Technical Report

Department of Computer Science
and Engineering
University of Minnesota
4-192 EECS Building
200 Union Street SE
Minneapolis, MN 55455-0159 USA

TR 06-016

Time-aggregated Graphs for Modeling Spatio-Temporal Networks -
An Extended Abstract

Betsy George and Shashi Shekhar

May 03, 2006

Time-aggregated Graphs for Modeling
Spatio-Temporal Networks - An Extended
Abstract*

Betsy George™ and Shashi Shekhar

Department of Computer Science and Engineering,
University of Minnesota,
200 Union St SE, Minneapolis, MN 55455, USA,
E-mail: [bgeorge, shekhar]@cs.umn.edu
WWW home page: http://www.cs.umn.edu/research/shashi-group/

Abstract. Given applications such as location based services and the
spatio-temporal queries they may pose on a spatial network (eg. road
networks), the goal is to develop a simple and expressive model that
honors the time dependence of the road network. The model must sup-
port the design of efficient algorithms for computing the frequent queries
on the network. This problem is challenging due to potentially conflict-
ing requirements of model simplicity and support for efficient algorithms.
Time expanded networks which have been used to model dynamic net-
works employ replication of the network across time instants, resulting in
high storage overhead and algorithms that are computationally expen-
sive. In contrast, the proposed time-aggregated graphs do not replicate
nodes and edges across time; rather they allow the properties of edges
and nodes to be modeled as a time series. Since the model does not repli-
cate the entire graph for every instant of time, it uses less memory and
the algorithms for common operations (e.g. connectivity, shortest path)
are computationally more efficient than the time expanded networks.

Keywords: time-aggregated graphs, shortest paths, spatio-temporal data-
bases, location based services

1 Introduction

Growing importance of application domains such as location-based services and
evacuation planning highlights the need for efficient modeling of spatio-temporal
networks (e.g. road networks) that takes into account changes to the network
over time. The model should provide the necessary framework for developing

* This work was supported by the NSF grant 0431141, Oak Ridge National Laboratory
grant and US Army Corps of Engineers (Topographic Engineering Center) grant. The
content does not necessarily reflect the position or policy of the government and no
official endorsement should be inferred.

** Corresponding author: Betsy George, E-mail: bgeorge@cs.umn.edu

efficient algorithms that implement frequent operations posed on such networks.
A frequent query is posed on such networks is to find the shortest route from one
place to another or a search for the nearest neighbor. The shortest route would
depend on the time dependent properties of the network such as congestion on
certain road segments, which would increase the travel time on that segment.
The result of nearest neighbor search could also be time sensitive if it is based
on a road network.

Modeling such a network poses many challenges. Not only should the model be
able to accomodate changes and compute the results consistent with the existing
conditions, it should do so accurately and simply. In addition, the need to answer
frequent queries quickly means fast algorithms are required for computing the
query results. The model should thus provide sufficient support for the design
of correct and efficient algorithms for the frequent computations.

Often dynamic networks have been modeled as time expanded networks, where
the entire network is replicated for every time instant. The changes in the net-
work, especially the travel time variations, can be very frequent and for modeling
such frequent changes, the time expanded networks would require a large num-
ber of copies of the original network, thus leading to network sizes that are too
memory expensive. For example, traffic sensors on highway networks send mea-
surement data every 30 seconds. A one-year dataset may need over one million
copies of the road network, which itself may have a million nodes and edges for
each time instant. Such large sized networks would also result in computation-
ally expensive algorithms.

The proposed model, a time-aggregated graph, models the changes in a spatio-
temporal network by collecting the node/edge attributes into a set of time series.
The model can also account for the changes in the topology of the network. The
edges and nodes can disappear from the network during certain instants of time
and new nodes and edges can be added. The time-aggregated graph keeps track
of these changes through a time series attached to each node and edge that in-
dicates their presence at various instants of time. Our analysis shows that this
model is less memory expensive and leads to algorithms that are computationally
more efficient than those for the time expanded networks.

1.1 An Illustrative Application Domain

Location based services find the geographical location of a mobile device and
then provide services based on that location [10]. Most of these services rely
heavily on road maps, spatial networks that can change with time. For example,
the travel times associated with road segments can change over time. One of
the most frequent computations performed on a road network is to identify the
shortest route from one point in the network to another. The result of this
query will depend on the availabilty of road segments and the time taken to
traverse them; these parameters are time-dependent and hence are the results
of the shortest route queries. The results to another frequent query, the nearest
neighbor query, can also be time dependent, if computed on a road network; the
accessibility of various points in a road network can vary with time, depending on

the connectivity of the network at different instants of time. The need to answer
such queries in location based services on a spatial network that varies with time
makes a simple, efficient model for spatio-temporal networks a necessity.

Such a model is even more critical fo applications related to evacuation planning.
Route finding here involves identifying paths in a transportation network to
minimize the time needed to move people from disaster-impacted areas to safe
locations. One key step in this operation is finding the fastest possible evacuation
routes in the network. In computing these routes, it is critical to honor the
time dependence of the parameters like travel time (which would change with
congestion on roads) and the road capacities. Failure to do so could affect the
quality of the solution and even create chaos in an emergency situation.

1.2 Problem Formulation

Spatial networks that show time-dependence serve as the underlying networks
for most location based services. Models of these networks need to capture the
possible changes in topology and values of network parameters with time and
provide the basis for the formulation of computationally efficient and correct
algorithms for the frequent computations like shortest paths. We formulate this
as the following problem:

Given: The set of frequent queries posed by an application on a spatial network,
the pattern of variations of the spatial network with time.

Output: A model which supports efficient and correct algorithms for compu-
tating the query results.

Objective: Minimize the storage and computational cost of computation.

Constraints: (1) Edge travel times are positive integers. (2) Edge travel time
preserves the FIFO (First-In First-Out) property.

Example: The figures 1(a),(b),(c) show a network at three instants of time.
The travel times on the edges (the number shown on the edges) change with
time. For example the edge N2-N1 has a travel time of 1 at the instant ¢t = 1
and 5 at ¢ = 2. It can be seen that the topology of the network is also time-
dependent. Though the edge N2-N1 is present at t = 1 and at ¢ = 2, it is absent
at t = 3. The task is to develop a model that captures the network across time.
The time-aggregated graph for this series of graphs is shown in Figure 1(d).

1.3 Related Work and Our Contribution

Time expanded networks have been widely used to model time dependency of
parameters in networks [5,4,8]. This method duplicates the original network
for each discrete time unit ¢ = 0,1,... ,7 where T represents the extent of the
time horizon. The expanded network has edges connecting a node and its copy
at the next instant in addition to the edges in the original network, replicated
for every time instant. Figure 2 shows an illustration of a time expanded graph.
It significantly increases the network size and is very expensive with respect to

(Travel Time Seriefjdge Time Series

Edge

(d) Temporal Graph

Fig. 1. Time-aggregated Graph, Network at various instants

memory. Because of the increased problem size due to replication of the network,
the computations become expensive.

Stochastic models which use probability distribution functions to describe travel
time [4,7,6,3] have been used to study time-dependence of transportation net-
works. Though they can give valuable insights into the traffic flow analysis, the
computational cost to to compute the least expected travel times in these net-
works is prohibitively large to adapt to real life scanarios [7].

Ding [2] proposed a model that addresses the time-dependency by associating a
temporal attribute to every edge and node of the network so that its state at any
instant of time can be retrieved. This model performs path computations over
a snapshot of the network. Since the network can change over the time taken to
traverse these paths, this computation might not give realistic solutions.

Our Contribution: In this paper, we propose a model called time-aggregated
graphs that represents the time dependence of the network and its parameters.
We aggregate the travel times of each edge over the time instants into a time
series and keep track of the edges that are present at every instant. We show that
this model has less storage requirements than time expanded networks since it
does not rely on replication of the entire network across time instants. We also
propose algorithms for computing the connectivity and the shortest route from
one node to another based on this model. We assume that the travel times of
the edges vary with time in a predictable fashion.

1.4 Scope and Outline of the Paper

The main focus of the paper is our proposed use of time-aggregated graphs to
represent spatial networks and account for the changes that can take place in
the network over a period of time. The model requires that the spatial network

be a discrete time dynamic network. The paper proposes algorithms to compute
the connectivity and shortest paths in the time-varying network modeled as a
time-aggregated graph.

The rest of the paper is organized as follows. Section 2 discusses the basic con-
cepts of the proposed model and provides the relevant definitions of various
terms used. Section 3 proposes algorithms for connectivity and shortest path
computation based on this model. It also proposes the cost models for these
algorithms. In section 4, we conclude and describe the direction of future work.

2 Basic Concepts

Traditionally graphs have been extensively used to model spatial networks [9];
weights assigned to nodes and edges are used to encode additional information.
For example, the capacity of a transit station can be represented using the weight
assigned to the node that represents the station and the travel time between two
stations can be represnted by the weight of the edge connecting the nodes. In
a real world scenario, it is not uncommon for these network parameters to be
time-dependent. This section discusses a graph based model that can capture
the time-dependence of network parameters. In addition, the model captures the
possibility of edges and nodes being absent during certain instants of time.

2.1 A Conceptual Model

A graph G = (N, E) consists of a finite set of nodes N and edges E between the
nodes in N. If the pair of nodes that determine the edge is ordered, the graph
is directed; if it is not, the graph is undirected. In most cases, additional infor-
mation is attached to the nodes and the edges. In this section, we discuss how
the time dependence of these edge/node parameters are handled in the proposed
model, the time-aggregated graph.

We define the time-aggregated graph as follows.

taG = (N,E,TF,f1... fi,91...q1lfi : N = RTF: g, - E — RTF) where

N is the set of nodes, F is the set of edges, TF is the length of the entire time
interval, f ... fx are the mappings from nodes to the time-series associated with
the nodes (for example, the time instants at which the node is present) and
g1 -..g; are mappings from edges to the time series associated with the edges.
This model can be explained in relation to the classical graph model. Consider
Se¢ = G1...Gr to be an ordered sequence of the graphs and [1,7] the time
interval under consideration where the graph G; represents the network during
the interval [i,7 4+ 1). Every edge of the subgraph G; has a weight equal to the
travel time, o of that edge for [i,7 + 1). Then the time aggregated graph taG is
taG =l Gi.

Eiog = UiTzl Ei; Niag = U;‘T=1 N;.

The time-aggregated graph taG can be considered to be a time-dependent, dis-
crete system defined for the time interval [1, T']; each graph G; is then a subgraph
of taG that represents the network during [4,7 + 1).

Eic = U?:1 E; and Ny = U?:l N;.

Each edge(/node) in Ey,¢ has an edge(/node) time series indicating the time in-
stants at which they are present; in addition, each edge has an associated travel
time series representing the travel times at various time instants.

Definition: Edge/Node Frequency

The number of time steps for which an edge e is present, denoted by fr(e), is
called the frequency of edge e. The edge frequency of a time-aggregated graph
fE is defined as,

e = MATec Bty (fE(e))

In figure 1, fg(N1— N2) =2 and fg of the time-aggregated graph= 3.
Similarly, we can define fx(v) to be the number of time steps for which a node v
is present and the degree of node presence of a time-aggregated graph is defined
as fy = mazyen, ¢ (fn(v))

The term ’frequency’ used here does not imply periodicity in the edge/node time
series.

We assume that each edge travel time has a positive minimum and the presence
of an edge at time instant ¢ is valid for the closed interval [t,t + o]

Example: Figure 1 shows a time-aggregated graph and its subgraph at each
time step. Figures (a), (b) and (c) show the graphs at time instants 1,2 3. (d)
shows the time-aggregated graph; each edge has a travel time series (enclosed in
square brackets) and the edge time series associated with it. For example, the
edge from node N1 to node N2 is present at time instants 1,2 and disappears
at the time instant ¢t = 3. This is encoded in the time-aggregated graph using
the edge time series of N1-N2 which is (1,2); the travel times of this edge for
all instants within the time interval under consideration are aggregated into a
time series [1,1,-]; the entry ’-’ indicates that the edge is absent during the time
instant ¢t = 3.

Figure 2 shows the time aggregated graph (corresponding to Figure 1(a),(b),(c))

t=1 t=2 t=3 =4 t=5 t=6 =7

(a) Time—-aggregated Graph (b) Time Expanded Graph

Fig. 2. Time-aggregated Graph vs. Time Expanded Graph

and the time expanded graph that represent the same scenario. The time expan-
sion for the example network needs to go through 7 steps since the latest time

instant would end in the network is at ¢ = 7. For example, the traversal of the
edge N3-N4 that starts at ¢ = 3 ends at t = 7, the travel time of the edge being 4
units. The number of nodes is larger by a factor of T', where T" is the number of
time instants and the number of edges is alos larger in number compared to the
time-aggregated graph. Typically the value of T is very large in a spatial network
such as a road map since the changes in the network are quite frequent. This
would result in time expanded networks that are enormously large and would
make the computations slow.

2.2 A Logical Data Model

Basic Graph Operations

We extend the logical data model described in [9] to incorporate the time
dependence of the graph model. The three fundamental classes in the model
are Graph, Node and Edge. The common operations that are associated with
each class are listed.

public class Graph {
public void add(Object label, timestamp t_inst);
// a node with the given label is added at the time instant t_inst.

public void addEdge(Object nl, Object n2, Object label,
timestamp t_inst, timestamp t_time)

// an edge is added with start node nl and end node n2 at
// time instant t_inst and travel time, t_time.

public Object delete(Object label, timestamp t_inst)
// removes a node at time t_inst.

public Object deleteEdge(Object nl, Object n2, timestamp t_inst)
// deletes the edge from node nl to node n2 at t_inst.

public Object get(Object label, timestamp t_inst)
// returns the label of the node if it exists at time instant t_inst.

public Object getEdge(Object nl, Object n2, timestamp t_inst)
// returns the edge from node nl to node 2 at time instant t_inst.

public Object get_a_Successor(Object label, timestamp t_inst)
// an adjacent node of the vertex is returned if an edge exists
// to this node at a time instant at or after t_inst.

public Iterator getSuccessors(Object label, timestamp t_inst)
// all adjacent nodes are returned if edges exist to them
// at time instants at or after t_inst.

public Object get_earliest_Successor(Object label, timestamp t_inst)
// the adjacent node which is connected to the given node with
// the earliest time stamp after t_inst is returned.

}

A few important operations associated with the classes Nodes and Edges
are provided below.

public class Node {

public Node(Object label, timestamp t_inst)

// the constructor for the class. A node with the appropriate
// label is created at the time t_inst.

public Object label()
// returns the label associated with the node if it exists at t_inst.

public boolean visit()
// marks the node as being visited.

public boolean isVisited()
// returns true if and only of the node has been visited.

}

public class Edge <

public Edge(Object nl, Object n2, Object label,

timestamp t_inst, timestamp t_time)

// the constructor for the class. an edge is added with start

// xnode nl and end node n2 at time instant t_inst and travel time, t_time.

public Object start()
// returns the start node of the edge.

public Object end()
// returns the end node of the edge.

}
We also define two predicates on the time-aggregated graph.

exists_at_time_t: This predicate checks whether the entity exists at the start
time instant t¢.

exists_after_time_t: This predicate checks whether the entity exists at a time
instant after t.

These predicates are used in conjunction with the entities node, edge and route
in a graph to extend the classical graph theory concepts of adjacency, route and

connectivity to time-aggregated graphs. Table 1 illustrates these concepts. For
example, node v is adjacent to node u at any time ¢ if and only if the edge (u, v)
exists at time ¢ as shown in the table. Similarly, a valid route exists from node
u to node v if a path exists from node u to node v for start time ¢ at node u and
in accordance with the presence of edges along the route.

| | exists_at_time_t| exists_after_time_t‘
Node exists(node u,at_time_t) exists(node u,after_time_t)
Edge adjacent(node u,node v, adjacent(node u,node v,
at_time_t) after_time_t)

Route route(node u,node v,a_route r route(node u,node v,a_route r,
at_time_t) after_time_t)

Connectivity |connect(node u,node v,at_time_t)|connect(node u,node v,after_time_t

Table 1. Adjacency, Route and Connectivity in Time-aggregated Graphs

2.3 Physical Data Model

The adjacency-list and the adjacency-matrix representations are the most com-
mon main-memory data structures used in the implementation of graphs. To
implement our model, the time-aggregated graphs, a modified version of adja-
cency list representation is used. This data structure uses an array of pointers,
one pointer for each node. The pointer for each node points to a list of imme-
diate neighbors in the time-aggregated graph. At each neighbor node, the edge
presence series and travel times for the edge starting from the first node to this
neighbor are also stored. Figure 3 illustrates the data structure used for the
time-aggregated graph shown in figure 1(d). It shows the storage details for the
node N1 in detail. The adjacency list for N1 stores its neighbors, that is N2 and
N3. The edge time series and the travel times associated with the edge N1-N2
are attached to the node N2. Similarly, the node N3 stores the time series infor-
mation of the edge N1-N3.

Comparison of Storage Costs with Time Expanded Networks:
According to the analysis in [11], the memory requirement for time expanded
network is O(nT') + O(n + mT), where n is the number of nodes and m is the
number of edges in the original graph. The memory requirement for the time-
aggregated graphs would be O(m.fg + n.fn) + O(n+ m)T, where fg is the edge
frequency and fy is the node frequency of the time-aggregated graph. This can
be simplified to O(m + n)T since T is always greater than fr and fy. This
comparison shows that the memory usage of time-aggregated graphs is less than
time expanded graphs by a factor of O(n).

The algorithms for connectivity and shortest path computation in time-aggregated
network will be discussed in Section 3.

Edge Presence

N1 N2 N3]

N2 ——= et

[a[-] Hz[-[2

Travel time series

N3 = .

N4 ——......

Fig. 3. Data Structure for Time-aggregated Graph

3 Algorithms for Network Computations

The critical step in most queries on a spatio-temporal network is the shortest
path computation. Thus the proposed model must include an efficient shortest
path algorithm. Here, the shortest path is the route that can be traversed in the
shortest time, given the start time at the start node. We assume that there is no
cost for waiting at the nodes other than the wait time, and that edge presence
is closed for [t,t+ o] where o is the travel time of the edge at the time instant ¢.

3.1 Algorithm for Shortest Path Computation

As noted earlier, any route computation in a spatio-temporal network must
be consistent with the edge presence. Here, the application of a greedy strat-
egy (which is a popular choice in most of the optimization problems) faces a
challenge. Not all shortest paths display the optimal sub-structure, which is an
essential condition for greedy algorithms to generate an optimal solution. This
is clearly illustrated in Figure 4. ALthough it can be verified that the route,

Fig. 4. Tllustration of Shortest Paths

s — N1 - N2— N4 —u—d is an optimal path from s to d, the route does not

display optimal sub-structure since the route from s to u following the above
path is not optimal (shortest path being, s — N3 — N5 — u). Though such paths
that do not display optimal sub-structure could exist, it can be proved that there
is at least one optimal path which satisfies the optimal sub-structure property.

Lemma 1: If there is an optimal route from s to d, then there is at least one
optimal route from s to d that shows optimal sub-structure.
Proof:As Figure 4 illustrates, the failure of optimal structure of the shortest
path occurs due to a potential wait at the intermediate node (u), after reaching
this node traversing the optimal path from s to u. Consider the optimal path
from s to u. Append this path to the path u — d (allowing wait at the interme-
diate node u) from the optimal path. This would be still the shortest path from
s to d. Otherwise, it would contradict the optimality of the original shortest path.

Lemma 1 enables us to use a greedy approach to compute the shortest path.
The algorithm stores the current shortest path travel times to reach every node
from the source node. It closes the node with the minimum travel time and
updates the travel times of its neighbors. At this step, it uses a function min_t
to find the earliest time instant after the arrival at which this edge can be
traversed. The updated travel time thus checks for the edge presence and adds
the wait time to the travel time, if necessary.

Computational Complexity:

The cost model analysis assumes an adjacency list representation of the graph
with two significant modifications. The edge time series is stored in the sorted
order. Attached to every adjacent node in the linked list are the edge time series
and the travel time series.

For every node extracted from the priority queue Q, there is one edge time
series look up and a binary heap update for each of its adjacent nodes. The time
complexity of this step is O(log fg + logn). The asymptotic complexity of the
algorithm would be

O(Xyen|degree(v).(log fr + logn]) = O(m(log fr + logn)).

The time complexity of the shortest path algorithm based on a time expanded
network is O(nT'log T + mT) [1]. It can be seen that the algorithm based on a
time-aggregated graph is faster.

3.2 Algorithm for Connectivity

The existence of a valid route from one node to another in a time-aggrgated
graph is a non-trivial issue since a path in the time-aggrgated graph does not
always guarantee the existence of a path that is consistent with the edge time
series and edge travel times. Figure 5 illustrates this; the node N2 is connected
to node N4 for starting time instants 1,2,3,4 (one route being N2 - N5 - N4),
and N4 is not accessible from N2 for all time instants after 7' = 4.
Computational Complexity: The cost model analysis assumes an adja-
cency list representation of the graph with two significant modifications. For

Algorithm 1 Computation of Shortest Path
Input:
1) G(N,E): a graph G with a set of nodes N and a set of edges FE;
define type nmn positive integer
Each node n € N has two properties:
NodePresencelTimeSeries : nn
Each edge e € E has two properties:
EdgePresenceTimeSeries, Travel_time(e)series : series of nn
2) s: Source node, s C Ng;
3) d: Destination node, d C Ng;
Output: Shortest Route from s to d
Method:
c[s] = 0;Vu(negqs), c[v] = oc;
Insert s in priority queue Q.
while @ is not empty do {
u = extract-min(Q);
for each node v adjacent to u do {
t = min_t((u,v), clu]);
if t4 ou,0(t) < c[v] {
cv] =t+ ouw(t);
parent[v] = u;
if v is not in (), insert v in Q;
} update Q;

}
}

Output the route from s to d.

every node, the node presence time series is stored in the sorted order. Attached
to every adjacent node in the linked list are the edge presence series and the
travel time series.

For each node dequeued form the queue Q, there is one edge series look up an
enqueue operation for each of its adjacent node. The queue operations are O(1)
operations. The time complexity of this step is O(log fg). The asymptotic com-
plexity of the algorithm would be O(X,cn[degree(v).(log fr)]) = O(m(log fr)).
The time dependency of the network parameters affects the connectivity and the
shortest paths between nodes in the network. Figure 6 depicts the connectivity
and shortest path travel times for different start time instants at the source node
for the example network shown in figure 5. Figure 6(a) illustrates the connec-
tivity of the node N2 to node N4 at instants 1,2, 3,4,5,6 (these time instants
denote the starting times at the node N2). It can be seen that valid routes exist
from node N2 to node N4 if the traversal starts at time instants 1,2,3,4 and
that the node N4 is unreachable from N2 for time instants 5, 6. It might also be
interesting to note that the routes that connect the nodes also change with time.
For example, at time instant 1, routes N2-N3-N4, N2-N5-N4 and N2-N3-N5-N4
connect N2 to node N4; at starting time, ¢ = 4, only N2-N5-N4 is available.

As shown in figure 6(b), the shortest path routes and the travel times are also

Fig. 5. Illustration of Connectivity

Algorithm 2 Connectivity Algorithm

Input:
1) G(N,E): a graph G with a set of nodes N and a set of edges E;
define type mn positive integer
Each node n € N has two properties:
NodePresenceT'imeSeries : nn
Each edge e € E has two properties:
EdgePresenceTimeSeries, Travel_time(e)series : series of nn
2) s: Source node, s C Ng;
3) d: Destination node, d C Ng;
Output: A route from s to d, if exists; else returns FALSE.
Method:
Initilialization ;
Add s to @Q; found = false;
for each node v € Ng do {
arr _timefv] = 0;
}

while found = FALSE or Q not empty do {
u = dequeue(Q);
for each node v adjacent to u do {
Add v to the Q;
t = min_t((u,v), arr_timelu]) ;
if t#£ o0 {
arr_time[v] =t + 0w, (t)
parent[v] = u
}
if v=d, FOUND = TRUE;
}
}
}

Output the route from s to d.

o &7 X
£
F 54 X
g
S 4 X
=
<
® 34 X
o
8 24

Starttime | 1 | 2 3| 4] 5|6 5
<

— 0 1
Connectivity
(N2 to N4) Yes| Yes| Yes| No | No| No

2. .3
Start time instant(t)

(a) Connectivity (b) Shortest Path

Fig. 6. Time Dependency of Connectivity and Shortest Paths

dependent on time.Consider the shortest path from node N1 to node N6. The
shortest path from node N1 to N6, for starting time ¢ = 1 is N1-N4-N6 and travel
takes 5 units of time (reaches the destination node at ¢t = 6). The route remains
the same for start times ¢ = 2,3, but the travel time changes to 4 units and 3
units respectively. At time ¢ = 4, the route N1-N4-N6 is no longer available and
the shortest route changes to N1-N2-N5-N6 with a total travel time of 6 units.
This shows that the shortest paths in a time-dependent network vary with time.

4 Conclusions and Future Work

In this paper, we proposed a new model, time-aggregated graphs to model spatio-
temporal networks which accounts for the changes in the network topology
and parameters with time. Existing approaches rely on time-expanded networks
which lead to high storage overhead and computationally expensive algorithms.
Time-aggregated graph which models the time dependence using an aggregation
of network parameters across the time horizon without the need to replicate
the entire graph. We provided algorithms to compute connectivity and fastest
route in the network, two frequent tyoes of queries posed on a spatio-temporal
network. Our analysis show that this model is less memory expensive compared
to time expanded networks and leads to computationally efficient algorithms.

In the future, we plan to extend the model to incorporate turn restrictions which
are mostly time dependent and can significantly influence the fastest route com-

putation. We understand that the model should accomodate time-varying ca-
pacities of the road networks while performing path computations, especially in
applications like evacuation planning where capacity constraints in the network
are the key challenge. Also, we need to formulate an algorithm to compute the
fastest path in the network over the entire time period or for a user-defined time
interval.

References

11.

B.C. Dean. Algorithms for minimum-cost paths in time-dependent networks. Net-
works, 44, August 2004.

. Z. Ding and R.H. Guting. Modeling temporally variable transportation networks.

Proc. 16th Intl. Conf. on Database Systems for Advanced Applications, pages 154—
168, 2004.

R. Hall. The fastest path through a network with random time-dependent travel
times. Transportation Science, 20:182-188, 1986.

D.E. Kaufman and R.L. Smith. Fastest paths in time-dependent networks for
intelligent vehicle highway systems applications. IVHS Journal, 1(1):1 11, 1993.
E. Kohler, K. Langtau, and Skutella M. Time-expanded graphs for flow-dependent
transit times. Proc. 10th Annual European Symposium on Algorithms, pages 599—
611, 2002.

E. Miller-Hooks and H.S. Mahmassani. Least possible time paths in stochastic
time-varying networks. Computers and Operations Research, 25(12):1107-1125,
1998.

E. Miller-Hooks and H.S. Mahmassani. Path comparisons for a priori and time-
adaptive decisions in stochastic, time-varying networks. Furopean Journal of Op-
erational Research, 146:67-82, 2003.

S. Pallottino and M. G. Scuttella. Shortest path algorithms in tranportation mod-
els: Classical and innovative aspects. Equilibrium and Advanced transportation
Modelling (Kluwer), pages 245 281, 1998.

Shekhar S. and Chawla S. Spatial Databases: Tour. Prentice Hall, 2003.

. Shekhar S., Chawla S., R Vatsavai, X. Ma, and Yoo J.S. Location Based Services,

Editors:Schiller, J. and Voisard, A. Morgan Kaufmann, 2004.
D. Sawitzki. Implicit Maximization of Flows over Time . Technical report, Uni-
versity of Dortmund, 2004.

