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Abstra
t. Given appli
ations su
h as lo
ation based servi
es and thespatio-temporal queries they may pose on a spatial network (eg. roadnetworks), the goal is to develop a simple and expressive model thathonors the time dependen
e of the road network. The model must sup-port the design of eÆ
ient algorithms for 
omputing the frequent querieson the network. This problem is 
hallenging due to potentially 
on
i
t-ing requirements of model simpli
ity and support for eÆ
ient algorithms.Time expanded networks whi
h have been used to model dynami
 net-works employ repli
ation of the network a
ross time instants, resulting inhigh storage overhead and algorithms that are 
omputationally expen-sive. In 
ontrast, the proposed time-aggregated graphs do not repli
atenodes and edges a
ross time; rather they allow the properties of edgesand nodes to be modeled as a time series. Sin
e the model does not repli-
ate the entire graph for every instant of time, it uses less memory andthe algorithms for 
ommon operations (e.g. 
onne
tivity, shortest path)are 
omputationally more eÆ
ient than the time expanded networks.
Keywords: time-aggregated graphs, shortest paths, spatio-temporal data-bases, lo
ation based servi
es
1 Introdu
tionGrowing importan
e of appli
ation domains su
h as lo
ation-based servi
es andeva
uation planning highlights the need for eÆ
ient modeling of spatio-temporalnetworks (e.g. road networks) that takes into a

ount 
hanges to the networkover time. The model should provide the ne
essary framework for developing? This work was supported by the NSF grant 0431141, Oak Ridge National Laboratorygrant and US Army Corps of Engineers (Topographi
 Engineering Center) grant. The
ontent does not ne
essarily re
e
t the position or poli
y of the government and nooÆ
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eÆ
ient algorithms that implement frequent operations posed on su
h networks.A frequent query is posed on su
h networks is to �nd the shortest route from onepla
e to another or a sear
h for the nearest neighbor. The shortest route woulddepend on the time dependent properties of the network su
h as 
ongestion on
ertain road segments, whi
h would in
rease the travel time on that segment.The result of nearest neighbor sear
h 
ould also be time sensitive if it is basedon a road network.Modeling su
h a network poses many 
hallenges. Not only should the model beable to a

omodate 
hanges and 
ompute the results 
onsistent with the existing
onditions, it should do so a

urately and simply. In addition, the need to answerfrequent queries qui
kly means fast algorithms are required for 
omputing thequery results. The model should thus provide suÆ
ient support for the designof 
orre
t and eÆ
ient algorithms for the frequent 
omputations.Often dynami
 networks have been modeled as time expanded networks, wherethe entire network is repli
ated for every time instant. The 
hanges in the net-work, espe
ially the travel time variations, 
an be very frequent and for modelingsu
h frequent 
hanges, the time expanded networks would require a large num-ber of 
opies of the original network, thus leading to network sizes that are toomemory expensive. For example, traÆ
 sensors on highway networks send mea-surement data every 30 se
onds. A one-year dataset may need over one million
opies of the road network, whi
h itself may have a million nodes and edges forea
h time instant. Su
h large sized networks would also result in 
omputation-ally expensive algorithms.The proposed model, a time-aggregated graph, models the 
hanges in a spatio-temporal network by 
olle
ting the node/edge attributes into a set of time series.The model 
an also a

ount for the 
hanges in the topology of the network. Theedges and nodes 
an disappear from the network during 
ertain instants of timeand new nodes and edges 
an be added. The time-aggregated graph keeps tra
kof these 
hanges through a time series atta
hed to ea
h node and edge that in-di
ates their presen
e at various instants of time. Our analysis shows that thismodel is less memory expensive and leads to algorithms that are 
omputationallymore eÆ
ient than those for the time expanded networks.1.1 An Illustrative Appli
ation DomainLo
ation based servi
es �nd the geographi
al lo
ation of a mobile devi
e andthen provide servi
es based on that lo
ation [10℄. Most of these servi
es relyheavily on road maps, spatial networks that 
an 
hange with time. For example,the travel times asso
iated with road segments 
an 
hange over time. One ofthe most frequent 
omputations performed on a road network is to identify theshortest route from one point in the network to another. The result of thisquery will depend on the availabilty of road segments and the time taken totraverse them; these parameters are time-dependent and hen
e are the resultsof the shortest route queries. The results to another frequent query, the nearestneighbor query, 
an also be time dependent, if 
omputed on a road network; thea

essibility of various points in a road network 
an vary with time, depending on



the 
onne
tivity of the network at di�erent instants of time. The need to answersu
h queries in lo
ation based servi
es on a spatial network that varies with timemakes a simple, eÆ
ient model for spatio-temporal networks a ne
essity.Su
h a model is even more 
riti
al fo appli
ations related to eva
uation planning.Route �nding here involves identifying paths in a transportation network tominimize the time needed to move people from disaster-impa
ted areas to safelo
ations. One key step in this operation is �nding the fastest possible eva
uationroutes in the network. In 
omputing these routes, it is 
riti
al to honor thetime dependen
e of the parameters like travel time (whi
h would 
hange with
ongestion on roads) and the road 
apa
ities. Failure to do so 
ould a�e
t thequality of the solution and even 
reate 
haos in an emergen
y situation.
1.2 Problem FormulationSpatial networks that show time-dependen
e serve as the underlying networksfor most lo
ation based servi
es. Models of these networks need to 
apture thepossible 
hanges in topology and values of network parameters with time andprovide the basis for the formulation of 
omputationally eÆ
ient and 
orre
talgorithms for the frequent 
omputations like shortest paths. We formulate thisas the following problem:Given: The set of frequent queries posed by an appli
ation on a spatial network,the pattern of variations of the spatial network with time.Output: A model whi
h supports eÆ
ient and 
orre
t algorithms for 
ompu-tating the query results.Obje
tive: Minimize the storage and 
omputational 
ost of 
omputation.Constraints: (1) Edge travel times are positive integers. (2) Edge travel timepreserves the FIFO (First-In First-Out) property.Example: The �gures 1(a),(b),(
) show a network at three instants of time.The travel times on the edges (the number shown on the edges) 
hange withtime. For example the edge N2-N1 has a travel time of 1 at the instant t = 1and 5 at t = 2. It 
an be seen that the topology of the network is also time-dependent. Though the edge N2-N1 is present at t = 1 and at t = 2, it is absentat t = 3. The task is to develop a model that 
aptures the network a
ross time.The time-aggregated graph for this series of graphs is shown in Figure 1(d).
1.3 Related Work and Our ContributionTime expanded networks have been widely used to model time dependen
y ofparameters in networks [5, 4, 8℄. This method dupli
ates the original networkfor ea
h dis
rete time unit t = 0; 1; : : : ; T where T represents the extent of thetime horizon. The expanded network has edges 
onne
ting a node and its 
opyat the next instant in addition to the edges in the original network, repli
atedfor every time instant. Figure 2 shows an illustration of a time expanded graph.It signi�
antly in
reases the network size and is very expensive with respe
t to
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Fig. 1. Time-aggregated Graph, Network at various instants
memory. Be
ause of the in
reased problem size due to repli
ation of the network,the 
omputations be
ome expensive.Sto
hasti
 models whi
h use probability distribution fun
tions to des
ribe traveltime [4, 7, 6, 3℄ have been used to study time-dependen
e of transportation net-works. Though they 
an give valuable insights into the traÆ
 
ow analysis, the
omputational 
ost to to 
ompute the least expe
ted travel times in these net-works is prohibitively large to adapt to real life s
anarios [7℄.Ding [2℄ proposed a model that addresses the time-dependen
y by asso
iating atemporal attribute to every edge and node of the network so that its state at anyinstant of time 
an be retrieved. This model performs path 
omputations overa snapshot of the network. Sin
e the network 
an 
hange over the time taken totraverse these paths, this 
omputation might not give realisti
 solutions.Our Contribution: In this paper, we propose a model 
alled time-aggregatedgraphs that represents the time dependen
e of the network and its parameters.We aggregate the travel times of ea
h edge over the time instants into a timeseries and keep tra
k of the edges that are present at every instant. We show thatthis model has less storage requirements than time expanded networks sin
e itdoes not rely on repli
ation of the entire network a
ross time instants. We alsopropose algorithms for 
omputing the 
onne
tivity and the shortest route fromone node to another based on this model. We assume that the travel times ofthe edges vary with time in a predi
table fashion.
1.4 S
ope and Outline of the PaperThe main fo
us of the paper is our proposed use of time-aggregated graphs torepresent spatial networks and a

ount for the 
hanges that 
an take pla
e inthe network over a period of time. The model requires that the spatial network



be a dis
rete time dynami
 network. The paper proposes algorithms to 
omputethe 
onne
tivity and shortest paths in the time-varying network modeled as atime-aggregated graph.The rest of the paper is organized as follows. Se
tion 2 dis
usses the basi
 
on-
epts of the proposed model and provides the relevant de�nitions of variousterms used. Se
tion 3 proposes algorithms for 
onne
tivity and shortest path
omputation based on this model. It also proposes the 
ost models for thesealgorithms. In se
tion 4, we 
on
lude and des
ribe the dire
tion of future work.
2 Basi
 Con
eptsTraditionally graphs have been extensively used to model spatial networks [9℄;weights assigned to nodes and edges are used to en
ode additional information.For example, the 
apa
ity of a transit station 
an be represented using the weightassigned to the node that represents the station and the travel time between twostations 
an be represnted by the weight of the edge 
onne
ting the nodes. Ina real world s
enario, it is not un
ommon for these network parameters to betime-dependent. This se
tion dis
usses a graph based model that 
an 
apturethe time-dependen
e of network parameters. In addition, the model 
aptures thepossibility of edges and nodes being absent during 
ertain instants of time.2.1 A Con
eptual ModelA graph G = (N;E) 
onsists of a �nite set of nodes N and edges E between thenodes in N . If the pair of nodes that determine the edge is ordered, the graphis dire
ted; if it is not, the graph is undire
ted. In most 
ases, additional infor-mation is atta
hed to the nodes and the edges. In this se
tion, we dis
uss howthe time dependen
e of these edge/node parameters are handled in the proposedmodel, the time-aggregated graph.We de�ne the time-aggregated graph as follows.taG = (N;E; TF; f1 : : : fk; g1 : : : gljfi : N ! RTF ; gi : E ! RTF ) whereN is the set of nodes, E is the set of edges, TF is the length of the entire timeinterval, f1 : : : fk are the mappings from nodes to the time-series asso
iated withthe nodes (for example, the time instants at whi
h the node is present) andg1 : : : gl are mappings from edges to the time series asso
iated with the edges.This model 
an be explained in relation to the 
lassi
al graph model. ConsiderSG = G1 : : : GT to be an ordered sequen
e of the graphs and [1; T ℄ the timeinterval under 
onsideration where the graph Gi represents the network duringthe interval [i; i + 1). Every edge of the subgraph Gi has a weight equal to thetravel time, � of that edge for [i; i+ 1). Then the time aggregated graph taG istaG = STi=0Gi.EtaG = STi=1Ei; NtaG = STi=1Ni.The time-aggregated graph taG 
an be 
onsidered to be a time-dependent, dis-
rete system de�ned for the time interval [1; T ℄; ea
h graph Gi is then a subgraphof taG that represents the network during [i; i+ 1).



EtaG = STi=1Ei and NtaG = STi=1Ni.Ea
h edge(/node) in EtaG has an edge(/node) time series indi
ating the time in-stants at whi
h they are present; in addition, ea
h edge has an asso
iated traveltime series representing the travel times at various time instants.De�nition: Edge/Node Frequen
yThe number of time steps for whi
h an edge e is present, denoted by fE(e), is
alled the frequen
y of edge e. The edge frequen
y of a time-aggregated graphfE is de�ned as,fE = maxe2EtaG(fE(e)).In �gure 1, fE(N1�N2) = 2 and fE of the time-aggregated graph= 3.Similarly, we 
an de�ne fN (v) to be the number of time steps for whi
h a node vis present and the degree of node presen
e of a time-aggregated graph is de�nedas fN = maxv2NtaG(fN (v))The term 'frequen
y' used here does not imply periodi
ity in the edge/node timeseries.We assume that ea
h edge travel time has a positive minimum and the presen
eof an edge at time instant t is valid for the 
losed interval [t; t+ �℄Example: Figure 1 shows a time-aggregated graph and its subgraph at ea
htime step. Figures (a), (b) and (
) show the graphs at time instants 1,2 3. (d)shows the time-aggregated graph; ea
h edge has a travel time series (en
losed insquare bra
kets) and the edge time series asso
iated with it. For example, theedge from node N1 to node N2 is present at time instants 1; 2 and disappearsat the time instant t = 3. This is en
oded in the time-aggregated graph usingthe edge time series of N1-N2 whi
h is (1; 2); the travel times of this edge forall instants within the time interval under 
onsideration are aggregated into atime series [1,1,-℄; the entry '-' indi
ates that the edge is absent during the timeinstant t = 3.Figure 2 shows the time aggregated graph (
orresponding to Figure 1(a),(b),(
))

(a) Time−aggregated Graph (b) Time Expanded Graph
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Fig. 2. Time-aggregated Graph vs. Time Expanded Graph
and the time expanded graph that represent the same s
enario. The time expan-sion for the example network needs to go through 7 steps sin
e the latest time



instant would end in the network is at t = 7. For example, the traversal of theedge N3-N4 that starts at t = 3 ends at t = 7, the travel time of the edge being 4units. The number of nodes is larger by a fa
tor of T , where T is the number oftime instants and the number of edges is alos larger in number 
ompared to thetime-aggregated graph. Typi
ally the value of T is very large in a spatial networksu
h as a road map sin
e the 
hanges in the network are quite frequent. Thiswould result in time expanded networks that are enormously large and wouldmake the 
omputations slow.
2.2 A Logi
al Data ModelBasi
 Graph OperationsWe extend the logi
al data model des
ribed in [9℄ to in
orporate the timedependen
e of the graph model. The three fundamental 
lasses in the modelare Graph, Node and Edge. The 
ommon operations that are asso
iated withea
h 
lass are listed.publi
 
lass Graph {publi
 void add(Obje
t label, timestamp t_inst);// a node with the given label is added at the time instant t_inst.publi
 void addEdge(Obje
t n1, Obje
t n2, Obje
t label,timestamp t_inst, timestamp t_time)// an edge is added with start node n1 and end node n2 at// time instant t_inst and travel time, t_time.publi
 Obje
t delete(Obje
t label, timestamp t_inst)// removes a node at time t_inst.publi
 Obje
t deleteEdge(Obje
t n1, Obje
t n2, timestamp t_inst)// deletes the edge from node n1 to node n2 at t_inst.publi
 Obje
t get(Obje
t label, timestamp t_inst)// returns the label of the node if it exists at time instant t_inst.publi
 Obje
t getEdge(Obje
t n1, Obje
t n2, timestamp t_inst)// returns the edge from node n1 to node 2 at time instant t_inst.publi
 Obje
t get_a_Su

essor(Obje
t label, timestamp t_inst)// an adja
ent node of the vertex is returned if an edge exists// to this node at a time instant at or after t_inst.publi
 Iterator getSu

essors(Obje
t label, timestamp t_inst)// all adja
ent nodes are returned if edges exist to them// at time instants at or after t_inst.



publi
 Obje
t get_earliest_Su

essor(Obje
t label, timestamp t_inst)// the adja
ent node whi
h is 
onne
ted to the given node with// the earliest time stamp after t_inst is returned.} A few important operations asso
iated with the 
lasses Nodes and Edgesare provided below.
publi
 
lass Node {publi
 Node(Obje
t label, timestamp t_inst)// the 
onstru
tor for the 
lass. A node with the appropriate// label is 
reated at the time t_inst.publi
 Obje
t label()// returns the label asso
iated with the node if it exists at t_inst.publi
 boolean visit()// marks the node as being visited.publi
 boolean isVisited()// returns true if and only of the node has been visited.}publi
 
lass Edge {publi
 Edge(Obje
t n1, Obje
t n2, Obje
t label,timestamp t_inst, timestamp t_time)// the 
onstru
tor for the 
lass. an edge is added with start// xnode n1 and end node n2 at time instant t_inst and travel time, t_time.publi
 Obje
t start()// returns the start node of the edge.publi
 Obje
t end()// returns the end node of the edge.} We also de�ne two predi
ates on the time-aggregated graph.exists at time t: This predi
ate 
he
ks whether the entity exists at the starttime instant t.exists after time t: This predi
ate 
he
ks whether the entity exists at a timeinstant after t.These predi
ates are used in 
onjun
tion with the entities node, edge and routein a graph to extend the 
lassi
al graph theory 
on
epts of adja
en
y, route and




onne
tivity to time-aggregated graphs. Table 1 illustrates these 
on
epts. Forexample, node v is adja
ent to node u at any time t if and only if the edge (u; v)exists at time t as shown in the table. Similarly, a valid route exists from nodeu to node v if a path exists from node u to node v for start time t at node u andin a

ordan
e with the presen
e of edges along the route.
exists at time t exists after time tNode exists(node u,at time t) exists(node u,after time t)Edge adja
ent(node u,node v, adja
ent(node u,node v,at time t) after time t)Route route(node u,node v,a route r route(node u,node v,a route r,at time t) after time t)Conne
tivity 
onne
t(node u,node v,at time t) 
onne
t(node u,node v,after time tTable 1. Adja
en
y, Route and Conne
tivity in Time-aggregated Graphs

2.3 Physi
al Data ModelThe adja
en
y-list and the adja
en
y-matrix representations are the most 
om-mon main-memory data stru
tures used in the implementation of graphs. Toimplement our model, the time-aggregated graphs, a modi�ed version of adja-
en
y list representation is used. This data stru
ture uses an array of pointers,one pointer for ea
h node. The pointer for ea
h node points to a list of imme-diate neighbors in the time-aggregated graph. At ea
h neighbor node, the edgepresen
e series and travel times for the edge starting from the �rst node to thisneighbor are also stored. Figure 3 illustrates the data stru
ture used for thetime-aggregated graph shown in �gure 1(d). It shows the storage details for thenode N1 in detail. The adja
en
y list for N1 stores its neighbors, that is N2 andN3. The edge time series and the travel times asso
iated with the edge N1-N2are atta
hed to the node N2. Similarly, the node N3 stores the time series infor-mation of the edge N1-N3.Comparison of Storage Costs with Time Expanded Networks:A

ording to the analysis in [11℄, the memory requirement for time expandednetwork is O(nT ) + O(n +mT ), where n is the number of nodes and m is thenumber of edges in the original graph. The memory requirement for the time-aggregated graphs would be O(m:fE +n:fN ) +O(n+m)T , where fE is the edgefrequen
y and fN is the node frequen
y of the time-aggregated graph. This 
anbe simpli�ed to O(m + n)T sin
e T is always greater than fE and fN . This
omparison shows that the memory usage of time-aggregated graphs is less thantime expanded graphs by a fa
tor of O(n).The algorithms for 
onne
tivity and shortest path 
omputation in time-aggregatednetwork will be dis
ussed in Se
tion 3.
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3 Algorithms for Network ComputationsThe 
riti
al step in most queries on a spatio-temporal network is the shortestpath 
omputation. Thus the proposed model must in
lude an eÆ
ient shortestpath algorithm. Here, the shortest path is the route that 
an be traversed in theshortest time, given the start time at the start node. We assume that there is no
ost for waiting at the nodes other than the wait time, and that edge presen
eis 
losed for [t; t+�℄ where � is the travel time of the edge at the time instant t.3.1 Algorithm for Shortest Path ComputationAs noted earlier, any route 
omputation in a spatio-temporal network mustbe 
onsistent with the edge presen
e. Here, the appli
ation of a greedy strat-egy (whi
h is a popular 
hoi
e in most of the optimization problems) fa
es a
hallenge. Not all shortest paths display the optimal sub-stru
ture, whi
h is anessential 
ondition for greedy algorithms to generate an optimal solution. Thisis 
learly illustrated in Figure 4. ALthough it 
an be veri�ed that the route,
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s � N1 � N2 � N4 � u � d is an optimal path from s to d, the route does not



display optimal sub-stru
ture sin
e the route from s to u following the abovepath is not optimal (shortest path being, s�N3�N5� u). Though su
h pathsthat do not display optimal sub-stru
ture 
ould exist, it 
an be proved that thereis at least one optimal path whi
h satis�es the optimal sub-stru
ture property.Lemma 1: If there is an optimal route from s to d, then there is at least oneoptimal route from s to d that shows optimal sub-stru
ture.Proof:As Figure 4 illustrates, the failure of optimal stru
ture of the shortestpath o

urs due to a potential wait at the intermediate node (u), after rea
hingthis node traversing the optimal path from s to u. Consider the optimal pathfrom s to u. Append this path to the path u� d (allowing wait at the interme-diate node u) from the optimal path. This would be still the shortest path froms to d. Otherwise, it would 
ontradi
t the optimality of the original shortest path.Lemma 1 enables us to use a greedy approa
h to 
ompute the shortest path.The algorithm stores the 
urrent shortest path travel times to rea
h every nodefrom the sour
e node. It 
loses the node with the minimum travel time andupdates the travel times of its neighbors. At this step, it uses a fun
tion min tto �nd the earliest time instant after the arrival at whi
h this edge 
an betraversed. The updated travel time thus 
he
ks for the edge presen
e and addsthe wait time to the travel time, if ne
essary.Computational Complexity:The 
ost model analysis assumes an adja
en
y list representation of the graphwith two signi�
ant modi�
ations. The edge time series is stored in the sortedorder. Atta
hed to every adja
ent node in the linked list are the edge time seriesand the travel time series.For every node extra
ted from the priority queue Q, there is one edge timeseries look up and a binary heap update for ea
h of its adja
ent nodes. The time
omplexity of this step is O(log fE + logn). The asymptoti
 
omplexity of thealgorithm would beO(�v2N [degree(v):(log fE + logn℄) = O(m(log fE + logn)).The time 
omplexity of the shortest path algorithm based on a time expandednetwork is O(nT log T +mT ) [1℄. It 
an be seen that the algorithm based on atime-aggregated graph is faster.3.2 Algorithm for Conne
tivityThe existen
e of a valid route from one node to another in a time-aggrgatedgraph is a non-trivial issue sin
e a path in the time-aggrgated graph does notalways guarantee the existen
e of a path that is 
onsistent with the edge timeseries and edge travel times. Figure 5 illustrates this; the node N2 is 
onne
tedto node N4 for starting time instants 1; 2; 3; 4 (one route being N2 - N5 - N4),and N4 is not a

essible from N2 for all time instants after T = 4.Computational Complexity: The 
ost model analysis assumes an adja-
en
y list representation of the graph with two signi�
ant modi�
ations. For



Algorithm 1 Computation of Shortest PathInput:1) G(N;E): a graph G with a set of nodes N and a set of edges E;define type nn positive integerEa
h node n 2 N has two properties:NodePresen
eT imeSeries : nnEa
h edge e 2 E has two properties:EdgePresen
eT imeSeries,Travel time(e)series : series of nn2) s: Sour
e node, s � NG;3) d: Destination node, d � NG;Output: Shortest Route from s to dMethod: 
[s℄ = 0;8v(neqs); 
[v℄ =1;Insert s in priority queue Q.while Q is not empty do fu = extra
t min(Q);for ea
h node v adja
ent to u do ft = min t((u; v); 
[u℄);if t+ �u;v(t) < 
[v℄ f
[v℄ = t+ �u;v(t);parent[v℄ = u;if v is not in Q, insert v in Q;g update Q;ggOutput the route from s to d.
every node, the node presen
e time series is stored in the sorted order. Atta
hedto every adja
ent node in the linked list are the edge presen
e series and thetravel time series.For ea
h node dequeued form the queue Q, there is one edge series look up anenqueue operation for ea
h of its adja
ent node. The queue operations are O(1)operations. The time 
omplexity of this step is O(log fE). The asymptoti
 
om-plexity of the algorithm would be O(�v2N [degree(v):(log fE)℄) = O(m(log fE)).The time dependen
y of the network parameters a�e
ts the 
onne
tivity and theshortest paths between nodes in the network. Figure 6 depi
ts the 
onne
tivityand shortest path travel times for di�erent start time instants at the sour
e nodefor the example network shown in �gure 5. Figure 6(a) illustrates the 
onne
-tivity of the node N2 to node N4 at instants 1; 2; 3; 4; 5; 6 (these time instantsdenote the starting times at the node N2). It 
an be seen that valid routes existfrom node N2 to node N4 if the traversal starts at time instants 1; 2; 3; 4 andthat the node N4 is unrea
hable from N2 for time instants 5; 6. It might also beinteresting to note that the routes that 
onne
t the nodes also 
hange with time.For example, at time instant 1, routes N2-N3-N4, N2-N5-N4 and N2-N3-N5-N4
onne
t N2 to node N4; at starting time, t = 4, only N2-N5-N4 is available.As shown in �gure 6(b), the shortest path routes and the travel times are also
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N3

N4Fig. 5. Illustration of Conne
tivityAlgorithm 2 Conne
tivity AlgorithmInput:1) G(N;E): a graph G with a set of nodes N and a set of edges E;define type nn positive integerEa
h node n 2 N has two properties:NodePresen
eT imeSeries : nnEa
h edge e 2 E has two properties:EdgePresen
eT imeSeries,Travel time(e)series : series of nn2) s: Sour
e node, s � NG;3) d: Destination node, d � NG;Output: A route from s to d, if exists; else returns FALSE.Method:Initilialization ;Add s to Q; found = false;for ea
h node v 2 NG do farr time[v℄ = 0;gwhile found = FALSE or Q not empty do fu = dequeue(Q);for ea
h node v adja
ent to u do fAdd v to the Q;t = min t((u; v); arr time[u℄);if t 6=1 farr time[v℄ = t+ �u;v(t)parent[v℄ = ugif v = d, FOUND = TRUE;gggOutput the route from s to d.
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Fig. 6. Time Dependen
y of Conne
tivity and Shortest Paths
dependent on time.Consider the shortest path from node N1 to node N6. Theshortest path from node N1 to N6, for starting time t = 1 is N1-N4-N6 and traveltakes 5 units of time (rea
hes the destination node at t = 6). The route remainsthe same for start times t = 2; 3, but the travel time 
hanges to 4 units and 3units respe
tively. At time t = 4, the route N1-N4-N6 is no longer available andthe shortest route 
hanges to N1-N2-N5-N6 with a total travel time of 6 units.This shows that the shortest paths in a time-dependent network vary with time.
4 Con
lusions and Future WorkIn this paper, we proposed a new model, time-aggregated graphs to model spatio-temporal networks whi
h a

ounts for the 
hanges in the network topologyand parameters with time. Existing approa
hes rely on time-expanded networkswhi
h lead to high storage overhead and 
omputationally expensive algorithms.Time-aggregated graph whi
h models the time dependen
e using an aggregationof network parameters a
ross the time horizon without the need to repli
atethe entire graph. We provided algorithms to 
ompute 
onne
tivity and fastestroute in the network, two frequent tyoes of queries posed on a spatio-temporalnetwork. Our analysis show that this model is less memory expensive 
omparedto time expanded networks and leads to 
omputationally eÆ
ient algorithms.In the future, we plan to extend the model to in
orporate turn restri
tions whi
hare mostly time dependent and 
an signi�
antly in
uen
e the fastest route 
om-



putation. We understand that the model should a

omodate time-varying 
a-pa
ities of the road networks while performing path 
omputations, espe
ially inappli
ations like eva
uation planning where 
apa
ity 
onstraints in the networkare the key 
hallenge. Also, we need to formulate an algorithm to 
ompute thefastest path in the network over the entire time period or for a user-de�ned timeinterval.
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