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Abstract

We present a new optimization criterion for dis-
criminant analysis. The new criterion extends
the optimization criteria of the classical linear
discriminant analysis (LDA) by introducing the
pseudo-inverse when the scatter matrices are sin-
gular. It is applicable regardless of the rela-
tive sizes of the data dimension and sample size,
overcoming a limitation of the classical LDA.
Recently, a new algorithm called LDA/GSVD
for structure-preserving dimension reduction has
been introduced, which extends the classical LDA
to very high-dimensional undersampled prob-
lems by using the generalized singular value
decomposition (GSVD). The solution from the
LDA/GSVD algorithm is a special case of the so-
lution for our generalized criterion in this paper,
which is also based on GSVD.

We also present an approximate solution for
our GSVD-based solution, which reduces com-
putational complexity by finding sub-clusters of
each cluster, and using their centroids to capture
the structure of each cluster. This reduced prob-
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lem yields much smaller matrices of which the
GSVD can be applied efficiently. Experiments
on text data, with up to 7000 dimensions, show
that the approximation algorithm produces re-
sults that are close to those produced by the ex-
act algorithm.

Keywords: Clustering, dimension reduction,
generalized singular value decomposition, linear
discriminant analysis, text mining.

1 Introduction

Many interesting data mining problems involve
data sets represented in very high dimensional
spaces. We consider dimension reduction of high-
dimensional, undersampled data, where the di-
mension of the data points is higher than the
number of data points. The high-dimensional,
undersampled problems frequently occur in many
applications including information retrieval [14,
21], facial recognition [11] and microarray analy-
sis [1].

One application area of interest in this paper is
vector space based-information retrieval. The di-
mension of the document vectors is typically very
high, due to a large number of terms that appear
in the collection of the documents. In the vector
space based-model, documents are represented
as column vectors in a term-document matrix.
For an m X n term-document matrix A = (a;;),
its (4, j)-th term a;; represents the weighted fre-
quency of term ¢ in document j. Several weight-
ing schemes have been developed for encoding
the document collection in a term-document ma-
trix [13, 15]. (We applied the commonly used
tf-idf weighting scheme [20, 24] for all our experi-
ments.) An advantage of the vector space based-



method is that once the collection of documents
is represented as columns of the term-document
matrix in a high dimensional space, the algebraic
structure of the related vector space can then be
exploited.

When the documents are already clustered, we
would like to find a dimension-reducing transfor-
mation that preserves the cluster structure of the
original full space even after the dimension re-
duction. Throughout the paper, the input docu-
ments are assumed to have been already clustered
before the dimension reduction step. When the
documents are not clustered, then efficient clus-
tering algorithms such as K-Means [4, 12] can be
applied before the dimension reduction step. We
seek a reduced representation of the document
vectors, which best preserves the structure of the
original document vectors.

Latent Semantic Indexing has been widely used
for dimension reduction of text data [2, 3]. It is
based on lower rank approximation of the term-
document matrix from the singular value decom-
position (SVD) [8]. Although the SVD provides
the optimal reduced rank approximation of the
matrix when the difference is measured in the Lo
or Frobenius norm, it has limitations in that it
does not consider cluster structure in the data
and is expensive to compute. Moreover, the
choice of the optimal reduced dimension is dif-
ficult to determine theoretically.

The Orthogonal Centroid Method has been in-
troduced [18], as a dimension reduction method
that maximizes the separation between clusters.
It was also used for class visualization of the high
dimensional data [5]. The main advantage of
this method is its computational efficiency since a
dimension-reducing transformation based on the
symmetric eigenvalue decomposition can be com-
puted by simple orthogonal decomposition of the
matrix that involves only the centroids of the
clusters [10]. A disadvantage of the Orthogonal
Centroid method is that it does not take into ac-
count the so-called within-cluster distance.

The linear discriminant analysis (LDA)
method has been applied for decades for dimen-
sion reduction (feature extraction) of clustered
data in pattern recognition [7]. It is classically

formulated as an optimization problem on co-
variance matrices. A serious disadvantage of the
LDA is that its objective function requires that
at least one of the covariance matrices be non-
singular. In many modern data mining problems
such as information retrieval, facial recognition,
and microarray data analysis, all of the covari-
ance matrices in question can be singular since
the data items are from a very high-dimensional
space and in general the number of sample data
points does not exceed this dimension. Recently,
a generalization of LDA based on the generalized
singular value decomposition (GSVD) has been
developed [9, 10], which is applicable regardless
of the data dimension, and, therefore can be used
for the undersampled problems. The classical
LDA solution becomes a special case of this
LDA/GSVD method. In [9, 10], the solution
from LDA/GSVD is justified to preserve the
cluster structure in the original full space after
dimension reduction. However, no explicit global
objective function has been presented.

In this paper, we present a new generalized
optimization criterion for discriminant analysis.
Our class-preserving projections are tailored for
extracting the class structure of high dimensional
data, and are closely related to the classical lin-
ear discriminant analysis. The main advantage of
this proposed algorithm is that the new criterion
is applicable to undersampled problems. A de-
tailed mathematical derivation of the proposed
new optimization problem is presented. The
GSVD technique is the key component for the
derivation. The solution from the LDA/GSVD
algorithm is a special case of the solution for this
new criterion. Since there is no approximation
involved in the proposed algorithm, we call it the
ezxact algorithm, to distinguish from the approxi-
mation algorithm introduced below.

One limitation of the GSVD-based method is
its high computational complexity in handling
large matrices. We propose an approximation al-
gorithm based on sub-clustering of clusters to re-
duce the cost of computing the SVD involved in
the computation of GSVD. Each cluster is further
sub-clustered so that the overall structure of each
cluster can be represented by the set of centroids



corresponding to each sub-clusters. As a result,
only a few vectors are needed to define the scatter
matrices, thus reducing the computational com-
plexity. Experimental results show that the ap-
proximation algorithm produces results close to
those produced by the exact one.

To compare our proposed algorithms with
other dimension reduction algorithms, we use the
K-Nearest neighbors (KNN) method [6] based on
the FEuclidean distance for classification. We use
10-fold cross-validation is used for estimating the
misclassification rate. In 10-fold cross-validation,
we divide the data into 10 subsets of (approxi-
mately) equal size. Then we do the training and
testing 10 times, each time leaving out one of the
subsets from training, and using only the omit-
ted subset for testing. The misclassification rate
is the average from the 10 runs. The misclas-
sification rates on different data sets for all the
dimension reduction algorithms discussed in this
paper are reported for comparison. The results in
Section 6 show that our proposed exact and ap-
proximation algorithms outperform other dimen-
sion reduction algorithms discussed in this paper.
More interestingly, the results produced by the
approximation algorithm are close to those pro-
duced by the exact algorithm, while the approx-
imation algorithm deals with matrices of much
smaller sizes than those in the exact algorithm,
hence has lower computational complexity.

The main contributions of this paper include:

1. A generalization of the classical discriminant
analysis to small sample size data using a
new criterion, where the non-singularity of
the scatter matrices is not required.

2. Mathematical derivation of the solution for
the new optimization criterion.

3. An efficient approximation algorithm for the
optimization problem.

4. Detailed experimental results for our exact
and approximation algorithms and compar-
isons with competing algorithms.

The rest of the paper is organized as follows:
Classical discriminant analysis is reviewed in Sec-

tion 2. A generalization of the classical discrimi-
nant analysis using the new criterion is presented
in Section 3. An efficient approximation algo-
rithm is presented in Section 4 and a comparison
between the proposed method and other dimen-
sion reduction algorithms is made in Section 5.
Several experimental results are presented in Sec-
tion 6 and concluding discussions are presented in
Section 7.

2 Classical discriminant analy-
sis

Given a term-document matrix A € R™*", we

consider finding a linear transformation GT €

RY™ that maps each column a;, for 1 < i < n,

of A in the m-dimensional space to a column y;

in the /-dimensional space:

GT :a; € R™! 5 y; € R

(1)

Assume the original data is already clustered.
The goal here is to find the transformation G7
such that cluster structure of the original full
high-dimensional space is preserved in the re-
duced dimensional space. Let the document ma-
trix A be partitioned into k clusters as

A

A= [Al Ak]a

where A; € R™*™ and Zle n; = n.

Let N; be the set of column indices that belong
to the ith cluster, i.e., a;, for j € N;, belongs to
the ith cluster.

In general, if each cluster is tightly grouped,
but well separated from the other clusters, the
quality of the cluster is considered to be high.
In discriminant analysis [7], two scatter matrices,
within-cluster and between-cluster scatter matri-
ces are defined to quantify the quality of the clus-
ter, as follows:

k
>3 (a = ) (a; — T,
i=1j€EN;
k

3 3 (e — ) - )"
JEN;

Sw =

=1



() — )T,

SN

where the centroid ¢(®) of the ith cluster is defined
as

(2)

NOIEO)
n;
where e = (1,1,---,1)7 € R™*', and the
global centroid c is defined as

1

c= ~Ae, where e = (1,1,---,1)T € R™*1. (3)
n

Define the matrices

Hy, = [A1—cV(EeMNT ... A, —c® (T
e Ran,

Hy = [ym(W =0, g™ — o)
€ Rka. (4)

Then the scatter matrices S, and Sy can be
expressed as

Sw=HyHy, Sp=HyH. (5)

The traces of the two scatter matrices can be
computed as follows,

k
trace (Sy) = Z Z (a; — T(aj — D)
i=1jEN;
k .
= Y -
i=1jeEN;
k
trace (Sp) = Zni(c( ) —e)T(c® —¢)
i=1

k
= Y nille® — |2 (6)
i=1

Hence, trace (S,) measures the closeness of the
vectors within the clusters, while trace (Sp) mea-
sures the separation between clusters.

In the lower-dimensional space resulting from
the linear transformation GT, the within-cluster
and between-cluster matrices become

st - (G"H,)(G"H,)" =GTH,HLG
G"S,G,
SE (GTHy)(GTH,)T = GTH,H] G
= GTS,G. (7)

An optimal transformation G7 would maxi-
mize trace (Sf) and minimize trace (SL). Com-
mon optimizations in classical discriminant anal-
ysis include

maxgr {trace((S )" 1Sb)} and

mingr {trace((S})~'S5)}. (8)
In the following, we will focus on the criterion
of maximizing

Fy(G) = trace ((GTSMG)_l (GTSbG)> ()

If we switch between S, and Sp, the problem be-
comes a minimization problem. In classical dis-
criminant analysis, S,, is assumed to be nonsingu-
lar, hence symmetric positive definite. It follows
from linear algebra [8] that there is a nonsingular
matrix X € R™*™ such that

XT8X = A =diag(A1,- -+, Am)
and
XTS, X =1,
where
M> >N > A1 == Ay = 0.
We have
Fo(G) = trace ((c:Tswc;)1 (GTS,,G))

~ trace ((G67) ' (Gad7)),

where G = (X*IG)T. Let GT = QR be the
reduced QR factorization of GT, where Q € R™*¢
has orthonormal columns and R is nonsingular
(Note GT has full row rank). Using the fact that
trace(AB) = trace(BA), for any matrices A and
B, we have

(@) = trace((RTR)l (RTQTAQR))

= trace( 1QTAQR)

= trace (QTAQRR )
(

= trace QTAQ) <A+ + A,



where the inequality becomes equality for

Q:({f) oerX({f)R,

when the reduced dimension £ > q. Note R is an
arbitrary nonsingular matrix, hence the transfor-
mation G is not unique.

Note that a limitation of classical discriminant
analysis in many applications involving small
sample data, including text processing in infor-
mation retrieval is that the matrix S,, must be
nonsingular. In the next section, a new crite-
rion is introduced that generalizes the classical

discriminant and overcomes this limitation.

3 Generalization of discrimi-
nant analysis

Classical discriminant analysis expresses its solu-
tion by solving a generalized eigenvalue problem
when Sy or S, is nonsingular. However, for a
general document matrix A, the number of doc-
ument n may be smaller than its dimension m,
then matrix H, and H; are not of full column
rank, hence matrix S,, and S are both singular.
In this paper, we define a new criterion F; below,
where the non-singularity of the matrix S,, or S
is not required. The new criterion aims to min-
imize the within-class distance, trace (S%), and
maximize the between-class distance, trace (SL).

The new criterion Fj is a natural extension of
the classical one in Equation (8), where the in-
verse of a matrix is replaced by the pseudo-inverse
[8]. While the inverse of a matrix may not exist,
the pseudo-inverse of any matrix is always well
defined. Moreover, when the matrix is invertible,
its pseudo-inverse is the same as its inverse. I}
is defined as

Fi(G) = trace ((S7)*S}). (10)

Hence the trace optimization is to find an optimal
transformation matrix G such that Fi(G) is mini-
mum under certain constraint defined in more de-
tail in Section 3.3. We switch the roles between
SIT and ST in the Fj criterion, compared with

the Fp criterion in classical discriminant analy-
sis defined in Equation (9), since the value of
trace ((Sﬁ)"‘S’bL) can be infinity.

We show how to solve the above minimization
problem in Section 3.3. The main technique ap-
plied here is the GSVD, briefly introduced in Sec-
tion 3.1. The constraints on the optimization
problem are based on the observations in Sec-
tion 3.2.

3.1 Generalized singular value decom-
position

The Generalized Singular Value Decomposition
(GSVD) was first introduced in [23]. A simple
algorithm to compute GSVD can be found in [9],
where the algorithm is due to [17].

Theorem 3.1 (Generalized Singular Value
Decomposition) Suppose two matrices A €
R™ ™ and B € RP*"™ are given. Then for

K= l g ] and t = rank(K),

there exist orthogonal matrices
Ue R™™ V € RP*P,

and a nonsingular matric

X e ™"
such that
vol Sa 0
. A
where
(14 0 0
a=|[0 Dy O ,
i 0 O 04 |
[0 0 0
=10 Dp 0
i 0 O Ip |
The matrices
IA c RTXT



and
Ig € R(tfrfs)x(tfrfs)

are identity matrices, where
r = rank(K) — rank(B),
and
s = rank(A) + rank(B) — rank(K),

04 € R(mfrfs)x(tfrfs) and Op € R(pft—H')xr

are zero matrices, and
©, Qrys) and

’ ﬂr—i—s)

Dy = diag(ar+1,--

Dp = diag(Br+1,- -
satisfy

v

1>ar1 <> apys >0,

0<B7'+1 < Sﬂr—l—s < ]-7
and @} + B2 =1fori=r+1,---,r+s. |
The GSVD on the matrix pair (H}, HL), will

give orthogonal matrices U € R¥** vV € R,
and a nonsingular matrix X € R™*™, such that

T
loU S/] KX:[% 8]. (11)
where
I, 0 O O0p O 0
>1=10 Dy 0 |, Y=[0 Dy, 0
0 0 0O 0 0 I,
Here I, € R™*" is an identity matrix with
r = rank(K) — rank(H_), (12)
Dy = diag(ar41,- -+, arys), and
Dy, = diag(Br+1,-+,Bris) € R***
are diagonal matrices with
s =rank(Hp) + rank(H,,) — rank(K), (13)
satisfying
1>ap41 2,0+, 2 args >0,

O<Br+l Sa"'aS/BT+s<]-a

anda?—l—ﬁf:lfori:r—i-l,---,r-i-s.
From (11), we have

HYX=U[% 0| HyX=V[3% 0]

hence
T T [ E? T
XTHHIX = | ¢ UTU [ % 0|
[ 5T, o]
~lo 0 ] =D,
T T [ Eg T
XTHHIX = | VIV ] s, 0]
»Ty, 0
Therefore
St = GTs,G =GTHHIG

= "X HY'XTHH X)X 'G
= (X'6)"D:1X7'G = GD:G7,
st - @"5,G=G"H,H'G
= xHY'xTH,HEIX)X'G
= (X 1G)TDyX G = GD,G", (14)

where the matrix

G=x1tor. (15)

- We will use the above representations for Sé: and

SL in Section 3.3 for the minimizations of F}.

3.2 Linear subspace spanned by the
centroids

Let

C = span{c(l), .. -,c(k)} (16)

be a subspace in R™ spanned by the k centroids
of the document vectors. In the lower dimen-
sional space transformed by G”, the linear sub-
space spanned by the k centroids in the reduced
space is

Cr = span{cg),---,cgc)}, (17)



where cg) =GTc® fori=1,-- k.

In this section, we study the relation between
the dimension of the subspace C and the rank of
the matrix Hy, as well as the corresponding ones
in the reduced space.

The main result is as follows:

Lemma 3.1 Let C and Cy, be defined as in (16)
and (17) and Hy be defined as in (4). Let dim(C)
and dim(Cr) denote the dimensions of the sub-
spaces C, Cr, respectively. Then

1 dim(C) = rank(Hp) + 1, or rank(Hy), and
dim(Cr,) = rank(GT Hy) + 1, or rank(GT Hy);

2 If dim(C) rank(Hy), then dim(Cr) =
rank(GT Hy). If dim(Cr) = rank(GT Hy) + 1,
then dim(C) = rank(Hp) + 1.

Proof Consider the matrix
S: [c(l) _C,...,C(k) _C,c:I s

where the global centroid ¢ as defined in (3) can
be rewritten as

It is easy to check rank(S) = dim(C). On
the other hand, the rank of the matrix S equals
to rank(Hp), if ¢ lies in the space spanned by
{cW —¢, -, c® —¢}, or rank(Hp) + 1, otherwise.
Hence dim(C) = rank(Hp) + 1, or rank(Hp). Sim-
ilarly, we can prove dim(C) = rank(GT Hy) + 1,
or rank(GT Hp). The completes the proof for part
1.

If dim(C) = rank(Hp), from the above argu-
ment, ¢ = Y8, 7i(cl) — ¢) for some coefficients
~vi. It follows that

k

k .
e =Gle= Z’yi(GTc(i)—GTc) = Z’yi(cg)—c,;),
i=1 i=1

where ¢y, is the centroid in the lower dimensional
space. Again by the above argument, dim(Cr,) =
rank(GT Hy).

Similarly, if dim(Cr) = rank(GT Hp)+1, we can
show dim(C) = rank(Hp) + 1. |

3.3 Generalized discriminant analysis
using F; measure

We start with a more general optimization prob-
lem as follows,

min F; (G) subject to rank(GTHy) =6, (18)
for some § > 0. The optimization in Equation
(18) depends on the value of §. The optimal
transformation G we are looking for in this sec-
tion is a special case of the above formulation,
where we set § = rank(Hp). This choice of §
guarantees that the dimension of the linear space
spanned by the centroids in the original high di-
mension space and the corresponding one in the
transformed lower dimensional space as defined in
Equation (16) and Equation (17) are kept close
to each other, as shown in the following Proposi-
tion 3.1.

To solve the minimization problem in (18), we
need the following three lemmas, where the proof
of the first two lemmas are straightforward from
the definition of the pseudo-inverse [8].

Lemma 3.2 For any matric A € R™*™, we have
trace(AA™T) = rank(A).

Lemma 3.3 For any matrix A € R™ ", we have
(AATYT = (AT AT,

The following Lemma is critical for our main re-
sult,

Lemma 3.4 Let ¥ = diag(o1,---,04) be any di-
agonal matriz with o1 > -+ > o, > 0. Then
for any matriz M € R**" with rank(M) = §, the
following inequality holds.

é
trace ((MEMT )" MMT> >3 al
i=1 "%

Furthermore, the equality holds if and only if

w-u(7 ).

for some orthogonal matriz U € R**? and matriz
D =3X'Q¥? € RS, where Q € R**® is orthogo-
nal and ', %2 € RO are diagonal matrices with
positive diagonal entries.

D 0
0 0



Proof It is easy to check that
+
(M=MT)" MMT
_ <M21/221/2MT>+ M/2y-1x1/2 T
+
=(22") zn7'2"
=(zNl'zrzx 177, (19)

where Z = M¥/2 and the last equality follows
from Lemma 3.3.

It is clear that rank(Z) = rank(M) = 4, since
Y. is non-singular. Let

>0
sy
be the SVD of Z. Then by the definition of
pseudo-inverse,
) Ut

s —1
Z+:V(2 0

0 0
Define the matrix Y = Z*Z, then
0\ e
ev(E )

where Iy € R®*% is an identity matrix.

Using the fact that trace(AB) = trace(BA),
for any two matrices A and B, together with (19),
we have

trace ((MEMT>+ MMT)

= trace YE_IYT)

= trace(({;S 8>VTEIV<{)5 8))
= trace((ng>El<V5 0) )

= trace <( %TXE)IVE 8 )) s

(20)

where Vj contains the first § columns of the or-
thogonal matrix V. The last inequality in (20)
follows, since the diagonal elements of the diago-
nal matrix ¥ ! is nondecreasing. Moreover, the
minimum of trace (VJTE*II/:;) is obtained if and

only if
[ Qs

for some orthogonal matrix Qs € R%*%. Hence

12 _ X0
zy. U(O 0

= —-1/2

:Q< ) 0

where X5 is the dth principle sub-matrix of X,
and D = iQJZglﬂ. |

We are now ready to present our main result for
this section. To solve the minimization problem
in (18), we first give a lower bound on the objec-
tive function F; in Theorem 3.2. A sufficient con-
dition on G, under which the lower bound com-
puted in Theorem 3.2 is obtained, is presented in
Corollary 3.1. A simple solution is then presented
in Corollary 3.2.

M = ) yIs-1/2

D 0
0 0

The optimal solution for our generalized dis-
criminant analysis presented in this paper is a
special case of the solution in Corollary 3.2, where
we set 0 = rank(Hp).

Theorem 3.2 Assume the transformation ma-
trizr GT € R™™ satisfies rank(GTHy) = 6, for
some integer & > 0, then the following inequality
holds,

R = tmce((S’l{’)"'(S{;))

> { S (&) io2re1 (21)

0 iféo<r+1,

where Sé: = G'SyG and S’{}, = GTS,G are de-
fined in (7).



Proof First consider the easy case when § <
r+ 1. Since both (S£)* and SL are semi-positive
definite,

trace ((S,f)*‘(Sf,)) > 0.

Next consider the case when § > r + 1.
Recall from Equation (14) that by the GSVD,

Sy =GDiGT, Sy =GDyGT,

where G is defined in (15). Partition G into
é: ( Gl, GQ, GS, C'74 )7

such that G; € RY", G, € R™® G3 €
Rlx(tfrfs), and G4 € Réx(mft).

Let G123 = ( G1, G2, Gs
D5 are diagonal matrices and the last m — t di-
agonal entries are zero, it follows that

). Since D7 and

Sy Gr123%] £1Gla3,
SE = G233 52Glyg (22)
Since a? +ﬂz~2 =1,fori=1,2,---,t, we have

Iy +35lsy =13,
here I; € R**? is an identity matrix. Therefore,

SL 1 SE = G123GT53 = G12GE, + G3GE. (23)

The first inequality follows, since G3G} is posi-
tive semi-definite, and the equality holds if G3 =
0. The second inequality follows from Lemma 3.4
and the equality holds if and only if

D
Gi2=U 0 € Réxr-{-s’ (25)

0 0
for some orthogonal matrix U € R®* and some
matrix

D =x'Q%? e R,
where
El 22 c R5><(5

are diagonal matrices with positive diagonal en-
tries and Q € R%*9 is orthogonal. Especially it is
true if both U and D are identity matrices.

By the property of the pseudo-inverse in
Lemma 3.2,

rank(SF) = rank(G” S,G)
rank(GT Hy) = 6. (26)

trace((SH)*SE) =

Therefore,

trace((Sf)tS5)
trace((Sl{’)J“(SL + Sb ) — trace((Sé—’)JrSlf)
8

T

Fy

Define G2 = ( G1, Go ) It follows from > Zl+ 21_12_
i=r+
Equation (22) and Equation (23) that 8
i
= — > (27)
trace (( br S’[ + S’b ) Z.;rl <ai>
_ s
= trace (( 5) " (G123G1s ) where the inequality follows from (24). |
+ Theorem 3.2 gives a lower bound on Fj, when
=t G 2137 GTo3) G23GT: ’
race ( 12351 123) 123 123) ¢ is fixed. From the arguments above, all the in-
+ equalities become equality if G149 has the form as
= trace G12 O D2 ) G12> G123GY53 | in (25), and G3 = 0, especially when U and D
b are identity matrices, which is used in our imple-
> trace ( sz G12 G12 G{z) menta'tlon later. The result is summarized in the
following Corollary.
r é
1 ~
> Z 1+ Z o2 (24) Corollary 3.1 Let GT, G be defined as in The-
% orem 3.2 and 6 > r + 1, then the equality
where

Fi = trace((SD)78H) = 3 <é>

i=r+1 @i



holds, under the condition that the partition of

G = ( Gla G27 G3a G4 )
satisfies
([ Is 0
Gz = ( 0 0 )
and
Gs =0,
where

Gu:(Gl, Gg).

Theorem 3.2 does not mention the connection
between £, the row dimension of the transforma-
tion matrix GT and §. We can choose the trans-
formation matrix G with large row dimension #
and still satisfies the condition stated in Corol-
lary 3.1. However we are more interested in a
lower dimensional representation of the original,
while keeping the same information from the orig-
inal data.

The following Corollary says the smallest pos-
sible value for £ is §, and more importantly we can
find a transformation GT with its row dimension
equal &, which also satisfies the condition stated
in Corollary 3.1.

Corollary 3.2 For every 6 < r + s, there ex-
ists a transformation GT € R®*™ such that the
equality in (21) holds, i.e. the minimum value for
Fy is obtained. Furthermore for any transforma-
tion (G"\T € R*™, such that the assumption in
Theorem 8.2 holds, we have £ > 6.

Proof Construct a transformation GT € R%*™,
such that

G=(X"'6)"=(Gun, Gs Gu)

satisfies G1o = ( Is 0O ), G3 =0, and G4 = 0,
where I; € R®*% is an identity matrix. Hence
GT = X?, where X5 € RY*™ contains the first §
columns of the matrix X. By Corollary 3.1, the
equality in (21) holds under the above transfor-
mation GT. This complete the proof for the first
part.

For any transformation (G')T € R®*™, such
that rank((G')T Hp) = 6, it is clear

§ < rank(G)7) < L.
Hence ¢ > 6. [ |

Remark 3.1 Theorem 3.2 shows the minimum
value of the objective function Fj is dependent
on the rank of the matrix GT Hy. As shown in
Lemma 3.1, the rank of the matrix Hj, which is
r+s by GSVD, denotes the degree of linear inde-
pendence of the k centroids in the original data,
while the rank § of the matrix GT Hy implies the
degree of linear independence of the k centroids
in the reduced space by Lemma 3.1. By Corol-
lary 3.2, if we fix the degree of linear indepen-
dence of the centroids in the reduced space, i.e.
if rank(GT H,) = § is fixed, then we can always
find a transformation matrix GT € R®*™ with
row dimension § such that the minimum value
for F} is obtained.

Next we consider the case when § varies. From
the result in Theorem 3.2, the value of the ob-
jective function Fj is smaller for smaller §. How-
ever, as the value of § decreases (Note § is al-
ways no larger than r + s), the degree of linear
independence of the k centroids in the reduced
space is a lot less than the one in the original
high dimensional space, which may lead to in-
formation loss of the original data. Hence, we
choose § = rank(Hp), its maximum possibility, in
our implementation. One nice property of this
choice is stated in the following Proposition:

Proposition 3.1 If § = rank(GT Hy) equals to
rank(Hy), then |C| —1 < |Cr| < [C|.

Proof The proof follows directly from
Lemma 3.1. |

Proposition 3.1 implies choosing ¢ = rank(Hp)
keeps the same or one less degree of linear inde-
pendence of the centroids in the reduced space
as the one in the original space. With the above
choice, the reduced dimension under the transfor-
mation G7 is rank(H,). We use §* = rank(H,)
to denote the optimal reduced dimension for our
generalized discriminant analysis (also called ex-
act algorithm) throughout the rest of the paper.
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Algorithm 1: Exact algorithm
1. Form the matrices Hy and H,, as in Eq. (4).
2. Compute GSVD on the matrix pair (H], HY)
to obtain the matrix X as in Eq. (11),
3. 6* <+ rank(Hy).
4. GT + XL, where X;« contains the first
0* columns of the matrix X.

In this case, we can choose GT = Xg;, where X g+
contains the first 6* columns of the matrix X as
in Corollary 3.2. The pseudo-code for our main
algorithm is shown in Algorithm 1.

In principle, it is not necessary to choose the
reduced dimension to be exactly §*. Experiments
show good performance for all values of reduced
dimension close to §*. However the results also
show the performance can be very poor for very
small value of reduced dimension, probably due
to information loss of original data.

4 Approximation algorithm

One of the limitations of the above method is
the expensive computation of the generalized sin-
gular value decomposition of the matrix K €
R™tkxm - For large text document data, both n
and m can be large, hence the above method may
not be applicable. In this section, an efficient ap-
proximation algorithm is presented to overcome
this limitation.

The K-Means algorithm [4, 12] is widely used
to capture the structure of the scattered data,
by decomposing the whole data set as a dis-
joint union of small sets, called clusters. The
K-Means algorithm aims to minimize the the dis-
tance within each cluster, hence the centroid of
the each cluster represents well the data points
in the same cluster, while the centroids of the re-
sulting clusters give a good approximation of the
original data set.

In Section 2, we use the matrix H,, to capture
the closeness of the vectors within each cluster.
However, the dimension of H,, € R™*" is very
high, since we use every point in the document
data. To simplify the model, we attempt to use
the centroids only to approximate the structure
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of each cluster, by apply K-Means algorithm to
each cluster.

More specifically, if (w1, 72, -+, m) are the k
clusters in the text document data, with the
size of each cluster |m;| = n;, and Zle n; =
n, K-Means algorithm is applied to each clus-

ter m; to produce s; sub-clusters {7r§] )};;1, with

;= u7;1w§j) and the size of each sub-cluster

|7r§j )| = nf . Let cz(-j ) be the centroid for each sub-
()

ith cluster

The within cluster distance in the

> llaj — @2

JEm;

cluster =

can be approximated as

S 3 flag = @2~ Y n |l — )2,
u=1

u=1 a; Ewgu)

by approximating every point a;in the sub-cluster
ﬁfu) by its centroid cz(.u).

Hence the matrix H,, can be approximated as
1l — M)y, /s — My,

[ nl(cl
V(e — c®), /() — 9]
c RmXM

where M = Y% | s; is the total number of cen-
troids, which is typically much smaller than n,
the total number of data points in the original
text document data, thus reducing the complex-
ity of the GSVD computation dramatically. The
main steps for our approximation algorithm in
summarized in Algorithm 2. For simplicity, in
our implementation we chose all the s;’s to have
the same value s’. We discuss below the choice
for s’

To test its efficacy, we have applied the approx-
imation algorithm to numerous data sets. Exper-
iments show the approximation algorithm pro-
duces similar results to the exact ones.

(28)

4.1 The value for s

The number of sub-clusters s’ within each cluster
7; will determine the complexity of the approxi-
mation algorithm. If s’ is too large, the approxi-
mation algorithm will produce results close to the



Algorithm 2: Approximation algorithm

1. Form the matrix Hj as defined in Eq. (4).
2. Run K-Means algorithm on each n; with s; = s’
3. Form the matrix H,, as defined in Eq. (28)
to approximate H,,.
4. Compute GSVD on the matrix pair (H, HY)
to obtain the matrix X as in Eq. (11).
0* « rank(Hjp).
4. GT + X[., where X;+ contains the first
0* columns of the matrix X.

©@

one using all the points, while the computation of
the GSVD will still be expensive. For our prob-
lem, we only apply the K-Means algorithm to the
data points belonging to the same cluster of the
original document set, which are already close to
each other. Indeed, in our experiments, we found
that small values of s’ worked well; in particular,
choosing s’ around 6 to 10 gave good results.

5 Comparison between dif-

ferent dimension reduction
methods

Latent Semantic Indexing (LSI) is a common
dimension reduction method for text document
data. Using truncated SVD algorithm, the doc-
ument data is presented in a lower dimensional
“topic” space: the documents are characterized
by some underlining hidden concepts referred to
by the terms. The choice of reduced dimension
N is a serious problem for LSI. Experiments in
next section show for small N, the results can be
very bad.

We also consider the extreme case, when we
use the full document matrix, i.e., the reduced
dimension N is the maximum possible one. We
use “Full” to distinguish this from other meth-
ods. While there is no decomposition time for
this method, its query time O(nmK) and storage
requirement O(nm) is much higher than other
methods, when using the K nearest neighbors for
query.

The orthogonal centroid method (OCM) in
[18], maximize the separation between clusters.

It solves the following optimization problem,

Find GT € R™”™ with orthonormal columns

such that trace(G” Sp@) is maximum.

As shown in [18], the above optimization prob-
lem can be solved efficiently by computing QR
decomposition of the centroid matrix C =
[t 2 --- c*] € R™*k, where ¢, for i =
1,---,k are the centroids of the k clusters in
the document data as introduced in section 2.
More specifically, GT is chosen to be QT, where
C = Q@R is the QR-decomposition of the cen-
troid matrix C. Hence the reduced dimension
£ = rank(C) = k, if we assume the k centroids are
linearly independent. The decomposition time
for this method is O(k?m), since C is m x k ma-
trix.

The exact algorithm introduced in Section 3
computes a generalized singular value decompo-
sition, of an (n + k) x m matrix. If we assume
n + k < m, the decomposition time would be
O(n?m) [9], which has the same complexity as
LSI when the SVD of the full matrix is computed.
However the query time and storage are much less
than those for LSI. Specifically, the optimal re-
duced dimension 6* = rank(Hp) < k — 1, hence a
single query using the K nearest neighbors only
takes O(né*K) = O(nkK) time. More impor-
tantly, the experiments in next section show this
method produces much better result than LSI.

To reduce the complexity for the decompo-
sition step, an approximation algorithm is pre-
sented in Section 4. The ith cluster is represented
by the s; centroids. Hence the number of rows in
the approximate H,, matrix is

k+(31+..._+_3k):k;—{-k;,g’:O(kSl).

The complexity of the GSVD computation us-
ing the approximate H,, matrix is reduced to
O ((k + ks')®>m) = O(k?s?m). Note, the K-
Means algorithm for the clustering is very fast.
Within every iteration, the computation com-
plexity is linear on the number of vectors and
the number of clusters, while the algorithm con-
verges within few iteration. Hence the complexity

12



‘ Method ‘ decom. time ‘ query time ‘ Storage ’ 6 Experimental results

Full 0 O(nmK) | O(mn)
LSI O(n’m) O(nNK) | O(Nn)
OCM O(k%*m) O(nkK) O(kn)
Exact O(n’m) O(nkK) O(kn)
Appr. O(nm) O(nkK) O(kn)
Table 1: Comparison of decomposition, query

time and storage requirement

of the K-Means step for cluster i is O(s;n;m) =
O(s'n;ym), where n; is the size of the ith cluster.
Therefore, the total time for all the k clusterings

o (%))

> ni
=1
O(s'nm).

Hence the total complexity for our approxima-
tion algorithm is O(k%s>m + s'nm). Since s’ is
usually chosen to be a small number and k is
much smaller than n, the complexity is simpli-
fied to be O(nm).

Note, since the K-Means clustering for each
cluster is independent to each other, we can take
advantage of this by applying K-Means for all the
clusters in parallel, hence further reducing the
running time complexity. Moreover for the situ-
ation when the memory can’t hold all the data
points simultaneously, the above approximation
algorithm can process every cluster individually,
thus also reduce the memory requirement.

k
0] (Z s'nim)
i=1

Table 1 lists the complexity of different meth-
ods discussed above. K-nearest neighbor algo-
rithm is used for document query. In the exper-
iments in next section, we choose three different
numbers for K, i.e. K = 1, 7, and 15. Note,
for LSI, we compute SVD for the full matrix,
hence the complexity of the decomposition step
is O(n?m). However, if the reduced dimension N
is small, the complexity can be lower.

13

6.1 Datasets

In the following experiments, we used three dif-
ferent datasets, summarized in Table 2. For
all datasets, we used a stop-list to remove com-
mon words, and the words were stemmed using
Porter’s suffix-stripping algorithm [19]. More-
over, any term that occurs in fewer than two
documents was eliminated as in [24]. Dataset
1 is derived from the TREC-5, TREC-6, and
TREC-7 collections [22]. It consist of 210 doc-
uments in a space of dimension of 7454, with 7
classes. Each class has 30 documents. Datasets
2 and 3 are from Reuters-21578 text categoriza-
tion test collection Distribution 1.0 [16]. Dataset
2 contains 4 classes, with each containing 80 el-
ements. The dimension of the second document
set is 2887. Dataset 3 has 5 classes, each with
98 elements. The dimension of the document
set is 3759. (These datasets are available at
www.cs.umn.edu/~jieping/Research.html .)

For all the examples, we used the tf-idf weight-
ing scheme [20, 24]. More specifically, let

dyp= (8, s+, tn)

be the term-frequency vector for one of the docu-
ments, where tf; is the frequency of the 7th term
in the document. Then the t¢f-idf representation
of this document is

dtf_zdf: (tfl log(N/df1)7 RN 7/ log(N/dfm)) )

where NV is the total number of documents in the
collection, and df; is the number of documents
that contains the ith term, i.e. the document fre-
quency. Finally, to account for documents of dif-
ferent lengths, the length of each document vec-
tor is normalized so that it is of unit length.

6.2 Experimental methodology

To evaluate the proposed methods in this paper,
we compared them with the other dimension re-
duction methods discussed in Section 5 on the
three datasets. The K-Nearest Neighbor algo-
rithm (for K = 1,7,15) [6] was applied to eval-
uate the quality of different dimension-reduction



’ Data Set ‘ 1 ‘ 2 ‘ 3 ‘
Source TREC | Reuters-21578 |
# of documents | 210 320 | 490
# of terms 7454 2887 | 3759
# of classes 7 4 5

Table 2: Summary of datasets used for evaluation

algorithms as in [18, 9]. For each method, we
applied 10-fold cross validation to compute mis-
classification rate. For LSI, the results depend on
the choice of reduced dimension N. In the follow-
ing experiments, we applied LSI on two different
values of N. One of them equals the optimal
reduced dimension used in the exact algorithm.
While LST does not work well if the reduced di-
mension N is small, and the optimal dimension
in our exact algorithm is typically very small, we
also apply LSI on a much larger reduced dimen-
sion N = 100.

The clustering using the K-Means in the ap-
proximation algorithm is sensitive to the choices
of the initial centroids. To mitigate this, we ran
the algorithm 10 times, and the initial centroids
for each run were generated randomly. The final
result is the average over the 10 different runs.

6.3 Results

6.3.1 Effect of s’ on the approximation al-
gorithm

As mentioned in Section 4, our approxima-
tion algorithm worked well for small values of
s'. We tested our approximation algorithm on
Datasets 1-3 for different values of s’, ranging
from 2 to 30, and computed the misclassifica-
tion rates. As seen from Figure 1, the rates
did not fluctuate very much within the range.
In our experiments, we chose s’ = 8. (All fig-
ures in this paper may be viewed in color at

www.cs.umn.edu/~jieping/Research.html .)
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Figure 1: Effect of s’ on the approximation algo-
rithm using Datasets 1-3

6.3.2 Comparison of misclassification

rates

We made a comparison of our exact and approx-
imation algorithms with other competing algo-
rithms based on the misclassification rates, using
the three datasets in Table 2.

The results for Datasets 1-3 are summarized
in Figure 2-Figure 4, respectively, where the
z-axis is three different choices of K (K
1,7,15) used in KNN for classification, and the
y-axis is the misclassification rate. For each K,
the misclassification rates for different methods
(“FULL”, “LSI-17,“LSI-2”, “OCM”, “EXACT”,
and “APPR”) are ordered from left to right. Here
“FULL” is the method without any dimension al-
gorithm, “LSI-1” is the Latent Semantic Indexing
algorithm with reduced dimension N = ¢, where
£ is the optimal reduced dimension in our exact
algorithm, and “LSI-2” is the Latent Semantic
Indexing algorithm with the reduced dimension
N = 100. “OCM” is the Orthogonal Centroid
Method. “EXACT” and “APPR” are the exact
and approximation algorithms proposed in this
paper.

In Dataset 1, since the number of terms (7454)
in the term document matrix is larger than the
number of documents (210), both S, and S,
are singular and classical discriminant analysis
breaks down. However our proposed generalized
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discriminant analysis circumvents this problem.
Our exact and approximation algorithm reduce
the dimension m = 7454 to 6* = 6, while the
orthogonal centroid method (OCM) reduces the
dimension to seven. We applied LSI with the
reduced dimension N = 6 and N = 100. As
shown in Figure 2, our exact and approximation
algorithms work better than the other methods,
while the results produced by the approximation
algorithm are fairly close to those of the exact
one. Figure 2 also shows better performance of
OCM over LSI and Full.
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Figure 2: Performance of different dimension re-
duction methods using Dataset 1
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Figure 3: Performance of different dimension re-
duction methods using Dataset 2

For Datasets 2 and 3, the number of documents
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Figure 4: Performance of different dimension re-
duction methods using Dataset 3

is smaller than the document dimension, hence
classical discriminant analysis again breaks down.
Again, the results (Figure 3 and Figure 4) show
that our exact and approximation algorithms per-
form better than the other methods. More inter-
estingly, the approximation algorithm works al-
most as well as the exact one.

6.3.3 Effect of the reduced dimension on
the exact algorithm and on LSI

As is well known, the choice of the reduced di-
mension is a serious problem for LSI. In Section 3,
we show our exact algorithm using generalized
discriminant analysis has optimal reduced dimen-
sion 6*, which equals the rank of the matrix Hj
and is typically very small. We also mentioned
in Section 3, that our exact algorithm may not
work very well if the reduced dimension is chosen
to be much smaller than the optimal one.
Figures 5-7 illustrate the effect of different
choices for the reduced dimension on our exact
algorithm and on LSI. K = 7 nearest neighbors
have been used for classification. The z-axis is
the value for the reduced dimension, and the y-
axis is the misclassification rate. For each re-
duced dimension, the results for our exact algo-
rithm and LSI are ordered from left to right. Our
exact algorithm outperforms LSI in almost all
cases, especially for reduced dimension around
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Figure 5: Comparison between our exact algo-
rithm (optimal reduced dimension §* = 6) and
LSI on different values of reduced dimension us-
ing Dataset 1

0*. The results also show and further confirm
our theoretical results on the optimal choice of
the reduced dimension for our exact algorithm as
discussed in Section 3.
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Figure 6: Comparison between our exact algo-
rithm (optimal reduced dimension §* = 3) and
LST on different values of reduced dimension us-
ing Dataset 2
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Figure 7: Comparison between our exact algo-
rithm (optimal reduced dimension §* = 4) and
LSI on different values of reduced dimension us-
ing Dataset 3

6.3.4 Class visualization of

dimensional data in 2D

high-

Our final experiment is to visualize the high-
dimensional data by projecting onto the 2-
dimensional plane as done in [5]. We extracted
240 data points, from three distinct classes in
Dataset 2. Our exact and approximation di-
mension reduction algorithms and LSI are com-
pared. We did not consider the Orthogonal Cen-
troid Method, since it projects the data onto 3-
dimensional space. The result is shown in Fig-
ures 8-10. Note that the three classes in Figure 9
and Figure 10 using our exact and approximation
algorithms are better separated than those in Fig-
ure 8, where the data were projected using LSI
with the reduced dimension equal to 2.

6.4 Analysis

The results from the previous section show sev-
eral interesting points:

1. In general, the dimension reduction algo-
rithms, like OCM and our exact and approx-
imation algorithms do improve the perfor-
mance for classification, even for very high
dimensional data sets, like those derived
from text documents. The dimensional re-
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approximation algorithm

duction step may be time-consuming, but it
dramatically reduces the query time.

. Algorithms using the label information like
our proposed exact and approximation al-
gorithms, and the Orthogonal Centroid
Method have better performance than those
without using the label information, like
LSI. The results also show better perfor-
mance of our proposed exact and approxi-
mation algorithms over the Orthogonal Cen-
troid Method.

. Our approximation algorithm deals with a
much smaller size problem, compared with
the one in the exact algorithm. However, the
results from all the experiments show they
have similar misclassification rates, while
the approximation algorithm has much lower
running time complexity.

. In all of the examples in this paper, we found
out the optimal reduced dimension of our ex-
act and approximation algorithms §* equal
to k — 1, where k is the number of clusters
in the document set. However, it is possible
that 6* < k — 1, if the k centroids lie in a
subspace with dimension less than k — 1.

7 Conclusions

A new criterion for generalized linear discrimi-
nant analysis is presented. The new criterion is
applicable to the undersampled problems, thus
overcoming the limitation of the classical linear
discriminant analysis. A new formulation for the
proposed generalized linear discriminant analy-
sis based on the trace optimization is discussed.
Generalized singular value decomposition is ap-
plied to solve the optimization problem. The so-
lution from the LDA/GSVD algorithm is a spe-
cial case of the solution for this new optimization
problem.

The exact algorithms involve the matrix H,, €
R™*™ with high column dimension n. To reduce
the decomposition time for the exact algorithm,
an approximation algorithm is presented, which
applies K-Means algorithm to each cluster and
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replace the cluster by the centroids of the re-
sulting sub-clusters. The column dimension of
the matrix H,, is reduced dramatically, therefore
reducing the complexity for the computation of
GSVD. Experimental results on various real data
set show that the approximation algorithm pro-
duces results close to those produced by the exact
algorithm.
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