis finds
evidence in the well-known concept of aperon which is a contiguous portion of the
DNA that includes an operator, a common promoter, and oneove igenes that are ex-
pressed as a unit to produce messenger RNA (mRA\Mjterestingly, proximity between
the constituent genes is the dominant strategy for idantifgperons in a genome [Salgado
et al. 2000]. Thus, this is a viable strategy for inferringdtional associations between
genes and their corresponding proteins.

Dandekar et al. [1998] were the first group to explore the diskis signal for discov-
ering pairs of proteins that are expected to interact fonetiy. In this study, they found
all the pairs of genes in a set of nine genomes, such that ihgéwes were close to each
other and occurred in the same order in at least three gendknasng the small number
of gene pairs so discovered, at leas% were known to interact physically, and the others
also represented potential interactions. Thus, even ththe scope of this strategy was
not very broad, it made a strong case for the gene neighbdidea.

The first extensive study based on this idea was reported leyb@ek et al. [1999a],
where they used it to infer functional coupling between geine24 genomes, and then
conducted an extended analysis of the approach and itds¢€uerbeek et al. 1999b].
Their analysis is based on the concept of a Pair of Close&itional Best Hits (PCBBHS),
which are essentially a pair of gene paiféa, Ya) and (Xb,Yd) such thatXa andYa
in genomeGa are orthologous toXb andY'b in genomeGb, respectively, and{a and
Ya and Xb andY'b are close to each other Ha andGb respectively. This formulation
of a PCBBH is depicted graphically in Figure 11. Notably, trder to genes is not sig-
nificant in a PCBBH, thus ensuring a larger coverage for tpigr@ach as compared to
that of [Dandekar et al. 1998]. The occurrence of such a PCBBlitates that evolution
has preferred to keefia andY «a close in the genome since they are expected to interact
functionally, and the strength of this deduction increagitis the number of PCBBHSs that
a pair of genes participates in. Thus, a score is calculateddch PCBBH on the basis
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of the evolutionary distance between the original genonmaining the PCBBH and the
genome in which a match is found. This score denotes thegitrexf the functional re-
lationship between the two genes, and the predictions asetRCBBHs whose score is
above a pre-defined threshold. However, though this wassibleaapproach, an important
weakness of the assumption was that gene proximity is néitiguit for functional cou-
pling. As a result, a precision of less th2#% was obtained when this idea was applied to
a set 0f31 genomes [Overbeek et al. 1999b].

Xa ard ¥a are "close”

Ga Xa Ya

BEH BBH

Gb Xb ¥b

Xb ard ¥b are "close”

Fig. 11. A graphical illustration of the concept of PCBBHsK&n from [Overbeek et al. 1999a])

In a complementary study [Korbel et al. 2004], it was hypsethed that neighboring
genes which are bidirectionally transcribed, i.e. whosadcription start sites are very
close, and whose direction of transcription are oppositagh other, may be functionally
associated. The motivation for this hypothesis came frotudysof the human genome,
which showed that for certain classes of genes, such as tierBir genes, bidirection-
ally transcribed pairs of genes are functionally linked §Hi and Lieber 2002]. From
experiments on th&. Coli genome, the observed accuracy and coverage of this method
was not very high, since examples of such bidirectionaliyscribed gene pairs are not
too common, except for few classes [Adachi and Lieber 2002].

An innovative system that tries to relax the proximity defon of [Overbeek et al.
1999a] is SNAPper [Kolesova et al. 2001; 2002]. This systeitdb an SN-graph for the
genes in the given set of genomes by iteratively finding sirityf or orthology (S) and
neighborhood (N) relations between genes and adding gameling an edges for each
relationship to the graph. The authors’ hypothesis saytsathgenes involved in a cycle
in this graph, named as an SN-cycle, are functionally rdlditguitively, this hypothesis is
viable since such a cycle corresponds to groups of closesgelnieh are conserved across
several genomes, and thus, these genes may be relatecdhatigti Formal experimental
verification of the claim was done by measuring two coeffitief{,, and Ky, based on
the KEGG [Kanehisa et al. 2004] and FunCat [Ruepp et al. 2688#bases respectively,
for all the SN-cycles found. These coefficients respedtiestimate the fraction of an
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SN-cycle involved in the same metabolic pathway and funeticlass respectively. This
validation showed that the claim was reasonably valid fooadyfraction of the cycles.
However, the results were better for thg as compared td ¢, indicating that SNAPper
is more effective at reconstructing metabolic pathways theectly predicting functions
for unannotated proteins.
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Fig. 12. Data mining approach to inferring gene functiomfrgene order information

Finally, Li et al. [2007] have presented an innovative apfoinvolving the application
of data mining techniques to the inference of gene funct&ingigenomic context infor-
mation. This is useful since these techniques are bettertalshpture the variability in the
input data, and are robust to noise, issues that initial@dapproaches for this problem
did not address very robustly. Figure 12 shows an overvieheapproach adopted by Li
et al. The first step of this approach is the selection of genesigitren set of genomes by
searching in the available literature for genes that arevkrto be annotated with the func-
tions of interest. Once this step is complete, two data rgisteps are applied to predict
gene function;

(1) Clustering: In the first step, the complete set of genomes is clustettedcinsters,
such that the genomes in each cluster has similar patterdstaihces between the
genes identified in the first step. This helps identify groapsvolutionarily close
genomes, which are most useful for inferring gene function.

(2) Classification Next, a classification model is built for each functionalsd of interest
within each gene cluster. Several biological featureagieto protein function, such
as amino acid composition, van der Waals volume, hydropitytand polarity, are
extracted from the sequence of the all the gene product, Aisorder to obtain a
highly discriminative classifier, the positive examplesdach function are chosen to
be the genes identified in the first step, while the negatieengtes are composed of
genes in the neighborhood of the positive examples, whiemar yet annotated with
that function. With this setup, an SVM classifier is constedcfor each functional
class in each cluster, and is used for predicting the funstad currently unannotated
genes.

The overall system, named SynFPS (Synteny-based FunctemicBon System), is
tested or296 bacteriophage genomes for nine functional classes thatkneant for these
genomes. A high accuracy 86% is achieved in cross-validation experiments, which vali-
dates the utility of using data mining and machine learnimghads for analyzing genomic
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context data. Also, several novel functional annotatiaesabtained, that are otherwise
impossible to find using simple sequence similarity techeg

It is evident from the above discussions that gene neigltdmatthas been defined in
different ways by different groups. However, it is intenegtto find that variations based
on this simple concept have been able to find functional llmtsveen genes more accu-
rately [von Mering et al. 2003; Mellor et al. 2002; Bowers e#®04] than some methods,
such as gene fusion and phylogenetic profiles, that arestisduin the next few sections.

5.2.3 Approaches exploiting gene fusio@ene fusion is another very innovative method
for exploiting the relative gene positioning on a genomel aas proposed for the first
time by Marcotte et al. [1999]. This idea simply states thaivb separate genes in one
genome are merged, or “fused”, as a single gene in anotleertiiese genes are expected
to be functionally related. Interestingly, this hypottsdsibacked by very strong biological
reasoning [Marcotte et al. 1999]:

—The fusion of two genes greatly reduces their entropy cSatimtion [Erickson 1989],
which indicates that they may have existed very stably agiwoains of a polypeptide
in another organism, and consequently evolved into indég@engenes in a descendant
organism. A possible mechansim for the evolution of proef&iotein interactions is also
proposed in [Marcotte et al. 1999] on the basis of this reiagpn

—At a structural level, protein-protein interfaces havmsg similarity to interdomain
interfaces within single protein molecules [Tsai and Niniggi1996]. This basically
implies that two separate proteins may interact in the sameas two domains interact
within the same protein.

Yeast Topoisomerase || -

E. coli gyrase B  — — — — e B ]

E. coligyrase A I
Human succinyl CoA-transferase ~ -7/

E. coli acetate Co-A transferase o ===

E. coli acetate Co-A transferase 777777

B. subtilis DNA pol Il o — 1
E. coliDNA pol lil o H
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Yeast histidine biosynthesis HIS2 B 0\ NN E—

E. colj histidine biosynthesis HIS2

E. coli histidine biosynthesis HIS10 [ s e |

Human §-1-pyrroline-5-carboxylate synthetase
E. coliy-glutamyl phosphate reductase
E. coli glutamate-5-kinase e

Fig. 13. Example of pairs d&. coli proteins predicted to interact functionally by the genédnsnethod (Taken
from [Marcotte et al. 1999])

In order to validate the hypothesis using real data, a rigoqrocedure consisting of
three independent tests was adopted by Marcotte et al. 1868 was applied t6809
pairs of non-homologous genes found in thecoli genome by this method. These tests
were based on SWISS-PROT keywords, the Database of Iritegdetoteins [Xenarios
et al. 2002] and phylogenetic profiles [Pellegrini et al. 4R ®espectively. Results showed
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that a very significant fraction of the pairs were actuallpared to interact physically
or functionally, thus demonstrating the practical efficatyhe method. Figure 13 shows
five examples of pairs dE. coli proteins predicted to interact functionally by the gene
fusion method. Also, owing to the information hidden in thiséd protein sequence, and
its utility for function prediciton, this approach has alsgen given the interesting name of
the Rosetta Stone methdd

The scope of the above study was expanded by Yanai et al. [20Ba& systematically
applied the Rosetta Stone methodtbmicrobial genomes. Upon validation of the pre-
dicted functional links using the COGs database [Tatusal.€2003], very high average
sensitivity and specificity [Tan et al. 2005] 2% and90% respectively were observed,
which is significantly higher than those observed for a randéstribution of fusion links.

A parallel study working with a reference set2f genomes reported similar results [En-
right and Ouzounis 2001]. Together, these studies illtestraoth the wide coverage and
high accuracy of this method, which may be extended easifurtotion prediction for
individual genes.

Finally, Marcotte and Marcotte [2002] presented some vatgresting enhancements
to the basic fusion method. First, they argued that usingotogy as the basis for find-
ing fusions lowers the coverage significantly, and does raessarily discover accurate
linkages. Hence, in this study, the more general concepoofdlogy was used for find-
ing fusion, in order to increase the coverage, and hencakbiéhbod of finding correct
functional linkages. Next, a scoring function for the digexed fusions, was formulated,
based on the hypergeometric distribution. This score rsflde probability of the chance
occurrence of a given number of fusion events between a giaérof genes. Thus, the
smaller this score, the more reliable is a functional lirkkajscovered by this method.
Also, the functional similarity of two genes was found to behrly related to the log of
their association score, thus showing that the scoringtimmés indeed a robust estimator
of the reliability of a functional association found by theng fusion method. In essence,
this study provided a framework for the design of algorithmased on gene fusion, and
more such algorithms are expected in the future.

5.3 Comparison and Assimilation of the Approaches

The previous section presented details of the two most camoategories of approaches
in functional genomics: neighborhood- or order-based, faisibn-based. An obvious
guestion to ask thenis: Given the same initial set of genowigish kind of approach is the
most effective at finding functional associations? Heredigseuss some studies that have
tried to answer this question. It should be noted that thesties consider phylogenetic
profiles also as a functional genomics method, but for reasmentioned earlier, we have
covered these in detail elsewhere (Section 6).

Huynen et al. [2000] report a comparison of the approachahtéogenes in th¥l. gen-
italium genome, which has been used in many other benchmarkingsthdcause of its
favourable characteristics [Teichmann et al. 1999; Breth@89; Hutchison Il et al. 1999].
The results of the analysis of the the functional linkagdeated in this genome using the
above methods are shown graphically in Figure 14, which shtbe distribution of these
linkages among seven types of interations that may provideeto a protein’s function.
It is evident from these distributions that for all the apgbes that a large fraction of
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Fig. 14. Distribution of the links discovered by various gemic context methods (Taken from [Huynen et al.
2000]). Note that methods lla and llb refer individually teetapproaches presented in [Dandekar et al. 1998]
and [Overbeek et al. 1999b] respectively, and collectivefgr to the gene neighborhood method. Also, method
Il refers to the phylogenetic profile approach.

the detected interactions are functionally meaningfulgsithey either represent physical
interactions, or co-membership in a complex, a metabdit/imetabolic pathway or a bi-
ological process. Thus, this study qualitatively justifibd potential of these approaches
for discovering functional links between proteins and pifunction.

A very useful development in the field of functional genonties been the develop-
ment of databases which collect and compare functionaktadgms discovered by each
of these approaches. Table VI captures the various chasdct® of these databases. These
databases are available freely to the research communitiydo use.

| Name | Reference | #Genomes] Validation Method(s) |
STRING [von Mering et al. 2003] 89 KEGG [Kanehisa et al. 2004]
Prolinks [Bowers et al. 2004] 83 COG [Tatusov et al. 2003]
Predictome [Mellor et al. 2002] 44 KEGG [Kanehisa et al. 2004],

COG [Tatusov et al. 2003],
GeneQuiz [Andrade et al. 1999
Phydbac "Gene [Enault et al. 2005] E. coli COG [Tatusov et al. 2003]
Function Predictor”

Table VI. Popular databases of functional links discovdrgdflunctional genomics methods

A few words about these databases are in order concernirgiritegies they adopt to
detect functional associations. Interestingly, all ofnthesed the gene order (neighbor-
hood), gene fusion and phylogenetic profile approaches.ederywhile the others were
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based on traditional implementations of these methodsiiifdn/"Gene Function Predic-
tor” (PGFP) [Enault et al. 2005] was built on top of Phybactiaise [Enault et al. 2003b],
which is based on the idea of consensus phylogenetic pr¢@E®s), a more sensitive
version of the basic phylogenetic profiles (PPs). Howevshould also be noted from the
third column of Table VI that while STRING, Prolinks and Pietdme derive their results
from a significant number of genomes, while those of PGFP ased only theE. coli
genome. Thus, the results of PGFP are less reliable tharhibeso

Finally, and most importantly, as mentioned in the last ooiwf Table VI, these databases
also adopted certain methodologies for the validationetthilected links. The most com-
mon of these methodogies are COGs [Tatusov et al. 2003] whiaHunctional classifi-
cation, and KEGG [Kanehisa et al. 2004], which indicates the detected functional as-
sociations may be used to reconstruct metabolic pathwatereistingly, all the databases
reported thagene neighborhoodor gene order[Dandekar et al. 1998; Overbeek et al.
1999b] was the most accurate approach for both the taskshwha significant result and
can be used to guide further research in this field.

6. PHYLOGENETIC DATA
6.1 Introduction

The biological species existing today have evolved frommive forms of life over mil-
lions of years [Darwin 1909], and this process of evolutiontinues today. The changes
in the physiologies of different organisms have been driwethe changes at the cellular
level, which include the adoption and surrender of functioy proteins due to the changes
in the genes encoding them. Thus, it is essential to inclhdesvolutionary perspective
in any complete understanding of protein function. As a lteseveral approaches for
predicting protein function using evolution-based dateeh@cently been proposed. The
two most common forms of this data are known as phylogenetiii@s and phylogenetic
trees, and the field of biology that deals with the evolutigrralationships among living
organisms is also known as phylogenetics [Bittar and Sauggr 2004].

The phylogenetic profile of a protein is (generally) a bineegtor whose length is the
number of available genomes. The vector contaihgethei” position if thei** genome
contains a homologue of the corresponding gene, elseSome variations of these vec-
tors use real numbers that reflect the extent of similarityvben the original gene and
the best match in the genome being searched, insteés afdls. Thus, these profiles
provide a way of capturing the evolution of genes acros®uarorganisms. This informa-
tion becomes useful for functional genomics when seen itighe of the phenomenon of
speciation which is the evolutionary mechanism by which new speciescagated from
currently existing ones [Coyne and Orr 2004]. Now, it may ppdthesized that proteins
which interact functionally are under strong selectivesptee, and thus their correspond-
ing genes are inherited across several genomes duringaipecevents [Gaasterland and
Ragan 1998]. Phylogenetic profiles are a powerful matheaatvay of modeling this
phenomenon, and thus offer a very innovative method foriimfg functional associations
between proteins, since functionally associated prot@ie®xpected to have very similar
phylogenetic profiles [Pellegrini et al. 1999]. This is thesle assumption made by all the
approaches for function prediction on the basis of phylegjemprofiles. In addition, it can
be seen that the construction of these profiles involvesingransimple BLAST [Altschul
et al. 1997] search again well known databases of completedrges mentioned in Sec-
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Fig. 15. Phylogenetic tree constructed for twenty six catgad genomes (each represented by a letter) constitut-
ing the PhylProM database [Thoren 2000]

tion 5, such as TIGR and NCBI, thus enhancing the appeal dbgkyetic profiles further.

In several other studies, a more extensive representafi@vautionary knowledge
is used [Bittar and Sonderegger 2004]. This representai&nown as a phylogenetic
tree [Baldauf 2003], which is a standard tree with respethéograph theoretical defini-
tion, but whose nodes and branches carry special meanisndeates correspond to the
organisms that were used to build the tree. The internalsiddrote the hypothetical last
common ancestor (LCA) of all its descendents and the branelpeesertias evolved from
relationship. This indicates the complexity of the problefrconstructing phylogenetic
trees from genomes. Most available tools for this conswacsuch as PHYLIP [Felsen-
stein 1989], PAML [Yang 1997] and BETE [Sjolander 1997], gpgarious data mining
and probabilistic methods for the task, and are mostly barseadhierarchical clustering of
the given set of sequences from different organisms. Onemeonstructed phylogenetic
tree for twenty four fully sequenced organisms is shown guFé 15.

It is easy to see that phylogenetic trees embody a much richece of knowledge than
phylogenetic profiles since the latter are constructed onlthe basis of the leaf nodes of
the former, hence ignoring the hierarchical structure efdtiolutionary knowledge. This
additional knowledge of the internal nodes tree can be usedttact further information
about the pattern of evolution of a set of proteins. In additthis knowledge is multi-level
in nature, since the information extracted depends on tpthd® the node in the tree.
Thus, phylogenetic trees, if constructed accurately, canige strictly richer information
than simple profiles. Still, both these forms of phylogendtita together constitute a very
rich pool of knowledge about evolution that can be utiliz6daively for the prediction of
protein function [Kensche et al. 2007].

6.2 Existing Approaches

The evolution of one species of organisms from another hais &e active area of research
in biology [Darwin 1909], and, of late, has come to be knowthasfield ofphylogenetics
Recently, several studies have been conducted for utjlizind predicting the implications
of evolution at the molecular and cellular levels [Bittade®onderegger 2004]. Of most
interest to us are the studies that try to uncover genefpriatections and functional link-
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ages using phylogenetic data such as profiles and treessddtisn describes several such
studies. However, before we embark on this discussion, itldvbe useful to categorize
these studies into three categories:

—Approaches Using Phylogenetic ProfilesThis category consists of a large number
of approaches that are based on the hypothesis that pretgimsimilar phylogenetic
profiles are functionally related. Thus, most of the appheactere are comparative in
nature, and model this hypothesis using ways to measuréntlilarity of two profiles.

—Approaches Using Phylogenetic TreesAs noted earlier, phylogenetic trees embody
a richer knowledge of genetic evolution than simple profil€aus, a recent category
of approaches have started using this knowledge to predliitibn. Most of these
approaches use various data mining and machine learningagyes to achieve this
task, and produce better results than those based only élepro

—Hybrid Approaches: Recently, some approaches have started using SVM-bagled te
niques to combine the two forms of evolutionary knowledggtiglogenetic profiles and
trees. This category corresponds to these approaches.

The following sections discuss the approaches in each eétbategories in detail, and
also propose ideas for enhancing these approaches further.

6.2.1 Approaches Using Phylogenetic ProfileBhe first study to analyze protein func-
tion using phylogenetic profiles was presented by Pellegtial. [1999]. The underlying
hypothesis was that proteins that function together in bwgay or a protein complex, are
likely to have a similar evolutionary path. To test this hifpesis, phylogenetic profiles
were constructed from the fully sequenced genomes of sixbeganisms, other tha.
coli, which was the model organism used in this study. Using tBremli proteins,RL7,
FlgL and Hisb, it was verified that proteins with profiles differing by at st@ne out
of sixteen bits are indeed functionally related as per thes§Rvot annotation. Similar en-
couraging results were derived from the EcoCyc databaseelKeet al. 2005] of metabolic
pathways. This was a seminal study in this area, and it op@veefioodgates for protein
function prediction using phlogenetic profiles.

A further examination of the feasibility of prediction fuimn from phylogenetic profiles
is reported by Liberles et al. [2002], wherein many importamclusions were made. First
and foremost, phylogenetic profiles were shown to perforrehrhetter than homology-
based approaches for the SwissProt keyword recovery taakcpte et al. 1999]. With
respect to the same measure, it was also concluded thaeprifdt are constructed using
a larger number of genomes are more informative for the fongirediction task. Finally,
another type of profile, known as an inverse phylogenetiéilpravas proposed to model
those gene families whose members may have undergoneeam@atby each other dur-
ing evolution, and thus occur in disjoint sets of organisingnany case, this replacement
occurs since the genes perform the same function, and ticosigeredundant, are eventu-
ally lost in a genome. Thus, genes which have complementaipgenetic profiles may
belong to the same functional family. Indeed, this was shimvioe true for three functional
classes, DNA-directed DNA polymerases, DNA repair prat@ind Isomerases. These re-
sults and other useful phylogenetic data has been compiledtie PhylProM database by
the authors [Thoren 2000].

Wau et al. [2003] advocate the use of more general measurasitdrsty for pairs of phy-
logenetic profiles. Three popularly used measures of giityilffan et al. 2005], namely
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the Hamming distancelf), Peason’s Correlation Coefficient)(@and mutual information
(M) are evaluated for this task. It is concluded from the anslyst, although the three
measures are strongly related to each othgf,is the most informative measure of profile
similarity for inferring functional relationship betwedwo proteins. This relationship is
judged by membership of the proteins in the same metabdiimzgy in KEGG [Kanehisa
et al. 2004]. In addition, it is argued that proteins with gdimentary profiles may suggest
that they are functionally similar, which is likely to be reésl if exact similarity of profiles
is required.

The idea of relaxing phylogenetic profiles is carried fordvay Enault et al. [2003a],
particularly for the annotation of bacterial genomes. Thadification suggested here is
to use the normalized BLAST score [Altschul et al. 1997] dampthe best match for
a protein in a genome, instead of usin@ &r 1. Annotation is carried out by finding
the statistically dominant class of the MultiFun datab&erfes and Riley 2000] in the
neighborhood of a protein induced using cosine similagsults better than [Pellegrini
et al. 1999] are shown, thus showing the potetial of realle@lphylogenetic profiles. This
annotation procedure is available via the website of thedBay database [Enault et al.
2003Db]. In Phydbac2 [Enault et al. 2004], a more recent warsf the original database,
the annotation procedure is strengthened further by cantdpjpredictions based on other
comparative genomics methods discussed in Section 5. Hearensensus phylogenetic
profile (CPP) is constructed for a protein by incorporatimg profiles of other genes that
are detected to be “close” to this protein by gene neighbmthar gene fusion methods
described in Sections 5.2.2 and 5.2.3.

Two modifications of phylogenetic profiles are proposed iduyBnd Linial 2002] in
order to improve the inference of functional linkages. Thstfmodifications is to use
partially complete genomes also for the construction ofiggnetic profiles, so as to en-
hance the knowledge contained in these profiles. This itleagh useful, is less relevant
today when several hundred genomes have been sequenceth@ared to the total af5
genomes used in this study. The more important contributidinis paper were two modi-
fications that are suggested for the basic Hamming distaeasune. These modifications
are based on the following novel ideas:

(1) Thedistance between two profiles that are construciad adarger number of genomes
should be assigned greater significance than that betwediteprconstructed using
fewer number of genomes.

(2) This distance should also take into account the evaiatip history of the proteins.
More specifically, the column in the profile correspondingatgenome that is evo-
lutionarily distant from the one containing the query gehewd be assigned higher
weight in distance calculations.

Experiments to test these ideas are carried out for alEtheoli enzymes and functional
relationship is measured by co-occurrence in a pathwayeoKEBGG database [Kanehisa
et al. 2004]. Results derived using two tests designed fpaty for this study suggest
that the first modified similarity measure has a much moretipesmpact on the perfor-
mance of the linkage annotation procedure than the secoadevr, the reconstruction
of metabolic pathways using the proposed similarity meagunot very encouraging.
Date and Marcotte [2005] describe the PLEX (Protein Link EXgr) system, that
adopts an iterative strategy for searching proteins wittilar phylogenetic profiles. This
approach simply uses the results for one iteration of shitylaearch as input for the next
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iteration, and thus iteratively searches for proteins witlylogenetic profiles similar to
that of the query protein. By combining the predicted fumwéil links with gene fusion
links and gene neighborhood links, PLEX was able to recanstwo important protein
systems irM. tuberculosisnamely the urease enzyme complex and the isoprenoid biosyn
thesis pathway.

Lastly, an innovative method for improving the predictidram simple phylogenetic
profiles is proposed by Zheng et al. [2002]. The hypothesgis Isethat, due to selective
pressure, pairs of genes close to each other on a genomemetexk to be preserved
across genomes, since such genes are expected to be faligtietated [Overbeek et al.
1999a; 1999b]. This hypothesis is modeled by finding seymasb of E. coli genes that
are close to each other and constructing a single phylogepetfile for each of these
pairs. This profile simply records whether the pair is foumt¢ close in each genome or
not. Finally, all the pairs with exactly the same profiles emflected, and the functional
coherence of these clusters is tested with respect to COtetidnal categories [Tatusov
et al. 2003]. Quantitative evaluation using the purity aadcard coefficient show the
superiority of the method over single gene phylogenetidileo Another conclusion of
this study was that mutual information is the most apprdenmaeasure for the similarity
of two profiles. This agrees with the general perceptionphatieins occurring in very few
or too many organisms are not very informative for predgtinher proteins’ functions.
However, one surprising finding of this study was that usingrger set of organisms
for constructing the profiles does not necessary improveigtien. The reason for this is
hypothesized to be the simultaneous amplification of bafttevolution and noise signals
when more genomes are used. This finding needs to be inviestifyather, since it may
have implications for the number and choice of genomes usedrtstruct these profiles.

Having covered a wide range of approaches that attempt tiigbprotein function using
phylogenetic profiles, it is important to observe that nofine above approaches involve
significant application of techniques from the field of dafainmg [Tan et al. 2005], which
has been extensively made use of for the analysis of othestypbiological data, such as
protein sequences (Section 3) and gene expression pr@iesign 7). Data mining has
significant potential for the analysis of phlogenetic pesilsince these profiles are binary
vectors, to which an entire field of data mining knownaasociation analysifTan et al.
2005] has been dedicated. Two ideas that demonstrate hoapptieation of association
analysis principles can aid in the use of phylogenetic mefire as follows:

—Several studies have concluded that mutual informatiol) {#the most appropriate
similarity measure for phylogenetic profiles [Wu et al. 20D&te and Marcotte 2003;
Zheng et al. 2002]. These studies directly map to the datamproblem of finding the
right objective measure for association patterns. Tan €@04] have discussed several
objective measures in detail, including five propertieg thaneasure should posess.
Some of these properties are null invariance, symmetrywat@ble permutation and
invariance to scaling. It turns out that measures such agatiland its normalized
versions Yule’'s Q and Yule’s Y, the Piatetsky-Shapiro measund collective strength,
satisfy more of these properties than MI. Thus, it may beuldef investigate these
similarity measures also, in order to improve the usefullltesalready obtained using
Ml as the measure.

—As noted earlier, a set of phylogenetic profiles can bedkas a binary matrix, which
maps directly to the concept ofnaarket basken association analysis [Tan et al. 2005].
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Many algorithms have been designed for accurately andeffigi extracting frequently

occurring and meaningful patterns from these baskets. drdtimain of phylogenetic

analysis, these patterns could reveal important bioldgicawledge such as groups of
genes following the same evolutionary rate and genes exgpthirough the same set of
organisms. Such knowledge could aid in the constructioheftobal evolutionary tree,

which is one of the most important goals of biological reshar

These ideas demonstrate the utility of data mining in génanal association analysis
in particular, for phylogenetic analysis. However, no sattidy has been reported in the
literature yet.

Finally, as an ending note, the following high-level corsituns can be drawn about the
use of the phylogenetic profile paradigm on the basis of tipeagzhes discussed above:

(1) In general, the use of a large number of genomes for amtsig phylogenetic pro-
files improves the performance of function prediction me#hBilu and Linial 2002;
Liberles et al. 2002].

(2) Real-valued profiles offer more flexibity and hence mefwbility in function predic-
tion [Wu et al. 2003; Enault et al. 2003a].

(3) Mutual information (MI) is the most appropriate simitgrmeasure for phylogenetic
profiles [Wu et al. 2003; Date and Marcotte 2003; Zheng etGD22.

(4) Phylogenetic profiles are effective at the task of themstruction of metabolic path-
ways, since the proteins appearing together in a pathwakiighdy likely to evolve
together [Pellegrini et al. 1999; Bilu and Linial 2002].

These conclusions are expected to be useful for future neds@avolving phylogenetic
profiles. Nevertheless, the use of phylogenetic profilesalr@ady helped uncover useful
functional information about several proteins. For a dethlist of proteins for which
predictions were made using their phylogenetic profiled,\aere experimentally verified,
see [Kensche et al. 2007].

6.2.2 Approaches Using Phylogenetic Tregss was discussed in Section 6.2, ap-
proaches that use phylogenetic trees are far fewer thae thas use phylogenetic pro-
files. Two major factors contribute to this. First, treesme difficult to use than simple
profiles, and hence demand more intricate algorithms, aifigakin Section 6.1. Second,
the precise evolutionary tree for a set of organisms is notknapriori and is constructed
from their genomic sequences using systems such as PHYleBeffstein 1989]. This
creates to an additional source of error. However, if theseds are handled appropriately,
more reliable predictions can be made about protein funetia/or functional linkage, as
shown by the following approaches.

In an early theoretical study of the use phylogenomic dataejfc 1998], a possible
approach for finding the functions of uncharacterized pnstérom phylogenetic trees is
outlined. In this approach, a phylogenetic tree is congtidifor the protein under consider-
ation by finding their homologs, and using one of the knowrhoes for tree construction.
Next, events such as gene duplication and gene speciatipmen@entified on this tree,
and using the structure of the tree, functional predicticars be made. The author also
identified some conditions under which this method is exgat¢d perform better than
homoogy-based methods, such as the following:

—TFunctional change between homologs during evolution.
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—Variation of the rate of functional change during evolatio
—Variation of the rate at which gene duplication occurs.

Soon after the publication of the above arguments, it wastipatively shown by a
subsequent study [Doerks et al. 1998] that the inclusionhgiqgenetic trees led to an
improvement in the annotation of the currently uncharamerprotein families (UPFs) in
SWISS-PROT [Boeckmann et al. 2003]. Iterative BLAST seascivere unable toanno-
tate these diverse families, due to well-known problem# w#quence homology-based
approaches [Whisstock and Lesk 2003]. However, when pleyletic trees were con-
structed for a set consisting of selected members of thesesdRd other characterized
families, many of the unannotated proteins clustered amyhziwell with proteins that
performed the same function, thus providing a confident tatiom for the former. Thus,
this study quantitatively exhibited the potential of phygmetic trees for providing accurate
functional predictions.

Following this strategy, the earliest approaches attethfitedentify functional inter-
actions between proteins. Pazos and Valencia [2001] ateshtp identify these these
interactions at three possible levels, namely interastiogtween structural domains of
proteins, between individual proteins and between all tiséeins in a complete genome.
This approach involved the derivation of phylogenetic &nily matrices from a multiple
sequence alignment of the set of entities being studiedgukie appraoch of Goh et al.
[2000]. The following results were obtained from the anislyd these matrices:

(1) Domains Nine of thirteen known interactions were identified [Pagbal. 1997].

(2) Proteins: Again, Seven out of eight experimentally known interaci@mong Dan-
dekar et al. [1998]'s test set 68 E. coli proteins.

(3) Genome Here, functional associations were sought between alt3bé proteins in
theE. coligenome, and700 strong interactions were proposed, some of which were
previously well known, such as the ATP synthaseandg.

Thus, this approach showed both high accuracy and goodageegn addition to demon-
strating the applicability of the phylogenetic approachatous levels.

A more direct use of phylogenetic trees for classificatiom&le by Qian et al. [2003],
where a tree-based HMM (T-HMM [Qian and Goldstein 2003])earht for the class of
GPCR proteins. It is hard to construct a classifier for thésslof proteins since they are
very diverse at the sequence level and hence are hard tee@neing sequence homology-
based methods. However, Qian et al. [2003] handle this proltdly modeling the evolu-
tionary history of this class by a phylogenetic-tree basktM{Qian and Goldstein 2003].
This model essentially constructs a hidden Markov modehah@ode of the tree by using
the multiple sequence alignment of the reconstructed seggeaat its child nodes. Since it
is unknown apriori which class and evolutionary stage a hongtein comes from, a score
is calculated for each node of each tree, and the proteiragsified as the class whose
tree scores the highest. This model is suitable for diveaselies such as GPCR, where
the sequences are not similar and the members are at difesr@ntionary stages. Indeed,
almost99% accuracy is achieved for a setbf49 GPCRs, which is impressive.

So far, the largest project involving phylogenetic anaysas undertaken by the Berke-
ley Phylogenomic Group, and a detailed review of the stsatkayeloped by them for the
inference of molecular function appears in [Sjolander 200is multi-step strategy is
implemented in the GTREE software and its various stepsistexdlin Figure 16 along
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PSI-BLAST [Altschul et al. 1997]
Homolog collection SAM-T98 [Karplus et al. 1998]

FlowerPower [Sjolander 2004]

|

ClustalW [Higgins et al. 1996]
MAFFT [Katoh et al. 2002]
PRRP/PRRN [Gotoh 1996]
T-Coffee [Notredame et al. 2000]

‘ Multiple sequence alignment

Remove mutants [Boeckmann et al. 2003]
Alignment analysis and editing Consensus alignment [Bucka-Lassen et al. 1999]

Deleting unreliable columns [Sjolander 2004]

‘ Alignment masking ‘ Concatenated super-alignment [Wheeler et al. 1995]

!

Phyl . . Distance-based methods [Saitou and Nei 1987]
ylogenetic tree construction Character-based methods [Hall 2000]

Simultaneous alignment and tree construction
[Edgar and Sjolander 2003]

;

[ . PHYLIP [Felsenstein 1989]
Identification of high support subtrees CONSEL [Shimodaira and Hasegawa 2001]

!

A Tree Viewer [Zmasek and Eddy 2001]
Overlay tree with experimental data GTREE [Sjolander 2004]

COGs [Tatusov et al. 2003]

Differentiation of orthologs and paralogs RIO [Zmasek and Eddy 2002]

Orthostrapper [Storm and Sonnhammer 2002]
BETE [Sjolander 1997]

Inference of molecular function Subtree neighbors [Zmasek and Eddy 2002]

Fig. 16. (Left flowchart) The approach adopted by Sjolan@®0§] (Right flowchart) The techniques used to
accomplish the corresponding task in the left flowchart {fégadapted from [Sjolander 2004])

with the techniques used to accomplish these steps. Thipletersystem is a testimony
of the strengths of phylogenomic data, particulary phytaie trees, when applied to the
protein function prediction task.

By far, the best results in the function prediction probleia phylogenetic analysis
have been reported by Engelhardt et al. [2005], and suba#yumproved in [Engel-
hardt et al. 2006]. In their papers, they describe SIFTERt{&ical Inference of Function
Through Evolutionary Relationships), which is based ongbeeral formalism of prob-
abilistic graph models. SIFTER defines a transition proitglfunction for the transfer
of molecular function from a parent to a child node in a singiglogenetic tree and uses
standard probabilistic propagation algorithms for cormmuthe posterior probability of
a node having a certain molecular function. Various typegatifiation of SIFTER’s re-
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sults, such as ROC analysis, suggested that this approacmara accurate than the most
significant sequence similarity-based algorithms, and sugerior to its closest counter-
part. In particular, using 100 Pfam [Sonnhammer et al. 18@7jlies supplemented with
GO annotations as the test and training data, SIFTER ach#very high precision with
complete coverage. Thus, this work comprehensively shaledenefits of incorporating
phylogenetic trees into the function prediction process.

6.2.3 Hybrid Approacheslt can be seen from the previous two sections that phylo-
genetic profiles and phylogenetic trees represent diversesfof evolutionary knowledge
and have differing abilities in predicting protein funetidn such a situation, a promising
idea, which has worked for several other problems, is to éoethese two forms of data,
thus leading to a hybrid of the approaches discussed above.

The first paper which presented such a strategy was [Vert]2Q0proposes the use
of support vector machines (SVM) for learning protein fumes from their phylogenetic
profiles. However, instead of the common kernel functioreduer SVMs, such as the
linear or the radial basis kernel, a tree kernel is propos@alculate the similarity of the
profiles in the higher dimensional space used by the SVM. Rigis-dimensional feature
space is defined on the basis of the patterns of evolutionredgamong the (hypothetical)
ancestors of the organisms under consideration, in a preifigd phylogenetic tree, such
as the one shown in Figure 15. A linear time algorithm in thenbar of organisms, based
on a post-order traversal of the tree, is also derived ancbitsectness proved. Upon an
ROC analysis of the classification performance on the geh&s cerevisiae, it is found
that the tree kernel works significantly better than the edivear kernel, particularly for
the smaller and more heterogenous classes. Thus, thisaabprombines the previously
proposed approaches under the aegis of a very powerful matfeal framework.

The above approach is adapted in [Narra and Liao 2005] to xtemaed real-valued
profiles. Here, all the internal nodes of the phylogenetedrare also assigned scores
equal to the average of the scores at their children. An et profile is now constructed
for each protein by a post-order traversal of the tree. An SMih a polynomial kernel
is trained with these profiles and is used for function prgalic In evaluations using
three-fold cross validation on the same data, performaettertthan that of [Vert 2002] is
reported.

6.3 Discussion

The previous sections discuss several approaches whichpiorated evolutionary knowl-
edge into the function prediction process, leading to inipneents in the results. In par-
ticular, the more extensive the knowledge, the more aceuanat the predictions, as shown
by projects such as [Sjolander 2004] and [Engelhardt etG)5R Specifically, Brown
and Sjlander [2006] cite several technical challenges yriqgenomic inference of protein
function, such as the inaccuracy in phylogenetic tree coaon, the reliability of existing
database annotations and functional inference from argjyolvithout taking evolutionary
distance into consideration. From a more evolutionarygeatve, Kensche et al. [2007]
argue that for effectively addressing the problem of priticprotein function using evo-
lutionary methods, it is critical to examine the effect obkition on the multi-functionality
of proteins, higher order functional relationships betwpeoteins, the functional context
of a protein, and the modularity of functional modules. Aekhing these challenges and
subsequent improvements in the current state-of-theadttis relatively new field will
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lead us closer to validation of Dobzhansky’s statement ‘tNathing in biology makes
sense except in the light of evolutiofpobzhansky 1973].

7. GENE EXPRESSION DATA
7.1 Introduction

Protein synthesis from genes occurs in prokaryotic orgasiia two phases [Weaver 2002],
as shown in Figure 3. In the transcription phase, an mRNAeiated from the original gene
by converting the latter to the corresponding RNA code. Tiodgin is then synthesized
from mRNA by translating the RNA code to the correspondingranacid sequence ac-
cording to the codon translation rules.

Gene expression experiments are a method to quantitativesure the transcription
phase of protein synthesis [Nguyen et al. 2002]. The mostntomcategory of these
experiments use square-shaped glass chips measurinttpaessiitinch on either side, also
known as cDNA microarrays, and hence the alternate nameariay experiments. The
experiment is carried out in the following stages. In thet fatage, the chip is laid out
with a matrix of dots of cDNAs, usually several thousandsumber, one corresponding
to each of the gene being measured. In parallel, mRNA is etetifrom both the normal
as well as the cells of the organism that have been exposad twhdition being studied.
Next, these mRNA are reverse transcripted to cDNA and cdlaith green and red colors
respectively. These colored cDNAs are then spread on theari@y chip, leading to a
hybridization of the cDNA already on the chip with those prodd by the genes in the
two types of cells. This generates a spot of a certain colothenchip for each gene
which denotes its expression level. In the final stage of Xipeement, the intensity of this
region is measured by a laser scanners connected to a camphiteh generates a real
valued measurement of the expression of each gene as thefrtie log intensities of red
and blue colors in the region. The result of the experimems ik a measurement of the
transcription activity of the genes under the specified d¢ard A detailed illustration of
this procedure is shown in Figure 17. Recently, single-okhaxperimental procedures
have also become popular in the microarray community. Hewelie nature of the data
and the approaches used to analyze them are usually vefgisimhature. So we do not
describe this experimental process in detail for brevity.

The primary advantage of gene expression experiments airéhiy offer an effective
method for observing the simultaneous activity of thousasfdjenes under a given exper-
imental condition. Using these activity measurementsisdvmportant inferences can be
drawn about the underlying biological phenomena, suchasttive pathways under the
given condition. This ability to observe a global patterraofivity of genes, particularly
when observed over several multiple related experimeantalitions, has motivated the use
of microarrays for a variety of biological studies [Slonifd@]. Also, since data gener-
ated from one experiment can be useful for several otherestuseveral repositories have
been set up in order to make such data publicly accessibler&eémportant organism-
and phenomenon-specific databases are listed in Table \(Blightly dated) comparison
of several such microarray databases appears in [GarGiaeten and Littlejohn 2001].
This paper presents important details of these databasdsas their commercial aspects,
analytical capabilities and system requirements, and iseduliresource for researchers
working with microarray data.

In conclusion, a few words about the nature of gene expneskita are in place. Usu-
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Fig. 17. Anillustration of the microarray experimental pedure (Figure taken from [Duggan et al. 1999])

| Name | Short Description | Reference |
GEO Largest general repository [Barrett et al. 2005]
ArrayExpress General repository [Parkinson et al. 2005]
SMD General repository [Sherlock et al. 2001]
GeneNote Automated human genes database [Safran et al. 2003]
BodyMap Several human and mouse tissugs [Sese et al. 2001]
GXD Laboratory mouse [Hill et al. 2004]
yMGV S. cerevisiae and S. pombe [Lelandais et al. 2004]
BarleyDB Various plant species [Shen et al. 2005]
Drosophila | Drosophila melanogaster (FruitFly| [Neal et al. 2003]
CGED Cancerous tissues in humans [Kato et al. 2005]
BGED Processes in mouse brain [Matoba et al. 2000]
MEPD Medaka fish [Henrich et al. 2003]
Table VII. Some important organism- and phenomenon-specifi gene expression
databases. A more extensive list can be obtained from the aDMet website

(http://ww neurotransm tter. net/ metadb/index. php).

ally, the format of gene expression data is very simple,aeectangular matrix, in which
the rows correspond to genes, the columns to conditionstrendntries denote the ex-
pression measurement of a gene under a particular conditowever, since the data is
generated experimentally, there may be several phenorhahety affect the quality of
data produced by an experiment. Some such problems arengadggrees of hybridiza-
tion across the chip, background noise in the images pradacel a difference of scale
between the different experiments constituting a miceadata set. Several statistical
methods have been developed for addressing these prolamas§enbush 2002], which
use the information in the experimental design, as well agtita generated, in order to
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reduce the effects of these factors in the processed dat@sether important factor to
consider in microarray data analysis is that the data useés@arch is generally of two
kinds: static and temporal [Lee 2004]. The first categorysegia of data sets containing
snapshots of the expression of certain genes in differenpkes under the same condi-
tions, while the latter, also known as time-series geneesgion data [Bar-Joseph 2004],
consists of data sets capturing the expression of certaiesyef the same organism at dif-
ferent instances of time. It is important to consider thdsaracteristics of the data when
it is used for computational analyses, such as running aisadygorithms to infer protein
function from gene expression data.

7.2 Existing Approaches

Gene expression experiments are targeted at the simuiltsiobservation of the activities
of thousands of genes under a certain condition. Sincedrigtion is an intermediate step
in protein synthesis, the expression measurements givedization of which genes are
active and producing proteins for a the function(s) to bégvared under that condition.

Thus, due to the ability to simultaneously observe thousafdyenes, microarray data
holds great promise for determining the function and fiorail associations of proteins.
Also, the matrix format of the data makes it easily procesgsecbmputer algorithms. Ac-

cordingly, several computational approaches have begopeal for predicting the func-
tion of a protein from gene expression data, which will bedssed in this section.

Early approaches identified functional associations betwgenes by measuring the
similarity between their expression profiles using staétmethods. In a study focused
on identifying novel genes which may contribute to prostreancer in humans [Walker
et al. 1999],40, 000 genes were examined for co-expression with five genes knowe t
associated with prostrate cancer using the Guilt by AstiocidGBA) principle. As a re-
sult, eight novel genes that are significantly co-expresstidat least one known prostrate
cancer causing gene are identified and are verified as bdatgddo processes leading
to the disease. However, these studies were usually verpman scope, and involved
significant human intervention in identifying the seed ar thrget genes. This allowed
the application of more generic techniques from data mifdmghis task. These can be
grouped into the following three categories:

—Clustering-based approachesAn underlying hypothesis of gene expression analysis is
that functionally similar genes have similar expressiarfifgs, since they are expected
to be activated and repressed under the same conditionsu8eclustering is a natural
approach for grouping similar data points, approachesigncditegory cluster genes on
the basis of their gene expression profiles, and assignifunscto the unnannotated
proteins using the most dominant function for the respeatiusters containing them.

—Classification-based approachesA more direct solution to the problem of predicting
protein function from gene expression profiles is the datamgiapproach of classifica-
tion. Thus, approaches in this category build various tgf@sodels for the expression-
function mapping using classifiers, such as neural netw@&¥Ms and the naive Bayes
classifier, and use these models to annotate novel proteins.

—Temporal analysis-based approache®As mentioned earlier, temporal gene expression
experiments measure the activity of genes at differenaircss of time, for instance,
during a disease. This behaviour can also be used to prediip function. Thus,
approaches in this category derive features from this teatpata and use classification
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Fig. 18. Visualization of the clustering dendrogram pragubby Eisen et al. [1998]. Members of a cluster are
observed to have consistent color codes

techniques to predict the functions of unannotated pretein

7.2.1 Clustering-based approache¥he first category of data mining approaches ap-
plied to microarray data was that of unsupervised learréongriques, particularly cluster-
ing [Jain and Dubes 1988]. Clustering of gene expressioa loas been in practice for a
long time [Jiang et al. 2004], and algorithms such as CASTh{Ber et al. 1999], which
are aimed specifically towards clustering of expressioa,date widely used. However,
predicting functions of genes from clusters generated bgdfalgorithms using measures
such as majority [Guthke et al. 2000], has not yielded goadlte [Zhou et al. 2005].
Hence, in this section, we survey several approaches thafoaused towards creating
clusters that can be used for function prediction.

Eisen et al. [1998] reported the first exploration of clusigfor gene expression data,
and laid the ground for research in this area. They clusttrethudding yeast expression
data using a hierarchical average-linkage clusteringridlgo, with a variant of the corre-
lation coefficient as the similarity measure. However, tteémfiocus was not to determine
the best clustering algorithm for gene expression datatdostudy the following aspects
of the clusters produced:

—Visualization: For the purpose of visualizing the cluster membershipdarfge number
of genes, a color coding scheme was adopted for the datahaw@hes were ordered in
the hierarchical clustering dendrogram, thus giving theutarly used clustering display
of the type shown in Figure 18.

—Functional analysis This was the main target of the study. Once the clustersidoail
visualized, it was clearly seen that most of the large ctssthowed a strong tendency
to contain genes involved in common cellular processes.yEast, some of the most
prominent patterns were seen for genes encoding ribosawtalips, mitochondrial pro-
tein synthesis genes and genes involved in ATP synthesisxaddtive phosphorylation.
Similar functional coherence was seen for a human expresisita set also, though the
analysis here was obscured by the limited annotation dlaifar the human genes.

The systematically derived conclusions of this study [Eisé al. 1998] showed that
clusters of coexpressed genes are also functionally coheféhis was a landmark dis-
covery in the field of bioinformatics, and it generated a Ibinterest in the clustering of
biological data.

In order to exploit the conclusions of Eisen et al. [1998]nH8gor et al. [1999] proposed
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a heuristic clustering algorithm known as Cluster Affinitga®ch Technique (CAST),
geared towards gene expression data. CAST has two phaseslyrtheadd phase, in
which elements with high affinity to the current cluster adeled to the cluster, and the
removephase, in which elements with low affinity are removed frora ttuster. The
clusters are constructed incrementally one by one, and ribgeps terminates when no
more changes occur. This way, CAST is different fréfrmeans since it constructs only
one cluster at a time, whil&-means updates alk clusters in each iteration. Results
on both static and temporal expression data showed CASTiiydb preserve functional
categories. In an interesting experiment involving thesidting of gene expression data
obtained fromd0 tumors and®2 normal tissues, rich clusters, both of normed/@2) and
tumor (6/40) samples, were obtained. Thus, the ability of the algorithmextract knowl-
edge about diseases from expression data was shown. Toiglatghas been widely used
in other studies [Bellaachia et al. 2002; Swift et al. 2004].

Ng et al. [2004] proposed the use of the popular latent seémiadiexing technique [Letsche
and Berry 1997] to eliminate noisy and redundant dimendiam the data. Only the di-
mensions that contribute significantly to the data aremethi The final data set is clustered
using the concept of neighborhood such that the similagtyken any two genesin a clus-
ter is above a certain threshold and is significantly highanttheir similarity with a gene
from some other cluster. Finally, the majority annotatiénhe characterised genes in a
cluster is predicted to be the function for the uncharas¢ergenes in the same cluster. A
high precision and recall is reported, though this is duéorelaxed definition of recall,
which is satisfied even if only one of the several functiona géne is recovered.

The application of clustering to gene expression data enofonfounded by decisions
such as which clustering algorithm to use, how many cludtefind, which similarity
measure to use etc. In order to increase confidence in thésrelrived from cluster-
ing, Zhou et al. [2005] proposed the use of the novel ontclogsed pattern identification
(OPI) strategy. The goal of OPI is to enable the clusterimcess to identify the best
decisions to be made in order to identify the best clusteresponding to a functional
category. This is achieved by embedding all the decisiamsh as the attribute weights,
the choice of mean or median to represent the cluster andrthilarty threshold, in a
Euclidean space, and defining an objective function, tHitats the characteristics of the
most appropriate clustering, on it. Next, a hill climbingpess is used to minimize this
function for all the GO functional categories and identtg best cluster for this category.
Finally, the uncharacterized genes in a cluster are hypithe to be functionally linked
to the annotated ones in the same cluster, in many casegaeérsame function. This
procedure is applied to the gene expression data desctiténiife cycle of the malarial
parasitePlasmodium falciparuniBahl et al. 2003]. As evidence of the validity of their
procedure, it is noted thd® of the 50 genes predicted in an earlier version of the study
to have the Antigenic Variation function had now been vetifi\lso, OPI was able to
identify more statistically significant clusters compatedhose obtained in the an earlier
study of the same data [Roch et al. 2003], whereitimeans algorithm was used. Thus,
OPI makes the clustering process more flexible.

Another way in which confident results can be derived fronstglting of gene expres-
sion data is by considering overlaps of clusters derivedHersame data set by various
algorithms. In [Wu et al. 2002], a database of clusters istoted by applying multi-
ple clustering algorithms, such as K-means, self-orgagiaiaps (SOMs) and hierarchical
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clustering [Tan et al. 2005]. These clusters are annotatddtie class having the least
p-value, which is calculated using the fractions of variausctional classes in the cluster.
For the purpose of function prediction, each unchara&érgne is assigned the annota-
tion of each cluster it belongs to, in addition to a confidevelee for the prediction. The
method is validated quantitatively by treating each charéged gene as uncharacterised,
analyzing the overall results so obtained, and qualithtibg showing that the functions
of individual genes are predicted accurately.

This strategy is carried forward by Swift et al. [2004], whmpose the use of robust
clustering (RC) and consensus clustering (CC) for fungtigediction. Robust clustering
provides an incremental clustering algorithm for clustgrthose genes that are consis-
tently clustered together with at least one other gene. Appgrent, RC has low coverage,
though the accuracy obtained is high, thus illustratingitm®iracy-coverage tradeoff. Con-
sensus clustering relaxes the condition of complete ageaehy introducing aninimum
agreement parameter. Using this parameter, an objective functioré&mh cluster is de-
fined, which rewards clusters containing instances havigh Agreement and penalizes
those with low agreement. A simulated annealing procedutiedn applied to minimize
this function globally and thus obtain a clustering of thaggwith high agreement. When
evaluated in terms of theeighted — x measure [Altman 1997], it is found that CC im-
proves on the performance of each of the individual clusteglgorithms. It was also
concluded that the clusters identified for ten functionasses were more likely to be an-
notated with the same classes, as compared to the indivdtiisaéring algorithms.

From the previous descriptions, it is clear that an inheasatimption of all the cluster-
ing approaches is that functionally associated genes wilelsimilar expression profiles.
This may be a necessary condition for association, but isitie§i not sufficient. This
problem is addressed using a graph-theoretic approach by hal. [2002]. Here, it
is proposed that shortest paths between genes in a netwoskrgoted on the basis of
strongly correlated expression profiles suggest a way aftiigéng transitively related
genes. These shortest paths are constructed between gémesame GO category (only
"informative” GO categories are used here), and a test idiexpfo check if the genes
lying on these paths are annotated with the same or a paretitildrfunction in Sac-
charomyces Genome Database (SGD) [Dwight et al. 2002]. IRemu the Rosetta com-
pendium [Hughes et al. 2000] indicate a high accuracy fooohibndrial and cytoplasmic
genes, but only medium accuracy for nuclear genes. Nevesthany case, a significant re-
sult of this study was the assignment of function$46 yeast genes which were otherwise
weakly correlated to other genes.

Finally, in another attempt to relax the coherent profilegreement of clustering, a new
form of clustering, known abiclusteringor coclustering is increasingly being applied to
biological data [Madeira and Oliveira 2004]. In this form @fistering, both genes and
schemes are simultaneously clustered to produce blockgrid&in the original rectangu-
lar data matrix. Several variants of biclusters in such aimate shown in Figure 19. It
is easy to see that gene expression data, because of itsgeletaformat, is highly suited
for the application of this technique. In addition, the urigiag biological motivation for
this application is that some groups of genes may be explesdg under a certain set
of conditions, and the rest of the conditions act as noigybates when these genes are
clustered using a traditional clustering algorithm. Bagedhis motivation, a good deal of
work has been done in biclustering gene expression datanfCiied Church 2000; Yang
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Bicluster structure. (a) Single bicluster, (b) exclusive row and column biclusters, (c) checkerboard structure, (d) exclusive rows biclusters,
(e) exclusive columns biclusters, (f} nonoverlapping biclusters with tree structure, (g) nonoverlapping nonexclusive biclusters, (h} overlapping
biclusters with hierarchical structure, and (i) arbitrarily positioned overlapping biclusters.
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Fig. 19. Different variations of biclustering (Figure takigEom [Madeira and Oliveira 2004])

et al. 2003], though these early works did not particulaity at discovering functionally
coherent (bi)clusters. Bryan et al. [2005] developed a Kited annealing based approach
for this problem and validated their results on the yeasigele data set [Cho et al. 1998]
using annotations from the KEGG database [Kanehisa et 84]20ndeed, it was seen
that the two largest clusters were enriched with membergzofamilies, namely riboso-
mal proteins and nucleotide metabolism, thus demonstyatia potential of biclustering
for function prediction.

The tightest coupling of biclustering and protein annotattan be seen in [Liu et al.
2004], where the structure of GO is incorporated into thean@hical biclustering process,
thus making the clusters obtained functionally enrichedthis approach, the genes are
originally clustered using a hierarchical clustering aitjon, and each node in the hierar-
chy is annotated with the GO functional class it is most dmtitwith. The result of the
complete process is a Smart HTP-tree (SHTP-tree), sinageltigently includes GO in-
formation in the clusters. An added attraction of this appfois that it allows overlapping
clusters, which makes sense biologically. In the experisenis verified, both quantita-
tively and qualitatively, that the nodes in the SHTP-trez iadeed enriched with at least
one GO class. An example of a successful mapping from TRezkiso their Ontology
SubTrees (OSTSs) is shown in Figure 20.

After this detailed discussion of the various forms of ctustg that have found applica-
tion in microarray data analysis, one may overestimate tterial of clustering for the
function prediction task. Clustering suffers from someiohg drawbacks, which have to
be addressed in order to realize the full potential of thiy wewerful technique. Note that
these issues are algorithm-independent and affect thgsamalver and above the perfor-
mance of the specific clustering algorithm used.

(1) Traditional algorithms find disjoint clusters of genesjich is not always the right
thing to do since genes are known to be involved in multiplecfional classes si-
multaneously. Overlapping clustering [Banerjee et al.2200u et al. 2004] offers a
potential a solution to this problem.

(2) A group of genes may only be expressed in a subset of thditemms, which causes
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Fig. 20. A successful result from the SHTP-clustering atfor [Liu et al. 2004]

the appearance of dense regions in the gene expressiox.ntédwever, most algo-
rithms do not consider this phenomenon, and feature seleatgorithms are unable
to perform a per-example analysis. Only biclustering [Meedand Oliveira 2004]

handles this issue to some extent.

It is hard to judge the most appropriate proximity (samtly or distance) measure
that should be used when clustering biological data. Eealddistance suffers from
the curse of dimensionality when the number of conditiona idata set exceeds a
small number, as is usually the case. Similarly, correfediocounts for co-repression
the same way as co-expression, which may not be very suftatdeme applications,
particularly those which transform the gene expressioa it a binary format. Thus,
even though correlation is the most widely used measuresgbi@e measure may be
more appropriate for gene expression data, because ofcitss fun the shape of the
profile and not its magnitude [Kuramochi and Karypis 2001].

The general method of transferring annotation from tlagonity genes in a cluster
to the unannotated ones may not be useful if very few genesluster have been
annotated earlier.

A related weakness of clustering algorithms is that tth@yot make use of the class
label information available in many data sets. As a resulfogation can only be
indirectly achieved via clustering, and in cases whererthise is adopted, the results
are prone to two levels of error.

Recent approaches have started addressing some of thess. isBor instance, Pan
[2006] proposed an approach for incorporating functiomalcdations into the clustering
process for gene expression data. Here, the commonly usédrenmodel-based cluster-
ing algorithm [Duda et al. 2000] is modified so as to increagearobability of clustering
together genes belonging to the same functional class. iJ laishieved by assigning the
same prior probability to all the genes in a given functiariabs, during the expectation-
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maximization (EM) process for computing posterior proliibs of genes belonging to

different clusters. Through experiments on simulated,datavell as Hughes et al. [2000]'s
large yeast microarray data set, it is shown that this inm@ton of functional labels in-

deed improves the performance of standard clusteringighges. This illustrates the merit
of using a supervised version of clustering for inferringtpin function from microarray

data.

Nevertheless, the above issues are very strong points torisdered when applying
clustering to gene expression data in particular. Addedhéontare the problems due to
noise and the choice of the right algorithm and the right petars, which are valid for
many other applications. Handling these issues effegtiwill make the task of function
prediction easier and more achievable.

7.2.2 Classification-based approache&s explained in Section 7.1, the basic format
of a gene expression data set is a gene-condition matrixiendech gene is denoted by
a vector (row) and each condition by an attribute (column).sdéme applications, the
functions of some of the genes in a study may be known, andsabeeclass labels for the
corresponding vectors. The other genes remain unlabeiddt iz desired to assign a label
to them. This problem can be solved using classificationrdtlgas in data mining, such
as neural networks and support vector machines [Tan et @h]20 his section discusses
several approaches that have been proposed in this direatid also examines the factors
influencing their success or failure at the task of functioetiiction

One of the most cited works in the field of protein functiongiction, or bioinformatics,
for that matter, is [Brown et al. 2000], which describes tpplecation of support vector
machines for learning functions from yeast gene exprestata Various kernel functions
are used for the SVM and these versions are compared with dtiner popular classifiers,
namely Parzen windows, Fisher’s linear discriminant [Datlal. 2000] and two decision
tree classifiers, C4.5 [Quinlan 1993] and MOC1 [Wu et al. 199dth respect to the con-
sideration set of five functional classes (and another cisingrthe rest), it was concluded
that SVMs with a radial basis kernel were the most suitabdarue for the purpose.
Also, it was observed that many of the false positives geadray SVM were known to
be related to the functional class assigned to them by the 3MNas argued that this may
be due to various factors such as noisy data, overlaps betinaetional classes, and the
fact that some genes are not regulated at the transcrigia &nd hence were hard to
characterize using gene expression data.

A more extensive study of the issues in the classificatioreakegexpression data is pre-
sented in [Mateos et al. 2002]. Two major points of deparftom [Brown et al. 2000]
are as follows. First, Mateos et al. [2002] use multilayercpptrons (MLP), or neural
networks, for the learning and prediction tasks. Seconddanset consisting a6 func-
tion classes are considered for the yeast genome. For teeo$akmparison with SVM,
an MLP network is also trained and tested for the same fivesetassed in [Brown et al.
2000]. It was found that while SVM and MLP are comparable imi of false negatives
(FN), the latter performed systematically worse in termfatgfe positives (FP). In order to
analyse the factors contributing to the poor performanamathine learning techniques,
a one-against-all learning and testing procedure using MaPR followed for all thed6
classes considered. The results obtained indicated thatRorlasses were learnt with a
true positive (TP) rate 40%, which proves that not only the learning technique, but also
the nature of the data set dictates how well the relationlsbfpveen the gene expression
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variables and the functional class can be learnt.

The main merit of [Mateos et al. 2002] was the systematic amghtitative study of
the causes for poor learning performance when gene expnedata is used. They iden-
tified and quantitatively verified three main factors, besidoisy data, which determined
learning performance. These factors are as follows:

—~Class size:In general, learning performance, measured here in terniseof P rate,
tends to improve with class size. This is not surprisingeitie larger classes tend to
act as attracters for the instances belonging to the snuddisses.

—Class heterogeneityA class is homogeneous when all its members follow the same be
haviour and hence act as good examples of each other duaimgrig. Clearly, the more
homogeneous a class it, the better learning performancill igive. Using a measure
defined in terms of the divergence between consecutive gerseslass, Mateos et al.
[2002] observed that there is a linear relationship betwbenTP rate and the hetero-
geneity measure. Also, it is suggested that larger classekstd be more homogeneous
than smaller ones, though this needs more rigorous verificat

—Borges effect:It is common knowledge that a protein participates in midtfpnctions
and hence there are numerous interconnections betwediohalclasses in terms of si-
multaneous memberships of genes. This heavy interactiomenaf biological functions
leads to poor learning rate of individual classes. For tiodlem of protein function pre-
diction, this seems to be the most important factor affgdéarning performance. This
effect is named thBorges effeciMateos et al. 2002], crediting an observation made by
the philosopher Jorge Luis Borges in his widely cited workiges 1964]. Again, using
quantitative measures of this effect, it is verified that lsrning accuracy decreases
with an increase of overlaps between functional classes.

The identification of these factors is significant since adding these issues indepen-
dently may be expected to lead to better classification paidace using gene expression
data. Mateos et al. [2002] utilize these insights to profoséerative learning procedure
for individual classes and this algorithm gives signifitabetter performance than a one-
pass learning procedure.

In a complimentary work, Kuramochi and Karypis [2001] arzalg the feasibility of
using supervised learning techniques in general, and th &\ thek-nearest neighbor
(k-NN) classifiers in particular. This study used the cosinglarity measure, which ap-
pears to be the more appropriate measure than Euclideanchsfor gene expression data,
as noted earlier. Similar to [Brown et al. 2000], the resldtone-against-all classification
were better for SVM, and a further analysis of the resultsttedonclusions consistent
with [Mateos et al. 2002]. In addition, the problem of thegioéion of m most appropriate
classes for a test gene was addressed. ForktiB\l appeared to be the most appropriate
solution, since the annotations of the closest genes can be directly transferred to the
gene in question. At a higher level, this study concludesfiraconfident prediction, it is
necessary for the activity of the characterized genes tdoberged under a wide variety of
condition, resulting in a diverse and more informative dagh

As mentioned before, one way of increasing the confidenchéarmtediction of gene
functions is the combination of multiple expression data $elughes et al. 2000]. Moving
forward from [Hughes et al. 2000], which involved signifitamanual interpretation, Ng
et al. [2003] analyse the feasibility of combining multiplata sets for learning with
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SVMs, and present a strategy to select the most informatitee sets for learning individ-
ual classes. In terms of the learning cost savings meastinedén [Brown et al. 2000], it
was concluded that blindly combining all the available datis is not the most appropriate
method of data preparation. Hence, a simple hill-climbilggpathm was devised, which
incrementally adds the data set that provides the maximamileg cost savings, continu-
ing this way till the maxima is achieved. Evaluation of thigaithm and its comparison
with other feature selection algorithms showed the supigriof the former with respect
to learning performance.

Finally, it should be observed that all the above techniquere tested for small model
organisms such aS. cerevisia@ndC. eleganswhich have few thousand genes in their
genome. The complexity of the problem increases in mammapacies, which have tens
of thousands of genes. One such study of the functionalifitag®n of the mouse gene
expression data set, which covers over 40,000 genes, appddhang et al. 2004]. The
first part of this paper, using a methodology similar to [Big¢ al. 1998], concludes that
genes in the same functional category were indeed co-esqueand in the second part,
this observation was used to classify abd@®00 unannotated genes. This classification
was conducted using a support vector machine, and an in@diMidodel was learnt for each
of the 992 GO Biological Process categories considered. The claasifitaccuracy was
not very high, though about)00 genes were annotated with more tH#¥ probability
(calculated from the discriminant value of the SVM). Thisyniradicate that mammalian
gene expression data needs more sophisticated analysideinto improve the prediction
coverage and precision.

In conclusion, the nature of gene expression data has drieatg interestin the machine
learning community, especially researchers in classifinaand there is much work being
performed in the field of classification-based gene expresanalysis. As of now, it would
be safe to say that the state of the art in this field is suppegstor machines (SVMs),
since they have shown the best performance with microaats/fdr several classification
problems [Mukherjee 2003]. However, this field is still ia garly stages of maturity and
more advanced classification techniques such as boostthgaive learning [Duda et al.
2000] are expected to be applied to this data in the futuagljig) to better results.

7.2.3 Temporal analysis-based approach@$e wide variety of approaches presented
till now adopted a static view of the gene expression datavdver, as was noted in the
Section 7.1, this data can also be viewed as a temporal dafeeseh experiment tracks
the activity of different genes at different points of tirf®ome researchers have used this
temporal nature of some gene expression data sets for dnnatediction, and this is the
topic of discussion in this section.

The first cut at analyzing time series expression data weemna clustering [Bar-
Joseph 2004; Moller-Levet et al. 2003], since it is an unsuped technique and does not
require the assignment of functional labels to the genestailgd discussion of the issues
involved in this approach can be found in [Moller-Levet et2003]. In recent studies,
further issues regarding the temporal clustering of gemeession have been addressed,
such as the short lengths of the profiles [Ernst et al. 20@Bhpting [Jiang et al. 2004],
co-clustering [Heard et al. 2005] and appropriate sintijanieasures [Butte et al. 2001].

A more direct use of the temporal nature of gene expressiofilgs is made in [Hvid-
sten et al. 2001; Laegreid et al. 2003], in which the datadedformed into a suitable
attribute-value vector format, so that a rough set baseg$ifier could be used to extract
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Gene Ontology biological process (BP) labels for unknownege These attributes are
constructed by calculating the increase or decrease otsgjon values between two in-
stances separated by an interval of three time points, amiddtegorizing them into three
classesigh, mediumandlow. This is necessary since rule-based classifiers, such as the
rough set-based classifier here, can only handle nomimidigts robustly. Next, the clas-
sifier is learnt from this transformed set, in the same maaséHvidsten et al. 2001], and
is tested on the human serum response expression data get ef &l. [1999]. The cover-
age of the derived rule set is excellent, since it is able édligt labels for211 of the 213
unannotated human genes in this data set, of which a smabe@uai predictions could
be verified from the literature. In addition, cross-validattests on the training set gave
an AUC score (Area Under the ROC Curve)®88, which shows the robustness of the
classifier function prediction from gene expression data.

A similar approach that employs inductive logic programgnior learning the classifi-
cation rule set from gene expression patterns which areetkfinterms of sets of differ-
entially expressed genes between individual classes linedtn [Badea 2003]. The use
of description logics (DL) [Baader et al. 2003] is also pregd for the purpose of making
more fine-grained predictions than the systems are cuyreafable of. Finally, another
rule-based classification system is presented in [Mide#faal. 2001], which improves
upon the performance of [Hvidsten et al. 2001] by includitidree members of the sub-
class of a Gene Ontology class into its member set while ilegriassification rules for
it. The training is more robust, since there are more reptatege examples available for
each class.

Deng and Ali [2004] used hidden Markov models (HMMs) to motthe temporal in-
terdependence between the conditions under which the sipreexperiments are per-
formed, and the dependence of the functional class on themalysis of the yeast gene
expression data using this strategy suggested that a dub Kilddeling both expression
values and experiment order was the best for this applitafiamore statistical approach
was adopted by Gui and Li [2003], which is motivated by theesbation that the tem-
poral expression profiles of genes belonging to the same alashighly similar. To cap-
ture this observation, each individual class is modeledrasxaure of sub-classes and the
parameters of the model are learnt using the EM algorithndfDet al. 2000]. This ap-
proach, named mixture functional discriminant analysi$-[M\) was compared against
other known discriminant analysis methods on the yeastygelé expression data set, and
MFDA was found to be marginally better than the others. Theséiminary approaches
suggest the need for further examination of the relatignbleiween the functional class
of a gene and its temporal expression profile.

Another interesting way of looking at the temporal behaviouigene expression is to
view it in the light of evolution. van Noort et al. [2003] exyit this view and hypothe-
sizes that the conservation of co-expression between pagsnes that have a common
evolutionary development path can enable more confidemtigiiren of their functional
association and the pathways they are involved in. Usingettecases d6. cerevisiaand
C. elegan®nd using correlation as measure of co-expression, twa typeonservation of
co-expression were defined. Paralogous conservatiorsreféwo pairs of gened — B
andA’ — B’ in the same organism, whereand A’, andB and B’ are homologues of each
other respectively, and both pairs have a high correlatatwéen their gene expression
profiles. The definition of orthologous conservation is samiwith the only difference
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being that the two pairs belong to different organisms. Wiercorrelation threshold for
co-expression wal.6, an accuracy 0$3% and82% are obtained fo. cerevisiae using
orthologous and paralogous conservation respectivelig inowing the promise of the
approach for the prediction of functional association lestwgenes.

More generally, temporal gene expression analysis facey wfahe same problems as
the analysis of other time series [Bar-Joseph 2004]. Faairte, responses for different
genes may be offset in time and need to be aligned. Also, nsggomay be stretched
or shrunk with respect to one another or may only be relatexh&another over various
periods. Furthermore, the times series may be missing sa@tisome times. These and
other issues have been addressed by various researchiars seties analysis, although it
is probably fair to say that none of these problems can beideres as being completely
solved.

7.3 Discussion

The previous subsections detailed the numerous appro#itditelsave been proposed for
the inference of protein function from the microarray asayf the coding genes for these
proteins. The matrix format of the data yields itself naliyra classical data mining algo-
rithms such as clustering and classification, with much nagt&ity being seen the latter
category in recent years. It should be noted that microaeelynology has come of age
very recently [van de Goor 2005], and the immense populdritas already gathered,
even in data mining publications, is an indication of thegndial it possesses for inferring
different forms of biological knowledge, such as functioretabolic pathways and evolu-
tionary paths, from the information available about thewdtemeous activity of thousands
of genes.

However, to extend the usefulness of function predictimmfrgene expression data,
a number of significant issues need to be addressed. Oneisstheecomplexity of the
class structure. Genes can have more than one functionhard functional classes are
often organized in a hierarchy. In addition, the size of fiomal classes is often very
different, with some being common, while others are raréne@important issues are data
preprocessing and data quality. Extracting informatiomfigene expression data requires
the proper choice of normalization and other preprocesgays. Furthermore, the amount
of information available from gene expression data is ofiteited by the large amount of
noise and the fact that the conditions present in a data sehotebe the ones needed to
identify the functional similarity for some groups of genes

8. PROTEIN INTERACTION NETWORKS
8.1 Introduction

A protein almost never performs its function in isolatioratRer, it usually interacts with
other proteins in order to accomplish a certain function.wkleer, in keeping with the
complexity of the biological machinery, these interactiare of various kinds. At the
highest level, they can be categorized into genetic andigdilyisteractions. Genetic in-
teractions occur when the mutations in one gene cause a waiitifis in the behavior of
another gene, which implies that these interactions ang @miceptual and do not occur
physically in a genome. These interactions are mostly tedacsing computational tech-
nigues, that are discussed in detail in Section 5. Of pdatidnterest in this section are
the physical interactions between proteins, since theynane directly related to the pro-
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cess through which a protein accomplishes its functiongsg&linteractions are of various
kinds, such as the simultaneous membership of two protaitisel following biological
systems [Xenarios and Eisenberg 2001]:

—A metabolic and/or signaling pathway.
—A morphogenic pathway in order to perform a developmenitatfion.
—A protein complex and other such molecular machines.

Since a protein generally interacts with more than one gphhetein, these interactions
can be structured to form a network, and hence the namiein interaction networks
An example of such a protein network, the PX domain protetaraction network in
yeast [Voller and Uetz 2004], is shown in Figure 22. A very coom way of visualiz-
ing these networks is as undirected graphs, with the protiting as the nodes and the
pairwise interactions acting as the edges of the graph. Suelpresentation can enable
researchers to infer characteristics of proteins frometagroteins not even directly in-
teracting with it.

Due to the importance of the knowledge of these interactisegeral high-throughput
methods have been proposed for discovering them [Legrailh 2001]. Again, depending
on the final output, these methods can be categorized intéyiwes [Chen and Xu 2003;
Droit et al. 2005], namely the discovery of pairwise intéi@as and extraction of pro-
tein complexes. While two-hybrid systems, protein chipd phage display are the most
commonly known methods in the former category, the Tandefimifyf Purification (TAP)
approach is commonly used for extracting complexes. Figrdustrates some of these
methods diagrammatically.

The huge number of interactions discovered by the varioperxental techniques dis-
cussed above have been organized into numerous databasbsvh been placed in the
public domain. Table VIII presents a summary of some of tliledabases commonly used
by the function prediction approaches discussed belowaKes and Eisenberg [2001]
present a more detailed description of some of the earlt@abdses, such as GRID, BIND
and DIP.

Though most of the data sets in Table VIl are commonly udegtet are several issues
associated with them, as discussed by Salwinski and Eisgfib@03]. The most impor-
tant of these is the large amount of noise present in higbutiinput interaction data. Deng
et al. [2003] showed quantitatively that the efficacy at #ektof function prediction varies
between different data sets, primarily due to the presehd#ferent levels of noise. This
consideration should be kept in mind during any analysismtdraction data, and tech-
nigues such as [Deane et al. 2002] may be used for retriekimdrtie interactions from
this data. Deane et al. [2002]'s technique relies on the @isgternal data about the pro-
teins, such as their expression profiles and amino acid sega¢o determine the reliability
of the input set of interactions, and is available for usdat2IP database’s website

Recently, some data mining techniques have been proposestiimating the reliability
of a given interaction using the inter-connectivity sturetof the complete network [Chen
et al. 2007; Pandey et al. 2007]. These techniques utilzedncept of shared neighbors,
which is the set of neighbors shared by two proteins, in otdeystimate the reliability
of an interaction between them. [Chen et al. 2007] discussrabmeasures based on this

12http://dip.doe-mbi.ucla.edu/dip/Services.cgi?SM=1
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The first two

figures have been taken fromtt p://www. dual syst ens. com t echnol ogi es/ yeast. asp and

http://bioi nfo. nbb. yal e. edu/ prot ei nchi p/ db/ Fl GL. ht m , respectively
, while the third is from [Puig et al. 2001].
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Name Ref. Organism Type #Interactions | #Proteins
Ito et al [Ito et al. 2001] S. cerevisiae Physical 4549 3278
CuraGen [Uetz et al. 2000] S. cerevisiae Physical 957 1004
CYGD [Guldener et al. 2005] S. cerevisiae Physical 9103 7000
S. cerevisiae Genetic 6385 7000
S. cerevisiae Complexes 2876+ 7000
MIPS [Pagel et al. 2005] 10 mammals Physical 1800+ 900+
YPD [Costanzo et al. 2000] S. cerevisiae Physical N.A. N.A.
DIP [Xenarios et al. 2002] S. cerevisiae Physical 18224 4919
D. melanogaster| Physical 20988 7052
E. coli Physical 7100 1631
PIM [Rain et al. 2001] H. Pylori Physical 1200+ 261
LIGAND [Goto et al. 2002; Vert 2002]  S. cerevisiae Pathways 16650 774
TAP [Gavin et al. 2002] S. cerevisiae Complexes 232 1739
Lehner et al [Lehner et al. 2004] H. Sapiens Physical 91 15
GRID [Breitkreutz et al. 2003] S. cerevisiae Physical 19791 6713
D. melanogaster| Physical 28406 26148
C. elegans Physical 4453 22268
BIND [Alfarano et al. 2005] Several Interactions 201882 51087
Several Complexes 3703 51087
HMS-PCI [Ho et al. 2002] S. cerevisiae Complexes 3617 725
Giot et al [Giot et al. 2003] D. melanogaster| Physical 4780 4679
Table VIIIl. Popular protein interaction datasets usedlierfunction prediction task and associated features
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concept for estimating the reliability of a given interactin a network, and illustrate that
the functional content of the network containing the edgdged as highly confident is
significantly higher than that of the original network. Ircfain subsequent studies [Chua
et al. 2006; 2007], the same measures were used to extracasetunctional information
from interaction networks.

Pandey et al. [2007] took a slightly different approach te groblem of identifying
noisy interactions in a given network. They used the h-ceni@ measure [Xiong et al.
2006] from the field of association analysis in data mining{ &t al. 2005], which when
viewed in the context of a graph, can be used to estimate thitasity between two pro-
teins on the basis of the number of their shared neighboras,Tfrconfidence is used to
estimate the likelihood of an interaction between all pafisroteins in the network. How-
ever, it is not necessary that a an interaction is alreadykrizetween a pair of proteins
whose h-confidence score is high, which indicates that @ndntion is probable between
these proteins. Thus, the computation of this measure leetak pairs of proteins pro-
vides a way of indicating the reliability of the edges alrgadesent in the network, and
the likelihood of including an edge that is currently absieoi it. Thus, in addition to
addresing the problem of noise, Pandey et al. [2007]'s egugtr@lso addresses the prob-
lem ofincompleteness interaction data, which has been recently suggested ambtner
important problem for interaction data [Hart et al. 2006]déed, in experiments on sev-
eral well-known interaction datasets, significantly mocewaate inferences about protein
function could be obtained from the transformed interactietwork, where interactions
are weighted by their likelihood of occurrence, as compévedte original network.

These algorithms are of great value to function predictjgpraaches, given the impor-
tance of the problem of false positive interactions in iatdion data sets, even the most
popular ones.

8.2 The Promise of Protein Interaction Networks

It has long been known that a protein does not perform itstfan@n isolation, but as a part

of a group of proteins that cooperate to perform that fumctidhus, the arrangement of
the known protein-protein interactions to construct agirointeraction network provides a
global view of the functions of the proteins, and how theymearate to achieve higher goals
in an organism. Fraser and Marcotte [2004] suggested thatthngest point in favour of

interaction networks is that the function of a gene (prgtean be defined precisely by the
topological features of the network it is a part of. In adafitiprotein interaction networks

provide several other benefits, which may be useful for theysbf protein function:

—Experimental data directly determines these networks.

—The noise inherent in experiments can be modeled by asgjgmeights to the edges
corresponding to the reliability of the experimental metlised to extract them.

—These networks represent an integrative approach, inethgesthat different types of
interaction data, whether genetic or physical, can be itegowith equal ease to con-
struct an all-encompassing interaction network. Thiggradon iteratively improves the
overall quality of the network.

—Networks have “features” such as areas of high connegteiparated by more sparsely
connected regions. These features can be utilized foreclogtto discover cellular
machines such as functional modules [Snel et al. 2002].
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—At a more abstract level, these networks, by their verymateflect the interconnected
nature of biological processes.

—Interaction networks can be studied under a mathematealdwork to discover precise
functions for each gene/protein.

Due to the above benefits, several approaches have adoptexite of predicting func-
tion by observing the patterns of interaction of each proieia network, as discussed in
Section 8.3.

The above description shows qualitatively that proteiernattion networks are a rich
source of information about theontextof a protein, i.e., the position of an individual
protein in a larger view of the biological processes in a nig/a. For instance, in an in-
teraction network, the context of a protein is the set ofgirs that it interacts with. Huy-
nen et al. [2003] suggested that exploiting this contexarimfation is more effective for
predicting functional associations and specific functitiras pairwise comparison-based
approaches such as mRNA co-expression. This hypothesalidated by the analysis
of thirteen cases of functional associations predicted diyogiic context methods (Sec-
tion 5), that were later verified in the laboratory. A promihexample of this analysis
was the discovery that tHeataxin protein is involved in iron-sulfur cluster assembly on a
protein, which is a well-known fact in genetics [Duby et @02]. The authors also postu-
late that the construction of networks from these assaciatmay also help in discovering
functional modules, which is only a step away from protgieesfic function prediction.
Overall, the authors strongly suggest that if such intégmaatetworks can be analyzed in
depth, then the functional modules discovered from themhese the same potential as
functional domains for protein sequences [Huynen et al3R00

Finally, [Fraser and Marcotte 2004] can also be interpratedn invitation to the more
mathematically-oriented research communities to addhesproblem of protein function
prediction from protein interaction networks. Howevergewefore the publication of
this informal invitation, the data mining community had nti§ied the great potential of
these networks for solving this problem. The KDD Cup 2001d@d et al. 2002], the
most well known research contest in the data mining commusgecifically included
the task of accurately predicting the functions of seveealsy genes/proteins from a set of
interactions from the MIPS repository [Mewes et al. 2008v&al innovative data mining
solutions were submitted for this task, thus showing thatehs considerable interest in
the community for this problem of protein function predictifrom interaction networks.
A discussion of the submission with the best performanceéediound in Section 8.3.1.

These developments show that protein interaction netwaskd great potential for ac-
curately discovering functions of proteins and this viempevas adopted by several re-
searchers who have proposed very innovative solutionsiggtioblem. Section 8.3 dis-
cusses these approaches in detail. Other reviews disgussine of these approaches and
issues relate to them have also been published Sharan 20@¥][

8.3 Existing approaches

Approaches that attempt to predict function from a proteieraction network can be
broadly categorized into the following four categories:

—Neighborhood-based approachesThese approaches utilize the neighborhood of the
query protein in the interaction network and the most “damiti annotations among
these neighbors to predict its function.
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—Global optimization-based approachesin many cases, the neighborhood of the query
protein may not contain enough information, such as anedtoteins, for determining
the function of the query protein robustly. Under these dtmmks, it may be advanta-
geous to consider the structure of the entire network andtheseannotations of the
proteins indirectly connected to the query protein alsce &approaches in this category
are based on this idea, and in most cases, are based on tmzafibn of an objective
function based on the annotations of the proteins in the orétw

—Clustering-based approachesThe approaches in this category were based on the hy-
pothesis that dense regions in the interaction networkesgmted functional modules,
which are natural units in which proteins perform their ftioe. Thus, these approaches
apply graph clustering algorithms to these networks and ¢fetermine the functions of
unannotated proteins in the extracted modules using messuch as majority.

—Association-based approacheRecently, several computationally efficient algorithms
have been proposed for finding frequently occurring pasténndata, in the field of
association analysis in data mining [Tan et al. 2005]. Thar@gches in this category
use these algorithms to detect frequently occurring seistefactions in interaction
networks of protein complexes, and hypothesize that thelsgraphs denote function
modules. Function prediction from these modules is peréatas in the clustering-
based approaches.

It should be noted that, despite the above categorizatienyhderlying theme of all ap-
proaches in this field is that a graph-based representatiable the analysis of several
topological features of an interaction network, that carfurther analyzed for studying
various characteristics of proteins. Hence, the accurbapwpapproach is determined by
the biological relevance and coverage of the features uBleid.is the aspect most of the
following approaches differ in, and also explains the vagylevels of precision and cov-
erage reported by them. Another important factor contitiiguto the accuracy of these
approaches is the amount of noise present in the data, whalwell-known side effect
of the experimental approaches used for collecting thetse &&veral function prediction
approaches in this field thus make it a point to demonstrateahustness of their results
when some noise, in the form of spurious interactions, iseddd the original network.
These issues will be clarified in the following sections ttlistuss the approaches in the
above categories in detail.

8.3.1 Neighborhood-based approachdSiven a set of interconnections among a set
of entities, the most intuitively straightforward apprbéor inferring the characteristics
of these entities is to extrapolate the characteristich@f neighbors. This idea directly
addresses the problem of protein function prediction froatgin interaction networks and
was used by a very early paper which addressed this problenwi&owski et al. 2000].
In this study, a network 02709 interactions among039 yeast proteins were assembled
from various sources such as MIPS [Mewes et al. 2002] and B#Rfinski et al. 2004].
Even though the prediction method was simple: the functidresprotein are assigned as
the (at most) three most frequent functions among its neightan accuracy of2% was
achieved forl 393 characterized proteins. Another interesting discovergiaria this study
was that35% of the interactions were between proteins with no commontfanal anno-
tation, some of which were shown to connected related fanaticlasses, such as protein
folding and protein translocation. This illustrates thdlww@own concept otrosstalkbe-
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tween biological processes [Kunkel and Brooks 2002; PogtahMcEwen 1996]. Over-
all, this exploratory study established the utility of mnotinteraction networks for making
biological inferences, particularly protein function gietion.

A strategy to improve the statistical significance of thesedjzations was proposed
by Hishigaki et al. [2001]. First, instead of just the immeg@i neighbors, a set of-
neighboring proteins consisting of proteins reachedwianks is considered for predic-
tion. Second, the frequencies of all the functions in thiginieorhood is recorded. Finally,
the most “significant” function in this set is assigned to phetein of interest. This sig-
nificance is tested using g?-test, that compares the frequency of the function in this
neighborhood with that expected according to its occuegmobability across the whole
interaction network. Thus, the functions assigned by tpigreach are more significant
than those by [Schwikowski et al. 2000], where some of theyassents may be spurious
due to noise in the data. This claim is also validated usingt @f2112 physical interac-
tions assembled in a manner similar to Schwikowski et alof@0and three categories of
functional classification from YPD [Costanzo et al. 200@mrely subcellular localization,
cellular role and biochemical function. From this validatiprocedure, it was found that
the highest accuracies were obtained eithemfos 1 or 2, depending on the functional
class under consideration. This suggests that there méghdise and redundancies in this
approach, if too many neighbors are considered. This igtively true, since the functions
of proteins very far in the network are expected to only iadily influence the function of
the query protein, and thus they should not be weighted thee ses the functions of im-
mediate neighbors in the frequency calculations. Glob#ihopation-based approaches,
discussed in the next section, implement this observatiomemobustly.

Another approach for increasing the confidence in predistimade using the annota-
tions in the neighborhood of a proteins has been presentédrayg et al. [2006]. Here,
instead of looking at only the immediate neighbors, a mosldlilt for the sequence of
annotations on the paths in the network that lead to the t@rp¢ein. This model is ca-
pable of predicting the possible annotations of the targetein using the sequence of
annotations of the proteins lying on paths that terminatbetarget protein. This model
is implemented for a set of GO functional classes using tbatilistic suffix tree data
structure [Ron et al. 1996], which enables the efficient cotajion of the probability of
a certain protein having a certain function. The algoritlnevaluated on a variety of
protein interaction datasets, and results better tharr atighborhood-based methods are
obtained. Thus, this approach provides a robust methodripteimenting the extended
neighborhood-based inference of protein function.

Another useful way of defining neighborhood in a network iotlgh the concept of
shared neighborhoqdvhich denotes the set of neighboring proteins that are comtm
two proteins. The use of this concept helps identify the clanfte in an interaction be-
tween two proteins, as has been done for identifying noigesedn an interaction net-
work [Pandey et al. 2007; Chen et al. 2007]. An approach fotgam function prediction
using shared neighbors is adopted in [Samanta and Liand.2068, the most significant
protein pairs are identified in the order of increasjngalues of their association. This
p-value is calculated using a formula derived for the prdiglof the two proteins having
the specified number of shared neighbors, assuming thigiatisa follows a bionomial
distribution. Considering thegevalues as similarities between instances, the proteas ar
then clustered using the hierarchical clustering techmidhen this algorithm is applied
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to the budding yeast interaction data set taken from DIP gXies et al. 2002]163 clusters

are discovered. Of these49 clusters are found to be subsets of some functional complex
or pathway according to tHeaccharomycgsenome Database (SGD) [Dwight et al. 2002].
Novel functions were also assigned &ir previously unannotated yeast proteins.

A very similar strategy has been adopted in PRODISTIN [Brual €2003], which uses
the Czekanovski-Dice distance for calculating the distdmetween two proteins, and the
BioNJ algorithm [Gascuel 1997] for clustering them. Thisatdgy was able to cluster
proteins more effectively according to their cellular ftion, which is the most relevant
for function prediction. Using yet another strategy, thesaroup extended PRODISTIN
by replacing the BioNJ algorithm with a density based cluistealgorithm [Brun et al.
2004]. Using these new clusters, new functions were prediftir 37 proteins, of which
12 were novel predictions that could potentially be testedhanlaboratory.

Both the above approaches utilize the concept of sharedhbbeig for clustering pro-
teins in interaction networks, and derive functional medurom these clusters. A more
direct approach has been adopted by Lin et al. [2006], whpgeed a supervised learning
approach for inferring protein function from interactiogtworks using the share neighbor
idea. They show that the likelihood of two protein sharinguadtion becomes signifi-
cantly higher if they have a high number of shared neightasgompared to just having
a direct interaction between them. Motivated by this obeston, they developed a prob-
abilistic model for estimating the probability of a giverofgin being annotated with a
certain function, by looking at the annotation of all protein the network that are known
to be annotated with that function. The model estimatesptibability conditional on at
the number of shared neighbors between the target protdiaah of these already anno-
tated proteins, by modeling this as a set of independentalatistributions. In a training
step, the parameters of these distributions are estimatexhth function, and in the test-
ing step, a probability is computed for each proteins cagyas well as not carrying, the
given function. A ratio of these two probabilities are thesated as likelihood scores for
the protein-function pair, and are used as the final predicBy evaluating this algorithm
on an integration of several standard yeast interactioase#d for a set of FunCat func-
tional classes, it is shown that the performance is better the methods based on direct
neighborhood-based annotation transfer. Thus, the usemifmon neighbors appears to
be more beneficial than direct neighbors, since the fornmriges an effective method for
incorporating the reliability of the interactions in thenfttion prediction algorithm.

Finally, before moving on, it is important to note that theyious approaches [Samanta
and Liang 2003; Brun et al. 2003; Lin et al. 2006] are very elosspirit to the shared
nearest neighbor clustering algorithms in data miningdE#t al. 2003; Jarvis and Patrick
1973]. These algorithms are based on a different similanggasure for the data points: the
similarity between two points is the number of neighborg thay share in an intercon-
nection network. These algorithms are known to be robust wispect to noise, regions
of varying densities and clusters of varying sizes in tha d&n et al. 2005]. Also, they
are based on the paradigm of graph-based clustering, asdtay be useful for clustering
protein interaction networks and making functional inferes from them.

McDermott et al. [2005] discuss a very innovative approacfuhction prediction that
addresses a practical problem with protein interactiowoiis. It is known that the exper-
imental procedure used to construct these networks ardisanly labor-intensive, and
thus, interaction networks are available only for some rhodgnisms, such as yeast, fruit
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Fig. 23. Flowchart of the algorithm used to derive functioaanotations from predicted protein interaction
networks [McDermott et al. 2005]

fly and worm. As a result of this paucity of protein interaatidata, it may become hard
for research to exploit the rich knowledge they encode. THe®ermott et al. [2005] pro-
pose the use af silico predicted protein interaction networks for function pitigin using
neighborhood-based approaches. Figure 23 shows a schédlmatihart of this approach.
Initially, an interaction network is generated for the &trgrganism using interaction in-
formation compiled from databases such as DIP [Xenariok 2082], GRID [Breitkreutz
et al. 2003] and PDB [Berman et al. 2000], through thierolog approach [Matthews
et al. 2001; Yu et al. 2004]. The majority-in-the-neighbmod method [Schwikowski et al.
2000], and a more sensitive weighted version thereof thatstanto account the link and
functional annotation quality of a neighbor, were then &aplo this network. The perfor-
mance of the algorithm was evaluated using the precisiorrercall measures formulated
in [Deng et al. 2004]. In the experiments, interaction nekedor D. melanogaste(fly)
and50 other organisms were generated and annotated under tins &ialuation showed
that the functions could be predicted with an average petisf about70% with the
weighted method, though the coverage was dslj considering just the top-ranked pre-
diction. However, even with this low coverage, GO primarpatations could be assigned
for 60 and132 previously unannotated fly and human proteins with an estidharecision
of at least55%. This showed that for organisms, such as fly and human, wien@uch
interaction information is available, robust annotatiam de derived from predicted net-
works. The authors have also set up the Bioverse web senaDéknott and Samudrala
2005] containing such predictions for a variety of orgarsisin these respects, this was a
path breaking piece of research.

It was mentioned earlier that one of the tasks in KDD Cup 20@% tine prediction
of protein function from protein-protein interaction dg@heng et al. 2002]. Since this
was a contest, several groups submitted possible appe&mteolving this problem. The
entry that achieved the best performance adopted a twoagtemach for this task. In
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the first step, the original data was pre-processed usingREIAGGS system [Krogel
and Wrobel 2001] to retrieve various attribute-value p&irseach gene, thus producing
a new data set consisting of a real-valued vector for all #reeg in the original data set.
Since the original data was a relational data set, with emtehaction being an individual
entry, these new attributes were based on the immediatalmailgood of each gene, thus
making this approach appropriate for the current categdris new data set was then learnt
using an SVM classifier, and tested on a separate set of gehéd) produced results
as high a93.6% accuracy for function prediction. However, more significdran the
success of this strategy was the fact thiatistinct data mining solutions were submitted
for this task [Cheng et al. 2002], thus showing that data inginéchniques have potential
for solving the problem of predicting protein function framteraction networks.

Finally, the richness of protein interaction networks amel simplicity of the neighbor-
hood approach has also motivated their use as an interraestiégt in the function predic-
tion process. In a study that uses machine learning tecasiftert and Kanehisa 2002],
these networks were used to extract meaningful features fiene expression data. The
hypothesis adopted is that genes close to each other in amedwe more likely to exhibit
similar expression patterns, and hence have similar fanstiUsing rigorous kernel-based
techniques, the problem is formulated mathematically, solded to extract a similarity
kernel from the network. In experiments, which employeduogks derived from the
LIGAND yeast pathway database [Goto et al. 2002], succeskssification using SVM
was achieved for classes earlier thought to be hard to fgehtough expression data, such
as fermentation and nucleus organization [Brown et al. PO0Da similar study [Altaf-
Ul-Amin et al. 2003], proteins identified as belonging to #anek-core of the interac-
tion graph [West 2001], as well as to the same cluster defieed phylogenetic profiles,
are assigned the same function. Finally, some recent stindiee also tried to combine
interaction networks with homology-based approachesantity functionally related pro-
teins [Espadaler et al. 2005; Okada et al. 2005]. The bagothgsis in these studies is
that if two proteins are interaction partners in a networkntéractions, and also show se-
guence or domain homology, then there is substantial ev&lthat these proteins interact
functionally. Thus, it can be seen from this discussion thatintuitively simple neigh-
borhood approach has significantly impacted both the daadtindirect use of protein
interaction networks for function prediction.

8.3.2 Global optimization-based approacheBhough the neighborhood approach is
very attractive because of its simplicity, it suffers froomse obvious limitations. For ex-
ample, if a protein has an insufficient number of neighbothé@network, or its neighbors
are not annotated, then it is difficult to make significanticions about its function. The
presence of contradictory annotations among neighboosnaddees it difficult to arrive at
a coherent prediction. To address these issues, seleldll approaches have been pro-
posed. These approaches try to optimize, either direcilydrectly, an objective function
defined on the whole network, which measures some globaleprpphat the network
should possess once all its nodes have been annotatedeirdethils of these approaches
follow.

One of the first papers that approached the problem from tkigpoint [Deng et al.
2003] used the theory of Markov random fields (MRF) to detesrthe probability of a
protein having a certain function. This theory is used tedatne the joint probability of
the entire network with respect to a certain function. Thisfulation is transformed to that
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of the conditional probability of a protein having a certimction given the annotations
of its interaction partners. Finally, the Gibbs samplinght@éique is used iteratively to
determine the stable values of this probability for eachgino As expected, this strategy
outperforms the neighborhood-based approaches [Schwki@tval. 2000; Hishigaki et al.
2001] in the functional annotation task for the MIPS inté¢i@t data for yeast. In one of
the extension of this work, the same strategy was appliethteomapping of GO codes to
proteins, with similar results [Deng et al. 2004]. In anathrtension [Lee et al. 2006],
the MRF approach was generalized by using a diffusion kevaséd similarity between
proteins in the network. This enabled the approach to tesrefnotations from farther
away proteins, in addition to only the neighboring proteinweighted by their diffusion
kernel-based similarity with the query protein. This getieed produced a non-trivial
improvement in the accuracy of performance over several @Gtional classes.

Another strategy based on MRFs is presented in [Letovskyasif 2003]. This solu-
tion departs from [Deng et al. 2003] in the following two idea

(1) The probability of having a certain number of neighboithve certain function is
determined by a binomial probability distribution.

(2) Instead of Gibbs sampling, a heuristic version of thégbg@ropagation algorithm is
used to find stable values of these probabilities.

Notably, the first idea implies that the assignment of a labalprotein is a random process
which satisfies the neighborhood constraints imposed bgehgork. This is unlike [Deng
et al. 2003], which explicitly uses the number of interactfmartners with the same and
different labels to define the same probability. Hence, #mults from [Letovsky and
Kasif 2003] were expected to be inferior to those of [DengleR@03], though a direct
comparison is not possible since the former reported itsltsesn the GRID interaction
data [Breitkreutz et al. 2003]. On this data set, the algaoriachieved a high precision of
98.6% but a low recall o21%.

Probably the most widely cited approach in this categoryazfjuez et al. 2003], which
was also covered briefly above. Here, an objective funcsaefined for the whole net-
work, which is a sum of the following variables:

(1) The number of neighbors of a protein having the same fomets itself.
(2) The number of neighbors of a protein having the functindar consideration.

Thus, this function estimates the number of pairs of intémggroteins with no common
functional annotation. Since a high value of this functisrbiologically undesirable, it
is minimized using a simulated annealing procedure. As &gl this approach outper-
formed the majority rule-based strategy on#heerevisiaiteraction data from [Schwikowski
et al. 2000], since the latter tries to optimize only the secfactor above. An additional
advantage of this approach was that multiple annotatiors!giroteins were obtained
in one shot, unlike earlier approaches which ran indeperm@imization procedures for
different functions.

Inarecent paper, Sun et al. [2006] have described the MFG@ified and faster global
optimization) approach, that tries to reduce the compartatquirements of [Vazquez et al.
2003]. The idea here is to redefine the objective functiomdhbat a protein is assigned
multiple functions in one optimization run, as against aasafe run for each function, as
proposed in [Vazquez et al. 2003]. From experiments on fatagkts, significant savings
in computational time are observed by using MFGO, thoughattoeiracy remains nearly
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the same. Yet another approach [Leone and Pagnani 2005Yatect by the principle of
Gibbs potential from physics, uses the same objective fomets [Vazquez et al. 2003].
Here, belief propagation algorithm [Mezard and Parisi 308 mployed to assign the
probabilities of annotation of the proteins in the netwoittwea certain function. However,
due to the requirement of many more iterations to reach destadution, this strategy
could not outperform [Vazquez et al. 2003] in a comparablalmer of iterations.

Another approach which attempts to achieve agreement bataenotations of neigh-
bors in interaction networks is presented in [Karaoz et @042. This study models in-
teraction graphs as Hopfield networks, which are neuralitectiares often used in com-
putational neuroscience [Hopfield and Tank 1986]. Under tiddel, an energy function
is defined for each function in the GO hierarchy in terms ofwheghts of the edges in
the network and the functional annotations of various pngteMinimizing this function
using an iterative gradient descent procedure leads to @amallx consistent assignment
of the function to the proteins. The fundamental issue hexe the method used to as-
sign weights to the edges. Two such methods were implemgamaetely a default weight
of one and a weight equal to the absolute value of the coiwalabefficient between the
expression profiles of the two interacting genes. The whobdegdure was run for each
function in GO and results were evaluated in terms of the Bguee. This evaluation
showed that, fol 68 functions, more accurate predictions were made using tegrated
network compared to those made using just the proteindprsteeraction network taken
from GRID [Breitkreutz et al. 2003]. New plausible annatat were also suggested for
some proteins, thus illustrating the merit in integratingtiple information sources.

An abstract problem that has been proposed in the liter&gtine estimation of distances
between proteins in Euclidean space from their relativatipoing the interconnection
network. This clearly is a hard problem and can not be solsitbuan ad-hoc technique.
Hence, Tsuda and Noble [2004] learn this inter-proteiragiceé matrix/' by maximizing
its von Neumann entropy-¢r(K log K') [Nielsen and Chuang 2000]. Under pre-defined
local and global constraints, this problem is transfornmd its dual and is solved using
standard convex optimization methods. Feeding this kenatix as input to an SVM
program, function prediction is carried out using two yeeettvorks, namely the biological
pathway-based network constructed by Vert and Kanehida2[2énd the protein-protein
interaction data reported by von Mering et al. [2002]. Sanilesults with an ROC score
of about0.80 are obtained, which justifies the accuracy of the derivethdies, which can
be utilized fruitfully by data mining techniques such asstéwing and outlier detection.

It has been mentioned several times in this discussion thatyanatural representation
of interaction networks is a graph consisting of proteins@des and pairwise interactions
as edges. Hence, it is expected that several approached amplly graph-theoretic tech-
nigues to deduce functions from these graphs. Howeveityéslfar from expectation.
An innovative, and rare approach for this problem is desctiby Nabieva et al. [2005].
In this approach, the traditional max-flow min-cut algomittior directed graphs [West
2001] is modified into an iterative flow algorithm for undited graphs, such as inter-
action networks. In this algorithm, named FunctionalFltdve sinks are proteins which
are annotated with the function under consideration, wiiéeothers are sinks. Capaci-
ties of the edges are determined by the reliabilities of tpeemental or computational
techniques used to detect the corresponding interactiomul&ing this flow for a certain
number of iterations allows the function to flow into all tatgodes. A contribution of this
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study is its comparative evaluation with respect to thréeiopopular algorithms, namely
Majority [Schwikowski et al. 2000], Neighborhood [Hishigat al. 2001] and GenMulti-
Cut [Vazquez et al. 2003; Karaoz et al. 2004]. This evaluaiacarried out on the GRID
yeast interactions data set [Breitkreutz et al. 2003] wetipect td'2 functional categories
at depth2 of the biological process hierarchy in GO. In terms of the R®€asure, Func-
tionalFlow shows the best overall performance. In paréicut outperforms Majority (and
the others) for proteins with very few annotated interacfi@artners. Hence, this study
overall has several significant contributions, namely a figmection prediction method
based on interaction networks, a novel implementation fiogxsting approach [Vazquez
et al. 2003; Karaoz et al. 2004] and a comprehensive evaluatiategy.

Finally, the representation of protein networks as grapissatso resulted in the applica-
tion of techniques from other fields, particularly from sdeietwork analysis [Wasserman
and Faust 1994]. A social network is constructed by obsgrihie entities interacting in a
given environment and their patterns of interaction. Owimthe similarities in the struc-
ture of social networks and protein interaction networkshhiques from social network
mining [Staab et al. 2005] have now found their way into thedietion of function from
protein interaction networks. One such simple approaanghathe estimation of the role
similarity of two individuals [Wasserman and Faust 1994}jet correspond to proteins in
this case, has already been applied for this task [Holme arsd B005]. In this approach,
given two proteins, a simple iterative procedure is usedtionate how many pairs of pro-
teins to which they are connected, either directly or inttlye share a common annotation.
Though this approach suffers from a quadratic time compjéxithe number of nodes in
the graph, and its results on the MIPS interaction data setd4 et al. 2002] are only
slightly better than the very simple neighborhood countimgthod [Schwikowski et al.
2000], this study still makes an important contribution efrtbnstrating how techniques
from distant fields such as social network analysis coulddreeniently mapped to the
field of protein function prediction from interaction netiks.

Another field of computer science research that this fieldccbenefit from is that of
web search algorithms. Currently, an assumption undeylslhthe approaches for pro-
tein network analysis is that all the proteins have the sastiahility for the information
they provide. This may not always be appropriate, since inesoases, some neighbors
of a protein may be providing redundant information, andatymake more sense to give
a higher weight to the suggestions of the more informativighieors. Algorithms de-
signed for searching the web, such as findidpsandauthorities[Kleinberg 1999] and
PageRank [Brin and Page 1998], that drive most of the sutdesgsarch engines such as
Googlé?, handle this problem very well by techniques such as waightieavily highly
hyperlinked pages and adjusting redundant informationicgrfrom the same network
domain. Though studies have now started applying such igeés for analysing various
properties of protein sequences, such as remote homoldgsatifs [Noble et al. 2005;
Kuang et al. 2005], they have not yet been applied for funcpeediction. Given the
immense success of search engines such as Google, bothura@acand scalability, the
application of appropriate modifications of their undantyalgorithms may lead to useful
solutions for the problem of function prediction.

The above discussion shows that a wide variety of approashssd on principles of
global optimization have been proposed in the literatuceraany more are in the pipeline.

13ht t p: // www. googl e. com
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Fig. 24. Two examples dinkersidentified in the clustering study of [Snel et al. 2002]. lesk examplesiGhB
andhofB connect two orthologous groups each shown by ellipsesuf€igken from [Snel et al. 2002])

The most accurate results in the field of function predictiom interaction networks have
also been achieved by these approaches, which is intyitaeeeptable since they extract
the maximum benefit from the knowledge of the structure ofthtire network.

8.3.3 Clustering-based approachel. has been reported by earlier studies that pro-
tein interaction networks often contain dense regionsdbatain large number of connec-
tions between the constituent proteins [Schwikowski e2@00]. These regions are often
hypothesized to represent functional modules, which ateralaunits in which proteins
perform their function. Clustering is a very effective apgch for finding groups of sim-
ilar points in a given data set, corresponding to a suitabfeniion of similarity. When
the original data consists of points laid out as a graphetlobssters correspond to sets
of highly interconnected connected points, and severalriilgns have been designed for
extracting these clusters from graph-based data [Brartdes 2003]. Since this form of
clustering can be directly applied to protein interacti@works, some approaches have
been proposed in the literature, that model the interaatigivork as a graph and ap-
ply graph clustering algorithms to it to group functionadliynilar proteins into modules.
These modules can then be used for the annotation of untbarad proteins in them.
The following discussion describes these approach inldetai

Snel et al. [2002] constructed a network from genomic assiocis detected on the basis
of conserved gene order in genomes [Huynen et al. 2000]yatet by the conjecture that
these associations reflect functional association betweamrins [Dandekar et al. 1998].
Using a previously devised methodology [Snel et al. 200@ genes in this network were
clustered into orthologous groups. Again, when these grougre clustered using single
linkage, a giant cluster df611 groups emerged. In the process of analyzing this large clus-
ter, several genes namediagerswere identified. These linkers essentially are low-degree
nodes in the interaction graph, as shown in Figure 24, tleath@mbers of two clusters (or-
thologous groups in this study) and thus lead to the merdihgmsub-clusters in the giant
cluster when the single linkage clustering algorithm isdusehus, wheni25 such linkers
were eliminated265 sub-clusters of the large cluster were discovered, abfigtof which
had a uniform functional composition according to COGsgatties [Tatusov et al. 2003].
These subclusters can now be used for functional clas#iicat
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In another application of clustering [Dunn et al. 2005], theége-Betweenness algo-
rithm [Girvan and Newman 2002] was used to cluster the Letataset of human protein
interactions [Lehner et al. 2004] to derig2é clusters, that differed reasonably well in the
GO annotations assigned to them, such as transcriptidrgyaaé regulation and mRNA
processing. It is found that the method is robust to falssitppe interactions, since multi-
ple interactions are used to identify a cluster in the EdgesBenness algorithm. Hence,
this study successfully extended the clustering-baseatifumal analysis methods to human
protein interaction networks, which is significant from adizal point of view. However,
a significant disadvantage of this scheme is that the delefi@dges implies the loss of
experimental knowledge, which is not advisable in this dioma

Besides prediction of individual protein functions, ckritg can also be used for finding
functional modules, which are groups of proteins that fiemctogether. Corresponding to
this idea, Rives and Galitski [2003] present one such glyater discovering functional
modules in yeast protein networks. In this paper, a sinigleHierarchical clustering al-
gorithm was used to cluster the proteins in a network, withlémgth of the shortest path
being the distance between two proteins. This algorithnxjpeeted to resist the effect of
false positives since spurious interactions are moreyfitcelie on spurious longer paths be-
tween proteins rather than the shortest ones. This algosiths applied to three different
types of yeast networks and successful results were obtaine

—Protein signaling network: Discovered clusters corresito modules of signaling path-
ways such as thRaspathway.

—High-throughputinteraction network: Some known modslash as sm8also emerged.
Also, in conjunction with cellular localization dataib proteins, which are highly con-
nected nodes in the interaction graph, were also discovered

—Filamentation network: Known modules suchSaef andCdc28emerged, and new pro-
teins were associated with known clusters, suckead24Cwith fMAPK.

Thus, the versatility of the algorithm was shown througleftectiveness on multiple types
of protein interaction networks.

In another clustering-based analysis of the yeast interaoetwork [Pereira-Leal et al.
2003], a different perspective was adopted. Here, ther@aignteraction graph was trans-
formed to its line graph [West 2001], which was clusteredigshe flow simulation-based
TribeMCL algorithm [Enright et al. 2002]. Upon transforrwat back into the original
graph, overlapping protein clusters were obtained, cpmeding to the general biological
understanding that one protein can be involved in multiptecfions. Using interactions
from DIP [Xenarios et al. 2002] and a weighted entropy mettiwas concluded that the
clusters were homogeneous according to several functiohaimes.

Overall, the success of these strategies in a wide rangéwbries, and an equally varied
set of classification schemes reinforces the utility of @ting for interaction networks.

8.3.4 Association Analysis-based Approach&ustering is the most widely used mem-
ber of the general category of unsupervised data miningighgas. Another significant
member of this category is association analysis, which ctm@p of techniques for the
identification of frequently occurring patterns in the givéata set, where the definition
of a patterndepends on the type of the data being considered [Tan et @h]20n the
context of graphs, these patterns correspond to frequeatiyrring subgraphs in a set of
graphs [Kuramochi and Karypis 2004]. Extending this condagher to a set of pro-
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Fig. 25. GO annotations of the hyperclique patté@usl, Msl1, Prp3, Prp9, Smel, Smx2, Smx3, Yhidund
via the methodology of [Xiong et al. 2005]. The annotatiambath the cases are fairly coherent, particularly in
the biological process, which is the most relevant for fiomcprediction from complexes.

tein interaction networks leads to the idea that these pattaay correspond to functional
modules and may be used for functional discovery.

This idea was adopted by [Hu et al. 2005], who proposed CODE NS algorithm to
discover coherent, dense and possibly overlapping subgnapich occur frequently in a
set of graphs. CODENSE constructs a summary graph for thensed subset of frequent
dense subgraphs from this graph, and then, the MODES digofitartuv and Shamir
2000] is used to extract the true frequent subgraphs in tigenat set. In order to ensure
sufficient data, an indirect method of protein network cargton was used in whicB9
microarray datasets for yeast were transformed to netwesikg the correlation between
expression profiles of pairs of proteins. For evaluation effgrmance, functions were
assigned tal48 genes in the derived subgraphs using the majority rule, ladasulting
accuracy was0%

In another recent application of association analysis falifig coherent functional mod-
ules, Xiong et al. [2005] extract functional modules fronotein complex data using the
concept of hypercliques [Xiong et al. 2003].hpercliquds a set of frequently occurring
objects (proteins in this case), such that the confidenceef/aule formed using these
objects exceeds a certain threshold. Also, efficient algms exist to extract these hyper-
cligues from a large binary data sets. These binary datacaetbe easily generated for
protein complex data by treating each protein in the comagean attribute with valug,
and each absent protein @sUpon running the hyperclique algorithm on binary versions
of benchmark protein complex data sets [Ho et al. 2002; Gaval. 2002], several accu-
rate functional modules were extracted. The functionakcehce of these modules was
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shown via their annotation with GO codes, both from the madkdunction and biological
process ontologies (see Figure 25).

The above approaches focused on identifying sub-netwdrgsoteins that are highly
conserved between a set of interactions networks. Ano#irgpective on the frequent sub-
network problem that can be considered is that of findinguesq sub-networks within a
given interaction network, which may represent structyriahportant groups of interac-
tions. A brute force solution to this problem is exponeritiatomputational complexity.
Hence, Chen et al. [2006] proposed an efficient algorit@MoFinder inspired by the
Apriori algorithm [Tan et al. 2005], for this problem, andosted that these motifs were
generally constituted of highly reliable interactions. Aiqueness property was also de-
fined for these motifs, in order to ensure that they were nodoanly produced, which
may be a problem for motifs of small size. However, this alhon is not directly usable
for inferring protein function, since it only identifies fjeent subgraphs in the interaction
graph whose nodes are not labeled by the proteins they myreshus, in order to use
these motifs for function prediction Chen et al. [2007] pr@ed a modified version of the
NeMoFinder algorithm, where each motif was labeled by tlutgins the nodes represent,
and these proteins were annotated by their annotationsn, These motifs we clustered
on the basis of the similarity of the GO terms that they wergcaed with, thus producing
a set of groups of proteins, each of which carried similar G@®aations, and occurred
frequently in the input network. These groups were geneririched with related GO
terms, thus showing the ability of this idea to extract fimmally important components
of an interaction network, even if the components are disjioi the network. Thus, this
algorithm marked a difference from the rest of the algorghparticularly those based on
clustering, which are heavily dependent on the connegtfiein interaction network.

Overall, these studies have highlighted the potential®&iiplication of association pat-
tern discovery algorithms to the problem of functional digery from protein interaction
networks, and more such studies can be expected in the future

8.4 Discussion

From the above discussion, it can be observed that numeannasative approaches have
been proposed for the computational analysis of prote@raations networks, particularly

for the prediction of protein function, and more are beinglined by the day. In particu-

lar, the results obtained from global optimization-bagegraaches for this problem have
been impressive. These are expected to improve further estechniques from computer
science for the analysis of such networks, such as sociabomnleimining and web search

techniques, are adapted into this domain.

9. LITERATURE AND TEXT
9.1 Introduction

As in all other research communities, researchers in thesfief biology and medicine
publish the results of their research in various journatb@nferences. As a result, over
the past, a huge repository of knowledge has been creatée ifotm of papers, books,
reports, theses and other such texts. Clearly, these tegesicontain a huge amount of
information about important biological concepts such astgin structure and function,
cancer-causing genes and several others. Thus, thereisugiiity in the mining of these
repositories and retrieval of useful information.
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Fig. 26. The general architecture of a literature miningdabfunction prediction system

The most widely used database of research articles is MEBFNvhich currently
contains about4 twelve million articles published in vaggournals and conferences of
biomedical research, and also provides a web-based io¢éerfamed PubMédl Each
documentin MEDLINE is assigned a unique ID and prominerdbbases, such as SWISS-
PROT [Boeckmann et al. 2003], SGD [Dwight et al. 2002] ancB&lse [FlyBase Consor-
tium 2003], are linked to it through these id’s. In additieach document is annotated with
representative MeSH terms that are derived from a manually-designed ontolcaset
thesaurus. Owing to its extensive coverage and well-cdedestructure, MEDLINE is by
far the most widely used source of articles describing bidioed research.

9.2 Existing Approaches

The primary target of the field of biomedical literature migiis to extract useful and
valid biological information from the vast repositories lmbmedical research literature
such as PubMed. The form of information we are most intedesteare the functions
of various genes and proteins. Function prediction viaditere mining aims to uncover
those functions that have not been reported in the litegatamd several approaches have
been proposed in this direction [Nair and Rost 2004]. Thegeaaches are the subject of
discussion in this section.

The general architecture of a literature mining-basedtfan@rediction system is shown
in Figure 26. The various “identification” modules in thelatecture represent the prime
challenge for such systems, namely the variation in the fs@nguage by different au-
thors. This variation is observed not only in the organaabf the text in the articles,

4htt p: // www. nl m ni h. gov/ pubs/ f act sheet s/ nedl i ne. ht ni
15ht t p: / / www. pubned. gov
6htt p: // www. nl m ni h. gov/ nesh/
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but also in the nomenclature. For instan&®/ B2, a protein involved in signaling in the
brain, was known by various names suclCas5, Nuk, Erk, Qek5, Tyro6, Sek3, Hek5
and Drt in the literature, before its official name was adopted [Katditorial 1999]. It
is widely recognized that such variations make the task obuering useful information
from literature very challenging [Blaschke and Valenci®20Nair and Rost 2004].

Despite these challenges, several powerful text analgpiaches exist in data mining,
that can be used to extract useful knowledge about proteictiftn from research articles
and other texts. This analysis can be performed at variaetste

—Shallow: Only the abstract or introductory text is used in the analysi
—Deep: The complete document or text is utilized.

Text analysis approaches for biomedical literature existagh levels. Another classifi-
cation is based on the extent of English vocabulary consdifar this analysis. The two
classes here are the following:

—Free: The analysis is performed on the complete unstructuredrtaxtthe articles/abstracts.
—Restricted: Only a fixed-size vocabulary, such as the set of GO codesalyzad.

Though the above categorizations are useful, a more usafegaerization of the ap-
proaches that predict function from biological literatisébased on the underlying tech-
nigues and the fields these techniques are adopted from. ®bedominant fields that
have influenced function prediction from literate are atofos:

—Information Retrieval (IR) : The field of information retrieval deals with the automatic
extraction of information from a large source of data, a s#fjpoy of research articles in
our case, starting with a natural language query issued mn&h [Rijsbergen 1979].
Given this data, IR approaches essentially involve themedion of the relevance of
documentsin this data set to the given query, mostly at astiotevel, and then ranking
them to find the most relevant results.

—Text Mining: Text mining is defined as the process of extraction of seivaht in-
teresting and non-trivial knowledge from unstructured {&¥eiss et al. 2004]. The
techniques in this field involve the use of intelligent datalgisis techniques, such as
clustering and classification, for analyzing text data. § tthese techniques are more ro-
bustly able to handle large variations in data, which is aificant problem for research
literature because of the different writing styles of théhaus of different articles.

—Natural Language Processing (NLP)In many cases, the use of text mining techniques
is not enough, and it is pertinent to incorporate naturajleage understanding [Allen
1995] into the analysis algorithm. The techniques in thile fieeals with the modeling
and analysis of natural language use by humans, so as eveetemantically interesting
knowledge from text.

We have categorized the approaches proposed for predpritgin function from litera-
ture into the above three categories, which are discusdbe ifollowing sections.

9.2.1 IR-based approache#s mentioned above, information retrieval deals with the
retrieval of the most relevant documents in response to ayquehis paradigm can be
easily applied to the problem of function prediction frotetature, where the query is the
name of the gene/protein, and the data source is a repositoegearch articles.
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The earliest solution to this problem was proposed by Tamsaghal. [1998]. In this
approach, which is mostly statistical, the frequency ofouss keywords are recorded for
proteins, which were categorized into three functionassés: Energy, Communication
and Information. These keywords are obtained from the SWRROT database, in which
the entry for each protein also contains some keywords nilgndentified from the litera-
ture. Using these frequencies, unclassified proteins aigrees] to one of the three classes.
Next, the keyword frequencies are updated using this newfsgassified proteins. This
process is carried on till there is no significant change énftequencies. Using this ap-
proach, a coverage 62% and a precision 082% was estimated for a data set consisting
of the proteins in thMycoplasma genitaliurgenome. Though the coverage appears to be
low on this data set, it becomes significant when comparedagaortanual classification of
these proteins, which resulted in a moderate coveraga%f

The next step in this direction was the ProFAL (PROtein Famet Annotation through
Literature) system [Couto et al. 2003]. In the retrieval hathe documents in PubMed
linked to the entries of GenBank [Benson et al. 2004], SWRSET [Boeckmann et al.
2003] and PDB [Berman et al. 2000] databases are retrievetthel extraction phase, the
enzyme under consideration is annotated with all the GOgeayoeuring in these docu-
ments. The validation of these annotations are mostly maand one such evaluation of
173 annotations for enzymes in the CAZy database [Coutinho atiBsat ] by an ex-
pert curator reported5% precision. The recall of the system was also 1d@%), mostly
because of the lack of bibliographic references for somgrees.

MILANO [Rubinstein and Simon 2005] is another system whiok$ multiple databases
to annotate genes. It takes as input a set of gene identifidra aet of custom terms. In
order to handle the variation in the gene names, the genesaraesxpanded using the
LocusLink databasé , and the co-occurrences of these new names with the custora te
are counted in the PubMed and GeneRIF [Mitchell et al. 20@8ldhent databases. The
resulting associations are ranked according to the frexyuefico-occurrence and pre-
sented to the user on a web-page. In a case study, it is vetifiedILANO can indeed
identify the genes most affected by the over-expressiohapi3 gene. Besides being a
sucessful application of a software engineering architecin literature mining, the two
biggest strengths of MILANO are its ability to use aliasesgene names, and its use of
the GeneRIF database [Mitchell et al. 2003], which contaimsut90, 000 summaries of
articles about known genes.

As can be seen from the above descriptions, IR-based apmeacostly use the syn-
tactic information in documents to extract useful inforioatfrom text. The need to use
semantics in these approaches led to the application ofi@atubased on text mining to
the problem of automated function prediction from the &tere. These techniques are
reviewed next.

9.2.2 Text mining-based approacheAs mentioned before, text mining holds great
potential for the analysis of biomedical literature beeaoi§ts ability to utilize the seman-
tic content of a document, and robustness to variationsitingrstyles and nomenclature.
This section discusses several text mining-based appesadbht enable the prediction of
the functions of proteins from literature.

For along time, the most popular technique for predictirgggin function was the trans-

7www. ncbi . nl m ni h. gov/ LocusLi nk
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fer of annotation from a homologous protein to the querygirofSections 3.2 and 3.3.1).
Hence, it was natural for early text mining approaches tlizatihis notion for making
confident predictions. One such approach is presented byeRend Aszodi [2000], who
propose a pipeline for the prediction of functions of novehg products. The portion of
this pipeline of interest to us are its final two steps. In thst tep, a novel protein is
input to a similarity search across multiple databased) a8 SWISS-PROT [Boeckmann
et al. 2003], PIR [Wu et al. 2003] and PROSITE [Hulo et al. Z00&he results of these
searches are stored as HTML documents. Next, the reprégentams from all the doc-
uments are extracted and clustered on the basis of frequéray-occurrence. Guided
by the hypothesis that two documents are similar if they @ionerms that are related to
the same biomedical concept, the documents related to eatdimare clustered using
the term clusters derived earlier. An inspection of theteltsscan then be used to assign
function(s) to a protein. It was observed that, for most ef photeins, all the documents
clustered into a single cluster, illustrating their contogbcoherence. Thus, even though
the final step needed user intervention, this approach wascessful application of doc-
ument clustering to the bioinformatics domain.

The idea of orthology has been used for cross-species diumstan an interesting recent
paper [Stoica and Hearst 2006]. Here, the final GO annowtiba gene are assigned on
the basis of the annotations of its orthologs. Two methoddding this are proposed here,
namely Cross Species Match (CSM) and Cross Species Ciaore(@&SC). CSM uses the
GO annotations of an ortholog also as annotations of theyqyere, CSC only uses those
annotations that are significantly correlated with the d@nt annotations of the query
gene’s orthologs. The complete algorithm is depicted iruFgg7. It is expected that
CSM will have a high precision, while CSC will improve the afi@t the cost of precision.
This is indeed the pattern observed for the annotation of Bhan [Camon et al. 2003]
and MGI Mouse [Blake et al. 2003] databases, where the firtadfsannotations is the
union of CSM and CSC annotations. This work could be esfgaialuable for genes of
organisms that are not as well documented.

Raychaudhari et al. [2002] apply the data mining technidudassification to the pre-
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diction of functions of genes on the basis of the documeray tire associated with.
In the first part of this study, three document classifiersnelg, the maximum entropy,
naive Bayes and nearest neighbor classifiers, were cotesdrfar 21 classes using train-
ing abstracts extracted from PubMed. Words co-occurrirtp thie GO codes denoting
the classes were identified usingatest and were used as features. After classifying a
held-out test set, it was concluded that the maximum entctgmsifier, with an accuracy
of 72.8% is most appropriate for the functional classification tdskaddition, it was ver-
ified that the probability of each classification being cotras assigned by the maximum
entropy classifier, can be used to rank the predictions. & besclusions are in agreement
with results reported earlier in the statistical NLP comiityifNigam et al. 1999]. Thus,
this study presents a strong case of the use of text classifidar function prediction.

In another simple approach, the nearest neighbor clagsificalgorithm is applied for
functional classification of proteins [Keck and Wetter 2D0R/pon receiving a query,
a simple text-based similarity is calculated between itsudeents and those of proteins
identified in a BLAST [Altschul et al. 1997] search, and thp fanctional keywords are
transferred. The results obtained for a variety of databsiseh as GenProtEC [Serres et al.
2004] and MIPS [Mewes et al. 2002] are not impressive, withieigion ovel0.9 being
obtained only for a low recall of abolt4. The suggested reasons for these results are
the presence of homologues and inconsistent examples. dowbke basic weakness of
the approach is the crude similarity function, which is tlekbone of any instance-based
learning algorithm such dsnearest neighbor.

Finally, a problem related to function prediction is thegicgion of functional relation-
ships between genes. Shatkay et al. [2000] addressed th&pr by representing each
gene by a set of abstracts and then comparing the repraserstis of all pairs of genes
to determine which ones are functionally related. Eachfs@bouments, which are in turn
assembled using a document similarity algorithm is coeebimto a binary vector, and
the similarity between these vectors is calculated usirsineosimilarity. If the similarity
is higher than a certain threshold, the two correspondimgegeare declared to be func-
tionally related. Upon testing on a set of cell cycle-retedegenes in yeast, it was found
that the clusters corresponded directly to those expetatigrdetermined by Spellman
et al. [1998] for the same set. An additional advantage sfalgorithm is that it yields an
executive summary in the form of the most relevant termsyeryegene.

9.2.3 NLP-based approachesn some cases, text mining techniques are not effective
for extracting protien functoin information from documgnsince they are essentially un-
guided, and are thus unable to assign specific meanings itadndl components of the
content of a document. Thus, in order to perform a more guatedysis of the docu-
ments, it is necessary to incorporate natural languagerstaaieling into such an analysis
system [Allen 1995]. The approaches discussed next attengghieve this goal.

Koike et al. [2005] try to capture the protein-functionahterelationship as an ACTOR-
OBJECT one, thus eliminating the false positives generyeldypothesising just on the
basis of the co-occurrence of the protein and functionah tera number of documents.
This strategy essentially consists of two steps. In thedtegt, same and similar meaning
terms for each GO class are extracted from the availableusirg various techniques.
This component thus handles the variability in function eamthe literature and hence
increases the recall. In the next step, gene names arefidéintithe text, and the sentences
in which they appear are subjected to shallow parsing. Ifdme appears in the ACTOR
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Fig. 28. NLP-based approach followed by Chiang and Yu [2005]

position and the functional term appears as the OBJECT,dlgame-function hypothesis
is presented. In order to handle complicated sentencetstas; some rules are defined
for identifying the ACTOR(S) and OBJECT(S) in the parsed&ture. Besides generating
reasonably accurate hypotheses for the yeast and humas, gdrieh are verified manu-
ally, the main reasons for low recall (less th#¥%) are discussed. Some such factors are
parser errors, gene name recognition errors and functidrgane name not occurring in
the same sentence. Addressing these problems will leaditopovement in the system’s
recall.

Some of these issues are addressed by Chiang and Yu [20Giewtrategy for solving
the function prediction problem is shown in Figure 28. Heheee types of variants of
GO terms are defined, namahorphologicaj syntacticandsemantiosariants, and are ex-
tracted using various tools and techniques such as lexioaing1g of variation rules from
literature and mapping of other classification systems tq 8§pectively. Next, sentences
in which a protein name and GO term co-occur are extractedaiigcted to shallow pars-
ing. It is observed that the descriptions of protein funtdian natural language patterns
follow certain patterns such asprotein> participates in<GO> and <proteirn> is lo-
calized to<GO>. These sentence patterns are mined using sentence aligfBaezilay
and Elhadad 2003], and patterns with a high support and cardaare used for find-
ing the functions of uncharacterized proteins describealsaparate set of test sentences.
These patterns, like association patterns in data miniag g al. 2005], capture the con-
sistency in variability feature of language use by authdmsa quantitative evaluation of
the system, it is concluded that processing morphologigatactic and semantic variants
indeed assists in achieving the best performance. At cevidues of minimum support
and confidence, the precision, recall and F-measure vabiagsed are better than the best
submission in the BioCreAtlvE competition [Blaschke et2005], thus illustrating the
power of this approach.



Computational Techniques for Protein Function Prediction: A Survey : 95

The discussion above details well-designed systems thattde to handle greater vari-
ation in the content of the texts analysed than their copatés in the text mining and IR
domains since they are explicitly equipped with knowledyaua natural language use, and
thus have a greater precision at the task of function priedicHowever, recall is a major
issue for these systems as it is very difficult to capture @disible variations in grammat-
ical rules. Future research in this field is expected to coimage primarily on improving
the recall of such systems.

9.2.4 Keyword searchin addition to the approaches discussed in the previous sec-
tions, which perform dree analysis of the text of research articles to prediction fiomg
there exist keyword extraction/annotation systems thatmiée a restricted vocabulary
used in certain databases such as SWISS-PROT [Boeckman2@®3] and SGD [Spell-
man et al. 1998], unlike the vast vocabulary of unstructuead targeted by the former
approaches. These keywords usually contain informationtathe function of a protein,
and thus the results of these keyword extraction systembetmeated as hints for protein
function prediction. Some such systems are discussedssdiation.

The earliest study in this area is described in [Andrade aslén¢ia 1997], where a
simple strategy for ranking keywords for a set of disjoirdgtpin families is proposed. Sets
of abstracts for these families are obtained from MEDLIN& az-score is calculated for
all the words (except the stop words) using their normalizeduency of appearance in
the abstracts correponding to each family. For each famdyds and sentences are ranked
and extracted according to thescore and the averagescore of the constituent words, re-
spectively. Examination of thglastocyanirandxylose isomeraseglasses indicates that the
algorithm performs well in terms of the number of keywordd #me relevance of the sen-
tences extracted. The results are analyzed further in [@deland Valencia 1998], and it
was found that, for th&1 classes considered, more informative keywords than theSS#I
PROT keywords are extracted foé classes, and-score is able to discriminated between
words characteristic of some classes and those that ocoaraly in the literature. How-
ever, the test set considered for this algorithm is too &ahiin terms of ambiguity, for any
reliable conclusion to be drawn.

Fleischmann et al. [1999] restrict themselves to SWISS-PR&words and attempt to
annotate uncharacterized proteins in the TTEMBL databétberalevant keywords. In the
first step of this approach, annotated proteins in the SWRRST database are grouped
on the basis of which PROSITE patterns [Hulo et al. 2006] tmeych, and the common
annotations from each group are retrieved. In the annatatap, the common annotations
are transferred to the unannotated proteins that satisfgdhdition of a rule. Since pat-
tern matching is the integral step in this approach, soméaast such as ensuring high
statistical significance of the match, are adopted to ehiteifialse positive matches. Using
this approach, the annotated fraction of TTEMBL [Boeckmanal. 2003] increased from
32% to over51%, which is a significant improvement in coverage.

Kretschmann et al. [2001] explore the use of the C4.5 datisiee construction al-
gorithm to automate the assignment of keywords to protefrie=nin the SWISS-PROT
database. Once again, the features used are patterns feoRfaim [Sonnhammer et al.
1997] and PROSITE [Hulo et al. 2006] databases. In orderdwige substantial training
datato the learner, proteins from SWISS-PROT are categgiito ten classes on the basis
of the signatures in the InterPro database [Apweiler et@G002 For each class, decision
trees are constructed for all keywords, if possible, andgalre derived from these trees,
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and their confidence is estimated using stastical methotis. validity of these rules is
tested by a ten-fold cross-validation experiment. Not ssiqgly, it was concluded that
rules with a higher confidence have a high precision and lealkeand vice-versa. More
significant is the fact that almo$60% precision is obtained for all classes. However, this
may be a result of the fact that the ten classes used forgemtindisjoint, and hence, there
is not much ambiguity in the assignment of keywords.

Another application of keyword classification to functimegiction is presented by King
et al. [2003]. In this approach, a binary matrix is consteddrom the training data, indi-
cating which genes (rows) are annotated with which GO cat#arfins). The hierarchical
structure of GO was also taken into account by using the idaga gene annotated with
a certain GO node should also be annotated with all ancesttne latter. Using this ma-
trix, a decision tree classifiéd/ pr and a bayesian network classifigliz vy were learnt. In
order to test these classifiers, a ten-fold cross validatiqreriment was conducted on the
SGD [Dwight et al. 2002] and FlyBase [FlyBase Consortium3@hnotation databases.
ROC analysis indicated that/p, outperformsM gy at low false positive rates, and vice
versa at high false positive rates. Manual assessmentalgated that in many cases, the
predictions made led the assessor to related literatures ita significant step towards
automated database curation [Seki and Mostafa 2004].

The latest study in this direction appears in [Perez et &4P0The basic methodology
behind this approach is the establishment of links betwierature databases such as
MEDLINE and protein databases such as SWISS-PROT. Patiase of MeSH terms,
which are ontology-based annotations of abstracts in MBNH, is made. Using the fuzzy
thesaurus model [Miyamoto 1990], three mappings are dérivetween MeSH terms and
GO annotations of the SWISS-PROT entries (obtained fronsBA project [Camon et al.
2003)), between MeSH terms and SWISS-PROT keywords, amdieetkeywords derived
from the abstracts to the SWISS-PROT keywords. Once theppings are available, it
is easy to annotate uncharacterized protein sequencsssgécifically noted that, though
precision and recall results are inferior to those repdoieretschmann et al. [2001], the
results are still substantial since only literature and mpp®rting databases are used to
annotate proteins. This is an advantage of this approach.

From the detailed description of the various keyword antimriesystems, it can be ob-
served that the underlying methodology here is signifigasithpler than that adopted for
function prediction. This is a consequence of the use oftaicesd vocabulary that elim-
inates the need to handle variations of different kinds. k@, this research is still im-
portant in order to disseminate and assimilate researcitseglickly, a task that becomes
substantially harder if every researcher adopts a diffészgminology.

9.3 Standardization Initiatives

In the previous few sections, we saw how different approad¢bemining the functions
of proteins try to handle the problems arising out of the fise of language in biomed-
ical literature, usually. These approaches are based faratit hypotheses, and are also
evaluated on different test data. This makes it difficultéofprm a comparative evaluation
of the various literature mining techniques for proteindtion prediction. To make this
comparison possible, it is necessary that all the algosthealtered to address the same
task and the evaluation be carried out on a common test dat@tse necessity led to the
organization of two literature mining contests, namely@ieAtIvE [Blaschke et al. 2005]
and the genomics track of the Text REcognition Conferen&EQ) held in 2003 [Hersh
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2004]. These contests are discussed in detail in this gectio

9.3.1 BioCreAtlvVE. The Critical Assessment for Information Extration in Bigia(BioCre-
AtIVE) contest [Blaschke et al. 2005] was organized by a tedmrurators of biological
databases and text mining researchers working on the pnodll@utomatic information
extraction from biomedical literature. The main motivatioehind BioCreAtlvE was the
development of common standards and shared evaluati@riartb enable comparison
across various literature mining techniques. Two taskewlefined as a part of the con-
test, the first of which was the identification of gene (or piot names in a given data set.
Owing to the popularity of this task, and the high number dirsissions [Yeh et al. 2005],

a more detailed task further consisting of three sub-tasissdefined for the contest. These
subtasks were:

Task 2.1. : Find pieces of relevant in article text that support a gié&h annotation for
a certain protein.

Task 2.2. : Given an article, find the most appropriate GO annotatiomfoertain pro-
tein and relevant text supporting it.

Task 2.3. : From the whole set of articles, find the most relevant aticind the most
appropriate GO annotation for a given protein.

Thus, essentially, the solution for each sub-task requare@éxtension of the solution
for the previous sub-task. The training data for the whodk taas essentially the entire
GOA database [Camon et al. 2003], which provides GO anmizfior various proteins
as well as the MEDLINE id’s of the documents(s) which supjtlog annotation. The test
set was a set df12 full text articles from thelournal of Biological ChemistrydBC):8. A
common training and test set ensured that the best appraash e most successful of
these approaches are dicussed below.

A fully statistical approach to the problem is taken by Ray &raven [2005]. A
schematic diagram of the strategy followed in this work ievgh in Figure 29. To initial-
ize, the original training set is supplemented by incorpogasimilar data from the SGD
(yeast) [Dwight et al. 2002], FlyBase (Drasophila) [FlyB&onsortium 2003], WormBase
(C. elegans) [Harris et al. 2004] and TAIR (Arabidopsis) fthuet al. 2001] databases. Us-
ing this augmented training set, the mwgbrmative termsre identified for each GO code

18http://www. j be. org/
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using ay2-test on the contigency table recording the co-occurrend@an-co-occurrence
of all the unigrams, bigrams and trigrams across documesticéated with a certain GO
code. When given a novel protein, the most appropriate G@rasent is assigned by
summing they? values of all the informative terms for a GO code. This modduither
enhanced by combining it with a naive Bayes classifier basefg¢atures extracted from
raw text that capture the notion of protein name-GO codeciestion. The resultant system
is shown to be very competitive compared to the other subomiswith respect to preci-
sion and recall. The most significant conclusion from thislgtis that supervised learning
methods can be effective for the task of function predicfiom textual data if sufficient
data is provided at the learning stage.

Rice et al. [2005] approached Task 2 from a document claasdit perspective and
used support vector machines (SVM) for the assignment of&@4 to proteins. For this
purpose, features in the form of significant terms were eshfrom each document using
the C-value method [Frantzi et al. 2000]. This method combiinguistic patterns with
statistical analysis to suggest the most significant teme document. Next, a feature-
value vector for each document is then constructed usiregsevdocument frequenag{)
weighting [Rijsbergen 1979] for each synterm. Finally, @¥M was trained for each
GO term using the initial training data provided by the oligars. During the testing
phase, these classifiers were used to rank the entity coadiitethe correponding sub-
task. Unfortunately, performance was poor, with low pradior tasks 2.1 and 2.2, and
only average precision for task 2.3, which was evaluatecfeery small number of test
cases. Still, a significant conclusion from this study was tielevant knowledge can be
extracted from a set of documents even if it has not be expbtated in a single document,
using intelligent text indexing schemes suchdis

Some other groups only presented solutions to the first tlwitasls of Task 2, i.e., they
addressed only the problem of assigning a function to a giee® @gn article of interest
about it. [Ehrler et al. 2005] present the solution that eebd the best results for Task
2.2. This solution carries out both a vector space- as wedbalar expression-based re-
trieval of the best GO terms corresponding to a documentlze merges the two lists
of recommendations. Another solution is FiGO (Finding Gérgology) [Couto et al.
2005], which is based on the idea that the higher the frequeha term in a document,
the lower its significance. Correspondingly, all possitdaations of a GO term are found,
their confidence is calculated, and those annotationsameferred to the gene whose con-
fidence exceeds a certain threshaldHowever a very low precision d0% is obtained in
experiments on the benchmark data set.

Another algorithm known as the sentence sliding window allgm [Krallinger et al.
2005] was designed to address only Task 2.1, i.e., extraofithe most relevant passage
for a given protein annotation. The strength of the algaritkas in the foundation, i.e., the
set of synonyms constructed for protein names and GO labeése synonyms, known as
sub-tags, were collected both from standard databasesasuobcusLink, SWISS-PROT
and GOA, in addition to rule-based natural language vasidwéxt, a score is calculated for
each sub-tag in a manually chosen abstracts, using a sersiting approach. Finally, an
overall score is calculated for a set of sentences by myiltigithe score of a protein name
and a GO label, which are in turn obtained by summing the iygesub-tag scores. The
highest scoring set is returned as the best passage. Owtinig tiontext-based estimation,
this submission received the highest number of correctigieds for Task 2.1.
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The above descriptions show the complexity of the task obtation from biomedical
literature. More such issues were brought forth by the TRE@gics track held in 2003,
which is discussed next.

9.3.2 TREC 2003 Genomics Traclhe Text REtrieval Conference (TREC) is a well-
regarded series of conferences discussion issues retatefbtmation extraction from
unstructured text. Looking at the exponential growth ireegsh towards information ex-
traction from biomedical literature, the conference mamnagvere motivated to establish
a genomics track at the conference in 2003 [Hersh 2004], tamaki been conducted ever
since. The tasks in this track were similar to that of BioQitgB. Specifically, the primary
task of the track was to find all MEDLINE references that déscthe basic biology of a
give gene X, which includes isolation, structure, geneditd function of genes/proteins in
various conditions. The second task was to construct Gén@Richell et al. 2003] entries
for the given genes, which provide a certain piece of textdeisg the function of a gene
and reference of the source of this text. Training data stediof a file describing naming
variations for50 genes from four organisms, a large chunk of MEDLINE recoess] a
set of GeneRIFs corresponding to these genes for validatiesting was performed with
respect to a similar set 6f) genes and their GeneRIF entries. The track attracted $evera
submissions and inspired many other approaches, some ofiate discussed here.

One of the most successful approaches was proposed by thexBiteam [Bhalotia
et al. 2003]. The two tasks were targeted separately. Thefodule was a systematically
weighted combination of judgements whether a certain detumeferences a given gene.
For making these judgements, rule-based expansions welie@fo the gene names, and
using a character-basedgram model [Allen 1995] and the Dice coefficient [Rijsberge
1979, it is estimated if the abstract, the title and the Me®#scriptor of a document
contain the gene name. This estimation is combined with thlegbility that the document
has been assigned to a GeneRIF, and the documents are famddrto produce results for
the first task. For the second task, it is observed that Géntfts generally come either
from the title of a document or the last sentence of its abstri& naive Bayes classifier
was used for this classification, and the final results predweere ranked second among
all the submissions to the track.

Another very successful approach, which was ranked thitbeatrack, was presented
by de Bruijn and Martin [2003]. This system consisted of sen®dules, most of which
were similar in spirit to corresponding components of [RBitial et al. 2003]’s solution.
In addition, two specific ideas were also implemented, nartted use of the f — idf
weighting scheme to represent the documents, and an vegatbcedure to identify the
documents most similar to a given text query. The overaliesyds found to be very suc-
cessful and was ranked third among all submissions. Iniaddi&ome failure conditions
were identified, such as overly complex gene names, oveeseptation of a certain gene
in the training set, gene names close to English words ahaéaif the evaluation metrics.

Yet another approach inspired by the track, though not pbet in TREC'’s proceed-
ings, appears in [Seki and Mostafa 2004]. Here, an algorihoposed by the same au-
thors [Seki and Mostafa 2003] was used to identify genegimatames in the texts. The
documents selected were broken up into sentences and ysiogabilistic score called the
g-score, the likelihood of each sentence being included iraeRIF record is estimated.
This score is motivated by the observation that GeneRIF and@eneRIF sentences fol-
low distinct g-score distributions. Though initially the precision waswlow, linking of
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this algorithm with LocusLink entries resulted in a bettee@sion-recall curve for the
overall system.

9.4 Discussion

The wide variety and innovativeness of solutions submittettie BioCreAtlvE and TREC
contests demonstrate the potential that literature mihimlgs for gene/protein function
prediction in particular, and for biological knowledge absery in general. In addition,
these events also emphasized the most significant probrethsitask. For instance, the
maximum number of submissions to BioCreAtlvE focused onrtiast basic task, i.e.,
gene name identification in text [Blaschke et al. 2005], Whidlicates that there is still
a long way to go before perfection is achieved in this field.tis is recognized, further
research and consequently better results are expected frett.

10. MUTIPLE DATA TYPES
10.1 Introduction

With a plethora of data being generated by a wide spectrumiaiépmics experiments,

it may be hypothesized that sometimes what can’t be disedvigom one source of in-

formation may become obvious when multiple sources areyaedlsimultaneously. This

intuition has been concretized by Kemmeren and Holsteg@dR@Who have suggested the
following distinct advantages achieved by integratingctional genomics data:

(1) Usually, individual biological data sets provide infaation about complimentary bi-
ological processes, such as gene expression and proteragtion networks. Thus,
combining them provides a global picture of the biologidaépomena a set of genes
is involved in.

(2) Often, data quality varies between different types dadas well as within different
sources of data of the same type. For instance, studies hawnssignificant varia-
tions between the quality of different protein interactaata sets [Deng et al. 2003].
Thus, the combination of several data sources/types inegribve quality of the overall
data set, since the errors in one data set may be correctadfines

(3) The most important advantage of the integrative apgrdathat since only conclu-
sions valid over a set of data types are accepted, the pidichade by this approach
are usually more confident than those made on the basis ofdudi data sets.

Corresponding to these prominent advantages, severaluatignal approaches have
been proposed, that address the problem of protein funptiediction by an integrated
analysis of a variety of data types discussed in previousogec(Sections 3-9). In addi-
tion, some approaches also utilize other forms of data ssickeltular localization, protein
fusion and trancription factor binding sites. Howeveggpective of the types and formats
of the data used, it has been generally observed in this fieldthe results obtained by
these approaches are better than those obtained usinglinaligources of data, thus mak-
ing them very important in the landscape of protein funcfioediction techniques. The
following section discusses several approaches basedsodeta integration idea.

10.2 Existing Approaches

It was discussed in the previous section that it is benefioimombine different forms
of biological data in different ways, as may be appropriatethe particular study and
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its goal. This section discusses several approaches toat #us strategy in order to
predict protein function effectively. However, for the pose of a better understanding
of these approaches, we categorize them into the followdtggories, on the basis of the
underlying ideas in each of these approaches:

(1) Common format: This category consists of those approaches in which thgnadi
data types are transformed into a single format by usingaguiate pre-processing
strategies. This pool of data can then be analyzed in onemiays:

—Same technique Application of the same technique to the whole data set tivele
a single set of predictions.

—Different techniques Application of different techniques to different data égto
derive multiple sets of predictions, from which a consensgenerated.

(2) Independent formats The approaches in this category retain the original forofiat
the contributing data sets, which implies the use of sepdeathniques for handling
each of these data sets. However, the two sub-categoridiettais analysis procedure
in the following different ways:

—Simple Combination of results This may also be referred to @®st-processing
of results, where the results of each individual analysescambined to derive a
consensus set of predictions.

—Intelligent data fusion: Approaches in this category adopt intelligent machine
learning techniques such as Bayesian networks and suitabhel methods for
modeling the dependence between the results derived fremdhividual analyses.

Owing to the possibility of applying different techniques flifferent data types, tech-
nigues that belong to the second category are much more gojmain the ones in
the first category. Another advantage is that this approasius the loss incurred in
transforming all the data types into a common format, foroluhwell-established ap-
proaches are not available yet. Further difference betteetwo will become evident
during the course of their discussion.

In subsequent sections, we review several approaches ggdpo each of the above
categories.

10.2.1 Approaches Using a Common Data Formdtis section covers both of the
above the types of approaches which apply the same techttidbis data, and those that
apply a variety of techniques, and then derive a consensihre dfidividual results. How-
ever, a downside of this category of approaches is that methbtransforming different
data types to a common type, say protein networks, are ndtestblished, and this in-
troduces a source of error in the analysis. Thus, not mangoaphes follow this strategy.

One of the first instances of the first type of approach, i.eneséormat-same tech-
nigue, is detailed by Schilitt et al. [2003]. Here, three ndeems of biological data were
converted into gene networks. These original data sourees as follows:

—Mutant network : A network of genes where an interaction means that a delefia
gene from a mutant leads to a significant change in the exprdssel of the interacting
gene [Rung et al. 2002].

—In-silico network : A network of functional associations, where a gene is astaption
factor whose binding site is found in the promoter regiorhefinteracting gene [Pilpel
et al. 2001].
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—ChlIP network: Four networks constructed from genome-wide transciptéztor lo-
calization data based on ChIP experiments [Lee et al. 2002].

The hypothesis in this study was that interacting genesingbultant combined network
will be functionally related. For the validation of this hythesis, three reference networks,
separate from those used as input to the prediction algorittere used: protein-protein
physical interaction networks, protein complexes exmess networks and a co-citation
network extracted from the biomedical literature. The cargon of the generated and
reference networks was conducted by calculatingpthralue for the similarity of the ad-
jacency lists of two genes in two different networks, cadtetl using a hypergeometric
distribution. Under the best configuration of the referemewvorks, a true-positive rate of
82%, and a false-positive rate 82% was obtained. Thus, this study presents a proof of
concept for the same format-same technique idea.

Strong et al. [2003] provide an instance of the approactadotiow the same format-
different techniques idea. Here, the authors combined tbperon method with other
methods of genome comparison, hamely gene neighborhogthgametic profiles and
gene fusion (Section 5). The Operon method consists sinfigisooiping all uni-directional
genes on a single DNA strand, whose internucleotide distanless than a certain thresh-
old, into a single operon, and thus is a simplification of taegneighborhood method [Over-
beek et al. 1999b]. This is so since the latter needs mulgpleomes for making an
inference, as opposed to the requirement of a single gendrnie dormer. The more
interesting part of this study was validation of the comdiagorithm using th. tuber-
culosisgenome. This validation showed that the signal-to-noite (8NR), calculated
using the keyword recovery ratio of functionally linkedgisal) and random (noise) gene
pairs, of the combined methods (between 10 and 13) was signily higher than that of
any individual method (maximum of 9.5 for gene fusion).

A similar strategy has been adopted for the constructioneBEFICAz [Tian et al. 2004]
database. However, the proposed technique here, known iE~EHs more intricate than
the Operon method, and is geared towards identifying fonetly discriminating residues
(FDRs) in enzyme sequences, and classifying them accotditige FDRs discovered.
CHIEFc is a multistep method, which essentially splits agpecified enzyme family into
subfamilies using single-linkage clustering, and therddsuan all-inclusive HMM-based
multiple sequence alignment (MSA) for each subfamily byluding those enzymes also
which are not assigned to this enzyme family, but is well radig) with this subfamily.
Thus, CHIEFc also accounts for functional heterogeneihe functionally discrimanting
residues (FDRs) are the ones with the low&stcore based on the entropy at the corre-
sponding position in the MSA. Finally, an unannoted enzymassigned to one of the
enzyme classes if it is perfectly aligned and has the samesHiD®Re corresponding posi-
tions. In its integrative version, namely EFICAz, the résof four different techniques are
combined, which are as follows (details omitted for breuityt can be easily extrapolated
from the nature of the databases used; SIT = sequence igentit

—CHIEFc family based FDR recognition [Schomburg et al. 2004
—CHIEFc family based SIT evaluation [Schomburg et al. 2004]
—High specificity multiple Prosite pattern recognition [ldet al. 2006]
—Multiple Pfam family based FDR recognition [Sonnhammealefl997]

While the first method shows high accuracy on the ENZYME dasaljSchomburg et al.
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2004] on its own, requiring a consensus of at least two teghes pumps the accuracy
to 100%, while accepting results from all of them leads to a much &igtoverage than
any of the techniques individually. Finally, an extensivegiction on theE. coligenome
produced! 32 novel predictions, few of which could be verified from thestature. This
success of EFICAz, though on the comparatively simpler berack of enzymes, shows
the potential of applying several variations of the sameaggh on a common data set.
Similar to Schlitt et al. [2003], Chen and Xu [2004] presembter approach in which
three different data types, namely protein interaction Bptein complexes (C) and mi-
croarray data (M), are combined to build an all-inclusiveamek. The reliability of an
edge in this network is simply calculated as the probabidftfjunctional linkage according
to atleast one of these data sources. Once, this weightadmkehas been constructed,
two techniques from Section 8.3 are used for function ptedicone function at a time:

—Local prediction: Only those neighbors of the protein under consideratioichvhave
been annoted with that particular function are used forutating the reliability score,
that is in turn used to rank the final GO assignments.

—Global prediction: This approach is similar to that adopted by Vazquez et 8032,
where a simple objective function measuring the number fiémintially annotated
edges is minimized using simulated annealing.

The testing of these two techniques was conducted on thd g§eté6 GO-annotated yeast
genes. A ten-fold cross-validation procedure showed thuditad) prediction is more effec-
tive than local prediction since predictions can be made éweproteins with unannotated
neighbors. In addition, the global method was able to mk® novel predictions, of
which about half had a reliability score ove® (on a scale of to 1). Thus, this study
showed how previously well-established techniques coaldded for the effective utiliza-
tion of multiple data sources.

The latest paper in this category [Kemmeren et al. 2005]riEesx an approach that
constructs a large network of protein interactions fronr types of data, namely protein-
protein interactions, phenotype data, cellular locailimgtand mMRNA expression. Function
predictions are made on the basis of relationships in thisaré& which are supplemented
by a reliability value calculated from the information cent of each contributing data set.
Though some cases of success were reported, the overdinesuve not very impressive
because of the simple analysis technique used.

Finally, the Protein Information Resource (PIR) [Wu et &@03] is one of the most
popular source of various data about proteins, partioupadtein sequences, via its Protein
Sequence Database (PSD). A very important part of PIR iRitsGlass protein functional
classification system [Wu et al. 2004], which integrateadtad databases of the various
biological data types discussed in this survey, via dagbaks, as well as some others
such as post-translational modification and ontologieguife 30). The classification is
rule-based [Wu et al. 2003], where the rules are based oidsiification, protein name
checking, keyword checking and protein classification. \Wal €2003] cite several cases
of misannotation just on the basis of sequence identitylehiu et al. [2004] discuss
several cases of how such misannotations could be corrantednhanced information be
extracted about them through the integrated databasess, Piie presents a very high-
profile case in favour of integrative bioinformatics.
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10.2.2 Approaches Using Independent Data Format4any more studies than those
discussed in the previous section have concentrated daingidifferent forms of biologi-
cal data (almost) independently, which has the advantagelifierent analysis techniques
can be used for different types of data and the results caoibioed in an appropriate
way. This combination may be a simple merging of results ointelligent modeling of
the interdependencies between different sets of resuitseddrom different sources. Both
these combination strategies will be discussed in this@ect

Simple Combination of Results

In a landmark paper, Marcotte et al. [1999] laid the fourmtsiof the field of integra-
tive functional genomics. This paper reports the first irdéign of the results of three
independent techniques, namely phylogenetic profiless §igsion and correlated mRNA
expression, in order to derive functionally related pafrproteins. In yeast, upon valida-
tion using experimental interaction and pathway data, ageocentage of the links found
were of the ‘highest’ and ‘high’ quality. For human genes #valuation was based on
the SwissProt keyword recovery rate. The signal-to-n@ite calculated according to this
ratio showed that consensus links made by at least two methede almost as reliable as
those found from experimental data. Thus, this study laidrg strong foundation for this
field of integrative function prediction.

The GO Engine system [Xie et al. 2002] integrates sequeno®lugy with text data for
function prediction. Here, predictions made on the basiegfuence homology searches
are combined with predictions made from a simple lingustialysis of PubMed abstracts.
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This analysis simply consists of choosing the GO-gene &stsmus with the highest log
likelihood (LOD) score. The test set consisted6@d, 130 proteins taken from multiple
databases, and GO was used as the source of functionaficktfsn. A cross-validation
test on this data set showed almost complete coverage, thiilprecision was between
65% and80%. In an additional experimen®00 of these predictions were manually vali-
dated, an®0% accuracy was achieved. Thus, the main point made by thiy stad that
the coverage of an annotation technique could be significardreased, without a huge
loss in precision, by combining it with other techniquesduhsn similar ideas.

Clare and King [2003b] built upon their previous work on yefamctional classifica-
tion, mainly from protein sequence data [King et al. 200&]explore the usefulness of
other forms of data for this task. The data sets used inclgded expression, phenotype,
sequence homology and predicted secondary structuretidatast two of which had been
used in previous work [King et al. 2001]. All the data here \ivaa relational format, and
thus their composition involved simply concatenating tespective attribute value vec-
tors. The same approach as in [King et al. 2001] was used fattifinal classification.
However, suitable modifications were made for ensuring ttaability, such as a more
efficient frequent itemset discovery algorithm, named PARM [Clare and King 2003a].
Even with these extensions, the accuracy was only ar60%dfor most of the data types
and reached the0% mark only for the sequence and expression data sets. Hoveaves
the classification algorithm used was rule-based, someluseés with biological insight,
such as the structure-based rule for the Mitochondriali@aFRamily (MCF) [Kuan and
Jr 1993], were derived. This overall approach was also used functional analysis of
the Arabidopsis Thalianggenome [Clare et al. 2006]. Here also, the overall precision
was about0%, although some interesting rules, which are either knowviaile from a
functional genomics viewpoint, could be derived.

ProKnow [Pal and Eisenberg 2005] is a database that intsgsatjuence and structure
information in order to predict protein function using a lpabilistic approach. Sequence
information is represented as such and as motifs, whiletstral data is converted into
folds and 3D-motifs. ProKnow also uses functional linkafyesn the Database of Inter-
acting Proteins [Xenarios et al. 2002]. These features obtejm are used to derivdues
about its function, which are used to train a naive Bayeslasstier for GO categories.
Cross-validation tests on ProKnow showed al#ijt precision at level and40% preci-
sion at leveb in GO, which are not very encouraging. The reasons for thisgcecision
could be the incompleteness of the feature set or the inppipteness of the clues and the
features used to derive them.

Finally, the JAFA server [Friedberg et al. 2006] has beempeatcently to integrate the
results of a variety of protein sequence-based algoritlomgredicting protein function.
This server collects the results of a variety of such algong, such as GOFigure [Khan
et al. 2003], GOtcha [Martin et al. 2004], GOblet [Hennig k803], Phydbac?2 [Enault
et al. 2005] and InterProScan [Zbodnov and Apweiler 2001 afl the three GO ontolo-
gies, and presents them to the user in a user-friendly mammearticular, for each GO
term predicted, the output shows which algorithms agrek thi¢ prediction. Thus, JAFA
is a significant effort in enhancing the utility of availalitls for protein function predic-
tion. However, the use of straightforward consensus maybadufficient for obtaining
consensus between results, particularly when used foreasivclassification scheme as
GO, and may need to the use of more sophisticated consenslisdagesuch as semantic
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similarity measures [Lord et al. 2003] for evaluating thmitarity of predictions made by
different algorithms.

From the above descriptions, it is evident that simple nmgygif results from indepen-
dent sources of data and techniques has so far not yieldgdyeed results, except in
cases such as the GO Engine [Xie et al. 2002]. The reasonifoistiimilar to the pos-
sible reasons for the failure of the naive Bayesian clasgfiada et al. 2000]. Just as in
the latter, the conditional independence assumption ®attributes may break down for
real data sets, the independence assumption underlyimgtiteaches in this section may
also be invalidated since it is known that most of the biataytlata are complimentary.
Thus, even though it is advantageous to be able to applyerelift analysis technique for
each type of the data, the fusion of their results or thearinediate data should be done
intelligently. The next section focusses on several teqies that adopt this strategy.

Intelligent Data Fusion

As discussed above, there is a great need for techniqudfartelligent fusion of data so
as to exploit the interdependencies between them in orgeettict protein function confi-
dently. Responding to this need, a large number of appredwnee been proposed to carry
out this fusion effectively. In fact, among those considethis is the most populated cat-
egory of integrative functional genomics approaches. Adsawill be seen as each of these
approaches is discussed, data mining approaches have segtheavily because of their
ability of identifying previously unknown relationshipstween data sets and objects [Tan
et al. 2005].

Pavlidis et al. [2002] laid the foundation of this field oféfitgent data fusion for func-
tion prediction through their exploratory study of the effeeness of SVMs for this prob-
lem. In this study, mMRNA expression profiles f2t65 yeast genes [Eisen et al. 1998]
were integrated with their real-valued phylogenetic pesfilPellegrini et al. 1999]. Three
SVM-based kernel methods were used for this integration:

—Early integration: Both the attribute-value vectors were concatenated andges
SVM constructed from them for each functional class.

—Intermediate integration: The overall kernel function is a sum of the kernels function
calculated separately for each of the two sets of vectoranglesSVM is constructed
for each class using this global kernel.

—Late integration: Two separate SVMs are constructed for gene expressiontarid-p
genetic profiles respectively, and the overall discrimtnatue is simply the sum of the
value produced by these two SVMs.

Using a cost measure which penalizes false negatives [Bedvah 2000], it was found
that the intermediate integration method gave the beslisdsuthe108 functional classes
considered. This makes sense since such an integratidesteeal features that are poly-
nomial relationships between attributes within a singfeetgf data, and the global features
are formed by a linear combination of these local featuréss iE the strategy adopted by
several feature generation techniques such as SVD and P&AdfTal. 2005]. Another
interesting finding of this study was that it may be benefiiwathe classification process
if the algorithm can identify the best data set for a classigefraining. This systematic
study thus made several useful conclusions, besidesgaisireral important questions, to
which the other approaches attempted to propose a solution.
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Colocalization

Another widely cited work in this category is the MAGIC (Miglburce Association
of Genes by Integration of Clusters) system [Troyanskaya.€2003], which employs a
Bayesian belief network [Heckerman 1995] to combine théowartypes of data consid-
ered. These data types include clusters derived from divfersns of data, namely gene
expression, colocalization, transcription factor birgdiphysical associations and gene as-
sociations. The general architecture of the MAGIC Bayesiaetwork is shown in Fig-
ure 31. The prior probabilities and the conditional probgbiables of this network are
provided by experts on the basis of their knowledge aboudépendence of protein func-
tion on each of the data types. Thus, MAGIC combines the tesdileach of the inter-
mediate analysis techniques with expert knowledge to migkgredictions of functional
associations between yeast genes. Indeed, using yeashigerdata and considering the
hierarchical nature of GO for validation, it is shown that MKC outperforms all the major
gene expression clustering algorithms as well as the seefarltusing any one of the types
of data as input. The effectiveness of this approach is shywthe case of the biosynthe-
sis cluster constructed from functional associationstifled by MAGIC, where49 of the
58 known genes are annotated with protein biosynthesis, atidig a100% recall for this
cluster. Another desirable characteristic of this appndachat it can include any form of
data since it takes as input gene-gene relationship matrideere the relationship may be
either binary or of some real strength.

Using a similar probabilistic approach, Huttenhower ef2006] proposed a scalable
method for integrating several microarray datasets, ireiotd extract knowledge about
protein function from them. For this, forty microarray degts forS. cerevisiaavere
pre-processed, and correlations between the expressiditeprof different genes were
obtained from them. Next, a Bayesian network is trained &mhefunctional class, using
the correlations of gene pairs in which both genes are knoviretinvolved in this func-
tion. Thus, a Bayesian model is obtained for predicting fiomal relationships between
genes, based on their coexpression across a variety of aniagodatasets. Indeed, this
approach is able to uncover several known relationshipsaegeurately, and also predicts
other such relationships. The success of MAGIC and thisagmbr shows the potential of
Bayesian networks as a strategy for the large-scale cottidoinaf different sources of data
for function prediction.

Syed and Yona [2003] report a detailed analysis of anothpulao classification al-
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gorithm, the decision tree [Tan et al. 2005], for the probkenfunction prediction from
multiple sources of data. However, the fusion here is in seofnindividual attributes in-
stead of complete data sets, as in other approaches. Thtisdmalished by learning, for
each functional class, an ensemblepadbabilistic decision tree$PDT), which are con-
structed by choosing a splitting attribute with a probapitiroportional to the information
gain it provides. Thus, each tree provides a probabilidéssification for each sample,
and the overall probability of assignment is calculated Bjghiting each probability by
the performance of the corresponding tree on a separatiatiali data set. Furthermore,
many minor yet important issues concerning decision treeeaddressed carefully in
this study, such as missing values, binary splitting and-posing using the MDL princi-
ple [Hansen and Yu 2001]. Upon evaluation, the approach basa outperform BLAST
on several enzyme families that are weakly related by hogylalso, the detailed analy-
sis of decision trees could be useful to other function mtémt approaches based on this
model [Clare and King 2003b; Wang et al. 2003; Kretschmarah. &001].

The kernel summation idea proposed by Pavlidis et al. [2@0Bguristically general-
ized by Li et al. [2003] using a procedure inspired by therairtng algorithm [Blum and
Mitchell 1998]. The objective of this procedure is to minmithe disagreement between
classifications assigned by two classifiers. In this study,$VMs were constructed, one
each from the gene expression and phylogenetic profile déataused by Pavlidis et al.
[2002]. Then, an iterative randomized procedure was useédaoce the disagreement
between the two sets of labels generated for both labeledialatbeled examples by ran-
domly modifying the labels in case of a mismatch. Thoughdl®no explicit comparison
in the evaluation against any other approach, the strorrghsintage of this approach is
that it is able to use both labeled and unlabeled examplesdiming. This is very useful
for function prediction since even in the most well studiethgmes, a significant fraction
of the proteins are still unannotated.

Deng et al. [2004] extended their earlier work on probafidiinction inference from
protein interaction networks [Deng et al. 2003] in orderrtodrporate other types of net-
works and features for this task. Though the same Markovamnfield (MRF) model
is still used for propagating functional annotation thrbagt the networks, three specific
modifications are made to the approach in [Deng et al. 2003]:

—The prior probabilities of functional classes are now cated from the protein complex
data [Gavin et al. 2002] and not from frequencies of annmati

—Three types of networks are used: physical interactiormemp complexes and mRNA
coexpression. Separate MRF models are constructed fa tiedaorks.

—Pfam domains [Sonnhammer et al. 1997] are also used asmfedtures and probabil-
ities conditional on them are also incorporate into the fiaahula for probability.

The same Gibbs sampling procedure as in [Deng et al. 2008] issed for estimating
the annotation probabilities. Indeed, the results on ygases improved with increasing
amount of information, with the precision-recall equaityint appearing at abott%.

Another approach which integrates as many as eight diffeategories of data into a
global network and then analyzes them is presented by Lele [2084]. This approach
is focused on deriving functionally coherent clusters afegefrom this network using the
algorithm shown in Figure 32(a). Here, the edges in the waigietworks constructed from
individual data sets are weighted according to a log-lii@dd score, and these edges are
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merged into a global network. Further incorporation of eahinformation produced more
compact versions of the network call€dntextNetandFinalNet Figure 32(b) shows the
strong edges in the FinalNet generated from yeast genorates &unctionally coherent
clusters of genes, such as DNA damage response/repaigyemetabolism and mRNA
splicing, can clearly be identified in this network.

[Lee et al. 2004] and other studies showed the potential iofjusetworks of genes or
proteins as the basic representation for integrating rdiffetypes of biological data for
functional inference. An effective approach in this difeatis to supplement the edges
and/or nodes in a given physical interaction network witheoinformation about the con-
stituent proteins, such as their amino acid sequences gréssion profiles. This per-
spective was first adopted for the development of the PatiBILAlgorithm [Kelley et al.
2003], which performed a BLAST-like pairwise alignment apit interaction networks
using sequence similarity information. Here, a new gragbisstructed from the two input
interaction networks using the following transformation:

—A new vertex, sayd/a, is created in the new graph if two proteins in the two network
say A anda respectively, have a significant sequence similarity.

—An edge is created between two nodés: and B/b in the transformed graph if the
nodes(A4, B) and(a, b) are connected by a path of length atm®sh their original
networks, and the edge is labeled as follows:

—Directif (A, B) and(a, b) are interacting nodes in their original networks.

—Gapif (A, B) is a direct interaction anf, b) are connected by a path of lengttin
their original networks, or vice versa.

—Mismathif both (A, B) and(a, b) are connected by a path of lengtim their original
networks.

This transformation prepares the input networks in a foisimatiar to sequence alignment
used by BLAST. Next, a scoring function is defined for a pathjolv is computed as a
combination of the likelihoods of observing the sequencsilarities in nodes, and the
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constituent edges, as compared to randomly generatediatily, interesting paths are
derived from this resultant network using a dynamic prograng algorithm for finding
high scoring paths. The final pathways are constructed byguny paths that overlap or
a separated from each other by just one interaction in thggnadi networks. In an eval-
uation study comparing the networks $f cerevisiae@nd the bacteri&l. pylori, several
interesting pathways, such pstein synthesis and cell resgugytoplasmic and nuclear
membrane transpogndprotein degradation and DNA repaiobserved to be substantially
conserved in the two specieis. This is very interesting feofunction prediction point of
view, since interesting groups of proteins, such as prateinplexes, in a less studied or-
ganism (such aBl. pylori) can be aligned against the network of a well-studied osgani
(such asS. cerevisiagto identify well represented pathways. Indeed, in an esitenof
this algorithm to incorporate networks of more than two oigas [Sharan et al. 2006],
the conserved groups of proteins were found to be highlycbad by several GO biolog-
ical process terms. Thus, PathBLAST and its extensionsigean efficient comparative
method of identifying evolutionarily conserved pathwaysvieend different organisms,
and the functions of the constituent proteins.

Another approach for the augmentation of interaction neke/tor function predictionis
to use an organism’s interaction network and weight the gtigeeflect the biological via-
bility of the corresponding interactions. The co-expressif interacting genes, measured
as the correlation of their expression profiles across aéwgicroarray datasets, provides
a useful measure for this viability [Kemmeren and Holste§83. This has motivated
the development of function prediction methods that userawtion networks weighted
according to microarray data. VIRGO [Massjouni et al. 2086 useful webserver that
adopts this approach. The GAIN algorithm [Karaoz et al. 2004ised as the underlying
technique for extracting functional information from thered interaction datasets 6t
cerevisiaeandH. sapiens However, the basic purpose of VIRGO is to provide a service
for biologists to be able to derive functional annotatiomsthe protein(s) of their interest,
and is not a novel technique for function prediction by itsel

Nariai et al. [2007] presented a more rigorous integratippreach, wherein they in-
tegrated five different data types, namely protein intévactlata, gene expression data,
protein motif information, gene knock-out phenotype datd protein localization data.
The basic input to the prediction algorithm consists of tvedwork, one being the inter-
action network, and the second being a co-expression nietvamtaining edges between
proteins that had a correlation of ou@R5 in their expression profiles. Also, the other
data types were represented as categorical variablesgvidtreeach type, a vector of all
possible values is created, and for each proteilnisaecorded for the corresponding entry
if the protein is known to have that value for that type. Whistmathematical represen-
tation of the data, a naive Bayesian classification modedi Bieal. 2005] that predicts the
probability of a protein having a certain function, conalital on the number of its neigh-
bors annotated with this function in the two networks, asddature values obtained from
the other data types. Using a large set of functional aniootsfrom the GO biological
process ontology for several yeast proteins, an evaluafitime predictions generated by
the integrated model was performed, in comparison to thesergted by the protein inter-
action data alone. It was shown that if recall is the primaguirement (precisiorsd%),
there is a huge improvement in the number of true positivdiptiens. However, inter-
estingly, if a high precision of predictions is requiredgpision=50%), the number of true



Computational Techniques for Protein Function Prediction: A Survey . 111

positive predictions is not significantly different fromote produced by the interaction
data alone, and this number increases as more and morectigardata is included in the

integrated model. Thus, in addition to providing a robusthud for integrating diverse

types of data for function prediciton, this study showed tha use of protein interaction
data is almost indispensable for obtained precise predistirom an integrated model of
protein function.

Ulitsky and Shamir [2007] considered a different versiortted problem of integrat-
ing interaction data with microarray data. Here, micropadata was treated as the basic
data for discovering functional modules, while the inpuemaction network was used as
a constraint graph, which ensured that only connected mgdukre discovered. The
problem considered was one of finding modules showing stom@xpression between
the constituent proteins, while maintaining connectidtyper the input interaction net-
work. This problem is addressed by developing a probaigilisixture model [Duda et al.
2000], which comprises of two Gaussian distributions, aregenes expected to be co-
expressed, and one for those that are not. The parametéis ofddel are estimated using
an Expectation-Maximization procedure [Duda et al. 20@CGha begining of the algo-
rithm. Using this model, a likelihood score is defined forteatodule, indicating whether
this module is expected to consist of co-expressed genestoNow, using this score, a
greedy clustering-type algorithm is executed, which staith a seed cluster of proteins
and keeps growing it until termination. The two constrathest are satisfied at each step
are that the current cluster should be connected as pergbéoty of the interaction net-
work, and the likelihood score of the cluster should incesstseach step. The final cluster
is termed as a functional module, and is evaluated for emrécti with different GO cate-
gories. Indeed, using a cell cycle-based gene expresstarsdafor human proteins, and
a large scale set of interactions between human proteims|gorithm is able to precisely
uncover a significantly large module containing severatging known to be involved in
the cell cycle operation, thus validating the algorithnif&cacy at finding biologically rel-
evant modules. Also, significant improvements are obseoved a competing clustering
algorithm for microarray data, which are evidently due ®tise of interaction networks as
a constraint graph. This again validates the utility of piotnteraction data for integrative
genomics projects.

It was noted earlier in Section 8.2 that the interest in datanyg for function prediction
had inspired the inclusion of this problem in the KDD Cup 2(0teng et al. 2002], which
is an annual contest held in conjunction with the SIGKDD esefcé®. The precise
tasks assigned in this version of the contest were the ptiediof protein function and
subcellular location from protein interaction and othenie of proteomics data provided
in a relational format, with some of the proteins having geannotated by the organizers.
The winning solution [Cheng et al. 2002] for the function ¢iction problem used the
RELAGGS algorithm [Krogel and Wrobel 2001] to convert theltiatelational data into
an attribute vector format, from which an SVM classificatrondel was learnt and used
for prediction on the test set. In an extension of this solytthe winning team attempted
to utilize the unlabeled data in order to improve the precigf the classifier [Krogel and
Scheffer 2004], as also attempted earlier by Li et al. [208Rjwever, it was surprisingly
found that the popular transductive SVM learning [Joachi®89] and co-training [Blum
and Mitchell 1998] algorithms failed to improve the classif performance for this task. It

9htt p: // www. acm or g/ si gs/ si gkdd/
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was found that the reason for failure was the dependencebatany two sets of attributes
extracted from the original data. Thus, it was establislned if two independent sets
of functional genomics data can be identified, then a cavtngibased approach [Blum
and Mitchell 1998] could be used to design an effective diastion scheme that uses
unlabeled data as well.

Previous studies [Pavlidis et al. 2002; Li et al. 2003] hawvevn the utility of deriving
separate kernel functions for different types of bioloydzta and combining them in dif-
ferent ways to achieve effective genomic data fusion. lir therk, Pavlidis et al. [2002]
used the simple summation operation to derive the overatidtdunction. This work is
generalized by [Lanckriet et al. 2004], both in terms of thges of data used, the indi-
vidual kernels and the combination procedure. Table D$ like types of data used and
the novel kernels used to model similarities between pmeten their basis. The motiva-
tion of using these kernels is their success in learning thighcorresponding type of data.
Next, these kernels are optimally weighted, to derive agl&brnel function for the fused
data. The results obtained with this kernel were better thase obtained from the MRF-
based approach of Deng et al. [2004] on the data set used bgtthefor evaluation. In
a more focused application of this approach [Lanckriet e2@D4], ribosomal and mem-
brane proteins irs. cerevisiaavere more accurately classified than by using each kernel
individually.

[ Typeofdata | Kernels used |
Protein sequences|  Smith-Waterman, BLAST and Pfam HMM-based
Protein interactions| Linear and diffusion kernels [Vert and Kanehisa 2002]

Gene expression Radial basis kernel

Table IX. Genomic data types and corresponding kernels ingé@nckriet et al. 2004]

A similar kernel combination approach is proposed in [Baagit et al. 2005]. Here,
a unified graph is constructed from protein sequence andtsteidata, with the nodes
and edges being labeled by the type of data they are deriged &ind the corresponding
continuous attributes that can best capture the data at¢idl®t The popular random walk
kernel for graphs [Gartner et al. 2003] is generalized bgodgposing it into individual
kernels for the nodes, edges and node attributes, and tleek®ypel approach [Ong et al.
2005] is used to derive an optimal kernel for the data witlpeesto a specified cost func-
tion. Using this approach, only the most useful node atteibare used for classification,
reducing the information collection effort. This claim waaidated through evaluation of
the approach on the enzyme+non-enzyme data set used ind®Palsl Doig 2003], and
experiments focussed on the enzyme/non-enzyme class ghtbaethe modified graph
kernel was indeed able to outperform the simple attributéorebased SVM classification
used in [Dobson and Doig 2003]. In addition, a high accurdc§0a83% on average was
achieved for the Enzyme Classification top-level class iptiesh problem on a data set of
600 enzymes from the BRENDA database [Schomburg et al. 2004].

The latest work in the direction of graph-based data fusitsufla et al. 2005] com-
bines four different types of biological networks, by aség a weight to each of them.
Each graph is represented by a cost equation, which is a gtimfimctional representing
the smoothnesandconsistencyonditions. The first condition implies that the function
assignment score should not be too different between atjaeetices, as defined at the
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attribute level by Vert and Kanehisa [2002], while the setenforces consistency be-
tween the labels of the training set and those assigned bglgoeithm. This way, the
approach is able to use data both from the labeled exampesfunctional labels, and
unlabeled examples, i.e., the connectivity structure efdbmbined graphs. Finally, the
overall cost function is obtained as a linear combinatiothoge of each of the constituent
graphs, and is minimized using an EM-like procedure [Dudal.€2000]. The approach
showed a significant improvement over using the techniqtie aviy of the networks indi-
vidually. Thus, this approach showed an efficient way of ipooating unlabeled data into
the learning process to improve classification performance

Looking back, the approaches described in this section aldeeto achieve an improve-
ment not only in terms of coverage as reported for the apexin the previous sections,
but also in precision and accuracy. This improvement is ariljmbecause of the fact that
the approaches in this section allow the knowledge derik@u bne source, such as gene
expression data, to compliment knowledge from other seusaeh as phylogenetic pro-
files, thus allowing the flow of information from one sourcetmther. With improvement
in data fusion algorithms [Hall 2001], much better resutes expected from this category
of approaches.

10.3 Discussion

As was discussed earlier, this fusion of data gives us adgastsuch as more reliable
predictions and less disruption of the results due to thedaality of individual sources
of data. Now, after a detailed discussion of the numerouscaghes which have been
proposed in this direction, it can be said confidently thatrtyeall of them were able to
achieve their target, though different approaches in iiffecategories achieve this to dif-
ferent extents. Several other conclusions can be drawntfierdescriptions of approaches
above, a consideration of which could lead to better results

(1) The combination of multiple sources of data in a mannatrékploits the dependencies
between individual data types is more effective for funeiioediction than the simple
merging of data types or the inferences drawn individuatbyrf them. In particular,
Bayesian networks and kernel-based techniques have gaapedarity for this task,
because of these reasons:

—Bayesian networks [Heckerman 1995] have a graph struethieh makes it possi-
ble to model various types of dependencies such as hieesrahd independence.
Also, these networks allow the flow of information betweexdes, which is impor-
tant for fusion-based prediction.

—Kernel methods [Shawe-Taylor and Cristianini 2004] capthe similarity between
two proteins on the basis of the evidence provided. Thu$iérdbmain of multiple
data sources, this can be extended to the construction afaesimilarity matrices
on the basis of the different data types, and their consequerger to derive an
overall similarity matrix. This procedure can be seen as$ fapturing the local
patterns in individual data sets and their subsequent gkration to derive global
patterns, which can be used for function prediction.

Of late, there has been a greater interest in kernel-bas#ubdee[Lanckriet et al.

2004; Borgwardt et al. 2005] because they allow the use ottsgifier based on the

similarity between examples, though some approaches hadgd combine the two

frameworks for more accurate prediction of protein funcfidarutcuoglu et al. 2006].
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(2) By far, protein networks have been established as a ingifyamework for all forms
of functional genomics data, as was advocated by [FraseMandotte 2004]. Some
recent approaches have focussed on fusion methods baseatein petworks [Borg-
wardt et al. 2005; Deng et al. 2004; Tsuda et al. 2005], whitels have used them
simply as a visual tool for diverse forms of data [Lee et al040 Irrespective of
the mode of their use, networks can be used effectively fpreenting functional
genomics data and combining them if appropriate.

(3) Several recent studies [Nariai et al. 2007; Ulitsky ahdr8ir 2007] have shown that
the use of protein interaction data within an integratiordeideads to very significant
improvement in the precision of predictions made from a rhtds aims to integrate
different genomic data sets for function prediction. Thwiserever possible, such data
should be considered in studies on integration of diversegécs data.

(4) Many of the approaches discussed in this section werglsiextensions or general-
izations of studies that have been conducted by authorsdividnial data types, such
as [Marcotte et al. 1999; Deng et al. 2004; Clare and King B)838ogel and Schef-
fer 2004]. This indicates that the fusion of multiple sowroé data does not require a
completely new methodology, but can be achieved by simpknsions of approaches
focussing on a single form of data.

The conclusions, in combination with the progress beingeamnadmachine learning-
based data fusion techniques will ensure that more accanatextensive results are ob-
tained from approaches targeting a fusion of genomics dadader to make predicitions
about protein function.

11. CONCLUSIONS

In the previous sections, numerous approaches for the datignal prediction of protein
function from various types of biomedical data were disedssEven though this is an
immensely diverse field, as can be seen from the wide specifutata types, as well as
algorithms covered in this survey, the following generaldasions can be made:

(1) Inmost categories, the best results were obtained fpproaches that employed tech-
nigues from the fields afata mining andmachine learning Nonetheless, the anal-
ysis of biological data involves handling a number of chadles, many of which have
only been partly addressed. Some of the most prominenttwb are as follows:
—Ildentification of the most relevant subset of the data ferftimctional classes being

addressed.
—Possibility of a protein performing multiple functionspdathus having multiple
functional labels.
—Widely varying sizes of functional classes, most classasdvery small.
—Hierarchical arrangement of functional labels, as in Gén#logy.
—Incompleteness and various types and extents of noiseliodical data.
—High dimensionality of the data.
Advances in data mining to address these challenges arssaggéo exploit the avail-
able biological data to predict protein function more aetelly and effectively.

(2) Several approaches covered in this survey obtainedyergt results on a wide variety
of functional classes. However, several other approadtaglid not achieve compa-
rable results still deserve discussion because of sevaaabns, such as the following:
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(4)

(5)

(6)
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—Their results may improve when more data is available fning their models.

—Improvements made to the underlying technique may leaétt@bresults.

—The approach may have a specific area of application, fteiee classification of
proteins belonging to the G-protein coupled receptorsidapaly [Qian et al. 2003;
Cheng et al. 2005].

—A combination of these approaches with more powerful ong lead to better re-
sults than those obtained by any one of them individuallyillastrated in Sec-
tion 10.

The incorporation oflomain knowledgeis the most promising approach to make
the algorithms for function prediction biologically roliuas shown by several suc-
cessful studies based on this idea [Jensen et al. 2002;d8aglt et al. 2006]. Such
knowledge may come in the form of mechanisms underlying tdeemplishment of
protein functions, such as post-translational modificetid/ann and Jensen 2003], or
a hierarchy of functional classes, such as the Gene Ontgfshburner et al. 2000],
or for that matter, any relevant experimentally or compatstlly determined knowl-
edge. A patrticularly effective method of integrating domknowledge for protein
function prediction is the intelligent fusion of diversegpgs of genomic data (Chap-
ter 10), which has enabled the enhancement of the precisimelhas coverage of the
predictions, as compared to those produced by any singietylae.

Eachtype of biological datausually has atrong correspondencawvith a certairtype
of function that can be best predicted using data sets of that type. $tanice, individ-
ual protein-level data, such as protein structure, aredagsible of finding molecular
function [Laskowski et al. 2003], while genome-level datach as protein interaction
networks and gene expression data, offer good insightsttimtdiological process a
protein participates in [Nabieva et al. 2005]. Furthel,gtihylogenetic profiles have
been shown to be appropriate for the task of reconstructiaggpved working units
of proteins, such as metabolic pathways [Pellegrini et @09]. Thus, a knowledge
of the nature of the available biological data may aid thafifieation of the form of
protein function that can be predicted from it, and vice a&ers

The Gene Ontologyis increasingly being established as the most approprigte- f
tional classification scheme for protein function predictiesearch because of its sev-
eral desirable properties (Section 2.2), and the forwasHlita attitude of its curators
who are keeping it up-to-date with latest research. In paldr, several GO-friendly
approaches have recently been proposed, which incorpheateerarchical structure
of GO in the prediction technique so as to exploit the paodiitd relationships be-
tween various functional classes [Engelhardt et al. 20@BuBuoglu et al. 2006; Liu
et al. 2004; Eisner et al. 2005]. The above discussion of theespondence between
data and function type also lends support to the utility of. G@is is so since GO
contains separate ontologies for three different typesatem function, namelgel-
lular componentmolecular functiorandbiological processthus making it easier to
identify the most appropriate functional hierarchy to bedifor making predictions
from biological data of a certain type.

Even though many advances have been made in the field @fipfanction predic-

tion, there is still a lack of understanding of the most appiate prediction technique
for any particular category of proteins. Some attempts h@&en made to perform an
evaluation of the current available prediction methodshsas the function prediction
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component at CASP6 [Pellegrini-Calace et al. 2006], CASRef et al. 2007] and
the Automated Function Prediction meeting in 2005 [Godtid€2007]. Although a
great deal was learnt from these evaluations, they wereumded on a small selected
set of target proteins, which may not reflect the generatinathility of a certain func-
tion prediction technique. Thus, there is a great need ®cthation obenchmark
datasetsand the adoption of a consistemtaluation methodology as has occurred
in the field of remote homology prediction [Rangwala and Késy2005; Kuang et al.
2005]. This standardization will help in the identificatioh both the most appro-
priate function predictions strategy in a certain contexi the current weaknesses
and needs of the field. Datasets such as [Tetko et al. 2005jigmabus evaluations
methodologies such as those adopted by Nabieva et al. [200BDsitive steps in this
direction.

Last but not the least, we firmly believe that an efficient stifie workflow can be
established, in which, first, hypotheses are generateddnu¢ing the appropriate function
prediction prediction algorithm on the available biolagidata, and then, these hypotheses
are validated experimentally, thus leading to confidendict®ns of a protein’s function.
Table I, presented earlier, lists several examples whéseapiproach has produced both
useful and valid results. We hope that this survey aids battpuitational and experimental
practitioners in molecular biology in accomplishing ttask more effectively.
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