Technical Report

Department of Computer Science
and Engineering
University of Minnesota
4-192 EECS Building
200 Union Street SE
Minneapolis, MN 55455-0159 USA

TR 01-034

Design of Ajanta System for Mobile Agent Programming

Anand Tripathi, Neeran M. Karnik, Tanvir Ahmed, Manish K. Vora,
Mukta Pathak, Arvid Prakash, and Vineet Kakani

November 20, 2001

Design of the Ajanta System for Mobile Agent Programming *

Anand R. Tripathi® t, Neeran M. Karnik!, Tanvir Ahmed?®, Ram D. Singh?®, Arvind Prakash?®, Vineet Kakani?,
Manish K. Vora?, Mukta Pathak?$

2Department of Computer Science, University of Minnesota, Minneapolis, MN 55455, USA

We describe the architecture and programming environment of Ajanta, a Java-based system for programming applica-
tions using mobile agents over the Internet. Agents are mobile objects which are hosted by servers on the network. Ajanta
provides primitives for creating and dispatching agents, securely controlling agents at remote sites, and transferring agents
from one server to another. For secure access to server resources by visiting agents, a proxy-based access control mechanism
is used. The Ajanta design includes mechanisms to protect an agent’s state and prevent misuse of its credentials. We
describe the use of migration patterns for programming an agent’s travel path. A pattern encapsulates the abstract notion of
agent mobility. Pattern composition allows one to build complex travel plans using some basic migration patterns. Finally,
we present agent-based distributed applications implemented using the Ajanta system to demonstrate Ajanta’s functional
capabilities. These include a distributed calendar management system, a middleware for sharing files over the Internet, an
agent-based middleware for distributed collaborations, and an agent-based network monitoring system.

Keywords: Internet programming, Internet agents, mobile agents, mobile code, mobile objects, migration patterns, dis-

tributed computing, security, fault tolerance

1. Introduction

Ajanta® (Tripathi et al. (1999); Karnik and Tripathi
(2000)) is a Java-based framework for programming
mobile agent based applications on the Internet. A
mobile agent is a program which executes in a net-
work and is capable of migrating autonomously from
node to node, performing computations on behalf of
some user. It represents an activity whose execution
state is preserved on migration, and the agent’s exe-
cution resumes with this state after it is transported
to the destination node. The Ajanta system has been
developed to serve as an infrastructure for research
in secure distributed programming using mobile au-
tonomous agents.

The main advantages of the mobile-agent paradigm
lie in its ability to move client code and computation

*This work was partially supported by National Science Foun-
dation grants ANIR 9813703, EIA 9818338, and ITR 0082215
fCorresponding author. E-mail: tripathi@cs.umn.edu

fNow at IBM India Research Lab, New Delhi, India

8 Author’s participation in this project was supported by REU
supplement grant to NSF award ANIR 9813703.

5See http://www.cs.umn.edu/Ajanta for more documentation
and information on the availability of a public domain version
of this system.

to remote server resources, and in permitting increased
asynchrony in client-server interactions (Harrison et al.
(1995)). By moving computation close to the needed
resources, this paradigm can reduce network commu-
nication, thus reducing bandwidth requirements and
latency. Agents can be used for information search-
ing, filtering and retrieval, or for electronic commerce
on the Web, thus acting as personal assistants for their
owners. Agents can also be used in low-level network
maintenance, testing, fault diagnosis, and for dynam-
ically upgrading the capabilities of existing services.
In the early 1980s, the concept of code mobil-
ity was introduced in systems such as Emerald (Jul
et al. (1988)), R2D2 (Vittal (1981)), and Chorus (Ban-
ino (1986)). Emerald supported object mobility in
a homogeneous LAN environment. R2D2 and Cho-
rus demonstrated the concept of active messages that
could migrate in a network environment, carrying code
to be executed at the nodes they visited. The Remote
Evaluation (REV) mechanism (Stamos and Gifford
(1990)), introduced in 1990, allowed a client to send
procedure code and parameters to a server for execu-
tion. In the early 1990s, General Magic developed the
Telescript (White (1995)) language for mobile agent

based network computing. This system was explicitly
designed to embody the agent paradigm. It was fol-
lowed by research systems like Tacoma (Johansen et al.
(1995)) and Agent Tcl (Gray (1996)), which used the
Tecl language to support code mobility.

In order to support an agent based application, a
host has to run a facility that receives visiting agents
— their execution state and program code — and pro-
vides them with an execution environment and ac-
cess to its services. Such facilities are typically called
places or agent servers. Most mobile agent platforms
make use of the mobile code technology, which allows
transportation and execution of program code across
networks of heterogeneous machines; the program ex-
ecution is guaranteed to conform to the prescribed
semantics. The current research interest in mobile
agent technology is largely driven by the emergence
of Java as a universally available mobile code technol-
ogy (Thorn (1997)). In addition to code mobility, Java
also provides a security architecture that helps in con-
structing solutions for the security problems in mobile
agent systems. Aglets (Karjoth et al. (1997)), Voyager
(ObjectSpace (1997)), Concordia (Mitsubishi Electric
(1997)) , Mole (Strafer et al. (1996)), Sumatra (Ran-
ganathan et al. (1997)), and Ara (Peine and Stolp-
mann (1997)) are examples of the first-generation
Java-based mobile agent systems.

Many of these early mobile agent systems demon-
strated the basic utility and functionality of the agent
paradigm. Some of them (or their later versions), and
other subsequently developed systems have addressed
a broader class of issues related to mobility, security,
and robustness. However, the field of mobile agent
programming is still in its early stages of development
due to several challenging obstacles. These need to
be addressed in order to realize the full benefits of
this paradigm through the deployment of a wide range
of agent-based applications. The important problems
pertain to protection of host resources, agent authen-
tication, protection of agent state, support for fault-
tolerance, inter-agent communication, and program
development and debugging support. Currently, no
one system can claim to have a complete set of well-
integrated solutions to these problems. Ajanta is no
exception in this regard. The various research sys-
tems and prototypes developed in the past 5-6 years
have helped the research community in building a bet-
ter understanding of the solutions needed in practical

systems for mobile agent programming,.

This paper presents an overview Ajanta’s system ar-
chitecture and programming model. Ajanta’s design
presents solutions to several of the important prob-
lems in this area:

e Ajanta’s security architecture provides mecha-
nisms for agent servers to grant restricted access
of its resources to visiting agents, based on their
credentials. The access policies can be speci-
fied for both application-level resources (imple-
mented as Java objects) and system-defined re-
sources such as files and network ports.

e It provides primitives to detect tampering of
an agent’s data by a malicious host on its
travel path. It also provides a mechanism us-
ing which an agent can carry with it a tamper-
proof append-only container for collecting data
from various servers it visits. It also provides
mechanisms to prevent attacks involving stolen
credentials.

e Ajanta presents a novel approach of construct-
ing an agent’s itinerary using composable migra-
tion patterns. These patterns include support for
creation of child agents and their synchroniza-
tion using the fork-join construct. A pattern can
include suitable exception handling mechanisms
for user-transparent recovery from exceptions.

e It provides mechanisms for securely controlling
remote agents for recall or termination. More-
over, inter-agent communication using RMT (Re-
mote Method Invocation) is supported by the
Ajanta system. Such communication can also be
authenticated.

e It provides a secure name service which supports
location-independent names.

e Ajanta provides an error recovery model for re-
mote agents. It introduces the concept of a
guardian object for handling a remote agent’s
exceptions.

We first discuss the issues in mobile agent program-
ming systems and then describe how the Ajanta design
addresses these problems. Section 2 presents a discus-
sion of the design issues. Section 3 is an overview

of Ajanta, and summarizes its main components. Sec-
tion 4 describes the computation model and agent pro-
gramming primitives in Ajanta. Section 5 presents
Ajanta’s facilities for programming an agent’s mobility
control using migration patterns. Sections 6 describes
Ajanta’s protection mechanism. We then, in Section 7,
describe four applications that we designed and imple-
mented using Ajanta. Section 8 discuses related work
and Section 9 presents conclusions and directions for
future work.

2. Design Issues in Mobile Agent Systems

A mobile agent programming platform for open dis-
tributed systems requires design choices and solutions
to problems in several areas. We discuss the vari-
ous design options for these issues and outline the
approach taken in the Ajanta design. More detailed
survey of the design issues and challenges for mobile
agent systems are presented in Karnik and Tripathi
(1998); Fuggetta et al. (1998).

2.1. Support for Agent Mobility

Support for agent mobility requires the capture and
transfer of its execution state at the migration point.
In the weak mobility model, the captured state es-
sentially consists of the agent’s program-defined data
structures, whereas in the strong mobility model the
agent’s state is captured at the underlying runtime
level, which includes the execution stack of the agent
thread and its execution state (Fuggetta et al. (1998);
Baumann et al. (1997)). With weak mobility, migra-
tion is possible only at some specific points in the
agent’s code, designated by the programmer. The
strong mobility model allows an agent to be migrated
at any point in its execution. This model is useful
mainly for fault-tolerance or load-balancing. In the
context of Java based systems, support for strong
mobility has required modification to the Java Virtual
Machine (JVM). Ajanta design has adopted the weak
mobility model for two reasons. One is to keep the
Ajanta platform compatible with the standard JVM
distribution. The second reason is that most of the
agent based applications require program-controlled
mobility.

Agent execution at a server requires availability of
its code at that host. For this, one approach is that

all classes required by an agent are transported dur-
ing agent transfer. Once the agent is transferred, no
further remote communication is needed during the
agent’s execution at that server. However, it makes
agent transport heavyweight. The second approach is
to pre-load the classes at a server. The third approach,
which is adopted in Ajanta, is to obtain the agent’s
classes on demand from a designated code-base server
during the agent’s execution. It transfers only those
classes that are needed during execution. This avoids
useless transfer of code, but it imposes a runtime over-
head on agent’s execution and it is not suitable in a
disconnected environment. Though not currently im-
plemented, the first two options are straightforward to
incorporate in the Ajanta design.

2.2. Security and Protection Issues

Service providers need protection mechanisms to en-
force the desired security policies for preventing unau-
thorized or malicious agents from using, destroying or
altering the server’s resources or disrupting its normal
functioning. An agent needs to be authenticated to
verify the ownership of its user, on whose behalf it is
to be granted access to a host’s resources. For this,
an agent needs to carry a set of credentials. In the
Ajanta security architecture, all access control policies
are based solely on the agent’s owner and do not take
code authorship into consideration. This is to keep
the security policies simple and easy to understand.
Mechanisms are needed for an agent server to verify
an agent’s credentials to detect any tampering or re-
play attacks. Based on an agent’s credentials, the ac-
cess control policies of a server determine the agent’s
access to the server resources. Malicious agents could
also cause inordinate consumption of host resources to
mount “denial of service” attacks. To prevent this,
an agent server may also need mechanisms to enforce
policies for resource consumption limits. Moreover,
an agent may itself need to be protected from mali-
cious servers or intermediate nodes on its travel path,
because it may carry sensitive information about the
user it represents. An agent may also need to carry
some confidential information intended only for some
specific hosts on its travel path. One also needs mech-
anisms for preserving the integrity or secrecy of the
information collected by an agent during its visit to
various hosts.

2.3. Naming and Directory Service

A global naming scheme and a name service are
needed for addressing various entities in an agent sys-
tem, such as agent servers, agents, and other global
resources. Because entities such as agents are mobile
in the network, it is desirable to have mechanisms that
allow accessing them in a location transparent man-
ner. The approach taken by the Aglets and Voyager
designs, is to use URLS to address stationary resources
such as servers, and each server creates and manages
the names for the resources it creates, including mo-
bile agents. An application obtains local references
(or proxies) for remote mobile agents by contacting its
creator server, which must be available to respond to
such queries. Such proxies are updated by the runtime
environment when an agent moves. However, this cre-
ates a strong binding between application level names
and network level names and requires a separate di-
rectory service to map various agents, agent-servers,
and resources to URLs. Also, this raises the issue of
performance if there is a large number of proxies in the
network for an agent. On the other hand, the use of
a global naming scheme facilitates ease in sharing of
entities across independently developed applications.
Moreover, a location-independent naming scheme sim-
plifies the programmer’s task significantly, because a
program can be written without regard to the current
location of a mobile entity. Ajanta design uses globally
unique and location-independent names for all entities.
The name service is also used to store key certificates
for all principals, and acts as a trusted third-party in
distributed mutual authentication protocols. It is im-
portant that a global name service operates robustly
and securely. Otherwise, an attacker can cause dam-
age or disrupt an agent’s execution by tampering with
the name service database. It is also important to pro-
tect the name-spaces assigned to various principals in
the system.

2.4. Inter-agent Communication

Inter-agent communication is generally needed in
applications involving multiple collaborating agents.
Communication needs to be supported in the pres-
ence of agent mobility. There are several design
choices: session-based communication or request-
response based communication, where communicating
parties need to know each other; or indirect communi-
cation (also called implicit communication) — not re-

quiring the names of the communication partners —
based on the event publisher /subscriber model, shared
mailboxes or meeting objects (as in Concordia and
Mole), or global shared tuple-spaces based on the
Linda model (Cabri et al. (2000)).

In TCP/IP or RMI based communication, agents
need to know each other’s network addresses in order
to establish communication. Session-oriented schemes
raise the issue of session disruption due to a partici-
pating agent’s migration. In comparison, RMI based
request-reply model throws an exception when a re-
mote invocation fails due to the migration of the server
agent; the client agent only need to re-execute the
lookup and binding protocol to re-establish commu-
nication with the migrated agent at its new location.
This approach is taken by the Ajanta design. How-
ever, it may become hard to establish communication
if the invoked agent moves very frequently. In such
cases, the indirect communication model using station-
ary objects to hold events/messages/tuples is more ap-
propriate. The tuple-space model is suitable for agent
coordination (Cabri et al. (2000)), but not applicable
to bulk data exchange.

Security is an important concern in providing re-
mote communication facilities to visiting agents. Sup-
port for mutual authentication of mobile agents is
a difficult problem, because agents cannot carry
their private keys when executing in foreign domains.
Therefore, one must have a trust model involving the
servers where the agents are currently running. Based
on such trust models, Ajanta provides mechanisms for
authenticated inter-agent communication using RMI.
It also allows agents to establish TCP connections, but
it is the agent programmer’s responsibility to properly
close such connections before requesting migration. It
also allows specification of network access policies to
control an agent’s access to remote hosts and ports.

2.5. Fault Tolerance and Agent Control
Robustness of the system is an important concern
in open and unreliable environments. Generally, fault-
tolerant systems are constructed by providing recovery
mechanisms at two levels. One is to perform system
level error handling and recovery in a manner which
is largely transparent to the application. The mech-
anisms at this level can be based on checkpointing
of an agent computation (Johansen et al. (1999)) or
use of replication and voting schemes such as TMR

(Triple Modular Redundancy). The second level is
to signal error conditions to the application to allow
it to execute application-specific exception handlers.
Ajanta provides mechanisms for application-level ex-
ception handling in mobile agent programs. It allows
the programmer to perform recovery actions for ex-
ceptions that are encountered but not handled by a
remote agent. This facility also helps us in debug-
ging an agent program. An agent programming system
should also provide mechanisms using which a user can
monitor his roaming agents’ status and control them
remotely. For remote control of agents, the Ajanta de-
sign provides to the applications a secure mechanism
for recalling or terminating its remote agents. Aglets
also supports recalling of an agent from a remote lo-
cation. However, it does not enforce any security re-
strictions in executing a recall operation.

3. Overview of the Ajanta System Architecture

Ajanta is implemented using the Java (Gosling
et al. (1996)) language and its security mechanisms
(Fritzinger and Mueller (1996)). It also makes use of
several other facilities provided by Java, such as ob-
ject serialization, reflection, and remote method invo-
cation. Therefore a number of design choices as well
as mechanisms were influenced by Java computation
model and security architecture.

Figure 1 shows a typical Ajanta environment com-
posed of agents, agent-servers, name-registries, and in-
teraction among these entities. The dashed boundaries
represent logical domain introduced by the name reg-
istries. Name registries in different domains interact
with each other using authenticated communication.
An agent can migrate from a server in one domain to
one in a different domain.

3.1. Agent

In Ajanta, we encapsulate the basic functionality
of a mobile agent into the base Agent class. We use
Java’s object serialization facility to implement agent
mobility. Only the application-level state of an ob-
ject is captured on migration. However, object se-
rialization cannot capture the execution state of the
thread (or threads) currently executing that object’s
methods. Thus, when the object is deserialized at the
remote host, a new thread is assigned to execute a
method specified in the migration request.

Figure 2 shows an agent server along with an agent
currently resident on it. An agent’s state consists of
four kinds of items: targeted data, read-only data, an
append-only log, and unprotected data. The details of
the mechanisms for implementing the first three kinds
of data are presented in Karnik and Tripathi (2000).
The targeted state consists of data that should be re-
vealed only to some specific servers, which are put in a
container called TargetedState. Each item is encrypted
with the public key of the target server. The read-only
data is aggregated in a collection called ReadOnlyCon-
tainer, which is signed by the agent’s private key, and
this signature can be verified to detect any tampering.
This object includes some system-defined but agent-
specific data, such as the agent’s credentials object,
and also any application-defined constants. The third
kind of data consists of objects that an agent obtains
from a host to carry back to its home site. The secure
append-only log allows an agent to collect data, i.e.,
“check in” objects into an AppendOnlyContainer from
different servers in a tamper-proof manner. Any tam-
pering or deletion of an item added to this container
can be detected at a later point when the agent ar-
rives at a trusted node. Implementation details can be
found in Karnik and Tripathi (2000). Any other pro-
grammer defined class including the base Agent class
are unprotected data, which can be modified during
the agent’s migration.

An agent in Ajanta always performs actions on be-
half of some authorized user in the system. The owner
of an agent is the human user whom the agent repre-
sents. For each user, the Ajanta system uses two dis-
tinct keys for digital signature and encryption. The
agent is usually created by some application program
— we call this the creator of the agent. Each agent car-
ries with it a credentials object. It contains the names
of the agent, its owner and creator. The owner can
grant to its agent certain privileges or impose any de-
sired restrictions. When an agent executes at a server,
the server grants access privileges to it based on the
permissions contained in its credentials object and its
own security policies. The credentials object includes
the name of a stationary guardian object, which is used
for exception handling. It also contains the hash value
of the ReadOnlyContainer state of the agent, and it
is signed by the agent’s owner (Tripathi and Karnik
(2000)).

Logical Domain X Logical Domain Y

secure secure

NameRegistry UPdaes _ NameRegistry o UPdates Name Registry

Logical Domain Z

’ name registration/

Agent Server A lookup/updates Agent Server D
B N A B
Agent§§ Agent Migraion™ gmtsavﬁf,,,,;f»ﬁ//«, - A
g 9 Agent Migration
Agent Server B I e SN oo - B Agent Server F
===} @ Ty . Current Locaion
Agent J

777777 ---ic @ Previous Locaion

Figure 1. Agents, agent servers, and name registries and their interaction in Ajanta

AGENT

Itinerary Current

AGENT SERVER

Resource Code State
(Methods) Targeted Data

| Secure Log
Proxyl Proxy2 M1 M2 Read-only Data
AccessProtocol Credentials
A host
. i/ J
Agent Environment
Resource Domain Access Agent
R X Control Transfer
Registry Registry List Protocol

Figure 2. The Ajanta Agent Server

3.2. Agent Server

Ajanta provides a generic agent server, which sup-
ports several important functions needed for mo-
bile agent execution. It can be extended to define
application-specific servers. Figure 2 shows the ar-
chitecture of an agent server. At each server, the
agent environment object acts as the interface between
agents and the services provided by that server. When
an agent arrives at a server, an object reference named
host is set to point to the server’s agent environment
object. The agent can invoke primitives provided by
the environment object to request migration, commu-
nication with other agents, or access resources at the

server. The server’s domain registry keeps track of
the agents currently executing on it, and responds to
status queries from their owners. For agents’ owners
and creators, the generic server provides secure mecha-
nisms for agent control and monitoring. A server usu-
ally provides visiting agents with access to application-
defined resources. For this, it implements a proxy-
interposition mechanism. A resource is an object that
acts as an interface to some service or information
available at the host. The server maintains a resource
registry which is used in setting up “safe bindings” be-
tween resources and agents, as described in Section 6.
A server has to explicitly make a resource visible to
visiting agents by inserting it in the resource registry,
using the registerResource primitive. The access
control list enforces a fine grained access control of the
server’s system-level resources such as files, network
ports etc.

The Agent Transfer Protocol (ATP) implements mi-
gration of agents between servers. The interactions be-
tween two agent servers to transfer an agent consist of
two phases. In the first phase, the current server first
sends a request message to the destination server con-
taining the agent’s credentials, agent owner’s signature
for the credentials, a method specification, and some
other parameters controlling the transfer itself — such
as flags indicating whether the transfer should be en-
crypted and signed, size of the agent etc. The destina-
tion server verifies the credentials against the owner’s
signature, thus allowing the destination server to de-
cide whether to permit the transfer based on agents
owner. If the transfer is permitted, a positive acknowl-
edgment is sent to the sender; otherwise, an exception
is sent. On receiving a positive acknowledgment, in

the second phase, the sender sends the serialized agent
object to the destination. When an agent is received,
it creates a secure protection domain for the agent’s
execution.

Two Java mechanisms are used for isolating agents
from each other at a server — thread grouping and
class loading. When an agent arrives at a server, a
new thread group is created; all threads created by
the agent are constrained to be within this group.
Thus at runtime, the actions of an agent can be iden-
tified by the thread group id. Moreover, each execut-
ing agent is assigned a separate Ajanta-defined class-
loader, which is responsible for locating and loading
any classes needed during the agent’s execution. Each
class-loader defines a separate protection domain for
the classes that it loads and prevents an agent from
bringing in any untrusted code for security-sensitive
operations. This class-loader ensures that all trusted
classes are always loaded from the server’s classpath;
only when a class is not found on this classpath, will
the class-loader look for that class at the agent’s code
base server. The code base server is a trusted server
process which has access to all the Java classes that
the agent may require. Usually, an application runs
such a code server as part of an agent server itself.
During agent transfer, a new server thread is created
in this thread group to receive the serialized agent
and deserialize it, and to execute the method speci-
fied in the transfer request. The deserialization of the
agent is done by a bootstrap class, which is loaded
by the Ajanta-defined class-loader. This ensures that
all classes of the arriving agent are loaded by a class-
loader which is distinct from the system class-loader.
As a class-loader is exclusively created for each agent,
classes for all agents are kept under separate name-
spaces.

Once the agent is deserialized, the receiving server
verifies the credentials of the agent. If verified, an ac-
knowledgment is sent to the sender. Otherwise, if an
error (such as a security violation) occurs before the
agent can be activated, an exception is returned in-
stead. On a transfer error, the sending server informs
the agent by raising an exception that its transfer re-
quest failed. On receiving a positive acknowledgment
of transfer completion, the sending server updates the
agent’s location with Ajanta’s name service, and cleans
up its internal data structures to indicate that the
agent is no longer hosted by it. This protocol also

transfers the privilege of updating agent’s location for
this name registry entry from the sending server to the
new server. Moreover, the sending server has to clean
all the temporary resources assigned to the migrated
agent, such as, the entry in the resource registry and
any GUI or RMI runtime thread assigned to the agent.

3.3. Name Service Architecture

The Ajanta name service is designed to support:
(1) location-independent names, (2) services for name
creation and name resolution, (3) protection of name
registry entries, and (4) protection of name-spaces
delegated to different users and entities. Location-
independent naming of all the entities in the system —
such as agents, servers and application-defined global
objects — allows us to transparently access them with-
out requiring any knowledge of their locations. This is
particularly useful for mobile entities such as agents.
Each administrative domain or organization runs a
name service maintaining a registry of the resources,
services, agents and users in its domain. A name ser-
vice maintains information about resources such as
their location and ownership. For each principal (such
as users, servers, agents), it maintains its public keys.
Therefore, the integrity of the name service is critical
for secure operations of the Ajanta environment.

The name-space in Ajanta is structured hierarchi-
cally. Each domain is responsible for creating and
maintaining name-spaces for its users. Users create
names for the servers and agents that execute under
their ownership. Each such entity defines a new name-
space under its owner’s space; for example, an agent
server creates, within its name-space, names for the
agents it launches. Similarly, an agent creates the
names of its child agents in the next level of hierar-
chy. We adopted the Uniform Resource Name (URN)
(Sollins and Masinter (1994)) framework for our nam-
ing scheme. Each name contains the name of the
domain that initialy created it. We refer to this as
the creation domain, which is used in name resolu-
tion. An example of a URN in Ajanta’s name-space
is: wrn:ans:cs.umn.edu/userA/AS. Here ans desig-
nates the Ajanta Namespace Identifier (Moats (1997))
and cs.umn.edu is the creation domain. In this exam-
ple, a URN of the creation domain’s name registry is
urn:ans:cs.umn.edu. Within this domain, userd is a
naming authority, and ASis a unique name, which de-
fines a new name-space. When a new name is created,

the creator and the principal represented by the new
name become the default naming authority for the new
name-space.

Application-level primitives are provided to create
new entries in the name registry or query/update ex-
isting ones. All updates to the name registry database
require authentication, and they are performed only
if permitted by the access-control policies. Ajanta’s
name registry protects its database using an access
control list (ACL) for its entries. The ACL also pro-
tects the name-spaces delegated to different princi-
pals, i.e, the assigned principals are the only ones who
can create names under the name-space. The ACL
is checked against two kinds of permissions: (1) up-
date and (2) create-name. Only the owner of an en-
try is permitted to change the ACL itself. Name reg-
istries in different domains trust each other and coop-
erate for maintaining information about agents that
migrate from one domain to another. Moreover, the
inter-registry interface of the name service supports
authenticated communication. A new domain want-
ing to run a local name service needs to register with
the root name registry in Ajanta to be authorized as
a trusted name registry.

The name resolution procedure in Ajanta first
queries the name registry in its local domain. If that
registry is unable to resolve locally, it queries the reg-
istry in the URN’s creation domain. The creation do-
main name registry maintains the most up-to-date in-
formation for all names created in its domain. When-
ever an object migrates, its creation domain is up-
dated.

Usually mobile agents are created by an agent server
or an application. Upon creation, an agent is given a
URN, which is registered with the local name registry.
Whenever an agent moves, the sending server updates
the agent’s location in the name registry to contain
the new server’s name, and this transfers the update
privilege to the new server. When an agent migrates
from one domain to another, name registries in both
these domains and the creation domain are updated.
A domain other than the creation domain keeps the
entry for a foreign agent as long as it is resident there.
Once it leaves that domain, the entry is deleted. The
creation domain maintains a list of the other domains
where a copy of the entry is currently maintained. It
propagates updates to the name registries in those do-
mains.

4. Agent Programming Model

An agent is created by instantiating a subclass of the
base Agent class. A newly created agent is a passive
object. It is activated by executing its start method,
which is defined by the base agent class. An agent can
itself create and launch child agents to perform parts
of a task concurrently at different hosts.

The agent’s creator launches it to an agent server,
and optionally specifies a method in the agent class
that should be executed. If the method specifica-
tion is omitted, by default the server executes the
(parameter-less) run method. On arrival at a server,
the agent is bound to the server’s environment through
an object reference named host. Using this, an agent
can request various services from its hosting agent
server. These include obtaining access to local re-
sources, registering itself as a resource, or requesting
migration. Agent migration in Ajanta is initiated un-
der program control. Here we describe the migration
mechanism that allows an agent to go from its current
server to another server. Higher-level abstractions for
travel plans, such as the itineraries described in
Section 5, are implemented using the basic migration
primitive described below. An agent invokes the go
method of its host environment object to migrate to
another server. It is defined as follows:

go (URN destinationServer,
MethodSpec action)

The first parameter specifies the name of a destina-
tion server, and the second specifies one of the public
methods of the agent to be executed after migration.
Ajanta uses Java’s reflection API for specifying this.
The method specification consists of the name for one
of the public methods of the agent, the list of its for-
mal parameter types, and the list of actual parameters
to be passed to this method on execution at the des-
tination server. As in the case of initial launch using
the start method, if the method specification is omit-
ted, the run method is invoked. If the agent transfer
completes successfully, the go method never returns
and the thread executing it is terminated. If however
an error occurs during the transfer, an exception is
thrown as a part of Agent Transfer Protocol (ATP),
allowing the agent to handle the error.

The Ajanta computation model supports execution
of entry and ezit actions whenever an agent arrives at a

server or leaves. The application specific entry action
is defined by the arrive method of the agent. When
an agent arrives at a host, it first executes the arrive
method, and then executes the method specified in the
migration request. The arrive method can also per-
form any desired consistency checks for the integrity of
the secure read-only container, and raise an exception
if tampering is detected. It may also execute some re-
source acquisition actions. When the agent finishes its
task at a server, its application specific exit action, de-
fined by the depart method, is executed. The typical
use of this method is to perform any resource release
functions and control the course of the agent by spec-
ifying migration to another host.

The example in Figure 3 shows a mobile web crawler
agent which is derived from the base Agent class.
Once created, this agent is dispatched to an agent
server using the start method with search directives.
The search directives and the search logic for poten-
tial links are abstracted in the Briefcase class and
are not shown. When relocated at that server, the
agent executes the run method, which calls the agent’s
collectData method to find data and potential links
to other servers. The crawler would have terminated
at that server unless there was a migration action in
the depart method, which is the last method executed
by an agent at its current server. This crawler agent
migrates to the next potential server with the method
collectData to be executed there. The constructor
for MethodSpec class requires the name of the method
to be executed and an array of formal parameter types
and actual parameters. The crawler hops to different
servers till the potential links are exhausted and finally
migrates to the finalServer, and executes the method
storeData, which will terminate the agent.

In some situations, the agent may prefer to colocate
itself with another agent or an object/resource that it
needs to access or report to. It can use the colocate
primitive, specifying the URN of the target to colocate
with, and one of the public methods of the target to
be invoked by the agent after colocation.

It may be occasionally necessary to recall an agent,
perhaps because its owner/creator/guardian thinks
the agent has been tampered with, or because it has
received results from another agent sent out to per-
form the same task. At times the owner might have
lost control over the agent, and may even need help
from the hosting server to ship the agent back. All

these primitives are invoked on the server hosting the
agent, which can be determined by querying the name
service. For security reasons, all of these control prim-
itives are authenticated, and are executed only when
invoked by the agent’s owner, creator, or guardian.

The recall method of a server can be invoked through
its RMI interface, to recall an agent hosted at that
server. The host server first authenticates the invoker
of the recall method. If the invoker is either the owner,
creator, or guardian, it sets a status flag in the agent,
directing it to migrate and report to a designated tar-
get object after it has completed its computation at
the current server. On completion of its tasks at the
server, every agent checks its status object for any
pending recall. If a recall command is pending, the
agent invokes the colocate primitive to migrate to
the target object’s server. Once relocated there, the
agent invokes the report method of the target object.

The retract primitive is used to “immediately” bring
back the agent or send it to its guardian or another
target object. The agent is interrupted in whatever
action it may be performing at the current host and
is directed to report to the target immediately. The
terminate primitive allows the caller to kill the agent
immediately. This primitive is useful to terminate all
agents of an aborted application or to stop an agent
that has been compromised. It is possible that a mali-
cious server refuses to cooperate and transfer an agent
back to its guardian or creator node. In this case
the owner or guardian can take a more drastic step
of invalidating the agent by deleting its name from
the name registry. This invalidation prevents the ma-
licious server from forwarding the agent to any other
host.

During its execution, an agent may encounter excep-
tion conditions. Some of these may be anticipated by
the programmer and handled within the agent’s code.
If however, an exception is not handled by the agent,
the server deactivates the agent and transports it to
its guardian with the appropriate status information,
including the exception that caused the agent to fail.
This migration is done using the colocation mechanism
described above.

Every agent also contains an AgentStatus object,
which is a vector containing the status of its execu-
tion at the hosts visited so far. This vector contains
NotificationRecords. These records show whether
the status of the agent is okay. If not, it contains an

public class CrawlerAgent extends Agent

{

10

public Briefcase briefcase; // contains search directives for data

public CrawlerAgent(Credentials credential, Briefcase briefcase) {

super (credential);
this.briefcase = briefcase;

}

public void run() {
collectData();

}

public void collectData() {

// Collect data in the briefcase from this server;

}
public void storeData() {
// Store data from the briefcase in this server;
}
public void depart() {
while (briefcase.hasMoreLinks()) {

go (briefcase.getNextLink(), new MethodSpec("collectData", null, null));

// Agent will never reach this line

}

go (urn:ans:finalServer, new MethodSpec("storeData", null, null));

}

Figure 3. Example of a Mobile Web Crawler Agent

exception that the agent encountered and could not
recover from. A notification record with the appro-
priate exception object is added to the status vector
by the current server when an agent is to be sent to
its guardian for error recovery. The agent invokes the
report method of its guardian, which performs the
necessary recovery actions as a part of the report
method’s execution. The guardian acts as the agent’s
global exception handler. It can inspect the agent’s
state and, if appropriate, modify it and re-launch the
agent. The agent may be restarted with its original
itinerary, or sent back to the host where it encoun-
tered the exception for resumption of its activities.
Two agents located on the same server can utilize
the proxy-based resource access mechanism to com-
municate among themselves. Ajanta’s proxy-based
resource access mechanism is discussed in Section 6.
Colocated agents may also communicate via shared ac-
cess to a resource on their server (e.g. a simple buffer
object for which both agents have proxies). How-
ever, in many applications, agents residing on different
servers may need to communicate or synchronize with

each other. Thus a remotely invocable communica-
tion mechanism is necessary. If an agent is allowed
to present an RMI interface to the outside world, the
agent itself may be granted access to certain resources
by the server and may leak information to unautho-
rized principals via its RMI interface. The proxy in-
terposition concept is used here to control incoming
connections. The incoming connections are authenti-
cated to control the set of principals which have indi-
rect access to a resource. From the server’s security
viewpoint, it is necessary to appropriately control an
agent’s access to the server’s communication resources.
All incoming RMI invocations are thus intercepted by
a proxy object, which passes the RMI call through to
the agent object and relays the results back to the
caller.

An agent wishing to make itself available for remote
invocations by other entities in the system must use
the createRMIProxy primitive of the agent environ-
ment object. The agent specifies the interface that it
intends to support, and requests the server to create
and install an RMI proxy. This method first makes

sure that the server’s security policies allow this agent
to install a proxy object for accepting RMI calls. If
s0, it looks for the corresponding proxy class for that
interface on its classpath and creates a proxy instance
(containing an embedded reference to the agent ob-
ject). Tt then registers the proxy object with the local
RMI registry under the agent’s name. If the proxy
class is not available locally, the createRMIProxy fails
— the agent’s code base is not relied upon to pro-
vide a safe proxy class. Thus the proxy code can be
trusted. When a remote entity wishes to communicate
with such an agent, it first finds the current host server
for the agent by querying the Ajanta name service. It
also obtains the URL for that server’s RMI registry. It
then queries that RMI registry using the agent’s name.
The RMI stub returned by the RMI registry however
points to the agent’s RMI proxy.

5. Itineraries and Patterns for Agent Migra-
tion

Ajanta’s agent programming model allows the sep-
aration of an agent’s migration control from its com-
putation. Complex travel plans can be programmed
by composing them from some commonly occurring
migration patterns A pattern is a description of an ab-
stract migration path for an agent.

An Itinerary allows the agent programmer to cre-
ate a travel plan for the agent. The ItinAgent class
extends the base Agent class and abstracts the agent’s
mobility into an Itinerary, which is a sequence of
migration patterns. An agent executes these patterns
in the given sequence. The Itinerary provides to its
agent a method named next to make a hop to the
next host on the itinerary. This next method is im-
plemented using the go primitive of the server’s agent
environment object.

5.1. Pattern Classes

Figure 4 shows the hierarchy of pattern classes de-
fined by Ajanta. The root of this hierarchy is the ab-
stract class Pattern, shown in Figure 5. Every pat-
tern is associated with an action (specified by the pro-
grammer) that the agent performs at the hosts it vis-
its. Pattern traversal is determined by the abstract
method next. It captures the notion of the next hop
in the migration path of the agent. Each pattern has
its own semantics to determine the next hop.

11

The basic unit of migration is an ItinEntry, which
is a singleton pattern as shown in Figure 6. This class
is derived from the class Pattern. Its implementation
of the next method actually migrates the agent to the
specified host using the go primitive. It specifies the
URN of the destination server to migrate to, and the
action to be performed at that host.

The abstract class PatternCollection represents
an aggregation of patterns. The next method can then
be given different semantics as described below, to de-
rive various patterns. There are several derived classes
of PatternCollection, which define various schemes
for traversing the patterns contained in the aggrega-
tion. The traversal of a Sequence pattern implies a
traversal of the contained patterns in sequential order.
The Selection pattern selects one pattern for traver-
sal from the list using a user-defined choosePattern
method. This choice could depend on the agent’s state
or the availability of hosts to be visited in the pattern.
Given a Set pattern, an agent must traverse all the
contained patterns, but the order of traversal is im-
material. Hence, when the next method is called on
this pattern, it chooses one amongst the list of patterns
not yet traversed.

The Split pattern results in the creation of child
agents for parallel traversal of the patterns contained
in the collection. One child agent is created for each
pattern in the collection. The SplitJoin pattern is
a specialization of Split in which a child agent is re-
quired to synchronize with some object, usually its
parent, after it has completed its task. On complet-
ing its task, a child agent colocates with the object
with which it needs to synchronize. It then invokes
the join method on it, which uses a Synchronizer
object for synchronizing the child agents. In the de-
fault case, the synchronizer is a simple counter im-
plementing a barrier. SplitJoin is an abstract class,
which can be extended by the agent programmer to
define a join policy. Two concrete classes derived from
it are SplitJoinAll and SplitJoinAny. The former
waits for all children to return, whereas the latter waits
only until any one of the child agents returns and ex-
ecutes its join method. A detailed discussion about
Ajanta agent migration patterns, specifically Split and
SplitJoin can be found in Tripathi et al. (1999).

Pattern

T

‘ ItinEntry ‘

/

‘ Sequence H Selection H

Split

|

PatternCollection

SplitJoin

N\

‘ SplitJoinAny ‘

‘ SplitJoinAll ‘

Figure 4. Hierarchy of Patterns

5.2. Pattern Traversal

The agent’s Itinerary encapsulates the travel plan
of the agent as a Sequence pattern. The basic unit
of execution for an agent is the action it performs
at each host. This is its computation, separated
from its migration control. The exit protocol (de-
fined by its depart method), which is executed when
the agent completes its computation task, requests the
Itinerary to choose the next host and migrate to it.

We illustrate this process with the help of an exam-
ple. Figure 7 shows an Itinerary, i.e. a Sequence
SQ1 that contains a Selection (SL1), a Set (ST1)
and an ItinEntry (H). The Selection is a choice
between a Sequence (SQ2) and an ItinEntry (C).
The Set (ST1) consists of the ItinEntrys D, G,
and a Sequence (SQ3). Therefore the actual path
traversed could be < A,B,D,E,.F,G,H > or <
C,E,F,G,D,H > and so on. This example shows
how agent programmers can use these building blocks
to make a complex plan.

When the agent completes its task at one host, it
assigns its Itinerary the task of picking the next host
and migrating to it. This is done by calling the next
method on the Itinerary, which initiates a recursive
call, executing the next method of the Sequence SQ1.
This in turn will call the next method of selection SL.1,
and so on until an ItinEntry is reached whose next
method makes the actual hop using the go primitive.
If migration fails, an exception is thrown, and is passed

12

Key
‘ Class ‘

Abstract
Class

= ||

Itinerary(Sequence SQ1 (

Selection SL1 (
Sequence SQ2 (A, B),
Cc),

Set ST1 (
D,
Sequence SQ3 (E, F),
G),

H)

Figure 7. Building Itineraries using Pattern Composi-
tion

up the recursion chain.

In Ajanta, each pattern must define its own excep-
tion handling mechanism. Consider an example where
exception handling proves useful. An agent may wish
to terminate the pattern it is currently traversing,
since it has already found the information it was look-
ing for. It could throw a TaskCompletedException,
which would allow the Itinerary to terminate the
traversal of the current pattern. For example, in Fig-
ure 7, an agent at host D may wish to terminate the
Set pattern and proceed ahead onto host H. The agent
may also wish to terminate its entire Itinerary and

public abstract class Pattern
implements Cloneable, Serializable {

int status = NOTDONE;
MethodSpec action = null;

protected abstract int next (AgentEnv host)
throws UnknownHostException;

protected abstract void reset();

protected abstract void scan();

Figure 5. Abstract Pattern Class

13

public class ItinEntry extends Pattern {
protected URN hostURN;
public ItinEntry (URN urn, MethodSpec method) {

hostURN = urn; action = method;

protected int next(AgentEnv host)

throws Exception {
if (status == NOTDONE) {
status = DONE;
try {
host.go (hostURN, action);
¥
catch (Exception exception) {
status = FAILED; throw exception;
}
}

return status;

protected void reset () {

status = NOTDONE;

protected void scan () {

// print itin entry object

Figure 6. ItinEntry Class

return to its home site at any given time. Such re-
quirements can be met by implementing appropriate
exception handling within a pattern.

6. Protection Mechanisms

We present here mechanisms for protecting system-
level resources (such as files, threads, and network
ports), application-level resources and services imple-
mented by Java objects at the server, and agent cre-
dentials. An agent’s access to the server’s system-level
resources is controlled using Java Security Manager
mechanism. However, we chose not to burden the
security manager further with extensions for enforc-
ing security policies for application-defined resources.
The main reason for taking this approach is that we
did not want application developers to have to extend
and modify the Ajanta Security Manager, as it can
lead to inadvertent introduction of security loopholes.
Access control to application-defined resources is per-
formed though secure proxy objects. This scheme and
mechanisms to protect agent credentials are described
below.

6.1. Protection of Application-Level Resources
We use the Java security architecture to build a
scheme based on prozy interposition between the re-
source and its client agents for fine-grain (i.e., method-
level) access control. Instead of giving direct access to
a resource, an agent is given a customized proxy for
a resource. The proxy acts like an identity based ca-
pability (Gong (1989)); no other agent can use this
proxy to access the resource. When an agent requests
a resource, an instance of its prozxy class is returned.
Each resource class must implement the
AccessProtocol interface, i.e., a getProxy method
that creates a new instance of its proxy class, cus-
tomized for the requesting agent. A proxy object
contains a private and transient reference to the
resource it represents, and it implements the inter-
face of that resource. Thus, an agent having access
to a proxy cannot directly access or copy the re-
source. A proxy also contains a private array called
enabledMethods, which represents the set of resource
methods that the agent is permitted to invoke. The
agent invokes a method on the proxy object, which
either passes the call through to the resource, or

raises a security exception if the method is disabled.
Each proxy class also provides two privileged methods
enable and disable, which the server can call to
dynamically modify the set of enabled methods.

For security reasons, an agent should be prohib-
ited from bringing any impostor code for the proxy
classes. All proxy classes must be present in the
server’s classpath. If the proxy object could be type-
cast to another type which redeclared the private
reference as public, or bypassed the access control
checks for each method, the agent could gain unau-
thorized access to the resource. In our scheme how-
ever, we enforce the rule that a proxy class has no
ancestors apart from Java’s base Object class. Thus,
the Java virtual machine will not allow the agent to
typecast the proxy instance to any other class. More-
over, a proxy class cannot be cloned. This prevents an
agent from making copies of a proxy to circumvent any
quota or accounting-related restrictions embedded in
the proxy. Further details of this mechanism are pre-
sented in Karnik (1998).

In order to gain access to its host server’s local
resources, an agent must invoke the getResource
method of its environment object and supply as its pa-
rameter, the URN of the resource it needs. The server
finds the corresponding object in its resource registry
and makes an “upcall” to the resource’s getProxy
method. The calling agent’s credentials are passed as
a parameter to the getProxy method. The resource
object then creates an appropriately restricted proxy,
and passes back to the agent a reference to this proxy.

This proxy-based approach can be used to incor-
porate resource usage metering and charging mecha-
nisms, as suggested in Neuman (1993). The proxy
mechanism also allows a server to revoke an agent’s
access rights — it can either set to null the embedded
reference to the server resource or it can modify the
vector of enabled methods. One can also embed in a
proxy the identity of the agent to whom the proxy was
granted. This can be used to check that the proxy
methods are executed only by threads belonging to
that agent. Thus the proxy reference is of no use if
passed from one agent to another.

6.2. Protection of System-Level Resources
System-level resources such as files and network

ports are protected using access control lists, which are

specified by the user running an agent server. A vis-

14

iting agent’s access to local files or network resources
(e.g., ports) is controlled by the Ajanta Security Man-
ager. If the agent’s operation is not allowed, a secu-
rity exception is thrown. Access control is based on
user URNs or server URNs under whose ownership
an agent executes. For file access control, permissions
specify read and/or write access and the full path of
the file that a user can access. The network access
control specification consists of the URN of the user,
network resource being allowed to the user and the ac-
cess permissions being granted. The permissions are
specified for connect, listen and/or accept operations,
and they can be positive or negative. The network re-
source consists of a host name (in case of connect or
accept permissions) and either a single port number
or a range of ports. If a server wants to allow more
permissive access to its resources, it can do so by spec-
ifying wildcard users, remote host names and/or port
numbers. Combinations of these wildcards and spe-
cific user names, remote host names and/or port num-
bers give an agent server fine control over its network
resources.

6.3. Protection of Agent Credentials

Here we show how Ajanta protects an agent’s cre-
dentials against theft and impersonation. A malicious
server could attempt to replicate an agent and send
its copies to one or more servers, either to obtain in-
creased resource consumption quota or to launch a
denial-of-service attack. It could also send an agent
that masquerades as another agent belonging to an
authorized user. For this, the attacker extracts the
credentials object from some agent and uses it for
launching a miscreant agent to get unauthorized and
unaccounted access to resources at other unsuspecting
servers.

The first attack in the above list is prevented with
the help of the name service and the agent transfer pro-
tocol (ATP). The name service allows only the current
host or the agent’s creator to change the agent’s loca-
tion information. ATP ensures that the destination
server executes a newly arrived agent only when the
transfer is completed and the name service database
has been updated to reflect this server as its new loca-
tion. This means that only one copy of an agent would
be considered as a valid copy; this is the copy that is
present at the server which is recorded in the name
service as the agent’s current host. ATP would result

in a failure if a malicious server attempts to transfer
an agent more than once.

The second attack is prevented by securely binding
an agent’s credentials with its read-only state. The
credentials object contains the hash value of this read-
only state. The read-only container can be used to
store the agent’s intention. Intuitively, the intention
of an agent is described by its itinerary, i.e. the path
it follows on the network, and the code it executes
at each host on that path. If we assume that an
agent’s itinerary is known in advance of its dispatch,
we can insert a copy of the itinerary into the agent’s
ReadOnlyContainer. Thus, each host visited by the
agent has access to the original itinerary, as intended
by the agent’s creator. The receiving server can check
the current itinerary to ensure that the agent is fol-
lowing the specified path, and that the method to be
executed is as specified originally. Since the code of
the agent is downloaded from a trusted code server,
this ensures that the agent always executes only the
intended method code on a benign agent server. Also,
the agent’s code may impose a further restriction on
the data that a method uses — the data must be stored
either in the ReadOnlyContainer or be part of the
TargetedState for that server. This ensures that any
tampering with the method’s parameters by a previ-
ous host on the agent’s path can be detected, before
the agent is allowed to execute. Thus the credentials
stolen from an agent would have to be used for exactly
the same set of tasks for which the original agent was
created.

7. Mobile Agent Applications using Ajanta

We have developed a number of agent-based appli-
cations using the facilities of the Ajanta system, with
the primary goal of testing and demonstrating its func-
tional capabilities. We now describe four such appli-
cations: a distributed calendar management system, a
middleware system for sharing files over the Internet,
a middleware for constructing distributed collabora-
tion environments from high-level specifications, and
a prototype of a mobile agent based network monitor-
ing system

7.1. A Calendar Management System
The distributed calendar management system uses
agents for scheduling meetings for a group of users.

15

The motivation for developing this application was to
to evaluate and test the Ajanta’s programming model
and experiment with various migration patterns. This
also shows that existing distributed systems can be
implemented using mobile agents. This application is
conceptually simple and yet offers a number of choices
in using different kinds of migration patterns. In this
application, a user maintains his/her personal calendar
of activities. Agents are used to schedule a meeting of
a specified set of users. For this, an agent is launched
to visit each user’s calendar server, determine their
availability for the desired meeting times, find common
available times, and then modify each user’s calendar
appropriately.

Each user runs a CalendarServer, derived from
the base AgentServer class, which keeps a database
recording the appointments for a user. This is made
available to agents via the proxy-based resource access
mechanism. We also incorporated mechanisms for ac-
cess control of calendar entries based on user identi-
ties. We experimented with the Set and the parallel
SplitJoin patterns for agent migration.

7.2. A File Access System

The middleware system for sharing files over the
Internet demonstrates the security capabilities of the
Ajanta system. This middleware system allows users
to securely share files with other users across a net-
work. Each user runs a FileServer, which is an
agent server customized with a FileSystem resource.
This resource provides visiting agents with access to
a user-specified ‘root’ directory on the local file sys-
tem (and to all underlying files and directories). Its
interface includes basic primitives, like fetch, deposit,
transfer, and search, that an agent can invoke. The
user can control which agents have access to the files
using a simple access control list. This is a file placed
in the root directory. When an agent invokes say the
depositFile operation on a file, the access control list
is checked to ensure that an entry in the access control
list allows the agent’s owner to access the specified file
using the depositFile operation. More complex ap-
plications could be built upon this file sharing middle-
ware; e.g. collaborative authoring tools, multimedia
file systems, etc.

We also built a web search facility using this file ac-
cess system. This allows a client to dispatch an agent
to a remote user’s file access server and perform full-

text searches on the files in the user’s web directory.
The file server first constructs an index for the user’s
web directory and stores the index in the shared global
file system. This allows visiting agents to search the
web index of the user with any desired combination
of keywords. The client can also program the agent
to look for only those files which have more than a
specified number of occurrences of the keywords, or
the files that have been recently modified. The search
agent brings back the URLs of the documents that
were found to meet the search specifications. A utility
program at the client side suitably formats the search
result URLs as hypertext links in an HTML document,
which can then be viewed through a browser.

7.3. Agent-Based Secure Distributed Collabo-
rations

Our agent-based middleware for constructing dis-
tributed collaboration environments from high-level
specifications shows that agents can be used transpar-
ently as a general purpose implementation mechanism
for distributed applications, and agents can enforce
security policies in different levels when they encapsu-
late user interface or shared resources. We have con-
ducted some proof-of-concept experiments to investi-
gate the use of mobile agents in implementing collab-
oration environments (Tripathi et al. (2000)). There
are several motivations for this. Mobile agents can be
used to encapsulate application-specific coordination
protocols. Through their use as transportable user-
interface objects in a collaboration, a group coordina-
tor can ensure that the participants follow prescribed
protocols. Moreover, with the use of mobile agents
as user-interface objects, the administrator or coor-
dinator of an environment can dynamically upgrade
its agents installed at participants’ nodes to alter the
collaboration policies. It can also grant and change
appropriate privileges to a member based on his role
in the collaboration. It is possible to exploit the mobil-
ity of a shared object, when implemented as a mobile
agent, by moving it from one participant to another at
various stages of a collaboration. By implementing a
user’s interaction environment in a collaboration as a
collection of mobile agents, it is possible for a user to
physically move to a different node by simply direct-
ing its agents to migrate to that node. Moreover, the
mobile agent paradigm can be exploited to implement
collaboration systems in disconnected environments.

16

This can be achieved as mobile agents can carry along
all the application specific data and code, eliminating
the need for a shared file system.

Our approach (Tripathi et al. (2000)) of construct-
ing a distributed collaboration system is based on an
XML specification in terms of various participants’
roles, access rights based on roles, shared objects, op-
erations, and collaboration constraints. The XML
specification of a collaboration is interfaced with a
generic coordination facility built using the Ajanta
agent execution environment. The collaboration plan
is trimmed on the basis of the user’s role in the collab-
oration life-cycle so that the user does not get parts
of the plan which he will not access. Each user par-
ticipates in the collaboration by executing an agent-
based coordinator on his system. We refer to this
as the User Coordination Interface (UCI). It provides
suitable interfaces to its user to facilitate execution of
operations on the shared objects. A user’s activities
result in transparent creation and launching of coordi-
nation agents to perform operations at remote users’
nodes. The itineraries and activities of these agents
are derived from the coordination specifications given
in the XML plan.

7.4. Agent-Based Network Monitoring System
We implemented a prototype of a mobile agent
based network monitoring system with the motiva-
tion of experimenting with large number of cooper-
ating autonomous agents. It also exercises the secu-
rity mechanisms of Ajanta. Mobile Agents are an in-
herent implementation choice for distributed network
monitoring systems for several reasons. They can up-
date protocols or interfaces of networked components
by encapsulating the new protocols or interfaces and
migrating to the corresponding nodes. Mobile agents
can update administrative policies dynamically and
autonomously to reflect the network changes. More-
over, mobile agents can collaborate following an ad-
ministrative hierarchy among themselves, which pro-
vides a stronger integration among networked tools
and components, and can adapt dynamically with net-
work changes like network partitioning. We imple-
mented a proof-of-concept prototype of a mobile agent
based network monitoring system (see Figure 8).
During startup, agents are launched from manage-
ment stations to all monitored hosts with predefined
policies to monitor certain events. These agents moni-

17

System Management Stations

policy

Launch Agent

Host A ' Host B

Monitor Agents

Monitor Agents Monitor Agents

Host C . HostD

/,—""Event Notifications ..

Migration

Subscriber
Agents

Event Database M anager

Subscriber
Agents

Event Database M anager

Figure 8. Architecture for an Agent-Based Infrastructure for Network Monitoring

tor the log files of the host systems, classifies the events
according to the patterns passed with policies and
alarms management agents when certain conditions
are met. A third type of agents, subscriber agents, can
subscribe events from any number of monitor agents
and are notified when such events occur. The job of
subscriber agents is to correlate events on a group of
machines, for example to detect intrusion, and main-
tain a database of monitored events. Another group of
agents can migrate and co-locate with these hosts peri-
odically to find fingerprints of intrusion. The security
of the agent system itself is of concern for a successful
agent based network monitoring system. Ajanta pro-
vides the facility to properly authenticate the agents,
a core security requirement of an agent based monitor-
ing system. We are in the initial stages of this system
and find that the security of the monitoring system
and agent group coordination are two of the main ar-
eas need further investigation.

8. Related Work

The Ajanta system’s architecture and programming
facilities can be compared and contrasted with the
other mobile agent systems based on the following as-

pects: security mechanisms for protecting hosts and
agents, fault-tolerance mechanisms and remote agent
control, migration primitives, itineraries and high level
programming constructs.

Most of the mobile agent systems, e.g. Tcl-
based Tacoma or Java-based Voyager (ObjectSpace
(1997)), Sumatra (Ranganathan et al. (1997)), and
Mole (Strafler et al. (1996)), do not address security is-
sues. Others attempt to add security mechanisms onto
existing system architectures, resulting in an ad-hoc
integration (Karnik and Tripathi (1998)): e.g. Java-
based Aglets (IBM (2000)) has only limited security
functionality, and a security architecture for this sys-
tem has been proposed later (Karjoth et al. (1997))
but has not been implemented.

Telescript (Tardo and Valente (1996)) uses different
types of permits for access control and for imposing
quotas on resource use. Security mix-in classes can
be used to protect objects from unauthorized modifi-
cation, copying or migration. Among Tcl-based sys-
tems, Agent Tcl supports coarse-grained access control
lists based on host names, and uses PGP for encryp-
tion and authentication. However, these systems do
not have the secure execution environment available

to next generation Java-based mobile agent systems.
In Ara (Peine and Stolpmann (1997)), agent servers
use access control lists (called “allowances”) to impose
restrictions on visiting agents. SOMA (Corradi et al.
(1999)) has used JVM Profiler Interface (JVMPI) to
build APIs for this purpose for metering resource and
necessitates a custom-designed Java virtual machine.
These Java-based systems show that inadequate Java
APIs and JVM’s single application model (Balfanz and
Gong (1998)) puts severe restrictions on implementing
a truly secure mobile agent platform.

Ajanta uses proxies for protecting server resources
from malicious agents with a finer granularity. The
concept of proxies was first developed by Shapiro
(Shapiro (1986)). We use proxies to act as capabilities.
These may include the identity of the client, thus act-
ing as identity-based capabilities (Gong (1989)), and
may also contain accounting information, as suggested
in Neuman (1993). The protection scheme described
in Hagimont and Ismail (1997) has some conceptual
similarities to our approach. In Hagimont and Is-
mail (1997), the restricted interfaces of proxy classes
are statically defined, independently by clients and
servers, and automatically interposed in a client-server
interaction. In contrast, Ajanta supports dynamic def-
inition as well as modification of access privileges as-
signed to an agent through a proxy.

Concordia (Walsh et al. (1998)) and Grasshopper
(Magedanz et al. (2000)) protect an agent’s state only
during transfer by using secure communication chan-
nels and message authentication codes. These sys-
tems do not address the problem of secure collection
of data by an agent from the servers it visits, or pro-
tection of an agent’s credentials from theft or tam-
pering. Sander and Tschudin (Sander and Tschudin
(1998)) attempt to prevent tampering altogether, us-
ing the concept of computing with encrypted functions
and data. The idea is that a remote server can see
and execute the program (i.e., the encrypted function)
without obtaining any relevant information about the
original function. Since the agent owner’s original in-
tention remains unknown, a malicious server cannot
systematically tamper with the agent code. While this
approach is promising, the challenge lies in devising
the encryption transformation for arbitrary functions
that an agent may execute. Hohl (Hohl (1998)) pro-
poses a different approach to protect agents from ma-
licious hosts. Code obfuscation is proposed as a means

18

to create a “blackbox” representation of an agent,

which does not allow one to read or modify the agent’s
code and data easily. The problem of protection of
agent state and code is discussed in the context of the
WASP (Web Agent-based Service Providing) project
(Funfrocken (1999)). The approach presented there is
based on using trusted hardware at remote nodes in
the form of smartcards supporting the Java execution
environment. One obvious limitation of this approach
is the availability of such trusted hardware at remote
nodes. Vigna (Vigna (1998)) proposed protecting mo-
bile agents through tracing, which are secured us-
ing PGP. However, the limitations mentioned (Vigna
(1997)), such as huge trace size, static code, and the
requirements of agents to be single threaded and not to
share memory, impose severe restriction on an agent’s
functionality. The SOMA (Corradi et al. (1999)) de-
sign has investigated two approaches for agent state
protection. One approach requires the agent to visit
a trusted third party after each hop. The second ap-
proach is similar to the append-only container scheme
of Ajanta (Karnik (1998)).

For system level fault-tolerance, a number of mobile
agent platforms provide support for persistence (e.g.,
Aglets, Concordia, Grasshopper); this allows an agent
to deactivate itself and store its state in the stable
storage. This state can be used for system level recov-
ery from crashes and can be easily achieved in Ajanta
as agents are serializable objects. Beyond this facility,
only a couple of systems, Mole and Tacoma have in-
vestigated system level protocols for fault-tolerance in
mobile agent executions. The Mole project has inves-
tigated mechanisms for atomic transactions for mobile
agents, and Tacoma has developed an approach based
on the rear-guard concept, where an agent’s state is
checkpointed at its previously visited servers and used
for failure recovery. However, there is still insuffi-
cient experience with fault-tolerance mechanisms in
this area.

In most systems, there is little support for features
that are required for application level fault-tolerance,
such as agent monitoring and control, failure detec-
tion, and recovery. Aglets is the only other system that
supports recalling of an agent from a remote location.
However, it does not enforce any security restrictions
in executing a recall operation, which makes an Aglets
application vulnerable to attack. No other mobile
agent programming system presents to the program-

mers a clear model for handling exceptions. Ajanta’s
guardian mechanism allows the programmer to per-
form recovery actions from exceptions that are encoun-
tered, but not handled by an agent.

Little attention has been paid to the ease of agent
programming. The concept of itineraries and migra-
tion patterns has been used by other mobile agent sys-
tems such as Mole (Strafiler and Rothermel (1998)),
Aglets (IBM (1998); Aridor and Lange (1998)), and
Concordia (Walsh et al. (1998)). The patterns in
Aglets are described in terms of single hops, and an
itinerary in Concordia is limited to a sequence. Mole
has developed mechanisms that can use different kinds
of migration patterns, similar to our work in Ajanta.
The migration patterns in Ajanta present a higher-
level abstraction in the sense that a pattern can be
recursively composed of several other patterns, simple
or complex. Moreover, these patterns can also encap-
sulate suitable exception handling policies for common
failure conditions.

To address the interoperability of different mobile
agent platforms, and also to support the integration
of this new paradigm with legacy applications us-
ing CORBA, OMG worked on a Mobile Agent Sys-
tem Interoperability Facility (MASIF) specification.
Grasshopper and SOMA are the only systems that
have provided MASIF support. FIPA (Foundation for
Intelligent Physical Agents) (fipa (1998)) has also de-
veloped specifications for external behavior of agents
and interoperability with other agents, non-agent soft-
ware, humans and the physical world. FIPA’s refer-
ence model includes Directory Facilitator, Agent Man-
agement System, and Agent Communication Chan-
nel, which are specific types of agents supporting
agent management and reside on every agent platform.
Grasshopper provides support for FIPA using add-on
stationary agent objects to support these functional-
ities by interfacing with its native facilities. Ajanta
is primarily designed to serve as a research prototype
for investigation of and experimentation with system-
level mechanisms, therefore we have not expended our
limited resources on interoperability support. Ajanta
does not impose restrictions on agents’ external behav-
ior and only provides system level support for agent ex-
ecution. It can interoperate with any agent communi-
cation language. Ajanta’s name service provides func-
tions close to that of a Directory Facilitator, but it does
not provide a yellow-pages service. For agent nam-

19

ing, Ajanta matches FIPA specification which requires
global unique identifiers (GUID) for agents. In Ajanta,
some of the required Agent Management System func-
tionalities are encapsulated in the generic agent server
class. As done by the Grasshopper system, suitable
FTIPA adapters can be added into the Ajanta frame-
work. In regard to security, FIPA specification (fipa
(1998)) is mainly concerned with the management of
certificates. In contrast, the Ajanta design’s focus is on
the development of protection mechanisms to address
various security problems in mobile agent systems, in-
cluding the protection of agent credentials certificates.

Lastly, we would like to mention another parallel
research area, active networking (Tennenhouse et al.
(1997); Alexander et al. (1997)), which has also relied
on the use of mobile code to dynamically program the
functions of network layer components. The problems
addressed there are very similar to those in building a
mobile agent programming infrastructure for open sys-
tems. However, the mobile agent paradigm represents
a more general model and facility for distributed appli-
cations than active network systems whose functions
tend to be mostly confined to network level compo-
nents.

9. Conclusions and Future Work

We have presented here the salient features of the
Ajanta design and the rationale for our design deci-
sions. Its design makes use of many facilities of the
Java language and its runtime environment. Ajanta
is designed to serve as a general-purpose infrastruc-
ture for experimentation in system-level support for
mobile agent programming. Underlying many of the
design decisions adopted in the Ajanta development,
simplicity of mechanisms has been a central consid-
eration. In designing this system, we have mainly
focused on security problems. Building upon Java’s
security model, we provide a confined execution envi-
ronment for each agent, and a secure protocol for mi-
grating agents between servers. The unique features of
Ajanta include a fine-grained dynamic access control
mechanism based on proxy interposition, protection
of agent state from tampering, and protection against
agent impersonation through stolen credentials. We
also demonstrated how abstract migration patterns
can be used to simplify the task of creating complex
agent itineraries by composition. These patterns in-

corporate failure detection and recovery for improved
robustness. Ajanta also provides a secure name service
for location-independent naming of mobile agents.

There are several areas where we are pursuing fur-
ther research using this system. Currently, we are
porting Ajanta to Java 2 platform to provide a uni-
fied view of the security architecture, such as Ajanta’s
principal based access policy specification with Java
2 policy specification. Support for system level
fault-tolerance and application-transparent recovery
mechanisms is being currently investigated. Also,
for application-level exception handling, we presently
have a mechanism based on the guardian concept. We
are investigating applicability of this mechanism for
implementing different approaches to exception han-
dling in mobile agent programs. We are currently
working on extending the agent programming prim-
itives to support group communication operations.
Another area of future work is auditability, i.e., we
need to provide a mechanism to reliably determine
the migration history of an agent. This may be re-
quired by an agent application to determine the level of
trust that can be placed in the agent’s results. Finally,
support for debugging mobile agent programs is fairly
limited in most of today’s platforms. In Ajanta, we
are able to exploit the guardian model for debugging.
More sophisticated tools and approaches are needed in
this area.

We have developed a number of applications using
Ajanta to gain experience with this paradigm and also
to evaluate the capabilities of the Ajanta system. Us-
ing this system, we plan to develop larger-scale appli-
cations to further understand security, robustness, and
stability problems in mobile agent applications.

Ajanta is available to the public for research and ed-
ucational purposes. A public domain alpha version of
this system was released in May 1999, and a beta ver-
sion was released in May 2000. A number of research
groups and individuals have acquired this system. For
further details and information, please see the project
webpage at http://www.cs.umn.edu/Ajanta.

References

Alexander, D. S., Arbaugh, W. A., Keromytis, A. D.,
Smith, J. M., May 1997. A Secure Active Network
Environment Architecture. IEEE Network .

20

Aridor, Y., Lange, D. B., May 1998. Agent Design Pat-
terns: Elements of Agent Application Design. In:
Second International Conference on Autonomous
Agents. pp. 108 — 115.

Balfanz, D., Gong, L., May 1998. Experience with Se-
cure Multi-Processing in Java. In: Proceedings of
ICDCS. pp. 398-405.

Banino, J., 1986. Parallelism and Fault Tolerance in
Chorus. Journal of Systems and Software , 205-211.

Baumann, J., Hohl, F., Rothermel, K., Strafler,
M., August 1997. Mole - Concepts of a Mo-
bile Agent System. Http://www.informatik.uni-
stuttgart.de/ipvr/vs/projekte/mole.html.

Cabri, G., Leonardi, L., Zambonelli, F., February
2000. Mobile-Agent Coordination Models for Inter-
net Applications. IEEE Computer , 82-89.

Corradi, A., Cremonini, M., Montanari, R., Ste-
fanelli, C., 1999. Mobile Agents Integrity and Elec-
tronic Commerce Applications. Information Sys-
tems 24 (6), 519-533.

fipa, 1998. FIPA (Foundation for Intelligent Phys-
ical Agents) 98 specification . Available at URL
http://drogo.cselt.it /fipa/spec/fipa98.

Fritzinger, J. S., Mueller, M., 1996. Java Secu-
rity. Tech. rep., Sun Microsystems, available at
http://www.javasoft.com/security.

Fuggetta, A., Picco, G. P., Vigna, G., May 1998. Un-
derstanding Code Mobility. IEEE Transactions on
Software Engineering 24 (5), 342-361.

Funfrocken, S., October 1999. Protecting Mobile
Web Commerce Agents with Smartcards. In: Pro-
ceedings of the First International Symposium on
Agent Systems and Applications and the Third In-
ternational Symposium on Mobile Agent Systems
(ASA/MA’99). pp. 90-102.

Gong, L., May 1989. A Secure Identity-Based Capabil-
ity System. In: TEEE Symposium on Security and
Privacy. pp. 56—63.

Gosling, J., Joy, B., Steele, G., August 1996. The Java
Language Specification. Addison-Wesley.

Gray, R. S., July 1996. Agent Tcl: A flexible and se-
cure mobile-agent system. In: Proceedings of the
Fourth Annual Tcl/Tk Workshop (TCL 96). pp. 9-
23.

Hagimont, D., Ismail, L., September 1997. A Protec-
tion Scheme for Mobile Agents on Java. In: Pro-
ceedings of the 3rd ACM/IEEE International Con-
ference on Mobile Computing and Networking. pp.
215-222.

Harrison, C. G., Chess, D. M., Kershenbaum,
A., March 1995. Mobile Agents: Are they a
good idea? Tech. rep., IBM Research Division,
T.J.Watson Research Center, available at URL
http://www.research.ibm.com/massdist /mobag.ps.

Hohl, F., 1998. Time Limited Blackbox Security:
Protecting Mobile Agents from Malicious Hosts.
In: Vigna, G. (Ed.), Mobile Agents and Security.
SpringerVerlag, pp. 92-113, lecture Notes in Com-
puter Science 1419.

IBM, 1998. JMT (Java-based Moderator Tem-
plates) Specification - Alpha3. Available at URL
http://www.trl.ibm.co.jp/aglets/jmt.

IBM, 2000. IBM Aglets Workbench Docu-
mentation web page. Available at URL
http://www.trl.ibm.co.jp/aglets.

Johansen, D., Marzullo, K., Schneider, F., Jacobsen,
K., May 1999. NAP: Practical Fault-Tolerant for
Itinerant Computations. In: Proceedings of the 19th
International Conference on Distributed Computing
Systems. pp. 180-189.

Johansen, D., van Renesse, R., Schneider, F. B., May
1995. Operating System Support for Mobile Agents.
In: Proceedings of the fifth IEEE Workshop on Hot
Topics in Operating Systems (HotOS-V). pp. 42-45.

Jul, E., Levy, H., Hutchinson, N., Black, A., Febru-
ary 1988. Fine-Grained Mobility in the Emerald Sys-
tem. ACM Transactions on Computer Systems 6 (1),
109-133.

Karjoth, G., Lange, D., Oshima, M., July-August
1997. A Security Model for Aglets. IEEE Internet
Computing , 68-77.

21

Karnik, N., Tripathi, A., April 2000. A Security Ar-
chitecture for Mobile Agents in Ajanta. In: Proceed-
ings of the 20th IEEE International Conference on
Distributed Computing Systems. pp. 402-409.

Karnik, N. M., October 1998. Security in Mobile Agent
Systems. Ph.D. thesis, University of Minnesota.

Karnik, N. M., Tripathi, A. R., July-September 1998.
Design Issues in Mobile Agent Programming Sys-
tems. IEEE Concurrency 6 (6), 52—61.

Magedanz, T., Baumer, C., Breugst, M.,
Choy, S., 2000. Grasshopper — A Univer-
sal Agent Platform Based on OSF MASIF
and FIPA Standards. Available at URL
http://www.ikv.de/products/grasshopper.

Mitsubishi Electric, April 1997. Concordia: An Infras-
tructure for Collaborating Mobile Agents. In: Pro-
ceedings of the 1st International Workshop on Mo-
bile Agents (MA ’97). pp. 86-97.

Moats, R., May 1997. RFC 2141: TURN Syn-
tax. Available at URL http://www.cis.ohio-
state.edu/htbin/rfc/rfc2141.html.

Neuman, B., May 1993. Proxy-based authorization
and accounting for distributed systems. In: Proceed-
ings of the Thirteenth International Conference on
Distributed Computing Systems. pp. 283-291.

ObjectSpace, July 1997. ObjectSpace Voy-
ager Core Package Technical Overview.
Tech. rep., ObjectSpace, Inc., available at
http://www.objectspace.com/.

Peine, H., Stolpmann, T., April 1997. The Architec-
ture of the Ara Platform for Mobile Agents. In: Pro-
ceedings of the First International Workshop on Mo-
bile Agents (MA’97). Springer Verlag, LNCS #1219,
Berlin, Germany, pp. 50-61.

Ranganathan, M., Acharya, A., Sharma, S., Saltz, J.,
Winter 1997. Network-aware Mobile Programs. In:
Proceedings of USENIX °97.

Sander, T., Tschudin, C. F., June 1998. Protecting
mobile agents against malicious hosts. In: Vigna, G.
(Ed.), Mobile Agents and Security. Springer-Verlag,
Lecture Notes in Computer Science #1419, pp. 44—
60.

Shapiro, M., 1986. Structure and Encapsulation in
Distributed Systems: The Proxy Principle. In: Pro-
ceedings of the 6th International Conference on Dis-
tributed Computing Systems. IEEE, pp. 198-204.

Sollins, K., Masinter, L., December 1994. RFC 1737:
Functional Requirements for Uniform Resource
Names. Available at URL http://www.cis.ohio-
state.edu/htbin/rfc/rfc1737.html.

Stamos, J. W., Gifford, D. K., October 1990. Re-
mote Evaluation. ACM Transactions on Program-
ming Languages and Systems 12 (4), 537-565.

Strafler, M., Baumann, J., Hohl, F., 1996. Mole - A
Java Based Mobile Agent System. In: Proceedings
of the 2nd ECOOP Workshop on Mobile Object Sys-
tems.

Strafler, M., Rothermel, K., 1998. Reliability Con-
cepts for Mobile Agents. International Jour-
nal of Cooperative Information Systems (I1J-
CIS) 7 (4), 355-382, http://www.informatik.uni-
stuttgart.de/ipvr/vs/projekte/mole.html.

Tardo, J., Valente, L., 1996. Mobile Agent Secu-
rity and Telescript. In: Proceedings of COMPCON
Spring '96. IEEE, pp. 58-63.

Tennenhouse, D., Smith, J. M., Sincoskie, W. D.,
Wetherall, D. J., January 1997. A Survey of Active
Network Research. IEEE Communications Maga-
zine 35 (1), 80-86.

Thorn, T., September 1997. Programming Languages
for Mobile Code. ACM Computing Surveys 29 (3),
213-239.

Tripathi, A., Ahmed, T., Kakani, V., Jaman, S.
September 2000. Distributed Collaborations using
Network Mobile Agents. In: Proceedings of the Sec-
ond International Symposium on Agent Systems
and Applications and the Third International Sym-
posium on Mobile Agent Systems (ASA/MA’2000).
pp- 126-137.

Tripathi, A., Karnik, N., June 2000. Delegation of
Privileges to Mobile Agents in Ajanta. In: Proceed-
ings of the First International Conference on Inter-
net Computing (IC’2000). pp. 379-385.

22

Tripathi, A., Karnik, N., Vora, M., Ahmed, T.,
Singh, R., May 1999. Mobile Agent Programming
in Ajanta. In: Proceedings of the 19th International
Conference on Distributed Computing Systems. pp.
190-197.

Vigna, G., June 1997. Protecting Mobile Agents
through Tracing. In: Proc. Third International
Workshop on Mobile Object Systems. Finland.

Vigna, G., June 1998. Cryptographic Traces for Mo-
bile Agents. In: Vigna, G. (Ed.), Mobile Agents and
Security. Vol. 1419 of LNCS. Springer-Verlag, pp.
137-153.

Vittal, J., 1981. Active Message Processing: Messages
as Messengers. In: Uhlig, R. (Ed.), Computer Mes-
sage System. North-Holland, pp. 175-195.

Walsh, T., Paciorek, N., Wong, D., January 1998. Se-
curity and Reliability in Concordia. In: Proceedings
of the 31st Annual Hawaii International Conference
on System Sciences (HICSS31).

White, J. E., October 1995. Mobile Agents. Tech. rep.,
General Magic.

Anand Tripathi Anand Tripathi is a Professor in
the Department of Computer Science & Engineering
at the University of Minnesota. He received his Ph.D.
in Electrical Engineering from the University of Texas
at Austin, in 1980, and B.Tech degree in Electrical
Engineering from IIT Bombay, in 1972. From 1981
through 1984 he was a Senior Principal Research
Scientist at Honeywell. From 1995-97 he served as a
Program Director at the National Science Foundation.
His research interests are in distributed object tech-
nologies, with focus on security and fault-tolerance.

Neeran Karnik Neeran Karnik got his Ph.D. and
M.S. degrees in Computer Science from the University
of Minnesota in 1998 and 1996 respectively. He is
currently with IBM Research at the India Research
Lab, New Delhi. His areas of interest include operat-
ing systems, distributed computing, security, and the
distributed services model for software construction
and delivery.

Tanvir Ahmed Tanvir Ahmed is a Ph.D. candidate
at the University of Minnesota. Currently he is work-
ing on groupware security and coordination policy. He

received his M.S. degree in Computer Science from the
University of Minnesota and B.S. degree in Computer
Science from the University of Mississippi.

Ram Singh Ram Singh did his M.S. (1999) in Com-
puter Science from University of Minnesota and
B.Tech (1997) from IT BHU,India. At present he
is working at Foundry Networks, San Jose. His field
of interest lies in Routing Protocols, Networking, and
Operating Systems.

Arvind Prakash Arvind Prakash has an M.S.
in Computer Science from the University of Min-
nesota(1999). His areas of interest are wireless ap-
plications and operating systems. He is currently at
Microsoft Corp, Redmond.

Vineet Kakani Vineet Kakani is currently employed
by VERITAS Software Corporation. He obtained
his M.S. in Computer Science from the University of
Minnesota in June 2000. His areas of interest are
distributed systems, file systems, and file access pro-
tocols.

Manish K. Vora Manish K. Vora received B.Tech
from IIT Bombay and M.S. in Computer Science from
the University of Minnesota in 1998. At present, he is
working at Laurel Networks.

Mukta Pathak Mukta Pathak recieved her B.S. in
Computer Science from the University of Minnesota,
Twin Cities in May 2000. Her research interests in-
clude distributed systems, computer networks, and
network security.

23

