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Abstract

Most of the QoS routing schemes proposed so far require periodic exchange of QoS state information among

routers, imposing both communication overhead on the network and processing overhead on core routers. Further-

more, stale QoS state information causes the performance ofthese QoS routing schemes to degrade drastically.

In order to circumvent these problems, we focus onlocalizedQoS routing schemes where the edge routers make

routing decisions using only “local” information and thus reducing the overhead at core routers. We first de-

scribevirtual capacity based routing(vcr), a theoretical scheme based on the notion ofvirtual capacityof a route.

We then proposeproportional sticky routing(psr), an easily realizable approximation ofvcr and analyze its per-

formance. We demonstrate through extensive simulations that adaptive proportional routing is indeed a viable

alternative to the global QoS routing approach.

1 Introduction

Quality-of-Service (QoS) routing is concerned with the problem of how to select a path for a flow such that the

flow’s QoS requirements such as bandwidth or delay arelikely to be met. In order to make judicious choices in

path selection, it is imperative that we have some knowledgeof theglobal network QoS state, e.g., the traffic load

distribution in the network. In the design of any QoS routingscheme, we must therefore address the following two

key questions: 1) how to obtain some knowledge of the global network state, and 2) given this knowledge, how to

select a path for a flow. Solutions to these questions affect the performance and cost trade-offs in QoS routing.�This paper was supported in part by NSF grant ANI-0073819 andNSF CAREER Award grant NCR-9734428. Any opinions, findings,

and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect theviews of the National

Science Foundation. An earlier abridged version of this paper appeared in the Proceedings of IEEE INFOCOM’2000, March 2000.



1.1 QoS Routing: Globalvs. Localized Approaches

The majority of QoS routing schemes [1, 7, 10, 20, 34, 38, 41] proposed so far require periodic exchange oflink QoS

stateinformation among network routers to obtain aglobal view of the network QoS state. This approach to QoS

routing is thus referred to as theglobal QoS routing approach. Because network resource availability changes with

each flow arrival and departure, maintainingaccuratenetwork QoS state requiresfrequentinformation exchanges

among the network nodes (routers). The prohibitive communication and processing overheads entailed by such

frequent QoS state updates precludes the possibility ofalwaysproviding each node with anaccurateview of the

current network QoS state. Consequently,the network QoS state information acquired at a source node can quickly

become out-of-date when the QoS state update interval is large relative to the flow dynamics. Under these circum-

stances, exchanging QoS state information among network nodes is superfluous. Furthermore, path selection based

on adeterministicalgorithm such as Dijkstra’s shortest path algorithm, wherestale QoS state information is treated

as accurate, does not seem to be judicious. In addition, the global view of the network QoS state may lead to the

so-calledsynchronization problem: after one QoS state update, many source nodes choose paths with shared links

because of their perceived available bandwidth, thereforecausing over-utilization of these links. After the next QoS

state update, the source nodes would avoid the paths with these shared links, resulting in their under-utilization. This

oscillating behavior can have severe impact on the system performance, when the QoS state update interval is large.

Due to these drawbacks, it has been shown that when the QoS update interval is large relative to the flow dynamics,

the performance of global QoS routing schemes degrades significantly [1, 25, 34]. Though there have been some

remedial solutions proposed in [10, 1, 2] to deal with the inaccuracy at a source node, the fundamental problem is

still not completely eliminated.

As a viable alternative to the global QoS routing schemes, in[25, 26] we have proposeda localizedapproach

to QoS routing. Under this approach,no global QoS state information exchange among network nodes is needed.

Instead, source nodes infer the network QoS state based on flow blocking statistics collectedlocally, and perform

flow routing using thislocalizedview of the network QoS state. The proposed localized QoS routing approach has

several advantages. First of all, without the need for global information exchange, the communication overhead

involved is minimal. Second, core routers (i.e., non-source routers) do not need to keep and update any QoS state

database necessary for global QoS routing, thereby reducing the processing and memory overhead at core routers.

Last but not the least, the localized QoS routing approach does not require any modification or extension to existing

routing protocols such as OSPF. Only source routers need to add a QoS routing enhancement to the existing routing

module. This makes localized QoS routing schemes readily deployable with relatively low cost.

1.2 Adaptive Proportional Routing: A Localized Approach

The fundamental question in the design of a localized QoS routing scheme ishow to perform path selection based

solely on a local view of the network QoS state so as to minimize the chance of a flow being blocked as well as to

maximize the overall system resource utilization.The problem of path selection in localized QoS routing is com-
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plicated by many factors. For example, due to complex network topology, paths between many source-destination

pairs may have shared links whose capacity and load are unknown to the sources. Furthermore, the network load can

fluctuate dynamically, which can make a previously unloadedlink suddenly overloaded. In addition, path selection

decision made by one source may affect the decision of another source.

To effectively address these difficulties, we study a noveladaptive proportional routingapproach for designing

localized QoS routing schemes. Here we assume that thepath-levelstatistics, such as the number of flows blocked, is

the only available QoS state information at a source. Based on these statistics, adaptive proportional routing attempts

to proportionally distribute the load from a source to a destination among multiple paths according to their perceived

quality (e.g., observed flow blocking probability). In other words, adaptive proportional routing exploits the inherent

randomness in path selection by proportioning flows among multiple paths. This is fundamentally different from the

conventional,deterministicpath selection algorithms (e.g., Dijkstra shortest path algorithm) used in global routing

schemes, which always choose the “best” feasible path to route a flow. As a result, adaptive proportional routing

effectively avoids the synchronization problem associated with global QoS routing schemes.

There are three major objectives in our investigation of adaptive proportional routing:adaptivity, stability and

simplicity. With only a localized view of the network QoS state, it is important to adjust flow proportions along

various paths adaptively in response to the dynamically changing network load. Stability is essential to ensure

efficient system resource utilization and thus the overall flow throughput. Lastly, we are interested in employing

simple local rules and strategies at individual sourcesto achieve adaptivity and ensure stability.

Towards these goals, we present a theoretical framework forstudying adaptive proportional routing. Using

Erlang’s Loss Formula, we introduce the notion ofvirtual capacitywhich provides a mathematical framework to

model multiple paths between a source and a destination, as well as to compute flow proportions based on locally

observed flow blocking probabilities. We also introduce aself-refrainedalternative routing method to deal with the

potential “knock-on” effect in QoS routing. By incorporating thisself-refrainedalternative routing method into the

virtual capacity model, we design a theoretical adaptive proportional routing scheme which allows source nodes

in a network to adaptively adjust their flow proportions based solely on locally observed flow blocking statistics.

Through numerical examples we demonstrate the desiredself-adaptivityof this theoretical adaptive proportional

routing scheme in achieving an eventual equilibrium systemstate. As a simple and practical implementation of

the theoretical scheme, we present a scheme,proportional sticky routing(psr), which preserves the self-adaptivity

of the theoretical scheme while avoiding its computationaloverhead. Finally, comparison of thepsr scheme with

the well-studied global QoS routing scheme, thewidest shortest path(wsp) scheme, is made using simulations.

These simulation results demonstrate that with its low overhead and comparable performance, a simple and easy-to-

implement localized QoS routing scheme such aspsr provides a viable alternative to a global QoS routing scheme

such aswsp.

The remainder of the paper is organized as follows. Section 2presents a theoretical framework for studying

adaptive proportional routing. Section 3 describes thepsrscheme, and simulation results are shown in Section 4. In

Section 5, the related work is presented. Section 6 concludes the paper.
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Figure 1: A set of disjoint paths between a source and a destination

2 Adaptive Proportional Routing: A Theoretical Framework

In all the QoS routing models we consider in this paper we assume thatsource routing(also referred to asexplicit

routing) is used. More specifically, we assume that the network topology information is available to all source nodes

(e.g., via the OSPF protocol), and one or multipleexplicit-routed(label switched) paths are set upa priori for each

source and destination pair using, e.g., MPLS [32]. Flows arriving at a source to a destination are routed along one

of the explicit-routed paths (hereafter referred to as thecandidatepaths between the source-destination pair). For

simplicity, we assume that all flows have the same bandwidth requirement — one unit of bandwidth1. When a flow

is routed to a path where one or more of the constituent links have no bandwidth left, this flow will be blocked. The

performance metric in our study will be the overall blockingprobability experienced by flows. We assume that flows

from a source to a destination arrive randomly with a Poissondistribution, and their holding time is exponentially

distributed. Hence theofferedtraffic load between a source-destination pair can be measured as the product of the

average flow arrival rate and holding time. Given the offeredtraffic load from a source to a destination, the task of

proportional QoS routing is to determine how to distribute the load (i.e., route the flows) among the paths between

the source and destination (if there is more than one such path) so as to minimize the overall blocking probability

experienced by the flows.

In this section, we first describe how to proportion the load among multiple paths when all the paths between

the source and the destination are mutually disjoint. The notion of virtual capacity of a path is introduced to deal

with sharing of links between different paths. A localized trunk reservation method is proposed to address the

potential “knock-on” effect in QoS routing. We then presenta theoretical adaptive proportional routing scheme that

incorporates thisself-refrainedalternative routing method into the virtual capacity model.

2.1 An Idealized Proportional Routing Model

Consider a simplefork topology shown in Figure 1, where a sources and a destinationd are connected byk disjoint

pathsr1; r2; : : : ; rk. Each pathri has a (bottleneck) capacity of
i units of bandwidth, and is assumed to be known
1The models presented in this paper can be extended to the casewhere flows have different bandwidth requirements using theextended

Erlang loss formula [17, 30]. In Section 4, we conduct a simulation study of our localized QoS routing scheme using flows with heterogeneous

bandwidth requirements.
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to the sources. Suppose flows arrive at the sources at an average rate�, and the average flow holding time is1=�. Throughout this section, we assume that flow arrivals are Poisson, and flow holding times are exponentially

distributed. For simplicity, we also assume that each flow consumes 1 unit of bandwidth. In other words, pathri
can accommodate
i flows at any time.Without precise knowledge of the QoS state of a path (i.e., the available

bandwidth of the path), a flow routed along the path has a certain probability of being blocked. Therefore, the

question is how to route flows along thesek paths so that the overall blocking probability is minimized. This

problem can be formulated using the classic Erlang’s Loss Formula as follows.

Suppose that, on the average, the proportion of flows routed along pathri is �i, wherei = 1; 2; : : : ; k, andPki=1 �i = 1. Then the blocking probabilitybi at pathri is given bybi = E(�i; 
i) = �i
i
i!P
in=0 �nin! , where�i = �i ��
is referred to as the (average) load on pathi. The total load on the system is denoted by� = Pki=1 �i = �� . To

minimize the overall blocking probability, theoptimalrouting strategy (in the absence of precise knowledge of QoS

state of each path) is therefore to route��i proportion of flows along pathri, i = 1; 2; : : : ; k, such that
P��i = 1

and
P ���i b�i is minimized. Thisoptimal proportional routing(opr) strategy can be implemented, for example, by

routing flows to pathri with probability��i .
Given the total load� and the path capacities
i’s, the optimal proportions��i ’s can be computed using an iter-

ative search technique (e.g., hill-climbing) starting with a set of arbitrary proportions. Fork > 2, the procedure of

computing the optimal proportions is generally quite complex to implement in practice. To circumvent this prob-

lem, we consider two alternative strategies for flow proportioning: equalization of blocking probabilities(ebp) and

equalization of blocking rates(ebr). The objective of theebpstrategy is to find a set of proportionsf~�1; ~�2; : : : ; ~�kg
such that flow blocking probabilities of all the paths are equalized, i.e.,~b1 = ~b2 = � � � = ~bk, where~bi is the flow

blocking probability of pathri, and is given byE(~�i�; 
i). The intuition behindebpstrategy is that if blocking

probability bi of a pathri is greater than blocking probabilitybj of a pathrj (bi > bj), then we can minimize the

overall blocking probability by shifting some load fromri to rj. This increasesbj and decreasesbi and equilibrium

state is reached when they are equal. On the other hand, the objective of theebrstrategy is to find a set of proportionsf�̂1; �̂2; : : : ; �̂kg such thatflow blocking ratesof all the paths are equalized, i.e.,�̂1b̂1 = �̂2b̂2 = � � � = �̂kb̂k, whereb̂i is the flow blocking probability of pathri, and is given byE(�̂i�; 
i). The rationale behindebr strategy is to

assign a proportion�i to a pathri such that�i is inversely proportional to blocking probabilitybi along pathri, i.e.,�i / 1bi . This results in equalization of blocking rates.

Unlike the optimal proportions,��i ’s, the proportions ofebp, ~�i’s, and those ofebr, �̂i’s, can be computed using

a simple iterative procedure starting with any arbitrary proportions. For example, consider theebpstrategy. Sup-

pose we start with an initial set of proportions�(0)1 ; �(0)2 ; � � � ; �(0)k . Let the corresponding blocking probabilities beb(0)1 ; b(0)2 ; � � � ; b(0)k , whereb(0)i = E(�(0)i �; 
i). If b(0)i ’s are all equal, then�(0)i ’s are the desired proportions. Other-

wise, we use the mean blocking probability over all the paths, �b(0) =P b(0)i =k, as the target blocking probability for

each path, and obtain a new set of proportions,�(1)i ’s. The new proportions�(1)i ’s are computed from the Erlang’s

Loss Formula as follows: fori = 1; 2; : : : ; k, find the new load on pathri, �(1)i , such that�b(0) = E(�(1)i ; 
i). Then
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Figure 2: Convergence points ofopr, ebp, ebr�(1)i = �(1)iPkj=1 �(1)j . This procedure is repeated iteratively until we obtain a set of proportions such that the corre-

sponding blocking probabilities are equal. Since for a fixed
i the blocking probabilitybi is an increasing function of

its load�i�, it can be shown that the above iterative procedure will always converge. In the case of theebr strategy,

a similar iterative procedure can be used to obtain a set of proportions which equalize the blocking rates of all the

paths.

Figure 2 shows the convergence points of theebpandebr strategies along with theopr strategy for a source and

destination pair with two disjoint paths. Figure 2(a) showsthe case where the capacities are equal. As expected, in

this case all three strategies give equal proportions for the two paths. However, when the capacities are not equal as

is the case shown in Figure 2(b), the equilibrium proportions for the two paths under the three strategies are different.

It can be observed, however, the overall blocking probabilities under theebpandebr strategies are both quite close

to that of the optimal strategy. Since it is generally computationally cumbersome to find the optimal equilibrium

proportions, in this paper we will explore the two simple strategies,ebpandebr, in adaptive proportional routing.

Before we leave this subsection, we would like to point out aninteresting fact. In the network model shown in

Figure 1, if we assume that sources has the precise knowledge of the QoS state (i.e., the available bandwidth) of

each path at any given time, it can be shown that the overall flow blocking probability is given byb = E(C; �),
whereC = Pki=1 
i. In other words, in terms of the overall flow blocking probability, the precise knowledge about

the availability of paths makes it equivalent to the case where there exists a single path from sources to destinationd with a capacity of
Pki=1 
i. Due to multiplexing gain, blocking probability using multiple paths, even with optimal

proportions, would be larger than using single path with thesame aggregate capacity, i.e.,
Pki=1 ��iE(
i; ��i �) >E(C; �) for k > 1, where��i ’s are optimal proportions. This fact illustrates the inherent performance loss due to not

having the precise path QoS state information.
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2.2 Virtual Capacity Model

In the idealized proportional routing model described above, we have assumed that all paths between a source and a

destination are disjoint and their bottleneck link capacities are known. In practice, however, paths between a source

and a destination have shared links. These paths may also share links with paths between other source-destination

pairs. Furthermore, as traffic patterns across a network change, the bottleneck link of a path and its (perceived)

capacity may also change. In order to address these issues, we introduce the notion ofvirtual capacity(vc) of a path.

Consider a source-destination pair. We model each path between them as one directvirtual link with a certain

amount of capacity, referred to as thevirtual capacityof the path. This virtual capacity is a function ofthe load

offered by the source along the path and the corresponding blocking probability observed by the source. Formally,

consider a pathr between a source and a destination. Suppose a load of�r is offered by the source along the path,

and the corresponding blocking probability observed by thesource isbr. Then the virtual capacity of the path,

denoted byv
r, is given byv
r = E�1v
 (�r; br), whereE�1v
 (�r; br) denotes the inverse function of the Erlang’s Loss

Formula2 with respect to the capacity, and is given byv
r = E�1v
 (�r; br) := minf
 � 0 : E(�r; 
) � brg
The notion of virtual capacity provides a mathematical framework to deal with shared links among multiple

paths. For example, supposem paths,r1; r2; : : : ; rm, share abottlenecklink with capacity
. Then the virtual

capacityv
i of pathri represents its “capacity share” on the bottleneck link. Let�i denote the offered load on the

bottleneck link from pathri. Then the blocking probability on the bottleneck link is given byb = E(Pmi=1 �i; 
).
Since flows routed along any of thesem paths have the same probability to be blocked at the bottleneck link, the

virtual capacity of pathri is given byv
i = E�1v
 (�i; bi) = E�1v
 (�i; b), wherebi denotes the observed blocking

probability of pathri. In particular, for pathri, the larger the offered load�i is, the larger is its virtual capacityv
i.
This reflects the larger “capacity share” of the bottleneck obtained by pathri because of its higher offered load3.

Based on this notion of virtual capacity, we can model paths between a source and a destination as if they were

all disjoint and had bottleneck capacities equal to their virtual capacities, as in the idealized proportional routing

model (Figure 1). Unlike the idealized proportional routing model, however, the virtual capacity of a path is not

fixed, but is a function of its offered load and the corresponding blocking probability. Since the virtual capacity of

a path depends only on local statistics at a source (i.e., theoffered load by a source and the corresponding blocking

probability observed by the source),flow proportioning based on virtual capacities of paths doesnot require any

global QoS state information exchange.

A key feature of our virtual capacity model is itsself-adaptivity: proportions of flows (and therefore offered

loads) along different paths between a source and a destination will be adjusted based on the observed blocking
2Note thatE�1v
 (�r; br) defined above is an integer-valued function. Acontinuousversion of the Erlang’s Loss Formula and its inverse

functions can be defined [8] and used instead. For more details, the interested reader is referred to [27].
3It is also worth noting that

Pmi=1 v
i � 
. This is due to “loss in multiplexing gain” when a shared channel is divided into multiple

“dedicated” channels. To ensure the same blocking probability, the total capacity of the dedicated channels has to be larger than the capacity

of the shared channel.
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Figure 3: Illustration of virtual capacity model usingkite topology

probability of those paths, an important measure of the “quality” of a path. From the definition of virtual capacity,

we observe that for two paths with the same offered load, the path with higher observed blocking probability has

lower virtual capacity. Therefore, if we are to equalize theobserved blocking probabilities or blocking rates along

these two paths, more flows should be routed to the path with lower observed blocking probability (and higher

virtual capacity). The new proportions for these two paths can be computed based on their virtual capacities, as in

the idealized proportional routing model.

We illustrate the self-adaptivity of the virtual capacity model through an example. Consider thekite topology

shown in Figure 3(a), where two sources,s1 ands2, have two paths each to destinationd, and two of the paths share

a common link (4! 6). The links with labels are the bottleneck links of the network, where
1 = 
2 = 
3 = 20, and

all the other links can be viewed to have infinite capacities (i.e., flows are never blocked on these links). Letr11, r12
denote the paths1 ! 3 ! 6 and1 ! 4 ! 6 respectively, andr21, r22 denote the paths2 ! 5 ! 6 and2 ! 4 ! 6
respectively. Thevirtual capacity viewof the two source-destination pairs are shown in Figure 3(b), where the pathsr12 andr22 appear to each source as if they were disjoint with capacities v
12 andv
22 respectively. Note that if a path

doesn’t share links with any other path, its virtual capacity is the same as its actual bottleneck link capacity.

First consider the scenario where both sources have an offered load of 22. Suppose initially each source pro-

portions flowsequally between its two paths, i.e.,�ij = 11, i; j = 1; 2. The blocking probabilities observed on

pathsr11, r12, r22 andr21 areb11 = 0:0046, b12 = 0:2090, b22 = 0:2090, andb21 = 0:0046 respectively, resulting in an

overall blocking probability of0:1068. The corresponding virtual capacities arev
11 = 20, v
12 = 12, v
22 = 12, andv
21 = 20. In particular, we see that the shared link of pathsr12 andr22 is treated by each source as an exclusive link

with capacity12. For both sources, since the blocking probability of pathri2 is much higher than pathri1, more flows

will be proportioned to pathri1, as it has a larger virtual capacityv
i1. The new proportions can be computed based

on the virtual capacities of the paths, using either theebpstrategy or theebr strategy. For example, using theebp

strategy, the adaptation process for sources1 is shown on theleft side (scenario I) of Figure 4(a), where we see that

after a few iterations the flow blocking probabilities of both pathsr11 (1! 3! 6) andr22 (1! 4! 6) are equalized

at around0:04. Figure 4(b) shows the corresponding proportions of flows routed along these two paths during this
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Figure 4: Adaptation process ofebp

adaptation process, where we see that sources1 backs off from the path (r12) with the shared bottleneck link4! 6,

and directs more flows to the other path (r11). The resulting flow proportions for pathr11 andr12 at theequilibrium

state are respectively0:667 and0:333. Due to the symmetry in this scenario, sources2 behaves in exactly the same

manner, and achieves the same equilibrium flow proportions for its two pathsr21 andr22. Similarly, if we employ the

ebr strategy, both sources will also gradually back off from thepaths with the shared bottleneck link and arrive at

an equilibrium state, where only0:356 proportion of the flows of each source are routed through the path with the

shared bottleneck link.

Now consider the scenario where after the above equilibriumstate is achieved, the offered load ats1 increases

from 22 to 25 whereas the offered load ats2 decreases from22 to 15. Given the new load at both sources, routing

flows along the paths using the old equilibrium proportions no longer results in an equilibrium state. In particular,

sources1 sees a blocking probability ofb11 = 0:0784 on pathr11 and a blocking probability ofb12 = 0:0216 on pathr12. On the other hand, sources2 sees a blocking probability ofb21 = 0:0018 on pathr21 and a blocking probability

of b22 = 0:0216 on pathr22. Hence, in an effort to equalize the blocking probabilitieson both paths,s1 will direct

more flows to pathr12 ands2 will direct more flows to pathr21. The new adaptation process is shown on the right

side (scenario II, starting with iteration 10) of Figure 4(a). From the figure we see that as sources1 directs more

flows to pathr12, the observed blocking probability on pathr12 gradually increases while the observed blocking

probability on pathr11 gradually decreases. These two blocking probabilities areeventually equalized at around0:022. The proportions of flows routed along the two paths by sources1 during this adaptation process are shown

in Figure 4(b), where the equilibrium flow proportions for pathsr11 andr12 are around0:537 and0:463, respectively.

The convergence process for sources2 is similar, where more flows are routed along pathr21, eventually resulting in

both of its two paths having an observed blocking probability of around0:022.

It is interesting to note that each source adapts to the load changesnotwith anyglobal objectivebutwith a local

objective of equalizing blocking probabilities or rates among all paths to a given destination. This in turn results in

an overall near-optimal stable system performance. For example, in scenario I, both sources1 and sources2 have
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an equal capacity share on the bottleneck link4 ! 6, each with a virtual capacity of12. But as the load changes

at each source, sources1 starts routing more flows to pathr12, whereas sources2 starts backing off from the pathr22, thereby allowings1 to grab more capacity share on the bottleneck link. The changes in the virtual capacity of

the shared link seen by each source are shown in Figure 4(c). At the end, sources1 has a virtual capacity of 18

from the shared bottleneck link, while sources3 has a virtual capacity of 6. Due to this change in capacity shares,

the blocking probability observed by sources1 is reduced from0:0595 at the onset of load change to0:0225 in the

end while that ofs2 goes up from0:0084 to 0:0202. However, as a consequence of these self-adaptations at thetwo

sources, the overallsystemblocking probability is reduced from0:0404 to 0:022 (Figure 4(a)).

2.3 Self-Refrained Alternative Routing

In the virtual capacity model, all paths between a source anda destination are treated equally. Since an admitted flow

consumes bandwidth and buffer resources at all the links along a path, clearly path length is also an important factor

that we must take into consideration. There is a fundamentaltrade-off between minimizing the resource usage by

choosing shorter paths and balancing the network load by using lightly loaded longer paths. As a general principle,

it is preferable to route a flow alongminhop(i.e. shortest) paths than paths of longer length (also referred to as

alternativepaths)4. By preferring minhop paths and discriminating against alternative paths, we not only reduce the

overall resource usage but also limit the so-called “knock-on” effect [13, 14], thereby ensuring the stability of the

whole system.

The “knock-on” effect refers to the phenomenon where using alternative paths by some sources forces other

sources whose minhop paths share links with these alternative paths to also use alternative paths. This cascading

effect can cause a drastic reduction in the overall throughput of the network. In order to deal with the “knock-on”

effect, trunk reservation [14] is employed where a certain amount of bandwidth on a link is reserved for minhop paths

only. With trunk reservation, a flow may be rejected even if sufficient resources are available to accommodate it. A

flow along a path longer than its minhop path is admitted only if the available bandwidth even after admitting this

flow is greater than the amount of trunk reserved. Trunk reservation provides a simple and yet effective mechanism

to control the “knock-on” effect. However, it requires thatcore routers figure out whether a setup request for a flow

is sent along its minhop path or not. This certainly introduces undesirable burden on core routers. To avoid this, we

propose aself-refrainedalternative routing method, which when employed at a sourceprovides an adaptive way to

discriminate against “bad” alternative pathswithout explicit trunk reservation.

Consider a source-destination pair. Suppose there arekmin number of minhop paths between this source-

destination pair, and letRmin denote the set of these minhop paths. The set of alternative paths is denoted byRalt. Thus the set of all candidate pathsR = Rmin [ Ralt. The basic idea behind theself-refrainedalternative

routing method is to ensure thatan alternative path is used to route flows between the source-destination pair only if

it has a “better quality” (measured in flow blocking probability) than any of the minhop paths.Formally, for a path
4Although the virtual capacity model does not explicitly take path length into account, it does tend to discriminate against longer paths

implicitly, as longer paths are likely to have a higher blocking probability in practice.
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1. PROCEDURE VCR()

2. Set mean blocking rate of minhop paths,��(n) = Pr2Rmin �(n)r b(n)rkmin
3. Set minimum of minhop path’s blocking probability,b� = minr2Rmin b(n)r
4. For each pathr 2 R
5. Compute virtual capacityv
(n)r = E�1v
 (�(n)r ; b(n)r )
6. For each minhop pathr 2 Rmin
7. Compute target load��r such that��(n) = ��rE(��r ; v
(n)r )
8. For each alternative pathr 2 Ralt
9. Compute target load��r such that b� = E(��r ; v
(n)r )
10. For each pathr 2 R
11. Compute new proportion�(n+1)r = ��rPr2R ��r
12. END PROCEDURE

Figure 5: Thevcr procedurer 2 Rmin, let br denote the observed flow blocking probability on pathr. The minimum flow blocking probability

of all the minhop paths,b� = minr2Rmin br, is used as the reference in deciding a target flow blocking probability

for alternative paths. The target flow blocking for alternative paths is set to b�, where is a configurable parameter

to limit the “knock-on” effect under system overloads. An alternative pathr0 2 Ralt is selected to route flows only

if it can attain the target flow blocking probability. In other words, its observed flow blocking probabilitybr0 is less

than or equal to b�.
This self-refrainedalternative routing method has several attractive features. By usingb� as the reference in

determining a target flow blocking probability for alternative paths, it dynamically controls the extent of alternative

routing according to both the load at the source and the overall system load. For example, if both the load at the

source and the overall system load is light, the use of alternative paths will be kept at a minimum. However, if

the load at the source is heavy but the overall system load is light, more alternative routes will be used by the

source. Furthermore, by using only those alternative pathswhose observed blocking probabilities are at most as

high as the minimum of those of the minhop paths, we guaranteethat the minhop paths are preferred to alternative

paths. In particular, if an alternative path of a source-destination shares a bottleneck with one of its minhop paths,

this alternative path is automatically “pruned”. In addition, a source would gradually back off from an alternative

path once its observed flow blocking probability starts increasing, thereby adapting gracefully to the change in the

network load.

2.4 Virtual Capacity based Proportional Routing

By incorporating thisself-refrainedalternative routing method into the virtual capacity model, we devise a theoretical

adaptive proportional routing scheme, which is referred toas theVirtual Capacity based Routing(vcr) scheme. In

this vcr scheme, we use theebr strategy5 to proportion flows along the minhop paths, whereas proportions of flows
5We adopted theebr strategy as it is found to be more amenable for implementation.
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Figure 6: Topologies used for illustration

along the alternative paths are computed using the target flow blocking probability b�, as in theself-refrained

alternative routing method. The scheme is shown in Figure 5.Suppose the total load for a source-destination pair is�. At a given stepn � 0, let�(n)r = �(n)r � be the amount of the load currently routed along a pathr 2 R, and letb(n)r
be its observed blocking probability on the path. Then the virtual capacity of pathr is given byv
r = E�1v
 (�(n)r ; b(n)r )
(line 5). For each minhop path, the mean blocking rate of all the minhop paths,��(n), is used to compute a new target

load (lines 6-7). Similarly, for each alternative path, a new target load is determined using the target blocking

probability b� (lines 8-9). Given these new target loads for all the paths, the new proportion of flows,�(n+1)r , for

each pathr is obtained in lines 10-11, resulting in a new load�(n+1)r = �(n+1)r � on pathr.
In the following we illustrate through numerical examples how thevcr scheme uses alternative paths in a judi-

cious and self-adaptive manner. First consider theducktopology shown in Figure 6(a). Letrmin1 andrmin2 denote,

respectively, the two minhop paths1 ! 2 ! 4 ! 9 and1 ! 3 ! 4 ! 9. Similarly let ralt3 , andralt4 denote,

respectively, the two alternative paths1! 2! 5! 6! 9 and1! 7! 8! 4! 9. The two minhopsrmin1 andrmin2 share the bottleneck link4! 9 with the alternative pathralt4 . On the other hand, the minhop pathrmin1 and the

alternative pathralt3 share the link1! 2, which isnota bottleneck link. The capacities
1 and
2 of bottleneck links

are set to 20. Assume that a load of30 is offered at sources. With the parameter set to0:8 and starting with a set

of arbitrary proportions for the four paths, thevcr scheme would eventually reach a set of equilibrium proportions,

which are�min1 = 0:255, �min2 = 0:255, �alt3 = 0:490 and�alt4 = 0:000, respectively. We see that a total51% of

the flows are routed through the bottleneck link4 ! 9. This link is shared equally by the two minhop paths,rmin1
andrmin2 , each with a blocking probability of0:0508. The alternative path,ralt3 , which also share the bottleneck

link with the two minhop paths, is effectively cut off from the link and not used at all. This is because routing any

flows throughralt3 would only increase the resource usage without resulting inany decrease in the overall blocking

probability. In contrast, the alternative path,r13, is used to route47% of the flows, with a blocking probability of0:0406, which matches the target blocking probability for the alternative paths, b� = 0:0406. Sinceralt3 shares a

non-bottlenecklink with rmin1 , routing flows throughralt3 helps reduce the overall blocking probability.

In the next example, we demonstrate how thevcr scheme controls the extent of alternative routing to adapt to

the changes in traffic load. Consider thefish topology shown in Figure 6(b). The nodes1, 2, 3, and4 are the source
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Figure 7: Illustration of usage of alternative paths invcr

nodes and node12 is the destination node. The nodes1 and2 each have two minhop paths and two alternative paths

to the destination node12. Other two source nodes,3 and4, have just one minhop path to the destination node12.

The alternative paths of source nodes1 and2 share the bottleneck links9! 12 and11! 12 with the minhop paths

of 3 and4. Assume that the capacities
1, 
2, 
3 and
4 of the bottleneck links are all set to20. We consider four

scenarios where the offered load at source nodes1 and2 are fixed at20 while the offered load at source nodes3 and4 are increased from0 to 5, 10 and15 in scenarios I, II, III, and IV respectively, and study how source nodes1 and2 adjust their flow proportions on the alternative paths. Figures 7(a) and 7(b) show, from the perspective of source

node1, the adaptation process as reflected in the flow blocking probabilities and proportions associated with the

minhop paths and the alternative paths. Note that due to the symmetry, source node2 behaves in exactly the same

manner. Hence we will focus only on the behavior of source node 1.

Suppose initially both source nodes1 and2 use only their minhop paths. This results in a high blocking prob-

ability of 0:1588 on the minhop paths. As both source nodes sense the availability of the alternative paths and start

routing flows through them, the blocking probability on the minhop paths drops quickly, resulting in an overall

blocking probability of around0:0019 (see Scenario I in Figure7(a)). At the equilibrium state, the total proportion

of flows routed along the two alternative paths is0:4964 (see Scenario I in Figure7(b)). When sources nodes3 and4
become active with a load of5 each, the blocking probability on the two alternative pathsshoots up to0:0435 from0:0017. The source1 reacts to this by reducing the proportion of the flows routed to the alternative paths from0:4964
to 0:3659, pulling the overall blocking probability down to0:0136 (see Scenario II in Figure7(a) and Figure7(b)).

Note that at the equilibrium state, the blocking probabilities of the alternative paths are kept at0:8 times of that of the

minhop paths, as determined by the parameter = 0:8. As the load at source nodes3 and4 increases further from

5 to 10, then to 15, both source node1 and source node2 keep backing off from their alternative paths to yield more
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Figure 8: Comparison ofvcr andopr

capacity share to the minhop paths of source nodes3 and4 (see Scenarios III and IV in Figure7(a) and Figure7(b)).

At the end, the proportion of flows routed by source node1 to the alternative paths is eventually decreased to only0:1047, yielding an overall blocking probability of0:0977. This example shows that thevcr scheme can adaptively

respond to the traffic load changes along the alternative paths by adjusting the proportion of flows routed along these

paths. It was argued [37] that selection of maximally disjoint paths yields better blocking performance. The above

results show that, using the virtual capacity model andself-refrainedalternative routing method, thevcr scheme ju-

diciously proportions traffic among minhop and alternativepathswithout actually being aware of where the shared

bottleneck links are.

We now illustrate the convergence ofvcr using a largerisp topology shown in Figure 10(a). The topology

and traffic characteristics are described in Section 4.1. For this study, a load of0:35 is offered uniformly between

all the border nodes. Figure 8 shows the overall blocking probability as a function of the iteration number. The

performance ofvcr is shown for three different values of : 0:6; 0:8; 1:0. The blocking probability corresponding

to optimal proportions computed byopr is also shown for reference. First thing to note is thatvcr converges for

all values of . Furthermore, it approaches the convergence point within10 iterations. The performance ofvcr

with  = 0:8 is slightly better than with = 0:6 while not much difference between values0:8 and1:0. This

difference between values0:6 and0:8 indicates the blocking performance penalty paid for being extra cautious in

avoiding knock-on effect. Note that longer alternate pathsare naturally discriminated because they are likely to have

higher blocking probability. The parameter provides additional safe guarding against knock-on effect. Our results

show that0:8 is a reasonable setting for . Finally, it can be seen that the blocking probability achieved byvcr based

proportioning is within0:2% of the optimal blocking probability. These results affirm that vcr yields near-optimal

proportions.
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1. PROCEDURE PSR-ROUTE()

2. Select an eligible pathr = wrrps(Relg)
3. Increment flow counter,nr = nr + 1
4. If failed to setup connection alongr
5. Decrement failure counter,fr = fr � 1
6. If failures reached limit,fr == 0
7. Remove r from eligible set,Relg = Relg � r
8. If eligible set is empty,Relg == ;
9. Reset eligible set,Relg = R
10. For each pathr 2 R
11. Reset failure counter,fr = 
r
12. END PROCEDURE

(a) proportional routing

1. PROCEDURE PSR-PROPO-COMPU()

2. For each pathr 2 R
3. Compute blocking probability,br = �
rnr
4. Assign a proportion,�r = nrP�r2R n�r
5. Set target blocking probability,b� = minr2Rmin br
6. For each alternative pathr0 2 Ralt
7. If blocking probabilityhigh, br0 >= b�
8. Decrement failure limit,
r0 = 
r0 � 1
9. If blocking probabilitylow, br0 <  b�
10. Increment failure limit,
r0 = 
r0 + 1
11. END PROCEDURE

(b) computation of proportions

Figure 9: Thepsr procedure

3 Proportional Sticky Routing: A Practical Implementation of VCR

In the previous section, we presented an analytical framework for modeling adaptive proportional routing. In par-

ticular, based on this framework we described a theoreticaladaptive routing scheme — thevcr scheme, and demon-

strated its self-adaptivity through several numerical examples. There are two difficulties involved in implementing

the virtual capacity model. First, computation of virtual capacity and target load using Erlang’s Loss Formula can

be quite cumbersome. Second, and perhaps more importantly,the accuracy in using Erlang’s Loss Formula to com-

pute virtual capacity and new load relies critically on steady-state observation of flow blocking probability. Hence

small statistic variations may lead to erroneous flow proportioning, causing undesirable load fluctuations. In order

to circumvent these difficulties, we are interested in a simple yet robust implementation of thevcr scheme. In this

section we present such an implementation which we refer to as theproportional sticky routing(psr) scheme6.

Thepsrscheme can be viewed to operate in two stages: 1) proportional flow routing, and 2) computation of flow

proportions. The proportional flow routing stage proceeds in cyclesof variable length. During each cycle incoming

flows are routed along paths selected from a set of eligible paths. A path is selected with a frequency determined by

a prescribed proportion. A number of cycles form anobservation period, at the end of which a new flow proportion

for each path is computed based on its observed blocking probability. This is the computation of flow proportion

stage. As in thevcr scheme, flow proportions for minhop paths of a source-destination pair are determined using the

ebrstrategy, whereas flow proportions for alternative paths are determined using a target blocking probability. In the

following we will describe these two stages in more detail.
6Thepsr scheme essentially does proportional routing while obtaining proportions through a form of sticky routing.
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Proportional flow routing

Given an arbitrary source-destination pair, letR be the set of candidate paths between the source-destination pair,

whereR = Rmin[Ralt. We associate with each pathr 2 R, amaximum permissible flow blockingnumber
r and a

correspondingflow blocking counterfr. For each minhop pathr 2 Rmin, 
r = 
̂, where
̂ is a configurable system

parameter. For each alternative pathr0 2 Ralt, the value of
r0 is dynamically adjusted between1 and
̂, as will be

explained later. As shown in Figure 9(a), at the beginning ofeach cycle,fr is set to
r. Every time a flow routed

along pathr is blocked,fr is decremented. Whenfr reaches zero, pathr is consideredineligible. At any time only

the set ofeligiblepaths, denoted byRelg, is used to route flows. A path from current eligible path setRelg is selected

using a weighted-round-robin-like path selector (wrrps). Thewrrps procedure is described in the Appendix. OnceRelg becomes empty, the current cycle is ended and a new cycle is started withRelg = R andfr = 
r.
Computation of flow proportions

Flow proportionsf�r; r 2 Rg are recomputed at the end of each observation period (see Figure 9(b)). An obser-

vation period consists of� cycles, where� is a configurable system parameter used to control the robustness and

stability of flow statistics measurement. During each observation period, we keep track of the number of flows

routed along each pathr 2 R using a counternr. At the beginning of an observation period,nr is set to 0. Every

time pathr is used to route a flow,nr is incremented. Since an observation period consists of� cycles, and in every

cycle, each pathr has exactly
r flows blocked, the observed flow blocking probability on pathr is br = �
rnr . For

each minhop pathr 2 Rmin, its new proportion�r is recomputed at the end of an observation period and is givenby�r = nr=ntotal, wherentotal = Pr2R nr is the total number of flows routed during an observation period. Recall

that for a minhop pathr 2 Rmin, 
r = 
̂. Hence�rbr = nrntotal �
rnr = nrntotal �
̂nr = �
̂ntotal . This shows that the above

method of assigning flow proportions for the minhop paths equalizes their flow blocking rates.

As in thevcr scheme, we use the minimum blocking probability among the minhop paths,b� = minr2Rmin br,
as the reference to control flow proportions for the alternative paths. This is done implicitly by dynamically adjust-

ing the maximum permissible flow blocking parameter
r0 for each alternative pathr0 2 Ralt. At the end of an

observation period, letbr0 = �
r0nr0 be the observed flow blocking probability for an alternativepathr0. If br0 > b�,
r0 := maxf
r0 � 1; 1g. If br0 <  b�, 
r0 := minf
r0 + 1; 
̂g. If  b� � br0 � b�, 
r0 is not changed. By having
r0 � 1, we ensure that some flows are occasionally routed along alternative pathr0 to probeits “quality”, whereas

by keeping
r0 always beloŵ
, we guarantee that minhop paths are always preferred to alternative paths in routing

flows. The new proportion for each alternative pathr0 is again given by�r0 = nr0=ntotal. Note that since
r0 is

adjusted for the next observation period, theactual number of flows routed along alternative pathr0 will be also

adjusted accordingly.

16



Table 1: Comparison of proportioning invcr andpsr

Topo Scenario vcr psr�1!4!6 0:356 0:351
kite �s1 = 22; �s2 = 22 �2!4!6 0:356 0:357�1!4!6 0:447 0:455
kite �s1 = 25; �s2 = 15 �2!4!6 0:208 0:193�1!2!4!9 0:255 0:269�1!3!4!9 0:255 0:236
duck �s = 30 �1!2!5!6!9 0:490 0:474�1!7!8!4!9 0:000 0:021

Comparison with vcr

Thepsrscheme preserves the self-adaptivity of the theoreticalvcr scheme by controlling the number of flows routed

along a pathr in each cycle using
r and by re-adjusting flow proportions after every observation period. For

example, if the load along a pathr increases, causing the number of flows blocked to quickly reach 
r, the source

will automatically back off from this path by eliminating itfrom the eligible path set for the rest of the cycle. If this

situation persists, at the end of the observation period, the new flow proportion for pathr will be reduced. Likewise,

if the load on pathr decreases, its new flow proportion will be increased at the end of the observation period. This

is particularly true for alternative paths with their dynamically adjusted
r. Furthermore, because the length of each

cycle is not fixed but determined by how fast each eligible path reaches its maximal permissible blocks, the length

of an observation period also varies. Thisself-adjustingobservation period allows thepsr scheme to respond to the

system load fluctuations in an elastic manner. If the system load changes suddenly, the old flow proportions would

result in rapid termination of cycles, which would in turn lead to faster conclusion of the current observation period.

New flow proportions will thus be re-computed to adapt to the system load. On the other hand, if the system load is

stable, the observation periods will also be stabilized, with increasingly accurate calibration of the flow proportions.

As a result, flow proportioning will eventually converge to the equilibrium state.

Table 1 compares the simulation results obtained using thepsrscheme with the corresponding numerical results

obtained using the theoreticalvcr scheme under various settings. The capacities of all bottleneck links are set to20.

The observation period� in psr is set to3 cycles to average out the random effects before recomputingproportions.

The trunk reservation parameter is set to0:8 and the maximum permissible flow blocking parameter,
̂ is set to5. The table shows the proportions assigned to each path undereach setting. In all the settings, the difference in

proportions between these two schemes is not significant. Aninteresting case shown in the table is that ofduck

topology wherevcr assigns zero proportion to the alternative path1! 7! 8! 4! 9 since it shares a bottleneck

link (4 ! 9) with minhop paths. Thepsr scheme routes0:021 proportion of flows to this path. This is because

psr has to route some flows to a path to probe its quality. However,note that this is a small proportion and doesn’t

severely affect the performance. These results show that the psr scheme closely approximates thevcr scheme.
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Figure 10: Topologies used in performance evaluation

4 Performance Evaluation and Analysis

In this section, we evaluate the performance of the proposedlocalized QoS routing schemepsr and compare it with

the global QoS routing schemewidest shortest path(wsp). We first describe the simulation environment and then

compare the performance ofpsrandwspin terms of the overall blocking probability, routing stability and overhead.

4.1 Simulation Environment

Figure 10 shows the two topologies,ispandrand, used in our study. Theisp topology of an ISP backbone network is

also used in [1, 20]. Therand topology is a random graph generated by GT-ITM [39] and used in [40]. For simplicity,

all the links are assumed to be bidirectional and of equal capacity in each direction. Therand topology has three

types of links:thin, thick anddottedwhile isp topology has onlythin links. All thin links have same capacity withC1 units of bandwidth and similarly all thethick links haveC2 units. Thedottedlinks are the access links and for the

purpose of our study their capacity is assumed to be infinite.Flows arriving into the network are assumed to require

one unit of bandwidth. Hence a link with capacityC can accommodate at mostC flows simultaneously.

The dynamics of flows in the network is modeled as follows (similar to the model used in [34]). A set of nodes

in the network is designated as capable of being source/destination nodes of flows. In case ofrand topology, only the

nodes attached to thedottedaccess links are assumed to be end points of flows. In case ofisp topology, we consider

two settings. In the first setting, all nodes are included in this set and in the second setting, only the9 border nodes,

namely1; 2; 5; 6; 11; 13; 14; 15; 18 are included. Flows arrive at a source node according to a Poisson process with

rate�. The destination node of a flow is chosen randomly from the designated set of nodes except the source node.

The holding time of a flow is exponentially distributed with mean1=�. Following [34], the offered network load

on isp is given by� = �N�h=�L1C1, whereN is the number of source nodes,L1 the number of links, and�h is the

mean number of hops per flow, averaged across all source-destination pairs. Similarly the offered load onrand is
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Figure 11: Impact of update interval

given by� = �N�h=�(L1C1 + L2C2), whereL1 andL2 are the number ofthin and thick links respectively. The

parameters used in our simulations areC1 = 20, C2 = 40, 1=� = 60 sec. The topology specific parameters areN = 18, L1 = 60, �h = 2:36 for isp andN = 56, L1 = 100, L2 = 22, �h = 4:38 for rand. The average arrival rate

at a source node� is set depending upon the desired load.

The parameters in the simulation are set as follows by default. Any change from these settings is explicitly

mentioned wherever necessary. The values for configurable parameters inpsr are� = 3, 
̂ = 5, and = 0:8. For

each source-destination pair, all the paths between them whose length is at most one hop more than the minimum

number of hops are chosen as the candidate paths. The averagenumber of candidate (minhopandminhop+1) paths

used inpsr are5:16(1:39 + 3:77) in rand, and4:63(1:50 + 3:13) and5:20(1:53 + 3:67) respectively in the first and

the second settings ofisp. Each run simulates arrival of1; 000; 000 flows and the results corresponding to the latter

half of the simulation are reported here.

4.2 Blocking Probability

The performance ofwspandpsr is compared by measuring the blocking probability under various settings. We first

present the impact of update interval on the performance ofwspand show how the blocking probability increases

rapidly as update interval is increased. We then demonstrate the adaptivity ofpsrby varying the overall load. Finally

we compare the performance of these two schemes under non-uniform load conditions and show thatpsr is better at

alleviating the effect of “hot spots”.

Varying update interval

Figure 11 compares the performance ofwspandpsr for both isp andrand topologies. The offered load was set to0:60 in case ofisp and0:40 in case ofrand. The performance is measured in terms of the overall flow blocking
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Figure 12: Performance under varying load

probability, which is defined as the ratio of the total numberof blocks to the total number of flow arrivals. The

overall blocking probability is plotted as a function of theupdate interval used inwspfor periodic updates7. From

the figures, we see that as the update interval ofwsp increases, the blocking probability ofwsprapidly approaches

that ofpsrand is worse for larger update intervals. In the case ofisp topology,psrperforms better thanwspwhen the

update interval is greater than60 sec. Forrand topology, this crossover happens at a much smaller update interval

of less than10 sec. The reasons for this poor performance ofwspare further investigated and explained later in this

section.

Varying offered load

We now illustrate the adaptivity ofpsr by varying the offered load. We initially offer a load of0:60 as was done

in the earlier simulation and then this overall load is decreased to0:50 and again increased to0:65. We plot the

blocking probability underpsr andwspas a function of time in Figure 12. The performance ofwspis shown for two

update intervals:30 sec and60 sec. Starting with arbitrary initial proportions,psr quickly converges and performs

as well aswsp(60). When the load is decreased,psr adapts to the change and maintains its relative performance.

Finally, when the load is increased to0:65, once again it reacts promptly and performs slightly betterthanwsp(60).
This leads us to study how the amount of load affects the relative performance of these schemes.

Figure 13 shows the blocking performance of these two schemes as a function of the offered network load. As

before, the performance is measured in terms of the overall flow blocking probability. The network load is varied

from 0:50 to 0:70 in caseisp and0:35 to 0:45 in case ofrand. The performance ofwspis plotted for three update

intervals of30, 60 and90 for the ispcase and similarly for5, 10, and15 in case ofrand. It is clear thatpsr performs

as well aswsp(60) at low loads and better at high loads. In case ofrand, psr’s performance is better thanwspwith
7Note that blocking performance ofwspwith threshold triggered updates with hold-down timer T would be no better than periodic updates

with update interval T. The difference is in the amount of update message overhead.
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Figure 13: Performance under various loads

an update interval of10 sec. The poor performance ofwspparticularly in case ofrand is investigated and explained

below. So far, we assumed the first setting ofisp where any node can potentially be a source or a destination, while

in rand, only a few nodes are considered to be end points of flows. Thiscauses the traffic distribution across the

network to be more unbalanced inrand than inisp andwspperforms poorly under such a setting. To illustrate this,

we have compared the performance of these schemes underispwith non-uniform load conditions and the results are

described below.

Varying non-uniform traffic

It is likely that a source node receives a larger number of flows to a few specific destinations [6], i.e, a few destinations

are “hot”. Ideally a source would like to have more up-to-date view of the QoS state of the links along the paths to

these “hot” destinations. In the case ofwsp, this requires more frequent QoS state updates, resulting in increased

overhead. But in the case ofpsr, because of its adaptivity and statistics collection mechanism, a source does have

more accurate information about the frequently used routesand thus alleviates the effect of “hot spots”. We illustrate

this by introducing increased levels of traffic between certain pairs of network nodes (“hot pairs”), as was done in

[1]. Apart from the normal load that is distributed between all source-destination pairs, an additional load (hot load)

is distributed among all the hot pair nodes. The hot pairs chosen forisp topology are(2; 16), (3; 17), and(9; 11).
We consider three scenarios underisp. In scenario I, a load of0:50 is offered uniformly among all the nodes as

was done in earlier simulations. In scenario II, an additional load of0:05 is offered between hot pairs only and in

scenario III this additional load is further increased to0:10. Figure 14 shows the blocking performance of the two

schemes under different scenarios as a function of time. Under scenario I, starting with arbitrary initial proportions,

psr quickly converges to a stable state where its blocking probability is similar to that ofwsp(60). But in scenario
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Figure 15: Performance under various non-uniform load conditions
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II with additional load between hot pairs,psr approaches the performance ofwsp(30) and even better in scenario

III where the load between hot pairs is higher. These resultsillustrate the degradation in performance ofwspand

improvement in relative performance ofpsr under non-uniform load conditions.

We have further investigated the impact of non-uniform loadon the relative performance of these schemes by

varying the amount of non-uniform load. First, we consider the second setting ofisp where load is offered only

between the border nodes. This is a reasonable setting sincethese edge nodes are likely to be ingress and egress

nodes for flows passing through this domain. We ran the simulations varying the load on border nodes from0:35 to0:40. Figure 15(a) shows the results of these simulations. It canbe seen that, across all loads,psr performs better

thanwspwith 30 sec update interval. We then fixed the load on border nodes at0:35 and varied the additional load

offered on hot pairs. Figure 15(b) shows the blocking performance of the schemes as a function of the additional

load. When there is no additional load on hot pairs, performance ofpsr is similar towsp(30). As the additional load

on hot pairs increases,psr does progressively better in comparison towspand at hot load of0:10 it performs as well

aswspwith an update interval of15 sec and even better at higher hot loads. This not only shows the limitation of

global routing schemes such aswspbut also illustrates the self-adaptivity of localized proportional routing schemes

such aspsr.

4.3 Heterogeneous Traffic

The discussion so far is focussed on the case where the trafficis homogeneous, i.e., all flows request for one unit of

bandwidth and their holding times are derived from the same exponential distribution with a fixed mean value. Here

we study the applicability ofpsr in routing heterogeneous traffic where flows could request for varying bandwidths

with their holding times derived from different distributions. We demonstrate thatpsr is insensitive to the duration

of individual flows and hence we do not need to differentiate flows based on their holding times. We also show that

when the link capacities are considerably larger than the average bandwidth request of flows, it may not be necessary

to treat them differently and hencepsr can be usedas isto route heterogeneous traffic.

Consider the case of traffic withk types of flows, each flow of typei having a mean holding time1=�i and

requesting bandwidthBi. Let �i be the offered load on the network due to flows of typei, where the total offered

load,� =Pki=1 �i. The fraction of total traffic that is of typei, �i = �i=�. The arrival rate of typei flows at a source

node,�i is given by�i = �i�iLC=N�hBi, which is an extension of the formula presented in Section 4.1. To account

for the heterogeneity of traffic, bandwidth blocking ratio is used as the performance metric for comparing different

routing schemes. The bandwidth blocking ratio is defined as the ratio of the bandwidth usage corresponding to

blocked flows and the total bandwidth usage of all the offeredtraffic. Supposebi is the observed blocking probability

for flows of typei, then the bandwidth blocking ratio is given by

Pki=1 bi�iBi�iPki=1 �iBi�i . In the following, we compare the

performance ofpsr and wsp, measured in terms of bandwidth blocking ratio, under different traffic conditions,

varying the fractions�i to control the traffic mix.
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Figure 16: Performance under traffic with mixed holding times

Mixed holding times

We now examine the case of traffic with2 types of flows that request for the same amount of bandwidth, i.e,B1 = B2 = 1, but with different holding times. We consider three scenarios. In the first scenario, both types of

flows have their holding times derived from exponential distribution but their means are different:60 and120 sec.

In the second scenario, both types have the same mean holdingtime of 60 sec but their distributions are different:

exponential and pareto. In the third scenario, holding times of both types of flows follow pareto distribution but their

means are different:60 and120 sec. In all these scenarios, a load of0:40 is offered between the border nodes inisp.

Figure 16 shows the performance ofpsr andwspunder different scenarios.

Consider the first scenario where type1 flows areshort ( 1�1 = 60 sec) and type2 flows arelong ( 1�1 = 120
sec), but both are exponentially distributed. Figure 16(a)shows the bandwidth blocking ratio plotted as a function

of the fraction�1 corresponding to short flows. It is quite evident that the performance ofwsp degrades as the

proportion ofshortflows increases while that ofpsrstays almost constant. The behavior ofwspis as expected since

the shorter flows cause more fluctuation in the network QoS state and the information at a source node becomes more

inaccurate as the QoS state update interval gets larger relative to flow dynamics. On the contrary,psr is insensitive

to the duration of flows.

In the second scenario, a fraction of flows have their holdingtimes derived from a pareto distribution while the

rest have their holding times derived from an exponential distribution. The mean holding time of both the types

is the same,60 sec. The pareto distribution is heavy tailed with its tail controlled by ashapeparameter. We have

experimented with different shape values in the range2:1 to 2:5 and found that results are similar. The results

reported here correspond to a shape value of2:2. In Figure 16(b), bandwidth blocking ratio is plotted as a function

of the fraction of pareto type flows. As the fraction of paretoflows increases, the blocking underwsp(30) increases

while it stays almost same underwsp(15). The number of short (much less than mean holding time) flowsare more

under the pareto distribution than the exponential distribution because of the long tail of pareto. Consequently,

update interval has to be small to capture the fluctuations due to such short flows. That is why the performance of
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Figure 17: Performance under traffic with variable bandwidth requests

wsp(30) degrades whilewsp(15) is not affected. The relative performance of these schemesin the third scenario

is similar to the first scenario with short and long flows. An important thing to note is that in all the scenarios the

performance ofpsr is insensitive to the holding times of flows.

The behavior ofpsr is not surprising since Erlang formula is known to be applicable even when the flow holding

times are not exponentially distributed and blocking probability depends only on the load, i.e., the ratio of arrival

rate and service rate. For the above case of two types of flows,the aggregate arrival rate,�, is given by� = �1 + �2
and the mean holding time,1=�, is given by 1� = 1�1 �1�1+�2 + 1�2 �2�1+�2 . This heterogeneous traffic can then be

treated as equivalent to homogeneous traffic with arrival rate�, mean holding time1=� and the corresponding load�=� = �1=�1 + �2=�2. So for a given load, the blocking probability would be the same irrespective of the mean

holding times of individual flows. That is why the performance of the theoretical scheme,vcr depends only on the

overall offered load and not on the types of traffic. The practical scheme,psr also behaves similarly and hencepsr

can be employedas isto route flows with mixed holding times.

Varying bandwidth requests

Now, consider the case of traffic with2 types of flows, each requesting fordifferent amount of bandwidthbut having

the same mean holding time. The bandwidth requests of flows are derived uniformly from a range:0:5 to 1:5 for

smallflows and1:5 to 2:5 for large flows, i.e., the mean bandwidth of small flows is1 while it is 2 for large flows.

The holding times of all the flows are drawn from an exponential distribution with mean60 sec. The performance is

measured varying the mix of small and large flows. Figure 17(a) shows the bandwidth blocking ratio as a function

of the fraction of small flows. First thing to note is thatpsr performs poorly when the majority of flows are large.

However, as the number of small flows increases, it approaches the performance ofwsp(30). The reason is that
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routing underpsr is independent of the amount of bandwidth requested whilewsp is conscious of the bandwidth

requested. However, when the link capacity is much larger than a flow’s bandwidth request,psr performs fine even

though it is unconscious of the requested amount. To illustrate this, we increased the capacity of all links to40 and

measured the performance of both the schemes under similar load conditions as the previous case. Figure 17(b)

shows thatpsr performs as well aswsp(30) when all the flows are large and approacheswsp(15) as the number of

small flows increases. In the following, we argue further that when bandwidth requests are significantly smaller than

the link capacity, it is not necessary forpsr to differentiate between different bandwidth requests.

In [31], it was shown that when the capacity of a link is large,the blocking probability of a flow of typei can

be approximated as follows. Suppose that typei flow requests fordi units of bandwidth and the load of typei flows

on link l is �il . The blocking probability for typei flows on link l is given bybil = diÆ E(P �ildiÆ ; 
lÆ ), whereÆ is

an “equivalent rate” given byÆ = P �ild2iP �il di . In other words, the ratio of blocking probabilities of flow typesi andj
would be same as the ratio of their bandwidth requests, i.e.,bibj � didj . This implies that�1b1�2b2 = �1�2 , i.e., the blocking

rate of flows of a type is proportional to their fraction in thetotal offered load. Consequently, performance of a

equalization based proportional routing scheme would be same with or without categorizing the flows into different

classes. However,psr has to be extended to route flows with relatively large bandwidth requests, since it is possible

that a path that is good for one bandwidth request may not be even feasible for another bandwidth request. In such

a case, since the amount of bandwidth requested by a flow is known at the time of path selection, it makes sense to

utilize this knowledge in categorizing them into bandwidthclasses and routing them accordingly. Considering that

in practice link capacities are much larger than an individual flow’s bandwidth request,psr can be usedas isto route

heterogeneous traffic in most cases.

4.4 Sensitivity ofpsr

We now study the sensitivity ofpsr to the settings of its configurable parameters,� and
̂. These parameters control

the observation period between successive computations ofproportions. While� specifies the number of cycles

in an observation period,̂
 gives the number of blocks permitted per path in a cycle and thus indirectly controls

the length of a cycle. We have experimented with several settings of (�,
̂) and here we present the results of three

different settings:(1; 1), (3; 5), and(5; 10) in Figure 18. Two separate graphs are shown for readability.The traffic

patterns and loads are varied to see the adaptivity ofpsr under different settings. In scenario I, a load of0:35 is

offered between border nodes and in scenario II, an additional load of0:05 is offered between hot pairs only and

this hot load is increased to0:10 in scenario III. Under all settings,psr adapts quickly to traffic scenario changes.

But psr(3; 5) blocks lesser flows thanpsr(1; 1) while no discernible difference betweenpsr(3; 5) andpsr(5; 10). The

performance difference betweenpsr(1; 1) andpsr(3; 5) is more evident in scenario III where the overall offered load

is high. In general, fewer the blocks permitted in a cycle, lesser the effect of proportional routing. Relatively longer

cycles are needed to get a good estimate of right proportions. Also, from the perspective of stability it is better to

change proportions gradually to reduce oscillations. Fromthese results, we observe that3 cycles and5 blocks per
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Figure 18: Performance ofpsr under different (�,
̂) settings

path per cycle seem to work fine and beyond thatpsr is relatively insensitive to its parameter settings.

4.5 Routing Stability

An essential feature of a good routing scheme is its ability to avoid routing oscillations and thus ensure stability.

It was shown [35] that out-of-date information due to largerupdate intervals can cause route flapping in schemes

such aswsp. When the utilization on a link is low, an update causes all the source nodes to prefer routes along this

path, resulting in a rapid increase in its utilization. Similarly when the utilization is high, an update causes all the

sources to shun this link and consequently its utilization decreases as the existing flows depart. This synchronization

problem is inherent in any global information exchange based QoS routing schemes such aswsp. On the other hand,

the psr scheme doesn’t exhibit such route flapping behavior. There are two fundamental reasons for the stability

of psr. First, inpsr each source performs routing based on its ownlocal viewof the network state. Routing based

on such a “customized view” avoids the undesirablesynchronized mass reactionthat is inherent in QoS routing

scheme based on a global view. Second,psrdoes proportional routing with a proportion assigned to a path reflecting

its quality. A relatively better path is favored by sending larger proportion of traffic to it. It doesn’t pick just one

“best” path. The psr can also cause higher fluctuation occasionally at the end of a cycle due to making some paths

ineligible and routing all the load along one or a few eligible paths. However, as proportions stabilize, duration of

such fluctuations tend be smaller. Considering all this we claim that a localized proportional routing scheme such as

psr is intrinsically more stable than a global best-path routing scheme such aswsp.
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4.6 Routing Overhead

We now take a close look at the amount of overhead involved in these two routing schemes. This overhead can be

categorized into path selection overhead and information collection overhead. We discuss these two separately in

the following.

The wspscheme selects a path by first pruning the links with insufficient available bandwidth and then per-

forming a variant of Dijkstra’s algorithm on the resulting graph to find the shortest path with maximum bottleneck

bandwidth. This takes at leastO(E logN) time whereN is the number of nodes andE is the total number of links

in the network. Assuming precomputation of a set of pathsR to each destination to avoid searching the whole graph

for path selection, it still need to traverse all the links ofthese precomputed paths. This amounts to an overhead ofO(L), whereL is the total number of links in the setR. On the other hand, the path selection inpsr is simply an

invocation ofwrrps whose worst case complexity isO(jRj) which is much less thanO(L) for wsp.

Now consider the information collection overhead. Inwsp, each source acquires a network-wide view on the

status of links through link state updates. Every router is responsible for maintaining QoS state and generating

updates about all the links adjacent to it. These updates aresent either periodically or after a significant change

in the resource availability since the last update. They arepropagated to all the routers in the network through

flooding. As in OSPF [22] each router is responsible for maintaining a consistent QoS state database. This incurs

both communication and processing overhead. In contrast, the routers employingpsr scheme do not exchange any

such updates and thus completely do away with this overhead.Only source routers need to keep track of route

level statistics and recompute proportions after every observation period. Statistics collection inpsr involves only

increment and decrement operations costing only constant time per flow. The proportion computation procedure in

psr itself is extremely simple and costs no more thanO(jRj).
5 Related Work

The problem of QoS routing has been addressed in several contexts, a survey of which can be found in [15]. The

work more relevant to ours is the distributed routing schemeproposed in [16] where a set of multiple paths are probed

in parallel, using tickets, for a satisfactory path. However, this approach requires the distribution and processing of

these tickets by intermediate nodes. Minimum interferencerouting [12] is a scheme proposed recently that selects

a path that interferes least with the routing of future flows.While this scheme provides good routing performance,

it has significant computational overhead. The proportional routing approach presented in this paper achieves the

similar effect by gradually adapting the flow proportions assigned to paths based on their blocking probabilities

which is an indirect measure of interference of paths.

It is interesting to contrastpsr with some of the dynamic routing schemes proposed in the context of telephone

networks. Here we consider two such schemes based on sticky routing and learning automata that make use of the

feedback information regarding flow admission or rejectionfor routing future flows.
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Table 2: Comparison of blocking under various routing schemes

Topology Scenario psr rsr LR��P LR�P
fork (3) � = 45 5:12 7:67 8:06 6:51
fork (3) 
2 = 10; 
3 = 5; �s = 25 6:38 9:72 9:18 8:35

kite �s1 = 22; �s2 = 22 4:24 5:59 5:84 5:12
kite �s1 = 25; �s2 = 15 2:12 3:58 3:81 3:65
duck � = 30 4:57 9:13 7:35 6:88
fish �s1 = 20; �s2 = 15; �s3 = 5; �s4 = 10 1:02 4:40 4:26 3:07

5.1 Sticky Random Routing

The dynamic alternative routing(dar) is a well known routing scheme [9] where a source alwaystries the direct

one-link path to the destination first and in case of a crankback chooses a two-link path usingsticky random routing

(srr). Since in our setting we do not consider re-routing, thesrr scheme (equivalent todar with a dummy direct link)

is used for comparison. Thesrr scheme remembers a path known aspreferredpath for each destination. A flow to

a destination is always routed through its corresponding preferred path. If the connection setup is successful, the

preferred path remains same. But in case of a failure, the flowis blocked and a new preferred path is chosen randomly

from set of feasible paths to that destination excluding thecurrent preferred path. Thesrr scheme essentially sticks

to a path as long as it can accommodate offered traffic.

The analysis ofdar presented in [9] observes thatdar equalizes the blocking rates over two-link paths for each

source destination pair. It claims that overflow streams, i.e., flows directed to two-link paths, underdar can be

modeled as if they arise from proportional routing, with proportions depending on the blocking rates of links. But

it also cautions that the approximation procedure used in the analysis could break down if the overflow is large and

needs to be spread over a number of alternatives. This is precisely the case with networks like Internet that may have

more than one minhop path and many alternative paths betweeneach source-destination pair.

5.2 Learning Automata based Routing

An application of automata to the routing problem is given byNarendra and Mars [24]. The incoming flows are

offered to a pathr according to a probability distributionpr, which is updated using feedback information regarding

flow admission or rejection. These schemes reward a path on which a flow is successful and punish a path on which

a flow fails. If a routei is chosen at timen and the flow is successful, then updating ispi(n+ 1) = pi(n) + a(1� pi(n))pj(n+ 1) = (1� a)pj(n) j 6= i
while if the flow fails pi(n+ 1) = (1� �)pi(n))
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pj(n+ 1) = �r � 1 + (1� �)pj(n) j 6= i
wherea and� are adjustable parameters,0 < a < 1, 0 < � < 1 with � small compared witha, anda is itself

usually small, so that the updating is gradual. Under certain assumptions [23, 36] show thatLR��P automata tends

to approximately equalize blocking probabilities,br, whileLR�P automata for which� = a in the above equalizes

blocking rates (prbr). One problem with these schemes is that no account is taken of the length of the path.

5.3 Comparison withpsr

The above schemes are compared with thepsr scheme by simulating them and observing their performance under

different settings. The parameters� anda in LR��P , were set to0:01 and0:02 respectively. Similarly forLR��P the

settings were� = a = 0:01. Table 2 compares the overall blocking under these schemes for different topologies and

load conditions. The capacities of all bottleneck links areset to20 except in one case where
2 = 10 and
3 = 5. It

can be seen that in all casespsr performs better than the other schemes.

6 Conclusions and Future Work

This paper focused onlocalizedQoS routing schemes where the edge routers make routing decisions using only

“local” information. Such an approach to proportional routing has several advantages: minimal communication

overhead, no processing overhead at core routers, and easy deployability. As a first step towards designing a simple

localized scheme, we developedvirtual capacity based routing(vcr), a theoretical scheme based on the notion of

virtual capacityof a route. We then proposedproportional sticky routing(psr), an easily realizable approximation of

vcr and analyzed its performance. We demonstrated through extensive simulations thatpsr scheme is indeed simple,

stable, and adaptive. We have also shown that the proposed scheme is insensitive to the durations of flows and also

that when the link capacities are significantly larger than bandwidth requests of flows,psr scheme can be employed

as isto route heterogeneous flows. We have compared the performance ofpsr with wspand shown thatpsr performs

as well aswspeven at smaller update intervals. In particular, we found thatpsrperforms better thanwspwhen higher

load is offered from fewer sources and when the flows are of shorter duration and smaller bandwidth. We conclude

that thepsr scheme, with low overhead and comparable performance, is a viable alternative to global QoS routing

schemes such aswsp.

The localized approach to proportional routing is simple and has several important advantages. However it has

a limitation that routing is done based solely on the information collected locally. A network node under localized

QoS routing approach can judge the quality of paths only by routing some traffic along them. It would have no

knowledge about the state of the rest of the network. While the proportions for paths are adjusted to reflect the

changing qualities of paths, the candidate path set itself remains static. To ensure that the localized scheme adapts

to varying network conditions, many feasible paths have to be made candidates. It is not possible to preselect a few

good candidate paths statically. Hence it is desirable to supplement localized proportional routing with a mechanism
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k : total number of paths in setRelg .ri : path associated with indexi.wri : weight associated with pathri.nri : number of times pathri was selected.l : run length of the most recently selected path.Wi : wri +wri+1 + � � �+ wrk .Ni : nri + nri+1 + � � �+ nrk .

(a) notation

1. PROCEDURE wrrps()

2. For i = 1; 2; : : : ; k
3. If lWi+1 < wri andWi+1nri � wriNi+1
4. break

5. SetWi+1 = Wi+1 + wri � wri+1
6. SetNi+1 = Ni+1 + nri � nri+1
7. Swap ri andri+1
8. Set l = 0
9. Set nr0 = nr0 + 1; Nr0 = Nr0 + 1;

10. Set l = l + 1
11. Return r0
12. END PROCEDURE

(b) path selection

Figure 19: Thewrrps procedure

that dynamically selects a few good candidate paths. We proposed such a hybrid approach in [28] where a few widest

disjoint paths are selected as candidates based on infrequently globally exchanged link state metrics and flows are

proportioned among these candidate paths based on locally collected path state metrics. We have also extended our

proportional routing approach to provide hierarchical routing across multiple areas in a large network. More details

can be found in [29].

Appendix: Weighted Round Robin Procedure for Path Selection

Given a setRelg of eligible paths and their associated proportionsf�r; r 2 Relgg, wrrpspicks a pathr 2 Relg based

on its weight,wr = �rPs2Relg �s . Instead of using a probabilistic method such as picking a path r with probabilitywr, we opt to employ a deterministic algorithm to ensure that flow proportions are preserved within as small a time

window as possible. This is implemented by using a deterministic sequence of paths which has the property that

the paths are distributed periodically with a frequency which closely approximates the prescribed flow proportions.

This is implemented by generating a sequence of paths that preserves flow proportions within as small a window as

possible. This sequence is generated bywrrps on the fly: for an incoming flow,wrrps generates the next path in the

sequence and routes the flow along the path.

Thewrrps procedure is shown in Figure 19. It keeps track of the number of times each path was selected (nri)
and the run length (l) of the most recently selected path. It maintains an orderedlist of paths and the first path in

the list is selected as long it satisfies both the following constraints: 1) its weight is more than its run length times

the weight of the rest of paths (lW1 < wr0); 2) ratio of number of times it was selected and the number oftimes all

others were selected is less than or equal to the ratio of its weight and weight of the rest of paths (W1nr0 � wr0N1).
Otherwise this path is pushed down the order and the run length is reset to 0. Then it returns the first path in the

list. A samplewrrps generated sequence where the current eligible setRelg has four pathsr1, r2, r3 andr4 with
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weights1=2,1=4,1=8, and1=8 respectively is:r1 r2 r1 r3 r1 r2 r1 r4 r1 r2 r1 r3 . This sequence has the property

that in every window of size2 there is anr1 and anr2 in every window of size4. Similarly oner3 and oner4 in all

windows of size8. Assuming that up to the lastr1 are the paths chosen so far, the next path selected on the fly by

thewrr path selector would ber3. Note also that every time the eligible path setRelg changes, a new sequence is

generated, and flows arriving thereafter are thus routed according to this new sequence.
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