
Debugging Object-Oriented Programs with Behavior Views

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 05-013

Debugging Object-Oriented Programs with Behavior Views

Donglin Liang and Kai Xu

April 06, 2005

Debugging ObjectOriented Programs with Behavior Views

Donglin Liang and Kai Xu
University of Minnesota

Minneapolis, MN 55455, USA

{dliang,kai}@cs.umn.edu

Abstract

A complex software system may perform many program
tasks during execution to provide the required functional-
ities. To detect and localize bugs related to the implemen-
tation of these tasks, the software developers must be able
to monitor the progress of the tasks during execution and
check whether the actions for these tasks have been per-
formed correctly. This paper presents a debugger to facili-
tate this monitoring. The debugger introduces a new kind of
abstraction, the behavior views, that can be used to specify
how the actions for a program task are expected to occur in
various scenarios. Enhanced with statements that can check
properties at various steps during the progress of the task,
a behavior view can be used to monitor whether the actions
for the tasks have been performed at the right time, on the
right set of data, and with the right effects on the program
states. Our initial case study indicates that the debugger
can be useful for localizing bugs.

1. INTRODUCTION
“The presence of bugs in programs can be regarded as a

fundamental phenomenon.” [14] This claim is supported by
a recent report [13] published by the National Institute of
Standards and Technology. The report estimated that bugs
in information technology software cost American industries
up to $60 billion annually. This suggests that improved test-
ing and debugging techniques are urgently needed to facil-
itate effective detection, localization, and removal of bugs
during software development.

Software development involves gathering requirements for
a system, analyzing the requirements, designing the compo-
nents for the system, and implementing these components.
During program implementation, testing and debugging are
performed regularly to detect, localize, and remove software
bugs. A software system that we develop nowadays has in-
creasingly complex behaviors. The increasing complexity
has prompted the need for more effective approaches to per-
form the software development activities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM XXXXXXXXX/XX/XX ...$5.00.

To understand the expected behaviors of a system and
its components, requirements analysis and design techniques
(e.g., [8]) encourage the identification and the specification
of the scenarios in which a program task may be performed
during program execution. A system or a component is often
expected to perform many program tasks during execution
to provide the required functionalities. A scenario is identi-
fied as a sequence of actions that the program will perform
under a specific situation for a program task.1 Focusing
on the scenarios during requirements analysis and design
would allow the software developers to employ a divide-and-
conquer strategy in understanding and communicating the
expected behaviors of a complex system.

Bug detection and localization activities should also be
organized based on scenarios. Detecting and localizing bugs
typically require the software developers to observe and to
inspect the dynamic behaviors during the program execution
and to check the consistency between the observed behav-
iors and the expected behaviors of the software. Because
the expected behaviors of the software are often identified,
specified, and analyzed as scenarios at the requirements and
the design levels, the software developers should perform
their observation and inspection based on scenarios. This
scenario-driven debugging approach allows the software de-
velopers to effectively use their knowledge of scenarios built
during the requirements analysis and design to detect and
pinpoint problems in the implementation. Thus, using this
approach can improve the effectiveness of debugging.

Although many debugging techniques have been proposed
to facilitate debugging activities, these techniques cannot
effectively support the scenario-driven debugging approach.
Source level debugging mechanisms, such as assertions and
breakpoints, allow software developers to inspect the pro-
gram states when the program control reaches specific code
locations. Event-based debugging techniques (e.g., [1, 2, 6,
12]), on the other hand, allow the software developers to
specify the inspections to be performed automatically when
specific execution events occur. These techniques let the
user conveniently observe and monitor the dynamic behav-
iors during debugging. However, because these techniques
do not emphasize on correlating the monitoring of the pro-
gram actions performed at different points of time during
execution, they provide inadequate support for the direct

1In literature, a scenario is sometimes only used to refer to
a sequence of interactions between a software system and its
users. In this paper, we broaden its meaning to include any
sequence of program actions that a system would perform
to achieve a meaningful goal.

1

observation and inspection of the progress of the scenar-
ios for a particular task. Such support is essential for the
scenario-driven debugging.

This paper presents a scenario-based debugger that we
developed to facilitate the observation and the inspection of
the progress of scenarios during debugging. Our debugger
is based on a new kind of abstraction, the behavior view.
A behavior view specifies how the actions for the scenar-
ios of a particular task are expected to occur during pro-
gram execution. The behavior view contains information
that characterizes the runtime circumstances under which
the actions for these scenarios are expected to occur. It also
contains a state machine that models the progress of these
scenarios. The behavior view may further contain monitor-
ing statements that can be executed in response to the state
changes of the state machine. These monitoring statements
can check the properties that are expected to be maintained
at various steps during the progress of the task, and output
information that can be used for problem diagnosis.

Our scenario-based debugger provides a debugging lan-
guage for specifying the behavior views, and a debugging
console for using these views to monitor the progress of the
scenarios. Through the console, software developers can
create monitors from the behavior views to automatically
monitor the progress of and to inspect properties related to
the scenarios; software developers can also set breakpoints
on or single-step through the transitions of the state ma-
chine maintained by a monitor to interactively investigate
the progress of the scenarios. In this way, an error in the im-
plementation of the scenarios modelled by a behavior view
can be detected and pinpointed.

One benefit of using our debugger is that it allows the
software developers to modularize, within a behavior view,
their expectations for the scenarios of a specific program
task. Such expectations can then be checked automatically
against the program execution. This feature is especially
useful when investigating multiple program tasks simulta-
neously within a debugging session. Another benefit of us-
ing our debugger is that it allows the software developers to
build, with behavior views, a layer of high-level abstractions
for behavior observation during debugging. These abstrac-
tions hide the details for interpreting the meanings of indi-
vidual program statements, and presents a direct interface
for observing the progresses of the program tasks. Thus,
the software developers can focus on the properties that are
directly related to the scenarios of the tasks. Our initial ex-
perience shows that these capabilities can be very useful for
localizing bugs in Java programs.

The major contribution of this paper is that it presents
the core concepts for our scenario-driven debugger and a
case study in which two realistic bugs are investigated using
the debugger. Section two gives an overview of the scenario-
driven debugging approach; Section three discusses the run-
time model for execution monitoring with behavior views;
Section four discusses the debugging language; Section five
presents the case study; Section six discusses the related
work; and Section seven concludes and discusses the future
work.

2. SCENARIODRIVEN DEBUGGING
This section presents the scenario-driven debugging ap-

proach and a debugger that supports this approach.

2.1 The Approach
During the debugging process, software developers often

need to speculate about the possible causes for a bug, derive
hypotheses based on these speculations, and prove or dis-
prove these hypotheses by gathering information from the
program source code and the program execution [16]. To
form effective hypotheses in this process, software developers
must use their knowledge about the expected software be-
haviors. Because the expected behaviors are often identified,
analyzed, and specified as scenarios at the requirements and
the design levels, we argue that software developers should
use scenarios to guide their debugging processes. We refer
to this approach as the scenario-driven debugging approach.

In the scenario-driven approach, a software developer first
attempts to associate the bug with a particular program task
based on the symptom and her understanding of the scenar-
ios for this task. That is, she hypothesizes that the error is
in the implementation of the scenarios for performing this
task. She then may run some tests on the program and ob-
serves the execution of the program actions that are required
for the suspected task. If these actions have been executed
correctly according to her understanding of the scenarios for
the task, then the original hypothesis is probably wrong. In
this case, she may need to form a new hypothesis and repeat
this process. If some of the actions are executed incorrectly
according to her understanding of a particular scenario, she
can now focus on this scenario and try to find out the rea-
son for this erroneous behavior. If necessary, she may need
to further identify a suspicious subtask and form a new hy-
pothesis. Occasionally, she may need to revisit or to refine
a previous hypothesis to inspect a particular task in more
details. This process continues until the software developer
is able to identify the program elements that account for the
erroneous behavior.

The scenario-driven approach seems a natural way for de-
bugging software developed with the modern design method-
ology. Following this design methodology, software develop-
ers would have built an intimate understanding of the ex-
pected software behaviors in terms of program tasks and
scenarios for these tasks. They may even produce various
artifacts (e.g., use cases, UML sequence diagrams) to specify
the scenarios. Therefore, forming and verifying hypotheses
based on scenarios would allow software developers to effec-
tively use their knowledge of the expected software behaviors
to guide the debugging process.

2.2 Debugging with Behavior Views
We introduce behavior views as a new type of abstraction

for supporting the scenario-driven debugging. A behavior
view specifies how the actions for the scenarios of a par-
ticular program task are expected to occur during program
execution. A behavior view is built on top of the execu-
tion event abstractions. The view uses execution events for
detecting the occurrences of the program actions that are
expected for a program task, and uses a state machine to
specify the expected sequencing among these actions un-
der various scenarios. A transition of the state machine is
triggered by an execution event that serves as a witness to
the performance of a particular action related to the task.
Therefore, the changes of states in the state machine would
reflect the progress of the task being monitored. In this
sense, the state machine models the progress of the task.
By associating monitoring statements with the transitions

2

Figure 1: A behavior view for a login task.

and the states of the state machine, we may output infor-
mation to visualize the progress of the task; and we may
also verify important properties that must be maintained at
various steps when the task progresses.

Figure 1 uses a diagram to show a behavior view that
captures the expected scenarios for a login task in a pro-
gram. In the diagram, nodes represent states and edges
represent the transitions for a state machine. Each edge is
labeled with the type of execution events that may trigger
the represented transition. The edge may also be labeled
with the monitoring statements that are executed when the
transition is fired. According to the behavior view in Figure
1, the state machine is initialized when the program exe-
cution enters method A.login(). In a normal scenario, the
program gets the user name from a GUI textbox uBox by in-
voking uBox.getText(); it then gets the password from an-
other GUI textbox pBox by invoking pBox.getText(). The
program then invokes verify() on an authorization object
auth to verify the user and the password. In other scenarios,
A.login() may exit without going through all these steps.
The monitoring statements on the path 1,2,3,4 ensure that
the user name and the password input through the GUI are
indeed used correctly when auth.verify() is invoked. The
monitoring statements on the edges to node 6 ensure that
A.login() returns true only when auth.verify() returns
true. This behavior view can help to determine whether the
scenarios for the login task are implemented correctly.

From the above discussions, we can see that a behav-
ior view can be used to specify the monitoring activities
that the software developers intend to perform for a specific
program task during debugging. A behavior view can cap-
ture the important properties for checking the correctness
of the implementation for the scenarios of a specific task.
Because the progress of the task is explicitly modelled with
a state machine, the properties that range over several steps
in the task can be easily specified. Therefore, we expect
that behavior views would be useful for software developers
to quickly prove or disprove their scenario-based hypotheses

Figure 2: The architecture of the scenario-driven

debugger.

during debugging.
Note that a behavior view does not need to specify all the

actions that are required for the modelled scenarios. Instead,
the view may contain only those actions that are relevant to
the properties that are interesting to the software develop-
ers. During the debugging process, the software developers
may gradually add more actions to be monitored by a be-
havior view. This flexibility enables the software developers
to optimize their debugging strategies.

2.3 A ScenarioDriven Debugger
We developed a scenario-driven debugger that allows the

software developers to use the behavior views for monitor-
ing the progress of scenarios in Java programs. Figure 2
shows the architecture of the debugger. The debugger con-
sists of two parts: a behavior view compiler and a debug-
ging client. The compiler translates the description of the
behavior views into monitor classes that can be used by
the debugging client. The debugging client controls and ob-
serves the execution of the target program with the monitors
that are created from the monitor classes. The debugging
client is built on top of the Java Platform Debugger Archi-
tecture (JPDA).2 Like other debuggers built on JPDA, our
debugger uses two Java Virtual Machines (JVMs): one for
running the target program, and one for running the de-
bugging client. The debugging client can interact with the
target JVM through the Java Debugging Interface (JDI) for
monitoring the execution of the target program.

The debugging client consists of four kinds of components:
a debugging console, a set of monitors, a set of visualizers,

2See http://java.sun.com/products/jpda/index.jsp.

3

and an event subscription subsystem. The debugging con-
sole accepts commands from the user. The console supports
source-level debugging commands (e.g., loading a program
or setting breakpoints) that are available in many traditional
debuggers. The console can also accept commands that
are specific for supporting the scenario-driven debugging
approach. Through these commands, a user can instruct
the debugging client to create monitors from the monitor-
ing classes generated from the description of the behavior
views. The user can also set breakpoints on or single-step
through the transitions of the state machine maintained by
a monitor. Through these commands, the user can debug
the program based on the layer of abstractions defined by
the behavior views.

A monitor is created for monitoring the progress of the
scenarios modelled by a behavior view. Once created, the
monitor can observe the execution events that occur dur-
ing the execution of the target program. When an event
occurs, the target program will stop and the monitor will
be notified. The monitor can then execute the monitoring
statements and fire a transition on the state machine based
on the specification of the behavior view. If a breakpoint
is set on this transition, the monitor will communicate with
the debugging console to solicit user’s interactions. In any
case, the execution of the target program may be resumed
and continue after the current monitoring activity finishes.

A monitor can be associated with a set of visualizers.
These visualizers can receive information output by the mon-
itoring statements executed by the monitor and present the
information to the user with various visualization techniques.

Both the debugging console and the monitors must inter-
act with the event subscription subsystem to handle the ex-
ecution events. The event subscription subsystem allows the
console and the monitors to subscribe for execution events.
The subsystem can then interact with JDI to intercept the
execution of the target program at appropriate points of
time and to notify the event subscribers accordingly.

3. RUNTIME MODEL FOR MONITORING

WITH BEHAVIOR VIEWS
Execution monitoring with a behavior view involves ob-

serving events, intercepting the program execution when an
event occurs, firing transitions in the state machine, and
executing the associated monitoring statements. These ac-
tivities are carried out in our debugger by the components
of the state machine with the assistance of an event sub-
scription mechanism.

In our debugger, events are identified from event sources
(e.g., the target program) using event characterizing terms.
An event characterizing term is a boolean term that gets
evaluated by the associated event source when the source
performs its actions. An entity that intends to process
events from a particular source must subscribe for the events
by registering an event characterizing term to this source.
During the execution of an event source, if a registered event
characterizing term evaluates “true”, then the execution of
the event source will be suspended to let the subscriber en-
tity associated with this term perform its actions.

The most basic event subscriber entities in our debugger
are guarded commands. A guarded command is used to pro-
cess a specific kind of event. It consists of an event charac-
terizing term and a response action description that specifies

Figure 3: The components for a state machine.

the action to be performed when an event is detected by the
term. To allow the response action to inspect the program
state, the event characterizing term may be associated with
a set of observing interface variables that will be initialized
with values when an event is detected through the term.
A set of guarded commands that process events for a spe-
cific purpose are managed by an event processor. This event
processor will create these guarded commands. The event
processor may also allocate memory for the local state vari-
ables that will be used to hold the information extracted
from the program execution. When an event processor is
destroyed, all its guarded commands are also destroyed.

A state machine may contain several different event pro-
cessors to perform the monitoring (see Figure 3). It uses
an event processor, the state activation record, to represent
its current state. The state activation record has a guarded
command for processing each type of event that may trigger
transitions. During the event processing, a guarded com-
mand can evaluate whether a transition should be fired. If
this is the case, the guarded command will issue a state
change request—a special kind of event. This request will
be processed by another event processor, the state controller
of the state machine, to move this machine to the next state:
it deletes the state activation record for the current state,
and creates a new state activation record for the next state.

In some state machines, a transition may be triggered by
events characterized by a compound condition that cannot
be directly expressed using a simple event characterizing
term. For example, a transition in a state machine may be
triggered by the entry of method m when m is called after
method m1 returns with “0”. We refer to this kind of event
as a composite event. A state machine uses a new kind of
event processor, the composite event recognizer, to recognize
the composite events. A composite event recognizer uses
guarded commands to process the events required for evalu-
ating the compound conditions. When a guarded command
detects that the condition for the composite event is true, it
terminates the response action with an “event-raise” com-
mand. The event-raise command issues a notifying event.
This notifying event can be subscribed by another guarded
command through a special event characterizing term.

In our debugger, a state machine Ma is allowed to ob-
serve and to respond to the state changes in another state
machine Mb. In this case, Ma may contain guarded com-

4

Figure 4: The syntax productions for key constructs

for specifying behavior views.

mands that subscribe to the state controller of Mb. Making
the state changes observable allows the behavior views to be
specified in a hierarchical way: low-level behavior views can
be defined over execution events, whereas high-level behav-
ior views can be defined over the state change events of the
state machine defined by lower level behavior views. This
approach would allow the software developers to better deal
with the monitoring of complex program tasks.

4. A DEBUGGING LANGUAGE
This section presents our debugging language. The lan-

guage consists of two components: a specification language
for behavior views; and a command language to support
the user’s interaction with the debugging console. We will
discuss these two components separately.

4.1 A Language for Specifying Behavior Views
We propose a domain-specific language for specifying the

behavior views. This language extends Java: it relies on the
constructs provided by Java, and introduces new constructs
only when it is necessary. This approach can lower the learn-
ing curve. Figure 4 shows a list of syntax productions for
the key constructs for specifying the behavior views.

4.1.1 The state machine models

The components that are required for the state machine of
a behavior view are specified within a state machine model
declaration. A state machine model declaration (production
P1 in Figure 4) is specified with a keyword model, followed
by a model id and a model body that contains a list of dec-
larations for state variables, methods, states, and composite
events. The state variables are used for storing the infor-
mation extracted from the program execution during the
progress of the monitored task. Such information may be

needed for determining the relevancy of a program action to
this task. Such information may also be needed for checking
properties that range over several actions performed for the
task. The methods are used for specifying the computation
over the information extracted from the target program.

Some of the methods declared in a model are construc-
tors, one of which will be called when a state machine is
created using the model. A constructor method initializes
the state variables. The constructor may use an ignite state-
ment (production P9) to set the initial state for the created
state machine. Like a return statement, an ignite state-
ment will terminate the control flow of the constructor. A
constructor may contain multiple ignite statements so that
the created state machines may be initialized with different
initial states based on the parameters to the constructor.

4.1.2 The bootstrap blocks

In a state machine model declaration, bootstrap blocks are
used to specify the event processors that represent the state
activation records and the composite event recognizers. A
boostrap block (production P4) consists of a list of declara-
tions for the local state variables and the guarded commands
that will be created for the event processor. These declara-
tions are enclosed in double curly brackets.

A guarded command declaration (production P5) is spec-
ified with a keyword on followed by a guarding expression, a
colon, and a response block, which is a normal Java block. A
guarding expression specifies the event characterizing terms
for the guarded commands that will be created from this
declaration. A guarding expression (production P6) is com-
posed with an event type id, a list of attribute expressions,
and the declaration of a list of observing interface variables.
For execution events or state change events, the event type
ids are predefined. For composite events, the event type ids
are defined in the declarations of the composite events.

The attribute expressions in a guarding expression are
used for configuring the event characterizing terms created
from this guarding expression. An event characterizing term
used in our debugger may have a set of attribute parame-
ters that can be used for refining the events being identified.
For example, an event characterizing term for the method
entry event may have attribute parameters to allow identi-
fying the events only for a specific method. When an event
characterizing term is created from a guarding expression,
the attribute expressions of this guarding expression will be
evaluated. The resulted values will be bound to the attribute
parameters in the event characterizing term.

Table 1 shows an initial set of primitive event type ids
and the formats of the corresponding guarding expressions.
For most of the event types, the guarding expressions can be
type-specific or instance-specific. A type-specific guarding
expression identifies events that occur under the contexts of
all the instances of the specific type (a class or a model). An
instance-specific guarding expression identifies events that
occur only under the context of the specific instance.

To improve the readability of the state machine model, we
have also developed a set of shorthands for specifying the
guarding expressions. For example, we use enter A.m(int

p) for identifying the method entry events for A.m(int); this
shorthand also provides an observing interface variable for
the formal parameter of the method. These shorthands will
be translated into the basic form during compiling.

5

Type Formats of the Guarding Expression

reach a line reach[〈class〉,〈method〉,〈line〉](〈Env〉†)
reach[〈object〉,〈method〉,〈line〉](〈Env〉†)

method entry enter[〈class〉,〈method〉](〈Env〉)
enter[〈object〉,〈method〉](〈Env〉)

method exit exit[〈class〉,〈method〉](〈Env〉)
exit[〈object〉,〈method〉](〈Env〉)

field read[〈class〉,〈field〉](〈Env〉)
read[〈object〉,〈field〉(〈Env〉)

field write write[〈class〉,〈field〉](〈Env〉)
write[〈object〉,〈field〉](〈Env〉)

exception
throw

throw[〈exception class〉](〈Env〉)

state entry enterSt[〈model〉,〈state〉](〈Env〉)
enterSt[〈machine〉,〈state〉](〈Env〉)

state exit exitSt[〈model〉,〈state〉](〈Env〉)
exitSt[〈machine〉,〈state〉](〈Env〉)

transition go[〈model〉,〈state〉,〈state〉](〈Env〉)
go[〈machine〉,〈state〉,〈state〉](〈Env〉)

†〈Env〉 is a variable referring to an environment object for
accessing the runtime entities and their program syntax
information of the target program.

Table 1: Identifying various kinds of events.

4.1.3 The state declarations

A state declaration specifies the state activation record for
a particular state in a state machine. A state declaration
(production P2) starts with a keyword state followed by a
state id, a list of formal parameters, and a bootstrap block
as its body. The formal parameters of the state declaration
can be used for initializing the local state variables declared
in the body and for configuring the guarded commands cre-
ated from the guarded command declarations. The response
block for a guarded command declaration in the body of a
state declaration can contain transit statements whose exe-
cutions can cause state changes. A transit statement (pro-
duction P7) is specified with a keyword transit followed
by the id of the target state and a list of actual parame-
ters whose values will be used to configure the creation of
the state activation record for the target state. A transit
statement computes the values for the actual parameters,
terminates the control flow of the enclosing response block,
and issue a state change request that contains both the id
of the target state and the values of the actual parameters.
When the state controller receives this request, it will de-
stroy the current state activation record, bind the values of
the actual parameters to the formal parameters of the target
state, and create a new state activation record for the target
state. The body of a state declaration may also contain an
on-leave command declaration (production P8) that speci-
fies the actions to be performed when a state machine leaves
the state specified by this declaration.

4.1.4 The composite event declarations

A composite event declaration specifies the event recog-
nizer that will be used to identify a specific kind of com-
posite event. This declaration (production P3) is specified
with a keyword event, followed by an event type id, a list of
attribute parameters, a list of observation value types, and
a bootstrap block as its body. The attribute parameters are
used for initializing an event recognizer when the recognizer
is being created from the body of this declaration. This
creation occurs when a guarding expression referring to the
event type id of this declaration is being evaluated.

The response block for a guarded command declaration in
a composite event declaration can contain raise statements
whose executions signal the recognition of a composite event.
A raise statement (production P10) is specified with a key-
word raise, followed by a list of expressions whose types
match the observation value types defined at the beginning
of the composite event declaration. A raise statement com-
putes the values for these expressions, terminates the control
flow of the enclosing response block, and issues a notifying
event. The values of these expressions will then be bound to
the observing interface variables of the event characterizing
terms that subscribe for this event.

4.1.5 Accessing variables/objects in target program

A monitoring statement in the response block of a guarded
command should be able to access the values of local vari-
ables (including “this” and formal parameters that are visi-
ble at the location where the target program is interrupted
when the guarded command is processing an event. These
variables can be accessed through a special API provided
by JPDA. In a state machine model declaration, the value
for a variable in the target program may be referred to by
extending “@” to the beginning of the name for the variable.
A monitoring statement should also be allowed to access to
the fields and the methods of an object in the target pro-
gram through the API provided by JPDA. We require such
accesses to be specified by the “->” operator, instead of
the usual “.” operator. The “->” operator is not governed
by Java’s accessibility rule. Thus, it allows the monitoring
statements to inspect the object states without any restric-
tion.

In some situations, a state machine model may declare
variables for storing references to the objects in the target
program. In this case, we annotate the type names for such
variables with “@” in the variable declarations.

4.1.6 An example

Figure 5 illustrates the state machine model Login that
is specified using our specification language for the behav-
ior view defined in Figure 1. Note that, in this model, the
guarding expressions are specified with shorthands; and the
transitions to state S6 are now triggered by composite events
built on top of the exit event of A.login(). In addition,
the model uses a state parameter to pass the return value of
auth.verify() from state S4 to state S5, instead of through
a shared variable. This example shows that the use of com-
posite event declarations and state parameters may lead to
more concise model declarations.

4.1.7 The creation of state machines

A state machine can be created from a model in a way sim-
ilar to the creation of Java class instances. In this case, the
created state machine must be explicitly destroyed. A state
machine can also be created by a state machine manager. A
state machine manager manages a group of state machines
of a specific model. It offers methods for creating/destroying
individual state machines and iterating through all its state
machines. A state machine manager can be declared (pro-
duction P11) as a local state variable or a state variable
in a state machine model. In these cases, the life-time of
this state machine manager would be restricted by the life-
time of its container. When a state machine manager is
destroyed, all its state machines will also be destroyed.

6

Figure 5: A specification of the behavior view for the login task.

4.2 The Command Language
The command language for our debugging console extends

the standard commands that are available in many tradi-
tional debuggers. It includes a set of new commands that
allow software developers to use behavior views for monitor-
ing the progress of program tasks. We will discuss several
important features for this language.

The command language allows the use of convenient vari-
ables for storing information during debugging. To distin-
guish from other kinds of variables, the name of a convenient
variable starts with “$”. A convenient variable can be used
to name a state machine or a state machine manager created
during debugging. Other convenient variables are untyped.
They can be used to hold any type of values. Such a variable
is defined when it is assigned with value for the first time.
A convenient variable is global: once the variable is defined,
it can be used by debugging commands until the variable is
explicitly deleted with a delete command.

The most outstanding commands provided by the com-
mand language are the observing commands. An observing
command is essentially a guarded command. It is specified
with the same syntax rule as a guarded command decla-
ration (P5 in Figure 4). Observing commands provide a
powerful mechanism for performing light-weighted observa-
tion on the program execution. An observing command may
define an event-based breakpoint by including a “stop” com-
mand in its response block. When a “stop” command is
executed, it terminates the control of the response block,
and transfers the control to the debugging console to solicit
additional interactions from the software developers. This
breakpoint mechanism offers a highly flexible way for con-
trolling the execution of the target program. An observing
command may use “now” as its guarding expression. In this
case, the action specified in the observing command will be
executed immediately after this command is entered. Such
a command allows software developers to use the full power
of the Java statements for inspecting the state of the target
program when a breakpoint is hit.

By default, an observing command can be fired only once.
That is, once the response action is executed, the observing
command will be automatically deleted from the system.
To prevent the command from being deleted, the software
developers must add a keyword repeat in front of this com-

mand. We refer to such an observing command as a repeat-
able observing command. A repeatable observing command
must be explicitly deleted using a delete command. When
a repeatable observing command uses “now” as its guarded
expression, the response action of this observing command
will be executed every time when a breakpoint is hit. In this
case, the observing command is very similar to a monitor in
the Java debugger “jdb”.

The following sequence of debugging commands illustrates
an interactive debugging session that uses the behavior view
defined in Figure 5 to monitor the login task in a program.

1> load program A;

Class A loaded, stop at the entry of A.main().

2> load model Login;

Model Login loaded.

3> on reach A.15: { $uBox = @textbox1; };

4> on reach A.20: { $pBox = @textbox2; };

5> on enter Authorizor.<init>(): {$auth=@this;};

6> on enter A.login(): { stop; };

7> continue;

Hit breakpoint at the entry of A.login().

8> create $X Login($auth,$uBox,$pBox);

9> on enterSt $X.S6: { stop; };

10> continue;

Hit breakpoint at the entry of Login.S6.

11>

In the above debugging session, the user first loads the target
program whose main method is in A (command 1). Once the
program is loaded, the debugger will invoke A.main() and
stop the execution at the entry of this method. The user
then loads the Login model (command 2), and enters the ob-
serving commands (commands 3, 4, 5) to get the references
to the objects that will be monitored by the state machine.3

The user sets a breakpoint at the entry of A.login() (com-
mand 6) and continues the program (command 7). When
the breakpoint on the entry of A.login() is hit, the user cre-
ates a state machine with the model Login (command 8).
The user then sets a breakpoint on the entry of the state

3We assumes that the text box for user name is created
and assigned to “textbox1” before line 15, the text box for
password is created and assigned to “textbox2” before line
20 in class A, and “Authorizor” is instantiated only once.

7

Figure 6: Investigating Bug 1 with a behavior view.

S6 for this state machine (command 9) and continues the
program (command 10). The target program is suspended
when the state machine transit to the state S6. The user
now can enter other commands to continue the debugging.

The commands for a debugging session can be captured
in a debugging script that may be automatically read by
the debugging console. This can facilitate the repeating of
a previous debugging session. This would also allow the
monitoring to be performed without user’s intervention.

5. EVALUATION: A CASE STUDY
We have implemented a prototype for the scenario-driven

debugger and performed a case study to evaluate the effec-
tiveness of localizing faults using the debugger. Our proto-
type is built on top of the Java Platform Debugger Architec-
ture (JPDA). The prototype uses Java objects to represent
the components (e.g., event processors, guarded commands)
for a state machine. These objects are created from the mon-
itor classes generated by a compiler from the state machine
model declarations. Our current version of the compiler uses
a preprocessor to translate the special syntax in the model
declarations into the standard Java syntax, and invokes the
standard Java compiler for generating bytecode for the mon-
itor classes. To support the observing commands, our de-
bugging console is implemented as an event processor whose
guarded commands are created from the description of the
observing commands that the user submits. These guarded
commands will be deleted when the observing commands are
deleted by the user. Our current prototype only provides a
terminal-style text-based visualizer. Graphical visualizers
will be developed in the future.

We used our prototype debugger to investigate two bugs
that we encountered during the implementation of a Java
alias analysis system. These bugs are related to the con-
struction of points-to graphs [9]. This construction involves
about 80 Java classes. The bugs had been detected and lo-
calized through code reading and execution with inserted
print statements, and had been fixed. Because of the in-
effectiveness of this debugging approach, locating the root
causes for the bugs had required significant efforts.

5.1 Bug 1
The symptom of this bug is that, when the analysis system

is run on some subject programs, it terminates abnormally
with exception “java.util.ConcurrentModificationException”

in “Iterator.next()” called at line 182 in file “Node.Java”.
Figure 6(a) shows an excerpt of the source code around this
line. The problem is obvious: the edges leaving the node ref-
erenced by “other” must have been changed in the previous
iteration of the loop. The real challenge is to find out what
statements change the edges and why. This task is difficult
to perform with traditional debugging techniques because
(1) each iteration of the loop may involve many method
calls, some of which are recursive calls, and (2) “mergeN-
ode()” will be invoked many times on the subject program.

Figure 6(b) shows a state machine model for monitoring
when the edges of a node may be changed within the loop
in an invocation of mergeNode(). The debugger creates a
state machine before the target program enters the loop in
this invocation. The state machine monitors the “set” ob-
ject that maintains the edges for the “other” node and the
iterator object that is used to go over these edges. The
state machine first enters the Check state to monitor the
method calls that can change the content of the set. If the
change does occur, the stack frames will be printed and the
state machine will transit to the Fail state. Within Fail,
the state machine will wait until hasNext() method of the
iterator is invoked. At this point of time, the program exe-
cution must be back to the beginning (line 181) of the while
loop in the original invocation of mergeNode(). The state
machine prints out the stack frames and transit to the Done

state. Comparing the stack frames printed out in Check and
in Fail would reveal the method calls in the loop that lead
to the changes of the edges. To use the model, we enter the
following commands

2> load model WatchModifying

3> createmanager $M WatchModifying

4> repeat on reach Node.181:{ $M.new(@col,@it); };

5> repeat on enterSt WatchModifying.Done: {stop;};

6> continue;

We used a state machine manager to create a state ma-
chine from the model when the loop is about to start in
each invocation of mergeNode() (command 4). We wanted
to stop the execution of the target program when a state
machine reach Done (command 5). During the debugging,
by comparing the stack frames printed out in Check and
Fail, we discovered that the edges of the node referenced by
“other” in one invocation of mergeNode() may be changed
by the statement at line 193 in the recursive invocation of
mergeNode() that is called at line 186. That is, “nn” at

8

line 186 must point to the same object as “other” in the
first invocation of mergeNode(). We changed the recursive
mergeNode() into a worklist algorithm to avoid the concur-
rent modification exception.

5.2 Bug 2
This bug appeared in the implementation after Bug 1

was fixed. The symptom is that, after the graphs are con-
structed, the reference fields of some objects may erroneously
point to an empty set of objects. Unlike Bug 1, the cause
for this symptom is not obvious. Because“mergeNode()”
was quite sophisticated, we suspected that its implementa-
tion was incorrect.

Method “mergeNode()” is used to put two nodes into an
equivalence class. To implement this functionality, when
“n1.mergeNode(n2)” is invoked, all information related to
“n2”, including the incoming and the outgoing edges, will be
moved to “n1”. It has to ensure that the labels on the edges
leaving “n1” are unique after the merging. This requires the
successors of “n1” and “n2” to be merged when necessary. A
worklist is introduced to maintain the list of pairs of nodes
that need to be merged.

Based on the implementation plan, if two nodes are in the
same equivalence class, then after the graph is constructed,
the following property should hold: the information related
to these two nodes should have been moved to one single
node. To check this property, an auxiliary field “forward”
has been added to a node to remember where the informa-
tion of this node has been moved to; an auxiliary method
“traceForward()” has been added to trace the “forward”
fields and find the node that holds the information for the
current node; and a state machine is used to observe the
insertion of pairs into the worklist and compute the equiva-
lence classes based on the observation. On leaving the only
state of this state machine (this happens when the state
machine is destroyed), the property will be checked for the
nodes in each equivalence class. Figure 7 shows the model
for the state machine. To use this model, we entered the
following commands

3> repeat on reach Analysis.50: { \

create $M CheckEquiv(@worklist); \

};

4> repeat on reach Analysis.92: { delete $M;};

5> continue;

The worklist algorithm is captured in a method in Analysis.
This method may be called many times when the target pro-
gram is being run. The worklist is created before line 50;
and the algorithm terminates at line 92. Therefore, we want
to create a state machine to monitor the worklist when the
execution reaches line 50 (command 3); and we want to
delete this state machine when the execution reaches line 92
(command 4). We observed that the property is violated in
some cases. Further investigation suggested that the prob-
lem would occur when pairs like (n1,n2) and (n2,n3) are
presented in the worklist. In this case, when (n2,n3) is pro-
cessed after (n1,n2), n3 should have been merged with n1,
not n2. We were able to confirm this suspicion by enhancing
the the model with additional monitoring statements.

5.3 Discussion
This case study demonstrates the benefits of using the

scenario-driven debugger. The bugs under investigation are

Figure 7: A behavior view for investigating Bug 2.

not caused by faulty program statements, but caused by an
erroneous algorithm design that may go wrong only when
the objects are related to one another in certain ways. There-
fore, monitoring the execution of individual program state-
ments with traditional debugging techniques would not be
effective in finding the errors in the design. To find out these
errors, the user must collect information from multiple steps
at which a particular set of objects are being processed, and
verify properties over the collected information at appropri-
ate points of time during the program execution. As shown
in the study, because a behavior view can model the progress
of the scenarios in which these objects may be processed, it
is quite convenient to specify and to check these properties
using the scenario-driven debugger.

One limitation with this study is that we only investigated
the scenarios for low-level program tasks. Thus, we must be
cautious in generalizing the conclusion to higher level pro-
gram tasks, like those identified during requirement analy-
sis. Because a higher level task may involve more objects
and more codes, we expect our debugger to be even more
convenient for checking the implementation of this task. An-
other limitation with this study is that the root causes for
the bugs were known beforehand. This is acceptable for a
demonstrative study. When the root causes are unknown,
we hypothesize that our debugger is even more useful be-
cause, in such a situation, more assumptions or properties
need to be checked. Studies need to be performed to verify
these hypotheses.

6. RELATED WORK
Event-based behavioral abstractions were first used in a

high-level debugger for distributed systems [3]. The ideas
have been extended to build execution monitoring frame-
works for sequential programs (e.g., [1, 2, 6, 12]). Each of
these techniques offers a mechanism for identifying the ex-
ecution events of interest, defining high-level events, and
specifying actions to be performed when an event is de-
tected. Our debugger also provides these functionalities. In
addition, our debugger introduces a higher level behavioral
abstraction for capturing the expectations for the scenarios
of the program tasks. It allows the software developers to
effectively use their design knowledge of these tasks during
debugging.

9

The design-level debugging techniques have been proposed
to allow “driving and monitoring the debugging process from
a design model viewpoint” [15], and have been implemented
in Rhapsody [15] and Fujaba [7]. Both Rhapsody and Fu-
jaba can generate codes from the design specified with UML
or UML-like diagrams. By utilizing the model/code associa-
tivity derived during the code generation, the debugger will
be able to map the statement under execution to the el-
ements in the UML diagrams, and thus, would allow the
software developers to visualize and control the execution
based on the design diagrams. Our debugger can be viewed
as a new design-level debugger that targets the application
domains where automatic code generation may be impracti-
cal. Our debugger also provides strong support for checking,
automatically or interactively, important properties with re-
spect to the progress of of a program task. No comparable
support has been discussed in [7, 15].

Assertions have been widely used in practice for debug-
ging purpose. Annotation languages, such as ANNA [10]
and JML [5], have been introduced for specifying pre-/post-
condition and invariant assertions that can be automatically
checked during runtime. Similar properties can also be spec-
ified with the UML Object Constraint Language (OCL) and
checked at runtime for Java programs [11]. Similar to these
techniques, our debugger also allows software developers to
specify properties that can be checked automatically dur-
ing runtime. However, unlike the existing techniques that
specify the assertions only at the class level or the method
level, our debugger allows the specification of the assertions
at the behavior-view level. Because a behavior view ex-
plicitly models the progress of the program task, using the
model may make it easier to specify properties that span
several steps during the progress of the task. In addition,
in our debugger, monitors that check assertions can be cre-
ated from behavior views interactively without recompiling
and restarting the target program. This flexibility may be
needed during the investigation of a bug.

Some existing techniques (e.g.,[1, 2, 3, 4, 12]) allow the
specification of properties for checking the correct sequenc-
ing among the program actions. A behavior view differs
from such a specification in that it allows sophisticated mon-
itoring to be specified on top of a state machine that not only
specifies the sequencing among the actions, but also models
the progress of the scenarios.

7. CONCLUSION
This paper presents the core concepts for a scenario-driven

debugger that provides the behavior view as a new abstrac-
tion for monitoring and inspecting the progress of scenarios
during debugging. A behavior view captures the user’s ex-
pections for the scenarios. Our case study shows that behav-
ior views may be quite useful for identifying the root causes
for software bugs during debugging.

Comparing to the traditional debugging techniques, mon-
itoring program execution with behavior views may require
additional time for writing the behavior view specifcations.
However, because these specifications allow many monitor-
ing activities to be automated, this up-front time investment
may significantly reduce the time required for performing
and managing these activities. Therefore, using behavior
views is expected to cut down the total debugging time for
finding the root cause for a particular bug. Comparative
studies are required to assess this time saving.

In our future work, we will focus on improving the us-
ability of the scenario-driven debugger. We will construct a
GUI front end for editing the models and for visualizing the
progress of the modelled scenarios, and integrate the debug-
ger with the Eclipse development environment. We will also
investigate techniques for deriving the models from various
design artifacts (e.g., message sequence diagrams) created to
model scenarios during the software design. We will perform
more studies to evaluate the usefulness and the usability of
our debugger.

8. REFERENCES
[1] M. Auguston. A program behavior model based on

event grammar and its application for debugging au-
tomation. In AADEBUG’95, May 1995.

[2] M. Auguston, C. Jeffery, and S. Underwood. A frame-
work for automatic debugging. Technical Report TR-
CS-004/2002, New Mexico State University, 2002.

[3] P. Bates and J. Wileden. High-level debugging of dis-
tributed systems: The behavioral abstraction approach.
The Journal of Systems and Software, (3):255–264,
1983.

[4] M. Brorkens and M. Moller. Jassda trace assertions,
runtime checking the dynamic of java programs. In In-
ternational Conference on Testing of Communicating
Systems, pages 39–48, March 2002.

[5] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T.
Leavens, K. R. Leino, and E. Poll. An overview of JML
tools and applications. International Journal on Soft-
ware Tools for Technology Transfer (to appear), 2005.

[6] M. Ducasse. Coca: An automated debugger for C. In
ICSE’99, pages 504–513, May 1999.

[7] L. Geiger and A. Zundorf. Graph based debugging with
fujaba. Electronic Notes on Theorectical Computer Sci-
ence, 72(2), 2002.

[8] I. Jacobson, G.Booch, and J. Rumbaugh. The Unified
Software Development Process. Addison-Wesley, 1999.

[9] D. Liang, M. Pennings, and M. J. Harrold. Extending
and evaluating flow-insensitive and context-insensitive
points-to analyses for java. In PASTE’01, pages 73–79,
June 2001.

[10] D. C. Luckham, S. Sankar, and S. Takahashi. Two-
dimensional pinpointing: Debugging with formal spec-
ifications. IEEE Software, pages 74–84, 1991.

[11] D. J. Murray and D. E. Parson. Automated debugging
in java using OCL and JDI. In AADEBUG 2000, 2000.

[12] R. A. Olsson, R. H. Cawford, and W. W. Ho. A dataflow
approach to event-based debugging. Software - Practice
and Experience, 21(2):209–230, 1991.

[13] RTI. The echonomic impacts of inadequate infrastruc-
ture for software testing. NIST Planning report 02-3,
2002.

[14] J. T. Schwartz. Debugging Techniques in Large Systems,
chapter An Overview of Bugs, pages 1–16. Prentice-
Hall, 1971.

[15] J. Stanglewicz. Design-level debugging. Real-Time
Magazine, pages 68–72, 1999.

[16] M. Telles. The Science of Debugging, chapter 8: The
General Process of Debugging, pages 205–240. The
Coriolis Group, 2001.

10

