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Abstract

Given a collection of boolean spatial features, the co-location pattern discovery
process finds the subsets of features frequently located together. For example, the
analysis of an ecology dataset may reveal the frequent co-location of a fire igni-
tion source feature with a needle vegetation type feature and a drought feature.
The spatial co-location rule problem is different from the association rule prob-
lem. Even though boolean spatial feature types (also called spatial events) may
correspond to items in association rules over market-basket datasets, there is no
natural notion of transactions. This creates difficulty in using traditional measures
(e.g. support, confidence) and applying association rule mining algorithms which
use support-based pruning. We propose a notion of user-specified neighborhoods in
place of transactions to specify groups of items. New interest measures for spatial
co-location patterns are proposed which are robust in the face of potentially infi-
nite overlapping neighborhoods. We also propose a family of algorithms to mine
frequent spatial co-location patterns. Experimental results are provided to show
the strength of each algorithm and design decisions related to performance tuning.

Keywords: spatial data mining, Geographic Information System, spatial co-location

rules, spatial association rules, participation index.
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1 Introduction

Widespread use of spatial databases [10, 24, 25, 36] is leading to an increasing interest in
mining interesting and useful but implicit spatial patterns [9, 16, 20, 23, 32, 26, 28, 5, 29,
35]. For example, E-services are growing along with mobile computing infrastructures
such as PDAs and celluar phones. Finding E-services frequently located together is of
interest to businesses that want to conduct location sensitive market promotions such
as promoting a taxi service for customers who reserve an E-ticket in some locations. In
ecology, scientists are interested in finding frequent co-occurrences among boolean spatial
features, e.g., drought, El Nino, substantial increase in vegetation, substantial drop in
vegetation, extremely high precipitation, etc. Efficient tools for extracting information
from geo-spatial data, the focus of this work, are crucial to organizations which make
decisions based on large spatial datasets. These organizations are spread across many
domains including ecology and environmental management, public safety, transportation,
public health, business, and tourism [3, 14, 18, 11, 32, 37].

Association rule finding [13, 1, 2, 13, 22, 30, 31, 33] is an important data mining
technique which has helped retailers interested in finding items frequently bought together
to make store arrangements, plan catalogs, and promote products together. Spatial
association rules [17] are spatial cases of general association rules where at least one
of the predicates is spatial. Association rule mining algorithms [1, 2, 12] assume that
a finite set of disjoint transactions are given as input to the algorithms. In market
basket data, a transaction consists of a collection of item types purchased together by a
customer. Algorithms like apriori [2] can efficiently find the frequent itemsets from all
the transactions and association rules can be found from these frequent itemsets.

Many spatial datasets consist of instances of a collection of instances of boolean
spatial features (e.g., drought, needle leaf vegetation). Figure 1 a) shows the frequent
co-occurrences of some point spatial feature types represented by different shapes. As can
be seen, instances of spatial features in sets {‘+’, ‘x’} and {‘0’; “*’} tend to be located
together. Figure 1 b) shows an instance of co-location patterns among extended spatial
features, namely road-types, on an urban road map. Highways often have frontage roads
nearby in large metropolitan areas, e.g. Minneapolis. Identification of such co-locations
is useful in selecting test-sites for evaluating in-vehicle navigation technology [38]. While
boolean spatial features can be thought of as item types, there may not be an explicit
finite set of transactions due to the continuity of the underlying space.

We formalize the co-location rule mining problem as follows: Given 1) a set T of K
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Figure 1: a) Point Spatial Co-location Patterns Illustration. Shapes represent different
spatial feature types. Spatial features in sets {‘+’, ‘x’} and {‘0’, **’} tend to be located
together. b) Line String Co-location Patterns Illustration. Highway 100 and Normandale
Road are co-located for several hundred meters. Highways are often co-located with
frontage roads.

spatial feature types T' = {f1, f2,... , fx } and their instances P = {py,pa,... ,pn}, each
p; € P is a vector < instance-id, spatial feature type, location > where location € spatial
framework S, 2) A symmetric and reflexive neighbor relation R over locations in S, 3) Min
prevalence threshold (min_prevalence) and min conditional probability (min_cond_prob);
efficiently find correct and complete set of co-location rules with participation index

> min_prevalence and conditional probability > min_cond_prob.

Related Work: Approaches to discovering co-location rules in the literature can be
categorized into two classes, namely spatial statistics and association rules. Spatial
statistics-based approaches use measures of spatial correlation to characterize the re-
lationship between different types of spatial features. Measures of spatial correlation
include cross-k function with Monte Carlo simulation [7], chi-square tests, correlation co-
efficients, and regression models [6] as well as their generalizations using spatial neighbor-
hood relationships. Computing spatial correlation measures for all possible co-location

patterns can be computationally expensive due to the exponential number of candidate



subsets given a large collection of spatial boolean features.

Association rule-based approaches focus on the creation of transactions over space so
that an apriori like algorithm [2] can be used. Transactions over space can be defined
using a window-centric model [27], a reference-feature centric model [17] or an ad-hoc
data-partition [21] approach. The window centric model is relevant to applications like
mining, surveying, and geology, which focus on land-parcels. A goal is to predict sets of
spatial features likely to be discovered in a land parcel given that some other features have
been found there. The window centric model enumerates all possible windows as transac-
tions. In a space discretized by a uniform grid, windows of size k£ X k can be enumerated
and materialized, ignoring the boundary effect. Each transaction contains a subset of
spatial features of which at least one instance occurs in the corresponding window. The
support and confidence of the traditional association rule problem may be used as preva-
lence and conditional probability measures as summarized in Table 2 (see Appendix B).
There are four windows corresponding to four transactions in Figure 2 a). Two windows
contain B and only one contains both B and C. An example of an association rule of
this model is: aninstance of type B in a window — aninstance of type C inthis window
with % = 50% probability. A special case of the window centric model relates to the
case when windows are spatially disjoint and form a partition of space. This case is
relevant when analyzing spatial datasets related to the units of political or administra-
tive boundaries (e.g. country, state, zip-code). In some sense this is a local model since
we treat each arbitrary partition as a transaction to derive co-location patterns without
considering any patterns across partition boundaries.

Another approach is based on the choice of a reference spatial feature [17]. The
reference feature centric model is relevant to application domains focusing on a
specific boolean spatial feature, e.g. cancer. Domain scientists are interested in finding
the co-locations of other task relevant features (e.g. asbestos, other substances) to the

[4

reference feature. This model enumerates neighborhoods to “materialize” a set of trans-
actions around instances of the reference spatial feature. A specific example is provided
by the spatial association rule [17]. Transactions are created around instances of one
user-specified spatial feature. The association rules are derived using the apriori [2] al-
gorithm. The rules found are all related to the reference feature. For example, consider
the spatial dataset in Figure 2(a) with three feature types, namely A, B and C. Each
feature type has two instances. The neighbor relationship between instances is shown as
an edge. Co-location (A, B) and (B, C') may be considered to be frequent in this exam-

ple. Figure 2(b) shows transactions created by choosing C' as the reference. Co-location



(A, B) will not be found since it does not involve the reference feature. Generalizing
this paradigm to the case where no reference feature is specified is non-trivial. Defining
transactions around locations of instances of all features may yield duplicate counts for
many candidate associations. Defining transactions by an ad-hoc data-partition approach
[21] attempts to measure the frequency of a co-location pattern by grouping the spatial
instances into disjoint partitions. However, imposing artificial disjoint transactions via
space partitioning often undercounts instances of tuples intersecting the boundaries of
artificial transactions or double-counts instances of tuples co-located together. In ad-
dition, there may be multiple partitions yielding distinct sets of transactions, which in
turn yields different values of support of the co-location. Figure 2 ¢) shows two pos-
sible partitions for the dataset of Figure 2 a), along with the support for co-location
(A, B). The ad-hoc approach is partitioning sensitive and thus the prevalence measure
is ill-defined. A different grouping may result in different values of the support measure
and thus different co-location patterns.

In recent work, we developed an event centric model. For point spatial feature which
provides a transaction-free approach by using the concept of neighborhood. The event
centric model is relevant to applications like ecology where there are many types of
boolean spatial features. Ecologists are interested in finding subsets of spatial features
likely to occur in a neighborhood around instances of given subsets of event types. For
example, let us determine the probability of finding at least one instance of feature type
B in the neighborhood of an instance of feature type A in Figure 2 a). There are two
instances of type A and both have some instance(s) of type B in their neighborhoods.
The conditional probability for the co-location rule is: spatial feature A at location | —
spatial feature type B in neighborhood is 100%. This yields a well-defined prevalence
measure(i.e. support) without the need for transactions. Figure 2 d) illustrates that our

approach will identify both (A, B) and (B, C) as frequent patterns.

Our Contributions: This paper extends our recent work [27] on the event centric
model and makes the following new contributions. First, it presents a generalized al-
gorithm to discover co-location patterns from point spatial datasets. The generalized
algorithm includes a novel multi-resolution filter step. Second, it also provides proofs of
correctness and completeness for the generalized algorithm. Finally the paper provides
an experimental performance evaluation to compare alternative choices for key design

decisions, such as the use of a multi-resolution filter.
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Figure 2: Example to Illustrate Different Approaches to Discovering Co-location Patterns
a) Example dataset. Grid is imposed to illustrate window center model b) Ad hoc data
partition approach. Support measure is ill-defined and order sensitive ¢) Reference feature
centric model d) Event centric model

Outline: Section 2 describes our approach for modeling co-location patterns and the
associated measures of prevalence and conditional probability. Section 3 proposes a
family of algorithms to mine co-location patterns; an analysis of the algorithms in the
areas of correctness, completeness, and computational efficiency is presented in section
4. We present the experimental setup and results in section 5. Finally, section 6 presents

the conclusion and future work.

2 Owur Approach for Mo eling Co-location Patterns

Given the difficulty in creating explicit disjoint transactions from continuous spatial data,
this section defines our approach, namely the event centric model, to model co-location
patterns. We use Figure 3 as an example spatial dataset to illustrate the model. In the
figure, each instance is uniquely identified by T'.7, where T is the spatial feature type and
1 is the unique id inside each spatial feature type. We define the following basic concepts
to facilitate the description of our model.

A co-location is a subset of boolean spatial features. A co-location rule is of the
form: C7; — Cs(p, cp), where Cy and Cy are co-locations, Cy N Cy = @, p is a number
representing the prevalence measure, and cp is a number measuring conditional probabil-
ity. Prevalence measures and conditional probability measures, called interest measures,
are defined differently in different models. The window centric and the reference fea-
ture centric models “materialize” transactions and thus can use traditional support and
confidence measures.

Neighborhood is an important concept in the event centric model. Given a reflexive
and symmetric neighbor relation R, we can define neighborhoods of a location [ as follows:

A neighborhood of [ is a set of locations L = {l, ..., I} such that [; is a neighbor of
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Figure 3: Spatial dataset to illustrate event centric model

lie. (I,l;) € R(Vi € 1...k). This definition satisfies the following two conditions from
Topology [36]: First, every location is in some neighborhood because of the reflective
neighbor relationship. Second, the intersection of any two neighborhoods of any location
[ contains a neighborhood of [. We generalize the neighborhood definition to a collection
of locations. For a subset of locations L’, if L’ is a neighborhood of every location
in L = {l1,...,lx} then L is a neighborhood of L. In other words, if every [/; in
L' is a neighbor of every Il in L, then L' is a neighborhood of L. The definition of
neighbor relation R is an input and is based on the semantics of the application domains.
The neighbor relation R may be defined using topological relationships (e.g. connected,
adjacent), metric relationships (e.g. Euclidean distance) or a combination (e.g. shortest-
path distance in a graph such as a road-map). Enumerating all the neighborhoods incurs
substantial computational cost because support-based pruning cannot be carried out
before the enumeration of all the neighborhoods is completed and the total number
of neighborhoods is obtained. Thus the participation index is proposed in the next
paragraph to be a prevalence measure to facilitate pruning.

I = {iy,is,... ,ix} is a row instance of a co-location C' = {f,..., fi} if i; is an
instance of feature f;(Vj € 1,... ,k) and I is a neighborhood of I itself, i.e. elements
of I are neighbors to each other. For example, {A.3, B.4, C.1} is an instance of co-
location {A, B, C} in the illustration spatial dataset shown in Figure 3. The table

instance of a co-location C' = {f;,..., fr} is the collection of all row instance of C.



The participation ratio Pr(C, f;) for feature type f; in a co-location C = {fi,... , fi}

is the fraction of instances of f; which participate in any row instance of co-location
|distinct(n s, (table instance of C))|

linstance of {fi}|
projection operation. For example, in Figure 3, row instances of co-location {A, B} are

{(A.1,B.1), (A.2,B.4),(A.3, B.4)}. Only two out of five instances, B.1 and B.4 of spatial
feature B, participate in co-location {A, B}. So Pr((A, B), B) =2/5 = 0.4.

The participation index of a co-location C = {fi,..., fi} is mink_ {Pr(C, f;)}.
In Figure 3, the participation ratio Pr({A, B}, B) of feature B in co-location {A, B} is
0.4 as calculated above. Similarly, Pr({A, B}, A) is 0.75. The participation_index(A, B)
= min(0.75, 0.4) = 0.4. The conditional probability of a co-location rule C; — Cj is

the probability of finding an instance of C5 in a neighborhood of instance of C;. It can
|distinct(mc, (all row instance of C1UC3))|

C. The ratio can be computed as , where 7 is a relational

be computed as where 7 is a projection operation.

|instance of C1]

3 ining o-location atterns

As shown in Figure 4, the algorithm takes a set ET of spatial event types, a set E of
event instances, user-defined functions representing spatial neighborhood relationships
as well as interest measures (e.g prevalence, conditional probability) and thresholds for
prevalence based pruning. It assumes that the prevalence measure is monotonic in size of
co-locations. The algorithm outputs a set of prevalent co-location rules with the values
of the interest measures.

The initialization step assigns starting values to various data-structures used in the
algorithm. We note that our prevalence measure evaluates to 1 for all co-locations of size
1. In other words, all co-locations of size 1 are prevalent and there is no need for either
the computation of a prevalence measure or prevalence-based filtering. Thus, the set C;
of candidate co-locations of size 1 as well as the set P; of prevalent co-locations of size 1
are initialized to ET, the set of boolean spatial event types. The set T7 of table instances
of size 1 co-location is created by sorting the set E of event instances by event types.

The proposed algorithms for mining co-location rules iteratively perform four basic
tasks, namely generation of candidate co-locations, generation of table instances of can-
didate co-locations, pruning, and generation of co-location rules. These tasks are carried
out inside a loop iterating over the size of the co-locations. Iterations start with size 2
since our definition of prevalence measure allows no pruning for co-locations of size 1.

We describe the computational structure of each task in forthcoming subsections.



Input:
(a) E ={Event-ID, Event-Type, Location in Space} representing a set of events,
ET = { Set of boolean spatial event types};
(b) Neighborhood relationship function; pair of spatial points;
(c) Interest measure function (e.g. prevalence, conditional probability);
(d) Threshold on prevalence measure and conditional probability;
Output:
A set of co-locations with values of interest measures (i.e. prevalence, conditional
probability) satisfying threshold.
Data Structure:
k = Co-location size
C, = set of candidate size k co-locationsiniteraionk =1, 2, .., P
T, = set of table instances of co-locationsinC, fork=1,2, ..., P
P, = set of prevalent sizek co-locationsfork =1, 2, ..., P
R, = set of co-location rulesof sizek fork=1,2, .., P
T_C, = set of coarse-level table instances of sizek co-locationin C, fork=1,2, ..., P
Steps:
Co-location-sizek = 1
C,=ET,
P, =ET;
T, = generate_table_instance(C,, E);

Initialize data structure C,, T,, P,, R,, T_C, to be empty for k >1
while(not empty P,) dof

C,., = generate_candidate_colocation (C,, K);

if (Ffmul = true) then {

C,., = multi_resolution_pruning (C,,,);

Ty.q = generate_table instance (q[, C,, Ty;
P,.., = select_prevalent_colocation( (], Cy,y, Ty)i
R,., = generate_colocation_rule (P,,,, T,.,);

}

return union (R,, ..., R,,);
Figure 4: Overview of algorithms

3.1 Generation of Candidate Co-locations

The participation ratio is monotonically non-increasing with the size of the co-location
increasing because any spatial feature that participates in a row instance of a co-location
¢ participates in a row instance of a co-location ¢’ where ¢ C ¢. The participation
index is also monotonic because 1) the participation ratio is monotonic 2) pi(cU fi1) =
mint " {pr(c U fer1, fi)} < mink_ {pr(cU fii1, £i)} < mink_ {pr(c, f;)} = pi(c). Given
this property, a spatial feature level pruning approach can be effective. We could also
rely on a combinatorial approach and use apriori_gen [2] to generate size k+ 1 candidate
co-locations from size k prevalent co-locations.

The apriori-gen function takes as argument L, 1, the set of all large (k-1)-itemsets.

The function works as follows. First, in the join step, we join L | with Ly ;. This step



is specified in a SQL-like syntax as follows:

insert into C}

select p.item;, p.items,..., p.itemy_y, q.itemy_1, p.table_instance_id, gq.table_instance_id
from Ly_1 p, Lr—1 g

where p.item; = ¢.item;, ..., p.itemy o = ¢.itemg o, p.itemp 1 < g.itemy 1;

Next, in the prune step, we delete all itemsets ¢ € Cj such that some (k — 1)-subset

of cis not in Ly_q:

forall itemsets c € C} do
forall (k — 1)-subsets s of ¢ do
if (s¢ Li_1) then delete ¢ from Cy;

Note that Ly 1, Ly, and C} are nested tables [34] where columns table_instance_id

refer to table instance of appropriate co-locations.

3.2 Generation of Table Instances of Candidate Co-locations

Computation for generating size k + 1 candidate co-locations can be expressed as the

following join query:

forall co-location ¢ € Ckqq
insert into 7, /* T, is the table instance of co-location c¢ */

select p.instance;, p.instancey, ..., p.instancei, ¢.instancey
from c.table_instance_id; p, c.table_instance_ids ¢
where p.instance;=q.instance;, ..., p.instance, 1=¢.instance, 1, (p.instancey,

q.instancey) € R;
end;

It takes the size k + 1 candidate co-location set C}.; and table instances of the
size k prevalent co-locations as arguments and works as follows: c.table_instance_id;
and c.table_instance_id, specify the table instances of the two co-locations joined in
apriori_gen to produce c. Here, a sort-merge join is preferred because the table in-
stances of each iteration can be kept sorted for the next iteration. This follows from a
similar property of apriori-gen [2]. Sort order is based on an ordering of the set of item-
types to order item-types in a co-location to form the sort-field. Finally, all co-locations
with empty table instance will be eliminated from C, .

The join computation for generating table instances has two constraints, namely a spa-
tial neighbor relationship constraint (p.instancey, g¢.instancey) and a combinatorial dis-

tinct event-type constraint (p.instance;=g.instancey, ..., p.instancej_;=q.instancey_1).



We examine three strategies for computing this join, a geometric strategy, a combina-
torial strategy and a hybrid strategy. These are described in forthcoming subsections.
Exploration of other join strategies is beyond the scope of this paper but we may explore

such strategies in future work.

Geometric Approach: This approach can be implemented by neighborhood
relationship-based spatial joins of table instances of prevalent co-locations of size k with
table instance sets of prevalent co-locations of size 1. In practice, spatial join operations
are divided into a filter step and a refinement step [24] to efficiently process complex
spatial data types such as point collections in a row instance. In the filter step, the
spatial objects are represented by simpler approximations such as the MBR - Minimum
Bounding Rectangle. There are several well-known algorithms, such as plane sweep [4],
space partition [15] and tree matching [19], which can then be used for computing the
spatial join of MBRs using the overlap relationship; the answers from this test form
the candidate solution set. In the refinement step, the exact geometry of each element
from the candidate set and the exact spatial predicates are examined along with the

combinatorial predicate to obtain the final result.

Combinatorial Approach: The combinatorial join predicate (i.e. p.instance; =
g.instance;, ..., p.instance, j=g¢.instance, ;) can be processed efficiently using a
sort-merge join strategy [8], since the set of feature types is ordered and tables
c.table_instance_id; and c.table_instance_idy are sorted. The resulting tuples are checked

for the spatial condition (p.instancey, g¢.instancey) to get the row-instance in the result.

Example 1 In Figure 3, table 4 of co-location {A, B} and table 5 of co-location {A, C'}
are joined to produce the table instance of co-location {A, B,C} because co-location
{A, B} and co-location { A, C'} were joined in apriori_gen to produce co-location {A, B,C'}
in the previous step. In the example, row instance {3,4} of table 4 and row instance {3,1}
of table 5 are joined to generate row instance {3,4,1} of co-location {A, B,C} (Table 7).
Row instance {1,1} of table 4 and row instance {1,2} of table 5 fail to generate row
instance {1,1,2} of co-location {A, B,C'} because instance 1 of B and instance 2 of C

are not neighbors.

Hybrid approach: This approach chooses the more promising of the spatial and com-

binatorial approaches in each iteration. In our experiment, it picks the spatial approach

10



to generate table instances for co-locations of size 2 and the combinatorial approach for

generating table instances for co-locations greater than size 2.

3.3 Pruning

Candidate co-locations can be pruned using the given threshold # on the prevalence
measure. In addition, multi-resolution pruning can be used for spatial dataset with
strong auto-correlation [7], i.e., where instances of each spatial feature types tend to be

located near each other.

Prevalence-Based Pruning: We first calculate the participation indexes for all candi-
date co-locations in T}, ;. Computation of the participation indexes can be accomplished
by keeping a bitmap of size cardinality(f;) for each feature f; of co-location C. One
scan of the table instance of C will be enough to put 1s in the corresponding bits in
each bitmap. By summarizing the total number of 1s (py,) in each bitmap, we obtain
the participation ratio of each feature f; (divide py, by |instance of f;|). In Figure 3
¢), to calculate the participation index for co-location {A, B}, we need to calculate the
participation ratios for A and B in co-location {A, B}. Bitmap bs= (0,0,0,0) of size four
for A and bitmap bg = (0,0,0,0,0) of size 5 for B are initialized to zeros. Scanning of
table 4 will result in by= (1,1,1,0) and bg = (1,0,0,1,0). Three out of four instances of
A (i.e., 1, 2, and 3) participate in co-location { A, B}. Thus the participation ratio for A
is .75. Similarly, the participation ratio for B is .4. The participation index is min{.75,
A4} = 4.

After the participation indexes are determined, prevalence-based pruning is carried
out and non-prevalent co-locations and their table instances are deleted from the can-
didate prevalent co-location sets. For each remaining prevalent co-location C' after
prevalence-based pruning, we keep a counter to specify the cardinality of the table in-
stance of C'. All the table instances of the prevalent co-locations in this iteration will be
kept for generation of the prevalent co-locations of size k+ 2 and discarded after the next

iteration.

Multi-resolution Pruning: Multi-resolution pruning is learned on a summary of spa-
tial data at a coarse resolution using a simple recti-linear grid. We combine all instances
of a spatial feature f in each cell (z, y) in the grid as a new coarse instance < (z,y), f,m >
in the coarse space where m is the number of instances of spatial point feature f in cell

(z,y). For each candidate co-location generated by apriori_gen, we generate its coarse

11



table instance using new coarse instances and its coarse participation index based on
the coarse table instance. Multi-resolution pruning eliminates a co-location if its coarse
participation indexes fall below the user given threshold. We illustrate the idea with one

example now.

e d_g
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Figure 5: Multi-resolution Co-location Miner Algorithm Illustration

In Figure 5 a), different shapes represent different point spatial feature types. Every
instance has a unique ID in its spatial feature type and is labeled below it in the figure.
A grid with uniform cell size d is super-imposed on the dataset. Cells (i,j) refer to cells
with an x-axis index of i and a y-axis index of j. In this grid, two cells are coarse-
neighbors if their centers are in a common square of size d x d, which imposes an 8-
neighborhood(North, South, East, West, North East, North West, South East, South
West) on the cells. For example, cell-pairs ((0, 3), (0, 4)), ((0, 3), (1, 3)) and ((0, 4), (1,
3)) illustrate coarse-neighbors. This coarse-neighborhood definition guarantees that two
cells are neighbors if there exists a pair of points from each of the two cells which are
neighbors in the original dataset.

First we generate coarse table instances of candidate co-locations of size k + 1 by
joining the coarse table instances with the coarse-neighbor relationships.

Next we calculate the participation indexes for all candidate co-locations based on
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the coarse table instances. For each spatial feature f;, we add up all the counts of point
instances in each coarse instance with 1s in its corresponding bitmap (py,) and divide
this by |instance of f;| to get the coarse-participation ratio of feature f;. For example,
coarse Pr((%, o), x) = 4/7 since there are 4 coarse row instances of (x,0) and 7 fine-grain
instances of x. Similarly, coarse Pr((*, o), o) = 4/4 = 1, yielding coarse participation
index(x, o) = min(4/7,4/4) = 4/7. Figure 5 b) shows coarse table instances of co-
locations (%, O), (%, o) and (x, ). If the threshold for prevalence is set to 0.6, then
co-location c5 can be pruned by multi-resolution pruning. We also note that the sizes
of coarse table instances are smaller than the sizes of table instances at fine resolution.
This shows the possibility of computation cost saving via multi-resolution pruning for
clustered datasets. Finally, the examples in Figure 5 b) show that the coarse participation
ratios and participation indexes never underestimate the true participation indexes of the

original dataset.

3.4 Generating Co-location Rules

The gen_rules generates all the co-location rules with the user defined min_prev and
min_cond_prob. The conditional probability of a co-location rule C; — Cj5 in the event

centric model is the probability of finding C5 in a neighborhood of C;. It can be formally
defined as: ‘diSti"Ct(ﬂ'Cl (all row instance of C1UC3))

|instance of C1|

or other data structures can be used for efficient computation using the same strategies

| where 7 is a projection operation. Bitmaps

for prevalence-based pruning.

4 nalysis of t e o-location ining Igorit ms

In this section, we analyze the co-location mining algorithms in the areas of completeness,

correctness, and computational complexity.

4.1 Completeness and Correctness

Lemma 1 The participation ratio and participation indexr are monotonically non-

increasing as the size of the co-location increases.

Proof: The participation ratio is monotonic because a spatial feature instance that par-

ticipates in a row instance of a co-location ¢ participates in a row instance of a co-location
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¢ where ¢’ C ¢. The participation index is also monotonic because 1) the participation ra-
tio is monotonic and 2)pi(cU f11) = min® ! {pr(cU fiyr, £i)} < min®_ {pr(cU fupr, fi)} <
min?_, {pr(c, fi)} = pi(c). Given this property, spatial feature level pruning can be effec-
tive. We can also rely on a combinatorial approach and use apriori_gen [2] to generate

size k + 1 candidate co-locations from size k prevalent co-locations.

Lemma 2 The coarse participation index computed by multi-resolution pruning never
underestimates the true participation indexes of the original dataset. The candidate co-

location set found is a superset of the prevalent co-location set on the original dataset.

Proof : When co-location size = 1, the value of the coarse participation index and
the true participation index is 1, so Lemma 2 is trivially true. Suppose Lemma 2 is
true for co-locations size=k. Let us consider the case that co-location size is equal to
k+1. For each candidate co-location C' of size k + 1 generated from the apriori_gen by
joining C and Cs of size k, we generate its coarse instance table by joining the coarse
instance tables of C; and (5. Because Lemma 2 is true for co-locations of size k, the
candidate co-location set of size k found is a superset of the prevalent co-location set
on the original dataset. Thus C; and C5 are in the candidate co-location set in the
previous iteration and their coarse level table instances are available to be joined to
produce the coarse level table instance of C'. The table join to produce the coarse table
instance of C has the following property: if Neighborg(p1,p2) is in the original dataset,
then coarse Neighbor(cell ¢, cell ¢y) will be in the coarse-level dataset given p; € ¢; and
P2 € co. When we calculate the coarse participation index, any spatial feature instance
which participates in the co-location in the original dataset will contribute to the counts
during the coarse participation ratio calculation. So the coarse participation ratios never
underestimates the true participation ratios, implying that the coarse participation index
never underestimates the true participation index and that the pruning will not eliminate
any truly prevalent co-location. Thus the candidate co-location set after multi-resolution

pruning is a superset of the prevalent co-location set on the original dataset.

Lemma 3 The Co-location Miner algorithm is complete.

Proof : The spatial join produces all pairs (p',p”) of instances where p'.feature #
p" feature and p’ and p” are neighbors. Any row instance of any size 2 co-location

satisfying these two conditions in the join predicate will be generated. The schema
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level pruning using apriori_gen is complete due to the monotonicity of the participation
index as proved in Lemma 1. Then we prove that the join of the table instances of C
and Cy to produce the table instance of C is complete. According to the neighborhood
definition, any subset of a neighborhood is a neighborhood too. For any instance I =
{i1,... ,igs1} of co-location C, subsets I} = {iy,... i} and I = {iy,... g 1,051}
are neighborhoods, 7 and i, are neighbors, and I; and I, are row instances of C
and C respectively. Joining I; and I, will produce I. Enumeration of the subsets of
each of the prevalent co-locations ensures that no spatial co-location rules with both
high prevalence and high conditional probabilities are missed. We then prove that multi-
resolution pruning does not affect completeness. By Lemma 2, the co-location set found is
a superset of the prevalent co-location set on the original dataset. Thus multi-resolution

pruning does not falsely eliminate any prevalent co-location.
Lemma 4 The Co-location Miner is correct.

Proof: We will only show that the row instance of each co-location is correct, as that will
imply the correctness of the participation index values and that of each co-location meet-
ing the user specified threshold. An instance I} = {i11,... ,414} of C1 = {f1,..., fit1}
and an instance Iy = {ia1,... .92} of Co = {f1,..., fe_1, fet1} is joined to produce an
instance Lye = {611,... i1k, 92, of C = {f1,..., fes1} if: 1) all elements of I; and I,
are the same except iy and igg; 2) i1 and ioy are neighbors. The schema of I, is
apparently C', and elements in I, are in a neighborhood because I; is a neighborhood

and g, is a neighbor of every element of I;.

4.2 Computational Complexity Analysis

This subsection examines the strategies for generating candidate co-locations, the eval-
uation of the multi-resolution pruning strategy, and the effect of noise. First, there are
two basic strategies for generating table instances of candidate co-locations, namely the
geometric approach and the combinatorial approach. For generating size-2 co-locations,
the combinatorial approach ends up being the nest-loop join strategy with an asymptotic
complexity of O(N?), while the geometric approach has the CPU cost! of O(NlogN -+ M)
where N is the total number of instances of all features and M is the number of intersec-
tions. When the dataset is sparse, the cost of the combinatorial approach will be much

higher. However, when generating table instances of co-locations of size 3 or more, the

tThe I/0O costs of the geometric approach and the combinatorial approach are similar.
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combinatorial approach becomes cheaper than the geometric approach. This is due to
its exploitation of the sort-merge join strategy while keeping each table instance sorted,
resulting in the computation complexity of O(NN) where N is the size of table instances.
In a hybrid approach, we pick the cheaper of the two basic strategies in each iteration to
achieve the best overall cost.

Second, let us compare the cost of the Co-location Miner algorithm without and with
the multi-resolution filter step. Let T,,.m (k) and T, (k) represent the costs of iteration
k of the Co-location Miner algorithm with and without the Multi-resolution filter.

Tmcm(k) = TapTioM-gen(C(prev,k)) + Tprune(C(cand,k—‘,—l),griddata) + Tprune(C(sub_cand,k—i-1),data)

Tcm(k) = Tapriori_gen(C(prev,k)) + Tprune(C(cand,kJrl),data)

In Equation 1, Typriori_gen(C(prev,k)) T€PTesents the cost of apriori_gen based on the
prevalent co-location set of size k. Resolution is not relevant since apriori_gen works
on the spatial feature level only. T} une(C(cand,k+1),griddata) T€Presents the cost for multi-
resolution pruning on the coarse level dataset in iteration k. After coarse-level pruning,
we only need to search the leftover subset of the original dataset. Tj,;une(C(sub_cand,k+1),data)
represents the cost for fine level instance pruning on the leftover subsets of the original
dataset. Also, Thrune(C(cand k+1),data) T€PTESENtS the cost for fine level instance pruning on
the original dataset in iteration k.

The bulk of time is consumed in generating table instances and calculating the par-

ticipation indexes; thus the ratio can be simplified as:

Tmcm(k) -~ Tprune(C(cand,k+1),griddata) + Tprune(C(sub_cand,k+1),data) (2)

Tcm(k) -~ Tprune(C(cand,k+1),datu)

Furthermore, we assume that the average time to generate a table instance in the
original dataset is T,,;,(k) for iteration k and the average time to generate a table instance
in the grid dataset is Ty,.;4(k) for iteration k. The number of candidate co-locations
generated by the apriori_gen is |Cy1| and the number of candidate co-locations after the
coarse instance level pruning is |C} |, Equation 2 can be written as:

Tnem (k) |Chia| X Tyria(k) + [Cia| X Torig(k) _ Tygria(k) | [Chys]

R = +
Tcm(k) |Ck+1| X TOM'g(k) TOM'g(k) |Ck+1|

(3)

The first term of the ratio is controlled by the “clumpiness” (the average number of
instances of the spatial features per grid cell) of the locations of spatial features. The

second term is controlled by the filtering efficiency of the coarse instance level pruning.

16



When the locations of spatial features are clustered, the sizes of the fine level table
instances are much greater than the sizes of the coarse level table instances and the time
needed to generate fine level table instances is greater than the time needed to generate
coarse level table instances. In our experiments, as described in the next section, we
use the parameter mymy, Which controls the number of instances clumping together
for each spatial feature, to evaluate the first term, and we use the parameter m,yeriap,
which represents the possible false candidate ratios to evaluate the second term. From
the formula, we can see that the Multi-resolution Co-location Miner is likely to be more
efficient than the Co-location Miner when the locations of spatial features are clustered

and the false candidate ratio is high.

5 Experi ental erfor ance Evaluation

5.1 Experiment Design

Figure 6 describes the experimental setup to evaluate the impact of design decisions on
the relative performance of the co-location miner algorithm. We evaluated the perfor-
mance of the algorithms with synthetic data generated using a methodology similar to
methodologies used to evaluate algorithms for mining association rules [2]. Synthetic
datasets allow better control towards studying the effects of interesting parameters. A
data-flow diagram of the data generation process is shown in Figure 6. The process
began with the generation of core co-location subsets of spatial features. To generate a
subset of features, we first chose the size of the subset from a Poisson distribution with
mean (A). Then a set of features for this core co-location pattern was randomly chosen.
For each core co-location, mgyeriqp maximal co-locations were generated by appending
one more spatial feature to a core co-location. The larger moyperiap is, the more false
candidate apriori_gen generates. The size of each table instance of each co-location was
chosen from another Poisson distribution with mean Ay. Next, we generated the set of
neighborhoods for co-locations instances using the size of their table instances from the
previous step. Mqump point locations for each feature in the co-location were embedded
inside a neighborhood of size d. The locations of neighborhoods were chosen at random
in the overall spatial framework. For simplicity, the shape of the overall spatial frame-
work was a rectangle of size Dy X Dy and the size of each neighborhood was d x d. The
final step involved adding noise. The model for noise used two parameters, namely the

ratio of noise features r,,;5c s and the number of noise instances pypise . Noise was added
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Table 1: Parameters Used to Generate the Synthetic Data

Parameter | Definition ‘ Ci | C2 ‘
Neo toc The number of core co-locations 5 4
A1 The parameter of the Poisson distribution to define the size | 5 5

of the core co-locations
A9 The parameter of the Poisson distribution to define the size | 50 50

of the table instance of each co-location when mymp = 1
Dy x Do The size of the spatial framework 108 x | 250 x

106 1,000

d The size of the square to define a co-location 10 10
Tnoise_f The ratio the of number of noise features over the number | .5 .5

of features involved in generating the maximal co-locations
Tnoise.n The number of noise instances 50,000 | 1,000
Moverlap The number of co-location generated by appending one more | 1 1

spatial feature for each core co-location

Melump The number of instances generated for each spatial feature | 1 1
in a neighborhood for a co-location

by generating a set of instances of features from a set of noise features disjoint with the
features involving generation of core co-locations and placing those at random locations

in the global spatial framework.

NCO_IOT AL, A2, ererIap D, f mcIump NoiselModel
Generate Generate Add
Co-locations Neighborhoods | | Noise
Spatial Datasets
Measurements Co-‘I’ocati on Candidate

Anaysis

Algorithms [~ Algorithms

Figure 6: Experimental Setup and Design

Metrics

Datasets were used by the co-location algorithm driver module to collect the per-
formance statistics, as shown in Figure 6. The execution time was measured using the
“time” function in the C++ language on a Sun Ultra 10 work station with a 440 MHz
CPU and 128 Mbytes memory running the SunOS 5.7 operating system. The measure-

ments are summarized in the form of plots and tables reported in the following section.
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5.2 Comparing Strategies for Generating Table Instances

We compared the geometric, the combinatorial, and the hybrid strategies. The base
dataset, generated using parameter values in column C1 of Table 1, used a rectangle
spatial framework of size 106 x 10%, a square neighborhood of size 10 x 10, an average
co-location size of 5, an average table instance size of 50 when mym, = 1, a noise feature
ratio of 0.5, a noise number of 50,000, and an overlapping degree of 1. Figure 7 (a) shows
the execution times for the three candidates with the prevalence threshold set to .9. The

second column reports the execution time needed to discover co-locations of size 2.

Time to Generate Co-locations of Size 2 —+—
Time to Generate Co-locations of Size 3+ -—x-— ]
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(a) (b)

Figure 7: (a)Relative Performance of Geometric, Combinatorial, and Hybrid Algorithms
(b) Noise Effect on Co-location Miner

As can be seen, the geometric strategy is faster than the combinatorial strategy for
generating size-2 co-locations. Spatial-join data structures help the geometric algorithm
in this step. The remaining columns report the total execution time to discover all the
co-locations as well as the time to discover co-locations of size 3 or more, given prevalent
co-locations of size 2. In these cases, the combinatorial algorithm is orders of magnitude
faster than the geometric algorithm. A sort-merge join strategy (e.g apriori-gen [2]) helps
the combinatorial algorithm. The hybrid strategy uses the geometric algorithm for dis-
covering prevalent co-locations of size 2 and the combinatorial algorithm for discovering
larger co-locations. Thus, it is expected to achieve the best overall performance. Our

experimental results confirm this, as shown in Figure 7 (a).
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5.3 Effect of the Filter

The effect of the multi-resolution filter was evaluated with spatial datasets generated
using parameter values shown in column C2 of Table 1. We used a rectangular spatial
framework of size 250 x 1000, a square neighborhood of size 10 x 10, an average co-
location size of 5, an average table instance size of 50 when my.m, = 1 a noise feature
ratio of 0.5, a noise number of 1000, a core co-location size of 4, and an overlapping
degree of 1. Spatial framework sizes were proportional to the total number of instances
to avoid unexpected patterns created by overcrowding of instances. The overlapping
degree (Moperiap) Was set from 2 to 8 and the clumpiness measure (Meump) Was set from
5 to 20 to generate other datasets. We ran the Co-location Miner with and without the
multi-resolution filter on these datasets. Prevalence thresholds were set to the estimation

of the actual prevalences from the generation of the datasets.
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(a) (b)
Figure 8: Performance Ratio a) By Overlap Degree b) By Clumpiness Degree

Figure 8 summarizes the performance gain by using the Multi-resolution filter. The
x-axis represents the overlap degree, which controls the false candidates generated by
apriori_gen in the first figure or the “clumpiness” of locations of instances of spatial
feature type in the second figure. The y-axis represents the ratio of run-time of the
Co-location Miner without the multi-resolution filter to the run-time with the multi-
resolution filter. The results show that, as the degree of overlap and the number of false
candidates increase, the running time is reduced by a factor of 1 to 4.5.

Figure 9 summarizes the ratio of the computation time for multi-resolution pruning

and that for prevalence-based pruning. Similarly, the x-axis represents the overlap degree
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Figure 9: Filter Time Ratio (a) By Overlap Degree (b) By Clumpiness Degree

or the “clumpiness” of the locations of each spatial feature type. The overhead of the
multi-resolution filter as a fraction of prevalence-based pruning decreases when the degree
of overlap or clumpiness increases. Clumpiness strongly affects the overhead, reducing it
from 0.45 to 0.1.

5.4 Effect of Noise

The base dataset, generated using parameter values in column C1 of Table 1, used a
rectangle spatial framework of size 10% x 10%, a square neighborhood of size 10 x 10,
an average co-location size of 5, an average table instance size of 50 when mym, = 1,
a noise feature ratio of 0.5, a noise number of 50,000, and an overlapping degree of 1.
Then we increased the noise instances up to 800,000 and measured the performance, as
shown in Figure 7 (b). The execution time for discovering co-locations of size 2 is and 3+
are shown in the figure. We note that noise-level affects the execution time to discover
co-locations of size 2 but does not affect the execution time to discover larger co-locations
given co-locations of size 2. In other words, noise is filtered out during the determination

of co-locations of size 2.

6 onclusion an Future Work

In this paper, we formalized the co-location problem and showed the similarities and

differences between the co-location rules problem and the classic association rules prob-
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lem as well as the difficulties in using traditional measures (e.g. support, confidence)
created by implicit, overlapping and potentially infinite transactions in spatial data sets.
We proposed the notion of user-specified neighborhoods in place of transactions to spec-
ify groups of items and defined interest measures that are robust in face of potentially
infinite overlapping neighborhoods. We defined a new spatial measure of conditional
probability as well as a new monotonic measure of prevalence to allow iterative prun-
ing. The Co-location Miner, a generalized algorithm for mining co-location patterns
was presented and analyzed for correctness, completeness and computation cost. Design
decision in the proposed algorithm were evaluated using theoretical and experimental
methods. Empirical evaluation shows that the geometric strategy performs much better
than the combinatorial strategy when generating size-2 co-location; however, it becomes
slower when generating co-locations with more than 2 features. The hybrid strategy
integrates the best features of the above two approaches. Experimental results show
that the Co-location Miner is tolerant of noise and provides the best overall performance.
Furthermore, when the locations of the features tend to be spatially clustered, which is
often true for spatial data due to spatial-autocorrelation, the Multi-resolution filter will
significantly reduce computation cost of proposed algorithm.

Several questions remain open. The co-location mining problem should be investi-
gated to account for extended spatial data types, such as line segments, polygons and
circles. We briefly discuss the potential approach to deal with extended spatial objects in
Appendix A. We considered only boolean spatial features here. In the real world, the fea-
tures can be categorical and continuous. There is a need to extend the co-location mining
framework to handle continuous features. Finally, if the locations of features change over

time, it should be possible for us to identify some temporal-spatial co-location patterns.
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Figure 10: Neighborhood Illustration for various Spatial Objects

ppen ix : pproac es for xten e bjects

We will use a Euclidean distance based neighborhood here to simplify the discussion.
N(p), the size-d Euclidean neighborhood of a point location p ,is a circle of radius d with
p as its center. N (o), the size-d neighborhood of an extended spatial object (e.g polygon,
line-string) is defined by a buffer operation as shown in Figure 10. Object o; and o;
are e-neighbors if and only if o; N N(0,) as well as 0; N N(o;) are non-empty. Euclidean
neighborhood N( f;) of feature f; is the union of N (i) for all instance i; of f;. Euclidean
neighborhood N(C) for a co-location C = {fi,..., fi} is the intersection of N(f;) for f;
in C.

I ={iy,1s,... ,i;, B} is a row instance of a co-location C' = {fy,..., fi.} if i; is an
instance of feature f;(Vj € 1,... ,k) and I is a neighborhood of I itself, i.e. elements of
i;el N(Z])

The participation ratio Pr(C, f;) for feature type f; in a co-location C' =
{fi,-.-, frx} is Pr(p € ﬂijec N(f;)lp € fi), the probability that a point p in f; has
points belonging to all features in C' within a neighborhood of P, assuming a sym-

I are neighbors to each other. The last element B in I represents ()

metric neighbor relationship. We illustrate the definition of the participation ratio for
extended linear object features using length. A similar measure for polygonal features

can be defined using area in place of length. Participation ratio pr(C, f;) for linear

length(intersection(f;, ﬂf]_ cc N(£))
length(f;)

analysis of an urban road map may reveal 100 miles of freeway, of which 25 miles

are within N(frontageroad), yielding Pr((freeway, frontageroad) = 25/100 = 0.25).

Participation ratio Pr(C, f;) can be computed from table instance of C' in terms of
length(unionletable instanceof C (intersection(i]-, B(I)))
length(unionij e, (i5)) :

The conditional probability of a co-location rule Cy — (5 is the probability of

spatial feature f; can be computed as For example, an

finding an instance of Cy in a neighborhood of instance of Cy, i.e. Pr(p € N(Cy)|p €

N(CY)). It can be computed as W using the table instances of Cy and C; | Cs.
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ppen ix B: Interest

easures for Different

o els

Table 2: Interest measures for different models

Model Items Transactions Interest measures for C; — Cy
defined by Prevalence | Conditional probability
local boolean fea- | partitions of | fraction of parti- | Pr(Cy in a partition given
ture types space tions with C; U | C; in the partition)
Co
reference| predicates on | instances of ref- | fraction of | Pr(Cy is true for an in-
feature | reference and | erence feature C; | instance of ref- | stance of reference features
centric relevant fea- | and C9 involved | erence feature | given (] is true for that in-
tures with with C7 U Cy stance of reference feature)
window || boolean fea- | possibly infinite | fraction of win- | Pr(Cs in a window given
centric ture types set of distinct | dows with C; U | Cy in that window)
overlapping win- | Cy
dows
event boolean fea- | neighborhoods of | participation in- | Pr(Cy in a neighborhood
centric ture types instances of fea- | dex of C7; U Cy of Cy)

ture types
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