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1 Introdu
tionEva
uation planning is 
riti
al for numerous important appli
ations, e.g. disaster emergen
y managementand homeland defense preparation. Traditional eva
uation warning systems simply 
onvey the threat des
rip-tions and the need for eva
uation to the a�e
ted population via mass media 
ommuni
ation. Su
h systemsdo not 
onsider 
apa
ity 
onstraints of the transportation network and thus may lead to unanti
ipated ef-fe
ts on the eva
uation pro
ess. For example, when Hurri
ane Andrew was approa
hing Florida in 1992, thela
k of e�e
tive planning 
aused tremendous traÆ
 
ongestions, general 
onfusion and 
haos [1℄. Therefore,eÆ
ient tools are needed to produ
e eva
uation plans that identify routes and s
hedules to eva
uate a�e
tedpopulations to safety in the event of natural disasters or terrorist atta
ks [12, 14, 7, 8℄.The 
urrent methods of eva
uation planning 
an be divided into two 
ategories, namely traÆ
 assignment-simulation approa
h and route-s
hedule planning approa
h. The traÆ
 assignment-simulation approa
h usestraÆ
 simulation tools, su
h as DYNASMART [27℄ and DynaMIT [5℄, to 
ondu
t sto
hasti
 simulation oftraÆ
 movements based on origin-destination traÆ
 demands and uses queuing methods to a

ount forroad 
apa
ity 
onstraints. However, it may take a long time to 
omplete the simulation pro
ess for a largetransportation network. The route-s
hedule planning approa
hes use network 
ow and routing algorithms toprodu
e origin-destination routes and s
hedules of eva
uees on ea
h route. Many resear
h works have beendone to model the eva
uation problem as a network 
ow problem [15, 4℄ and to �nd the optimal solutionusing linear programming methods. Hama
her and Tjandra [17℄ gave an extensive literature review of themodels and algorithms used in these linear programming methods. Based on the triple-optimization resultsby Jarvis and Ratli� [21℄, linear programming method for eva
uation route planning works as follows. First,it models the eva
uation network into a network graph, as shown by network G in Figure 1, and it requiresthe user to provide an estimated upper bound T of the eva
uation egress time. Se
ond, it 
onverts eva
uationnetwork G to a time-expanded network, as shown by GT in Figure 2, by dupli
ating the original eva
uationnetwork G for ea
h dis
rete time unit t = 0, 1, : : : , T . Then, it de�nes the eva
uation problem as a minimum
ost network 
ow problem [15, 4℄ on the time-expanded network GT . Finally, it feeds the expanded networkGT to minimum 
ost network 
ow solvers, su
h as NETFLO [22℄, to �nd the optimal solution. For example,EVACNET [9, 16, 23, 24℄ is a 
omputer program based on this approa
h whi
h 
omputes egress time forbuilding eva
uations. It uses NETFLO 
ode to obtain the optimal solution. Hoppe and Tardos [19, 20℄ gavea polynomial time bounded algorithm by using ellipsoid method of linear programming to �nd the optimalsolution for the minimum 
ost 
ow problem. Theoreti
ally, ellipsoid method has a polynomial boundedrunning time. However, it performs poorly in pra
ti
e and has little value for real appli
ation [6℄.Linear programming approa
h 
an produ
e optimal solutions for eva
uation planning. It is useful foreva
uation s
enarios with moderate size networks, su
h as building eva
uation. However, this approa
h hasthe following limitations. First, it signi�
antly in
reases the problem size be
ause it requires time-expandednetwork GT to produ
e a solution. As 
an been seen in Figures 1 and 2, if the original eva
uation network Ghas n nodes and the time upper bound is T , the time-expanded network GT will have at least (T+1)n nodes.This approa
h may not be able to s
ale up to large size transportation networks in urban eva
uation s
enariosdue to high 
omputational run-time 
aused by the tremendously in
reased size of the time-expanded network.Se
ond, linear programming approa
h requires the user to provide an upper bound T of the eva
uation timein order to generate the time-expanded network. It is almost impossible to pre
isely estimate the eva
uationtime for an urban s
enario where the number of eva
uees is large and the transportation network is 
omplex.An under-estimated time bound T will result in failure of �nding a solution. In this 
ase, the user will haveto in
rease the value of T and re-run the algorithm until a solution 
an be rea
hed. On the other hand,
1



Figure 1: Eva
uation Network G,(sour
e: [17℄) Figure 2: Time-expanded Network GT , with T=4, (sour
e: [17℄)an over-estimated T will result in an over-expanded network GT and hen
e lead to unne
essary storage andrun-time.Heuristi
 routing and s
heduling algorithms 
an be used to �nd sub-optimal eva
uation plan with redu
ed
omputational 
ost. It is useful for eva
uation s
enarios with large size networks and s
enarios that do notrequire an optimal plan, but need to produ
e an eÆ
ient plan within a limited amount of time. However,old heuristi
 approa
hes only 
ompute the shortest distan
e route from a sour
e to the nearest destinationwithout 
onsidering route 
apa
ity 
onstraints. It 
annot produ
e eÆ
ient plans when the number of eva
ueesis large and the eva
uation network is 
omplex. New heuristi
 approa
hes are needed to a

ount for 
apa
ity
onstraints of the eva
uation network. Lu, Huang and Shekhar [26℄ proposed prototypes of two heuristi

apa
ity 
onstrained routing algorithms, namely SRCCP and MRCCP, and tested its performan
e usingsmall size building networks. SRCCP assigns only one route to ea
h sour
e node. It has very fast run-timebut the solution quality is very poor and hen
e has little value for real appli
ation. MRCCP assigns multipleroutes to ea
h sour
e node and produ
es high quality solution with mu
h less run-time 
ompared to that oflinear programming approa
h. However, its s
alability to large size networks is unsatisfa
tory be
ause it hasa 
omputational 
ost of O(p � n2logn) (where n the is number of nodes and p is the number of eva
uees). Inthis paper, we present an improved algorithm 
alled Capa
ity Constrained Route Planner (CCRP). CCRP
an redu
e the run-time to O(p �nlogn) by 
ondu
ting only one shortest path sear
h in ea
h iteration insteadof the multiple sear
hes used in MRCCP. We also present the analysis of its algebrai
 
ost model and providethe results of performan
e evaluation using large size transportation networks.In the CCRP algorithm, we model 
apa
ity as a time series be
ause available 
apa
ity of ea
h node
2



and edge may vary during the eva
uation. We use a generalized shortest path sear
h algorithm to a

ountfor route 
apa
ity 
onstraints. This algorithm 
an divide eva
uees from ea
h sour
e into multiple groupsand assign a route and time s
hedule to ea
h group of eva
uees based on an order that is prioritized byea
h group's destination arrival time. It then reserves route 
apa
ities for ea
h group subje
t to the route
apa
ity 
onstraints. The qui
kest route available for one group is re-
al
ulated in ea
h iteration basedon the available 
apa
ity of the network. Performan
e evaluation on various network 
on�gurations showsthat the CCRP algorithm produ
es high quality solutions, and signi�
antly redu
es the 
omputational 
ost
ompared to linear programming approa
h. CCRP is also s
alable to the number of eva
uees and the sizeof the network. A 
ase study using a nu
lear power plant eva
uation s
enario shows that this algorithm 
anbe used to improve existing eva
uation plans by redu
ing eva
uation time.We also provide a dis
ussion of the formulation of a new optimal algorithm using A* sear
h[28, 29℄. Thisalgorithm addresses the limitations of linear programming approa
h by using only the original eva
uationnetwork to �nd the optimal solution. In addition, it does not require the user to provide an upper boundof the eva
uation time. We provide the the proof of monotoni
ity and admissibility of this A* sear
halgorithm. We also give the design of the experimental evaluation and we expe
t detailed experimentalresults within the 
oming month.Outline: The rest of the paper is organized as follows. In Se
tion 2, the problem formulation is providedand related 
on
epts are illustrated by an example eva
uation network. Se
tion 3 des
ribes the Capa
ityConstrained Route Planner (CCRP) algorithm and the algebrai
 
ost model. In Se
tion 4, we present theexperimental design and performan
e evaluation. In Se
tion 5, we provide the formulation of new optimalalgorithm using A* sear
h. We summarize our work and dis
uss future dire
tions in Se
tion 6.
2 Problem FormulationWe formulate the eva
uation planning problem as follows:Given: A transportation network with non-negative integer 
apa
ity 
onstraints on nodes and edges, non-negative integer travel time on edges, the total number of eva
uees and their initial lo
ations, andlo
ations of eva
uation destinations.Output: An eva
uation plan 
onsisting of a set of origin-destination routes and a s
heduling of eva
uees onea
h route. The s
heduling of eva
uees on ea
h route should observe the 
apa
ity 
onstraints of thenodes and edges on this route.Obje
tive: (1) Minimize the eva
uation egress time, whi
h is the time elapsed from the start of the eva
-uation until the last eva
uee rea
hes the eva
uation destination. (2) Minimize the 
omputational 
ostof produ
ing the eva
uation plan.Constraint: (1) Edge travel time preserves FIFO (First-In First-Out) property. (2) Edge travel time re
e
tsdelays at interse
tions. (3) Limited amount of 
omputer memory.We illustrate the problem formulation and a solution with an example eva
uation network, as shown inFigure 3. In this eva
uation network, ea
h node is shown by an ellipsis. Ea
h node has two attributes:maximum node 
apa
ity and initial node o

upan
y. For example, at node N1, the maximum 
apa
ity is
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50, whi
h means this node 
an hold at most 50 eva
uees at ea
h time point, while the initial o

upan
y is10, whi
h means there are initially 10 eva
uees at this node. In Figure 3, ea
h edge, shown as an arrow,represents a link between two nodes. Ea
h edge also has two attributes: maximum edge 
apa
ity and traveltime. For example, at edge N4-N6, the maximum edge 
apa
ity is 5, whi
h means at ea
h time point, atmost 5 eva
uees 
an start to travel from node N4 to N6 through this link. The travel time of this edge is 4,whi
h means it takes 4 time units to travel from node N4 to N6. This approa
h of modelling a eva
uations
enario to a 
apa
itated node-edge graph is similar to those presented in Hama
her [17℄, Kisko [24℄ andChalmet [9℄.

 
Figure 3: Node-Edge Graph Model of Example Eva
uation NetworkAs shown in Figure 3, suppose we initially have 10 eva
uees at node N1, 5 at node N2, and 15 at nodeN8. The task is to 
ompute an eva
uation plan that eva
uates the 30 eva
uees to the two destinations (nodeN13 and N14) using the least amount of time.Example 1 (An Eva
uation Plan) Table 1 shows an example eva
uation plan for the eva
uation networkin Figure 3. In this table, ea
h row shows one group of eva
uees moving together during the eva
uation witha group ID, sour
e node, number of eva
uees in this group, the eva
uation route with time s
hedule, andthe destination time. The route is shown by a series of node number and the time s
hedule is shown by astart time asso
iated with ea
h node on the route. Take sour
e node N8 for example; initially there are 15eva
uees at N8. They are divided into 3 groups: Group A with 6 people, Group B with 6 people and GroupC with 3 people. Group A starts from node N8 at time 0 to node N10, then starts from node N10 at time 3to node N13, and rea
hes destination N13 at time 4. Group B follows the same route of group A, but has adi�erent s
hedule due to 
apa
ity 
onstraints of this route. This group starts from N8 at time 1 to N10, thenstarts from N10 at time 4 to N13, and rea
hes destination N13 at time 5. Group C takes a di�erent route.It starts from N8 at time 0 to N11, then starts from N11 at time 3 to N14, and rea
hes destination N14at time 5. The pro
edure is similar for other groups of eva
uees from sour
e node N1 and N2. The whole
4



eva
uation egress time is 16 time units sin
e the last groups of people (Group H and I) rea
h destination attime 16. This eva
uation plan is an optimal plan for the eva
uation s
enario shown in Figure 3.
Group of Eva
ueesID Sour
e No. of Eva
uees Route with S
hedule Dest. TimeA N8 6 N8(T0)-N10(T3)-N13 4B N8 6 N8(T1)-N10(T4)-N13 5C N8 3 N8(T0)-N11(T3)-N14 5D N1 3 N1(T0)-N3(T1)-N4(T4)-N6(T8)-N10(T13)-N13 14E N1 3 N1(T0)-N3(T2)-N4(T5)-N6(T9)-N10(T14)-N13 15F N1 1 N1(T0)-N3(T1)-N5(T4)-N7(T8)-N11(T13)-N14 15G N2 2 N2(T0)-N3(T1)-N5(T4)-N7(T8)-N11(T13)-N14 15H N2 3 N2(T0)-N3(T3)-N4(T6)-N6(T10)-N10(T15)-N13 16I N1 3 N1(T1)-N3(T2)-N5(T5)-N7(T9)-N11(T14)-N14 16Table 1: Example Eva
uation PlanIn our problem formulation, we allow time dependent node 
apa
ity and edge 
apa
ity, but we assumethat edge 
apa
ity does not depend on the a
tual 
ow amount in the edge. We also allow time dependentedge travel time, but we require that the network preserve the FIFO (First-In First-Out) property.Alternate problem formulations of the eva
uation problem are available by 
hanging the obje
tive of theproblem. The main obje
tive of our problem formulation is to minimize the eva
uation egress time. Twoalternate obje
tives are: (1) Maximize the number of eva
uees that rea
h destination for ea
h time unit; (2)Minimize the average eva
uation time for all eva
uees. Jarvis and Ratli� presented and proved the tripleoptimization theorem [21℄, whi
h illustrated the properties of the solutions that optimize the above obje
tivesof the eva
uation problem. A review of linear programming approa
hes to solve these problem formulationswas given by Hama
her and Tjandra [17℄.

3 Proposed Approa
hLinear programming approa
h 
an produ
e optimal solutions for eva
uation planning. It is useful for eva
-uation s
enarios with moderate size networks, su
h as building eva
uation. However, it may not be able tos
ale up to large size transportation networks in urban eva
uation s
enarios due to high 
omputational 
ost
aused by the tremendously in
reased size of the time-expanded network. Heuristi
 routing and s
hedulingalgorithms 
an be used to �nd sub-optimal eva
uation plan with redu
ed 
omputational 
ost. It is useful foreva
uation s
enarios with large size networks and s
enarios that do not require an optimal plan, but needto produ
e an eÆ
ient plan within a limited amount of time.In this se
tion, we present a heuristi
 algorithm, namely Capa
ity Constrained Route Planner (CCRP),that produ
es sub-optimal solutions for eva
uation planning. We model edge 
apa
ity and node 
apa
ityas a time series instead of �xed numbers. A time series represents the available 
apa
ity at ea
h timeinstant for a given edge or node. We propose a heuristi
 approa
h based on an extension of shortest pathalgorithms [13, 11℄ to a

ount for 
apa
ity 
onstraints of the network.
3.1 Capa
ity Constrained Route Planner (CCRP)The Capa
ity Constrained Route Planner (CCRP) uses an iterative approa
h. In ea
h iteration, the al-gorithm �rst sear
hes for route R with the earliest destination arrival time from any sour
e node to any
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destination node, taking previous reservations and possible waiting time into 
onsideration. Next, it 
om-putes the a
tual amount of eva
uees that will travel through route R. This amount is a�e
ted by the available
apa
ity of route R and the remaining number of eva
uees. Then, it reserves the node and edge 
apa
ityon route R for those eva
uees. The algorithm 
ontinues to iterate until all eva
uees rea
h destination. Thedetailed pseudo-
ode and algorithm des
ription are shown in Algorithm 1.Algorithm 1 Capa
ity Constrained Route Planner (CCRP)Input:1) G(N;E): a graph G with a set of nodes N and a set of edges E;Ea
h node n 2 N has two properties:Maximum Node Capa
ity(n) : non-negative integerInitial Node O

upan
y(n) : non-negative integerEa
h edge e 2 E has two properties:Maximum Edge Capa
ity(e) : non-negative integerTravel time(e) : non-negative integer2) S: set of sour
e nodes, S � N;3) D: set of destination nodes, D � N;Output: Eva
uation plan : Routes with s
hedules of eva
uees on ea
h routeMethod:Pre-pro
ess network: add super sour
e node s0 to network,link s0 to ea
h sour
e nodes with an edge whi
hMaximum Edge Capa
ity() =1 and Travel time() = 0; (0)while any sour
e node s 2 S has eva
uee do f (1)find route R < n0; n1; : : : ; nk > with time s
hedule < t0; t1; : : : ; tk�1 >using one generalized shortest path sear
h from super sour
e s0 to all destinations,(where s 2 S,d 2 D,n0 = s,nk = d)su
h that R has the earliest destination arrival time among routes between all (s,d) pairs,and Available Edge Capa
ity(enini+1 ; ti) > 0; 8i 2 f0; 1; : : : ; k � 1g,and Available Node Capa
ity(ni+1; ti + Travel time(enini+1)) > 0; 8i 2 f0; 1; : : : ; k � 1g; (2)flow = min( number of eva
uees still at sour
e node s,Available Edge Capa
ity(enini+1 ; ti); 8i 2 f0; 1; : : : ; k � 1g,Available Node Capa
ity(ni+1; ti + Travel time(enini+1)); 8i 2 f0; 1; : : : ; k � 1g); (3)for i = 0 to k � 1 do f (4)Available Edge Capa
ity(enini+1 ; ti) redu
ed by flow; (5)Available Node Capa
ity(ni+1; ti + Travel time(enini+1 )) redu
ed by flow; (6)g (7)g (8)Output eva
uation plan; (9)
The CCRP algorithm keeps iterating as long as there are still eva
uees left at any sour
e node (line 1).Ea
h iteration starts with �nding the route R with the earliest destination arrival time from any sour
esnode to any destination node based on the 
urrent available 
apa
ities (line 2). This is done by generalizingDijkstra's shortest path algorithm [13, 11℄ to work with the time series node and edge 
apa
ities and edgetravel time. Route R is the route that starts from a sour
e node and gets to a destination node in the leastamount of time and available 
apa
ity of the route allows at least one person to travel through route R toa destination node. Given the eva
uation network in Figure 3, the example exe
ution tra
e of CCRP is asfollowsExample 2 (CCRP Exe
ution Tra
e) At the very �rst iteration, route R will be N8-N10-N13. Eva
ueesfrom sour
e node N8 
an take this route to rea
h destination N13 at time 4 using the time s
hedule N8(T0)-N10(T3)-N13. At algorithm line 3, the a
tual number of eva
uees that will travel through route R isdetermined by taking the smallest number among the number of eva
uees at the sour
e node and theavailable 
apa
ities of ea
h nodes and edges on route R based on the time s
hedule that eva
uees will travelthrough ea
h node and edge. Thus, at the �rst iteration, this 
ow amount of R will be 6, whi
h is theavailable edge 
apa
ity of edge N8-N10 at time 0. 6



The next step is to reserve 
apa
ities for the eva
uees on ea
h node and edge of route R based on the times
hedule(lines 4-7). At the �rst iteration, the algorithm makes a reservation for the 6 eva
uees by redu
ing theavailable 
apa
ity of ea
h node and edge at 
orresponding time points. This means that available 
apa
itiesare redu
ed by 6 for edge N8-N10 at time 0, for node N10 at time 3, and for edge N10-N13 at time 3.The 6 eva
uees arrive at destination N13 at time 4. Then, the algorithm goes ba
k to line 1 for the nextiteration(line 8). The iteration terminates when the o

upan
y of all sour
e nodes is redu
ed to zero, whi
hmeans all eva
uee have been sent to destination nodes. Line 9 outputs the eva
uation plan, as shown inTable 1.Compared with the earlier MRCCP algorithm [26℄, major improvements in CCRP lie in line 0 and line 2.In MRCCP, �nding route R (line 2) is done by running generalized shortest path sear
hes from ea
h sour
enode. Ea
h sear
h is terminated when any destination node is rea
hed. In CCRP, this step is improved byadding a super sour
e node s0 to the network and 
onne
ting s0 to all sour
e nodes(line 0). This allows usto 
omplete the sear
h for route R by using only one single generalized shortest path sear
h, whi
h takesthe super sour
e s0 as the start node. This sear
h terminates when any destination node is rea
hed. Sin
ethe super sour
e s0 is 
onne
ted to ea
h sour
e nodes by an edge with in�nite 
apa
ity and zero traveltime, it 
an be easily proved that the shortest route found by this sear
h is the route R we need in line 2.This improvement signi�
antly redu
es the 
omputational 
ost of the algorithm by one degree of magnitude
ompared with MRCCP. We give a detailed analysis of the 
ost model of CCRP algorithm in the nextse
tion.
3.2 Algebrai
 Cost Model of CCRPWe now provide the algebrai
 
ost model for the 
omputational 
ost of the proposed CCRP algorithm. Weassume that n is the number of nodes in the eva
uation network, m is the number of edges, and p is thenumber of eva
uees.The CCRP algorithm is an iterative approa
h. In ea
h iteration, the route for one group of people is
hosen and the 
apa
ities along the route are reserved. The total number of iterations equals the number ofgroups generated. In the worst 
ase, ea
h individual eva
uee forms one group. Therefore, the upper boundof the number of groups is p, i.e. the number of iterations is O(p). In ea
h iteration, the 
omputation ofthe route R with earliest destination arrival time is done by running one generalized Dijkstra's shortest pathsear
h. The worst 
ase 
omputational 
omplexity of Dijkstra's algorithm is O(n2) for dense graphs [11℄.Various implementations of Dijkstra's algorithm have been developed and evaluated extensively [4, 10, 32℄.Many of these implementations 
an redu
e the 
omputational 
ost by taking advantage of the sparsity ofthe graph. Transportation road networks are very sparse graphs with a typi
al edge/node ratio around 3. InCCRP, we implement Dijkstra's algorithm using heap stru
tures, whi
h runs in O(m+ nlogn) time [4, 10℄.For sparse graphs, nlogn is the dominant term. The generalization of Dijkstra's algorithm to a

ount for
apa
ity 
onstraints a�e
ts only how the shortest distan
e to ea
h node is de�ned. It does not a�e
t the
omputational 
omplexity of the algorithm. Therefore, we 
an 
omplete the sear
h for route R with O(nlogn)run-time. The reservation step is done by updating the node and edge 
apa
ities along route R, whi
h has a
ost of O(n). Therefore, ea
h iteration of the CCRP algorithm is done in O(nlogn) time. As we have seen,it takes O(p) iterations to 
omplete the algorithm. The 
ost model of the CCRP algorithm is O(p � nlogn).CCRP is an improved algorithm based on the same heuristi
 method of MRCCP [26℄ whi
h has a run-timeof O(p � n2logn). CCRP redu
es the 
omputational 
ost of MRCCP by one degree of magnitude.
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Algorithm Computational Cost Solution QualityCCRP O(p � nlogn) Sub-optimalMRCCP O(p � n2logn) Sub-optimalLinear Programming Approa
h at least O((T � n)6) OptimalTable 2: Comparison of Computational Costs (n: number of nodes, p: number of eva
uees, T : user-providedupper-bound on eva
uation time)The 
omputational 
ost of linear programming approa
h depends on the method used to solve the min-imum 
ost 
ow problem. Hoppe and Tardos [19℄ showed that this problem 
an be solved using ellipsoidmethod whi
h is theoreti
ally polynomial time bounded. However, the 
omputational 
omplexity of ellip-soid method is at least O(N6)[6℄(where N is the number of nodes in the network). Sin
e linear programmingapproa
h requires a time-expanded network, N equals to (T + 1)n (where n is the number of nodes in theoriginal eva
uation network, T is the user-provided eva
uation time upper bound).Table 2 provides a 
omparison of CCRP, MRCCP, and the linear programming approa
h. As 
an beseen, linear programming approa
h produ
es optimal solutions but su�ers from high 
omputational 
ost.Both CCRP and MRCCP redu
e the 
omputation 
ost by produ
ing sub-optimal solution, while CCRPgives better 
omputational 
ost than MRCCP.Lemma 1 : CCRP is stri
tly faster than MRCCP.The 
omputational 
osts of CCRP and MRCCP are O(p �nlogn) and O(p �n2logn) respe
tively, as shown inTable 2.
4 Experiment Design and Performan
e EvaluationPerforman
e evaluation of the CCRP algorithm was done by 
ondu
ting experiments using various eva
uationnetwork 
on�gurations. In this se
tion, we present the experiment design and an analysis of the experimentresults.
4.1 Experiment DesignFigure 4 des
ribes the experiment design to evaluate the performan
e of the CCRP algorithm. The purposeis to 
ompare the algorithm run-time and solution quality of the proposed CCRP algorithms with that ofMRCCP [26℄ and NETFLO [22℄ whi
h is a popular linear programming pa
kage used to solve minimum 
ost
ow problems.First, we used NETGEN [25℄ to generate eva
uation networks with eva
uees. NETGEN is a program thatgenerates transportation networks with 
apa
ity 
onstraints and initial supplies based on input parameters.In our experiments, the following three were sele
ted as independent parameters to test their impa
ts onthe the performan
e of the algorithms: number of eva
uees initially in the network, number of sour
e nodes,and network size represented by number of nodes. Number of edges is treated as a dependent parameter aswe set the number of edges to be equal to 3 times the number of nodes be
ause 3 is the typi
al edge/noderatio for real transportation road networks. Next, the same eva
uation network generated by NETGEN wasfed to the CCRP and MRCCP algorithms. Before feeding the network to NETFLO, we used a networktransformation tool to transform the eva
uation network into a time-expanded network, whi
h is requiredby minimum 
ost 
ow solvers as NETFLO to solve eva
uation problems [17, 9℄. This pro
ess requires an

8



input parameter T whi
h is the estimated upper-bound on eva
uation egress time. If the eva
uation 
annotbe 
ompleted by time T, NETFLO will return no solution. In this 
ase, we must in
rease T to 
reate a newtime-expanded network and try to run NETFLO again until a solution 
an be rea
hed. Finally, after CCRP,MRCCP and NETFLO produ
ed a solution for ea
h test 
ase, the eva
uation egress time, whi
h representsthe solution quality, and the algorithm run-time were 
olle
ted and analyzed in the data analysis module.

Figure 4: Experiment DesignThe experiments were 
ondu
ted on a workstation with Intel Pentium IV 2GHz CPU, 2GB RAM andDebian Linux operating system.
4.2 Experiment Results and AnalysisWe want to answer three questions: (1) How does the number of eva
uees a�e
t the performan
e of thealgorithms? (2) How does the number of sour
e nodes a�e
t the performan
e of the algorithms? (3) Arethe algorithms s
alable to the size of the network, parti
ularly will they handle large size transportationnetworks as in urban eva
uation s
enarios?Experiment 1: How does the number of eva
uees a�e
t the performan
e of the algorithms?The purpose of the �rst experiment is to evaluate how the number of eva
uees a�e
ts the performan
e ofthe algorithms. We �xed the number of nodes and the number of sour
e nodes of the network, and varied thenumber of eva
uees to observe the quality of the solution and the run-time of CCRP, MRCCP and NETFLOalgorithms.The experiment was done with four test groups. Ea
h group had a �xed network size of 5000 nodes and�xed number of sour
e nodes at 1000, 2000, 3000, and 4000 respe
tively. We varied the number of eva
ueesfrom 5000 to 50000. Here we present the experiment results of the test group with number of sour
e nodes�xed at 2000. We omit the results from the other three groups sin
e this group shows a typi
al result of alltest groups. Figure 5 shows the solution quality represented by eva
uation egress time and Figure 6 showsthe run-times of the three algorithms.Sin
e CCRP and MRCCP use the same heuristi
 method to �nd solution, it is expe
ted that CCRP andMRCCP produ
ed solutions with the same eva
uation egress time for ea
h test 
ase. As seen in Figure 5,
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Figure 5: Quality of Solution With Respe
t toNumber of Eva
uees
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Figure 6: Run-time With Respe
t to Number of Eva
-ueesCCRP and MRCCP produ
ed very high quality solution 
ompared with the optimal solution produ
ed byNETFLO. The solution quality of CCRP and MRCCP drops slightly as the the number of eva
uees grows.In Figure 6, we 
an see that, in ea
h 
ase, the run-time of CCRP remains half that of MRCCP and lessthan 1/3 that of NETFLO. In addition, the CCRP run-time is s
alable to the number of eva
uees while therun-time of NETFLO grows mu
h faster.This experiment shows: (1) CCRP produ
es high quality solutions with mu
h less run-time than that ofNETFLO. (2) The run-time of CCRP is s
alable to the number of eva
uees.Experiment 2: How does the number of sour
e nodes a�e
t the performan
e of the algorithms?In the se
ond experiment, we evaluate how the number of sour
e nodes a�e
ts the performan
e of thealgorithms. We �xed the number of nodes and the number of eva
uees in the network, and varied thenumber of sour
e nodes to observe the quality of the solution and the run-time. In this experiment, byvarying the number of sour
e nodes, we a
tually 
reate di�erent eva
uee distributions in the network. Ahigher number of sour
e nodes means that the eva
uees are more s
attered in the network.Again, the experiment was done with four test groups. Ea
h group had a �xed network size of 5000nodes and �xed number of eva
uees at 5000, 20000, 35000, and 50000 respe
tively. We varied the numberof sour
e nodes from 1000 to 4000. Here we present the experiment results of the test group with numberof eva
uees �xed at 5000. It shows a typi
al result of all test groups. Figure 7 shows the solution qualityrepresented by eva
uation egress time and Figure 8 shows the run-times of the three algorithms.As seen in Figure 7, in ea
h test 
ase, CCRP and MRCCP produ
ed high quality solution (within 5per
ent longer eva
uation time) and the number of sour
e nodes has little e�e
t on the solution quality. Itis also noted that the eva
uation time is non-monotoni
 with respe
t to the number of sour
e nodes and weplan to explore the potential reasons in future works.Figure 8 shows that the run-time of all three algorithms are s
alable to the number of sour
e nodes.However, the run-time of CCRP remains less than half that of NETFLO.This experiment shows: (1)The solution quality of CCRP is not a�e
ted by the number of sour
e nodes.(2) The run-time of CCRP is s
alable to the number of sour
e nodes.
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Figure 7: Quality of Solution With Respe
t toNumber of Sour
e Nodes
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Figure 8: Run-time With Respe
t to Number ofSour
e NodesExperiment 3: Are the algorithms s
alable to the size of the network?In the third experiment, we evaluate how the network size a�e
ts the performan
e of the algorithms. We�xed the number of eva
uees and the number of sour
e nodes in the network, and varied the network size toobserve the quality of solution and the run-time of the algorithms.The experiment was done with a �xed number of eva
uees at 5000 and the number of sour
e nodes at10. We varied the number of nodes from 50 to 50000. Figure 9 shows the solution quality represented byeva
uation egress time and Figure 10 shows the run-times.
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Figure 9: Quality of Solution With Respe
t toNetwork Size
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Figure 10: Run-time With Respe
t to Network Size
Note: x-axis(number of nodes) in Figure 9 and 10 is on a logarithmi
 s
ale rather than linear. Run-time ofCCRP and MRCCP in Figure 10 grow in small polynomial.There is no data point for NETFLO at network size of 50000 nodes. We were unable to run NETFLOfor this setup be
ause the size of the time-expanded network be
ame too large (more than 20 million nodesand 80 million edges)that NETFLO 
ould not produ
e solution.As seen in Figure 9, in ea
h of the �rst three test 
ase, CCRP and MRCCP produ
ed high quality solution11



Figure 11: Result Routes Overlay of Monti
ello Power Plant Eva
uation Planning (best viewed in 
olor)(within 5 per
ent longer eva
uation time) and the solution quality be
omes 
loser to optimal solution as thenetwork size in
reases. Figure 10 is shown with a data table of ea
h run-time. The x-axis(number of nodes)of Figure 10 is on a logarithmi
 s
ale rather than linear and the run-time of CCRP and MRCCP growin small polynomial. It 
an be seen that the run-time of CCRP is s
alable to the network size while theNETFLO run-time grows exponentially.This experiment shows: (1) Given a �xed number of eva
uees and sour
e nodes, the solution qualityof CCRP in
reases as the network size in
reases. (2) The run-time of CCRP is s
alable to the size of thenetwork.
4.3 A Case StudyWe also 
ondu
ted experiments using a real eva
uation s
enario. As shown in Figure 11, the Monti
ellonu
lear power plant is about 40 miles to the northwest of the Twin Cities. Eva
uation plans need to be inpla
e in 
ase of a

idents or terrorist atta
ks. The eva
uation zone is a 10-mile radius around the nu
learpower plant as de�ned by Minnesota Homeland Se
urity and Emergen
y Management [3℄. A hand-draftedeva
uation route plan was developed to eva
uate the a�e
ted population to a high s
hool. However, thisplan did not 
onsider the 
apa
ity of the road networks and put high loads on two highways.We 
ondu
ted an experiment using the CCRP algorithm. The experiment was done using the roadnetwork around the eva
uation zone provided by the Minnesota Department of Transportation [2℄, and theCensus 2000 population data for ea
h a�e
ted 
ity (
ir
les in Figure 11). The total number of eva
ueesis about 42,000. As 
an be seen in Figure 11, our algorithm gives a mu
h better eva
uation route planby sele
ting shorter paths to redu
e eva
uation time and utilizing ri
her routes (routes near eva
uationdestination) to redu
e 
ongestions. The old eva
uation plan has an eva
uation egress time of 268 minutes.CCRP algorithm produ
ed a mu
h better plan with eva
uation time of only 162 minutes. This experimentshows that our algorithm is e�e
tive in real eva
uation s
enarios to redu
e eva
uation time and improve
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existing plans.Our approa
h was presented in the UCGIS Congressional Breakfast Program on homeland se
urity[30℄,and the Minnesota Homeland Se
urity and Emergen
y Management newsletter[31℄. It was also sele
ted bythe Minnesota Department of Transportation to be used in the eva
uation planning proje
t for the TwinCities Metro Area, whi
h evolves a road network of about 250,000 nodes and a population of over 2 millionpeople.
5 Dis
ussion: An Optimal Approa
h Using A* Sear
hAs dis
ussed in Se
tion 1, the linear programming methods to solve the eva
uation planning problem use timeexpanded networks that require a large amount of memory; these methods also require a prior knowledgeof the upper bound of eva
uation time. CCRP algorithm presented in Se
tions 3 and 4 addresses theseissues very e�e
tively; but the eva
uation times obtained are sub-optimal. There is a need to explore newapproa
hes that would guarantee optimal solutions without using time-expanded networks. In this se
tion,we dis
uss the possibility of formulating the eva
uation planning problem as a sear
h problem implementedas an A* sear
h. We present the heuristi
 fun
tion used in this A* formulation and we prove the propertiesof the heuristi
 fun
tion whi
h guarantees the optimality of the solution. This approa
h �nds an optimalsolution to the eva
uation planning problem without using time expanded networks and also eliminates theneed for user-provided upper bound of eva
uation time. Basi
 graph sear
h strategies and general outline ofan A* algorithm are explained in the Appendix.
5.1 Formulation of the Eva
uation Problem as an A* Sear
hThe sear
h spa
e 
onsists of di�erent states of the eva
uation network. Ea
h state is the snapshot of thenetwork at ea
h instant of time. The start node of the sear
h tree would be the initial state of the eva
uationnetwork at the start of eva
uation. The goal node would be the state of the network when there are o

upantsonly at the destination nodes.
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Figure 12: Illustration of Start Node, Goal NodeFigure 12 illustrates the formulation for an eva
uation network with four nodes (shown in the �rst �gure)as a sear
h problem. The number in square bra
kets adja
ent to a node indi
ates the node o

upan
y. Node1 is the sour
e node and node 4 is the destination node. The sour
e node has an o

upan
y of 4. These
ond �gure shows the start node of the sear
h tree whi
h represents the initial state of the network when
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all eva
uees are the sour
e node (node 1). The last �gure shows the goal node of the sear
h tree whi
hrepresents the state where all eva
uees are at the destination node (node 4).
5.2 Sear
h-Node Expansion in the Sear
h TreeGiven the o

upan
y (number of people at the node) of the sour
e node and the 
apa
ity 
onstraints of theoutgoing edges of the node, all possible feasible 
ombinations are generated. This is formulated as follows.Pi xi � min(N;PCi), subje
t to the 
onstraints 0 � xi � Ci; i = 1; ::; n.where n is the out-degree of the node, N is the node o

upan
y, Ci is the 
apa
ity of the ith outgoing edge.Ea
h sear
h tree node with nonzero o

upan
y thus has Qi Ci, 
hild nodes; ea
h 
orresponding to oneof the possible 
ombinations that are generated. Ea
h step in the expansion would 
orrespond to advan
ingin time by one unit.
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Figure 13: Sear
h Tree Node ExpansionAn example has been in
luded to illustrate sear
h node expansion. (See Figure 13). The �rst levelof sear
h tree (T=0) shows the initial state of the eva
uation network. The sour
e node is node 1 anddestination node is node 4. The number in square bra
kets indi
ates the number of people at any node or
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at an edge. The network in the initial state forms the start node of the sear
h tree. Given the o

upan
y atea
h node (ex
ept the destination nodes) and 
apa
ity 
onstraints of outgoing edges of the nodes, all feasible
ombinations are generated. For example for node 1 whi
h has two persons, the feasible groups that 
antravel along the two outgoing edges are (2; 0), (0; 2), (1; 0), (0; 1), (1; 1). There are �ve 
hild nodes for thestart node of the sear
h tree, ea
h representing the state of the network after one time unit, 
orrespondingto ea
h of these �ve possible 
ombinations.
5.3 Proposed Heuristi
 Fun
tionThe evaluation fun
tion f(n) of a sear
h node n is formulated as f(n) = g(n) + h(n).g(n) is the a
tual 
ost to rea
h the sear
h node n from the start node whi
h is the time taken to rea
h the
urrent state from the start state. With the node expansion method used here, g(n) would be the depth ofthe node n, sin
e every expansion advan
es the eva
uation network by one time unit. h(n) is the estimated
ost from the node n to a goal node. We propose h(n) to be the maximum over all groups of the time takento rea
h the 
losest destination node with 
apa
ity 
onstraints ignored.The g and h values for ea
h sear
h node are shown in the �gure. The node with the least value of f = g+ his expanded. In this example, the goal state is rea
hed at the third level of the sear
h tree, when all eva
ueesare at the destination node.We 
an tra
e the eva
uation plan by tra
ing the sear
h tree upwards from the goal node to the start node.Lemma 2 : The proposed h fun
tion is admissible.Proof : The h fun
tion 
learly underestimates the time required by the group to rea
h the destinationbe
ause the group that requires the largest time to rea
h the destination node de�nitely needs to moveto a destination node to rea
h a goal state. Here, we 
onsider the nearest destination and also ignore the
onstraints on the ar
s. Bringing in the 
apa
ity 
onstraints 
an only add to the eva
uation time. Hen
e, his 
learly admissible.Lemma 3 : The proposed h fun
tion is monotone.Proof : To prove monotoni
ity of the heuristi
 h(n), we need to prove thath(n) + 
(m;n) � h(m) where node n is a 
hild of node m and 
(m;n) is the 
ost of the ar
 from m to n.We 
all this inequality "triangle inequality" in the rest of the proof.We de�ne h(n) as the largest travel time taken by a group to rea
h the 
losest destination when all thegroups travel along the shortest paths, ignoring all 
apa
ity 
onstraints.We prove the triangle inequality by 
onsidering the groups gi and gj whose shortest travel times to thedestination are the largest over all groups in sear
h nodes m and n and hen
e are the values of h fun
tion atthese sear
h nodes. We prove the inequality for the following 
ases whi
h exhaust all possibilities that 
anarise in an eva
uation s
enario.Case 1. gi is the same as gjCase 1a. gi stays at the same network node in both sear
h nodes m and n.Case 1b. gi moves through one time unit in the node expansion.Case 2. gi is not the same as gjCase 2a. gi and gj stay at the same network node.
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Case 2b. gi stays at the same network node, but gj moves.Case 2
. gi moves , but gj stays at the same network node.Case 2d. gi and gj move by one time unit.Detailed proof is given in Appendix 3 with Figure 15 whi
h illustrates the eva
uation network s
enariosfor the various 
ases listed above.The h values shown in the sear
h tree (Figure 13) 
learly illustrate that h is admissible and monotone.It 
an be observed that h fun
tion never overestimates the time required to rea
h the goal node from anysear
h node. Also, the h value of every node and that of its parent node do satisfy the triangle inequality.
5.4 Experimental EvaluationThe experimental evaluation for this A* sear
h algorithm needs to answer the following questions: (1) Doesthe A* algorithm produ
e optimal eva
uation plans? (2) Does the 
urrent implementation of A* algorithmneed performan
e tuning? (3) How does the memory usage of A* algorithm 
ompared with other algorithms?Do we need new data stru
tures to redu
e memory used by A* algorithm?We implemented the A* sear
h algorithm and 
ondu
ted experiments using similar method as des
ribedin Se
tion 4. First, we generate eva
uation networks using NETGEN and 
onvert it to a time-expandednetwork. Then, the eva
uation network is fed to the A* algorithm and the time-expanded network is fed toNETFLO. Finally, we 
ompare the results from the two algorithms.For question (1) experiments on all networks 
on�gurations show that, in ea
h of the test 
ases, the A*algorithm produ
es eva
uation plan with the same eva
uation time as that of NETFLO. It shows that theA* algorithm 
an produ
e optimal eva
uation plan as the linear programming approa
h. For questions (2),we vary the network size from 10 nodes to 40 nodes. Figure 14 shows the algorithm run-time of A* algorithmand NETFLO. It 
an be seen that the 
urrent implementation of the A* algorithm produ
es higher run-timethan that of NETFLO. It shows that further performan
e tuning are needed to improve the performan
e ofthe A* implementation. For question (3), initial results show that the 
urrent implementation of A* requireshigh memory usage. Detailed analysis of the 
ost model of the A* memory usage remains as our future workas we plan to explore the possibility of introdu
ing new data stru
tures to redu
e the memory usage of theA* algorithm.
6 Con
lusions and Dis
ussionsIn this paper, we proposed a new 
apa
ity 
onstrained routing algorithm for eva
uation planning problem.Existing linear programming approa
h uses time-expanded network and requires user provided upper boundon eva
uation time. To address these limitations, we presented a heuristi
 algorithm, namely Capa
ityConstrained Route Planner(CCRP), whi
h produ
es sub-optimal solution for eva
uation planning problemwithout using time-expanded networks. We provided the algebrai
 
ost model and the performan
e evalua-tions using various network 
on�gurations. Experiments show that CCRP algorithm produ
es high qualitysolution and signi�
antly redu
es the 
omputational 
ost 
ompared to linear programming approa
h whi
hprodu
es optimal solution. It is also shown that the CCRP algorithm is s
alable to the number of eva
ueesand the size of the transportation network. A 
ase study using real eva
uation s
enario shows that CCRPalgorithm 
an be used to improve existing eva
uation plans by redu
ing total eva
uation time.
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Figure 14: Performan
e of A* and NETFLO with respe
t to Netswork sizeThe limitation of CCRP algorithm remains the follows. First, we assume that maximum 
apa
ity ofan edge does not depend on traÆ
 
ow amount on the edge. We understand that it is a 
hallenging taskto a

urately model the 
apa
ity of ea
h road segment in a real eva
uation s
enario as the a
tual traÆ

ow rate may depend on vehi
le speed as well as road o

upan
y. Se
ond, the generalized shortest pathalgorithm we used in CCRP requires that the edge travel time re
e
ts traÆ
 delays at interse
tions. Forfuture work, we plan to in
orporate existing resear
h results, su
h as Ziliaskopoulos and Mahmassani [33℄,to better address this problem.To address the sub-optimality issue of the CCRP algorithm, we also explored the possibility of formulatingthe eva
uation problem as a sear
h problem using A* algorithm. Our A* sear
h formulation addresses thelimitations of linear programming approa
h by only using the original eva
uation network to �nd optimalsolution. Thus, it does not require prior knowledge of eva
uation time. We proved that the heuristi
 fun
tionused in our A* formulation is monotone and admissible thus guaranteeing the optimality of the solution. Weplan to evaluate the performan
e of this approa
h (as indi
ated in Se
tion 5.4) in the 
oming month.
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A AppendixA.1 Basi
 Graph Sear
hA graph 
onsists of a set of nodes whi
h represent the en
odings of subproblems. Every graph used in sear
hwould have a start node that represents the initial state of the problem being solved. Certain pairs of nodesare 
onne
ted by dire
ted ar
s. If the ar
 is dire
ted from n to n0, n0 is a su

essor of n and n is the parentof n0. Often the ar
s are assigned weights that represent the 
ost of traversing the ar
. A sequen
e of nodesn1; ::nk, where ea
h ni is a su

essor of ni�1 is a path from n1 to nk. The 
ost of a path is the sum of the
osts of the ar
s along the path.The most basi
 operation in graph sear
h is node expansion. This involves 
omputing the representationsof all su

essor nodes from that of its parent. A sear
h pro
edure is a well de�ned method for determiningthe order in whi
h nodes are expanded. If the sear
h pro
edure uses the information 
olle
ted by thesear
h up to that point, it is 
alled uninformed sear
h. If the pro
edure uses partial information about theunexplored portion of the graph to guide the node expansion, sear
h is informed. Most sear
h pro
eduresdistinguish between nodes that were expanded 
alled 
losed nodes and nodes that have been generated butnot expanded 
alled open nodes. Familiarity with problem domain would sometimes indi
ate that 
ertaindire
tions of sear
h are more promising than others. This knowledge 
an be used in de
iding whi
h nodeto expand �rst. The promise of a node n is estimated numeri
ally by a heuristi
 evaluation fun
tion f(n),whi
h would depend on the des
ription of n, des
ription of the goal, information gathered by the sear
h upto that point and any extra knowledge about the problem domain.In A� sear
h, the evaluation fun
tion f(n) is formulated as f(n) = g(n) + h(n) where g(n) is the 
ost of thepath in the sear
h tree from the start node to n and h(n) is the estimated minimum 
ost of the path fromn to the goal node. The strategy followed is to expand the open node n with the minimum f [29, 28℄.A.2 Outline of A* algorithm [29℄1. Put the start node s, on OPEN.2. If OPEN is empty, exit with failure.3. Find the node n in OPEN with minimum f . Remove n from OPEN and pla
e it on CLOSED.4. If n is goal node, exit with su

ess. The solution 
an be obtained by tra
ing ba
k the pointers ba
kfrom n to s.5. Otherwise, expand n, generating all its su

essors. Link the su

essors to n. For every su

essor n0 ofn, � If n0 is already not on OPEN or CLOSED, estimate h(n0) and 
al
ulate f(n0) = g(n0) + h(n0)where g(n0) = g(n) + 
(n; n0); g(s) = 0 and 
(n; n0) i s the 
ost of the ar
 from n to n0.� If n0 is already on OPEN or CLOSED, reassign g(n0) to the 
urrent minimum.� If n0 required a reassignment of g(n0) and was on CLOSED, reopen it.6. Go to step 2.A heuristi
 fun
tion h is said to be admissible if 8nh(n) � h�(n), where h�(n) is the 
heapest 
ost ofpath going from n to the goal node [29℄. A sear
h algorithm is 
alled admissible if it is guaranteed to �ndan optimal path from the start node to a goal node. A� is admissible if h is admissible [18℄.A heuristi
 fun
tion h(n) is monotone if h(m) � h(n) + 
(m;n), 8(m;n)jnis a 
hild of m in the sear
htree and 
(m;n) is the 
ost of the ar
 from m to n. If A* sear
h uses a monotone heuristi
, it �nds optimalpaths to all expanded nodes [29℄.A.3 Detailed Proof for Lemma 3 (Monotoni
ity of h fun
tion)Lemma 3 : The proposed h fun
tion is monotone.Proof : To prove monotoni
ity of the heuristi
 h(n), we need to prove thath(n) + 
(m;n) � h(m) where node n is a 
hild of node m and 
(m;n) is the 
ost of the ar
 from m to n.We 
all this inequality "triangle inequality" in the rest of the proof.We de�ne h(n) as the largest travel time taken by a group to rea
h the 
losest destination when all thegroups travel along the shortest paths, ignoring all 
apa
ity 
onstraints.19



Let t(gi; k) denote the smallest time taken by a group gi to rea
h the 
losest destination at the sear
h nodek.Now let us 
onsider sear
h nodes m and n where n is a 
hild of m. At node m, let the smallest time takenby the group gi be the largest among all groups. In other words, h(m) = t(gi;m).At node n, let the smallest time taken by the group gj be the largest amon g all groups. In other words,h(n) = t(gj ; n) We prove the monotoni
ity by proving the triangle inequality for the following 
ases.1. Case 1. gi is the same as gjCase 1a. gi stays at the same network node in both sear
h nodes m and n.Here, h(n) = h(m) and the triangle inequality is true.Case 1b. gi moves through one time unit in the node expansion.
(m;n) = 1 here. We need to show h(n) + 1 � h(m). If gi moved along t he shortest path thatwas dete
ted at the sear
h node m, h(n) + 1 = h(m) satisfying the inequality. If gi moved alonganother path (sin
e we enumerate all possible paths in node expansion , this is possible) towardsanother destination node,h(n)+ 1 � h(m). Otherwise this 
urrent path would be dete
ted as theshortest path in parent node m.2. Case 2. gi is the not the same as gjCase 2a. Groups gi and gj stay at the same network node.This is not possible under 
ase 2.Case 2b. gi stays at the same network node, but gj moves.Here, we need to show that t(gj ; n) + 
(m;n) � t(gi;m).Sin
e t(gi;m) = t(gi; n) (group gi did not move), inequality be
omes t(gj ; n) + 
(m;n) � t(gi; n).This is true sin
e t(gj ; n) � t(gi; n) by de�nition of h(n)Case 2
. gi moves , but gj stays at the same network node.t(gi;m) � t(gj ;m) by the de�nition of h(m) and t(gj ; n) � t(gi; n) by the de�nition of h(n).Combining these two inequalities and using t(gj ;m) = t(gj ; n), we get t(gi;m) � t(gj ; n) � t(gi; n)t(gi;m) � t(gi; n) � 
(m;n) sin
e if this were not the 
ase, it 
ontradi
ts the optimality of theshortest path in sear
h node m. Therefore, t(gi;m) � t(gj ; n) � 
(m;n) or t(gj ; n) + 
(m;n) �t(gi;m)Case 2d. gi and gj move by one time unit.t(gi;m) � t(gj ;m)t(gj ; n) � t(gi; n) by de�nition of h(m) and h(n) respe
tively.We need to prove the triangle inequality, t(gj ; n) + 
(m;n) � t(gi;m).Adding 
(m;n) to the left-hand side of the se
ond inequality,t(gj ; n) + 
(m;n) � t(gi; n)If t(gi;m) � t(gi; n), the triangle inequality is satis�ed trivially be
ause t(gj ; n) � t(gi; n).If t(gi;m) > t(gi; n), t(gi;m) � t(gi; n) � 1; if this is not true, this path would be the shortestpath in sear
h node m.Therefore,t(gi; n) + 1 � t(gi; n).To prove the triangle inequality,a)if t(gj ; n) � t(gj ;m),t(gj ;m)� t(gj ; n) � 1 and t(gj ;m) � t(gi;m)Therefore, t(gi;m) � t(gj ;m) � t(gj ; n)t(gi;m) � t(gj ; n) + 1, t(gj ; n) + 
(m;n) � t(gi;m)b)if t(gj ; n) > t(gj ;m),t(gj ; n)� t(gj ;m) � 1 be
ause the time is always 
omputed in integer units.Sin
e t(gj ; n) � t(gi; n) and t(gj ;m) � t(gi;m), we get t(gj ; n)�t(gi;m) � 1, t(gj ; n)+
(m;n) �t(gi;m)The proposed heuristi
 h(n) is monotone. Figure 15 illustrates the the eva
uation network s
enarios forthe various 
ases listed above.
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