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AbstratGiven a olletion of boolean spatial features, the o-loation pattern disoveryproess �nds the subsets of features frequently loated together. For example, theanalysis of an eology dataset may reveal the frequent o-loation of a �re igni-tion soure feature with a needle vegetation type feature and a drought feature.The spatial o-loation rule problem is di�erent from the assoiation rule prob-lem. Even though boolean spatial feature types (also alled spatial events) mayorrespond to items in assoiation rules over market-basket datasets, there is nonatural notion of transations. This reates diÆulty in using traditional measures(e.g. support, on�dene) and applying assoiation rule mining algorithms whihuse support-based pruning. We propose a notion of user-spei�ed neighborhoods inplae of transations to speify groups of items. New interest measures for spatialo-loation patterns are proposed whih are robust in the fae of potentially in�-nite overlapping neighborhoods. We also propose a family of algorithms to minefrequent spatial o-loation patterns. Experimental results are provided to showthe strength of eah algorithm and design deisions related to performane tuning.Keywords: spatial data mining, Geographi Information System, spatial o-loationrules, spatial assoiation rules, partiipation index.
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1 IntrodutionWidespread use of spatial databases [10, 24, 25, 36℄ is leading to an inreasing interest inmining interesting and useful but impliit spatial patterns [9, 16, 20, 23, 32, 26, 28, 5, 29,35℄. For example, E-servies are growing along with mobile omputing infrastruturessuh as PDAs and elluar phones. Finding E-servies frequently loated together is ofinterest to businesses that want to ondut loation sensitive market promotions suhas promoting a taxi servie for ustomers who reserve an E-tiket in some loations. Ineology, sientists are interested in �nding frequent o-ourrenes among boolean spatialfeatures, e.g., drought, El Nino, substantial inrease in vegetation, substantial drop invegetation, extremely high preipitation, et. EÆient tools for extrating informationfrom geo-spatial data, the fous of this work, are ruial to organizations whih makedeisions based on large spatial datasets. These organizations are spread aross manydomains inluding eology and environmental management, publi safety, transportation,publi health, business, and tourism [3, 14, 18, 11, 32, 37℄.Assoiation rule �nding [13, 1, 2, 13, 22, 30, 31, 33℄ is an important data miningtehnique whih has helped retailers interested in �nding items frequently bought togetherto make store arrangements, plan atalogs, and promote produts together. Spatialassoiation rules [17℄ are spatial ases of general assoiation rules where at least oneof the prediates is spatial. Assoiation rule mining algorithms [1, 2, 12℄ assume thata �nite set of disjoint transations are given as input to the algorithms. In marketbasket data, a transation onsists of a olletion of item types purhased together by austomer. Algorithms like apriori [2℄ an eÆiently �nd the frequent itemsets from allthe transations and assoiation rules an be found from these frequent itemsets.Many spatial datasets onsist of instanes of a olletion of instanes of booleanspatial features (e.g., drought, needle leaf vegetation). Figure 1 a) shows the frequento-ourrenes of some point spatial feature types represented by di�erent shapes. As anbe seen, instanes of spatial features in sets f`+', `�'g and f`o', `*'g tend to be loatedtogether. Figure 1 b) shows an instane of o-loation patterns among extended spatialfeatures, namely road-types, on an urban road map. Highways often have frontage roadsnearby in large metropolitan areas, e.g. Minneapolis. Identi�ation of suh o-loationsis useful in seleting test-sites for evaluating in-vehile navigation tehnology [38℄. Whileboolean spatial features an be thought of as item types, there may not be an expliit�nite set of transations due to the ontinuity of the underlying spae.We formalize the o-loation rule mining problem as follows: Given 1) a set T of K
1



0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80
Co−location Patterns − Sample Data

X

Y

(a) (b)
Figure 1: a) Point Spatial Co-loation Patterns Illustration. Shapes represent di�erentspatial feature types. Spatial features in sets f`+', `�'g and f`o', `*'g tend to be loatedtogether. b) Line String Co-loation Patterns Illustration. Highway 100 and NormandaleRoad are o-loated for several hundred meters. Highways are often o-loated withfrontage roads.
spatial feature types T = ff1; f2; : : : ; fKg and their instanes P = fp1; p2; : : : ; pNg, eahpi 2 P is a vetor < instane-id, spatial feature type, loation > where loation 2 spatialframework S, 2) A symmetri and reexive neighbor relation R over loations in S, 3) Minprevalene threshold (min prevalene) and min onditional probability (min ond prob);eÆiently �nd orret and omplete set of o-loation rules with partiipation index> min prevalene and onditional probability > min ond prob.
Related Work: Approahes to disovering o-loation rules in the literature an beategorized into two lasses, namely spatial statistis and assoiation rules. Spatialstatistis-based approahes use measures of spatial orrelation to haraterize the re-lationship between di�erent types of spatial features. Measures of spatial orrelationinlude ross-k funtion with Monte Carlo simulation [7℄, hi-square tests, orrelation o-eÆients, and regression models [6℄ as well as their generalizations using spatial neighbor-hood relationships. Computing spatial orrelation measures for all possible o-loationpatterns an be omputationally expensive due to the exponential number of andidate
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subsets given a large olletion of spatial boolean features.Assoiation rule-based approahes fous on the reation of transations over spae sothat an apriori like algorithm [2℄ an be used. Transations over spae an be de�nedusing a window-entri model [27℄, a referene-feature entri model [17℄ or an ad-hodata-partition [21℄ approah. Thewindow entri model is relevant to appliations likemining, surveying, and geology, whih fous on land-parels. A goal is to predit sets ofspatial features likely to be disovered in a land parel given that some other features havebeen found there. The window entri model enumerates all possible windows as transa-tions. In a spae disretized by a uniform grid, windows of size k� k an be enumeratedand materialized, ignoring the boundary e�et. Eah transation ontains a subset ofspatial features of whih at least one instane ours in the orresponding window. Thesupport and on�dene of the traditional assoiation rule problem may be used as preva-lene and onditional probability measures as summarized in Table 2 (seeAppendix B).There are four windows orresponding to four transations in Figure 2 a). Two windowsontain B and only one ontains both B and C. An example of an assoiation rule ofthis model is: an instane of typeB in awindow ! an instane of typeC in thiswindowwith 12 = 50% probability. A speial ase of the window entri model relates to thease when windows are spatially disjoint and form a partition of spae. This ase isrelevant when analyzing spatial datasets related to the units of politial or administra-tive boundaries (e.g. ountry, state, zip-ode). In some sense this is a loal model sinewe treat eah arbitrary partition as a transation to derive o-loation patterns withoutonsidering any patterns aross partition boundaries.Another approah is based on the hoie of a referene spatial feature [17℄. Thereferene feature entri model is relevant to appliation domains fousing on aspei� boolean spatial feature, e.g. aner. Domain sientists are interested in �ndingthe o-loations of other task relevant features (e.g. asbestos, other substanes) to thereferene feature. This model enumerates neighborhoods to \materialize" a set of trans-ations around instanes of the referene spatial feature. A spei� example is providedby the spatial assoiation rule [17℄. Transations are reated around instanes of oneuser-spei�ed spatial feature. The assoiation rules are derived using the apriori [2℄ al-gorithm. The rules found are all related to the referene feature. For example, onsiderthe spatial dataset in Figure 2(a) with three feature types, namely A;B and C. Eahfeature type has two instanes. The neighbor relationship between instanes is shown asan edge. Co-loation (A;B) and (B;C) may be onsidered to be frequent in this exam-ple. Figure 2(b) shows transations reated by hoosing C as the referene. Co-loation
3



(A;B) will not be found sine it does not involve the referene feature. Generalizingthis paradigm to the ase where no referene feature is spei�ed is non-trivial. De�ningtransations around loations of instanes of all features may yield dupliate ounts formany andidate assoiations. De�ning transations by an ad-ho data-partition approah[21℄ attempts to measure the frequeny of a o-loation pattern by grouping the spatialinstanes into disjoint partitions. However, imposing arti�ial disjoint transations viaspae partitioning often underounts instanes of tuples interseting the boundaries ofarti�ial transations or double-ounts instanes of tuples o-loated together. In ad-dition, there may be multiple partitions yielding distint sets of transations, whih inturn yields di�erent values of support of the o-loation. Figure 2 ) shows two pos-sible partitions for the dataset of Figure 2 a), along with the support for o-loation(A;B). The ad-ho approah is partitioning sensitive and thus the prevalene measureis ill-de�ned. A di�erent grouping may result in di�erent values of the support measureand thus di�erent o-loation patterns.In reent work, we developed an event entri model. For point spatial feature whihprovides a transation-free approah by using the onept of neighborhood. The evententri model is relevant to appliations like eology where there are many types ofboolean spatial features. Eologists are interested in �nding subsets of spatial featureslikely to our in a neighborhood around instanes of given subsets of event types. Forexample, let us determine the probability of �nding at least one instane of feature typeB in the neighborhood of an instane of feature type A in Figure 2 a). There are twoinstanes of type A and both have some instane(s) of type B in their neighborhoods.The onditional probability for the o-loation rule is: spatial feature A at loation l !spatial feature type B in neighborhood is 100%. This yields a well-de�ned prevalenemeasure(i.e. support) without the need for transations. Figure 2 d) illustrates that ourapproah will identify both (A;B) and (B;C) as frequent patterns.
Our Contributions: This paper extends our reent work [27℄ on the event entrimodel and makes the following new ontributions. First, it presents a generalized al-gorithm to disover o-loation patterns from point spatial datasets. The generalizedalgorithm inludes a novel multi-resolution �lter step. Seond, it also provides proofs oforretness and ompleteness for the generalized algorithm. Finally the paper providesan experimental performane evaluation to ompare alternative hoies for key designdeisions, suh as the use of a multi-resolution �lter.
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Figure 2: Example to Illustrate Di�erent Approahes to Disovering Co-loation Patternsa) Example dataset. Grid is imposed to illustrate window enter model b) Ad ho datapartition approah. Support measure is ill-de�ned and order sensitive ) Referene featureentri model d) Event entri model
Outline: Setion 2 desribes our approah for modeling o-loation patterns and theassoiated measures of prevalene and onditional probability. Setion 3 proposes afamily of algorithms to mine o-loation patterns; an analysis of the algorithms in theareas of orretness, ompleteness, and omputational eÆieny is presented in setion4. We present the experimental setup and results in setion 5. Finally, setion 6 presentsthe onlusion and future work.
2 Our Approah for Modeling Co-loation PatternsGiven the diÆulty in reating expliit disjoint transations from ontinuous spatial data,this setion de�nes our approah, namely the event entrimodel, to model o-loationpatterns. We use Figure 3 as an example spatial dataset to illustrate the model. In the�gure, eah instane is uniquely identi�ed by T:i, where T is the spatial feature type andi is the unique id inside eah spatial feature type. We de�ne the following basi oneptsto failitate the desription of our model.A o-loation is a subset of boolean spatial features. A o-loation rule is of theform: C1 ! C2(p; p), where C1 and C2 are o-loations, C1 \ C2 = �, p is a numberrepresenting the prevalene measure, and p is a number measuring onditional probabil-ity. Prevalene measures and onditional probability measures, alled interest measures,are de�ned di�erently in di�erent models. The window entri and the referene fea-ture entri models \materialize" transations and thus an use traditional support andon�dene measures.Neighborhood is an important onept in the event entri model. Given a reexiveand symmetri neighbor relationR, we an de�ne neighborhoods of a loation l as follows:A neighborhood of l is a set of loations L = fl1; : : : ; lkg suh that li is a neighbor of5
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Figure 3: Spatial dataset to illustrate event entri model
l i.e. (l; li) 2 R (8i 2 1 : : : k). This de�nition satis�es the following two onditions fromTopology [36℄: First, every loation is in some neighborhood beause of the reetiveneighbor relationship. Seond, the intersetion of any two neighborhoods of any loationl ontains a neighborhood of l. We generalize the neighborhood de�nition to a olletionof loations. For a subset of loations L', if L' is a neighborhood of every loationin L = fl1; : : : ; lkg then L' is a neighborhood of L. In other words, if every l1 inL0 is a neighbor of every l2 in L, then L0 is a neighborhood of L. The de�nition ofneighbor relation R is an input and is based on the semantis of the appliation domains.The neighbor relation R may be de�ned using topologial relationships (e.g. onneted,adjaent), metri relationships (e.g. Eulidean distane) or a ombination (e.g. shortest-path distane in a graph suh as a road-map). Enumerating all the neighborhoods inurssubstantial omputational ost beause support-based pruning annot be arried outbefore the enumeration of all the neighborhoods is ompleted and the total numberof neighborhoods is obtained. Thus the partiipation index is proposed in the nextparagraph to be a prevalene measure to failitate pruning.I = fi1; i2; : : : ; ikg is a row instane of a o-loation C = ff1; : : : ; fkg if ij is aninstane of feature fj(8j 2 1; : : : ; k) and I is a neighborhood of I itself, i.e. elementsof I are neighbors to eah other. For example, fA:3; B:4; C:1g is an instane of o-loation fA; B; Cg in the illustration spatial dataset shown in Figure 3. The tableinstane of a o-loation C = ff1; : : : ; fkg is the olletion of all row instane of C.
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The partiipation ratio Pr(C; fi) for feature type fi in a o-loation C = ff1; : : : ; fkgis the fration of instanes of fi whih partiipate in any row instane of o-loationC. The ratio an be omputed as jdistint(�fi (table instane of C))jjinstane of ffigj , where � is a relationalprojetion operation. For example, in Figure 3, row instanes of o-loation fA;Bg aref(A:1; B:1); (A:2; B:4); (A:3; B:4)g. Only two out of �ve instanes, B:1 and B:4 of spatialfeature B, partiipate in o-loation fA;Bg. So Pr((A;B); B) = 2=5 = 0:4.The partiipation index of a o-loation C = ff1; : : : ; fkg is minki=1fPr(C; fi)g.In Figure 3, the partiipation ratio Pr(fA;Bg; B) of feature B in o-loation fA;Bg is0.4 as alulated above. Similarly, Pr(fA;Bg; A) is 0.75. The partiipation index(A;B)= min(0.75, 0.4) = 0.4. The onditional probability of a o-loation rule C1 ! C2 isthe probability of �nding an instane of C2 in a neighborhood of instane of C1. It anbe omputed as jdistint(�C1(all row instane of C1[C2))jjinstane of C1j where � is a projetion operation.
3 Mining Co-loation PatternsAs shown in Figure 4, the algorithm takes a set ET of spatial event types, a set E ofevent instanes, user-de�ned funtions representing spatial neighborhood relationshipsas well as interest measures (e.g prevalene, onditional probability) and thresholds forprevalene based pruning. It assumes that the prevalene measure is monotoni in size ofo-loations. The algorithm outputs a set of prevalent o-loation rules with the valuesof the interest measures.The initialization step assigns starting values to various data-strutures used in thealgorithm. We note that our prevalene measure evaluates to 1 for all o-loations of size1. In other words, all o-loations of size 1 are prevalent and there is no need for eitherthe omputation of a prevalene measure or prevalene-based �ltering. Thus, the set C1of andidate o-loations of size 1 as well as the set P1 of prevalent o-loations of size 1are initialized to ET, the set of boolean spatial event types. The set T1 of table instanesof size 1 o-loation is reated by sorting the set E of event instanes by event types.The proposed algorithms for mining o-loation rules iteratively perform four basitasks, namely generation of andidate o-loations, generation of table instanes of an-didate o-loations, pruning, and generation of o-loation rules. These tasks are arriedout inside a loop iterating over the size of the o-loations. Iterations start with size 2sine our de�nition of prevalene measure allows no pruning for o-loations of size 1.We desribe the omputational struture of eah task in forthoming subsetions.
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Input:
     (a) E = {Event-ID, Event-Type, Location in Space} representing a set of events;
          ET = {Set of boolean spatial event types};
     (b) Neighborhood relationship function; pair of spatial points;
     (c) Interest measure function (e.g. prevalence, conditional probability);
     (d) Threshold on prevalence measure and conditional probability;
Output:
     A set of co-locations with values of interest measures (i.e. prevalence, conditional
     probability) satisfying threshold.
Data Structure:
      k = Co-location size
      Ck = set of candidate size k co-locations in iteration k = 1, 2, ..., P
      Tk = set of table instances of co-locations in Ck for k = 1, 2, ..., P
      Pk = set of prevalent size k co-locations for k = 1, 2, ..., P
      Rk = set of co-location rules of size k for k = 1, 2, ..., P
      T_Ck = set of coarse-level table instances of size k co-location in Ck for k= 1, 2, ..., P
Steps:
      Co-location-size k = 1
      C1 = ET;
      P1 = ET;
      T1 = generate_table_instance(C1, E);

      Initialize data structure Ck, Tk, Pk, Rk, T_Ck to be empty for k >1
      while(not empty Pk) do{
           Ck+1 = generate_candidate_colocation (Ck, k);
           if (fmul = true) then {
                    Ck+1 = multi_resolution_pruning (Ck+1);
            }
           Tk+1 = generate_table_instance (    , Ck+1, Tk);
           Pk+1 = select_prevalent_colocation(    , Ck+1, Tk+1);
           Rk+1 = generate_colocation_rule (Pk+1, Tk+1);
      }
      return union (R2, ..., Rk+1);

q
q

Figure 4: Overview of algorithms
3.1 Generation of Candidate Co-loationsThe partiipation ratio is monotonially non-inreasing with the size of the o-loationinreasing beause any spatial feature that partiipates in a row instane of a o-loation partiipates in a row instane of a o-loation 0 where 0 � . The partiipationindex is also monotoni beause 1) the partiipation ratio is monotoni 2) pi([ fk+1) =mink+1i=1 fpr( [ fk+1; fi)g � minki=1fpr( [ fk+1; fi)g � minki=1fpr(; fi)g = pi(). Giventhis property, a spatial feature level pruning approah an be e�etive. We ould alsorely on a ombinatorial approah and use apriori gen [2℄ to generate size k+1 andidateo-loations from size k prevalent o-loations.The apriori-gen funtion takes as argument Lk�1, the set of all large (k-1)-itemsets.The funtion works as follows. First, in the join step, we join Lk�1 with Lk�1. This step
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is spei�ed in a SQL-like syntax as follows:insert into Ckselet p.item1, p.item2,: : : , p.itemk�1, q.itemk�1, p:table instane id, q:table instane idfrom Lk�1 p, Lk�1 qwhere p.item1 = q.item1, : : : , p.itemk�2 = q.itemk�2, p.itemk�1 < q.itemk�1;Next, in the prune step, we delete all itemsets  2 Ck suh that some (k � 1)-subsetof  is not in Lk�1:
forall itemsets  2 Ck doforall (k � 1)-subsets s of  doif (s =2 Lk�1) then delete  from Ck;
Note that Lk�1, Lk, and Ck are nested tables [34℄ where olumns table instane idrefer to table instane of appropriate o-loations.

3.2 Generation of Table Instanes of Candidate Co-loationsComputation for generating size k + 1 andidate o-loations an be expressed as thefollowing join query:forall o-loation  2 Ck+1insert into T /* T is the table instane of o-loation  */selet p.instane1, p.instane2, : : : , p.instanek, q.instanekfrom .table instane id1 p, .table instane id2 qwhere p.instane1=q.instane1, : : : , p.instanek�1=q.instanek�1, (p.instanek,q.instanek) 2 R;end;
It takes the size k + 1 andidate o-loation set Ck+1 and table instanes of thesize k prevalent o-loations as arguments and works as follows: .table instane id1and .table instane id2 speify the table instanes of the two o-loations joined inapriori gen to produe . Here, a sort-merge join is preferred beause the table in-stanes of eah iteration an be kept sorted for the next iteration. This follows from asimilar property of apriori-gen [2℄. Sort order is based on an ordering of the set of item-types to order item-types in a o-loation to form the sort-�eld. Finally, all o-loationswith empty table instane will be eliminated from Ck+1.The join omputation for generating table instanes has two onstraints, namely a spa-tial neighbor relationship onstraint (p.instanek, q.instanek) and a ombinatorial dis-tint event-type onstraint (p.instane1=q.instane1, : : : , p.instanek�1=q.instanek�1).
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We examine three strategies for omputing this join, a geometri strategy, a ombina-torial strategy and a hybrid strategy. These are desribed in forthoming subsetions.Exploration of other join strategies is beyond the sope of this paper but we may exploresuh strategies in future work.
Geometri Approah: This approah an be implemented by neighborhoodrelationship-based spatial joins of table instanes of prevalent o-loations of size k withtable instane sets of prevalent o-loations of size 1. In pratie, spatial join operationsare divided into a �lter step and a re�nement step [24℄ to eÆiently proess omplexspatial data types suh as point olletions in a row instane. In the �lter step, thespatial objets are represented by simpler approximations suh as the MBR - MinimumBounding Retangle. There are several well-known algorithms, suh as plane sweep [4℄,spae partition [15℄ and tree mathing [19℄, whih an then be used for omputing thespatial join of MBRs using the overlap relationship; the answers from this test formthe andidate solution set. In the re�nement step, the exat geometry of eah elementfrom the andidate set and the exat spatial prediates are examined along with theombinatorial prediate to obtain the �nal result.
Combinatorial Approah: The ombinatorial join prediate (i.e. p.instane1 =q.instane1, : : : , p.instanek�1=q.instanek�1) an be proessed eÆiently using asort-merge join strategy [8℄, sine the set of feature types is ordered and tables.table instane id1 and .table instane id2 are sorted. The resulting tuples are hekedfor the spatial ondition (p.instanek, q.instanek) to get the row-instane in the result.
Example 1 In Figure 3, table 4 of o-loation fA;Bg and table 5 of o-loation fA;Cgare joined to produe the table instane of o-loation fA;B;Cg beause o-loationfA;Bg and o-loation fA;Cg were joined in apriori gen to produe o-loation fA;B;Cgin the previous step. In the example, row instane f3; 4g of table 4 and row instane f3; 1gof table 5 are joined to generate row instane f3; 4; 1g of o-loation fA;B;Cg (Table 7).Row instane f1; 1g of table 4 and row instane f1; 2g of table 5 fail to generate rowinstane f1; 1; 2g of o-loation fA;B;Cg beause instane 1 of B and instane 2 of Care not neighbors.
Hybrid approah: This approah hooses the more promising of the spatial and om-binatorial approahes in eah iteration. In our experiment, it piks the spatial approah
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to generate table instanes for o-loations of size 2 and the ombinatorial approah forgenerating table instanes for o-loations greater than size 2.
3.3 PruningCandidate o-loations an be pruned using the given threshold � on the prevalenemeasure. In addition, multi-resolution pruning an be used for spatial dataset withstrong auto-orrelation [7℄, i.e., where instanes of eah spatial feature types tend to beloated near eah other.
Prevalene-Based Pruning: We �rst alulate the partiipation indexes for all andi-date o-loations in Tk+1. Computation of the partiipation indexes an be aomplishedby keeping a bitmap of size ardinality(fi) for eah feature fi of o-loation C. Onesan of the table instane of C will be enough to put 1s in the orresponding bits ineah bitmap. By summarizing the total number of 1s (pfi) in eah bitmap, we obtainthe partiipation ratio of eah feature fi (divide pfi by jinstane of fij). In Figure 3), to alulate the partiipation index for o-loation fA;Bg, we need to alulate thepartiipation ratios for A and B in o-loation fA;Bg. Bitmap bA= (0,0,0,0) of size fourfor A and bitmap bB = (0,0,0,0,0) of size 5 for B are initialized to zeros. Sanning oftable 4 will result in bA= (1,1,1,0) and bB = (1,0,0,1,0). Three out of four instanes ofA (i.e., 1, 2, and 3) partiipate in o-loation fA;Bg. Thus the partiipation ratio for Ais .75. Similarly, the partiipation ratio for B is .4. The partiipation index is minf.75,.4g = .4.After the partiipation indexes are determined, prevalene-based pruning is arriedout and non-prevalent o-loations and their table instanes are deleted from the an-didate prevalent o-loation sets. For eah remaining prevalent o-loation C afterprevalene-based pruning, we keep a ounter to speify the ardinality of the table in-stane of C. All the table instanes of the prevalent o-loations in this iteration will bekept for generation of the prevalent o-loations of size k+2 and disarded after the nextiteration.
Multi-resolution Pruning: Multi-resolution pruning is learned on a summary of spa-tial data at a oarse resolution using a simple reti-linear grid. We ombine all instanesof a spatial feature f in eah ell (x; y) in the grid as a new oarse instane< (x; y); f;m >in the oarse spae where m is the number of instanes of spatial point feature f in ell(x; y). For eah andidate o-loation generated by apriori gen, we generate its oarse
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table instane using new oarse instanes and its oarse partiipation index based onthe oarse table instane. Multi-resolution pruning eliminates a o-loation if its oarsepartiipation indexes fall below the user given threshold. We illustrate the idea with oneexample now.
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Figure 5: Multi-resolution Co-loation Miner Algorithm Illustration
In Figure 5 a), di�erent shapes represent di�erent point spatial feature types. Everyinstane has a unique ID in its spatial feature type and is labeled below it in the �gure.A grid with uniform ell size d is super-imposed on the dataset. Cells (i,j) refer to ellswith an x-axis index of i and a y-axis index of j. In this grid, two ells are oarse-neighbors if their enters are in a ommon square of size d � d, whih imposes an 8-neighborhood(North, South, East, West, North East, North West, South East, SouthWest) on the ells. For example, ell-pairs ((0, 3), (0, 4)), ((0, 3), (1, 3)) and ((0, 4), (1,3)) illustrate oarse-neighbors. This oarse-neighborhood de�nition guarantees that twoells are neighbors if there exists a pair of points from eah of the two ells whih areneighbors in the original dataset.First we generate oarse table instanes of andidate o-loations of size k + 1 byjoining the oarse table instanes with the oarse-neighbor relationships.Next we alulate the partiipation indexes for all andidate o-loations based on12



the oarse table instanes. For eah spatial feature fi, we add up all the ounts of pointinstanes in eah oarse instane with 1s in its orresponding bitmap (pfi) and dividethis by jinstane of fij to get the oarse-partiipation ratio of feature fi. For example,oarse Pr((?; Æ); ?) = 4=7 sine there are 4 oarse row instanes of (?; Æ) and 7 �ne-graininstanes of ?. Similarly, oarse Pr((?; Æ); Æ) = 4=4 = 1, yielding oarse partiipationindex(?; Æ) = min(4=7; 4=4) = 4/7. Figure 5 b) shows oarse table instanes of o-loations (?; �); (?; Æ) and (?; �). If the threshold for prevalene is set to 0.6, theno-loation 5 an be pruned by multi-resolution pruning. We also note that the sizesof oarse table instanes are smaller than the sizes of table instanes at �ne resolution.This shows the possibility of omputation ost saving via multi-resolution pruning forlustered datasets. Finally, the examples in Figure 5 b) show that the oarse partiipationratios and partiipation indexes never underestimate the true partiipation indexes of theoriginal dataset.
3.4 Generating Co-loation RulesThe gen rules generates all the o-loation rules with the user de�ned min prev andmin ond prob. The onditional probability of a o-loation rule C1 ! C2 in the evententri model is the probability of �nding C2 in a neighborhood of C1. It an be formallyde�ned as: jdistint(�C1 (all row instane of C1[C2))jjinstane of C1j where � is a projetion operation. Bitmapsor other data strutures an be used for eÆient omputation using the same strategiesfor prevalene-based pruning.
4 Analysis of the Co-loation Mining AlgorithmsIn this setion, we analyze the o-loation mining algorithms in the areas of ompleteness,orretness, and omputational omplexity.
4.1 Completeness and CorretnessLemma 1 The partiipation ratio and partiipation index are monotonially non-inreasing as the size of the o-loation inreases.
Proof: The partiipation ratio is monotoni beause a spatial feature instane that par-tiipates in a row instane of a o-loation  partiipates in a row instane of a o-loation
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0 where 0 � . The partiipation index is also monotoni beause 1) the partiipation ra-tio is monotoni and 2)pi([fk+1) = mink+1i=1 fpr([fk+1; fi)g � minki=1fpr([fk+1; fi)g �minki=1fpr(; fi)g = pi(). Given this property, spatial feature level pruning an be e�e-tive. We an also rely on a ombinatorial approah and use apriori gen [2℄ to generatesize k + 1 andidate o-loations from size k prevalent o-loations.
Lemma 2 The oarse partiipation index omputed by multi-resolution pruning neverunderestimates the true partiipation indexes of the original dataset. The andidate o-loation set found is a superset of the prevalent o-loation set on the original dataset.
Proof : When o-loation size = 1, the value of the oarse partiipation index andthe true partiipation index is 1, so Lemma 2 is trivially true. Suppose Lemma 2 istrue for o-loations size=k. Let us onsider the ase that o-loation size is equal tok+1. For eah andidate o-loation C of size k + 1 generated from the apriori gen byjoining C1 and C2 of size k, we generate its oarse instane table by joining the oarseinstane tables of C1 and C2. Beause Lemma 2 is true for o-loations of size k, theandidate o-loation set of size k found is a superset of the prevalent o-loation seton the original dataset. Thus C1 and C2 are in the andidate o-loation set in theprevious iteration and their oarse level table instanes are available to be joined toprodue the oarse level table instane of C. The table join to produe the oarse tableinstane of C has the following property: if NeighborR(p1; p2) is in the original dataset,then oarse Neighbor(ell 1; ell 2) will be in the oarse-level dataset given p1 2 1 andp2 2 2. When we alulate the oarse partiipation index, any spatial feature instanewhih partiipates in the o-loation in the original dataset will ontribute to the ountsduring the oarse partiipation ratio alulation. So the oarse partiipation ratios neverunderestimates the true partiipation ratios, implying that the oarse partiipation indexnever underestimates the true partiipation index and that the pruning will not eliminateany truly prevalent o-loation. Thus the andidate o-loation set after multi-resolutionpruning is a superset of the prevalent o-loation set on the original dataset.
Lemma 3 The Co-loation Miner algorithm is omplete.
Proof : The spatial join produes all pairs (p0; p00) of instanes where p0.feature 6=p00.feature and p0 and p00 are neighbors. Any row instane of any size 2 o-loationsatisfying these two onditions in the join prediate will be generated. The shema
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level pruning using apriori gen is omplete due to the monotoniity of the partiipationindex as proved in Lemma 1. Then we prove that the join of the table instanes of C1and C2 to produe the table instane of C is omplete. Aording to the neighborhoodde�nition, any subset of a neighborhood is a neighborhood too. For any instane I =fi1; : : : ; ik+1g of o-loation C, subsets I1 = fi1; : : : ; ikg and I2 = fi1; : : : ; ik�1; ik+1gare neighborhoods, ik and ik+1 are neighbors, and I1 and I2 are row instanes of C1and C2 respetively. Joining I1 and I2 will produe I. Enumeration of the subsets ofeah of the prevalent o-loations ensures that no spatial o-loation rules with bothhigh prevalene and high onditional probabilities are missed. We then prove that multi-resolution pruning does not a�et ompleteness. By Lemma 2, the o-loation set found isa superset of the prevalent o-loation set on the original dataset. Thus multi-resolutionpruning does not falsely eliminate any prevalent o-loation.Lemma 4 The Co-loation Miner is orret.Proof: We will only show that the row instane of eah o-loation is orret, as that willimply the orretness of the partiipation index values and that of eah o-loation meet-ing the user spei�ed threshold. An instane I1 = fi1;1; : : : ; i1;kg of C1 = ff1; : : : ; fk+1gand an instane I2 = fi2;1; : : : ; i2;kg of C2 = ff1; : : : ; fk�1; fk+1g is joined to produe aninstane Inew = fi1;1; : : : ; i1;k; i2;kg of C = ff1; : : : ; fk+1g if: 1) all elements of I1 and I2are the same exept i1;k and i2;k; 2) i1;k and i2;k are neighbors. The shema of Inew isapparently C, and elements in Inew are in a neighborhood beause I1 is a neighborhoodand i2;k is a neighbor of every element of I1.
4.2 Computational Complexity AnalysisThis subsetion examines the strategies for generating andidate o-loations, the eval-uation of the multi-resolution pruning strategy, and the e�et of noise. First, there aretwo basi strategies for generating table instanes of andidate o-loations, namely thegeometri approah and the ombinatorial approah. For generating size-2 o-loations,the ombinatorial approah ends up being the nest-loop join strategy with an asymptotiomplexity of O(N2), while the geometri approah has the CPU osty of O(NlogN+M)where N is the total number of instanes of all features and M is the number of interse-tions. When the dataset is sparse, the ost of the ombinatorial approah will be muhhigher. However, when generating table instanes of o-loations of size 3 or more, theyThe I/O osts of the geometri approah and the ombinatorial approah are similar.15



ombinatorial approah beomes heaper than the geometri approah. This is due toits exploitation of the sort-merge join strategy while keeping eah table instane sorted,resulting in the omputation omplexity of O(N) where N is the size of table instanes.In a hybrid approah, we pik the heaper of the two basi strategies in eah iteration toahieve the best overall ost.Seond, let us ompare the ost of the Co-loation Miner algorithm without and withthe multi-resolution �lter step. Let Tmm(k) and Tm(k) represent the osts of iterationk of the Co-loation Miner algorithm with and without the Multi-resolution �lter.Tmm(k) = Tapriori gen(C(prev;k)) + Tprune(C(and;k+1);grid data) + Tprune(C(sub and;k+1);data)Tm(k) = Tapriori gen(C(prev;k)) + Tprune(C(and;k+1);data) (1)
In Equation 1, Tapriori gen(C(prev;k)) represents the ost of apriori gen based on theprevalent o-loation set of size k. Resolution is not relevant sine apriori gen workson the spatial feature level only. Tprune(C(and;k+1);grid data) represents the ost for multi-resolution pruning on the oarse level dataset in iteration k. After oarse-level pruning,we only need to searh the leftover subset of the original dataset. Tprune(C(sub and;k+1);data)represents the ost for �ne level instane pruning on the leftover subsets of the originaldataset. Also, Tprune(C(and;k+1);data) represents the ost for �ne level instane pruning onthe original dataset in iteration k.The bulk of time is onsumed in generating table instanes and alulating the par-tiipation indexes; thus the ratio an be simpli�ed as:Tmm(k)Tm(k) � Tprune(C(and;k+1);grid data) + Tprune(C(sub and;k+1);data)Tprune(C(and;k+1);data) (2)
Furthermore, we assume that the average time to generate a table instane in theoriginal dataset is Torig(k) for iteration k and the average time to generate a table instanein the grid dataset is Tgrid(k) for iteration k. The number of andidate o-loationsgenerated by the apriori gen is jCk+1j and the number of andidate o-loations after theoarse instane level pruning is jC 0k+1j, Equation 2 an be written as:Tmm(k)Tm(k) �jCk+1j � Tgrid(k) + jC 0k+1j � Torig(k)jCk+1j � Torig(k) = Tgrid(k)Torig(k) + jC 0k+1jjCk+1j (3)

The �rst term of the ratio is ontrolled by the \lumpiness" (the average number ofinstanes of the spatial features per grid ell) of the loations of spatial features. Theseond term is ontrolled by the �ltering eÆieny of the oarse instane level pruning.
16



When the loations of spatial features are lustered, the sizes of the �ne level tableinstanes are muh greater than the sizes of the oarse level table instanes and the timeneeded to generate �ne level table instanes is greater than the time needed to generateoarse level table instanes. In our experiments, as desribed in the next setion, weuse the parameter mlump, whih ontrols the number of instanes lumping togetherfor eah spatial feature, to evaluate the �rst term, and we use the parameter moverlap,whih represents the possible false andidate ratios to evaluate the seond term. Fromthe formula, we an see that the Multi-resolution Co-loation Miner is likely to be moreeÆient than the Co-loation Miner when the loations of spatial features are lusteredand the false andidate ratio is high.
5 Experimental Performane Evaluation
5.1 Experiment DesignFigure 6 desribes the experimental setup to evaluate the impat of design deisions onthe relative performane of the o-loation miner algorithm. We evaluated the perfor-mane of the algorithms with syntheti data generated using a methodology similar tomethodologies used to evaluate algorithms for mining assoiation rules [2℄. Synthetidatasets allow better ontrol towards studying the e�ets of interesting parameters. Adata-ow diagram of the data generation proess is shown in Figure 6. The proessbegan with the generation of ore o-loation subsets of spatial features. To generate asubset of features, we �rst hose the size of the subset from a Poisson distribution withmean (�1). Then a set of features for this ore o-loation pattern was randomly hosen.For eah ore o-loation, moverlap maximal o-loations were generated by appendingone more spatial feature to a ore o-loation. The larger moverlap is, the more falseandidate apriori gen generates. The size of eah table instane of eah o-loation washosen from another Poisson distribution with mean �2. Next, we generated the set ofneighborhoods for o-loations instanes using the size of their table instanes from theprevious step. mlump point loations for eah feature in the o-loation were embeddedinside a neighborhood of size d. The loations of neighborhoods were hosen at randomin the overall spatial framework. For simpliity, the shape of the overall spatial frame-work was a retangle of size D1 �D2 and the size of eah neighborhood was d� d. The�nal step involved adding noise. The model for noise used two parameters, namely theratio of noise features rnoise f and the number of noise instanes pnoise n. Noise was added
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Table 1: Parameters Used to Generate the Syntheti DataParameter De�nition C1 C2No lo The number of ore o-loations 5 4�1 The parameter of the Poisson distribution to de�ne the sizeof the ore o-loations 5 5�2 The parameter of the Poisson distribution to de�ne the sizeof the table instane of eah o-loation when mlump = 1 50 50D1 �D2 The size of the spatial framework 106 �106 250 �1,000d The size of the square to de�ne a o-loation 10 10rnoise f The ratio the of number of noise features over the numberof features involved in generating the maximal o-loations .5 .5rnoise n The number of noise instanes 50,000 1,000moverlap The number of o-loation generated by appending one morespatial feature for eah ore o-loation 1 1mlump The number of instanes generated for eah spatial featurein a neighborhood for a o-loation 1 1
by generating a set of instanes of features from a set of noise features disjoint with thefeatures involving generation of ore o-loations and plaing those at random loationsin the global spatial framework.
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Figure 6: Experimental Setup and DesignDatasets were used by the o-loation algorithm driver module to ollet the per-formane statistis, as shown in Figure 6. The exeution time was measured using the\time" funtion in the C++ language on a Sun Ultra 10 work station with a 440 MHzCPU and 128 Mbytes memory running the SunOS 5.7 operating system. The measure-ments are summarized in the form of plots and tables reported in the following setion.18



5.2 Comparing Strategies for Generating Table InstanesWe ompared the geometri, the ombinatorial, and the hybrid strategies. The basedataset, generated using parameter values in olumn C1 of Table 1, used a retanglespatial framework of size 106 � 106, a square neighborhood of size 10 � 10, an averageo-loation size of 5, an average table instane size of 50 when mlump = 1, a noise featureratio of 0.5, a noise number of 50,000, and an overlapping degree of 1. Figure 7 (a) showsthe exeution times for the three andidates with the prevalene threshold set to .9. Theseond olumn reports the exeution time needed to disover o-loations of size 2.
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Figure 7: (a)Relative Performane of Geometri, Combinatorial, and Hybrid Algorithms(b) Noise E�et on Co-loation Miner

As an be seen, the geometri strategy is faster than the ombinatorial strategy forgenerating size-2 o-loations. Spatial-join data strutures help the geometri algorithmin this step. The remaining olumns report the total exeution time to disover all theo-loations as well as the time to disover o-loations of size 3 or more, given prevalento-loations of size 2. In these ases, the ombinatorial algorithm is orders of magnitudefaster than the geometri algorithm. A sort-merge join strategy (e.g apriori-gen [2℄) helpsthe ombinatorial algorithm. The hybrid strategy uses the geometri algorithm for dis-overing prevalent o-loations of size 2 and the ombinatorial algorithm for disoveringlarger o-loations. Thus, it is expeted to ahieve the best overall performane. Ourexperimental results on�rm this, as shown in Figure 7 (a).
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5.3 E�et of the FilterThe e�et of the multi-resolution �lter was evaluated with spatial datasets generatedusing parameter values shown in olumn C2 of Table 1. We used a retangular spatialframework of size 250 � 1000, a square neighborhood of size 10 � 10, an average o-loation size of 5, an average table instane size of 50 when mlump = 1 a noise featureratio of 0.5, a noise number of 1000, a ore o-loation size of 4, and an overlappingdegree of 1. Spatial framework sizes were proportional to the total number of instanesto avoid unexpeted patterns reated by overrowding of instanes. The overlappingdegree (moverlap) was set from 2 to 8 and the lumpiness measure (mlump) was set from5 to 20 to generate other datasets. We ran the Co-loation Miner with and without themulti-resolution �lter on these datasets. Prevalene thresholds were set to the estimationof the atual prevalenes from the generation of the datasets.
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Figure 8: Performane Ratio a) By Overlap Degree b) By Clumpiness Degree

Figure 8 summarizes the performane gain by using the Multi-resolution �lter. Thex-axis represents the overlap degree, whih ontrols the false andidates generated byapriori gen in the �rst �gure or the \lumpiness" of loations of instanes of spatialfeature type in the seond �gure. The y-axis represents the ratio of run-time of theCo-loation Miner without the multi-resolution �lter to the run-time with the multi-resolution �lter. The results show that, as the degree of overlap and the number of falseandidates inrease, the running time is redued by a fator of 1 to 4.5.Figure 9 summarizes the ratio of the omputation time for multi-resolution pruningand that for prevalene-based pruning. Similarly, the x-axis represents the overlap degree
20
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Figure 9: Filter Time Ratio (a) By Overlap Degree (b) By Clumpiness Degree

or the \lumpiness" of the loations of eah spatial feature type. The overhead of themulti-resolution �lter as a fration of prevalene-based pruning dereases when the degreeof overlap or lumpiness inreases. Clumpiness strongly a�ets the overhead, reduing itfrom 0.45 to 0.1.
5.4 E�et of NoiseThe base dataset, generated using parameter values in olumn C1 of Table 1, used aretangle spatial framework of size 106 � 106, a square neighborhood of size 10 � 10,an average o-loation size of 5, an average table instane size of 50 when mlump = 1,a noise feature ratio of 0.5, a noise number of 50,000, and an overlapping degree of 1.Then we inreased the noise instanes up to 800,000 and measured the performane, asshown in Figure 7 (b). The exeution time for disovering o-loations of size 2 is and 3+are shown in the �gure. We note that noise-level a�ets the exeution time to disovero-loations of size 2 but does not a�et the exeution time to disover larger o-loationsgiven o-loations of size 2. In other words, noise is �ltered out during the determinationof o-loations of size 2.
6 Conlusion and Future WorkIn this paper, we formalized the o-loation problem and showed the similarities anddi�erenes between the o-loation rules problem and the lassi assoiation rules prob-
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lem as well as the diÆulties in using traditional measures (e.g. support, on�dene)reated by impliit, overlapping and potentially in�nite transations in spatial data sets.We proposed the notion of user-spei�ed neighborhoods in plae of transations to spe-ify groups of items and de�ned interest measures that are robust in fae of potentiallyin�nite overlapping neighborhoods. We de�ned a new spatial measure of onditionalprobability as well as a new monotoni measure of prevalene to allow iterative prun-ing. The Co-loation Miner, a generalized algorithm for mining o-loation patternswas presented and analyzed for orretness, ompleteness and omputation ost. Designdeision in the proposed algorithm were evaluated using theoretial and experimentalmethods. Empirial evaluation shows that the geometri strategy performs muh betterthan the ombinatorial strategy when generating size-2 o-loation; however, it beomesslower when generating o-loations with more than 2 features. The hybrid strategyintegrates the best features of the above two approahes. Experimental results showthat the Co-loation Miner is tolerant of noise and provides the best overall performane.Furthermore, when the loations of the features tend to be spatially lustered, whih isoften true for spatial data due to spatial-autoorrelation, the Multi-resolution �lter willsigni�antly redue omputation ost of proposed algorithm.Several questions remain open. The o-loation mining problem should be investi-gated to aount for extended spatial data types, suh as line segments, polygons andirles. We briey disuss the potential approah to deal with extended spatial objets inAppendix A. We onsidered only boolean spatial features here. In the real world, the fea-tures an be ategorial and ontinuous. There is a need to extend the o-loation miningframework to handle ontinuous features. Finally, if the loations of features hange overtime, it should be possible for us to identify some temporal-spatial o-loation patterns.
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Figure 10: Neighborhood Illustration for various Spatial Objets
Appendix A: Approahes for Extended ObjetsWe will use a Eulidean distane based neighborhood here to simplify the disussion.N(p), the size-d Eulidean neighborhood of a point loation p ,is a irle of radius d withp as its enter. N(o), the size-d neighborhood of an extended spatial objet (e.g polygon,line-string) is de�ned by a bu�er operation as shown in Figure 10. Objet oi and ojare e-neighbors if and only if oi \N(oj) as well as oj \N(oi) are non-empty. Eulideanneighborhood N(fj) of feature fj is the union of N(il) for all instane il of fj. Eulideanneighborhood N(C) for a o-loation C = ff1; : : : ; fkg is the intersetion of N(fi) for fiin C.I = fi1; i2; : : : ; ik; Bg is a row instane of a o-loation C = ff1; : : : ; fkg if ij is aninstane of feature fj(8j 2 1; : : : ; k) and I is a neighborhood of I itself, i.e. elements ofI are neighbors to eah other. The last element B in I represents Tij2I N(ij).The partiipation ratio Pr(C; fi) for feature type fi in a o-loation C =ff1; : : : ; fkg is Pr(p 2 Tij2C N(fj)jp 2 fi), the probability that a point p in fi haspoints belonging to all features in C within a neighborhood of P , assuming a sym-metri neighbor relationship. We illustrate the de�nition of the partiipation ratio forextended linear objet features using length. A similar measure for polygonal featuresan be de�ned using area in plae of length. Partiipation ratio pr(C; fi) for linearspatial feature fi an be omputed as length(intersetion(fi;Tfj2C N(fj)))length(fi) . For example, ananalysis of an urban road map may reveal 100 miles of freeway, of whih 25 milesare within N(frontage road), yielding Pr((freeway; frontage road) = 25=100 = 0:25).Partiipation ratio Pr(C; fl) an be omputed from table instane of C in terms oflength(unionI2table instane of C(intersetion(ij ; B(I)))length(unionij2fl (ij)) .The onditional probability of a o-loation rule C1 ! C2 is the probability of�nding an instane of C2 in a neighborhood of instane of C1, i.e. Pr(p 2 N(C2)jp 2N(C1)). It an be omputed as area(N(C1SC2))area(N(C1)) using the table instanes of C1 and C1SC2.
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Appendix B: Interest Measures for Di�erent Models
Table 2: Interest measures for di�erent models

Model Items Transations Interest measures for C1 ! C2de�ned by Prevalene Conditional probabilityloal boolean fea-ture types partitions ofspae fration of parti-tions with C1 [C2 Pr(C2 in a partition givenC1 in the partition)referenefeatureentri prediates onreferene andrelevant fea-tures
instanes of ref-erene feature C1and C2 involvedwith

fration ofinstane of ref-erene featurewith C1 [ C2
Pr(C2 is true for an in-stane of referene featuresgiven C1 is true for that in-stane of referene feature)windowentri boolean fea-ture types possibly in�niteset of distintoverlapping win-dows

fration of win-dows with C1 [C2 Pr(C2 in a window givenC1 in that window)
evententri boolean fea-ture types neighborhoods ofinstanes of fea-ture types partiipation in-dex of C1 [ C2 Pr(C2 in a neighborhoodof C1)
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