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Abstract— Since there is no fixed infrastructur e or
centralized managementin wirelessad hoc networks, a
Connected Dominating Set (CDS) has been proposed as
the virtual backbone. The CDS of a graph representing
a network has a significant impact on an efficient design
of routing protocols in wirelessnetworks. This problem
has been studied extensively in Unit Disk Graphs (UDG),
in which each node has the same transmission range.
However, in practice, the transmission rangesof all nodes
are not necessaryequal. In this paper, we model a network
as a disk graph and introduce the CDS problem in
disk graphs. We present three constant approximation
algorithms to obtain a minimum CDS of a given net-
work. Thesealgorithms can be implemented asdistrib uted
algorithms. Furthermor e, we show the size relationship
between a maximal independent set and a CDS as well
as the bound of the maximum number of independent
neighborsof a nodein disk graphs. The theoretical analysis
and simulation results are also presentedto verify our
approaches.

Keywords: ConnecteddominatingSet,IndependenSet,
Disk Graph,WirelessNetwork, Virtual Backbone

. INTRODUCTION

In wireless ad hoc networks, there is no fixed or
pre-definedinfrastructure.Nodesin wireless networks
communicatevia a shared medium, either through a
single hop or multihops. Although thereis no ptysi-
cal backboneinfrastructure,a virtual backbonecan be
formed by constructinga ConnectedDominating Set
(CDS). Given anundirectedgraphG = (V, E), a subset
V' C VisaCDSof G if for eachnodeu € V, u is either
in V' or thereexistsanodev € V' suchthatuv € E and

the subgraphinducedby vV, i.e., G(V'), is connected.

Thenodesn theCDSarecalleddominatos, othernodes
arecalleddominateesWith the help of the CDS, routing
is easierand can adapt quickly to network topology
changesTo reducethe traffic duringcommunicatiorand
simplify the connectvity managementt is desirableto
constructa Minimum CDS (MCDS).

The CDS problemhasbeenstudiedintensiely in Unit
Disk Graph (UDG), in which eachnode hasthe same
transmissionrange. The MCDS problemin UDG has
beenshovn to be NP-hard[1]. To build a CDS, most
of currentalgorithmsfirst find a Maximal Independent
Set (MIS) I of G and then connectall nodesin I to
have a CDS. The independentset I is a subsetof V
such that for ary two nodesu,v € I, wv ¢ E. In
other words, the nodesin I are pairwise honadjacent.
A maximal independensetis an independenset such
that no more nodescan be addedto remain the non-
adjacenyg property Themostrelevantrelatedwork using
this schemearein [2], [3]. In [2], Wan et al. proposed
thefirst distributedalgorithmwith the performanceatio
of 8. Later, Li et al. proposeda betteralgorithm with
the performanceratio of (4.8 + In5) by constructinga
Steinertree when connectingall nodesin I [3].

However, in practice,the transmissionrangesof all
nodesarenot necessargqual.In this caseawirelessad
hocnetwork canbe modeledusinga directedgraphG =
(V, E). Thenodesin V arelocatedin a Euclideanplane
and eachnode v; € V hasa transmissionranger; €
[Tmins Tmaz]- A directededge (v;,v;) € E if andonly
if d(vi,vj) < r; whered(v;,v;) denotesthe Euclidean
distancebetweenv; andv;. Suchgraphsare called disk
graphs An edge(v;, v;) is bidirectionalif both (v;, v;)
and (vj,v;) arein E, i.e., d(v;,vj) < min{r;,r;}. In
otherwords, the edge(v;, v;) is bidirectionalif v; is in
thedisk D; centeredat v; with radiusr; andv; isin the
disk D; centeredat v; with radiusr;. In this paper we
only study the CDS problemin disk graphswhere all
the edgesin the network are bidirectional, called Disk
Graphswith Bidirectional links (DGB). In this case,
G is undirected.Figure 1 gives an example of DGB
representinga network. In Figure 1, the dotted circles
representthe transmissionrangesand the black nodes
representn CDS.

The MCDS problemin DGB is NP-hard[14] since
the MCDS problemin UDG is NP-hardand UDG is



Fig. 1. A Disk Graphwith BidirectionalLinks

a specialcaseof DGB. In this paper we presentthree
constant@approximatioralgorithmsfor computinga min-
imum CDS in DGB. We first introducetheir centralized
versionsand later shav how to implementthem as dis-
tributedalgorithms.We alsoanalyzethe sizerelationship
betweenan MIS anda CDS in DGB. Furthermorewe
shav the upper bound of the number of independent
neighborsof any nodein DGB. Theseanalysiscanhelp
us to study the CDS problemin a generaldisk graph,
where both unidirectional and bidirectional links are
considered.

The remainderof this paperis structuredas fol-
lows. Sectionll describeghe relatedresearchwork on
the CDS problem, mainly focuseson UDG. The size
relationship betweenan MIS and a CDS in DGB is
shavn in sectionlll. The three algorithms and their
performancenalysisarediscussedh sectionlV. Section
V presentsthe performancecomparisonsof our three
algorithms through simulation results. The distributed
implementationgreillustratedin sectionVI andsection
VIl endsthe paperwith conclusionsand some future
work.

Il. RELATED WORK

The CDS problemin wirelessad hoc networks has
been studied extensiely. Algorithms that constructa
CDS can be divided into two cateyories: centralized
algorithmsand decentalized algorithms.

The centrlized algorithmsin generalyield a smaller
CDS with a better performanceratio than that of de-
centralizedalgorithms. In [6], Guha and Khuller first
proposedwo polynomialtime algorithmsto constructa
CDSin a generalgraphG. Thesealgorithm are greedy
andcentralizedThefirst onehasthe approximatiorratio
of 2(H(A) + 1) whereA is the maximumdegreeof G
and H is aharmonicfunction. Theidea ofthis algorithm
is to build a spanningtree 7" rooted at the node with
maximumdegreeandgrown 7" until all nodesareaddedo
T. Thenon-leafnodesin T' form a CDS. In particular all
nodesin a given network arewhite initially. The greedy

function that the algorithm usesto add nodesinto 7" is

the numberof the white neighborsof eachnode or a
pair of nodes.The one with the largestsuchnumberis

marked black and its neighborsare marked grey. These
nodes (black and grey nodes)are then added into 7.

The algorithm stopswhen no white node exists in G.

The secondalgorithmis animprovementof thefirst one.
This algorithmconsistsof two phasesThe first phaseis

to constructa dominatingset and the secondphaseis

to connectthe dominatingsetusinga Steintertree algo-
rithm. With suchimprovement the secondalgorithmhas
the performancefactorof H(A) + 2. Thesealgorithms
later were studiedand implementedby Daset al. [11]-

[13]. In [7], Ruanet al. introducedanothercentralized
and greedyalgorithm of which the approximationratio

is (2+InA).

The decentralizedalgorithmscan be further divided
into two cateyories: distributed algorithms and local-
ized algorithms.In distributed algorithms,the decision
processs decentralizedin the localizedalgorithms,the
decisionprocesss not only distributedbut alsorequires
only a constanthumberof communicatiorrounds.Most
of thedistributedalgorithmsfind a Maximal Independent
Set(MIS) and connecthis set.Notethatin anundirected
graph,an MIS is also a Dominating Set (DS). In [2],
[15], [16], the authorsproposeda distributed algorithm
for a CDS problemin UDG. This algorithm consists
two phasesand hasthe constantapproximationratio of
8. The algorithm first constructsa spanningtree. Then
eachnodein a treeis examinedto find an MIS for the
first phase.All nodesin an MIS are colored black. At
the secondphase more nodesare added(color blue) to
connectthe black nodes.Later, Cardeiet al. presented
another2-phaselistributedalgorithmfor aCDSin UDG.
This algorithm has the sameperformanceratio as the
previous one.However, the improvementover [2] is the
messagecomplity. The root does not needto wait
for the COMPLETE messagdrom the furthest nodes.
RecentlyLi etal. proposedanothemistributedalgorithm
with a betterapproximationratio, which is (4.8 + In 5)
[3]. This algorithm also has two phases.At the first
phase,an MIS is found. At the secondphase,a Steiner
tree algorithmis usedto connectthe MIS.

For the localizedalgorithms,Wu andLi [8] proposed
a simple algorithm that can quickly determinea CDS
basedon the connectvity informationwithin the 2-hops
neighbors.This approachusesa marking process.In
particular eachnodeis markedtrueif it hastwo uncon-
nectedneighborsAll themarkednodesorm aCDS.The
authorsalsointroducedsomedominantpruningrulesto
reducethe size of the CDS. In [2], the authorsshoved
that the performanceratio of [8] is within a factor of



O(n) wheren is the numberof nodesin a network.

In [10], Alzoubi et al. proposedanotherlocalized 2-
phasealgorithmswith the performanceratio of 192. At
the first phase,an MIS is constructedusing the 2-hops
neighborsinformation. Specifically oncea node knows
that it hasthe smallestID within its neighbors,it be-
comesa dominator At the secondphasethe dominators
areresponsibldor identifying a pathto connecthe MIS.
In [9], Li etal. proposedanotheldocalizedalgorithmwith
the performanceratio of 172. This localized algorithm
hasonly 1 phase A nodemarksitself asa dominatorif
it cancover the mostwhite nodescomparedo its 2-hops
neighbors.

Most of the constantapproximationalgorithms are
for the CDS problemin UDG. However, in practice,
the communicationrangesof nodesin a network are
not necessaryequal. Such a network can be modeled
asadisk graph.In this paper we presentthreeconstant
approximationalgorithmsfor the CDS problemin DGB.
The main approachis to constructan MIS and then
connectthem. Hencewe first needto analyzethe size
relationshipbetweera CDSandanMIS, whichis shavn
in next section.

1. THE SIZE RELATIONSHIP BETWEEN A CDS AND
A MAXIMAL INDEPENDENT SET

In this section,we shav the sizerelationshipbetween
ary maximalindependensetanda CDSof agivenDGB.
DenoteOPT asan optimal CDS and opt asthe size of
OPT, we have:

Fact 1: Given 3 nodese, y, and z suchthatd(z, y) <
d(z,z) andd(y, z) < d(z,y), theny and z areadjacent.

Proof. The disk at y hasradiusat leastd(z,y) and
the disk at z hasradiusat leastd(z, z). Therefore both
disks have radius at leastd(y, z). Hence,y and z are
adjacent.

O

Lemmal: Let N;p(u) denotetheindependenheigh-
borsof nodeu. In aDGB, the sizeof N;p(u) is bounded
by:

5 if k=1

nk__| otherwise

Nip(u)| <
[Nip( )—{ 10| zcos( 75D

Tmazx

wherek =

Proof: Wheﬁ%”: 1, aDGB is a UDG. Thusthelemma
holds.Whenk > 1, consideranodex andall nodesthat
areadjacento . Without lossof generality assumehat
thedisk at z hasradiusl. Thenanodey thatis adjacent
to x hasradiusat leastd(z,y) andat mostk. Thus,all

nodesthat are adjacentto « lie in the inside of circle at
centerz with radiusk.

We first evenly divide this areainto several smallones
A; with rays(half lines) at z. Two adjacent ray$orm an
anglea. Supposery andzz aretwo rayswith anglea
betweenthem. Supposei(z,y) < d(z, z) andd(y, z) =
d(x,y). Thenfrom Fact1, we know thaty andz areadja-
cent.Sinced(y, z) = d(x,y), we have Zzzy = . Hence
d(x,z) = 2d(x,y)cosa, i.e., d(x, z)/d(x,y) = 2cosa.
HenceeachareaA; canbedividedinto subareasy cir-
clesat  with radius1,2cos a, (2cos@)?, ..., (2 cos a)’.
Note that (2 cos a)’ < k. Hence,j = [ln(;i(’jsa)J Now
we needto shav that all nodesthat are adjacentto =
andlie in eachsubareaare adjacentindeed,let y and z
be suchnodes.Thenz, y, and z satisfythe conditionin
Fact1.

Therefore, there are at most | - ;I‘Cfia)J (27 /a) sub-
areas.In other words, x can be adjacentto at most
| mobaay ) (27/a) independenhodes.

(2cosa)

Let f(a) = Lln(l;cfsa)J(Zﬂ'/a). Note thatin our proof,
a = 2w/m wherem is an integer and m > 6. Hence,
we needto find a local minima of f(«) where0 <
a < 2w /6. With some algebraicsteps,we have o =
27/10. Hence,when k£ > 1, = can be adjacentto at

most 10| independenhodes.

1n(2<oe(7r/5))J
d

Theoem1: In a DGB G = (V, E), the size of ary
maximal independentset is upper boundedby Kopt
where k = M and K = 5 if k = 1, otherwise,

lnnlg

= 10| 5zeosrmn) )

Proof Let I be anMIS. By Lemmal, no nodein
OPT candominatemorethan K nodesin I. Thusthe
theoremfollows: || < Kopt.

O

Fromnow on, we will referk asr,qz/rmin @and K =
5if k = 1, otherwise,K = 10[%]

V. APPROXIMATION ALGORITHMS AND ANALYSIS

In this section, we presentthree constantapproxi-
mation algorithmsfor the CDS problemin DGB and
analyzetheir performanceatio.

A. First Algorithm

1) Algorithm Description: The First Algorithm (TFA)
hastwo phasesFirst, we constructthe maximal inde-
pendentset I, then connectthem by finding a set of
connectornodes B. This algorithm is similar to [2].
Throughout the paper sometimesyve call a black node
asanodein I, a blue nodeasa connectorodein B,
and a grey nodeas a non-CDSnode. Note that the set
I is alsoa dominatingsetof G.

To constructan MIS, we first randomly choosea
vertex u € V' and constructthe Breath-FirstSearchtree



Algorithm 1 The First Algorithm
1: INPUT: A DGB G = (V, E), all nodesare white

2: OUTPUT. A CDSof G

3: Randomlypick a vertex u € V' andcolor u black

4: I ={u}, B=0, GREY =0

5: Constructa BFStreeT of GG, rootedat u

6: d = depth(T)

7. for j=1tod do

8 TMP,={ v;|level(i) =j}

9: if v is dominated by some black nodes in
TMP;,_q then

10: Color v; grey; GREY = GREY U {v;}

11:  endif

12: Choosea set A of nodesin TMP;_; that is
not grey and a maximal independentset in
G(TMP;_1 — GREY)

13: Color A black; 7 =TUA

14: Choosea set C of nodesin TMP;_; that are
parentof black nodesin TM P;

15:.  Color C blue; B=BU(C

16: end for
17: Return/ U B

(BFS) T of G rootedat u. Next, we mark« black. Then
mark all the neighbornodesof u grey. For eachlevel

level(i) of T', find a maximalindependensetof a setof

nodesthatare neitherblack nor grey. In otherwords,we

needto find an MIS of the nodesthat are not dominated
yet. After findinganMIS, the procesof connectinghem
is easywith the help of T'. For eachblack nodew, we

just needto find a grey nodethatis a parentof « andbe
dominatedby anotherblack nodesin the previous level.

The detail of TFA is shavn in Algorithm 1.

2) Theoetical Analysis: The maximal independent
set] obtainedfrom TFA satisfiesthis property:

Lemma2: Any pair of complementarysubsetsf the
MIS hasa distanceof exactly two hops.

Proof: This s trivial from the constructionof I in the
algorithm.If anodew € I, thenall N(u) € GREY . If
u € GREY , thenthereexist a nodev suchthatuv € E
andu is black.

a
Theoem?2: TFA producesa CDS with the size
boundedby 2Kopt where K = 5 if k = fmex = 1,
otherwise X = 10| pzetorsyy )
Proof: From Lemmaz2 and Theoreml, we have:
|CDS| < 2|I] <2Kopt
O

In practice,we expectthat k is very small sincethe
transmissiorrangesof all nodesin a network shouldbe
slightly different.

Corollary 1: If the maximum and minimum trans-
missionrangesare bounded then our algorithm hasan
approximationfactor of O(1).

B. SecondAlgorithm

In the first algorithm, we connecttwo black nodesu
and v (assumethat level(u) < level(v)) by finding a
grey nodew thatis a parentof v in T" and neighborof
u in G. However, we canconnect/ by usingthe Steiner
tree,which is a tree interconnectingall nodesin 1. The
nodesin the Steinertree but not in I are called Steiner
nodes.To reducethesizeof anobtainedCDS,we needto
find a Steinertree with the Minimum numberof Steiner
Nodes(MSN). We can definethis problemas follows:

Definition 1: Steiner Treewith MSN: Givenagraph
G = (V, E) andasetof nodesV’ C V calledterminals
constructa Steinertree T’ that connectsall the terminals
suchthat the numberof Steinernodesis minimum.

1) Algorithm Description: The Second Algorithm
(TSA) alsohastwo phasesThe first phaseis to find an
MIS I that satisfiesLemma2. Note that this condition
is vital for the secondphaseto work. Sincethe obtained
MIS I from TFA satisfiesthis condition, we can use
the procedurein TFA to find the MIS I. At the second
phase,we constructa Steinertree with the minimum
numberof Steintemodedo interconnecall nodesn I as
follows. Define a bladk-blue componentas a connected
componentof the subgraphinducedonly by black and
blue nodes,ignoring connectionshetweenblue nodes
Initially, we have |I| black-bluecomponentsLet B be
a set of Steinernodes,called blue nodes.Initially, B
is empty From Lemmal, we know that eachnodeis
adjacento atmost K independenhodesin otherwords,
a blue nodeis adjacentio at most K black nodes.Color
all nodesin V — I grey. At eachiteration,we canfind a
grey nodethatis adjacento mostblack-bluecomponents
and color it blue. Formally, for j from K to 2, at each
iterationy, find agrey nodev suchthatv is adjacento at
leastj black nodesin different black-bluecomponents.
Color v blue andre-computehe black-bluecomponents
asdescribedn Algorithm 2

2) Theoetical Analysis: The CDSin this algorithmis
a union of set/ andset B. To analyzethe performance
ratio of our algorithm, we first comparethe size of set
B to opt. Recallthat B is a setof all the Steinernodes.
Let T* be anoptimal tree when connectinga given set
I andC(T™) is the numberof the Steinernodesin 7,
we have this following lemma:



Algorithm 2 The SecondAlgorithm
1: INPUT: A DGB G = (V, E), all nodesare white
2: OUTPUT. A CDSof G
31=0;B=10
4. Use the procedurein Algorithm 1 to compute/,
othernodesaregrey at this stage
- for j=K to2do
while There exists a grey node v adjacentto
at least j black nodesin different black-blue
componentsio
7: B =BU{v}
8: endwhile
9: end for
10: Return/ U B

o G

Lemma3: The size of B obtainedfrom TSA is at
most (2 + In K)C(T™)
Proof: Letn = |I| andp = |B|. If n = 1, thenthelemma
is trivial. Assumethat n > 2, thus C(7*) > 1. Let

Therefore the total numberof blue nodesis bounded
asfollows:
[B] <i+42C(T") < C(T")(In iy + 2)
< C(T*)(In +2)<(2+InK)C(T™)
O

Theoem3: The SecondAlgorithm producesa CDS
with size boundedby (K + 2 + In K)opt where K =5

C(ZL“*)

if k= Zues = 1, otherwiseK = 10| it |
Proof 'From Theorem1 and Lemma3, we ha/e
|CDS| =1 +|B|
<(K+2+InK)opt
O

Corollary 2: If themaximumandminimumtransmis-
sionrangesareboundedthenTSA hasanapproximation
factorof O(1).

C. TheThird Algorithm
In the two previous proposedalgorithms,we find an

vj,j = 1...p bethebluenodesin theorderof appearance \;i5 pasedon the Breath First Searchtree T’ which is

in the secondphaseLet a; be the numberof the black-
blue componentsafter vy, ..., v; turnsblue. Since every
black-blue componentcontainsa black node which is
adjacentto a Steinernode of T*, thereexists v; which

is adjacentto at least ~%—~ C(T* Thuswe have:

a;
i1 <A — = T
=TT 0T
Hencewe have this following recurrence:

Aj—1

C(T%)

1
< ai_1<1 - C(T*)>2+ 1
<oa(1- ) (1 e) +

calo-gh) )

< ao (1 - C(lT)> + o)

For the last step in the above recurrence,we note

J .
that the secondterm Y '_j (1 o) is the ge-
ometric series and it will corverge to C(T*). After
i=C(T")In & 5 iterations,the numberof black-blue

componentsmﬁ be:

< e T 4 O(T)
<20(T™*)

+1

<aj1-—

a;

constructedbasedon the connecwity information of a
given network. In this section,we shaw the effect of the
sizeof thedisksonthesizeof anMIS. Wefirst introduce
the following lemma:

Lemmad: In a DGB G, there exists a node that is
adjacentto at mostfive independenhodes.
Proof: Let D beadisk with radiusr,,;, centerecat node
u. Note that D is the smallestdisk in G. We prove that
u hasat most5 independennheighborsby contradiction.
Supposehat v hasmorethan5 independenheighbors.
Let v, 1 < 5 < 6 be the independenteighborsof
u. Thenthereexist two nodesthat lie in a sectorwith
the anglelessthan or equalto 60 degree.Without loss
of generality assumethat v; and v, are suchnodesas
shavn in Figure2. Thend(vy,v3) < rmqn. Hencevy and

vy are connectedcontradictingto our assumption.
O

A\V/
VAV

Fig. 2. Onthe Proof of 5 IndependeniNeighbors



Note that the subgraphof a DGB is still a DGB.
Hence,let us considerthe algorithmto find an MIS as
shawvn in Algorithm 3.

Algorithm 3 ChooseSmallestDisks
1: INPUT: A DGB G = (V, E)
: OUTPUT. A Maximal IndependenSet I
I=90
: while V' # ) do
Find anodeu € V with the smallestradius,color
u black
I=TU{u}
V=V-—-{u} - N(u)
: end while
: Return]

akwnN

In this algorithm, at eachiteration, we find a node
with the smallestradiusin V' and color it black, then
remove this node and its neighborsfrom V. This step
runsiteratively until V' is empty The black nodesform
a maximalindependenset!. Let I* bethe optimal MIS
of G, i.e., |[I*| > |I| for ary MIS I, we have:

Lemmab: Thesizeof [ is at IeastlI

Proof: Every nodewv € V is eitherin ? or adjacento
somenodesin I. Sincel* C V, every nodev € I* is
eitherin I or adjacentto somenodesin I. Let define
N[u] astheclosed neighboref « whenaddingu into I,
i.e., N[u] = N(u) U{u}. Thenevery nodev € I* is in
NJu] for someu € I. Becauseat eachstep,we choose
a nodew with the smallestdisk, eachu hasat most5
independenhodes(Lemma4). ThuseachN [u] contains

I*|
5

at most5 verticesfrom I*. This resultsto |I| >
O
Now, let us color the biggest disks instead of the
smallestdisksblack. Specifically asshavn in Algorithm
4, at eachiteration, we find a node with the largest
transmissiorangein V' andcolor it black. Remaove this
nodeandits neighborsfrom V. The setof black nodes
forms a maximalindependenset I.
Again, let I* be the optimal MIS of G, we have the
following lemma:

|I7]

Lemma6: Thesizeof I is atleast whereK =5
if k= Lme= =1, otherwise K = 1OLWJ

Proof Usmgthesameapproachn the previous proof,
by Lemmal, eachN [v] containsat most K independent
. . I*
nodesin I*. This follows that |I| > 17
K O
We believe thatthe sizeof I obtainedfrom Algorithm
4 is less than that obtainedfrom the First or Second

Algorithm due to the abore lemma. Thus we introduce

Algorithm 4 ChooseBiggestDisks
1: INPUT: A DGB G = (V, E)
OUTPUT. A Maximal IndependenSetI
I=90
while V # () do
Find a nodew € V with the biggest radiusgolor
u black
I=TU{u}
V=V—-{u}—-N(u)
end while
Return’

© % N

The Third Algorithm (TTA) and its performanceis

evaluated by simulations. In this algorithm, we first

find a set of dominatingset I using the Algorithm 4.

Then connect/ by choosinga nodethat is adjacentto

most black-blue componentsand color it blue. Recall

that the black-bluecomponenis definedasa connected
componentof the subgraphinducedonly by black and

blue nodes,ignoring connectionsbetweenblue nodes.
The detail of TTA is shavn in Algorithm 5.

Algorithm 5 The Third Algorithm

1: INPUT: A DGB G = (V, E), all nodesare white
OUTPUT. A CDS
I=0;B=0
I = ChooseBiggest Disks(G)
while [ is disconnectedio

Selecta white nodeu suchthat v is adjacentto

mostblack-bluecomponents

Color u blue

8. B=DBU{u}

9: end while
10: Return/ U B

~

V. SIMULATION RESULTS

In the previous section,we evaluate our algorithms
through theoretical analysis. In this section, we con-
ducted some simulation experimentsto measurethe
performance(in terms of the size of CDS) of three
algorithms:The First Algorithm (TFA), The SecondAl-
gorithm (TSA), and The Third Algorithm (TTA). Recall
that the improvementof TSA over TFA is that we use
the Steinertree with the minimum numberof Steiner
nodesto interconnectll black nodes.The improvement
of TTA over TSA is that we selectnodeswith largest
transmissionrangesas the black nodes.Moreover, we
are interestedin comparingthe size of the black nodes
obtainedfrom eachalgorithmto seewhetherthe choos-
ing the biggestdisks approachcan return the smallest



numberof black nodes Sincethe numberof blacknodes
in TFA and TSA is the same,let I; denotethe size of
black nodesobtainedfrom eitherT'FA or TSA. Let I
denotethe size of black nodesobtainedfrom TTA and
I, bethe size of black nodesobtainedfrom the Choose
SmallestDisks (CSD)algorithm.We studythreenetwork
parametershat may affect the algorithm performance:

1) n, the numberof nodesin a given network

2) k, theratio of the largesttransmissiomrangeto the

max

. . . T
smallesttransmissiorrange,i.e., k =

—
3) Thenetwork density i.e., the numbero{”ﬁgdesper
area

A. Effectsof Numberof Nodes

14

12r
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Fig. 3. Effectsof Numberof Nodes

To evaluate the performanceof the three proposed
algorithms under different number of nodes,we ran-
domly deployed n nodesto a fixed area of 800m x

800m.n changedfrom 10 to 200 with an incrementof
1. Eachnodew; randomlychosethe transmissiorrange
Ti € [Tmaz, Tmin] Where rpq, = 600m and rp, =
200m. For eachvalue ofn, 1000network instancesvere
investicgatedand the resultswere averaged.

As canbe seenin Figure 3(a), the size of a CDS ob-
tainedfrom TTA is smallestamongall threealgorithms.
Specifically the size of the CDS obtainedfrom TTA is
3.3% smallerthan that of TSA, and 8.9% smallerthan
that of TFA. Also, the size of the CDS obtainedfrom
TSA is 5.5%lessthanthat of TFA. The resultsindicate
that constructingthe Steiner tree with the minimum
number of Steinernodesto interconnectthe maximal
independentset can reduce the size of the CDS. In
addition, choosingthe biggestdisk as a black nodecan
reducethe size of the CDS aswell.

Figure 3(b) shawvs the comparisonof the numberof
black nodesobtainedfrom TFA, CSD, and TTA. The
numberof black nodesI, obtainedfrom TTA is smaller
than that of TFA. The ChooseSmallestDisks (CSD)
algorithm returnsthe largestnumberof black nodes/;
as shawvn in Figure 3(b). This is consistentwith our
expectationaswe have analyzedn the previous section.

Figure 3 also shavs how the numberof nodesin a
network affectsthesizeof the CDS.In particular the size
of the CDS increasessthe numberof nodesincreases.
This factis obvious sincethe numberof nodesthatneed
to be dominatedis larger whenwe deplgy more nodes.

B. Effectsof the TransmissiorRang Ratio

We also conductedsimulationsto comparethe per
formance of all three algorithms when changing the
transmissionrangeratio k£ as well asto seehow this
changeaffectsthe size of the obtainedCDS. To change
k, we fixedr,,;, = 200m andchanged-,,,, from 200m
to 1200mwith anincrementof 10. In this experiment,
we randomlydeployed 100 nodesnto afixedareaof size
800mx 800m.Eachnoderandomlychosea transmission
rangein [rin, "maz)- FOr €achnetwork instancewe ran
the testfor 1000times.

Figure 4(a) compareghe performanceof threealgo-
rithms in terms of the CDS size. As shavn in Figure
4(a), TTA is thebest.In particular the CDSsizeobtained
from TTA is 10.7% smallerthan that of TFA, and 4%
smallerthanthat of TSA. TheresultantCDS from TSA
hasa size 6.7% smallerthanthat of TFA. Again, these
resultsreveal that using the Steinertree to interconnect
a dominatingsetcanreducethe CDS size.

As expected,l;, < I; < I; asshovn in Figure 4(b).
Notethat I is 21% biggerthan I;,. This numberis large
and significantto increasethe size of CDS. This very
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high percentages predictedsincewhenk increasesi
increaseaswell. Recallthat K is the maximumnumber
of independenteighborsof eachnode.Since|I*|/K <
|Ip|, I, hasthe potentialto decreases K increases.
Figure4 illustrateshow the transmissionrangesaffect
the CDS size. As canbe seenin Figure 4, threecurves
shov obvious trend of decreaseln other words, the
CDS size decreaseswhen the maximum transmission
rangeincreaseslt is dueto the fact that the larger the
transmissiomange the morenodesa nodecandominate.

C. Effectsof the NetworkDensity

Simulations were also carried out to comparethe
performanceof all three algorithmswhen changingthe
network densityaswell asto seehow this changeaffects
the CDS size. To changethe network density we fixed
the numberof nodesn = 50 andincreasedhe areafrom
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400mx 400mto 1,400m x 1,400nwith anincrementof
50. In this experiment,we randomlygenerated0 nodes
in anareawith the sizechangingasdescribedEachnode
randomly chose a transmissionrange in [rmin, "maz)
where r,,;, = 200m and 7, = 600m. For each
network instancesye ranthe simulationsfor 1000times
andthe resultswere averaged.

Figure 5(a) provides the performancecomparisonof
threealgorithmsin termsof the CDS size. As revealed
by Figure 5(a), TTA still outperformsthe othertwo in
this case.And TSA outperformsTFA. Specifically the
CDSsizeobtainedfrom TTA is 8% lessthanthatof TFA
and3.2%lessthanthatof TSA. Moreover, the CDS size
obtainedfrom TSA is 4.9% lessthan that of TFA. As
predicted,Figure 5(b) indicatesthat I, < I; < I,. The
numberof black nodesobtainedfrom TTA is slightly
lessthanthat of TFA but is much lessthan that of the
CSD algorithm.



In addition, Figure 5 shows the obvious trend of
increaseof three curves, which implies that the CDS
size gets bigger when the network density decreases.
This is becausavhenthe network densitydecreasegshe
neighborsof eachnodedecreaseaswell. Thusthe CDS
sizeneedto belargerto dominateall nodesin anetwork.

In conclusion,for all aspectsthat we have studied,
TTA is the bestalgorithm. Next is the TSA. Choosing
nodeswith the largesttransmissiorrangesfor the dom-
inating setand using the Steinertree with the minimum
numberof Steinernodesto interconnecthe dominating
setcanreducethe CDSsize.Specifically choosingnodes
with the biggestradius can form a smaller dominating
set. With the help of the Steinertree, the number of
blue nodescanbe reduced.The size of a CDS obtained
usingthesetwo mechanismss about10% lessthanthat
obtainedwithout usingthem.In addition,the simulation
resultsreveal thatthe CDS sizeincreasessthe number
of nodesincreasesThe CDS size also can get larger if
the network gets sparser Furthermore when the trans-
missionrangesincreasethe CDS size decreases.

V1. DISTRIBUTED IMPLEMENTATIONS

From the practical point of view, all algorithmsde-
signedin wireless networks should be distributed. In
this section, we discusshow to implementour three
algorithmsasdistributed algorithms.Thereexist several
distributedalgorithmsfor constructingan MIS satisfying
Lemma2 in literature[2], [5]. Specifically the authors
constructedan arbitrary rooted spanningtree T' by the
distributed leaderelection algorithm in [17]. This al-
gorithm hasan O(n) time complity and O(nlogn)
messageompleity wheren is the numberof nodesin
a given network. After constructingthe spanningreeT’,
Wan et. al [2] introduceda distributed constructionon
how to find a maximalindependenset using the color
mechanismwith O(n) messagecompleity and O(n)
time complity. We can use this constructionfor our
TFA. Hence,the distributedimplementatiorof TFA has
O(nlogn) messageomplity andO(n) time comple-
ity. Now we presentthe distributed implementationgor
TSA and TTA.

A. Distributed \Version of TSA

For The SecondAlgorithm, we first find the MIS that
satisfiesL.emmaz2, which we canusethe abose method.
We thus only presenta distributed algorithm for the
secondphasethatis to find a Steinertreeto interconnect
the maximalindependenset.Note thatafter runningthe
first phase,all nodesin an MIS are black and all other
nodesare grey.

Algorithm 6 Distributed Versionof TSA SecondPhase
1: INPUT: A maximal independentset I and G =
(V, E), all nodesv; € I areblack,andv; € V -1
aregrey

: OUTPUT:. Color connectorsblue

. Setl D¢ of eachblacknodeequalto the Black nodes
ID {IDc is the black-bluecomponentD }

: SetID¢ of eachgrey nodeequalto —1
5: IDc = —1 for all grey nodev;

6: Eachgrey nodemaintainsthe AD.J list which is the
list of its adjacenblacknodesn differentblack-blue
components

7: Eachgrey nodemaintainsa COM PETITORS list

8. Eachgrey nodemaintainsa globalvalue B, B = K
initially

9: v; sendsa BLACK messageontainedits I D¢

10: Upon receving the BLACK messagegrey nodev;

updatests ADJ andCOMPETITORS lists

v; sendsa GREY messageontainedits id and its

|ADJ]|

v; turnsblueif its |[ADJ| > |ADJ| of its neighbors

andits |[ADJ| > 1

Eachbluenodeupdatests I D¢ to thesmallestvalue

in its ADJ list

A blue nodethensendsa BLUE messageontained

its new 1D andnen ADJ list

Upon receving a BLUE messageplack node v;

updatests I Do andsenda BLACK message

Upon receving a BLUE messagea GREY node

decreased3 by 1

If |[ADJ| of a grey node v; equalto 1, then do

nothing

w N

11:

12:

13:

14:

15:

16:

17:

As describedin Algorithm 6, all black nodesw; in
the maximal independenset I maintainsits black-blue
componentid, i.e., ID¢. Initially, we have |I] black-
blue componentsHence,I Do of eachblack node can
be setto the node ID. Eachgrey node also maintains
its black-bluecomponentid and initially, /Do = —1,
which indicatesthat it doesnot belongto ary black-
blue componentyet. Each grey node also maintainsa
list of its adjacentblack-blue componentswith there
ID¢ values,called ADJ and a list of its competitors
called COMPETITORS. The grey nodeis adjacent
to a black-blue componentif it is adjacentto a black
nodein the black-bluecomponentA grey nodew is a
competitorof a grey nodew if the numberof adjacent
black-bluecomponentof v andu arethe same.At this
time, the nodewith the smallernodeid becomesa blue
node.Hencethe COM PETITORS list containsa list



of competitorsnodeid. Eachgrey nodesalsomaintaina
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messagecompleity of distributed TSA is O(nlogn)

global value B which representshe maximumnumber whereits time complity is O(n).

of independenteighbors.nitially, B = K.

Note that after finding a maximalindependenset,we
still hasa spanningreeT’. Thuseachnodealsomaintain
alist of its childrenin T, calledCHILDREN. Initially,
arootnodeof T" whichis ablacknodesendghe BLACK
messagecontainedits /D¢ to its one hop neighbors.
Upon receving a BLACK messagethe grey node v;
add the ID¢ in the BLACK messageo its adjacent
black-blue componentsADJ. If this number D¢ is
alreadyin ADJ, it does nothing. After updating its
ADJ, thegrey nodethenbroadcastshe GREY message
< |ADJ|,id >. Note that id is the grey nodeid and
|ADJ| is the size of the AD.J list. Upon receving the
GREY messagea grey nodecomparests |ADJ| to the
|ADJ| in the GREY messagelf its |AD.J| is equalto
the|ADJ| in the GREY messageit addsthe grey node
id in the GREY messageo its COM PETITORS list.

When a node is a leaf, besidesbroadcastingthe
BLACK or GREY messagalependingon its color, it
also broadcastdhe END messageUpon receving the
END messagea GREY nodeturnsto blue accordingto
the follows:

e lts|ADJ| > B >1and

e Its id is smaller

COMPETITORS list

After turning its color to blue, a blue node updates
its ID¢ to the smallestnumberin its ADJ list and
decreases3 by 1. The blue node then sendsa BLUE
messagandkeepst color permanentA BLUE message
containsits id and its ADJ list. Upon receving a
BLUE messageall black nodesupdatetheir I D¢ to
the smallestnumberin the BLUE messagendsendthe
BLACK messageout. Note that all nodesin the same
black-bluecomponenimusthave the samel D. At the
endof this algorithm,the grey nodekeepsits color grey
if its |[ADJ| is 1. A node stopssendingmessagsf it
is adjacentto one black-bluecomponentThis indicates
that either the all black nodesare connectedat this
time or a nodeis just adjacentto only one black node.
The main idea of this distributed versionis shavn in
Algorithm 6.

Theoem4: The distributed version of TSA has an
O(nlogn) messageompleity andO(n) time comple-
ity.

Proof: The time and messagecompl«ity of the MIS
constructiorphasds dominatedy thetime andmessage
complity of constructingthe rooted spanningtree T°
which are O(n) and O(nlogn) respectiely [2]. For
the secondphase,eachnode sendsat most O(n logn)
messagesand takes at most linear time. Hence the

than all id in its

d

B. Distributed Version of TTA

The distributed version of TTA consiststwo phases
as showvn in Algorithm 7. The first phaseis to find a
dominatingset suchthat at eachiteration, we selecta
nodewith thelargesttransmissiomange.And thesecond
phaseis to connectthe above dominatingset.

Algorithm 7 Distributed Versionof TTA

1: INPUT: A DGB G = (V, E) with all nodesin white

2: OUTPUT. A CDS

3: Eachwhite nodemaintainsa SORT list

4. Eachwhite node v; broadcasta WHITE message
< idi, r; >

5. Upon receving a WHITE messageeachnode up-
datesits SORT list

6: A nodewith its id atthe beginningof the SORT list
marksitself black and sendsthe BLACK message
containedits id

7: Upon receving a BLACK messagea white node
marksitself grey andbroadcastshe GREY message
containedits id andid in the BLACK message

8. Upon receving a GREY messagea white node
updatests SORT list

9: Usethe Algorithm 6 to connectall black nodes

Initially, all nodesare white. Each node maintains
a list of all node id in the decreasingorder of the
transmissiormangesgcalledSORT list. At thebeginning,
the SORT list of eachnode containsits own id. Each
white nodew; broadcasta WHITE messageontaining
its own id andits transmissiorrange< id;, r; >. Upon
receving a WHITE message,each node updatesits
SORT list by addingthe id in the WHITE message
in the decreasingorder of transmissiorranges.A node
which hasits id at the headof the SORT list hasthe
largesttransmissiorrange.

A white node which hasits id at the head of the
SORT list marks itself black and sendsthe BLACK
messagéo its neighborsThe BLACK message&ontains
theblacknodeid. Uponreceving the BLACK message,
a white node marks itself grey. The grey node then
broadcastsa GREY messagewhich containsits own
id andid in the BLACK messageUpon receving the
GREY messagea white nodeupdatests SORT list by
removing the id in the grey messagdrom the SORT
list.



Once a node males itself black or grey, its color is
unchangedThis processstopswhentheredoesnot exist
ary white node.Note that after marking itself black or
grey and sendingout the BLACK or GREY message,
this nodewill not join in the coloring processarymore.

At the endof this phaseall nodesin the network are
eitherblack or grey. All black nodesform a dominating
set. Now, we needto connecttheseblack nodes.The
processis similar to the distributed version of TSA
SecondPhase.

Theoemb5: The distributed version of TTA has an
O(n?) messageompleity and O(n?) time complexity.
Proof: The time and messagecompleity of the first
phaseis dominatedby the sorting part, i.e, to compute
the SORT list of eachnode.Sinceeachnodebroadcasts
a WHITE messagethe time and messageompleity is
O(n?). The secondphaseusesO(nlogn) messagend
takesat mostlineartime. Hencethe messageomplity
of distributed TTA is O(n?) andits time compleity is
alsoO(n?).

O

VII. CONCLUSION

In this paper we have studiedthe ConnectedDom-
inating Set (CDS) problemin Disk Graphswith only
Bidirectionallinks (DGB). The disk graphscanbe used
to model wirelessad hoc networks where nodeshave
different transmissionranges.We have proposedthree
approximationalgorithmsand shawvn that the obtained
CDSis within a constanfactorof the optimal CDS. The
main approachin our algorithmsis to constructa max-
imal independentset and then connectthem. Through
the theoreticalanalysisand simulationresults,we have
shavn that using a Steiner tree with the minimum
number of Steinernodesto interconnectthe maximal
independensetcanhelp to reducethe size of the CDS.
In addition,choosinganodewith thelargesttransmission
rangeas a dominatorcan further reducethe CDS size.

Moreover, we have alsopresentedhe sizerelationship
betweenan independentset and a CDS of a given
network. We have pointed out someimportant charac-
teristicsof a DGB. In particular givena DGB G, there
exists a node such that the maximum number of its
independenteighborsis 5. In addition, we have also
proved the upper bound of the maximum number of
independenheighborsof ary nodein a DGB.

Whennodesin a network have differenttransmission
ranges,a nodew cancommunicatedirectly to a nodew
but node v might not be able to communicatedirectly
backto nodew. In this case the edge(u, v) is a directed
edge,called unidirectionallinks. Thuswe are interested
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to study the CDS problemin the generaldisk graphs,
where both unidirectionaland bidirectional links exist.
Onesimpleway is to find a dominatingsetandthenuse
adirectedSteinemodesalgorithmto connectthem.Note
thatthe CDS in this caseis directed.Hencewe needto
find a strongly connectedCDS to help the routing.
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