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Abstrat. Given appliations suh as loation based servies and thespatio-temporal queries they may pose on a spatial network (eg. roadnetworks), the goal is to develop a simple and expressive model thathonors the time dependene of the road network. The model must sup-port the design of eÆient algorithms for omputing the frequent querieson the network. This problem is hallenging due to potentially onit-ing requirements of model simpliity and support for eÆient algorithms.Time expanded networks whih have been used to model dynami net-works employ repliation of the network aross time instants, resulting inhigh storage overhead and algorithms that are omputationally expen-sive. In ontrast, the proposed time-aggregated graphs do not repliatenodes and edges aross time; rather they allow the properties of edgesand nodes to be modeled as a time series. Sine the model does not repli-ate the entire graph for every instant of time, it uses less memory andthe algorithms for ommon operations (e.g. onnetivity, shortest path)are omputationally more eÆient than the time expanded networks.
Keywords: time-aggregated graphs, shortest paths, spatio-temporal data-bases, loation based servies
1 IntrodutionGrowing importane of appliation domains suh as loation-based servies andevauation planning highlights the need for eÆient modeling of spatio-temporalnetworks (e.g. road networks) that takes into aount hanges to the networkover time. The model should provide the neessary framework for developing? This work was supported by the NSF grant 0431141, Oak Ridge National Laboratorygrant and US Army Corps of Engineers (Topographi Engineering Center) grant. Theontent does not neessarily reet the position or poliy of the government and nooÆial endorsement should be inferred.?? Corresponding author: Betsy George, E-mail: bgeorge�s.umn.edu



eÆient algorithms that implement frequent operations posed on suh networks.A frequent query is posed on suh networks is to �nd the shortest route from oneplae to another or a searh for the nearest neighbor. The shortest route woulddepend on the time dependent properties of the network suh as ongestion onertain road segments, whih would inrease the travel time on that segment.The result of nearest neighbor searh ould also be time sensitive if it is basedon a road network.Modeling suh a network poses many hallenges. Not only should the model beable to aomodate hanges and ompute the results onsistent with the existingonditions, it should do so aurately and simply. In addition, the need to answerfrequent queries quikly means fast algorithms are required for omputing thequery results. The model should thus provide suÆient support for the designof orret and eÆient algorithms for the frequent omputations.Often dynami networks have been modeled as time expanded networks, wherethe entire network is repliated for every time instant. The hanges in the net-work, espeially the travel time variations, an be very frequent and for modelingsuh frequent hanges, the time expanded networks would require a large num-ber of opies of the original network, thus leading to network sizes that are toomemory expensive. For example, traÆ sensors on highway networks send mea-surement data every 30 seonds. A one-year dataset may need over one millionopies of the road network, whih itself may have a million nodes and edges foreah time instant. Suh large sized networks would also result in omputation-ally expensive algorithms.The proposed model, a time-aggregated graph, models the hanges in a spatio-temporal network by olleting the node/edge attributes into a set of time series.The model an also aount for the hanges in the topology of the network. Theedges and nodes an disappear from the network during ertain instants of timeand new nodes and edges an be added. The time-aggregated graph keeps trakof these hanges through a time series attahed to eah node and edge that in-diates their presene at various instants of time. Our analysis shows that thismodel is less memory expensive and leads to algorithms that are omputationallymore eÆient than those for the time expanded networks.1.1 An Illustrative Appliation DomainLoation based servies �nd the geographial loation of a mobile devie andthen provide servies based on that loation [10℄. Most of these servies relyheavily on road maps, spatial networks that an hange with time. For example,the travel times assoiated with road segments an hange over time. One ofthe most frequent omputations performed on a road network is to identify theshortest route from one point in the network to another. The result of thisquery will depend on the availabilty of road segments and the time taken totraverse them; these parameters are time-dependent and hene are the resultsof the shortest route queries. The results to another frequent query, the nearestneighbor query, an also be time dependent, if omputed on a road network; theaessibility of various points in a road network an vary with time, depending on



the onnetivity of the network at di�erent instants of time. The need to answersuh queries in loation based servies on a spatial network that varies with timemakes a simple, eÆient model for spatio-temporal networks a neessity.Suh a model is even more ritial fo appliations related to evauation planning.Route �nding here involves identifying paths in a transportation network tominimize the time needed to move people from disaster-impated areas to safeloations. One key step in this operation is �nding the fastest possible evauationroutes in the network. In omputing these routes, it is ritial to honor thetime dependene of the parameters like travel time (whih would hange withongestion on roads) and the road apaities. Failure to do so ould a�et thequality of the solution and even reate haos in an emergeny situation.
1.2 Problem FormulationSpatial networks that show time-dependene serve as the underlying networksfor most loation based servies. Models of these networks need to apture thepossible hanges in topology and values of network parameters with time andprovide the basis for the formulation of omputationally eÆient and orretalgorithms for the frequent omputations like shortest paths. We formulate thisas the following problem:Given: The set of frequent queries posed by an appliation on a spatial network,the pattern of variations of the spatial network with time.Output: A model whih supports eÆient and orret algorithms for ompu-tating the query results.Objetive: Minimize the storage and omputational ost of omputation.Constraints: (1) Edge travel times are positive integers. (2) Edge travel timepreserves the FIFO (First-In First-Out) property.Example: The �gures 1(a),(b),() show a network at three instants of time.The travel times on the edges (the number shown on the edges) hange withtime. For example the edge N2-N1 has a travel time of 1 at the instant t = 1and 5 at t = 2. It an be seen that the topology of the network is also time-dependent. Though the edge N2-N1 is present at t = 1 and at t = 2, it is absentat t = 3. The task is to develop a model that aptures the network aross time.The time-aggregated graph for this series of graphs is shown in Figure 1(d).
1.3 Related Work and Our ContributionTime expanded networks have been widely used to model time dependeny ofparameters in networks [5, 4, 8℄. This method dupliates the original networkfor eah disrete time unit t = 0; 1; : : : ; T where T represents the extent of thetime horizon. The expanded network has edges onneting a node and its opyat the next instant in addition to the edges in the original network, repliatedfor every time instant. Figure 2 shows an illustration of a time expanded graph.It signi�antly inreases the network size and is very expensive with respet to
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Fig. 1. Time-aggregated Graph, Network at various instants
memory. Beause of the inreased problem size due to repliation of the network,the omputations beome expensive.Stohasti models whih use probability distribution funtions to desribe traveltime [4, 7, 6, 3℄ have been used to study time-dependene of transportation net-works. Though they an give valuable insights into the traÆ ow analysis, theomputational ost to to ompute the least expeted travel times in these net-works is prohibitively large to adapt to real life sanarios [7℄.Ding [2℄ proposed a model that addresses the time-dependeny by assoiating atemporal attribute to every edge and node of the network so that its state at anyinstant of time an be retrieved. This model performs path omputations overa snapshot of the network. Sine the network an hange over the time taken totraverse these paths, this omputation might not give realisti solutions.Our Contribution: In this paper, we propose a model alled time-aggregatedgraphs that represents the time dependene of the network and its parameters.We aggregate the travel times of eah edge over the time instants into a timeseries and keep trak of the edges that are present at every instant. We show thatthis model has less storage requirements than time expanded networks sine itdoes not rely on repliation of the entire network aross time instants. We alsopropose algorithms for omputing the onnetivity and the shortest route fromone node to another based on this model. We assume that the travel times ofthe edges vary with time in a preditable fashion.
1.4 Sope and Outline of the PaperThe main fous of the paper is our proposed use of time-aggregated graphs torepresent spatial networks and aount for the hanges that an take plae inthe network over a period of time. The model requires that the spatial network



be a disrete time dynami network. The paper proposes algorithms to omputethe onnetivity and shortest paths in the time-varying network modeled as atime-aggregated graph.The rest of the paper is organized as follows. Setion 2 disusses the basi on-epts of the proposed model and provides the relevant de�nitions of variousterms used. Setion 3 proposes algorithms for onnetivity and shortest pathomputation based on this model. It also proposes the ost models for thesealgorithms. In setion 4, we onlude and desribe the diretion of future work.
2 Basi ConeptsTraditionally graphs have been extensively used to model spatial networks [9℄;weights assigned to nodes and edges are used to enode additional information.For example, the apaity of a transit station an be represented using the weightassigned to the node that represents the station and the travel time between twostations an be represnted by the weight of the edge onneting the nodes. Ina real world senario, it is not unommon for these network parameters to betime-dependent. This setion disusses a graph based model that an apturethe time-dependene of network parameters. In addition, the model aptures thepossibility of edges and nodes being absent during ertain instants of time.2.1 A Coneptual ModelA graph G = (N;E) onsists of a �nite set of nodes N and edges E between thenodes in N . If the pair of nodes that determine the edge is ordered, the graphis direted; if it is not, the graph is undireted. In most ases, additional infor-mation is attahed to the nodes and the edges. In this setion, we disuss howthe time dependene of these edge/node parameters are handled in the proposedmodel, the time-aggregated graph.We de�ne the time-aggregated graph as follows.taG = (N;E; TF; f1 : : : fk; g1 : : : gljfi : N ! RTF ; gi : E ! RTF ) whereN is the set of nodes, E is the set of edges, TF is the length of the entire timeinterval, f1 : : : fk are the mappings from nodes to the time-series assoiated withthe nodes (for example, the time instants at whih the node is present) andg1 : : : gl are mappings from edges to the time series assoiated with the edges.This model an be explained in relation to the lassial graph model. ConsiderSG = G1 : : : GT to be an ordered sequene of the graphs and [1; T ℄ the timeinterval under onsideration where the graph Gi represents the network duringthe interval [i; i + 1). Every edge of the subgraph Gi has a weight equal to thetravel time, � of that edge for [i; i+ 1). Then the time aggregated graph taG istaG = STi=0Gi.EtaG = STi=1Ei; NtaG = STi=1Ni.The time-aggregated graph taG an be onsidered to be a time-dependent, dis-rete system de�ned for the time interval [1; T ℄; eah graph Gi is then a subgraphof taG that represents the network during [i; i+ 1).



EtaG = STi=1Ei and NtaG = STi=1Ni.Eah edge(/node) in EtaG has an edge(/node) time series indiating the time in-stants at whih they are present; in addition, eah edge has an assoiated traveltime series representing the travel times at various time instants.De�nition: Edge/Node FrequenyThe number of time steps for whih an edge e is present, denoted by fE(e), isalled the frequeny of edge e. The edge frequeny of a time-aggregated graphfE is de�ned as,fE = maxe2EtaG(fE(e)).In �gure 1, fE(N1�N2) = 2 and fE of the time-aggregated graph= 3.Similarly, we an de�ne fN (v) to be the number of time steps for whih a node vis present and the degree of node presene of a time-aggregated graph is de�nedas fN = maxv2NtaG(fN (v))The term 'frequeny' used here does not imply periodiity in the edge/node timeseries.We assume that eah edge travel time has a positive minimum and the preseneof an edge at time instant t is valid for the losed interval [t; t+ �℄Example: Figure 1 shows a time-aggregated graph and its subgraph at eahtime step. Figures (a), (b) and () show the graphs at time instants 1,2 3. (d)shows the time-aggregated graph; eah edge has a travel time series (enlosed insquare brakets) and the edge time series assoiated with it. For example, theedge from node N1 to node N2 is present at time instants 1; 2 and disappearsat the time instant t = 3. This is enoded in the time-aggregated graph usingthe edge time series of N1-N2 whih is (1; 2); the travel times of this edge forall instants within the time interval under onsideration are aggregated into atime series [1,1,-℄; the entry '-' indiates that the edge is absent during the timeinstant t = 3.Figure 2 shows the time aggregated graph (orresponding to Figure 1(a),(b),())
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Fig. 2. Time-aggregated Graph vs. Time Expanded Graph
and the time expanded graph that represent the same senario. The time expan-sion for the example network needs to go through 7 steps sine the latest time



instant would end in the network is at t = 7. For example, the traversal of theedge N3-N4 that starts at t = 3 ends at t = 7, the travel time of the edge being 4units. The number of nodes is larger by a fator of T , where T is the number oftime instants and the number of edges is alos larger in number ompared to thetime-aggregated graph. Typially the value of T is very large in a spatial networksuh as a road map sine the hanges in the network are quite frequent. Thiswould result in time expanded networks that are enormously large and wouldmake the omputations slow.
2.2 A Logial Data ModelBasi Graph OperationsWe extend the logial data model desribed in [9℄ to inorporate the timedependene of the graph model. The three fundamental lasses in the modelare Graph, Node and Edge. The ommon operations that are assoiated witheah lass are listed.publi lass Graph {publi void add(Objet label, timestamp t_inst);// a node with the given label is added at the time instant t_inst.publi void addEdge(Objet n1, Objet n2, Objet label,timestamp t_inst, timestamp t_time)// an edge is added with start node n1 and end node n2 at// time instant t_inst and travel time, t_time.publi Objet delete(Objet label, timestamp t_inst)// removes a node at time t_inst.publi Objet deleteEdge(Objet n1, Objet n2, timestamp t_inst)// deletes the edge from node n1 to node n2 at t_inst.publi Objet get(Objet label, timestamp t_inst)// returns the label of the node if it exists at time instant t_inst.publi Objet getEdge(Objet n1, Objet n2, timestamp t_inst)// returns the edge from node n1 to node 2 at time instant t_inst.publi Objet get_a_Suessor(Objet label, timestamp t_inst)// an adjaent node of the vertex is returned if an edge exists// to this node at a time instant at or after t_inst.publi Iterator getSuessors(Objet label, timestamp t_inst)// all adjaent nodes are returned if edges exist to them// at time instants at or after t_inst.



publi Objet get_earliest_Suessor(Objet label, timestamp t_inst)// the adjaent node whih is onneted to the given node with// the earliest time stamp after t_inst is returned.} A few important operations assoiated with the lasses Nodes and Edgesare provided below.
publi lass Node {publi Node(Objet label, timestamp t_inst)// the onstrutor for the lass. A node with the appropriate// label is reated at the time t_inst.publi Objet label()// returns the label assoiated with the node if it exists at t_inst.publi boolean visit()// marks the node as being visited.publi boolean isVisited()// returns true if and only of the node has been visited.}publi lass Edge {publi Edge(Objet n1, Objet n2, Objet label,timestamp t_inst, timestamp t_time)// the onstrutor for the lass. an edge is added with start// xnode n1 and end node n2 at time instant t_inst and travel time, t_time.publi Objet start()// returns the start node of the edge.publi Objet end()// returns the end node of the edge.} We also de�ne two prediates on the time-aggregated graph.exists at time t: This prediate heks whether the entity exists at the starttime instant t.exists after time t: This prediate heks whether the entity exists at a timeinstant after t.These prediates are used in onjuntion with the entities node, edge and routein a graph to extend the lassial graph theory onepts of adjaeny, route and



onnetivity to time-aggregated graphs. Table 1 illustrates these onepts. Forexample, node v is adjaent to node u at any time t if and only if the edge (u; v)exists at time t as shown in the table. Similarly, a valid route exists from nodeu to node v if a path exists from node u to node v for start time t at node u andin aordane with the presene of edges along the route.
exists at time t exists after time tNode exists(node u,at time t) exists(node u,after time t)Edge adjaent(node u,node v, adjaent(node u,node v,at time t) after time t)Route route(node u,node v,a route r route(node u,node v,a route r,at time t) after time t)Connetivity onnet(node u,node v,at time t) onnet(node u,node v,after time tTable 1. Adjaeny, Route and Connetivity in Time-aggregated Graphs

2.3 Physial Data ModelThe adjaeny-list and the adjaeny-matrix representations are the most om-mon main-memory data strutures used in the implementation of graphs. Toimplement our model, the time-aggregated graphs, a modi�ed version of adja-eny list representation is used. This data struture uses an array of pointers,one pointer for eah node. The pointer for eah node points to a list of imme-diate neighbors in the time-aggregated graph. At eah neighbor node, the edgepresene series and travel times for the edge starting from the �rst node to thisneighbor are also stored. Figure 3 illustrates the data struture used for thetime-aggregated graph shown in �gure 1(d). It shows the storage details for thenode N1 in detail. The adjaeny list for N1 stores its neighbors, that is N2 andN3. The edge time series and the travel times assoiated with the edge N1-N2are attahed to the node N2. Similarly, the node N3 stores the time series infor-mation of the edge N1-N3.Comparison of Storage Costs with Time Expanded Networks:Aording to the analysis in [11℄, the memory requirement for time expandednetwork is O(nT ) + O(n +mT ), where n is the number of nodes and m is thenumber of edges in the original graph. The memory requirement for the time-aggregated graphs would be O(m:fE +n:fN ) +O(n+m)T , where fE is the edgefrequeny and fN is the node frequeny of the time-aggregated graph. This anbe simpli�ed to O(m + n)T sine T is always greater than fE and fN . Thisomparison shows that the memory usage of time-aggregated graphs is less thantime expanded graphs by a fator of O(n).The algorithms for onnetivity and shortest path omputation in time-aggregatednetwork will be disussed in Setion 3.
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3 Algorithms for Network ComputationsThe ritial step in most queries on a spatio-temporal network is the shortestpath omputation. Thus the proposed model must inlude an eÆient shortestpath algorithm. Here, the shortest path is the route that an be traversed in theshortest time, given the start time at the start node. We assume that there is noost for waiting at the nodes other than the wait time, and that edge preseneis losed for [t; t+�℄ where � is the travel time of the edge at the time instant t.3.1 Algorithm for Shortest Path ComputationAs noted earlier, any route omputation in a spatio-temporal network mustbe onsistent with the edge presene. Here, the appliation of a greedy strat-egy (whih is a popular hoie in most of the optimization problems) faes ahallenge. Not all shortest paths display the optimal sub-struture, whih is anessential ondition for greedy algorithms to generate an optimal solution. Thisis learly illustrated in Figure 4. ALthough it an be veri�ed that the route,
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s � N1 � N2 � N4 � u � d is an optimal path from s to d, the route does not



display optimal sub-struture sine the route from s to u following the abovepath is not optimal (shortest path being, s�N3�N5� u). Though suh pathsthat do not display optimal sub-struture ould exist, it an be proved that thereis at least one optimal path whih satis�es the optimal sub-struture property.Lemma 1: If there is an optimal route from s to d, then there is at least oneoptimal route from s to d that shows optimal sub-struture.Proof:As Figure 4 illustrates, the failure of optimal struture of the shortestpath ours due to a potential wait at the intermediate node (u), after reahingthis node traversing the optimal path from s to u. Consider the optimal pathfrom s to u. Append this path to the path u� d (allowing wait at the interme-diate node u) from the optimal path. This would be still the shortest path froms to d. Otherwise, it would ontradit the optimality of the original shortest path.Lemma 1 enables us to use a greedy approah to ompute the shortest path.The algorithm stores the urrent shortest path travel times to reah every nodefrom the soure node. It loses the node with the minimum travel time andupdates the travel times of its neighbors. At this step, it uses a funtion min tto �nd the earliest time instant after the arrival at whih this edge an betraversed. The updated travel time thus heks for the edge presene and addsthe wait time to the travel time, if neessary.Computational Complexity:The ost model analysis assumes an adjaeny list representation of the graphwith two signi�ant modi�ations. The edge time series is stored in the sortedorder. Attahed to every adjaent node in the linked list are the edge time seriesand the travel time series.For every node extrated from the priority queue Q, there is one edge timeseries look up and a binary heap update for eah of its adjaent nodes. The timeomplexity of this step is O(log fE + logn). The asymptoti omplexity of thealgorithm would beO(�v2N [degree(v):(log fE + logn℄) = O(m(log fE + logn)).The time omplexity of the shortest path algorithm based on a time expandednetwork is O(nT log T +mT ) [1℄. It an be seen that the algorithm based on atime-aggregated graph is faster.3.2 Algorithm for ConnetivityThe existene of a valid route from one node to another in a time-aggrgatedgraph is a non-trivial issue sine a path in the time-aggrgated graph does notalways guarantee the existene of a path that is onsistent with the edge timeseries and edge travel times. Figure 5 illustrates this; the node N2 is onnetedto node N4 for starting time instants 1; 2; 3; 4 (one route being N2 - N5 - N4),and N4 is not aessible from N2 for all time instants after T = 4.Computational Complexity: The ost model analysis assumes an adja-eny list representation of the graph with two signi�ant modi�ations. For



Algorithm 1 Computation of Shortest PathInput:1) G(N;E): a graph G with a set of nodes N and a set of edges E;define type nn positive integerEah node n 2 N has two properties:NodePreseneT imeSeries : nnEah edge e 2 E has two properties:EdgePreseneT imeSeries,Travel time(e)series : series of nn2) s: Soure node, s � NG;3) d: Destination node, d � NG;Output: Shortest Route from s to dMethod: [s℄ = 0;8v(neqs); [v℄ =1;Insert s in priority queue Q.while Q is not empty do fu = extrat min(Q);for eah node v adjaent to u do ft = min t((u; v); [u℄);if t+ �u;v(t) < [v℄ f[v℄ = t+ �u;v(t);parent[v℄ = u;if v is not in Q, insert v in Q;g update Q;ggOutput the route from s to d.
every node, the node presene time series is stored in the sorted order. Attahedto every adjaent node in the linked list are the edge presene series and thetravel time series.For eah node dequeued form the queue Q, there is one edge series look up anenqueue operation for eah of its adjaent node. The queue operations are O(1)operations. The time omplexity of this step is O(log fE). The asymptoti om-plexity of the algorithm would be O(�v2N [degree(v):(log fE)℄) = O(m(log fE)).The time dependeny of the network parameters a�ets the onnetivity and theshortest paths between nodes in the network. Figure 6 depits the onnetivityand shortest path travel times for di�erent start time instants at the soure nodefor the example network shown in �gure 5. Figure 6(a) illustrates the onne-tivity of the node N2 to node N4 at instants 1; 2; 3; 4; 5; 6 (these time instantsdenote the starting times at the node N2). It an be seen that valid routes existfrom node N2 to node N4 if the traversal starts at time instants 1; 2; 3; 4 andthat the node N4 is unreahable from N2 for time instants 5; 6. It might also beinteresting to note that the routes that onnet the nodes also hange with time.For example, at time instant 1, routes N2-N3-N4, N2-N5-N4 and N2-N3-N5-N4onnet N2 to node N4; at starting time, t = 4, only N2-N5-N4 is available.As shown in �gure 6(b), the shortest path routes and the travel times are also
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N4Fig. 5. Illustration of ConnetivityAlgorithm 2 Connetivity AlgorithmInput:1) G(N;E): a graph G with a set of nodes N and a set of edges E;define type nn positive integerEah node n 2 N has two properties:NodePreseneT imeSeries : nnEah edge e 2 E has two properties:EdgePreseneT imeSeries,Travel time(e)series : series of nn2) s: Soure node, s � NG;3) d: Destination node, d � NG;Output: A route from s to d, if exists; else returns FALSE.Method:Initilialization ;Add s to Q; found = false;for eah node v 2 NG do farr time[v℄ = 0;gwhile found = FALSE or Q not empty do fu = dequeue(Q);for eah node v adjaent to u do fAdd v to the Q;t = min t((u; v); arr time[u℄);if t 6=1 farr time[v℄ = t+ �u;v(t)parent[v℄ = ugif v = d, FOUND = TRUE;gggOutput the route from s to d.
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Fig. 6. Time Dependeny of Connetivity and Shortest Paths
dependent on time.Consider the shortest path from node N1 to node N6. Theshortest path from node N1 to N6, for starting time t = 1 is N1-N4-N6 and traveltakes 5 units of time (reahes the destination node at t = 6). The route remainsthe same for start times t = 2; 3, but the travel time hanges to 4 units and 3units respetively. At time t = 4, the route N1-N4-N6 is no longer available andthe shortest route hanges to N1-N2-N5-N6 with a total travel time of 6 units.This shows that the shortest paths in a time-dependent network vary with time.
4 Conlusions and Future WorkIn this paper, we proposed a new model, time-aggregated graphs to model spatio-temporal networks whih aounts for the hanges in the network topologyand parameters with time. Existing approahes rely on time-expanded networkswhih lead to high storage overhead and omputationally expensive algorithms.Time-aggregated graph whih models the time dependene using an aggregationof network parameters aross the time horizon without the need to repliatethe entire graph. We provided algorithms to ompute onnetivity and fastestroute in the network, two frequent tyoes of queries posed on a spatio-temporalnetwork. Our analysis show that this model is less memory expensive omparedto time expanded networks and leads to omputationally eÆient algorithms.In the future, we plan to extend the model to inorporate turn restritions whihare mostly time dependent and an signi�antly inuene the fastest route om-



putation. We understand that the model should aomodate time-varying a-paities of the road networks while performing path omputations, espeially inappliations like evauation planning where apaity onstraints in the networkare the key hallenge. Also, we need to formulate an algorithm to ompute thefastest path in the network over the entire time period or for a user-de�ned timeinterval.
Referenes1. B.C. Dean. Algorithms for minimum-ost paths in time-dependent networks. Net-works, 44, August 2004.2. Z. Ding and R.H. Guting. Modeling temporally variable transportation networks.Pro. 16th Intl. Conf. on Database Systems for Advaned Appliations, pages 154{168, 2004.3. R. Hall. The fastest path through a network with random time-dependent traveltimes. Transportation Siene, 20:182{188, 1986.4. D.E. Kaufman and R.L. Smith. Fastest paths in time-dependent networks forintelligent vehile highway systems appliations. IVHS Journal, 1(1):1{11, 1993.5. E. Kohler, K. Langtau, and Skutella M. Time-expanded graphs for ow-dependenttransit times. Pro. 10th Annual European Symposium on Algorithms, pages 599{611, 2002.6. E. Miller-Hooks and H.S. Mahmassani. Least possible time paths in stohastitime-varying networks. Computers and Operations Researh, 25(12):1107{1125,1998.7. E. Miller-Hooks and H.S. Mahmassani. Path omparisons for a priori and time-adaptive deisions in stohasti, time-varying networks. European Journal of Op-erational Researh, 146:67{82, 2003.8. S. Pallottino and M. G. Suttella. Shortest path algorithms in tranportation mod-els: Classial and innovative aspets. Equilibrium and Advaned transportationModelling (Kluwer), pages 245{281, 1998.9. Shekhar S. and Chawla S. Spatial Databases: Tour. Prentie Hall, 2003.10. Shekhar S., Chawla S., R Vatsavai, X. Ma, and Yoo J.S. Loation Based Servies,Editors:Shiller, J. and Voisard, A. Morgan Kaufmann, 2004.11. D. Sawitzki. Impliit Maximization of Flows over Time . Tehnial report, Uni-versity of Dortmund, 2004.


