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Abstract

Given a query point and a collection of spatial features, a multi-type nearest neighbor query finds
the shortest tour for the query point in a way such that only one instance of each feature type is visited
during the tour. For example, a tourist may be interested in finding the shortest tour which starts at a
hotel and passes through a post office, a gas station, and a grocery store. The multi-type nearest query
problem is different from the traditional nearest neighbor query problem, since there are many objects
for each feature type and the shortest tour should pass through only one object from each feature type.
In this paper, we propose R-tree based optimal solutions, which exploit a page-level upper bound for
efficient computation. Also, since this problem is a generalized Traveling Salesman Problem (TSP) and is
NP-hard, we provide several heuristic methods for the case that there are a large number of feature types
in the data. Finally, experimental results are provided to show the strength of the proposed algorithms

and design decisions related to performance tuning.

1 Introduction

Widespread use of spatial search engines, such as MapQuest T, is leading to an increasing interest in devel-
oping intelligent spatial query techniques. For example, a traveler may be interested in finding the shortest
tour which starts at a hotel and passes through a post office, a gas station, and a grocery store. Therefore,
it is critical to design an intelligent map query technique to efficiently find such a shortest tour. Indeed, in
this paper, we formalize the above intelligent map query problem as a multi-type nearest neighbor (MTNN)
query problem. Specifically, given a query point and a collection of spatial features, a multi-type nearest
neighbor query finds the shortest tour for the query point such that only one instance of each feature type

is visited during the tour.

*The contact author. Email: xiaobin@cs.umn.edu. Tel: 1-612-626-7703
thttp:/ /www.mapquest.com



In the real world, many spatial data sets include a collection of instances of spatial features (e.g. post
office, grocery store, and hotel). Figure 1 illustrates a multi-type nearest neighbor query. In the figure,
different shapes represent different spatial feature types. Given the query point  and a collection of spatial
events {*, o, +, x, O}, a multi-type nearest neighbor query is to find the shortest tour that starts at point
q, passes through only one instance of each spatial event in the collection, and ends at point (, as the

shortest route shown in the Figure.
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Figure 1: Point Spatial Co-location Patterns Illustration (Shapes represent different spatial feature types).

Indeed, the nearest neighbor (NN) query problem [6, 20, 5, 4, 23, 10, 24] has been studied extensively
in the field of computer science. Traditional nearest neighbor query can be stated as follows: given a set
P = {p1,p2,..-pn} and a query point g in a vector space, the NN query finds a point pj, such that the distance
from ¢ to pi is minimized among the distances from g to p; € P. Many application domains are related to
the NN query. For example, in Geographic Information System (GIS), “find the nearest gas station from my
location” is a typical query that uses a nearest neighbor query technique. In addition, NN queries are used
for some data analysis approaches such as clustering technique.

Recently, many other nearest neighbor query problems have attracted great research interests. All nearest
neighbor (ANN) query [17, 2, 11, 12, 16] searches a nearest neighbor in a dataset A for every point in a
dataset B. K-closest pair query [1, 3, 11, 12] discovers K-closest pairs within which a different point comes
from a different dataset. Reverse nearest neighbor (RNN) query [18, 9, 13, 14, 7] finds a set of data that
is the nearest neighbor of a given query point. Group nearest neighbor (GNN) query [8] retrieves a nearest
neighbor for a given dataset. All of these problems focus on one or two data types and try to find relationships
among data points within one or two object types. However, the relationship among more than two types
of objects are important for many application domains.

In this paper, we study the multi-type nearest neighbor (MTNN) query problem. The MTNN problem

can have many variations if spatial and/or time constraints are imposed on it. For instance, we may



constrain the range of selected object set PO within a given circle or rectangle, the path can be from a query
point g to all points in PO and return to q. If we know the visit order for part or all of the different feature
types, it is a (partially) fixed order MTNN problem. Time constraint can also be part of the problem. For
example, the post office might be open from 9:00am to 5:00pm so a visit has to be made during this period.

However, our focus is on the generalized MTNN problem.

Related Work. One is the main memory algorithms that are mainly proposed in computational geometry.
The other is the secondary memory algorithms using R-tree index.

The simplest brute force algorithm can find a nearest neighbor in O(n) time. In the early period the
main memory algorithms focused on developing efficient algorithms for datasets with specific distributions.
Cleary analyzed on a uniformly distributed dataset the algorithms that partition the space into a regular
grid in [6]. Bentley et al. used k-d tree to get an O(n) space and O(log(n)) time query result [15]. Another
partition based approach[21] used the well-known Voronoi graph. It first precomputed the Voronoi graph
for the given dataset. For a given query point q, it just needed to use a fast point location algorithm to
determine the cell that contain the query point q.

The first secondary memory algorithm[20] for the NN problem is based on R-tree index. It is a branch-
and-bound algorithm in that it searches the R-tree using a depth first strategy and prunes the search space
with the nearest neighbor found so far. It basically uses two metrics, the MINDIST and MINMAXDIST,
to prune the impossible R-tree node in the search as soon as possible. MINDIST is the distance from query
point q to an object O and MINMAXDIST is the face of MBR containing the object O.

The R-tree search begins at root node downward the leaf node. When necessary, the search will be upward.
In downward search, all MBR with a MINDIST greater than the MINMAXDIST of another MBR will be
discarded. In upward search, an object with a distance to query point q greater than the MINMAXDIST of
query point g to a MBR will be discarded and the MBR with a MINDIST greater than the distance from
query point q to an object is also discarded.

Hjalason et al. employed a priority queue to implement a best first search strategy in [12]. This algorithm
is optimal in the sense that it just visits the nodes along the path from the root to the leaf node that contains
the nearest neighbor.

After reaching the leaf node, our proposed algorithm needs to find the MTNN from the remaining subsets
each of which contains at least one object from different types. This is similar to the traveling salesman
problem (TSP)[22] that tries to find the shortest path from a given dataset such that every data object is
visited exactly one time. TSP is a NP-hard problem and the time complexity of the optimal solutions to
TSP are exponential. Our problem is not a standard TSP problem and harder than TSP. Some heuristic

methods were proposed for large datasets. For example, the construction heuristic methods[22] construct a
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Figure 2: A Comparison of R-LORD and Our Approach

tour according to some construction rule and the improved methods [22] try to alter or improve the current
tour according to some improving rules. Noe of these heuristic algorithms guarantee the optimal solutions.

In parallel of our work, Sharifzadeh et al. [19] recently proposed an Optimal Sequenced Route (OSR)
query problem and provided three optimal solutions: Dijkstra-based, LORD and R-LORD. Essentially, the
OSR problem is a special case of the MTNN problem investigated in this paper. Indeed, the OSR. problem
can be thought of as imposing a spatial constraint on the MTNN problem. Specifically, the order of feature
types is fixed for the OSR problem.

In this paper, we study a generalized MTNN problem and provide both optimal and heuristic solutions
to the problem. Based on R-tree index, we design algorithms which exploit a page-level upper bound for
efficient pruning at the R-tree node level. In contrast, algorithms proposed for the OSR problem [19] apply
instance-level pruning techniques for reducing the computation cost. Indeed, the R-tree node-level pruning
method can be served as a nice complimentary technique to the instance-level pruning method, since the
R-tree node-level pruning technique make better use of R-tree index for reducing I/O cost.

Let us consider the example shown in Figure 2, there are a query point Q and four feature types: a, b, c,
and d. If we fix the visit order as a = ¢ = b = d, our approach generates page sequence P,1, P, Py, Py
and the search for the optimal route is restricted in this sequence. In contrast, for algorithms proposed for
the OSR problem [19], all points in page Py1, Py1, Po2, Pe1, Pe2, Pa1 and P2 need to be examined in order
to find an optimal route. In other words, more computation is required.

Our Contributions. We study a generalized multi-type nearest neighbor query (MTNN) problem
and show that this problem is closely related to the Traveling Salesman Problem (TSP) [22], which is one
of the class of ”NP Complete” combinatorial problems. Indeed, if there is only one instance for each feature
type, the MTNN problem becomes the TSP problem. Since the MTNN problem is essentially an NP-hard

problem, we provide some optimal solutions as well as some heuristic algorithms to approach this problem.



In our algorithm, a page-level upper bound is exploited for efficient pruning at the R-tree node level. Our
experiments demonstrate that optimal solutions become computationally intractable when the number of
query feature types is large. In contrast, our heuristic algorithms, which are based on R-tree can be more
applicable for a large number of query feature types.

Overview. The remainder of this paper is organized as follows. Section 2 presents some optimal solutions
for the MTNN problem. Heuristic approaches are given in Section 3. Section 4 describes the experiment

setup and experiment results. Finally, in Section 5, we conclude our discussion and suggest further work.

2 R-Tree Based Optimal Algorithms

In spatial databases, R tree and their variants are widely used for indexing spatial data. In this paper,
we propose R-tree based algorithms for the MTNN query problem. Specifically, we design two types of
algorithms. The first type gives optimal solutions and has exponential time complexity with respect to the
number of feature types. The optimal algorithms work well when the number of feature types is small (<
6). The second type gives heuristic solutions that are not guaranteed to find the optimal solution, i.e. the
distance from query point q through each point from every feature type is not shortest. We will discuss the
heuristic algorithms in the next section.

We have many feature types in MTNN problem. In order to find the optimal solution, we have to search
the space consisting of all permutations of all feature type objects. For every permutation, we do same
search steps, get a route with a shortest distance and finally find MTNN. In the following, we work on the
search space consisting of one permutation of all feature type objects.

For one permutation of feature types, for example, t1,to,... ,tx, we need to find the optimal route from
the query point through one point in every type in the order of tq,ts3,...,tx. In the R-tree based optimal
algorithms we use a branch and bound strategy to prune and search the space. The algorithms can be
divided into three parts. The first part finds an upper bound for the R-tree search by using a simple fast
algorithm. The second part prunes the search space based on R-tree using the current upper bound. The
output of this part is candidate sequences consisting of leaf nodes each of which is from one of the R trees.
The third part finds the current MTNN shortest distance from the current candidate sequence. Figure 3

illustrates these three parts. We will discuss them in detail in the rest of this section.

2.1 First Upper Bound Search

The first step of MTNN algorithms is to find the first upper bound for pruning the search space. This upper
bound will determine the pruning efficiency for the R-tree search. The general requirements for the first

upper bound search strategy are time efficiency and upper bound accuracy. Trade-offs will be made when



Input : K types of spatial objects and R-tree
Distance metrics
Output : MTNN and the shortest path
MTNN
1. step 1: First Upper Bound Search Find the first upper bound of MTNN shortest distance
2. by using a fast greedy algorithm and set current upper bound to be this first upper bound

3. step 2: R-Tree Search Prune search space to find subsets of objects that may contain MTNN

4. and get a candidate sequence

5. step 3: Subset Search Calculate current MTNN shortest distance in the current candidate sequence
6. if current calculated MTNN shortest distance shorter than current upper bound

7. then set current upper bound to be current calculated MTNN shortest distance

8. if Some search space is not examined

9. then Go to step 2

10. else Report current upper bound as final MTNN shortest distance

Figure 3: Optimal R-tree based MTNN algorithm

designing an MTNN algorithm. In most cases, we prefer an algorithm with high time efficiency and normal
upper bound accuracy. In this paper, we use a simple greedy algorithm as follows.

Randomly generate one permutation of feature types, for example, generate permutation R =
T1,T2,...,Tg. Search the nearest neighbor r1; of query point ¢ in feature type r; by using basic R-tree
based nearest neighbor search method. Then search the nearest neighbor 75 ;, of r1; in feature type r.
Repeat this procedure until all types of features are visited. Finally we get a path from q going through
exact single point in each feature type. Calculate the distance of this path and use it as the first upper

bound in MTNN search. We call this distance greedy distance.

2.2 R-Tree Search

The task of R-tree search is to prune the search space using a branch and bound approach on the R-tree
index in spatial databases. We call the pruning methods used in this part R-tree node level pruning. For
permutation R = {r,ra,... ,7;} we first prune the search space using R-tree of type 71, then using R-tree
of type 72, etc. More specifically, we first determine the possible leaf node rectangles to which the distance
from the query point is less than the upper bound distance in R-tree of type r; using a general nearest

neighbor search strategy. Next these rectangles are used to determine all possible leaf node rectangles to
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Figure 4: R Tree Search

which the distance from the query point is less than the upper bound distance in R-tree of type ro. This
procedure continues until all R-trees are visited. Finally, we get a list of candidate leaf node sequences among
which each leaf node contains one type of feature objects. When searching R tree we choose to use a Depth
First Search(DFS) strategy since DFS generates a route distance faster and we may use the new generated
route distance as upper bound if it is smaller than current upper bound and thus prune R-tree nodes more
efficiently.

Figure 4 illustrates this procedure. In this figure, A is the query point. All rectangles represent leaf nodes
in different R-trees. Rectangles with an ID ending with 1 come from R tree 1 of feature type 1. Rectangles
with an ID ending with 2 come from R tree 2 of feature type 2. etc. At the beginning of R tree search, an
upper bound was calculated from step 1, First Upper Bound Search. The pruning algorithm first searches
R tree 1 and finds leaf nodes, for example, rectangles 11, 21 and 31 etc., that possibly contains part of the
path in the optimal route. The distances from the query point to these rectangles are less than the current
upper bound. The shortest distance from the query point to rectangle 11 (or 21, 31) is deducted from the
current upper bound to get a remaining upper bound distance and store it along with the R tree node in the
following R tree search. At the next step, rectangles from last search are used to search R tree 2 with their
remaining upper bound distance. This procedure continues until the newly calculated upper bound is less
than 0, which means that MTNN cannot be included in the current rectangle sequence and we give up this
rectangle sequence or we finish searching all R-trees. The result of this step is a set of leaf node rectangle
sequences. Figure 4 shows rectangle sequences such as (11, 12, 13, 14), (11, 122, 123, 124), (21, 22, 23, 24)
and (31, 32, 33, 34) etc that will contain the optimal route for this permutation.
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Figure 5: PLUB Pruning

2.2.1 Improvement and Pruning

When searching for the MTNN candidate sequences, we need an efficient pruning strategy to prune the
search space. In this part, we introduce a newly proposed pruning method, page level upper bound(PLUB)
pruning.

Page Level Upper Bound Pruning We use an example to illustrate the PLUB method. Assume R(.)
represent the route sequence and d(R(.)) represent the shortest distance from the the first object on R(.)
through all points or nodes in the road sequence. In Figure 5, assume S7, S; and S5 are three R tree nodes
that can be internal nodes or leaf nodes coming from different R trees. Assume point P; in S7, point P, in
Sz and point Pj in S3 are points in the optimal route, i.e. the route R(A, Py, P, P3) is the optimal route. In
the example, d(R(A, S1)) is the shortest distance from A to rectangle S; and d(R(A, S1, S2)) is the shortest
distance from A through S; to Sa, d(R(A4, S1, S2)) = d(R(A4, S1)) + d(R(S1, S2)). The general formula for
the shortest distance d is d(R(O1, Oy, ... , 0,)) = 217 d(R(0i, Oiy1))-

There are many routes between two spatial objects through different other spatial objects. In our case,
we enforce the route order to be the order of a fixed R tree permutation S; S5 S3. In Figure 5, routes
from the query point A to node S3 are R(A, S3), R(A, S1, S3), R(A, S2, S3) and R(A, S1, S2, S3). The
distances of all these routes are shorter than d(R(A, Py, P2, P;)). We define the PLUB from A to S; to
be maz(d(R(A4, S3)), d(R(A4, S1,S3)), d(R(A, S2,S3)), d(R(A, S1,S2,S3))) and the path having PLUB to be
the PLUB path. For example, if d(R(A, Sa, S3)) is longest, the path (R(A, S2, S3)) is the PLUB path from
A to S3. We can extend this property to more R-trees and prune the search space more efficiently by using
this property.

From the above discussion we define some concepts and infer a PLUB lemma to prune R trees efficiently.

Given a spatial object sequence O1,05,0s3, ... ,0,_1,0,, assume it defines a strict precedence order.

Definition 1 Path A path from spatial object O to O, is defined to be a sequence O1,0;,Oj, ... ,O,Oy.



The intermediate objects O;, Oj,..., and Oy € {Oy,1 <t < n}. Sequence O;,0,...,0 follows the strict
precedence order defined by sequence O1,02,03,...,0,_1,0,.

Definition 2 Intermediate Sequence Given a path O1,0;,0;, ... ,Og, Oy from spatial object O, to O,.

The intermediate sequence is defined to be O;, Oj,... ,O.

Definition 3 Whole Path The path from object O; to O, through the longest intermediate sequence is
called a whole path.

Sequence O;,0j,...,0f in a path can be empty. There will be many different paths from object O; to

object O,, through different intermediate sequence.

Definition 4 PLUB path The PLUB path from O; to O, is the longest one among all paths that go

through all possible intermediate sequences.
For simplicity we sometimes say the PLUB path in sequence O;, Oj, ... ,Og, Oy.
Definition 5 Page Level Upper Bound(PLUB) The distance of the PLUB path is the PLUB.

From the previous example we have the following property.

Property 1 For a spatial object sequence O1,03,0s,...,0, 1,0,, O;s(1 < i <= n) are R-tree nodes
containing many points. If the optimal route from query point O; to another point in the object set of
feature type n is contained in the whole path of sequence O1,0,,0s,...,0,_1,0,, the PLUB from O; to
O,, is shorter than the distance of the optimal route.

Proof: Assume Oq, Py, Ps, ..., P,_1, P, is the optimal route and P; is contained in node O;(1 < i <= n).
Assume 04,0;,0;,...,041,042,...,0, is the PLUB path from O; to O,. For any adjecent nodes
011,012, d(R(P;1, Pi2)) > d(R(Oy1,042)) because P;; is inside Oy and Piy is inside Oy. If t2 =
t1 4+ 1 then d(R(O1, P2, P3,... ,Pi1, P2y ... , Pa_1,Pp)) > d(R(O1,09,03, ... ,01,042,... ,0n,_1,0,)). If
t2 > t1+1 then d(R(O1, P2, Ps, ... , Py1, P2, ... , Pp_1,P,)) > d(R(01,042,03, ... ,041,042,... ,0,_1,0,))
and d(R(Oy,P»,Ps,...,P,_1,P,)) > d(R(O1,Ps,Ps,...,P;1,Pa,...,P,_1,F,)). Thus we have
d(R(O1, P, P3,... ,P,_1,P,)) > d(R(01,02,03,... ,041,042, ... ,0,_1,0,)).

Then it is easy to infer the following lemmas.

Lemma 1 PLUB Pruning Any R-tree node sequence from a query point to the current visited R-tree node
with a PLUB path longer than the current pruning upper bound cannot contain an MTNN optimal route and
can be removed from the MTNN candidate sequence list.

Proof: Because the distance of a PLUB path in current visited R-tree node sequence is shorter than the

distance of an optimal route if (partial) optimal route is contained in this R-tree node sequence and the



PLUB path distance of a current visited R tree node sequence is longer than the current pruning upper

bound, the current visited sequence cannot contain an (partial) optimal route.

Lemma 2 Correctness of PLUB Pruning An optimal route is in the MTNN R-tree leaf node candidata

sequence.

Proof: Because the removed R-tree node sequences do not contain an optimal route, the PLUB pruning
method is correct.

When searching candidate leaf node sequences, every time we reach a node and get a partial MTNN
candidate sequence, the PLUB from the query point to this node rectangle is calculated. If this distance is
longer than the current pruning upper bound, this partial candidate sequence is removed. Every time we
visit an R-tree, we calculated the PLUB and these PLUBs and some intermidiate results can be used in next
level PLUB calculation. Thus the computation of a PLUB is distributed into every R-tree visit.

Backward Improvement and Pruning After we get a new MTNN shortest distance shorter than the current
upper bound distance, we can use this shortest distance to do backward improvement and pruning.

In an MTNN search, when reaching a leaf node in an R-tree, we deduct the PLUB from the current
upper bound distance and get a remaining shortest distance. This remaining shortest distance will be kept
and used in the next R-tree search. After we get a new MTNN path and new MTNN shortest distance,
the search returns to the upper R-tree level. If the difference between an old MTNN shortest distance and
new shortest distance is bigger than the remaining distance kept along with this upper R-tree level node,
the current partial path is pruned. Even if the difference is smaller than the remaining shortest distance,
it can be used to deduct the current remaining distance kept along with the upper level R-tree node. The
consequence is that we have a smaller remaining distance and it is possible to prune more R-tree nodes in

the next level search.

2.3 Subset Search

The algorithms for the subset search discussed in this section can work on the whole dataset.

In a subset search, we are given subsets of all different types of objects for all permutations of different
feature types. For a specific permutation, all these points in subsets form a multi-level bipartite graph. The
legal route consists of points each of which is from a different level of the graph. Many search algorithms such
as BF'S, DF'S, Dijkstra, A*, IDA*, SM A*, simulate annealing etc can be updated and used to find the
optimal route. We call the methods used in this part point pruning. In the following, we give the simplest
brute force algorithm and propose a dynamic programming method. Withour loss of generality, we assume
that we have a set of subsets S = {S1,S52,...,S%} of objects such that these subsets have ni,na,... ,ng

data points. S represents the R-tree pruning result for one permutation of all different object types. In the
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R-tree based search, S = {51, 52,...,Sk} is actually a sequence of leaf node rectangles that contain a small

number of data points.

2.3.1 Brute Force Algorithm for Subset Search

Query point and points from different candidate leaf nodes form a multi-level bi-partite graph. The simple
brute force algorithm searches every branch in the graph exhaustively and find the MTNN and corresponding

shortest path. Even for small numbers of object type, this algorithm is very time-comsuming.

2.3.2 Dynamic Programming for Subset Search

Using a dynamic programming technique, we are able to save search time by storing partial results in the
search procedure.
Define M (S;(t), Sj(1)) to be the shortest distance between tth point in set i and lth point in set j. Our

final result can be expressed as
ming<n<n, (M(So0(0), Sk(h)))

We can infer the optimal structure of dynamic programming as:

M (8i(t), S5(1)) = minico<j,0<m<no (M(Si(t), So(m)) + M(So(m), S;(1)))

3 R-Tree Based Heuristic Algorithms

As we analyzed above, the complexity of the subset search is at least NP-hard in terms of data type k. When
there are many numbers of data types in an MTNN problem, we have to design heuritic approaches in order
to calculate good results within a reasonable time.

First we shrink the search space by removing most of the permutations of feature types. We only keep one
among permutations with same first feature type. In the following, we work on the search space consisting
of one permutation of all feature type objects.

Heuristics can be used in two aspects of an MTNN search. One is used in R-tree pruning and selection
of the MTNN candidate leaf node sequence. The other is used in MTNN search after the MTNN candidate
sequence is calculated. In this paper we focus on the first heuristic category.

As a simple heuristic method, greedy nearest neighbor method(Greedy) is described in first upper bound
search part in last section. We discuss other heuristic methods in this section.

The procedure for the heuristic algorithms is very similar to that of the optimal R-tree based MTNN
algorithms. Similarly we use a greedy method to find the first upper bound. We use this upper bound

to prune search space of all possible heuristic MTNN leaf node sequences by searching R-trees and get

11



candidate heuristic MTNN sequences. When searching the R-trees, we calculate the greedy distance in
possible candidate heuristic MTINN sequences and use the candidate sequence with smallest greedy distance
as the final candidate sequence. Finally we calculate heuristic MTNN distance in this final candidate sequence
and get heuristic MTNN for this permutation.

In the following, we introduce three heuristic R-tree search strategies.

3.1 Heuristic MTNN Candidate Sequence Selection
3.1.1 Zone Expansion Method(Zone)

The Zone method tries to find heuristic MTNN in the MTNN candidate sequence consisting of nearer leaf
nodes to the query point. First we search R-trees and sort the leaf nodes according to their distances to
the query point in all these R-trees. All nearest leaf nodes from different R-trees in the order of current
permutation form the first heuristic MTNN candidate sequence. Then the next nearer leaf node to q in an
R-tree is selected and replaces the leaf node from the same R-tree in current heuristic MTNN candidate
sequence to get a new MTNN candidate sequence. This procedure continues until reaching the stop criteria.
Figure 6 (a) illustrates this method. The method tries to expand a circle zone around the query point and
find a heuristic MTNN inside this zone. In the figure, the inner circle is the minimum circle zone that
includes all kinds of page nodes. The outer circle is the circle with the first upper bound distance d. With
the zone’s expansion, leaf nodes farther from the query point are visited and we get new heuristic MTNN

candidate sequences.

s s %/% . : .
N ’:///I/% * 0 NB
N, ° i‘f 1 B g ifi al” N ’

\

% 5o

o -’ £
NN \Q

Ta A

<

. .
S

; . 5
/|R—tree leaf for o [[IR—tree leaf for « NYR—tree leaf for  [3}|R—tree leaf for « [JR—tree leaf for o

[JR-tres lea for - [ R—tres Toaffor - [ R—ires loaffor +
(a) Zone Expansion Strategy (b) BFS Stratedgy

Figure 6: Zone Expansion and BFS MTNN Candidate Sequence Selection
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3.1.2 Breadth First Search Method(BFS)

The BFS method tries to find a heuristic MTNN route in the R tree leaf node sequence with the shorter
longest path distance. We search the R tree of first feature type in the current permutation of all feature
types with a BFS strategy and sort all leaf nodes to get a queue of leaf nodes according to the PLUB to
the query point. The head leaf node in the queue is then used as a range query rectangle to search the
R-tree which is of the next feature type and get another queue of leaf nodes. This procedure continues until
all R-trees are searched and we get a MTNN candidate sequence. We repeat this procedure and get more
MTNN candidate sequences. Figure 6 (b) gives an example. Note the shorter path among R tree level leaf
node paths has the shorter PLUB. Thus path 1 has shorter PLUB path than path 2.

3.1.3 Depth First Search Method(DFS)

This method is similar to BFS approach. We search the R-trees with DFS strategy and get a series of MTNN

candidate sequences until reaching stopping criteria.

4 Experimental Results

In this section, we present the results of various experiments to evaluate both the optimal and heuristic
algorithms for the multi-type nearest neighbor query. Specifically, we demonstrate: (1) a comparison of the
optimal algorithms with respect to the execution time. (2) a comparison of the heuristic algorithms with
respect to the execution time. (3) a comparison of the heuristic algorithms with respect to some statistical

measures, such as average shortest distance.

4.1 The Experimental Setup

4.1.1 Experiment Implementation Platform.

Our experiments were performed on a PC with a 3.20GHz CPU and 1 GBytes memory running the
GNU/Linux Ubuntu 1.0 operating system. All algorithms are implemented in the C programming language.
4.1.2 Experimental Data Sets

We evaluated the performance of both the optimal and heuristic algorithms for the multi-type query with
synthetic data sets, which allow better control towards studying the effects of interesting parameters. All
data points in the synthetic data sets were randomly distributed over a 10000x10000 plane. There were four
types of synthetic data sets with 1000, 2000, 5000, and 10000 data points for each spatial feature respectively.

For every type of synthetic data set, there was a different number of spatial features. In our experiments,
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Figure 7: Experiment Setup and Design

we compared the performance of the optimal and heuristic algorithms with the increase of spatial features

as well as data points for each spatial feature type.

4.1.3 Stability Measurements

In order to evaluate the stability of the heuristic algorithms, we followed the classic assessment procedure
used in the TSP algorithm [22]. Specifically, considering that a single run of a heuristic algorithm cannot
guarantee a precise and correct assessment of the performance of the algorithm, we conducted the experiment
for each permutation of query feature types and recorded a heuristic shortest distance for each run. Thus
we get the same number of heuristic shortest distance as the number of query feature types. Finally, we
calculated the average heuristic shortest distance and the standard deviation of the heuristic shortest distance

to compare the performance of the investigated heuristic algorithms.

4.1.4 Experiment Design

Figure 7 describes the experiment setup to evaluate the impact of design decisions on the relative performance
of both the optimal and heuristic algorithms for the multi-type nearest neighbor query. We evaluated the
performance of the algorithms with synthetic data sets. As shown in the figure, we considered four optimal
algorithms: brute force, dynamic, RNoPLUB, and RPLUB. We also consider four heuristic algorithms,
namely, the greedy method, Zone, DFS, and BFS. We observed the performance of the optimal algorithms
with respect to the execution time. For the heuristic algorithms, we reported some stability measures as well

as the execution time.
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4.2 A Performance Comparison of Optimal Algorithms

In this subsection, we present a performance comparison of optimal algorithms for the multi-type nearest
neighbor query. In the experiment, we considered four algorithms, the brute force(Brute Force) method, the
dynamic programming (Dynamic) method, the R-tree based method without PLUB pruning (RNoPLUB),
and the R-tree based method with PLUB pruning (RPLUB).
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Figure 8: A Comparison of Optimal Algorithms with respect to the Execution Time.

Figure 8 shows the execution time of the four optimal algorithms on data sets with different numbers of
data points for each feature type. As can be seen, with the increase of query feature types, the execution
time of all algorithms goes up sharply. Indeed, when the number of query feature types is more than eight,
all algorithms become very time consuming. For the different number of data points observed, we notice that
the RPLUB algorithm can handle as many as six feature types without exponential growth of the execution
time. Indeed, the RPLUB algorithm is the most scalable compared to the other three algorithms. However,
when the number of query features rises, all optimal algorithms tend not to perform well due to the fact

that this problem is essentially a NP-hard problem (Note that the complexity of this problem is even higher
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than that of the TSP problem).
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Figure 9: A Comparison of Heuristic Algorithms with Respect to the Execution Time

4.3 A Performance Comparison of Heuristic Algorithms

As discussed above, when the number of query feature types is large, all optimal algorithms become compu-
tationally intractable. However, real-life applications demand timely responds for MTNN queries. Towards
solving this practical problem, we also investigate heuristic algorithms for the MTNN query problem. In
this subsection, we compare the performance of four heuristic algorithms, namely greedy, Zone, DFS, and
BFS. Specifically, we evaluate their time usage and their stability.

In the experiment, every heuristic algorithm searches five hundred candidate paths, which are generated
as follows. Every candidate path starts with a different feature type. Other features types on the paths are

selected randomly. Also, we have the same number of permutations as the number of query feature types.
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Figure 10: Average Shortest Distance by Heuristic Algorithms
4.3.1 The Execution Time.

Figure 9 shows the execution time of the four heuristic algorithms on data sets with a different number of
data points for each feature type. As shown in the figure, the execution time of all the algorithms rises with
the increase of the number of query feature types. However, all the heuristic algorithms can easily handle the
large number of query feature types compared to the optimal algorithms discussed in the previous section.

Another observation is that the greedy algorithm has the best run-time performance among the four
algorithms, since fewer decisions need to be made for the greedy algorithm. Also, the Zone algorithm has
the worst performance in terms of execution time. The other two algorithms have a similar trend for the

execution time and the difference between them is not significant.

4.3.2 The Average Heuristic Shortest MTNN Distance

The average heuristic shortest MTNN distance measures the average quality of query results by heuristic

algorithms. As shown in Figure 10, Zone and BFS have almost the same best performance in terms of the
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Figure 11: Standard Deviation of the Heuristic Shortest MTNN Distance

achieved average shortest MTNN results. The average query shortest distance of DFS is slighter worse that
that of Zone and BFS. In addition, the Greedy method has the largest average shortest distance value for
the query. This is the trade-off between the execution time and the quality of query results.

Another interesting observation is that, as the number of data points in the data sets increases, the
difference of the average MTNN distance between the greedy algorithm and the other three algorithms
becomes smaller. This is not surprising; for data sets with randomly distributed data points, it is more likely
that the distance from a query point to the greedy nearest neighbor is closer to the optimal distance. Indeed,
the greedy algorithm performs well for the data sets with randomly distributed data points and the result

of greedy search becomes closer to the results of optimal solutions when the data sets become more dense.

4.3.3 Standard Deviation of the Heuristic Shortest MTNN Distance

Standard deviation of the heuristic shortest MTNN distance measures the stability of the heuristic algo-
rithms. Figure 11 shows the standard deviation of the achieved shortest query distance by the four heuristic

algorithms: Greedy, Zone, BFS, and DFS. When the number of data points is 1000 and 2000, the standard
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deviation of the greedy algorithm is much higher than that of the other three algorithms. In other words,
the greedy algorithm is not a very stable heuristic algorithm for data sets with a smaller number of data
points. In contrast, when the number of data points becomes large, the standard deviation of the greedy
algorithm tends to become smaller than that of the other three algorithms. Especially when the number of
data points is 5000, the greedy algorithm has the smallest standard deviation and is much more stable than
the other three algorithms. When the number of data points increases to 10000, greedy, DFS and BFS have

similar standard deviations. However, Zone becomes less stable.

5 Conclusions and Future Work

In this paper, we investigated a multi-type nearest neighbor (MTNN) query problem, which can be related
to many application domains, such as intelligent map quest. We show that the MTNN problem is closely
related to the TSP problem, but the computation complexity of the MTNN problem is much higher than
that of the TSP problem. Consider that the MTNN problem is NP-hard, we propose R-tree based optimal
solutions as well as heuristic solutions. In our algorithms, a page-level upper bound is exploited for efficient
pruning at the R-tree node level. Finally, experimental results are provided to show the strength of the
proposed algorithms and design decisions related to performance tuning.

As for future work, we plan to investigate heuristic algorithms from different perspectives. For instance,
one direction is to design new heuristic algorithms using geometric properties of spatial data sets. Also, it

is promising to design an algorithm which combines R-tree node-level pruning with point-level pruning [19].
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