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Abstract— Since there is no fixed infrastructur e or
centralized management in wir elessad hoc networks, a
Connected Dominating Set (CDS) has been proposed as
the virtual backbone. The CDS of a graph representing
a network has a significant impact on an efficient design
of routing protocols in wir elessnetworks. This problem
has been studied extensively in Unit Disk Graphs (UDG),
in which each node has the same transmission range.
However, in practice, the transmission rangesof all nodes
are not necessaryequal. In this paper, we model a network
as a disk graph and intr oduce the CDS problem in
disk graphs. We present thr ee constant approximation
algorithms to obtain a minimum CDS of a given net-
work. Thesealgorithms can be implementedasdistrib uted
algorithms. Furthermor e, we show the size relationship
between a maximal independent set and a CDS as well
as the bound of the maximum number of independent
neighborsof a nodein disk graphs.The theoretical analysis
and simulation results are also presented to verify our
approaches.

Keywords: ConnectedDominatingSet,IndependentSet,
Disk Graph,WirelessNetwork, Virtual Backbone

I . INTRODUCTION

In wireless ad hoc networks, there is no fixed or
pre-definedinfrastructure.Nodes in wireless networks
communicatevia a sharedmedium, either through a
single hop or multihops. Although there is no physi-
cal backboneinfrastructure,a virtual backbonecan be
formed by constructinga ConnectedDominating Set
(CDS).Given anundirectedgraphG = (V, E), a subset
V ′ ⊆ V is aCDSof G if for eachnodeu ∈ V , u is either
in V ′ or thereexistsa nodev ∈ V ′ suchthatuv ∈ E and
the subgraphinducedby V ′, i.e., G(V ′), is connected.
Thenodesin theCDSarecalleddominators, othernodes
arecalleddominatees. With thehelpof theCDS,routing
is easier and can adapt quickly to network topology
changes.To reducethetraffic duringcommunicationand
simplify the connectivity management,it is desirableto
constructa Minimum CDS (MCDS).

TheCDSproblemhasbeenstudiedintensively in Unit
Disk Graph (UDG), in which eachnode has the same
transmissionrange.The MCDS problem in UDG has
beenshown to be NP-hard[1]. To build a CDS, most
of currentalgorithmsfirst find a Maximal Independent
Set (MIS) I of G and then connectall nodesin I to
have a CDS. The independentset I is a subsetof V
such that for any two nodesu, v ∈ I, uv /∈ E. In
other words, the nodesin I are pairwise nonadjacent.
A maximal independentset is an independentset such
that no more nodescan be addedto remain the non-
adjacency property. Themostrelevantrelatedwork using
this schemeare in [2], [3]. In [2], Wan et al. proposed
thefirst distributedalgorithmwith theperformanceratio
of 8. Later, Li et al. proposeda better algorithm with
the performanceratio of (4.8 + ln 5) by constructinga
Steinertreewhenconnectingall nodesin I [3].

However, in practice,the transmissionrangesof all
nodesarenot necessaryequal.In this case,a wirelessad
hocnetwork canbemodeledusinga directedgraphG =
(V, E). Thenodesin V arelocatedin a Euclideanplane
and eachnode vi ∈ V has a transmissionrangeri ∈
[rmin, rmax]. A directededge(vi, vj) ∈ E if and only
if d(vi, vj) ≤ ri whered(vi, vj) denotesthe Euclidean
distancebetweenvi andvj . Suchgraphsarecalleddisk
graphs. An edge(vi, vj) is bidirectionalif both (vi, vj)
and (vj , vi) are in E, i.e., d(vi, vj) ≤ min{ri, rj}. In
otherwords, the edge(vi, vj) is bidirectionalif vi is in
thedisk Dj centeredat vj with radiusrj andvj is in the
disk Di centeredat vi with radiusri. In this paper, we
only study the CDS problem in disk graphswhere all
the edgesin the network are bidirectional,called Disk
Graphs with Bidirectional links (DGB). In this case,
G is undirected.Figure 1 gives an example of DGB
representinga network. In Figure 1, the dotted circles
representthe transmissionrangesand the black nodes
representa CDS.

The MCDS problem in DGB is NP-hard[14] since
the MCDS problem in UDG is NP-hardand UDG is
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Fig. 1. A Disk Graphwith BidirectionalLinks

a specialcaseof DGB. In this paper, we presentthree
constantapproximationalgorithmsfor computinga min-
imum CDS in DGB. We first introducetheir centralized
versionsand later show how to implementthemasdis-
tributedalgorithms.We alsoanalyzethesizerelationship
betweenan MIS and a CDS in DGB. Furthermore,we
show the upper bound of the number of independent
neighborsof any nodein DGB. Theseanalysiscanhelp
us to study the CDS problem in a generaldisk graph,
where both unidirectional and bidirectional links are
considered.

The remainder of this paper is structured as fol-
lows. SectionII describesthe relatedresearchwork on
the CDS problem, mainly focuseson UDG. The size
relationshipbetweenan MIS and a CDS in DGB is
shown in section III. The three algorithms and their
performanceanalysisarediscussedin sectionIV. Section
V presentsthe performancecomparisonsof our three
algorithms through simulation results. The distributed
implementationsareillustratedin sectionVI andsection
VII ends the paper with conclusionsand some future
work.

II . RELATED WORK

The CDS problem in wirelessad hoc networks has
been studied extensively. Algorithms that construct a
CDS can be divided into two categories: centralized
algorithmsanddecentralizedalgorithms.

The centralizedalgorithmsin generalyield a smaller
CDS with a better performanceratio than that of de-
centralizedalgorithms. In [6], Guha and Khuller first
proposedtwo polynomial time algorithmsto constructa
CDS in a generalgraphG. Thesealgorithm aregreedy
andcentralized.Thefirst onehastheapproximationratio
of 2(H(∆) + 1) where∆ is the maximumdegreeof G
andH is a harmonicfunction.Theidea ofthis algorithm
is to build a spanningtree T rooted at the node with
maximumdegreeandgrow T until all nodesareaddedto
T . Thenon-leafnodesin T form aCDS.In particular, all
nodesin a given network arewhite initially. The greedy

function that the algorithm usesto add nodesinto T is
the numberof the white neighborsof eachnode or a
pair of nodes.The one with the largestsuchnumberis
marked black and its neighborsaremarked grey. These
nodes(black and grey nodes)are then added into T .
The algorithm stopswhen no white node exists in G.
Thesecondalgorithmis animprovementof thefirst one.
This algorithmconsistsof two phases.The first phaseis
to constructa dominatingset and the secondphaseis
to connectthe dominatingsetusinga Steintertreealgo-
rithm. With suchimprovement,thesecondalgorithmhas
the performancefactor of H(∆) + 2. Thesealgorithms
later were studiedand implementedby Das et al. [11]-
[13]. In [7], Ruanet al. introducedanothercentralized
and greedyalgorithm of which the approximationratio
is (2 + ln ∆).

The decentralizedalgorithmscan be further divided
into two categories: distributed algorithms and local-
ized algorithms.In distributed algorithms,the decision
processis decentralized.In the localizedalgorithms,the
decisionprocessis not only distributedbut alsorequires
only a constantnumberof communicationrounds.Most
of thedistributedalgorithmsfind a Maximal Independent
Set(MIS) andconnectthisset.Notethatin anundirected
graph,an MIS is also a Dominating Set (DS). In [2],
[15], [16], the authorsproposeda distributed algorithm
for a CDS problem in UDG. This algorithm consists
two phasesand hasthe constantapproximationratio of
8. The algorithm first constructsa spanningtree. Then
eachnodein a tree is examinedto find an MIS for the
first phase.All nodesin an MIS are coloredblack. At
the secondphase,morenodesareadded(color blue) to
connectthe black nodes.Later, Cardeiet al. presented
another2-phasedistributedalgorithmfor aCDSin UDG.
This algorithm has the sameperformanceratio as the
previous one.However, the improvementover [2] is the
messagecomplexity. The root does not need to wait
for the COMPLETE messagefrom the furthest nodes.
Recently, Li etal. proposedanotherdistributedalgorithm
with a betterapproximationratio, which is (4.8 + ln 5)
[3]. This algorithm also has two phases.At the first
phase,an MIS is found. At the secondphase,a Steiner
treealgorithmis usedto connectthe MIS.

For the localizedalgorithms,Wu andLi [8] proposed
a simple algorithm that can quickly determinea CDS
basedon the connectivity informationwithin the 2-hops
neighbors.This approachusesa marking process.In
particular, eachnodeis marked true if it hastwo uncon-
nectedneighbors.All themarkednodesform aCDS.The
authorsalso introducedsomedominantpruningrules to
reducethe size of the CDS. In [2], the authorsshowed
that the performanceratio of [8] is within a factor of
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O(n) wheren is the numberof nodesin a network.
In [10], Alzoubi et al. proposedanotherlocalized2-

phasealgorithmswith the performanceratio of 192. At
the first phase,an MIS is constructedusing the 2-hops
neighborsinformation.Specifically, oncea nodeknows
that it has the smallestID within its neighbors,it be-
comesa dominator. At thesecondphase,thedominators
areresponsiblefor identifyinga pathto connecttheMIS.
In [9], Li etal. proposedanotherlocalizedalgorithmwith
the performanceratio of 172. This localizedalgorithm
hasonly 1 phase.A nodemarksitself asa dominatorif
it cancover themostwhite nodescomparedto its 2-hops
neighbors.

Most of the constantapproximationalgorithms are
for the CDS problem in UDG. However, in practice,
the communicationrangesof nodesin a network are
not necessaryequal. Such a network can be modeled
asa disk graph.In this paper, we presentthreeconstant
approximationalgorithmsfor theCDSproblemin DGB.
The main approachis to constructan MIS and then
connectthem. Hencewe first needto analyzethe size
relationshipbetweena CDSandanMIS, which is shown
in next section.

III . THE SIZE RELATIONSHIP BETWEEN A CDS AND

A MAX IMAL INDEPENDENT SET

In this section,we show the sizerelationshipbetween
any maximalindependentsetandaCDSof agivenDGB.
DenoteOPT asan optimal CDS andopt asthe sizeof
OPT , we have:

Fact 1: Given3 nodesx, y, andz suchthatd(x, y) ≤
d(x, z) andd(y, z) ≤ d(x, y), theny andz areadjacent.

Proof: The disk at y has radius at least d(x, y) and
the disk at z hasradiusat leastd(x, z). Therefore,both
disks have radius at least d(y, z). Hence,y and z are
adjacent.

2

Lemma1: Let NID(u) denotetheindependentneigh-
borsof nodeu. In aDGB, thesizeof NID(u) is bounded
by:

|NID(u)| ≤

{

5 if k = 1

10⌊ ln k
ln(2 cos(π/5))⌋ otherwise

wherek =
rmax

rmin
Proof: Whenk = 1, a DGB is a UDG. Thusthe lemma
holds.Whenk > 1, considera nodex andall nodesthat
areadjacentto x. Without lossof generality, assumethat
thedisk at x hasradius1. Thena nodey that is adjacent
to x hasradiusat leastd(x, y) andat mostk. Thus,all
nodesthat areadjacentto x lie in the insideof circle at
centerx with radiusk.

We first evenly divide this areainto severalsmallones
Ai with rays(half lines)at x. Two adjacent raysform an
angleα. Supposexy andxz are two rayswith angleα
betweenthem.Supposed(x, y) ≤ d(x, z) andd(y, z) =
d(x, y). Thenfrom Fact1, weknow thaty andz areadja-
cent.Sinced(y, z) = d(x, y), wehave∠xzy = α. Hence
d(x, z) = 2d(x, y)cosα, i.e., d(x, z)/d(x, y) = 2 cos α.
Hence,eachareaAi canbedivided into subareasby cir-
clesat x with radius1, 2 cos α, (2 cos α)2, ..., (2 cos α)j .
Note that (2 cos α)j ≤ k. Hence,j = ⌊ ln k

ln(2 cos α)⌋. Now
we needto show that all nodesthat are adjacentto x
andlie in eachsubareaareadjacent.Indeed,let y andz
be suchnodes.Thenx, y, andz satisfy the condition in
Fact 1.

Therefore,there are at most ⌊ ln R
ln(2cosα)⌋(2π/α) sub-

areas.In other words, x can be adjacentto at most
⌊ ln R

ln(2cosα)⌋(2π/α) independentnodes.

Let f(α) = ⌊ ln R
ln(2cosα)⌋(2π/α). Note that in our proof,

α = 2π/m wherem is an integer and m > 6. Hence,
we need to find a local minima of f(α) where 0 <
α < 2π/6. With somealgebraicsteps,we have α =
2π/10. Hence,when k > 1, x can be adjacentto at
most10⌊ ln k

ln(2cos(π/5))⌋ independentnodes.
2

Theorem1: In a DGB G = (V, E), the size of any
maximal independentset is upper boundedby Kopt

where k =
rmax

rmin
and K = 5 if k = 1, otherwise,

K = 10⌊ ln k
ln(2cos(π/5))⌋

Proof: Let I be anMIS. By Lemma 1, no node in
OPT can dominatemore thanK nodesin I. Thus the
theoremfollows: |I| ≤ Kopt.

2

Fromnow on, we will referk asrmax/rmin andK =
5 if k = 1, otherwise,K = 10⌊ ln k

ln(2cos(π/5))⌋.

IV. APPROXIMATION ALGORITHMS AND ANALYSIS

In this section, we presentthree constantapproxi-
mation algorithms for the CDS problem in DGB and
analyzetheir performanceratio.

A. First Algorithm

1) AlgorithmDescription: TheFirst Algorithm (TFA)
has two phases.First, we constructthe maximal inde-
pendentset I, then connectthem by finding a set of
connectornodesB. This algorithm is similar to [2].
Throughout the paper, sometimes,we call a black node
as a nodein I, a blue nodeas a connectornodein B,
and a grey nodeas a non-CDSnode.Note that the set
I is alsoa dominatingsetof G.

To construct an MIS, we first randomly choosea
vertex u ∈ V andconstructthe Breath-FirstSearchtree
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Algorithm 1 The First Algorithm
1: INPUT: A DGB G = (V, E), all nodesarewhite
2: OUTPUT: A CDS of G
3: Randomlypick a vertex u ∈ V andcolor u black
4: I = {u}, B = ∅, GREY = ∅
5: Constructa BFS treeT of G, rootedat u
6: d = depth(T )
7: for j = 1 to d do
8: TMPi = { vi | level(i) = j}
9: if vi is dominated by some black nodes in

TMPi−1 then
10: Color vi grey; GREY = GREY ∪ {vi}
11: end if
12: Choosea set A of nodes in TMPi−1 that is

not grey and a maximal independentset in
G(TMPi−1 − GREY )

13: Color A black; I = I ∪ A
14: Choosea set C of nodesin TMPi−1 that are

parentof black nodesin TMPi

15: Color C blue; B = B ∪ C
16: end for
17: ReturnI ∪ B

(BFS)T of G rootedat u. Next, we marku black.Then
mark all the neighbornodesof u grey. For eachlevel
level(i) of T , find a maximalindependentsetof a setof
nodesthatareneitherblacknor grey. In otherwords,we
needto find anMIS of thenodesthatarenot dominated
yet.After findinganMIS, theprocessof connectingthem
is easywith the help of T . For eachblack nodeu, we
just needto find a grey nodethat is a parentof u andbe
dominatedby anotherblack nodesin the previous level.
The detail of TFA is shown in Algorithm 1.

2) Theoretical Analysis: The maximal independent
setI obtainedfrom TFA satisfiesthis property:

Lemma2: Any pair of complementarysubsetsof the
MIS hasa distanceof exactly two hops.

Proof: This is trivial from theconstructionof I in the
algorithm.If a nodeu ∈ I, thenall N(u) ∈ GREY . If
u ∈ GREY , thenthereexist a nodev suchthatuv ∈ E
andu is black.

2

Theorem2: TFA produces a CDS with the size
boundedby 2Kopt where K = 5 if k = rmax

rmin

= 1,
otherwiseK = 10⌊ ln k

ln(2cos(π/5))⌋

Proof: From Lemma2 andTheorem1, we have:

|CDS| ≤ 2|I| ≤ 2Kopt

2

In practice,we expect that k is very small since the
transmissionrangesof all nodesin a network shouldbe
slightly different.

Corollary 1: If the maximum and minimum trans-
missionrangesare bounded,then our algorithm hasan
approximationfactorof O(1).

B. SecondAlgorithm

In the first algorithm,we connecttwo black nodesu
and v (assumethat level(u) < level(v)) by finding a
grey nodew that is a parentof v in T andneighborof
u in G. However, we canconnectI by usingtheSteiner
tree,which is a tree interconnectingall nodesin I. The
nodesin the Steinertreebut not in I arecalledSteiner
nodes.To reducethesizeof anobtainedCDS,weneedto
find a Steinertreewith the Minimum numberof Steiner
Nodes(MSN). We candefinethis problemas follows:

Definition 1: Steiner Treewith MSN: Givena graph
G = (V, E) anda setof nodesV ′ ⊆ V calledterminals,
constructa SteinertreeT that connectsall the terminals
suchthat the numberof Steinernodesis minimum.

1) Algorithm Description: The Second Algorithm
(TSA) alsohastwo phases.The first phaseis to find an
MIS I that satisfiesLemma2. Note that this condition
is vital for thesecondphaseto work. Sincetheobtained
MIS I from TFA satisfiesthis condition, we can use
the procedurein TFA to find the MIS I. At the second
phase,we constructa Steiner tree with the minimum
numberof Steinternodesto interconnectall nodesin I as
follows. Define a black-blue componentas a connected
componentof the subgraphinducedonly by black and
blue nodes,ignoring connectionsbetweenblue nodes.
Initially, we have |I| black-bluecomponents.Let B be
a set of Steinernodes,called blue nodes.Initially, B
is empty. From Lemma 1, we know that eachnode is
adjacentto atmostK independentnodes.In otherwords,
a blue nodeis adjacentto at mostK black nodes.Color
all nodesin V − I grey. At eachiteration,we canfind a
grey nodethatis adjacentto mostblack-bluecomponents
and color it blue. Formally, for j from K to 2, at each
iterationj, find a grey nodev suchthatv is adjacentto at
leastj black nodesin different black-bluecomponents.
Color v blueandre-computetheblack-bluecomponents
asdescribedin Algorithm 2

2) Theoretical Analysis: TheCDSin this algorithmis
a union of setI andsetB. To analyzethe performance
ratio of our algorithm,we first comparethe size of set
B to opt. Recall that B is a setof all the Steinernodes.
Let T ∗ be anoptimal tree when connectinga given set
I andC(T ∗) is the numberof the Steinernodesin T ∗,
we have this following lemma:
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Algorithm 2 The SecondAlgorithm
1: INPUT: A DGB G = (V, E), all nodesarewhite
2: OUTPUT: A CDS of G
3: I = ∅; B = ∅
4: Use the procedurein Algorithm 1 to computeI,

othernodesaregrey at this stage
5: for j = K to 2 do
6: while There exists a grey node v adjacent to

at least j black nodes in different black-blue
componentsdo

7: B = B ∪ {v}
8: end while
9: end for

10: ReturnI ∪ B

Lemma3: The size of B obtainedfrom TSA is at
most (2 + lnK)C(T ∗)
Proof: Let n = |I| andp = |B|. If n = 1, thenthelemma
is trivial. Assumethat n ≥ 2, thus C(T ∗) ≥ 1. Let
vj , j = 1...p bethebluenodesin theorderof appearance
in the secondphase.Let ai be the numberof the black-
blue componentsafter v1, ..., vi turns blue. Sinceevery
black-bluecomponentcontainsa black node which is
adjacentto a Steinernodeof T ∗, thereexists vi which
is adjacentto at least ai

C(T ∗) . Thuswe have:

ai+1 ≤ ai −
ai

C(T ∗)
+ 1

Hencewe have this following recurrence:

ai ≤ ai−1 −
ai−1

C(T ∗)
+ 1

≤ ai−1

(

1 −
1

C(T ∗)

)

+ 1

≤ ai−2

(

1 −
1

C(T ∗)

)2

+

(

1 −
1

C(T ∗)

)

+ 1

≤ ...

≤ a0

(

1 −
1

C(T ∗)

)i

+

i−1
∑

j=0

(

1 −
1

C(T ∗)

)j

≤ a0

(

1 −
1

C(T ∗)

)i

+ C(T ∗)

For the last step in the above recurrence,we note

that the second term
∑i−1

j=0

(

1 − 1
C(T ∗)

)j
is the ge-

ometric series and it will converge to C(T ∗). After
i = C(T ∗) ln a0

C(T ∗) iterations,the numberof black-blue
componentswill be:

ai ≤ a0

(

1 − 1
C(T ∗)

)i
+ C(T ∗)

≤ e
−

i

C(T∗) + C(T ∗)
≤ 2C(T ∗)

Therefore,the total numberof blue nodesis bounded
as follows:

|B| ≤ i + 2C(T ∗) ≤ C(T ∗)(ln a0

C(T ∗) + 2)

≤ C(T ∗)(ln n
C(T ∗) + 2) ≤ (2 + lnK)C(T ∗)

2

Theorem3: The SecondAlgorithm producesa CDS
with sizeboundedby (K + 2 + lnK)opt whereK = 5
if k = rmax

rmin

= 1, otherwiseK = 10⌊ ln k
ln(2cos(π/5))⌋

Proof: From Theorem1 andLemma3, we have:

|CDS| = |I| + |B|
≤ (K + 2 + lnK)opt

2

Corollary 2: If themaximumandminimumtransmis-
sionrangesarebounded,thenTSA hasanapproximation
factorof O(1).

C. TheThird Algorithm

In the two previous proposedalgorithms,we find an
MIS basedon the BreathFirst Searchtree T which is
constructedbasedon the connectivity information of a
givennetwork. In this section,we show theeffect of the
sizeof thediskson thesizeof anMIS. Wefirst introduce
the following lemma:

Lemma4: In a DGB G, there exists a node that is
adjacentto at mostfive independentnodes.
Proof: Let D bea disk with radiusrmin centeredat node
u. Note that D is the smallestdisk in G. We prove that
u hasat most5 independentneighborsby contradiction.
Supposethat u hasmore than5 independentneighbors.
Let vj , 1 ≤ j ≤ 6 be the independentneighborsof
u. Then thereexist two nodesthat lie in a sectorwith
the anglelessthan or equal to 60 degree.Without loss
of generality, assumethat v1 and v2 are suchnodesas
shown in Figure2. Thend(v1, v2) ≤ rmin. Hencev1 and
v2 areconnected,contradictingto our assumption.

2
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Fig. 2. On the Proof of 5 IndependentNeighbors
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Note that the subgraphof a DGB is still a DGB.
Hence,let us considerthe algorithm to find an MIS as
shown in Algorithm 3.

Algorithm 3 ChooseSmallestDisks
1: INPUT: A DGB G = (V, E)
2: OUTPUT: A Maximal IndependentSetI
3: I = ∅
4: while V 6= ∅ do
5: Find a nodeu ∈ V with thesmallestradius,color

u black
6: I = I ∪ {u}
7: V = V − {u} − N(u)
8: end while
9: ReturnI

In this algorithm, at each iteration, we find a node
with the smallestradius in V and color it black, then
remove this node and its neighborsfrom V . This step
runs iteratively until V is empty. The black nodesform
a maximalindependentsetI. Let I∗ betheoptimalMIS
of G, i.e., |I∗| ≥ |I| for any MIS I, we have:

Lemma5: The sizeof I is at least
|I∗|

5
Proof: Every nodev ∈ V is either in I or adjacentto

somenodesin I. SinceI∗ ⊂ V , every nodev ∈ I∗ is
either in I or adjacentto somenodesin I. Let define
N [u] astheclosed neighborsof u whenaddingu into I,
i.e., N [u] = N(u) ∪ {u}. Thenevery nodev ∈ I∗ is in
N [u] for someu ∈ I. Becauseat eachstep,we choose
a nodeu with the smallestdisk, eachu hasat most 5
independentnodes(Lemma4). ThuseachN [u] contains

at most5 verticesfrom I∗. This resultsto |I| ≥
|I∗|

5
2

Now, let us color the biggest disks instead of the
smallestdisksblack.Specifically, asshown in Algorithm
4, at each iteration, we find a node with the largest
transmissionrangein V andcolor it black.Remove this
nodeand its neighborsfrom V . The set of black nodes
forms a maximal independentsetI.

Again, let I∗ be the optimal MIS of G, we have the
following lemma:

Lemma6: Thesizeof I is at least
|I∗|

K
whereK = 5

if k = rmax

rmin

= 1, otherwiseK = 10⌊ ln k
ln(2cos(π/5))⌋.

Proof: Usingthesameapproachin thepreviousproof,
by Lemma1, eachN [v] containsat mostK independent

nodesin I∗. This follows that |I| ≥
|I∗|

K
2

We believe that thesizeof I obtainedfrom Algorithm
4 is less than that obtainedfrom the First or Second
Algorithm due to the above lemma.Thus we introduce

Algorithm 4 ChooseBiggestDisks
1: INPUT: A DGB G = (V, E)
2: OUTPUT: A Maximal IndependentSetI
3: I = ∅
4: while V 6= ∅ do
5: Find a nodeu ∈ V with the biggest radius,color

u black
6: I = I ∪ {u}
7: V = V − {u} − N(u)
8: end while
9: ReturnI

The Third Algorithm (TTA) and its performanceis
evaluated by simulations. In this algorithm, we first
find a set of dominatingset I using the Algorithm 4.
Then connectI by choosinga nodethat is adjacentto
most black-bluecomponentsand color it blue. Recall
that the black-bluecomponentis definedasa connected
componentof the subgraphinducedonly by black and
blue nodes,ignoring connectionsbetweenblue nodes.
The detail of TTA is shown in Algorithm 5.

Algorithm 5 The Third Algorithm
1: INPUT: A DGB G = (V, E), all nodesarewhite
2: OUTPUT: A CDS
3: I = ∅; B = ∅
4: I = ChooseBiggest Disks(G)
5: while I is disconnecteddo
6: Selecta white nodeu suchthat u is adjacentto

mostblack-bluecomponents
7: Color u blue
8: B = B ∪ {u}
9: end while

10: ReturnI ∪ B

V. SIMULATION RESULTS

In the previous section,we evaluateour algorithms
through theoretical analysis. In this section, we con-
ducted some simulation experiments to measurethe
performance(in terms of the size of CDS) of three
algorithms:The First Algorithm (TFA), The SecondAl-
gorithm (TSA), andThe Third Algorithm (TTA). Recall
that the improvementof TSA over TFA is that we use
the Steiner tree with the minimum numberof Steiner
nodesto interconnectall black nodes.The improvement
of TTA over TSA is that we selectnodeswith largest
transmissionrangesas the black nodes.Moreover, we
are interestedin comparingthe size of the black nodes
obtainedfrom eachalgorithmto seewhetherthe choos-
ing the biggestdisks approachcan return the smallest
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numberof blacknodes.Sincethenumberof blacknodes
in TFA and TSA is the same,let I1 denotethe size of
black nodesobtainedfrom eitherTFA or TSA. Let Ib

denotethe size of black nodesobtainedfrom TTA and
Is be the sizeof black nodesobtainedfrom the Choose
SmallestDisks(CSD)algorithm.Westudythreenetwork
parametersthat may affect the algorithmperformance:

1) n, the numberof nodesin a given network
2) k, the ratio of the largesttransmissionrangeto the

smallesttransmissionrange,i.e., k =
rmax

rmin
3) Thenetwork density, i.e., thenumberof nodesper

area
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Fig. 3. Effectsof Numberof Nodes

To evaluate the performanceof the three proposed
algorithms under different number of nodes,we ran-
domly deployed n nodes to a fixed area of 800m x

800m.n changedfrom 10 to 200 with an incrementof
1. Eachnodevi randomlychosethe transmissionrange
ri ∈ [rmax, rmin] where rmax = 600m and rmin =
200m. For eachvalue ofn, 1000network instanceswere
investigatedand the resultswereaveraged.

As canbe seenin Figure3(a), the sizeof a CDS ob-
tainedfrom TTA is smallestamongall threealgorithms.
Specifically, the size of the CDS obtainedfrom TTA is
3.3% smaller than that of TSA, and 8.9% smaller than
that of TFA. Also, the size of the CDS obtainedfrom
TSA is 5.5%lessthanthat of TFA. The resultsindicate
that constructing the Steiner tree with the minimum
number of Steiner nodesto interconnectthe maximal
independentset can reduce the size of the CDS. In
addition,choosingthe biggestdisk asa black nodecan
reducethe sizeof the CDS aswell.

Figure 3(b) shows the comparisonof the numberof
black nodesobtainedfrom TFA, CSD, and TTA. The
numberof black nodesIb obtainedfrom TTA is smaller
than that of TFA. The ChooseSmallestDisks (CSD)
algorithm returnsthe largestnumberof black nodesIs

as shown in Figure 3(b). This is consistentwith our
expectationaswe have analyzedin theprevioussection.

Figure 3 also shows how the numberof nodesin a
network affectsthesizeof theCDS.In particular, thesize
of the CDS increasesasthe numberof nodesincreases.
This fact is obvioussincethenumberof nodesthatneed
to be dominatedis larger whenwe deploy morenodes.

B. Effectsof the TransmissionRange Ratio

We also conductedsimulationsto comparethe per-
formance of all three algorithms when changing the
transmissionrangeratio k as well as to seehow this
changeaffects the sizeof the obtainedCDS. To change
k, we fixedrmin = 200m andchangedrmax from 200m
to 1200mwith an incrementof 10. In this experiment,
werandomlydeployed100 nodesinto afixedareaof size
800mx 800m.Eachnoderandomlychosea transmission
rangein [rmin, rmax]. For eachnetwork instance,we ran
the test for 1000 times.

Figure 4(a) comparesthe performanceof threealgo-
rithms in terms of the CDS size. As shown in Figure
4(a),TTA is thebest.In particular, theCDSsizeobtained
from TTA is 10.7% smaller than that of TFA, and 4%
smallerthanthat of TSA. The resultantCDS from TSA
hasa size 6.7% smallerthan that of TFA. Again, these
resultsreveal that using the Steinertree to interconnect
a dominatingsetcanreducethe CDS size.

As expected,Ib < I1 < Is as shown in Figure 4(b).
Note that Is is 21%biggerthanIb. This numberis large
and significant to increasethe size of CDS. This very
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Fig. 4. Effectsof the TransmissionRangeRatio

high percentageis predictedsincewhenk increases,K
increasesaswell. RecallthatK is themaximumnumber
of independentneighborsof eachnode.Since|I∗|/K ≤
|Ib|, Ib hasthe potentialto decreaseasK increases.

Figure4 illustrateshow the transmissionrangesaffect
the CDS size.As canbe seenin Figure4, threecurves
show obvious trend of decrease.In other words, the
CDS size decreaseswhen the maximum transmission
rangeincreases.It is due to the fact that the larger the
transmissionrange,themorenodesa nodecandominate.

C. Effectsof the NetworkDensity

Simulations were also carried out to compare the
performanceof all threealgorithmswhen changingthe
network densityaswell asto seehow this changeaffects
the CDS size.To changethe network density, we fixed
thenumberof nodesn = 50 andincreasedtheareafrom
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Fig. 5. Effectsof the Network Density

400mx 400mto 1,400m x 1,400mwith an incrementof
50. In this experiment,we randomlygenerated50 nodes
in anareawith thesizechangingasdescribed.Eachnode
randomly chose a transmissionrange in [rmin, rmax]
where rmin = 200m and rmax = 600m. For each
network instances,we ranthesimulationsfor 1000times
and the resultswereaveraged.

Figure 5(a) provides the performancecomparisonof
threealgorithmsin termsof the CDS size.As revealed
by Figure 5(a), TTA still outperformsthe other two in
this case.And TSA outperformsTFA. Specifically, the
CDSsizeobtainedfrom TTA is 8% lessthanthatof TFA
and3.2%lessthanthatof TSA. Moreover, theCDSsize
obtainedfrom TSA is 4.9% less than that of TFA. As
predicted,Figure 5(b) indicatesthat Ib < I1 < Is. The
numberof black nodesobtainedfrom TTA is slightly
lessthan that of TFA but is much lessthan that of the
CSD algorithm.
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In addition, Figure 5 shows the obvious trend of
increaseof three curves, which implies that the CDS
size gets bigger when the network density decreases.
This is becausewhenthenetwork densitydecreases,the
neighborsof eachnodedecreasesaswell. ThustheCDS
sizeneedto belargerto dominateall nodesin a network.

In conclusion,for all aspectsthat we have studied,
TTA is the bestalgorithm. Next is the TSA. Choosing
nodeswith the largesttransmissionrangesfor the dom-
inating setandusingthe Steinertreewith the minimum
numberof Steinernodesto interconnectthe dominating
setcanreducetheCDSsize.Specifically, choosingnodes
with the biggestradiuscan form a smallerdominating
set. With the help of the Steiner tree, the number of
blue nodescanbe reduced.The sizeof a CDS obtained
usingthesetwo mechanismsis about10% lessthanthat
obtainedwithout usingthem.In addition,the simulation
resultsreveal that the CDS sizeincreasesasthe number
of nodesincreases.The CDS size also canget larger if
the network getssparser. Furthermore,when the trans-
missionrangesincrease,the CDS sizedecreases.

VI . DISTRIBUTED IMPLEMENTATIONS

From the practical point of view, all algorithmsde-
signed in wireless networks should be distributed. In
this section, we discusshow to implement our three
algorithmsasdistributedalgorithms.Thereexist several
distributedalgorithmsfor constructinganMIS satisfying
Lemma2 in literature[2], [5]. Specifically, the authors
constructedan arbitrary rootedspanningtree T by the
distributed leader-election algorithm in [17]. This al-
gorithm has an O(n) time complexity and O(n log n)
messagecomplexity wheren is the numberof nodesin
a givennetwork. After constructingthespanningtreeT ,
Wan et. al [2] introduceda distributed constructionon
how to find a maximal independentset using the color
mechanismwith O(n) messagecomplexity and O(n)
time complexity. We can use this constructionfor our
TFA. Hence,the distributedimplementationof TFA has
O(n log n) messagecomplexity andO(n) time complex-
ity. Now we presentthe distributed implementationsfor
TSA andTTA.

A. DistributedVersion of TSA

For The SecondAlgorithm, we first find the MIS that
satisfiesLemma2, which we canusethe above method.
We thus only presenta distributed algorithm for the
secondphase,that is to find a Steinertreeto interconnect
themaximalindependentset.Note thatafter runningthe
first phase,all nodesin an MIS are black and all other
nodesaregrey.

Algorithm 6 DistributedVersionof TSA SecondPhase
1: INPUT: A maximal independentset I and G =

(V, E), all nodesvi ∈ I are black, andvj ∈ V − I
aregrey

2: OUTPUT: Color connectorsblue
3: SetIDC of eachblacknodeequalto theBlack nodes

ID {IDC is the black-bluecomponentID}
4: SetIDC of eachgrey nodeequalto −1
5: IDC = −1 for all grey nodevj

6: Eachgrey nodemaintainstheADJ list which is the
list of its adjacentblacknodesin differentblack-blue
components

7: Eachgrey nodemaintainsaCOMPETITORS list
8: Eachgrey nodemaintainsa global valueB, B = K

initially
9: vi sendsa BLACK messagecontainedits IDC

10: Upon receiving the BLACK message,grey nodevj

updatesits ADJ andCOMPETITORS lists
11: vj sendsa GREY messagecontainedits id and its

|ADJ |
12: vj turnsblue if its |ADJ | > |ADJ | of its neighbors

and its |ADJ | > 1
13: Eachbluenodeupdatesits IDC to thesmallestvalue

in its ADJ list
14: A blue nodethensendsa BLUE messagecontained

its new IDC andnew ADJ list
15: Upon receiving a BLUE message,black node vi

updatesits IDC andsenda BLACK message
16: Upon receiving a BLUE message,a GREY node

decreasesB by 1
17: If |ADJ | of a grey node vj equal to 1, then do

nothing

As describedin Algorithm 6, all black nodesvi in
the maximal independentset I maintainsits black-blue
componentid, i.e., IDC . Initially, we have |I| black-
blue components.Hence,IDC of eachblack nodecan
be set to the node ID. Each grey node also maintains
its black-bluecomponentid and initially, IDC = −1,
which indicatesthat it does not belong to any black-
blue componentyet. Each grey node also maintainsa
list of its adjacentblack-blue componentswith there
IDC values,called ADJ and a list of its competitors
called COMPETITORS. The grey node is adjacent
to a black-bluecomponentif it is adjacentto a black
nodein the black-bluecomponent.A grey nodeu is a
competitorof a grey nodev if the numberof adjacent
black-bluecomponentsof v andu arethe same.At this
time, the nodewith the smallernodeid becomesa blue
node.Hencethe COMPETITORS list containsa list
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of competitorsnodeid. Eachgrey nodesalsomaintaina
global valueB which representsthe maximumnumber
of independentneighbors.Initially, B = K.

Note thatafter finding a maximalindependentset,we
still hasa spanningtreeT . Thuseachnodealsomaintain
a list of its childrenin T , calledCHILDREN . Initially,
a rootnodeof T which is ablacknodesendstheBLACK
messagecontainedits IDC to its one hop neighbors.
Upon receiving a BLACK message,the grey node vj

add the IDC in the BLACK messageto its adjacent
black-blue componentsADJ . If this number IDC is
already in ADJ , it does nothing. After updating its
ADJ , thegrey nodethenbroadcaststheGREY message
< |ADJ |, id >. Note that id is the grey node id and
|ADJ | is the size of the ADJ list. Upon receiving the
GREY message,a grey nodecomparesits |ADJ | to the
|ADJ | in the GREY message.If its |ADJ | is equalto
the |ADJ | in the GREY message,it addsthe grey node
id in theGREY messageto its COMPETITORS list.

When a node is a leaf, besidesbroadcastingthe
BLACK or GREY messagedependingon its color, it
also broadcaststhe END message.Upon receiving the
END message,a GREY nodeturnsto blue accordingto
the follows:

• Its |ADJ | ≥ B > 1 and
• Its id is smaller than all id in its

COMPETITORS list
After turning its color to blue, a blue node updates

its IDC to the smallestnumber in its ADJ list and
decreasesB by 1. The blue node then sendsa BLUE
messageandkeepsit colorpermanent.A BLUE message
contains its id and its ADJ list. Upon receiving a
BLUE message,all black nodesupdatetheir IDC to
the smallestnumberin the BLUE messageandsendthe
BLACK messageout. Note that all nodesin the same
black-bluecomponentmusthave the sameIDC . At the
endof this algorithm,the grey nodekeepsits color grey
if its |ADJ | is 1. A node stopssendingmessageif it
is adjacentto oneblack-bluecomponent.This indicates
that either the all black nodes are connectedat this
time or a nodeis just adjacentto only one black node.
The main idea of this distributed version is shown in
Algorithm 6.

Theorem4: The distributed version of TSA has an
O(n log n) messagecomplexity andO(n) time complex-
ity.
Proof: The time and messagecomplexity of the MIS
constructionphaseis dominatedby thetimeandmessage
complexity of constructingthe rooted spanningtree T
which are O(n) and O(n log n) respectively [2]. For
the secondphase,eachnodesendsat most O(n log n)
messagesand takes at most linear time. Hence the

messagecomplexity of distributed TSA is O(n log n)
whereits time complexity is O(n).

2

B. DistributedVersion of TTA

The distributed version of TTA consiststwo phases
as shown in Algorithm 7. The first phaseis to find a
dominatingset such that at eachiteration, we selecta
nodewith thelargesttransmissionrange.And thesecond
phaseis to connectthe above dominatingset.

Algorithm 7 DistributedVersionof TTA
1: INPUT: A DGB G = (V, E) with all nodesin white
2: OUTPUT: A CDS
3: Eachwhite nodemaintainsa SORT list
4: Each white node vi broadcastsa WHITE message

< idi, ri >
5: Upon receiving a WHITE message,eachnodeup-

datesits SORT list
6: A nodewith its id at thebeginningof theSORT list

marks itself black and sendsthe BLACK message
containedits id

7: Upon receiving a BLACK message,a white node
marksitself grey andbroadcaststheGREY message
containedits id and id in the BLACK message

8: Upon receiving a GREY message,a white node
updatesits SORT list

9: Usethe Algorithm 6 to connectall black nodes

Initially, all nodesare white. Each node maintains
a list of all node id in the decreasingorder of the
transmissionranges,calledSORT list. At thebeginning,
the SORT list of eachnodecontainsits own id. Each
white nodevi broadcastsa WHITE messagecontaining
its own id and its transmissionrange< idi, ri >. Upon
receiving a WHITE message,each node updatesits
SORT list by adding the id in the WHITE message
in the decreasingorder of transmissionranges.A node
which has its id at the headof the SORT list hasthe
largesttransmissionrange.

A white node which has its id at the head of the
SORT list marks itself black and sendsthe BLACK
messageto its neighbors.TheBLACK messagecontains
theblacknodeid. Uponreceiving theBLACK message,
a white node marks itself grey. The grey node then
broadcastsa GREY messagewhich contains its own
id and id in the BLACK message.Upon receiving the
GREY message,a white nodeupdatesits SORT list by
removing the id in the grey messagefrom the SORT
list.
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Once a node makes itself black or grey, its color is
unchanged.This processstopswhentheredoesnot exist
any white node.Note that after marking itself black or
grey and sendingout the BLACK or GREY message,
this nodewill not join in the coloring processanymore.

At the endof this phase,all nodesin the network are
eitherblack or grey. All black nodesform a dominating
set. Now, we needto connecttheseblack nodes.The
processis similar to the distributed version of TSA
SecondPhase.

Theorem5: The distributed version of TTA has an
O(n2) messagecomplexity andO(n2) time complexity.
Proof: The time and messagecomplexity of the first
phaseis dominatedby the sorting part, i.e, to compute
theSORT list of eachnode.Sinceeachnodebroadcasts
a WHITE message,the time andmessagecomplexity is
O(n2). The secondphaseusesO(n log n) messageand
takesat mostlinear time. Hencethemessagecomplexity
of distributed TTA is O(n2) and its time complexity is
alsoO(n2).

2

VII . CONCLUSION

In this paper, we have studiedthe ConnectedDom-
inating Set (CDS) problem in Disk Graphswith only
Bidirectional links (DGB). The disk graphscanbe used
to model wirelessad hoc networks where nodeshave
different transmissionranges.We have proposedthree
approximationalgorithmsand shown that the obtained
CDSis within a constantfactorof theoptimalCDS.The
main approachin our algorithmsis to constructa max-
imal independentset and then connectthem. Through
the theoreticalanalysisand simulationresults,we have
shown that using a Steiner tree with the minimum
number of Steiner nodesto interconnectthe maximal
independentsetcanhelp to reducethe sizeof the CDS.
In addition,choosinganodewith thelargesttransmission
rangeasa dominatorcan further reducethe CDS size.

Moreover, we have alsopresentedthesizerelationship
between an independentset and a CDS of a given
network. We have pointed out someimportant charac-
teristicsof a DGB. In particular, given a DGB G, there
exists a node such that the maximum number of its
independentneighborsis 5. In addition, we have also
proved the upper bound of the maximum number of
independentneighborsof any nodein a DGB.

Whennodesin a network have different transmission
ranges,a nodeu cancommunicatedirectly to a nodev
but nodev might not be able to communicatedirectly
backto nodeu. In this case,theedge(u, v) is a directed
edge,calledunidirectionallinks. Thuswe are interested

to study the CDS problem in the generaldisk graphs,
where both unidirectionaland bidirectional links exist.
Onesimpleway is to find a dominatingsetandthenuse
a directedSteinernodesalgorithmto connectthem.Note
that the CDS in this caseis directed.Hencewe needto
find a stronglyconnectedCDS to help the routing.
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