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Abstract

Evacuation planning is critical for numerous important applications, e.g. disaster emergency man-
agement and homeland defense preparation. Efficient tools are needed to produce evacuation plans that
identify routes and schedules to evacuate affected populations to safety in the event of natural disasters
or terrorist attacks. The existing linear programming approach uses time-expanded networks to compute
the optimal evacuation plan and requires a user-provided upper bound on evacuation time. It suffers
from high computational cost and may not scale up to large transportation networks in urban scenarios.
In this paper we present a heuristic algorithm, namely Capacity Constrained Route Planner(CCRP),
which produces sub-optimal solution for the evacuation planning problem. CCRP models capacity as a
time series and uses a capacity constrained routing approach to incorporate route capacity constraints. It
addresses the limitations of linear programming approach by using only the original evacuation network
and it does not require prior knowledge of evacuation time. Performance evaluation on various net-
work configurations shows that the CCRP algorithm produces high quality solutions, and significantly
reduces the computational cost compared to linear programming approach that produces optimal solu-
tions. CCRP is also scalable to the number of evacuees and the size of the network. We also provide a
discussion on the formulation of a new optimal algorithm that uses A* search to find the optimal solution
for evacuation planning. We prove that the heuristic function used in this A* formulation is monotone
and admissible.
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1 Introduction

Evacuation planning is critical for numerous important applications, e.g. disaster emergency management
and homeland defense preparation. Traditional evacuation warning systems simply convey the threat descrip-
tions and the need for evacuation to the affected population via mass media communication. Such systems
do not consider capacity constraints of the transportation network and thus may lead to unanticipated ef-
fects on the evacuation process. For example, when Hurricane Andrew was approaching Florida in 1992, the
lack of effective planning caused tremendous traffic congestions, general confusion and chaos [1]. Therefore,
efficient tools are needed to produce evacuation plans that identify routes and schedules to evacuate affected
populations to safety in the event of natural disasters or terrorist attacks [12, 14, 7, 8].

The current methods of evacuation planning can be divided into two categories, namely traffic assignment-
simulation approach and route-schedule planning approach. The traffic assignment-simulation approach uses
traffic simulation tools, such as DYNASMART [27] and DynaMIT [5], to conduct stochastic simulation of
traffic movements based on origin-destination traffic demands and uses queuing methods to account for
road capacity constraints. However, it may take a long time to complete the simulation process for a large
transportation network. The route-schedule planning approaches use network flow and routing algorithms to
produce origin-destination routes and schedules of evacuees on each route. Many research works have been
done to model the evacuation problem as a network flow problem [15, 4] and to find the optimal solution
using linear programming methods. Hamacher and Tjandra [17] gave an extensive literature review of the
models and algorithms used in these linear programming methods. Based on the triple-optimization results
by Jarvis and Ratliff [21], linear programming method for evacuation route planning works as follows. First,
it models the evacuation network into a network graph, as shown by network GG in Figure 1, and it requires
the user to provide an estimated upper bound T of the evacuation egress time. Second, it converts evacuation
network G to a time-expanded network, as shown by Gt in Figure 2, by duplicating the original evacuation
network G for each discrete time unit ¢ =0, 1, ..., T. Then, it defines the evacuation problem as a minimum
cost network flow problem [15, 4] on the time-expanded network Gr. Finally, it feeds the expanded network
Gr to minimum cost network flow solvers, such as NETFLO [22], to find the optimal solution. For example,
EVACNET [9, 16, 23, 24] is a computer program based on this approach which computes egress time for
building evacuations. It uses NETFLO code to obtain the optimal solution. Hoppe and Tardos [19, 20] gave
a polynomial time bounded algorithm by using ellipsoid method of linear programming to find the optimal
solution for the minimum cost flow problem. Theoretically, ellipsoid method has a polynomial bounded
running time. However, it performs poorly in practice and has little value for real application [6].

Linear programming approach can produce optimal solutions for evacuation planning. It is useful for
evacuation scenarios with moderate size networks, such as building evacuation. However, this approach has
the following limitations. First, it significantly increases the problem size because it requires time-expanded
network G to produce a solution. As can been seen in Figures 1 and 2, if the original evacuation network G
has n nodes and the time upper bound is 7', the time-expanded network G will have at least (7'+ 1)n nodes.
This approach may not be able to scale up to large size transportation networks in urban evacuation scenarios
due to high computational run-time caused by the tremendously increased size of the time-expanded network.
Second, linear programming approach requires the user to provide an upper bound T of the evacuation time
in order to generate the time-expanded network. It is almost impossible to precisely estimate the evacuation
time for an urban scenario where the number of evacuees is large and the transportation network is complex.
An under-estimated time bound T will result in failure of finding a solution. In this case, the user will have

to increase the value of T' and re-run the algorithm until a solution can be reached. On the other hand,
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Figure 1: Evacuation Network G,
(source: [17]) Figure 2: Time-expanded Network G, with T'=4, (source: [17])

an over-estimated 7" will result in an over-expanded network G and hence lead to unnecessary storage and
run-time.

Heuristic routing and scheduling algorithms can be used to find sub-optimal evacuation plan with reduced
computational cost. It is useful for evacuation scenarios with large size networks and scenarios that do not
require an optimal plan, but need to produce an efficient plan within a limited amount of time. However,
old heuristic approaches only compute the shortest distance route from a source to the nearest destination
without considering route capacity constraints. It cannot produce efficient plans when the number of evacuees
is large and the evacuation network is complex. New heuristic approaches are needed to account for capacity
constraints of the evacuation network. Lu, Huang and Shekhar [26] proposed prototypes of two heuristic
capacity constrained routing algorithms, namely SRCCP and MRCCP, and tested its performance using
small size building networks. SRCCP assigns only one route to each source node. It has very fast run-time
but the solution quality is very poor and hence has little value for real application. MRCCP assigns multiple
routes to each source node and produces high quality solution with much less run-time compared to that of
linear programming approach. However, its scalability to large size networks is unsatisfactory because it has
a computational cost of O(p-n®logn) (where n the is number of nodes and p is the number of evacuees). In
this paper, we present an improved algorithm called Capacity Constrained Route Planner (CCRP). CCRP
can reduce the run-time to O(p-nlogn) by conducting only one shortest path search in each iteration instead
of the multiple searches used in MRCCP. We also present the analysis of its algebraic cost model and provide
the results of performance evaluation using large size transportation networks.

In the CCRP algorithm, we model capacity as a time series because available capacity of each node



and edge may vary during the evacuation. We use a generalized shortest path search algorithm to account
for route capacity constraints. This algorithm can divide evacuees from each source into multiple groups
and assign a route and time schedule to each group of evacuees based on an order that is prioritized by
each group’s destination arrival time. It then reserves route capacities for each group subject to the route
capacity constraints. The quickest route available for one group is re-calculated in each iteration based
on the available capacity of the network. Performance evaluation on various network configurations shows
that the CCRP algorithm produces high quality solutions, and significantly reduces the computational cost
compared to linear programming approach. CCRP is also scalable to the number of evacuees and the size
of the network. A case study using a nuclear power plant evacuation scenario shows that this algorithm can
be used to improve existing evacuation plans by reducing evacuation time.

We also provide a discussion of the formulation of a new optimal algorithm using A* search[28, 29]. This
algorithm addresses the limitations of linear programming approach by using only the original evacuation
network to find the optimal solution. In addition, it does not require the user to provide an upper bound
of the evacuation time. We provide the the proof of monotonicity and admissibility of this A* search
algorithm. We also give the design of the experimental evaluation and we expect detailed experimental

results within the coming month.

Outline: The rest of the paper is organized as follows. In Section 2, the problem formulation is provided
and related concepts are illustrated by an example evacuation network. Section 3 describes the Capacity
Constrained Route Planner (CCRP) algorithm and the algebraic cost model. In Section 4, we present the
experimental design and performance evaluation. In Section 5, we provide the formulation of new optimal

algorithm using A* search. We summarize our work and discuss future directions in Section 6.

2 Problem Formulation
We formulate the evacuation planning problem as follows:

Given: A transportation network with non-negative integer capacity constraints on nodes and edges, non-
negative integer travel time on edges, the total number of evacuees and their initial locations, and

locations of evacuation destinations.

Output: An evacuation plan consisting of a set of origin-destination routes and a scheduling of evacuees on
each route. The scheduling of evacuees on each route should observe the capacity constraints of the

nodes and edges on this route.

Objective: (1) Minimize the evacuation egress time, which is the time elapsed from the start of the evac-
uation until the last evacuee reaches the evacuation destination. (2) Minimize the computational cost

of producing the evacuation plan.

Constraint: (1) Edge travel time preserves FIFO (First-In First-Out) property. (2) Edge travel time reflects

delays at intersections. (3) Limited amount of computer memory.

We illustrate the problem formulation and a solution with an example evacuation network, as shown in
Figure 3. In this evacuation network, each node is shown by an ellipsis. Each node has two attributes:

maximum node capacity and initial node occupancy. For example, at node N1, the maximum capacity is



50, which means this node can hold at most 50 evacuees at each time point, while the initial occupancy is
10, which means there are initially 10 evacuees at this node. In Figure 3, each edge, shown as an arrow,
represents a link between two nodes. Each edge also has two attributes: maximum edge capacity and travel
time. For example, at edge N4-N6, the maximum edge capacity is 5, which means at each time point, at
most 5 evacuees can start to travel from node N4 to N6 through this link. The travel time of this edge is 4,
which means it takes 4 time units to travel from node N4 to N6. This approach of modelling a evacuation
scenario to a capacitated node-edge graph is similar to those presented in Hamacher [17], Kisko [24] and
Chalmet [9].
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Figure 3: Node-Edge Graph Model of Example Evacuation Network

As shown in Figure 3, suppose we initially have 10 evacuees at node N1, 5§ at node N2, and 15 at node
N8. The task is to compute an evacuation plan that evacuates the 30 evacuees to the two destinations (node

N13 and N14) using the least amount of time.

Example 1 (An Evacuation Plan) Table 1 shows an example evacuation plan for the evacuation network
in Figure 3. In this table, each row shows one group of evacuees moving together during the evacuation with
a group ID, source node, number of evacuees in this group, the evacuation route with time schedule, and
the destination time. The route is shown by a series of node number and the time schedule is shown by a
start time associated with each node on the route. Take source node N8 for example; initially there are 15
evacuees at N8. They are divided into 3 groups: Group A with 6 people, Group B with 6 people and Group
C with 3 people. Group A starts from node N8 at time 0 to node N10, then starts from node N10 at time 3
to node N13, and reaches destination N13 at time 4. Group B follows the same route of group A, but has a
different schedule due to capacity constraints of this route. This group starts from N8 at time 1 to N10, then
starts from N10 at time 4 to N13, and reaches destination N13 at time 5. Group C takes a different route.
It starts from N8 at time 0 to N11, then starts from N11 at time 3 to N14, and reaches destination N14

at time 5. The procedure is similar for other groups of evacuees from source node N1 and N2. The whole



evacuation egress time is 16 time units since the last groups of people (Group H and I) reach destination at

time 16. This evacuation plan is an optimal plan for the evacuation scenario shown in Figure 3.

Group of Evacuees
ID | Source | No. of Evacuees Route with Schedule Dest. Time
A | N8 6 N8(T0)-N10(T3)-N13 1
B N8 6 N8(T1)-N10(T4)-N13 5
C | N8 3 N8(T0)-N11(T3)-N14 5
D | NI 3 N1(T0)-N3(T1)-N4(T4)-N6(T8)-N10(T13)-N13 14
E N1 3 N1(T0)-N3(T2)-N4(T5)-N6(T9)-N10(T14) N13 15
F | NI 1 N1(T0)-N3(T1)-N5(T4)-N7(T8)-N11(T13)-N14 15
G| N2 2 N2(T0)-N3(T1)-N5(T4)-N7(T8)-N11(T13)-N14 15
H N2 3 N2(T0)-N3(T3)-N4(T6)-N6(T10)-N10(T15)-N13 16
I N1 3 N1(T1)-N3(T2)-N5(T5)-N7(T9)-N11(T14)-N14 16

Table 1: Example Evacuation Plan

In our problem formulation, we allow time dependent node capacity and edge capacity, but we assume
that edge capacity does not depend on the actual flow amount in the edge. We also allow time dependent
edge travel time, but we require that the network preserve the FIFO (First-In First-Out) property.

Alternate problem formulations of the evacuation problem are available by changing the objective of the
problem. The main objective of our problem formulation is to minimize the evacuation egress time. Two
alternate objectives are: (1) Maximize the number of evacuees that reach destination for each time unit; (2)
Minimize the average evacuation time for all evacuees. Jarvis and Ratliff presented and proved the triple
optimization theorem [21], which illustrated the properties of the solutions that optimize the above objectives
of the evacuation problem. A review of linear programming approaches to solve these problem formulations

was given by Hamacher and Tjandra [17].

3 Proposed Approach

Linear programming approach can produce optimal solutions for evacuation planning. It is useful for evac-
uation scenarios with moderate size networks, such as building evacuation. However, it may not be able to
scale up to large size transportation networks in urban evacuation scenarios due to high computational cost
caused by the tremendously increased size of the time-expanded network. Heuristic routing and scheduling
algorithms can be used to find sub-optimal evacuation plan with reduced computational cost. It is useful for
evacuation scenarios with large size networks and scenarios that do not require an optimal plan, but need
to produce an efficient plan within a limited amount of time.

In this section, we present a heuristic algorithm, namely Capacity Constrained Route Planner (CCRP),
that produces sub-optimal solutions for evacuation planning. We model edge capacity and node capacity
as a time series instead of fixed numbers. A time series represents the available capacity at each time
instant for a given edge or node. We propose a heuristic approach based on an extension of shortest path

algorithms [13, 11] to account for capacity constraints of the network.

3.1 Capacity Constrained Route Planner (CCRP)

The Capacity Constrained Route Planner (CCRP) uses an iterative approach. In each iteration, the al-

gorithm first searches for route R with the earliest destination arrival time from any source node to any



destination node, taking previous reservations and possible waiting time into consideration. Next, it com-
putes the actual amount of evacuees that will travel through route R. This amount is affected by the available
capacity of route R and the remaining number of evacuees. Then, it reserves the node and edge capacity
on route R for those evacuees. The algorithm continues to iterate until all evacuees reach destination. The

detailed pseudo-code and algorithm description are shown in Algorithm 1.

Algorithm 1 Capacity Constrained Route Planner (CCRP)

Input:
1) G(N,E): a graph G with a set of nodes N and a set of edges F;
Each node n € N has two properties:
Mazimum_Node_Capacity(n) : non-negative integer
Initial_Node_Occupancy(n) : non-negative integer
Each edge e € E has two properties:
Mazimum_Edge_Capacity(e) : non-negative integer
Travel_time(e) : non-negative integer
2) S: set of source nodes, S C N;
3) D: set of destination nodes, D C N;
Output: Evacuation plan : Routes with schedules of evacuees on each route
Method:
Pre-process network: add super source node sy to network,
link sg to each source nodes with an edge which

Mazimum_Edge_Capacity() = oo and Travel_time() = 0; (0)
while any source node s € S has evacuee do { (1)
find route R < ng,ni1,...,ng > with time schedule < to,%t1,...,t_1 >

using one generalized shortest path search from super source sy to all destinations,
(where s€ S,d € D,ng = s,n, =d)
such that R has the earliest destination arrival time among routes between all (s,d) pairs,
and Awvailable_Edge Capacity(en;n, ,,ti) >0, Vi€ {0,1,...,k—1},
and Available_Node_Capacity(niii,t; + Travel time(en;n;,,)) >0, Vi€ {0,1,... ,k—1}; (2)
flow = min( number of evacuees still at source node s,

Awailable_Edge_Capacity(en;n; 1,ti), Vi€ {0,1,...,k—1},

Awailable_Node Capacity(n;y1,t; + Travel time(en;n;,,)), Vi€ {0,1,...,k—1}
); (3)
for i=0 to k—1 do { (4)
Available,Edge,Capacity(eninH1 ,t;) reduced by flow; (5)
Available_Node_Capacity(n;i1,t; + Travel time(en;n,,,)) reduced by flow; (6)
} (7
} (8)
Output evacuation plan; (9)

The CCRP algorithm keeps iterating as long as there are still evacuees left at any source node (line 1).
Each iteration starts with finding the route R with the earliest destination arrival time from any sources
node to any destination node based on the current available capacities (line 2). This is done by generalizing
Dijkstra’s shortest path algorithm [13, 11] to work with the time series node and edge capacities and edge
travel time. Route R is the route that starts from a source node and gets to a destination node in the least
amount of time and available capacity of the route allows at least one person to travel through route R to
a destination node. Given the evacuation network in Figure 3, the example execution trace of CCRP is as

follows

Example 2 (CCRP Execution Trace) At the very first iteration, route R will be N8-N10-N13. Evacuees
from source node N8 can take this route to reach destination N13 at time 4 using the time schedule N8(T0)-
N10(T3)-N13. At algorithm line 3, the actual number of evacuees that will travel through route R is
determined by taking the smallest number among the number of evacuees at the source node and the
available capacities of each nodes and edges on route R based on the time schedule that evacuees will travel
through each node and edge. Thus, at the first iteration, this flow amount of R will be 6, which is the
available edge capacity of edge N8-N10 at time 0.



The next step is to reserve capacities for the evacuees on each node and edge of route R based on the time
schedule(lines 4-7). At the first iteration, the algorithm makes a reservation for the 6 evacuees by reducing the
available capacity of each node and edge at corresponding time points. This means that available capacities
are reduced by 6 for edge N8-N10 at time 0, for node N10 at time 3, and for edge N10-N13 at time 3.
The 6 evacuees arrive at destination N13 at time 4. Then, the algorithm goes back to line 1 for the next
iteration(line 8). The iteration terminates when the occupancy of all source nodes is reduced to zero, which
means all evacuee have been sent to destination nodes. Line 9 outputs the evacuation plan, as shown in
Table 1.

Compared with the earlier MRCCP algorithm [26], major improvements in CCRP lie in line 0 and line 2.
In MRCCP, finding route R (line 2) is done by running generalized shortest path searches from each source
node. Each search is terminated when any destination node is reached. In CCRP, this step is improved by
adding a super source node sg to the network and connecting sg to all source nodes(line 0). This allows us
to complete the search for route R by using only one single generalized shortest path search, which takes
the super source sg as the start node. This search terminates when any destination node is reached. Since
the super source sg is connected to each source nodes by an edge with infinite capacity and zero travel
time, it can be easily proved that the shortest route found by this search is the route R we need in line 2.
This improvement significantly reduces the computational cost of the algorithm by one degree of magnitude
compared with MRCCP. We give a detailed analysis of the cost model of CCRP algorithm in the next

section.

3.2 Algebraic Cost Model of CCRP

We now provide the algebraic cost model for the computational cost of the proposed CCRP algorithm. We
assume that n is the number of nodes in the evacuation network, m is the number of edges, and p is the
number of evacuees.

The CCRP algorithm is an iterative approach. In each iteration, the route for one group of people is
chosen and the capacities along the route are reserved. The total number of iterations equals the number of
groups generated. In the worst case, each individual evacuee forms one group. Therefore, the upper bound
of the number of groups is p, i.e. the number of iterations is O(p). In each iteration, the computation of
the route R with earliest destination arrival time is done by running one generalized Dijkstra’s shortest path
search. The worst case computational complexity of Dijkstra’s algorithm is O(n?) for dense graphs [11].
Various implementations of Dijkstra’s algorithm have been developed and evaluated extensively [4, 10, 32].
Many of these implementations can reduce the computational cost by taking advantage of the sparsity of
the graph. Transportation road networks are very sparse graphs with a typical edge/node ratio around 3. In
CCRP, we implement Dijkstra’s algorithm using heap structures, which runs in O(m + nlogn) time [4, 10].
For sparse graphs, nlogn is the dominant term. The generalization of Dijkstra’s algorithm to account for
capacity constraints affects only how the shortest distance to each node is defined. It does not affect the
computational complexity of the algorithm. Therefore, we can complete the search for route R with O(nlogn)
run-time. The reservation step is done by updating the node and edge capacities along route R, which has a
cost of O(n). Therefore, each iteration of the CCRP algorithm is done in O(nlogn) time. As we have seen,
it takes O(p) iterations to complete the algorithm. The cost model of the CCRP algorithm is O(p - nlogn).
CCRP is an improved algorithm based on the same heuristic method of MRCCP [26] which has a run-time
of O(p - n%logn). CCRP reduces the computational cost of MRCCP by one degree of magnitude.



| Algorithm | Computational Cost | Solution Quality |

CCRP O(p - nlogn) Sub-optimal
MRCCP O(p - n’logn) Sub-optimal
Linear Programming Approach at least O((T - n)") Optimal

Table 2: Comparison of Computational Costs (n: number of nodes, p: number of evacuees, T: user-provided
upper-bound on evacuation time)

The computational cost of linear programming approach depends on the method used to solve the min-
imum cost flow problem. Hoppe and Tardos [19] showed that this problem can be solved using ellipsoid
method which is theoretically polynomial time bounded. However, the computational complexity of ellip-
soid method is at least O(N®)[6](where N is the number of nodes in the network). Since linear programming
approach requires a time-expanded network, N equals to (T'+ 1)n (where n is the number of nodes in the
original evacuation network, T is the user-provided evacuation time upper bound).

Table 2 provides a comparison of CCRP, MRCCP, and the linear programming approach. As can be
seen, linear programming approach produces optimal solutions but suffers from high computational cost.
Both CCRP and MRCCP reduce the computation cost by producing sub-optimal solution, while CCRP
gives better computational cost than MRCCP.

Lemma 1: CCRP is strictly faster than MRCCP.

The computational costs of CCRP and MRCCP are O(p- nlogn) and O(p-n?logn) respectively, as shown in
Table 2.

4 Experiment Design and Performance Evaluation

Performance evaluation of the CCRP algorithm was done by conducting experiments using various evacuation
network configurations. In this section, we present the experiment design and an analysis of the experiment

results.

4.1 Experiment Design

Figure 4 describes the experiment design to evaluate the performance of the CCRP algorithm. The purpose
is to compare the algorithm run-time and solution quality of the proposed CCRP algorithms with that of
MRCCEP [26] and NETFLO [22] which is a popular linear programming package used to solve minimum cost
flow problems.

First, we used NETGEN [25] to generate evacuation networks with evacuees. NETGEN is a program that
generates transportation networks with capacity constraints and initial supplies based on input parameters.
In our experiments, the following three were selected as independent parameters to test their impacts on
the the performance of the algorithms: number of evacuees initially in the network, number of source nodes,
and network size represented by number of nodes. Number of edges is treated as a dependent parameter as
we set the number of edges to be equal to 3 times the number of nodes because 3 is the typical edge/node
ratio for real transportation road networks. Next, the same evacuation network generated by NETGEN was
fed to the CCRP and MRCCP algorithms. Before feeding the network to NETFLO, we used a network
transformation tool to transform the evacuation network into a time-expanded network, which is required

by minimum cost flow solvers as NETFLO to solve evacuation problems [17, 9]. This process requires an



input parameter T which is the estimated upper-bound on evacuation egress time. If the evacuation cannot
be completed by time T, NETFLO will return no solution. In this case, we must increase T to create a new
time-expanded network and try to run NETFLO again until a solution can be reached. Finally, after CCRP,
MRCCP and NETFLO produced a solution for each test case, the evacuation egress time, which represents

the solution quality, and the algorithm run-time were collected and analyzed in the data analysis module.
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Figure 4: Experiment Design

The experiments were conducted on a workstation with Intel Pentium IV 2GHz CPU, 2GB RAM and

Debian Linux operating system.

4.2 Experiment Results and Analysis

We want to answer three questions: (1) How does the number of evacuees affect the performance of the
algorithms? (2) How does the number of source nodes affect the performance of the algorithms? (3) Are
the algorithms scalable to the size of the network, particularly will they handle large size transportation

networks as in urban evacuation scenarios?

Experiment 1: How does the number of evacuees affect the performance of the algorithms?

The purpose of the first experiment is to evaluate how the number of evacuees affects the performance of
the algorithms. We fixed the number of nodes and the number of source nodes of the network, and varied the
number of evacuees to observe the quality of the solution and the run-time of CCRP, MRCCP and NETFLO
algorithms.

The experiment was done with four test groups. Each group had a fixed network size of 5000 nodes and
fixed number of source nodes at 1000, 2000, 3000, and 4000 respectively. We varied the number of evacuees
from 5000 to 50000. Here we present the experiment results of the test group with number of source nodes
fixed at 2000. We omit the results from the other three groups since this group shows a typical result of all
test groups. Figure 5 shows the solution quality represented by evacuation egress time and Figure 6 shows
the run-times of the three algorithms.

Since CCRP and MRCCP use the same heuristic method to find solution, it is expected that CCRP and

MRCCP produced solutions with the same evacuation egress time for each test case. As seen in Figure 5,
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CCRP and MRCCP produced very high quality solution compared with the optimal solution produced by
NETFLO. The solution quality of CCRP and MRCCP drops slightly as the the number of evacuees grows.
In Figure 6, we can see that, in each case, the run-time of CCRP remains half that of MRCCP and less
than 1/3 that of NETFLO. In addition, the CCRP run-time is scalable to the number of evacuees while the
run-time of NETFLO grows much faster.

This experiment shows: (1) CCRP produces high quality solutions with much less run-time than that of
NETFLO. (2) The run-time of CCRP is scalable to the number of evacuees.

Experiment 2: How does the number of source nodes affect the performance of the algorithms?

In the second experiment, we evaluate how the number of source nodes affects the performance of the
algorithms. We fixed the number of nodes and the number of evacuees in the network, and varied the
number of source nodes to observe the quality of the solution and the run-time. In this experiment, by
varying the number of source nodes, we actually create different evacuee distributions in the network. A
higher number of source nodes means that the evacuees are more scattered in the network.

Again, the experiment was done with four test groups. Each group had a fixed network size of 5000
nodes and fixed number of evacuees at 5000, 20000, 35000, and 50000 respectively. We varied the number
of source nodes from 1000 to 4000. Here we present the experiment results of the test group with number
of evacuees fixed at 5000. It shows a typical result of all test groups. Figure 7 shows the solution quality
represented by evacuation egress time and Figure 8 shows the run-times of the three algorithms.

As seen in Figure 7, in each test case, CCRP and MRCCP produced high quality solution (within 5
percent longer evacuation time) and the number of source nodes has little effect on the solution quality. It
is also noted that the evacuation time is non-monotonic with respect to the number of source nodes and we
plan to explore the potential reasons in future works.

Figure 8 shows that the run-time of all three algorithms are scalable to the number of source nodes.
However, the run-time of CCRP remains less than half that of NETFLO.

This experiment shows: (1)The solution quality of CCRP is not affected by the number of source nodes.

(2) The run-time of CCRP is scalable to the number of source nodes.
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Experiment 3: Are the algorithms scalable to the size of the network?

In the third experiment, we evaluate how the network size affects the performance of the algorithms. We
fixed the number of evacuees and the number of source nodes in the network, and varied the network size to
observe the quality of solution and the run-time of the algorithms.

The experiment was done with a fixed number of evacuees at 5000 and the number of source nodes at
10. We varied the number of nodes from 50 to 50000. Figure 9 shows the solution quality represented by
evacuation egress time and Figure 10 shows the run-times.

[ CCRP & MRCCP —s— NETFLO |

400
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300 /
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/
i

150
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/ 50 500 5000 50000
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100 ; ; ' —a& CCRP 0.1 1.5 23.1 316.4
50 500 5000 50000 —— MRCCP 0.1 2.8 78.5 1980.1
Number of Nodes —=— NETFLO 0.3 25.6 962.1
Figure 9: Quality of Solution With Respect to
Network Size Figure 10: Run-time With Respect to Network Size

Note: x-axis(number of nodes) in Figure 9 and 10 is on a logarithmic scale rather than linear. Run-time of
CCRP and MRCCP in Figure 10 grow in small polynomial.

There is no data point for NETFLO at network size of 50000 nodes. We were unable to run NETFLO
for this setup because the size of the time-expanded network became too large (more than 20 million nodes
and 80 million edges)that NETFLO could not produce solution.

As seen in Figure 9, in each of the first three test case, CCRP and MRCCP produced high quality solution
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(within 5 percent longer evacuation time) and the solution quality becomes closer to optimal solution as the
network size increases. Figure 10 is shown with a data table of each run-time. The x-axis(number of nodes)
of Figure 10 is on a logarithmic scale rather than linear and the run-time of CCRP and MRCCP grow
in small polynomial. It can be seen that the run-time of CCRP is scalable to the network size while the
NETFLO run-time grows exponentially.

This experiment shows: (1) Given a fixed number of evacuees and source nodes, the solution quality
of CCRP increases as the network size increases. (2) The run-time of CCRP is scalable to the size of the

network.

4.3 A Case Study

We also conducted experiments using a real evacuation scenario. As shown in Figure 11, the Monticello
nuclear power plant is about 40 miles to the northwest of the Twin Cities. Evacuation plans need to be in
place in case of accidents or terrorist attacks. The evacuation zone is a 10-mile radius around the nuclear
power plant as defined by Minnesota Homeland Security and Emergency Management [3]. A hand-drafted
evacuation route plan was developed to evacuate the affected population to a high school. However, this
plan did not consider the capacity of the road networks and put high loads on two highways.

We conducted an experiment using the CCRP algorithm. The experiment was done using the road
network around the evacuation zone provided by the Minnesota Department of Transportation [2], and the
Census 2000 population data for each affected city (circles in Figure 11). The total number of evacuees
is about 42,000. As can be seen in Figure 11, our algorithm gives a much better evacuation route plan
by selecting shorter paths to reduce evacuation time and utilizing richer routes (routes near evacuation
destination) to reduce congestions. The old evacuation plan has an evacuation egress time of 268 minutes.
CCRP algorithm produced a much better plan with evacuation time of only 162 minutes. This experiment

shows that our algorithm is effective in real evacuation scenarios to reduce evacuation time and improve
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existing plans.

Our approach was presented in the UCGIS Congressional Breakfast Program on homeland security[30],
and the Minnesota Homeland Security and Emergency Management newsletter[31]. It was also selected by
the Minnesota Department of Transportation to be used in the evacuation planning project for the Twin
Cities Metro Area, which evolves a road network of about 250,000 nodes and a population of over 2 million

people.

5 Discussion: An Optimal Approach Using A* Search

As discussed in Section 1, the linear programming methods to solve the evacuation planning problem use time
expanded networks that require a large amount of memory; these methods also require a prior knowledge
of the upper bound of evacuation time. CCRP algorithm presented in Sections 3 and 4 addresses these
issues very effectively; but the evacuation times obtained are sub-optimal. There is a need to explore new
approaches that would guarantee optimal solutions without using time-expanded networks. In this section,
we discuss the possibility of formulating the evacuation planning problem as a search problem implemented
as an A* search. We present the heuristic function used in this A* formulation and we prove the properties
of the heuristic function which guarantees the optimality of the solution. This approach finds an optimal
solution to the evacuation planning problem without using time expanded networks and also eliminates the
need for user-provided upper bound of evacuation time. Basic graph search strategies and general outline of

an A* algorithm are explained in the Appendix.

5.1 Formulation of the Evacuation Problem as an A* Search

The search space consists of different states of the evacuation network. Each state is the snapshot of the
network at each instant of time. The start node of the search tree would be the initial state of the evacuation
network at the start of evacuation. The goal node would be the state of the network when there are occupants

only at the destination nodes.

(i)

An Evacuation network Start Node of the Search Tree Goa Node of the Search Tree

Figure 12: Tllustration of Start Node, Goal Node

Figure 12 illustrates the formulation for an evacuation network with four nodes (shown in the first figure)
as a search problem. The number in square brackets adjacent to a node indicates the node occupancy. Node
1 is the source node and node 4 is the destination node. The source node has an occupancy of 4. The

second figure shows the start node of the search tree which represents the initial state of the network when
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all evacuees are the source node (node 1). The last figure shows the goal node of the search tree which

represents the state where all evacuees are at the destination node (node 4).

5.2 Search-Node Expansion in the Search Tree

Given the occupancy (number of people at the node) of the source node and the capacity constraints of the

outgoing edges of the node, all possible feasible combinations are generated. This is formulated as follows.
Yoz <min(N, ) C;), subject to the constraints 0 < z; < C;,i =1, ..,n.

where n is the out-degree of the node, N is the node occupancy, C; is the capacity of the i*" outgoing edge.
Each search tree node with nonzero occupancy thus has [], C;, child nodes; each corresponding to one
of the possible combinations that are generated. Each step in the expansion would correspond to advancing

in time by one unit.

T=0 -
Initial State
Node:[Occupancy]
Edge:(capacity travel time)
Source node:Node 1
Destination: Node 4
T=1 )
@ - )
2, 21 8
22 2,1 2
// [2] \\
f=g+h=1+2=3 , f=g+h=1+1=2 f=g+h=1+2=3 f=g+h=1+2=3 f=g+h=1+2=3
T=2
2 21
22 @ 21
f=g+h=2+0=2 f=g+h=2+1=3

Goa State

Figure 13: Search Tree Node Expansion

An example has been included to illustrate search node expansion. (See Figure 13). The first level
of search tree (T=0) shows the initial state of the evacuation network. The source node is node 1 and

destination node is node 4. The number in square brackets indicates the number of people at any node or
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at an edge. The network in the initial state forms the start node of the search tree. Given the occupancy at
each node (except the destination nodes) and capacity constraints of outgoing edges of the nodes, all feasible
combinations are generated. For example for node 1 which has two persons, the feasible groups that can
travel along the two outgoing edges are (2,0), (0,2), (1,0), (0,1), (1,1). There are five child nodes for the
start node of the search tree, each representing the state of the network after one time unit, corresponding

to each of these five possible combinations.

5.3 Proposed Heuristic Function

The evaluation function f(n) of a search node n is formulated as f(n) = g(n) + h(n).

g(n) is the actual cost to reach the search node n from the start node which is the time taken to reach the
current state from the start state. With the node expansion method used here, g(n) would be the depth of
the node n, since every expansion advances the evacuation network by one time unit. h(n) is the estimated
cost from the node n to a goal node. We propose h(n) to be the maximum over all groups of the time taken
to reach the closest destination node with capacity constraints ignored.

The g and h values for each search node are shown in the figure. The node with the least value of f = g+ h
is expanded. In this example, the goal state is reached at the third level of the search tree, when all evacuees
are at the destination node.

We can trace the evacuation plan by tracing the search tree upwards from the goal node to the start node.
Lemma 2: The proposed h function is admissible.

Proof: The h function clearly underestimates the time required by the group to reach the destination
because the group that requires the largest time to reach the destination node definitely needs to move
to a destination node to reach a goal state. Here, we consider the nearest destination and also ignore the
constraints on the arcs. Bringing in the capacity constraints can only add to the evacuation time. Hence, h

is clearly admissible.
Lemma 3: The proposed h function is monotone.

Proof: To prove monotonicity of the heuristic h(n), we need to prove that

h(n) + c¢(m,n) > h(m) where node n is a child of node m and ¢(m,n) is the cost of the arc from m to n.
We call this inequality ”triangle inequality” in the rest of the proof.

We define h(n) as the largest travel time taken by a group to reach the closest destination when all the
groups travel along the shortest paths, ignoring all capacity constraints.

We prove the triangle inequality by considering the groups g; and g; whose shortest travel times to the
destination are the largest over all groups in search nodes m and n and hence are the values of h function at
these search nodes. We prove the inequality for the following cases which exhaust all possibilities that can

arise in an evacuation scenario.

Case 1. g; is the same as g;
Case la. g; stays at the same network node in both search nodes m and n.

Case 1b. g; moves through one time unit in the node expansion.

Case 2. g; is not the same as g;

Case 2a. g; and g; stay at the same network node.
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Case 2b. g; stays at the same network node, but g; moves.
Case 2c. g; moves , but g; stays at the same network node.

Case 2d. g; and g; move by one time unit.

Detailed proof is given in Appendix 3 with Figure 15 which illustrates the evacuation network scenarios
for the various cases listed above.

The h values shown in the search tree (Figure 13) clearly illustrate that h is admissible and monotone.
It can be observed that A function never overestimates the time required to reach the goal node from any

search node. Also, the h value of every node and that of its parent node do satisfy the triangle inequality.

5.4 Experimental Evaluation

The experimental evaluation for this A* search algorithm needs to answer the following questions: (1) Does
the A* algorithm produce optimal evacuation plans? (2) Does the current implementation of A* algorithm
need performance tuning? (3) How does the memory usage of A* algorithm compared with other algorithms?
Do we need new data structures to reduce memory used by A* algorithm?

We implemented the A* search algorithm and conducted experiments using similar method as described
in Section 4. First, we generate evacuation networks using NETGEN and convert it to a time-expanded
network. Then, the evacuation network is fed to the A* algorithm and the time-expanded network is fed to
NETFLO. Finally, we compare the results from the two algorithms.

For question (1) experiments on all networks configurations show that, in each of the test cases, the A*
algorithm produces evacuation plan with the same evacuation time as that of NETFLO. It shows that the
A* algorithm can produce optimal evacuation plan as the linear programming approach. For questions (2),
we vary the network size from 10 nodes to 40 nodes. Figure 14 shows the algorithm run-time of A* algorithm
and NETFLO. Tt can be seen that the current implementation of the A* algorithm produces higher run-time
than that of NETFLO. It shows that further performance tuning are needed to improve the performance of
the A* implementation. For question (3), initial results show that the current implementation of A* requires
high memory usage. Detailed analysis of the cost model of the A* memory usage remains as our future work
as we plan to explore the possibility of introducing new data structures to reduce the memory usage of the
A* algorithm.

6 Conclusions and Discussions

In this paper, we proposed a new capacity constrained routing algorithm for evacuation planning problem.
Existing linear programming approach uses time-expanded network and requires user provided upper bound
on evacuation time. To address these limitations, we presented a heuristic algorithm, namely Capacity
Constrained Route Planner(CCRP), which produces sub-optimal solution for evacuation planning problem
without using time-expanded networks. We provided the algebraic cost model and the performance evalua-
tions using various network configurations. Experiments show that CCRP algorithm produces high quality
solution and significantly reduces the computational cost compared to linear programming approach which
produces optimal solution. It is also shown that the CCRP algorithm is scalable to the number of evacuees
and the size of the transportation network. A case study using real evacuation scenario shows that CCRP

algorithm can be used to improve existing evacuation plans by reducing total evacuation time.
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The limitation of CCRP algorithm remains the follows. First, we assume that maximum capacity of
an edge does not depend on traffic low amount on the edge. We understand that it is a challenging task
to accurately model the capacity of each road segment in a real evacuation scenario as the actual traffic
flow rate may depend on vehicle speed as well as road occupancy. Second, the generalized shortest path
algorithm we used in CCRP requires that the edge travel time reflects traffic delays at intersections. For
future work, we plan to incorporate existing research results, such as Ziliaskopoulos and Mahmassani [33],
to better address this problem.

To address the sub-optimality issue of the CCRP algorithm, we also explored the possibility of formulating
the evacuation problem as a search problem using A* algorithm. Our A* search formulation addresses the
limitations of linear programming approach by only using the original evacuation network to find optimal
solution. Thus, it does not require prior knowledge of evacuation time. We proved that the heuristic function
used in our A* formulation is monotone and admissible thus guaranteeing the optimality of the solution. We

plan to evaluate the performance of this approach (as indicated in Section 5.4) in the coming month.
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A Appendix
A.1 Basic Graph Search

A graph consists of a set of nodes which represent the encodings of subproblems. Every graph used in search
would have a start node that represents the initial state of the problem being solved. Certain pairs of nodes
are connected by directed arcs. If the arc is directed from n to n’, n’ is a successor of n and n is the parent
of n’. Often the arcs are assigned weights that represent the cost of traversing the arc. A sequence of nodes
n1,..nyg, where each n; is a successor of n;_; is a path from n; to ng. The cost of a path is the sum of the
costs of the arcs along the path.

The most basic operation in graph search is node expansion. This involves computing the representations
of all successor nodes from that of its parent. A search procedure is a well defined method for determining
the order in which nodes are expanded. If the search procedure uses the information collected by the
search up to that point, it is called uninformed search. If the procedure uses partial information about the
unexplored portion of the graph to guide the node expansion, search is informed. Most search procedures
distinguish between nodes that were expanded called closed nodes and nodes that have been generated but
not expanded called open nodes. Familiarity with problem domain would sometimes indicate that certain
directions of search are more promising than others. This knowledge can be used in deciding which node
to expand first. The promise of a node n is estimated numerically by a heuristic evaluation function f(n),
which would depend on the description of n, description of the goal, information gathered by the search up
to that point and any extra knowledge about the problem domain.

In Ax search, the evaluation function f(n) is formulated as f(n) = g(n) + h(n) where g(n) is the cost of the
path in the search tree from the start node to n and h(n) is the estimated minimum cost of the path from
n to the goal node. The strategy followed is to expand the open node n with the minimum f [29, 28].

A.2 Outline of A* algorithm [29]
1. Put the start node s, on OPEN.

2. If OPEN is empty, exit with failure.
3. Find the node n in OPEN with minimum f . Remove n from OPEN and place it on CLOSED.
4

. If n is goal node, exit with success. The solution can be obtained by tracing back the pointers back
from n to s.

5. Otherwise, expand n, generating all its successors. Link the successors to n. For every successor n' of
n’
e If n/ is already not on OPEN or CLOSED, estimate h(n') and calculate f(n') = g(n’) + h(n')
where g(n’) = g(n) + ¢(n,n');g(s) = 0 and ¢(n,n’) i s the cost of the arc from n to n'.
e If n’ is already on OPEN or CLOSED, reassign g(n') to the current minimum.
e If n/ required a reassignment of g(n’) and was on CLOSED, reopen it.

6. Go to step 2.

A heuristic function h is said to be admissible if Vnh(n) < h*(n), where h*(n) is the cheapest cost of
path going from n to the goal node [29]. A search algorithm is called admissible if it is guaranteed to find
an optimal path from the start node to a goal node. A* is admissible if & is admissible [18].

A heuristic function h(n) is monotone if h(m) < h(n) + ¢(m,n), ¥(m,n)|nis a child of m in the search
tree and c(m, n) is the cost of the arc from m to n. If A* search uses a monotone heuristic, it finds optimal
paths to all expanded nodes [29].

A.3 Detailed Proof for Lemma 3 (Monotonicity of h function)

Lemma 3: The proposed h function is monotone.

Proof: To prove monotonicity of the heuristic h(n), we need to prove that

h(n) + ¢(m,n) > h(m) where node n is a child of node m and ¢(m,n) is the cost of the arc from m to n.
We call this inequality ”triangle inequality” in the rest of the proof.

We define h(n) as the largest travel time taken by a group to reach the closest destination when all the
groups travel along the shortest paths, ignoring all capacity constraints.
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Let t(g;, k) denote the smallest time taken by a group g; to reach the closest destination at the search node

Now let us consider search nodes m and n where n is a child of m. At node m, let the smallest time taken
by the group g; be the largest among all groups. In other words, h(m) = t(g;, m).

At node n, let the smallest time taken by the group g; be the largest amon g all groups. In other words,
h(n) = t(g;,n) We prove the monotonicity by proving the triangle inequality for the following cases.

1. Case 1. g; is the same as g;

Case 1a. g; stays at the same network node in both search nodes m and n.
Here, h(n) = h(m) and the triangle inequality is true.

Case 1b. g; moves through one time unit in the node expansion.
¢(m,n) = 1 here. We need to show h(n) +1 > h(m). If g; moved along t he shortest path that
was detected at the search node m, h(n) + 1 = h(m) satisfying the inequality. If g; moved along
another path (since we enumerate all possible paths in node expansion , this is possible) towards
another destination node,h(n)+1 > h(m). Otherwise this current path would be detected as the
shortest path in parent node m.

2. Case 2. g; is the not the same as g;

Case 2a. Groups g; and g; stay at the same network node.
This is not possible under case 2.

Case 2b. g; stays at the same network node, but g; moves.
Here, we need to show that t(g;, n) + c¢(m,n) > t(g;, m).
Since t(g;, m) = t(gi,n) (group g; did not move), inequality becomes t(g;,n) + c(m,n) > t(g;,n).
This is true since t(g;,n) > t(g;,n) by definition of h(n)

Case 2c. g; moves , but g; stays at the same network node.
t(g;,m) > t(g;, m) by the definition of h(m) and t(g;,n) > t(gi,n) by the definition of h(n).
Combining these two inequalities and using ¢(g;,m) = t(g;,n), we get t(g;, m) > t(g;,n) > t(gi,n)
t(gi,m) — t(gi,n) # c(m,n) since if this were not the case, it contradicts the optimality of the
shortest path in search node m. Therefore, t(g;, m) — t(gj,n) < c(m,n) or t(g;,n) + c¢(m,n) <
t(gia m)
Case 2d. g; and g; move by one time unit.
t(gia m) > t(gja m)
t(g;j,n) > t(gi,n) by definition of h(m) and h(n) respectively.
We need to prove the triangle inequality, t(g;,n) + c(m,n) > t(g;, m).
Adding ¢(m,n) to the left-hand side of the second inequality,
If ¢(g;, m) < t(gi,n), the triangle inequality is satisfied trivially because t(g;,n) > t(g;, n).
If t(gi,m) > t(gi,n), t(gi;,m) — t(gi,n) < 1; if this is not true, this path would be the shortest
path in search node m.
Therefore,t(g;,n) + 1 > ¢(g;,n).
To prove the triangle inequality,
t(g;,m) —t(gj,n) <1 and t(g;,m) < t(g;, m)
Therefore, t(g;, m) < t(gj,m) < t(g;,n)
t(gi,m) < t(g;,n) + 1 t(g;,n) + c(m,n) > t(g;,m)
b)ift(gj’n) > t(gjvm)7
t(g;,n) —t(g;,m) > 1 because the time is always computed in integer units.
Since (g, > #(gs,n) and #(g;,m) < #(g;,m), we get t(g5,m) —t(gi,m) > 1 & (g, n)+c(m,n) >
t(gia m)

The proposed heuristic h(n) is monotone. Figure 15 illustrates the the evacuation network scenarios for
the various cases listed above.
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Figure 15: Illustration of Network Scenarios

21



