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Abstra
tGiven a 
olle
tion of boolean spatial features, the 
o-lo
ation pattern dis
overypro
ess �nds the subsets of features frequently lo
ated together. For example, theanalysis of an e
ology dataset may reveal the frequent 
o-lo
ation of a �re igni-tion sour
e feature with a needle vegetation type feature and a drought feature.The spatial 
o-lo
ation rule problem is di�erent from the asso
iation rule prob-lem. Even though boolean spatial feature types (also 
alled spatial events) may
orrespond to items in asso
iation rules over market-basket datasets, there is nonatural notion of transa
tions. This 
reates diÆ
ulty in using traditional measures(e.g. support, 
on�den
e) and applying asso
iation rule mining algorithms whi
huse support-based pruning. We propose a notion of user-spe
i�ed neighborhoods inpla
e of transa
tions to spe
ify groups of items. New interest measures for spatial
o-lo
ation patterns are proposed whi
h are robust in the fa
e of potentially in�-nite overlapping neighborhoods. We also propose a family of algorithms to minefrequent spatial 
o-lo
ation patterns. Experimental results are provided to showthe strength of ea
h algorithm and design de
isions related to performan
e tuning.Keywords: spatial data mining, Geographi
 Information System, spatial 
o-lo
ationrules, spatial asso
iation rules, parti
ipation index.
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1 Introdu
tionWidespread use of spatial databases [10, 24, 25, 36℄ is leading to an in
reasing interest inmining interesting and useful but impli
it spatial patterns [9, 16, 20, 23, 32, 26, 28, 5, 29,35℄. For example, E-servi
es are growing along with mobile 
omputing infrastru
turessu
h as PDAs and 
elluar phones. Finding E-servi
es frequently lo
ated together is ofinterest to businesses that want to 
ondu
t lo
ation sensitive market promotions su
has promoting a taxi servi
e for 
ustomers who reserve an E-ti
ket in some lo
ations. Ine
ology, s
ientists are interested in �nding frequent 
o-o

urren
es among boolean spatialfeatures, e.g., drought, El Nino, substantial in
rease in vegetation, substantial drop invegetation, extremely high pre
ipitation, et
. EÆ
ient tools for extra
ting informationfrom geo-spatial data, the fo
us of this work, are 
ru
ial to organizations whi
h makede
isions based on large spatial datasets. These organizations are spread a
ross manydomains in
luding e
ology and environmental management, publi
 safety, transportation,publi
 health, business, and tourism [3, 14, 18, 11, 32, 37℄.Asso
iation rule �nding [13, 1, 2, 13, 22, 30, 31, 33℄ is an important data miningte
hnique whi
h has helped retailers interested in �nding items frequently bought togetherto make store arrangements, plan 
atalogs, and promote produ
ts together. Spatialasso
iation rules [17℄ are spatial 
ases of general asso
iation rules where at least oneof the predi
ates is spatial. Asso
iation rule mining algorithms [1, 2, 12℄ assume thata �nite set of disjoint transa
tions are given as input to the algorithms. In marketbasket data, a transa
tion 
onsists of a 
olle
tion of item types pur
hased together by a
ustomer. Algorithms like apriori [2℄ 
an eÆ
iently �nd the frequent itemsets from allthe transa
tions and asso
iation rules 
an be found from these frequent itemsets.Many spatial datasets 
onsist of instan
es of a 
olle
tion of instan
es of booleanspatial features (e.g., drought, needle leaf vegetation). Figure 1 a) shows the frequent
o-o

urren
es of some point spatial feature types represented by di�erent shapes. As 
anbe seen, instan
es of spatial features in sets f`+', `�'g and f`o', `*'g tend to be lo
atedtogether. Figure 1 b) shows an instan
e of 
o-lo
ation patterns among extended spatialfeatures, namely road-types, on an urban road map. Highways often have frontage roadsnearby in large metropolitan areas, e.g. Minneapolis. Identi�
ation of su
h 
o-lo
ationsis useful in sele
ting test-sites for evaluating in-vehi
le navigation te
hnology [38℄. Whileboolean spatial features 
an be thought of as item types, there may not be an expli
it�nite set of transa
tions due to the 
ontinuity of the underlying spa
e.We formalize the 
o-lo
ation rule mining problem as follows: Given 1) a set T of K
1
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Figure 1: a) Point Spatial Co-lo
ation Patterns Illustration. Shapes represent di�erentspatial feature types. Spatial features in sets f`+', `�'g and f`o', `*'g tend to be lo
atedtogether. b) Line String Co-lo
ation Patterns Illustration. Highway 100 and NormandaleRoad are 
o-lo
ated for several hundred meters. Highways are often 
o-lo
ated withfrontage roads.
spatial feature types T = ff1; f2; : : : ; fKg and their instan
es P = fp1; p2; : : : ; pNg, ea
hpi 2 P is a ve
tor < instan
e-id, spatial feature type, lo
ation > where lo
ation 2 spatialframework S, 2) A symmetri
 and re
exive neighbor relation R over lo
ations in S, 3) Minprevalen
e threshold (min prevalen
e) and min 
onditional probability (min 
ond prob);eÆ
iently �nd 
orre
t and 
omplete set of 
o-lo
ation rules with parti
ipation index> min prevalen
e and 
onditional probability > min 
ond prob.
Related Work: Approa
hes to dis
overing 
o-lo
ation rules in the literature 
an be
ategorized into two 
lasses, namely spatial statisti
s and asso
iation rules. Spatialstatisti
s-based approa
hes use measures of spatial 
orrelation to 
hara
terize the re-lationship between di�erent types of spatial features. Measures of spatial 
orrelationin
lude 
ross-k fun
tion with Monte Carlo simulation [7℄, 
hi-square tests, 
orrelation 
o-eÆ
ients, and regression models [6℄ as well as their generalizations using spatial neighbor-hood relationships. Computing spatial 
orrelation measures for all possible 
o-lo
ationpatterns 
an be 
omputationally expensive due to the exponential number of 
andidate
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subsets given a large 
olle
tion of spatial boolean features.Asso
iation rule-based approa
hes fo
us on the 
reation of transa
tions over spa
e sothat an apriori like algorithm [2℄ 
an be used. Transa
tions over spa
e 
an be de�nedusing a window-
entri
 model [27℄, a referen
e-feature 
entri
 model [17℄ or an ad-ho
data-partition [21℄ approa
h. Thewindow 
entri
 model is relevant to appli
ations likemining, surveying, and geology, whi
h fo
us on land-par
els. A goal is to predi
t sets ofspatial features likely to be dis
overed in a land par
el given that some other features havebeen found there. The window 
entri
 model enumerates all possible windows as transa
-tions. In a spa
e dis
retized by a uniform grid, windows of size k� k 
an be enumeratedand materialized, ignoring the boundary e�e
t. Ea
h transa
tion 
ontains a subset ofspatial features of whi
h at least one instan
e o

urs in the 
orresponding window. Thesupport and 
on�den
e of the traditional asso
iation rule problem may be used as preva-len
e and 
onditional probability measures as summarized in Table 2 (seeAppendix B).There are four windows 
orresponding to four transa
tions in Figure 2 a). Two windows
ontain B and only one 
ontains both B and C. An example of an asso
iation rule ofthis model is: an instan
e of typeB in awindow ! an instan
e of typeC in thiswindowwith 12 = 50% probability. A spe
ial 
ase of the window 
entri
 model relates to the
ase when windows are spatially disjoint and form a partition of spa
e. This 
ase isrelevant when analyzing spatial datasets related to the units of politi
al or administra-tive boundaries (e.g. 
ountry, state, zip-
ode). In some sense this is a lo
al model sin
ewe treat ea
h arbitrary partition as a transa
tion to derive 
o-lo
ation patterns without
onsidering any patterns a
ross partition boundaries.Another approa
h is based on the 
hoi
e of a referen
e spatial feature [17℄. Thereferen
e feature 
entri
 model is relevant to appli
ation domains fo
using on aspe
i�
 boolean spatial feature, e.g. 
an
er. Domain s
ientists are interested in �ndingthe 
o-lo
ations of other task relevant features (e.g. asbestos, other substan
es) to thereferen
e feature. This model enumerates neighborhoods to \materialize" a set of trans-a
tions around instan
es of the referen
e spatial feature. A spe
i�
 example is providedby the spatial asso
iation rule [17℄. Transa
tions are 
reated around instan
es of oneuser-spe
i�ed spatial feature. The asso
iation rules are derived using the apriori [2℄ al-gorithm. The rules found are all related to the referen
e feature. For example, 
onsiderthe spatial dataset in Figure 2(a) with three feature types, namely A;B and C. Ea
hfeature type has two instan
es. The neighbor relationship between instan
es is shown asan edge. Co-lo
ation (A;B) and (B;C) may be 
onsidered to be frequent in this exam-ple. Figure 2(b) shows transa
tions 
reated by 
hoosing C as the referen
e. Co-lo
ation
3



(A;B) will not be found sin
e it does not involve the referen
e feature. Generalizingthis paradigm to the 
ase where no referen
e feature is spe
i�ed is non-trivial. De�ningtransa
tions around lo
ations of instan
es of all features may yield dupli
ate 
ounts formany 
andidate asso
iations. De�ning transa
tions by an ad-ho
 data-partition approa
h[21℄ attempts to measure the frequen
y of a 
o-lo
ation pattern by grouping the spatialinstan
es into disjoint partitions. However, imposing arti�
ial disjoint transa
tions viaspa
e partitioning often under
ounts instan
es of tuples interse
ting the boundaries ofarti�
ial transa
tions or double-
ounts instan
es of tuples 
o-lo
ated together. In ad-dition, there may be multiple partitions yielding distin
t sets of transa
tions, whi
h inturn yields di�erent values of support of the 
o-lo
ation. Figure 2 
) shows two pos-sible partitions for the dataset of Figure 2 a), along with the support for 
o-lo
ation(A;B). The ad-ho
 approa
h is partitioning sensitive and thus the prevalen
e measureis ill-de�ned. A di�erent grouping may result in di�erent values of the support measureand thus di�erent 
o-lo
ation patterns.In re
ent work, we developed an event 
entri
 model. For point spatial feature whi
hprovides a transa
tion-free approa
h by using the 
on
ept of neighborhood. The event
entri
 model is relevant to appli
ations like e
ology where there are many types ofboolean spatial features. E
ologists are interested in �nding subsets of spatial featureslikely to o

ur in a neighborhood around instan
es of given subsets of event types. Forexample, let us determine the probability of �nding at least one instan
e of feature typeB in the neighborhood of an instan
e of feature type A in Figure 2 a). There are twoinstan
es of type A and both have some instan
e(s) of type B in their neighborhoods.The 
onditional probability for the 
o-lo
ation rule is: spatial feature A at lo
ation l !spatial feature type B in neighborhood is 100%. This yields a well-de�ned prevalen
emeasure(i.e. support) without the need for transa
tions. Figure 2 d) illustrates that ourapproa
h will identify both (A;B) and (B;C) as frequent patterns.
Our Contributions: This paper extends our re
ent work [27℄ on the event 
entri
model and makes the following new 
ontributions. First, it presents a generalized al-gorithm to dis
over 
o-lo
ation patterns from point spatial datasets. The generalizedalgorithm in
ludes a novel multi-resolution �lter step. Se
ond, it also provides proofs of
orre
tness and 
ompleteness for the generalized algorithm. Finally the paper providesan experimental performan
e evaluation to 
ompare alternative 
hoi
es for key designde
isions, su
h as the use of a multi-resolution �lter.
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Figure 2: Example to Illustrate Di�erent Approa
hes to Dis
overing Co-lo
ation Patternsa) Example dataset. Grid is imposed to illustrate window 
enter model b) Ad ho
 datapartition approa
h. Support measure is ill-de�ned and order sensitive 
) Referen
e feature
entri
 model d) Event 
entri
 model
Outline: Se
tion 2 des
ribes our approa
h for modeling 
o-lo
ation patterns and theasso
iated measures of prevalen
e and 
onditional probability. Se
tion 3 proposes afamily of algorithms to mine 
o-lo
ation patterns; an analysis of the algorithms in theareas of 
orre
tness, 
ompleteness, and 
omputational eÆ
ien
y is presented in se
tion4. We present the experimental setup and results in se
tion 5. Finally, se
tion 6 presentsthe 
on
lusion and future work.
2 Our Approa
h for Modeling Co-lo
ation PatternsGiven the diÆ
ulty in 
reating expli
it disjoint transa
tions from 
ontinuous spatial data,this se
tion de�nes our approa
h, namely the event 
entri
model, to model 
o-lo
ationpatterns. We use Figure 3 as an example spatial dataset to illustrate the model. In the�gure, ea
h instan
e is uniquely identi�ed by T:i, where T is the spatial feature type andi is the unique id inside ea
h spatial feature type. We de�ne the following basi
 
on
eptsto fa
ilitate the des
ription of our model.A 
o-lo
ation is a subset of boolean spatial features. A 
o-lo
ation rule is of theform: C1 ! C2(p; 
p), where C1 and C2 are 
o-lo
ations, C1 \ C2 = �, p is a numberrepresenting the prevalen
e measure, and 
p is a number measuring 
onditional probabil-ity. Prevalen
e measures and 
onditional probability measures, 
alled interest measures,are de�ned di�erently in di�erent models. The window 
entri
 and the referen
e fea-ture 
entri
 models \materialize" transa
tions and thus 
an use traditional support and
on�den
e measures.Neighborhood is an important 
on
ept in the event 
entri
 model. Given a re
exiveand symmetri
 neighbor relationR, we 
an de�ne neighborhoods of a lo
ation l as follows:A neighborhood of l is a set of lo
ations L = fl1; : : : ; lkg su
h that li is a neighbor of5
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Figure 3: Spatial dataset to illustrate event 
entri
 model
l i.e. (l; li) 2 R (8i 2 1 : : : k). This de�nition satis�es the following two 
onditions fromTopology [36℄: First, every lo
ation is in some neighborhood be
ause of the re
e
tiveneighbor relationship. Se
ond, the interse
tion of any two neighborhoods of any lo
ationl 
ontains a neighborhood of l. We generalize the neighborhood de�nition to a 
olle
tionof lo
ations. For a subset of lo
ations L', if L' is a neighborhood of every lo
ationin L = fl1; : : : ; lkg then L' is a neighborhood of L. In other words, if every l1 inL0 is a neighbor of every l2 in L, then L0 is a neighborhood of L. The de�nition ofneighbor relation R is an input and is based on the semanti
s of the appli
ation domains.The neighbor relation R may be de�ned using topologi
al relationships (e.g. 
onne
ted,adja
ent), metri
 relationships (e.g. Eu
lidean distan
e) or a 
ombination (e.g. shortest-path distan
e in a graph su
h as a road-map). Enumerating all the neighborhoods in
urssubstantial 
omputational 
ost be
ause support-based pruning 
annot be 
arried outbefore the enumeration of all the neighborhoods is 
ompleted and the total numberof neighborhoods is obtained. Thus the parti
ipation index is proposed in the nextparagraph to be a prevalen
e measure to fa
ilitate pruning.I = fi1; i2; : : : ; ikg is a row instan
e of a 
o-lo
ation C = ff1; : : : ; fkg if ij is aninstan
e of feature fj(8j 2 1; : : : ; k) and I is a neighborhood of I itself, i.e. elementsof I are neighbors to ea
h other. For example, fA:3; B:4; C:1g is an instan
e of 
o-lo
ation fA; B; Cg in the illustration spatial dataset shown in Figure 3. The tableinstan
e of a 
o-lo
ation C = ff1; : : : ; fkg is the 
olle
tion of all row instan
e of C.
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The parti
ipation ratio Pr(C; fi) for feature type fi in a 
o-lo
ation C = ff1; : : : ; fkgis the fra
tion of instan
es of fi whi
h parti
ipate in any row instan
e of 
o-lo
ationC. The ratio 
an be 
omputed as jdistin
t(�fi (table instan
e of C))jjinstan
e of ffigj , where � is a relationalproje
tion operation. For example, in Figure 3, row instan
es of 
o-lo
ation fA;Bg aref(A:1; B:1); (A:2; B:4); (A:3; B:4)g. Only two out of �ve instan
es, B:1 and B:4 of spatialfeature B, parti
ipate in 
o-lo
ation fA;Bg. So Pr((A;B); B) = 2=5 = 0:4.The parti
ipation index of a 
o-lo
ation C = ff1; : : : ; fkg is minki=1fPr(C; fi)g.In Figure 3, the parti
ipation ratio Pr(fA;Bg; B) of feature B in 
o-lo
ation fA;Bg is0.4 as 
al
ulated above. Similarly, Pr(fA;Bg; A) is 0.75. The parti
ipation index(A;B)= min(0.75, 0.4) = 0.4. The 
onditional probability of a 
o-lo
ation rule C1 ! C2 isthe probability of �nding an instan
e of C2 in a neighborhood of instan
e of C1. It 
anbe 
omputed as jdistin
t(�C1(all row instan
e of C1[C2))jjinstan
e of C1j where � is a proje
tion operation.
3 Mining Co-lo
ation PatternsAs shown in Figure 4, the algorithm takes a set ET of spatial event types, a set E ofevent instan
es, user-de�ned fun
tions representing spatial neighborhood relationshipsas well as interest measures (e.g prevalen
e, 
onditional probability) and thresholds forprevalen
e based pruning. It assumes that the prevalen
e measure is monotoni
 in size of
o-lo
ations. The algorithm outputs a set of prevalent 
o-lo
ation rules with the valuesof the interest measures.The initialization step assigns starting values to various data-stru
tures used in thealgorithm. We note that our prevalen
e measure evaluates to 1 for all 
o-lo
ations of size1. In other words, all 
o-lo
ations of size 1 are prevalent and there is no need for eitherthe 
omputation of a prevalen
e measure or prevalen
e-based �ltering. Thus, the set C1of 
andidate 
o-lo
ations of size 1 as well as the set P1 of prevalent 
o-lo
ations of size 1are initialized to ET, the set of boolean spatial event types. The set T1 of table instan
esof size 1 
o-lo
ation is 
reated by sorting the set E of event instan
es by event types.The proposed algorithms for mining 
o-lo
ation rules iteratively perform four basi
tasks, namely generation of 
andidate 
o-lo
ations, generation of table instan
es of 
an-didate 
o-lo
ations, pruning, and generation of 
o-lo
ation rules. These tasks are 
arriedout inside a loop iterating over the size of the 
o-lo
ations. Iterations start with size 2sin
e our de�nition of prevalen
e measure allows no pruning for 
o-lo
ations of size 1.We des
ribe the 
omputational stru
ture of ea
h task in forth
oming subse
tions.
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Input:

     (a) E = {Event-ID, Event-Type, Location in Space} representing a set of events;

          ET = {Set of boolean spatial event types};

     (b) Neighborhood relationship function; pair of spatial points;

     (c) Interest measure function (e.g. prevalence, conditional probability);

     (d) Threshold on prevalence measure and conditional probability;

Output:

     A set of co-locations with values of interest measures (i.e. prevalence, conditional

     probability) satisfying threshold.

Data Structure:

      
k = Co-location size

      C
k
 = set of candidate size k co-locations in iteration k = 1, 2, ..., P

      T
k
 = set of table instances of co-locations in C
k
 for k = 1, 2, ..., P

      P
k
 = set of prevalent size k co-locations for k = 1, 2, ..., P

      R
k
 = set of co-location rules of size k for k = 1, 2, ..., P

      
T_C
k
 = set of coarse-level table instances of size k co-location in 
C
k
 for k= 1, 2, ..., P

Steps:

      Co-location-size k = 1

      C
1
 = ET;

      P
1
 = ET;

      T
1
 = generate_table_instance(
C
1
, E);


      Initialize data structure 
C
k
, T
k
, P
k
, R
k
, T_C
k
 to be empty for k >1

      while(not empty P
k
) do{

           C
k+1
 = generate_candidate_colocation (C
k
, k);

           if (fmul = true) then {

                    C
k+1
 = multi_resolution_pruning (
C
k+1
);

            }

           T
k+1
 = generate_table_instance ( 
   , 
C
k+1
, T
k
);

           P
k+1
 = select_prevalent_colocation(    
, 
C
k+1
, T
k+1
);

           R
k+1
 = generate_colocation_rule (
P
k+1
, T
k+1
);

      }

      return union (R
2
, ..., R
k+1
);


q

q


Figure 4: Overview of algorithms
3.1 Generation of Candidate Co-lo
ationsThe parti
ipation ratio is monotoni
ally non-in
reasing with the size of the 
o-lo
ationin
reasing be
ause any spatial feature that parti
ipates in a row instan
e of a 
o-lo
ation
 parti
ipates in a row instan
e of a 
o-lo
ation 
0 where 
0 � 
. The parti
ipationindex is also monotoni
 be
ause 1) the parti
ipation ratio is monotoni
 2) pi(
[ fk+1) =mink+1i=1 fpr(
 [ fk+1; fi)g � minki=1fpr(
 [ fk+1; fi)g � minki=1fpr(
; fi)g = pi(
). Giventhis property, a spatial feature level pruning approa
h 
an be e�e
tive. We 
ould alsorely on a 
ombinatorial approa
h and use apriori gen [2℄ to generate size k+1 
andidate
o-lo
ations from size k prevalent 
o-lo
ations.The apriori-gen fun
tion takes as argument Lk�1, the set of all large (k-1)-itemsets.The fun
tion works as follows. First, in the join step, we join Lk�1 with Lk�1. This step

8



is spe
i�ed in a SQL-like syntax as follows:insert into Cksele
t p.item1, p.item2,: : : , p.itemk�1, q.itemk�1, p:table instan
e id, q:table instan
e idfrom Lk�1 p, Lk�1 qwhere p.item1 = q.item1, : : : , p.itemk�2 = q.itemk�2, p.itemk�1 < q.itemk�1;Next, in the prune step, we delete all itemsets 
 2 Ck su
h that some (k � 1)-subsetof 
 is not in Lk�1:
forall itemsets 
 2 Ck doforall (k � 1)-subsets s of 
 doif (s =2 Lk�1) then delete 
 from Ck;
Note that Lk�1, Lk, and Ck are nested tables [34℄ where 
olumns table instan
e idrefer to table instan
e of appropriate 
o-lo
ations.

3.2 Generation of Table Instan
es of Candidate Co-lo
ationsComputation for generating size k + 1 
andidate 
o-lo
ations 
an be expressed as thefollowing join query:forall 
o-lo
ation 
 2 Ck+1insert into T
 /* T
 is the table instan
e of 
o-lo
ation 
 */sele
t p.instan
e1, p.instan
e2, : : : , p.instan
ek, q.instan
ekfrom 
.table instan
e id1 p, 
.table instan
e id2 qwhere p.instan
e1=q.instan
e1, : : : , p.instan
ek�1=q.instan
ek�1, (p.instan
ek,q.instan
ek) 2 R;end;
It takes the size k + 1 
andidate 
o-lo
ation set Ck+1 and table instan
es of thesize k prevalent 
o-lo
ations as arguments and works as follows: 
.table instan
e id1and 
.table instan
e id2 spe
ify the table instan
es of the two 
o-lo
ations joined inapriori gen to produ
e 
. Here, a sort-merge join is preferred be
ause the table in-stan
es of ea
h iteration 
an be kept sorted for the next iteration. This follows from asimilar property of apriori-gen [2℄. Sort order is based on an ordering of the set of item-types to order item-types in a 
o-lo
ation to form the sort-�eld. Finally, all 
o-lo
ationswith empty table instan
e will be eliminated from Ck+1.The join 
omputation for generating table instan
es has two 
onstraints, namely a spa-tial neighbor relationship 
onstraint (p.instan
ek, q.instan
ek) and a 
ombinatorial dis-tin
t event-type 
onstraint (p.instan
e1=q.instan
e1, : : : , p.instan
ek�1=q.instan
ek�1).

9



We examine three strategies for 
omputing this join, a geometri
 strategy, a 
ombina-torial strategy and a hybrid strategy. These are des
ribed in forth
oming subse
tions.Exploration of other join strategies is beyond the s
ope of this paper but we may exploresu
h strategies in future work.
Geometri
 Approa
h: This approa
h 
an be implemented by neighborhoodrelationship-based spatial joins of table instan
es of prevalent 
o-lo
ations of size k withtable instan
e sets of prevalent 
o-lo
ations of size 1. In pra
ti
e, spatial join operationsare divided into a �lter step and a re�nement step [24℄ to eÆ
iently pro
ess 
omplexspatial data types su
h as point 
olle
tions in a row instan
e. In the �lter step, thespatial obje
ts are represented by simpler approximations su
h as the MBR - MinimumBounding Re
tangle. There are several well-known algorithms, su
h as plane sweep [4℄,spa
e partition [15℄ and tree mat
hing [19℄, whi
h 
an then be used for 
omputing thespatial join of MBRs using the overlap relationship; the answers from this test formthe 
andidate solution set. In the re�nement step, the exa
t geometry of ea
h elementfrom the 
andidate set and the exa
t spatial predi
ates are examined along with the
ombinatorial predi
ate to obtain the �nal result.
Combinatorial Approa
h: The 
ombinatorial join predi
ate (i.e. p.instan
e1 =q.instan
e1, : : : , p.instan
ek�1=q.instan
ek�1) 
an be pro
essed eÆ
iently using asort-merge join strategy [8℄, sin
e the set of feature types is ordered and tables
.table instan
e id1 and 
.table instan
e id2 are sorted. The resulting tuples are 
he
kedfor the spatial 
ondition (p.instan
ek, q.instan
ek) to get the row-instan
e in the result.
Example 1 In Figure 3, table 4 of 
o-lo
ation fA;Bg and table 5 of 
o-lo
ation fA;Cgare joined to produ
e the table instan
e of 
o-lo
ation fA;B;Cg be
ause 
o-lo
ationfA;Bg and 
o-lo
ation fA;Cg were joined in apriori gen to produ
e 
o-lo
ation fA;B;Cgin the previous step. In the example, row instan
e f3; 4g of table 4 and row instan
e f3; 1gof table 5 are joined to generate row instan
e f3; 4; 1g of 
o-lo
ation fA;B;Cg (Table 7).Row instan
e f1; 1g of table 4 and row instan
e f1; 2g of table 5 fail to generate rowinstan
e f1; 1; 2g of 
o-lo
ation fA;B;Cg be
ause instan
e 1 of B and instan
e 2 of Care not neighbors.
Hybrid approa
h: This approa
h 
hooses the more promising of the spatial and 
om-binatorial approa
hes in ea
h iteration. In our experiment, it pi
ks the spatial approa
h

10



to generate table instan
es for 
o-lo
ations of size 2 and the 
ombinatorial approa
h forgenerating table instan
es for 
o-lo
ations greater than size 2.
3.3 PruningCandidate 
o-lo
ations 
an be pruned using the given threshold � on the prevalen
emeasure. In addition, multi-resolution pruning 
an be used for spatial dataset withstrong auto-
orrelation [7℄, i.e., where instan
es of ea
h spatial feature types tend to belo
ated near ea
h other.
Prevalen
e-Based Pruning: We �rst 
al
ulate the parti
ipation indexes for all 
andi-date 
o-lo
ations in Tk+1. Computation of the parti
ipation indexes 
an be a

omplishedby keeping a bitmap of size 
ardinality(fi) for ea
h feature fi of 
o-lo
ation C. Ones
an of the table instan
e of C will be enough to put 1s in the 
orresponding bits inea
h bitmap. By summarizing the total number of 1s (pfi) in ea
h bitmap, we obtainthe parti
ipation ratio of ea
h feature fi (divide pfi by jinstan
e of fij). In Figure 3
), to 
al
ulate the parti
ipation index for 
o-lo
ation fA;Bg, we need to 
al
ulate theparti
ipation ratios for A and B in 
o-lo
ation fA;Bg. Bitmap bA= (0,0,0,0) of size fourfor A and bitmap bB = (0,0,0,0,0) of size 5 for B are initialized to zeros. S
anning oftable 4 will result in bA= (1,1,1,0) and bB = (1,0,0,1,0). Three out of four instan
es ofA (i.e., 1, 2, and 3) parti
ipate in 
o-lo
ation fA;Bg. Thus the parti
ipation ratio for Ais .75. Similarly, the parti
ipation ratio for B is .4. The parti
ipation index is minf.75,.4g = .4.After the parti
ipation indexes are determined, prevalen
e-based pruning is 
arriedout and non-prevalent 
o-lo
ations and their table instan
es are deleted from the 
an-didate prevalent 
o-lo
ation sets. For ea
h remaining prevalent 
o-lo
ation C afterprevalen
e-based pruning, we keep a 
ounter to spe
ify the 
ardinality of the table in-stan
e of C. All the table instan
es of the prevalent 
o-lo
ations in this iteration will bekept for generation of the prevalent 
o-lo
ations of size k+2 and dis
arded after the nextiteration.
Multi-resolution Pruning: Multi-resolution pruning is learned on a summary of spa-tial data at a 
oarse resolution using a simple re
ti-linear grid. We 
ombine all instan
esof a spatial feature f in ea
h 
ell (x; y) in the grid as a new 
oarse instan
e< (x; y); f;m >in the 
oarse spa
e where m is the number of instan
es of spatial point feature f in 
ell(x; y). For ea
h 
andidate 
o-lo
ation generated by apriori gen, we generate its 
oarse

11



table instan
e using new 
oarse instan
es and its 
oarse parti
ipation index based onthe 
oarse table instan
e. Multi-resolution pruning eliminates a 
o-lo
ation if its 
oarseparti
ipation indexes fall below the user given threshold. We illustrate the idea with oneexample now.
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Figure 5: Multi-resolution Co-lo
ation Miner Algorithm Illustration
In Figure 5 a), di�erent shapes represent di�erent point spatial feature types. Everyinstan
e has a unique ID in its spatial feature type and is labeled below it in the �gure.A grid with uniform 
ell size d is super-imposed on the dataset. Cells (i,j) refer to 
ellswith an x-axis index of i and a y-axis index of j. In this grid, two 
ells are 
oarse-neighbors if their 
enters are in a 
ommon square of size d � d, whi
h imposes an 8-neighborhood(North, South, East, West, North East, North West, South East, SouthWest) on the 
ells. For example, 
ell-pairs ((0, 3), (0, 4)), ((0, 3), (1, 3)) and ((0, 4), (1,3)) illustrate 
oarse-neighbors. This 
oarse-neighborhood de�nition guarantees that two
ells are neighbors if there exists a pair of points from ea
h of the two 
ells whi
h areneighbors in the original dataset.First we generate 
oarse table instan
es of 
andidate 
o-lo
ations of size k + 1 byjoining the 
oarse table instan
es with the 
oarse-neighbor relationships.Next we 
al
ulate the parti
ipation indexes for all 
andidate 
o-lo
ations based on12



the 
oarse table instan
es. For ea
h spatial feature fi, we add up all the 
ounts of pointinstan
es in ea
h 
oarse instan
e with 1s in its 
orresponding bitmap (pfi) and dividethis by jinstan
e of fij to get the 
oarse-parti
ipation ratio of feature fi. For example,
oarse Pr((?; Æ); ?) = 4=7 sin
e there are 4 
oarse row instan
es of (?; Æ) and 7 �ne-graininstan
es of ?. Similarly, 
oarse Pr((?; Æ); Æ) = 4=4 = 1, yielding 
oarse parti
ipationindex(?; Æ) = min(4=7; 4=4) = 4/7. Figure 5 b) shows 
oarse table instan
es of 
o-lo
ations (?; �); (?; Æ) and (?; �). If the threshold for prevalen
e is set to 0.6, then
o-lo
ation 
5 
an be pruned by multi-resolution pruning. We also note that the sizesof 
oarse table instan
es are smaller than the sizes of table instan
es at �ne resolution.This shows the possibility of 
omputation 
ost saving via multi-resolution pruning for
lustered datasets. Finally, the examples in Figure 5 b) show that the 
oarse parti
ipationratios and parti
ipation indexes never underestimate the true parti
ipation indexes of theoriginal dataset.
3.4 Generating Co-lo
ation RulesThe gen rules generates all the 
o-lo
ation rules with the user de�ned min prev andmin 
ond prob. The 
onditional probability of a 
o-lo
ation rule C1 ! C2 in the event
entri
 model is the probability of �nding C2 in a neighborhood of C1. It 
an be formallyde�ned as: jdistin
t(�C1 (all row instan
e of C1[C2))jjinstan
e of C1j where � is a proje
tion operation. Bitmapsor other data stru
tures 
an be used for eÆ
ient 
omputation using the same strategiesfor prevalen
e-based pruning.
4 Analysis of the Co-lo
ation Mining AlgorithmsIn this se
tion, we analyze the 
o-lo
ation mining algorithms in the areas of 
ompleteness,
orre
tness, and 
omputational 
omplexity.
4.1 Completeness and Corre
tnessLemma 1 The parti
ipation ratio and parti
ipation index are monotoni
ally non-in
reasing as the size of the 
o-lo
ation in
reases.
Proof: The parti
ipation ratio is monotoni
 be
ause a spatial feature instan
e that par-ti
ipates in a row instan
e of a 
o-lo
ation 
 parti
ipates in a row instan
e of a 
o-lo
ation
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0 where 
0 � 
. The parti
ipation index is also monotoni
 be
ause 1) the parti
ipation ra-tio is monotoni
 and 2)pi(
[fk+1) = mink+1i=1 fpr(
[fk+1; fi)g � minki=1fpr(
[fk+1; fi)g �minki=1fpr(
; fi)g = pi(
). Given this property, spatial feature level pruning 
an be e�e
-tive. We 
an also rely on a 
ombinatorial approa
h and use apriori gen [2℄ to generatesize k + 1 
andidate 
o-lo
ations from size k prevalent 
o-lo
ations.
Lemma 2 The 
oarse parti
ipation index 
omputed by multi-resolution pruning neverunderestimates the true parti
ipation indexes of the original dataset. The 
andidate 
o-lo
ation set found is a superset of the prevalent 
o-lo
ation set on the original dataset.
Proof : When 
o-lo
ation size = 1, the value of the 
oarse parti
ipation index andthe true parti
ipation index is 1, so Lemma 2 is trivially true. Suppose Lemma 2 istrue for 
o-lo
ations size=k. Let us 
onsider the 
ase that 
o-lo
ation size is equal tok+1. For ea
h 
andidate 
o-lo
ation C of size k + 1 generated from the apriori gen byjoining C1 and C2 of size k, we generate its 
oarse instan
e table by joining the 
oarseinstan
e tables of C1 and C2. Be
ause Lemma 2 is true for 
o-lo
ations of size k, the
andidate 
o-lo
ation set of size k found is a superset of the prevalent 
o-lo
ation seton the original dataset. Thus C1 and C2 are in the 
andidate 
o-lo
ation set in theprevious iteration and their 
oarse level table instan
es are available to be joined toprodu
e the 
oarse level table instan
e of C. The table join to produ
e the 
oarse tableinstan
e of C has the following property: if NeighborR(p1; p2) is in the original dataset,then 
oarse Neighbor(
ell 
1; 
ell 
2) will be in the 
oarse-level dataset given p1 2 
1 andp2 2 
2. When we 
al
ulate the 
oarse parti
ipation index, any spatial feature instan
ewhi
h parti
ipates in the 
o-lo
ation in the original dataset will 
ontribute to the 
ountsduring the 
oarse parti
ipation ratio 
al
ulation. So the 
oarse parti
ipation ratios neverunderestimates the true parti
ipation ratios, implying that the 
oarse parti
ipation indexnever underestimates the true parti
ipation index and that the pruning will not eliminateany truly prevalent 
o-lo
ation. Thus the 
andidate 
o-lo
ation set after multi-resolutionpruning is a superset of the prevalent 
o-lo
ation set on the original dataset.
Lemma 3 The Co-lo
ation Miner algorithm is 
omplete.
Proof : The spatial join produ
es all pairs (p0; p00) of instan
es where p0.feature 6=p00.feature and p0 and p00 are neighbors. Any row instan
e of any size 2 
o-lo
ationsatisfying these two 
onditions in the join predi
ate will be generated. The s
hema
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level pruning using apriori gen is 
omplete due to the monotoni
ity of the parti
ipationindex as proved in Lemma 1. Then we prove that the join of the table instan
es of C1and C2 to produ
e the table instan
e of C is 
omplete. A

ording to the neighborhoodde�nition, any subset of a neighborhood is a neighborhood too. For any instan
e I =fi1; : : : ; ik+1g of 
o-lo
ation C, subsets I1 = fi1; : : : ; ikg and I2 = fi1; : : : ; ik�1; ik+1gare neighborhoods, ik and ik+1 are neighbors, and I1 and I2 are row instan
es of C1and C2 respe
tively. Joining I1 and I2 will produ
e I. Enumeration of the subsets ofea
h of the prevalent 
o-lo
ations ensures that no spatial 
o-lo
ation rules with bothhigh prevalen
e and high 
onditional probabilities are missed. We then prove that multi-resolution pruning does not a�e
t 
ompleteness. By Lemma 2, the 
o-lo
ation set found isa superset of the prevalent 
o-lo
ation set on the original dataset. Thus multi-resolutionpruning does not falsely eliminate any prevalent 
o-lo
ation.Lemma 4 The Co-lo
ation Miner is 
orre
t.Proof: We will only show that the row instan
e of ea
h 
o-lo
ation is 
orre
t, as that willimply the 
orre
tness of the parti
ipation index values and that of ea
h 
o-lo
ation meet-ing the user spe
i�ed threshold. An instan
e I1 = fi1;1; : : : ; i1;kg of C1 = ff1; : : : ; fk+1gand an instan
e I2 = fi2;1; : : : ; i2;kg of C2 = ff1; : : : ; fk�1; fk+1g is joined to produ
e aninstan
e Inew = fi1;1; : : : ; i1;k; i2;kg of C = ff1; : : : ; fk+1g if: 1) all elements of I1 and I2are the same ex
ept i1;k and i2;k; 2) i1;k and i2;k are neighbors. The s
hema of Inew isapparently C, and elements in Inew are in a neighborhood be
ause I1 is a neighborhoodand i2;k is a neighbor of every element of I1.
4.2 Computational Complexity AnalysisThis subse
tion examines the strategies for generating 
andidate 
o-lo
ations, the eval-uation of the multi-resolution pruning strategy, and the e�e
t of noise. First, there aretwo basi
 strategies for generating table instan
es of 
andidate 
o-lo
ations, namely thegeometri
 approa
h and the 
ombinatorial approa
h. For generating size-2 
o-lo
ations,the 
ombinatorial approa
h ends up being the nest-loop join strategy with an asymptoti

omplexity of O(N2), while the geometri
 approa
h has the CPU 
osty of O(NlogN+M)where N is the total number of instan
es of all features and M is the number of interse
-tions. When the dataset is sparse, the 
ost of the 
ombinatorial approa
h will be mu
hhigher. However, when generating table instan
es of 
o-lo
ations of size 3 or more, theyThe I/O 
osts of the geometri
 approa
h and the 
ombinatorial approa
h are similar.15




ombinatorial approa
h be
omes 
heaper than the geometri
 approa
h. This is due toits exploitation of the sort-merge join strategy while keeping ea
h table instan
e sorted,resulting in the 
omputation 
omplexity of O(N) where N is the size of table instan
es.In a hybrid approa
h, we pi
k the 
heaper of the two basi
 strategies in ea
h iteration toa
hieve the best overall 
ost.Se
ond, let us 
ompare the 
ost of the Co-lo
ation Miner algorithm without and withthe multi-resolution �lter step. Let Tm
m(k) and T
m(k) represent the 
osts of iterationk of the Co-lo
ation Miner algorithm with and without the Multi-resolution �lter.Tm
m(k) = Tapriori gen(C(prev;k)) + Tprune(C(
and;k+1);grid data) + Tprune(C(sub 
and;k+1);data)T
m(k) = Tapriori gen(C(prev;k)) + Tprune(C(
and;k+1);data) (1)
In Equation 1, Tapriori gen(C(prev;k)) represents the 
ost of apriori gen based on theprevalent 
o-lo
ation set of size k. Resolution is not relevant sin
e apriori gen workson the spatial feature level only. Tprune(C(
and;k+1);grid data) represents the 
ost for multi-resolution pruning on the 
oarse level dataset in iteration k. After 
oarse-level pruning,we only need to sear
h the leftover subset of the original dataset. Tprune(C(sub 
and;k+1);data)represents the 
ost for �ne level instan
e pruning on the leftover subsets of the originaldataset. Also, Tprune(C(
and;k+1);data) represents the 
ost for �ne level instan
e pruning onthe original dataset in iteration k.The bulk of time is 
onsumed in generating table instan
es and 
al
ulating the par-ti
ipation indexes; thus the ratio 
an be simpli�ed as:Tm
m(k)T
m(k) � Tprune(C(
and;k+1);grid data) + Tprune(C(sub 
and;k+1);data)Tprune(C(
and;k+1);data) (2)
Furthermore, we assume that the average time to generate a table instan
e in theoriginal dataset is Torig(k) for iteration k and the average time to generate a table instan
ein the grid dataset is Tgrid(k) for iteration k. The number of 
andidate 
o-lo
ationsgenerated by the apriori gen is jCk+1j and the number of 
andidate 
o-lo
ations after the
oarse instan
e level pruning is jC 0k+1j, Equation 2 
an be written as:Tm
m(k)T
m(k) �jCk+1j � Tgrid(k) + jC 0k+1j � Torig(k)jCk+1j � Torig(k) = Tgrid(k)Torig(k) + jC 0k+1jjCk+1j (3)

The �rst term of the ratio is 
ontrolled by the \
lumpiness" (the average number ofinstan
es of the spatial features per grid 
ell) of the lo
ations of spatial features. These
ond term is 
ontrolled by the �ltering eÆ
ien
y of the 
oarse instan
e level pruning.
16



When the lo
ations of spatial features are 
lustered, the sizes of the �ne level tableinstan
es are mu
h greater than the sizes of the 
oarse level table instan
es and the timeneeded to generate �ne level table instan
es is greater than the time needed to generate
oarse level table instan
es. In our experiments, as des
ribed in the next se
tion, weuse the parameter m
lump, whi
h 
ontrols the number of instan
es 
lumping togetherfor ea
h spatial feature, to evaluate the �rst term, and we use the parameter moverlap,whi
h represents the possible false 
andidate ratios to evaluate the se
ond term. Fromthe formula, we 
an see that the Multi-resolution Co-lo
ation Miner is likely to be moreeÆ
ient than the Co-lo
ation Miner when the lo
ations of spatial features are 
lusteredand the false 
andidate ratio is high.
5 Experimental Performan
e Evaluation
5.1 Experiment DesignFigure 6 des
ribes the experimental setup to evaluate the impa
t of design de
isions onthe relative performan
e of the 
o-lo
ation miner algorithm. We evaluated the perfor-man
e of the algorithms with syntheti
 data generated using a methodology similar tomethodologies used to evaluate algorithms for mining asso
iation rules [2℄. Syntheti
datasets allow better 
ontrol towards studying the e�e
ts of interesting parameters. Adata-
ow diagram of the data generation pro
ess is shown in Figure 6. The pro
essbegan with the generation of 
ore 
o-lo
ation subsets of spatial features. To generate asubset of features, we �rst 
hose the size of the subset from a Poisson distribution withmean (�1). Then a set of features for this 
ore 
o-lo
ation pattern was randomly 
hosen.For ea
h 
ore 
o-lo
ation, moverlap maximal 
o-lo
ations were generated by appendingone more spatial feature to a 
ore 
o-lo
ation. The larger moverlap is, the more false
andidate apriori gen generates. The size of ea
h table instan
e of ea
h 
o-lo
ation was
hosen from another Poisson distribution with mean �2. Next, we generated the set ofneighborhoods for 
o-lo
ations instan
es using the size of their table instan
es from theprevious step. m
lump point lo
ations for ea
h feature in the 
o-lo
ation were embeddedinside a neighborhood of size d. The lo
ations of neighborhoods were 
hosen at randomin the overall spatial framework. For simpli
ity, the shape of the overall spatial frame-work was a re
tangle of size D1 �D2 and the size of ea
h neighborhood was d� d. The�nal step involved adding noise. The model for noise used two parameters, namely theratio of noise features rnoise f and the number of noise instan
es pnoise n. Noise was added
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Table 1: Parameters Used to Generate the Syntheti
 DataParameter De�nition C1 C2N
o lo
 The number of 
ore 
o-lo
ations 5 4�1 The parameter of the Poisson distribution to de�ne the sizeof the 
ore 
o-lo
ations 5 5�2 The parameter of the Poisson distribution to de�ne the sizeof the table instan
e of ea
h 
o-lo
ation when m
lump = 1 50 50D1 �D2 The size of the spatial framework 106 �106 250 �1,000d The size of the square to de�ne a 
o-lo
ation 10 10rnoise f The ratio the of number of noise features over the numberof features involved in generating the maximal 
o-lo
ations .5 .5rnoise n The number of noise instan
es 50,000 1,000moverlap The number of 
o-lo
ation generated by appending one morespatial feature for ea
h 
ore 
o-lo
ation 1 1m
lump The number of instan
es generated for ea
h spatial featurein a neighborhood for a 
o-lo
ation 1 1
by generating a set of instan
es of features from a set of noise features disjoint with thefeatures involving generation of 
ore 
o-lo
ations and pla
ing those at random lo
ationsin the global spatial framework.
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Figure 6: Experimental Setup and DesignDatasets were used by the 
o-lo
ation algorithm driver module to 
olle
t the per-forman
e statisti
s, as shown in Figure 6. The exe
ution time was measured using the\time" fun
tion in the C++ language on a Sun Ultra 10 work station with a 440 MHzCPU and 128 Mbytes memory running the SunOS 5.7 operating system. The measure-ments are summarized in the form of plots and tables reported in the following se
tion.18



5.2 Comparing Strategies for Generating Table Instan
esWe 
ompared the geometri
, the 
ombinatorial, and the hybrid strategies. The basedataset, generated using parameter values in 
olumn C1 of Table 1, used a re
tanglespatial framework of size 106 � 106, a square neighborhood of size 10 � 10, an average
o-lo
ation size of 5, an average table instan
e size of 50 when m
lump = 1, a noise featureratio of 0.5, a noise number of 50,000, and an overlapping degree of 1. Figure 7 (a) showsthe exe
ution times for the three 
andidates with the prevalen
e threshold set to .9. These
ond 
olumn reports the exe
ution time needed to dis
over 
o-lo
ations of size 2.
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Figure 7: (a)Relative Performan
e of Geometri
, Combinatorial, and Hybrid Algorithms(b) Noise E�e
t on Co-lo
ation Miner

As 
an be seen, the geometri
 strategy is faster than the 
ombinatorial strategy forgenerating size-2 
o-lo
ations. Spatial-join data stru
tures help the geometri
 algorithmin this step. The remaining 
olumns report the total exe
ution time to dis
over all the
o-lo
ations as well as the time to dis
over 
o-lo
ations of size 3 or more, given prevalent
o-lo
ations of size 2. In these 
ases, the 
ombinatorial algorithm is orders of magnitudefaster than the geometri
 algorithm. A sort-merge join strategy (e.g apriori-gen [2℄) helpsthe 
ombinatorial algorithm. The hybrid strategy uses the geometri
 algorithm for dis-
overing prevalent 
o-lo
ations of size 2 and the 
ombinatorial algorithm for dis
overinglarger 
o-lo
ations. Thus, it is expe
ted to a
hieve the best overall performan
e. Ourexperimental results 
on�rm this, as shown in Figure 7 (a).
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5.3 E�e
t of the FilterThe e�e
t of the multi-resolution �lter was evaluated with spatial datasets generatedusing parameter values shown in 
olumn C2 of Table 1. We used a re
tangular spatialframework of size 250 � 1000, a square neighborhood of size 10 � 10, an average 
o-lo
ation size of 5, an average table instan
e size of 50 when m
lump = 1 a noise featureratio of 0.5, a noise number of 1000, a 
ore 
o-lo
ation size of 4, and an overlappingdegree of 1. Spatial framework sizes were proportional to the total number of instan
esto avoid unexpe
ted patterns 
reated by over
rowding of instan
es. The overlappingdegree (moverlap) was set from 2 to 8 and the 
lumpiness measure (m
lump) was set from5 to 20 to generate other datasets. We ran the Co-lo
ation Miner with and without themulti-resolution �lter on these datasets. Prevalen
e thresholds were set to the estimationof the a
tual prevalen
es from the generation of the datasets.
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Figure 8: Performan
e Ratio a) By Overlap Degree b) By Clumpiness Degree

Figure 8 summarizes the performan
e gain by using the Multi-resolution �lter. Thex-axis represents the overlap degree, whi
h 
ontrols the false 
andidates generated byapriori gen in the �rst �gure or the \
lumpiness" of lo
ations of instan
es of spatialfeature type in the se
ond �gure. The y-axis represents the ratio of run-time of theCo-lo
ation Miner without the multi-resolution �lter to the run-time with the multi-resolution �lter. The results show that, as the degree of overlap and the number of false
andidates in
rease, the running time is redu
ed by a fa
tor of 1 to 4.5.Figure 9 summarizes the ratio of the 
omputation time for multi-resolution pruningand that for prevalen
e-based pruning. Similarly, the x-axis represents the overlap degree
20
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Figure 9: Filter Time Ratio (a) By Overlap Degree (b) By Clumpiness Degree

or the \
lumpiness" of the lo
ations of ea
h spatial feature type. The overhead of themulti-resolution �lter as a fra
tion of prevalen
e-based pruning de
reases when the degreeof overlap or 
lumpiness in
reases. Clumpiness strongly a�e
ts the overhead, redu
ing itfrom 0.45 to 0.1.
5.4 E�e
t of NoiseThe base dataset, generated using parameter values in 
olumn C1 of Table 1, used are
tangle spatial framework of size 106 � 106, a square neighborhood of size 10 � 10,an average 
o-lo
ation size of 5, an average table instan
e size of 50 when m
lump = 1,a noise feature ratio of 0.5, a noise number of 50,000, and an overlapping degree of 1.Then we in
reased the noise instan
es up to 800,000 and measured the performan
e, asshown in Figure 7 (b). The exe
ution time for dis
overing 
o-lo
ations of size 2 is and 3+are shown in the �gure. We note that noise-level a�e
ts the exe
ution time to dis
over
o-lo
ations of size 2 but does not a�e
t the exe
ution time to dis
over larger 
o-lo
ationsgiven 
o-lo
ations of size 2. In other words, noise is �ltered out during the determinationof 
o-lo
ations of size 2.
6 Con
lusion and Future WorkIn this paper, we formalized the 
o-lo
ation problem and showed the similarities anddi�eren
es between the 
o-lo
ation rules problem and the 
lassi
 asso
iation rules prob-
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lem as well as the diÆ
ulties in using traditional measures (e.g. support, 
on�den
e)
reated by impli
it, overlapping and potentially in�nite transa
tions in spatial data sets.We proposed the notion of user-spe
i�ed neighborhoods in pla
e of transa
tions to spe
-ify groups of items and de�ned interest measures that are robust in fa
e of potentiallyin�nite overlapping neighborhoods. We de�ned a new spatial measure of 
onditionalprobability as well as a new monotoni
 measure of prevalen
e to allow iterative prun-ing. The Co-lo
ation Miner, a generalized algorithm for mining 
o-lo
ation patternswas presented and analyzed for 
orre
tness, 
ompleteness and 
omputation 
ost. Designde
ision in the proposed algorithm were evaluated using theoreti
al and experimentalmethods. Empiri
al evaluation shows that the geometri
 strategy performs mu
h betterthan the 
ombinatorial strategy when generating size-2 
o-lo
ation; however, it be
omesslower when generating 
o-lo
ations with more than 2 features. The hybrid strategyintegrates the best features of the above two approa
hes. Experimental results showthat the Co-lo
ation Miner is tolerant of noise and provides the best overall performan
e.Furthermore, when the lo
ations of the features tend to be spatially 
lustered, whi
h isoften true for spatial data due to spatial-auto
orrelation, the Multi-resolution �lter willsigni�
antly redu
e 
omputation 
ost of proposed algorithm.Several questions remain open. The 
o-lo
ation mining problem should be investi-gated to a

ount for extended spatial data types, su
h as line segments, polygons and
ir
les. We brie
y dis
uss the potential approa
h to deal with extended spatial obje
ts inAppendix A. We 
onsidered only boolean spatial features here. In the real world, the fea-tures 
an be 
ategori
al and 
ontinuous. There is a need to extend the 
o-lo
ation miningframework to handle 
ontinuous features. Finally, if the lo
ations of features 
hange overtime, it should be possible for us to identify some temporal-spatial 
o-lo
ation patterns.
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Figure 10: Neighborhood Illustration for various Spatial Obje
ts
Appendix A: Approa
hes for Extended Obje
tsWe will use a Eu
lidean distan
e based neighborhood here to simplify the dis
ussion.N(p), the size-d Eu
lidean neighborhood of a point lo
ation p ,is a 
ir
le of radius d withp as its 
enter. N(o), the size-d neighborhood of an extended spatial obje
t (e.g polygon,line-string) is de�ned by a bu�er operation as shown in Figure 10. Obje
t oi and ojare e-neighbors if and only if oi \N(oj) as well as oj \N(oi) are non-empty. Eu
lideanneighborhood N(fj) of feature fj is the union of N(il) for all instan
e il of fj. Eu
lideanneighborhood N(C) for a 
o-lo
ation C = ff1; : : : ; fkg is the interse
tion of N(fi) for fiin C.I = fi1; i2; : : : ; ik; Bg is a row instan
e of a 
o-lo
ation C = ff1; : : : ; fkg if ij is aninstan
e of feature fj(8j 2 1; : : : ; k) and I is a neighborhood of I itself, i.e. elements ofI are neighbors to ea
h other. The last element B in I represents Tij2I N(ij).The parti
ipation ratio Pr(C; fi) for feature type fi in a 
o-lo
ation C =ff1; : : : ; fkg is Pr(p 2 Tij2C N(fj)jp 2 fi), the probability that a point p in fi haspoints belonging to all features in C within a neighborhood of P , assuming a sym-metri
 neighbor relationship. We illustrate the de�nition of the parti
ipation ratio forextended linear obje
t features using length. A similar measure for polygonal features
an be de�ned using area in pla
e of length. Parti
ipation ratio pr(C; fi) for linearspatial feature fi 
an be 
omputed as length(interse
tion(fi;Tfj2C N(fj)))length(fi) . For example, ananalysis of an urban road map may reveal 100 miles of freeway, of whi
h 25 milesare within N(frontage road), yielding Pr((freeway; frontage road) = 25=100 = 0:25).Parti
ipation ratio Pr(C; fl) 
an be 
omputed from table instan
e of C in terms oflength(unionI2table instan
e of C(interse
tion(ij ; B(I)))length(unionij2fl (ij)) .The 
onditional probability of a 
o-lo
ation rule C1 ! C2 is the probability of�nding an instan
e of C2 in a neighborhood of instan
e of C1, i.e. Pr(p 2 N(C2)jp 2N(C1)). It 
an be 
omputed as area(N(C1SC2))area(N(C1)) using the table instan
es of C1 and C1SC2.
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Appendix B: Interest Measures for Di�erent Models
Table 2: Interest measures for di�erent models

Model Items Transa
tions Interest measures for C1 ! C2de�ned by Prevalen
e Conditional probabilitylo
al boolean fea-ture types partitions ofspa
e fra
tion of parti-tions with C1 [C2 Pr(C2 in a partition givenC1 in the partition)referen
efeature
entri
 predi
ates onreferen
e andrelevant fea-tures
instan
es of ref-eren
e feature C1and C2 involvedwith

fra
tion ofinstan
e of ref-eren
e featurewith C1 [ C2
Pr(C2 is true for an in-stan
e of referen
e featuresgiven C1 is true for that in-stan
e of referen
e feature)window
entri
 boolean fea-ture types possibly in�niteset of distin
toverlapping win-dows

fra
tion of win-dows with C1 [C2 Pr(C2 in a window givenC1 in that window)
event
entri
 boolean fea-ture types neighborhoods ofinstan
es of fea-ture types parti
ipation in-dex of C1 [ C2 Pr(C2 in a neighborhoodof C1)
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