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1 IntroductionData mining is a process to extract implicit, nontrivial, previously unknown and potentiallyuseful information(such as knowledge rules, constraints, regularities) from data in databases [12,4]. The explosive growth in data and databases used in business management, governmentadministration, and scienti�c data analysis has created a need for tools that can automaticallytransform the processed data into useful information and knowledge. Spatial data mining is aprocess of discovering interesting and useful but implicit spatial patterns. With the huge amountof spatial data obtained from satellite images, medical images, GIS, etc., it is a non-trivial taskfor humans to explore spatial data in detail. Spatial data sets and patterns are abundant inmany application domains related to NASA, National Imagery and Mapping Agency(NIMA),National Cancer Institute(NCI), and the Unite States Department of Transportation(USDOT).Data Mining tasks can be classi�ed into four general categories: (a) dependency detection(e.g. association rules) (b) class identi�cation (e.g. classi�cation, clustering) (c) class descrip-tion (e.g. concept generalization), and (d) exception/outlier detection [9]. The objective of the�rst three categories is to identify patterns or rules from a signi�cant portion of a data set.On the other hand, the outlier detection problem focuses on the identi�cation of a very smallsubset of data objects often viewed as noise, errors, exceptions, or deviation. Outliers havebeen informally de�ned as observations which appear to be inconsistent with the remainder ofthat set of data [2], or deviate so much from other observations as to arouse suspicions thatit was generated by a di�erent mechanism [6]. The identi�cation of outliers can lead to thediscovery of unexpected knowledge and has a number of practical applications in areas such ascredit card fraud, athlete performance analysis, voting irregularity, bankruptcy, and weatherprediction.Outliers in a spatial data set can be classi�ed into three categories: set-based outliers,multi-dimension space-based outliers, and graph-based outliers. A set-based outlier is a dataobject whose attributes are inconsistent with attribute values of other objects in a given dataset regardless of spatial relationships. Both multi-dimension space-based outliers and graph-based outliers are called spatial outliers, that is, data objects that are signi�cantly di�erent inthe attribute space from the collection of data objects among spatial neighborhoods, however,multi-dimension space-based outliers and graph-based outliers are based on di�erent spatialneighborhood de�nitions. In multi-dimension space-based outlier detection, the de�nition ofspatial neighborhood is based on Euclidean distance, while in graph-based spatial outlier de-tections, the de�nition is based on graph connectivity.Many spatial outlier detection algorithms have been recently proposed; however, spatialoutlier detection remains challenging for some reasons. First, the choice of a neighborhoodis non-trivial. Second,the design of statistical tests for the spatial outliers need to accountfor the distribution of the attribute values at various locations as well as the distribution ofaggregate function of attribute values over the neighborhoods. In addition, the computationcost of determining parameters for a neighborhood-based test can be high due to the possibilityof join computationsIn this paper, we formulate a general framework for detecting outliers in spatial graph datasets, and propose an e�cient graph-based outlier detection algorithm. We provide cost modelsfor outlier detection queries, and compare underlying data storage and clustering methodsthat will facilitate outlier query processing. We also use our basic algorithm to detect spatial1



and temporal outliers in a Minneapolis-St. Paul(Twin-Cities) tra�c data set, and show thecorrectness and e�ectiveness of our approach.1.1 An Illustrative Application Domain: Tra�c Data SetIn 1995, the University of Minnesota and the Tra�c Management Center(TMC) Freeway Op-erations group started the development of a database to archive sensor network measurementsfrom the freeway system in the Twin Cities. The sensor network includes about nine hundredstations, each of which contains one to four loop detectors, depending on the number of lanes.Sensors embedded in the freeways and interstate monitor the occupancy and volume of tra�con the road. At regular intervals, this information is sent to the Tra�c Management Centerfor operational purposes, e.g., ramp meter control, as well as research on tra�c modeling andexperiments. Figure 1 shows a map of the stations on the highways within the Twin-Citiesmetropolitan area, where each polygon represents one station. The interstate freeways includeI-35W, I35E, I-94, I-394, I-494, and I-694. The state trunk highways include TH-100, TH-169,TH-212, TH-252, TH-5, TH-55, TH-62, TH-65, and TH-77. I-494 and I-694 together form aring around the Twin-Cities. I-94 passes from East to North-West, while I-35W and I-35E runin a South-North direction. Downtown Minneapolis is located at the intersection of I-94, I-394,and I-35W, and downtown Saint Paul is located at the intersection of I-35E and I-94.
I-35W

Mpls St. Paul
I-94

I-35E
I-694

I-494

I-35W
I-35E

I-35E

I-94

I-94

I-94

TH-10

I-494

I-35W

I-694

I-94

I-394

TH-169

I-35WTH-100

Figure 1: Detector map in station levelFigure 2(a) demonstrates the relationship between a station and its encompassing detectors.For each station, there is one detector installed in each lane. The tra�c ow informationmeasured by each detector can then be aggregated to the station level. Figure 2(b) shows thethree basic data-tables for the tra�c data. The station table stores the geographical locationand some related attributes for each station. The relationship between each detector and itscorresponding station is captured in the detector table. The value table records all the volumeand occupancy information within each 5-minute time slot at each particular station.2
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(b) Three basic tablesFigure 2: Detector-station Relationship and Basic TablesIn this application, each station exhibits both graph and attribute properties. The topolog-ical space is the map, where each station represents a node and the connection between eachstation and its surrounding stations can be represented as an edge. The attribute space foreach station is the tra�c ow information (e.g., volume, occupancy) stored in the value table.In this application, we are interested in discovering the location of stations whose measure-ments are inconsistent with those of their graph-based spatial neighbors and time periods whenthose abnormalities arise. This outlier detection task is� Build a statistical model for a spatial data set� Check whether a speci�c station is an outlier� Check whether stations of a route are outliersWe use three neighborhood de�nitions in this application as shown in Figure 3. First, wede�ne a neighborhood based on the spatial graph connectivity as a spatial graph neighborhood.In Figure 3, (s1; t2) and (s3; t2) are the spatial neighbors of (s2; t2) if s1 and s3 are connectedto s2 in a spatial graph. Second, we de�ne a neighborhood based on time series as a temporalneighborhood. In Figure 3, (s2; t1) and (s2; t3) are the temporal neighbors of (s2; t2) if t1, t2, andt3 are consecutive time slots. In addition, we de�ne a neighborhood based on both space andtime series as a spatial-temporal neighborhood. In Figure 3, (s1; t1), (s1; t2), (s1; t3), (s2; t1),(s2; t3), (s3; t1), (s3; t2), and (s3; t3) are the spatial-temporal neighbors of (s2; t2) if s1 and s3are connected to s2 in a spatial graph, and t1, t2, and t3 are consecutive time slots.1.2 Problem FormulationIn this section, we formally de�ne the spatial outlier detection problem. Given a spatial frame-work S for the underlying spatial graph G, an attribute f over S, and neighborhood relationshipR, we can build a model and statistical tests for spatial outliers based on a spatial graph ac-cording to the given con�dence level threshold. The problem is formally de�ned as follows:Spatial Outlier Detection ProblemGiven:� A spatial graph G = fS;Eg, where S is a spatial framework consisting of locationss1; s2; : : : ; sn and E (E � S � S) is a collection of edges between locations in S.3
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Figure 3: Spatial and Temporal outlier in tra�c data� A neighborhood relationship R � S � S consistent with E� An attribute function f : S ! a set of real numbers� An aggregate function faggr: RN ! a set of real numbers to summarize values ofattribute f over a neighborhood relationship RN � R� Con�dence level threshold �Find: A set O of spatial outliers O = fsi j si 2 S; si is a spatial outliergObjective:� Correctness: outliers identi�ed by a method have signi�cantly di�erentattribute values with those of their neighborhood� E�ciency: to minimize the computation timeConstraints:� Attribute values for di�erent locations in S has a normal distribution� The Size of the data set is much greater than the main memory size� The Range of attribute function f is the set of real numbersThe formulation shows two subtasks in this spatial outlier detection problem: (a) designa statistical model M and test for spatial outliers (b) design an e�cient computation methodto estimate parameters of test, test whether a speci�c spatial location is an outlier, and testwhether spatial locations on a given path are outliers.1.3 Paper Scope and OutlineThis paper focuses on the graph-based spatial outlier detection using a single attribute. Outlierdetection in the multi-dimension space using multiple attributes is outside the scope of thispaper.The rest of the paper is organized as follows. Section 2 reviews related work and discusses ourcontributions. In Section 3, we propose our graph-based spatial outlier detection algorithm anddiscuss its computational complexity. The cost models for di�erent outlier query processing areanalyzed in Section 4. Section 5 presents our experiment design. The experimental observation4



and results are shown in Section 6. We summarize our work in Section 7.2 Related Work and Our ContributionMany outlier detection algorithms [1, 2, 3, 8, 9, 13, 15, 17] have been recently proposed. Asshown in Figure 4, these methods can be broadly classi�ed into two categories, namely set-basedoutlier detection methods and spatial-set-based outlier detection methods. The set-based outlierdetection algorithms [2, 7] consider the statistical distribution of attribute values, ignoring thespatial relationships among items. Numerous outlier detection tests, known as discordancytests [2, 7], have been developed for di�erent circumstances, depending on the data distribution,the number of expected outliers, and the types of expected outliers. The main idea is to �t thedata set to a known standard distribution, and develop a test based on distribution properties.
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Figure 4: Classi�cation of outlier detection methodsSpatial-set-based outlier detection methods consider both attribute values and spatial rela-tionships. They can be further grouped into two categories, namely multi-dimensional metricspace based methods and graph-based methods. The multi-dimensional metric space basedmethods model data sets as collection of points in a multidimensional space, and provide testsbased on concepts such as distance, density, convex-hull depth. We discuss di�erent exampletests now. Knorr and Ng presented the notion of distance-based outliers [8, 9]. For a k dimen-sional data set T with N objects, an object O in T is a DB(p;D)-outlier if at least a fractionp of the objects in T lies greater than distance D from O. Ramaswamy et al. [14] proposeda formulation for distance-based outliers based on the distance of a point from its kth nearestneighbor. After ranking points by the distance to its kth nearest neighbor, the top n pointsare declared as outliers. Breunig et al. [3] introduced the notion of a \local" outlier that the5



outlier-degree of an object is determined by taking into account the clustering structure in abounded neighborhood of the object, e.g., k nearest neighbors. They formally de�ned the out-lier factor to capture this relative degree of isolation or outlierness. Their notions of outliers arebased on the same theoretical foundation as density-based cluster analysis [1]. In computationalgeometry, some depth-based approaches [15, 13] organize data objects in convex hull layers indata space according to peeling depth [13], and outliers are expected to be found from dataobjects with shallow depth value. Conceptually, depth-based outlier detection methods arecapable of processing multidimensional datasets. However, with the best case computationalcomplexity 
(N dk=2e) for computing a convex hull, where N is the number of objects and k isthe dimensionality of the dataset, depth-based outlier detection methods may not be applicablefor high dimensional data sets. Yu et al. [17] introduced an outlier detection approach, calledFindOut, which identi�es outliers by removing clusters from the original data. Its key idea isto apply signal processing techniques to transform the space and �nd the dense regions in thetransformed space. The remaining objects in the non-dense regions are labeled as outliers.Multi-dimensional Euclidean spatial based methods detect outliers in multidimensional dataspace. These approaches have some limitation. First, the multi-dimensional approaches assumethat the data items are embedded in a isometric metric space and do not capture the spatialgraph structure. Consider the application domain of tra�c data analysis. A multi-dimensionalmethod may put a detector station in the neighborhood of another detector even if they wereon opposite sides of highway (e.g., I-35W north bound at exit 230, and I-35W south boundat exit 230), leading to potentially incorrect identi�cation of bad detector. Secondly, they donot exploit apriori information about the statistical distribution of attribute data. Last, theyseldom provide the con�dence measure of the discovered outliers.In this paper, we formulate a general framework for detecting spatial outliers in a spatialdata set with an underlying graph structure. We de�ne a neighborhood-based statistic andvalidate the statistical distribution. We design a statistically correct test for discovering spatialoutliers, and develop a fast algorithm to estimate model parameters, as well as to determinethe results of spatial outlier test on a given item. In addition, we evaluate our method inTwin-Cities tra�c data set and show the e�ectiveness and usefulness of our approach.3 Our Approach: Spatial Outlier Detection AlgorithmIn this section, we list the key design decisions and propose an I/O e�cient algorithm for spatialgraph based outliers.3.1 Choice of Spatial StatisticFor spatial statistics, several parameters should be pre-determined before running the spatialoutlier test. First, the choice of neighborhood, the neighborhood can be selected based on a�xed cardinality or a �xed graph distance or a �xed Euclidean distance. Second, the choice ofneighborhood aggregate function, e.g., mean, variance, and auto-correlation. Third, the choicefor comparing a location with its neighbors, either using just a number or a vector of attributevalues. Finally, the choice of statistic.The statistic we used is S(x) = [f(x) � Ey2N(x)(f(y))], where f(x) is the attribute valuefor a data record x, N(x) is the �xed cardinality set of neighbors of x, and Ey2N(x)(f(y)) is6



the average attribute value for neighbors of x. Statistic S(x) denotes the di�erence of attributevalue of each data object x and the average attribute value of x0s neighbors.3.2 Characterizing the Distribution of the StatisticLemma 1 Spatial Statistic S(x) = [f(x) � Ey2N(x)(f(y))] is normally distributed if attributevalue f(x) is normally distributed.Proof:Given the de�nition of neighborhood, for each data record x, the average attribute valuesEy2N(x)(f(y)) of x0s k neighbors can be calculated. Since attribute values f(x) are normally dis-tributed and an average of normal variables is also normally distributed, the average attributevalues Ey2N(x)(f(y)) over neighborers is also a normal distribution for a �xed cardinality neigh-borhood.Since the attribute value and the average attribute value over neighbors are two normalvariable, the distribution of di�erence S(x) of each data object x and the average attributevalue of x0s neighbors is also normally distributed. �3.3 Test for Outlier DetectionThe test for detecting an outlier can be described as follows. jS(x)��s�s j > �. For each dataobject x with an attribute value f(x), the S(x) is the di�erence of the attribute value of dataobject x and the average attribute value of its neighbors. �s is the mean value of all S(x), and�s is the standard deviation of all S(x). Choice of � depends on speci�ed con�dence interval.For example, a con�dence interval of 95 percent will lead to � � 2.3.4 Computation of Test ParametersWe now propose an I/O e�cient algorithm to calculate the test parameters, e.g., mean and stan-dard deviation for the statistics, as shown in Algorithm 1. The computed mean and standarddeviation can then be used to validate the outlier of the incoming data set.Given an attribute data set V and the connectivity graph G, the TPC algorithm �rstretrieves the neighbor nodes from G for each data object x, then it computes the di�erence ofthe attribute value of x to the average of the attribute values of x0s neighbor nodes. Thesedi�erent values are then stored as a set in the AvgDist Set. Finally, the AvgDist Set is computedto get the distribution value �s and �s. Note that the data object are processed on a page basisto reduce redundant I/O. In other words, all the nodes within the same disk page are processedbefore retrieving the nodes of the next disk page.3.5 Computation of Test ResultsThe neighborhood aggregate statistics value, e.g., mean and standard deviation, computed inthe TPC algorithm can be used to verify the outlier of an incoming data set. The two veri�cationprocedures are Route Outlier Detection(ROD) and Random Node Veri�cation(RNV). The RODprocedure detects the spatial outliers from a user speci�ed route, as shown in Algorithm 2. The7



Test Parameters Computation(TPC) AlgorithmInput: S is the multidimensional attribute space;D is the attribute data set in S;F is the distance function in S;ND is the depth of neighbor;G = (D;E) is the spatial graph;Output: (�s,�s).for(i=1;i � jDj ;i++)fOi=Get One Object(i,D); /* Select each object from D */NNS=Find Neighbor Nodes Set(Oi,ND,G);/* Find neighbor nodes of Oi from G */Accum Dist=0;for(j=1;j� jNSSj;j++)fOk=Get One Object(j,NNS); /* Select each object from NNS */Accum Dist += F (Oi; Ok; S)gAvg Dist = Accum Dist / jNNSj;Add Element(AvgDist Set,i); /* Add the element to AvgDist Set */g�s = Get Mean(AvgDist Set); /* Compute Mean */�s = Get Standard Dev(AvgDist Set); /* Compute Standard Deviation */return (�s,�s). Algorithm 1: Pseudo-code for test parameters computationRNV procedure check the outlierness from a set of randomly generated nodes. The step to detectoutliers in both ROD and RNV are similar, except that the RNV has no shared data access needsacross tests for di�erent nodes. The I/Os for Find Neighbor Nodes Set() in di�erent iterationare independent of each other in RNV. We note that the operation Find Neighbor Nodes Set()is executed once in each iteration and dominates the I/O cost of the entire algorithm. Thestorage of data set should support I/O e�cient computation of this operation. We discuss thechoice for storage structure and provide experimental comparison in Section 5 and 6.Given a route RN in the data set D with graph structure G, the ROD algorithm �rstretrieves the neighboring nodes from G for each data object x in the route RN , then it computesthe di�erence S(x) between the attribute value of x and the average of attribute values ofx0s neighboring nodes. Each S(x) can then be tested using the spatial outlier detection testjS(x)��s�s j > �. The � is predetermined by the given con�dence interval.The I/O cost of ROD and RNV are also dominated by the I/O cost ofFind Neighbor Nodes Set() operation.4 Analytical Evaluation and Cost ModelsIn this section, we provide simple algebraic cost models for the I/O cost of outlier detectionoperations, using the Connectivity Residue Ratio(CRR) measure of physical page clusteringmethods. The CRR value is de�ned as follows:8



Route Outlier Detection(ROD) AlgorithmInput: S is the multidimensional attribute space;D is the attribute data set in S;F is the distance function in S;ND is the depth of neighbor;G = (D;E) is the spatial graph;CI is the con�dence interval;(�s,�s) are mean and standard deviation calculated in TPC;RN is the set of node in a route;Output: Outlier Set.for(i=1;i � jRN j ;i++)fOi=Get One Object(i,D); /* Select each object from D */NNS=Find Neighbor Nodes Set(Oi,ND,G);/* Find neighbor nodes of Oi from G */Accum Dist=0;for(j=1;j� jNSSj;j++)fOk=Get One Object(j,NNS); /* Select each object from NNS */Accum Dist += F (Oi; Ok; S)gAvgDist = Accum Dist/jNNSj;Tvalue=AvgDist��s�s/*Check the normal distribution table */if( Check Normal Table(Tvalue,CI)== True)fAdd Element(Outlier Set,i); /* Add the element to Outlier Set */ggreturn Outlier Set. Algorithm 2: Pseudo-code for route outlier detectionCRR = Total number of unsplit edgesTotal numbe of edgesThe CRR value is determined by the page clustering method, the data record size, andthe page size. Figure 5 gives an example of CRR value calculation. The blocking factor, i.e.,the number of data records within a page is three, and there are nine data records. The datarecords are clustered into three pages. There are a total of nine edges and six unsplit edges.The CRR value of this graph can be calculated as 6=9 = 0:66.Table 1 lists the symbols used to develop our cost formulas. � is the CRR value. � denotesthe blocking factor, which is the number of data records that can be stored in one memorypage. � is the average number of nodes in the neighbor list of a node. N is the total numberof node in the data set, L is the number of node along a route, and R is the number of nodesrandomly generated by users for spatial outlier veri�cation.
9
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Page AFigure 5: Example of CRRSymbol Meaning� The CRR value� Average blocking factorN Total number of nodesL Number of nodes in a routeR Number of nodes in a random set� Average number of neighbors for each nodeTable 1: Symbols used in Cost Analysis4.1 Cost Modeling for Test Parameters Computation(TPC) AlgorithmThe TPC algorithm is a nest loop index join. Suppose that we use two memory bu�ers, onememory bu�er stores the data object x used in the outer loop and the other memory bu�er isreserved for processing the neighbors of x, we get the following cost function to estimate thenumber number of page accesses.CTPC = N� +N � � � (1� �)The outer loop retrieves all the data records on the page basis, and has an aggregated costof N� . For each node x, on the average, � � � neighbors are in the same page as x, and canbe processed without redundant I/O. Additional data page accesses are needed to retrieve theother (1 � �) � � neighbors, and it takes at most (1 � �) � � data page accesses. Thus theexpected total cost for the inner loop is N � � � (1� �).4.2 Cost Modeling for Route Outlier Detection(ROD) algorithmWe get the following cost function to estimate the number of page accesses with two memorybu�ers for ROD algorithm. One memory bu�er is reserved for processing the node x to beveri�ed, the other is used to process the neighbors of x.CROD = L � (1� �) + L � � � (1� �) = L � (1� �) � (1 + �)For each node x, on the average, its successor node y are in the same page as x withprobability �, and can be processed with no redundant page accesses. The cost to access all thenodes along a route is L� (1��). To process the neighbors of each node, ��� neighbors are inthe same page as x. Additional data page accesses are needed to retrieve the other (1� �) � �10



neighbors, and it takes at most (1� �) � � data page accesses.4.3 Cost Modeling for Random Node Veri�cation(RNV) algorithmWe get the following cost function to estimate the number of page accesses with two memorybu�ers for RNV algorithm. One memory bu�er is reserved for processing the node x to beveri�ed, the other is used to process the neighbors of x.CRNV = R+R � � � (1� �)Since the memory bu�er is assumed to be cleared for each consecutive random node, weneed R page accesses to process all these random nodes. For each node x, � � � neighbors arein the same page as x, and can be processed without extra I/O. Additional data page accessesare needed to retrieve the other (1��)�� neighbors, and it takes at most (1��)�� data pageaccesses. Thus, the expected total cost to process the neighbor of R nodes is R � � � (1� �).5 Experiment DesignIn this section, we describe the layout of our experiments and then illustrate the candidateclustering methods.5.1 Experimental LayoutThe design of our experiments is shown is Figure 6. Using the Twin-Cities Highway ConnectivityGraph(TCHCG), we took data from the TCHCG and physically stored the data set into datapages using di�erent clustering strategies and page sizes. These data pages were then precessedto generate the global distribution or sampling distribution, depending on the size of the datasets.We compared di�erent data page clustering schemes CCAM [16], Z-ordering [11], and Cell-tree [5]. Other parameters of interest were the size of the memory bu�er, the bu�ering strate-gies, the memory block size(page size), and the number of neighbors. The measures of ourexperiments are the CRR values and I/O cost for each outlier detection procedures.
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The experiments are conducted on many graphs. We present the results on a representativegraph, which is a spatial network with 990 nodes that represents the tra�c detector stationsfor a 20-square-mile section of the Twin-Cities area, as shown in Figure 1. This data set isprovided by the Minnesota Dept. of Transportation(MnDot).We used a common record type for all the clustering methods. Each record contains a nodeand its neighbor-list, i.e., a successor-list and a predecessor-list. We also conducted performancecomparisons of I/O cost for outlier-detection query processing.5.2 Candidate Clustering MethodsIn this section we describe the candidate clustering methods used in the experiments.Connectivity-Clustered Access Method(CCAM): CCAM [16] clusters the nodes ofthe graph via graph partitioning, e.g., Metis. Other graph-partitioning methods can also beused as the basis of our scheme. In addition, an auxiliary secondary index is used to supportquery operations. The choice of a secondary index can be tailored to the application. We usedthe B+ tree with Z-order in our experiments, since the benchmark graph was embedded ingraphical space. Other access methods such as the R-tree and Grid File can alternatively becreated on top of the data �le, as secondary indices in CCAM to suit the application.Linear Clustering by Z-order: Z-order [11] utilizes spatial information while imposinga total order on the points. The Z-order of a coordinate (x,y) is computed by interweavingthe bits in the binary representation of the two values. Alternatively, Hilbert ordering may beused. A conventional one-dimensional primary index (e.g. B+-tree) can be used to facilitatesearch.Cell Tree: A Cell tree [5] is a height-balanced tree. Each cell tree node corresponds, notnecessarily to a rectangular box, but to a convex polyhedron. A cell tree restricts polyhedrato partitions of a BSP(Binary Space Partitioning), to avoid overlaps among sibling polyhedra.Each cell-tree node corresponds to one disk space, and the leaf nodes contain all the informationrequired to answer a given search query. The cell-tree can be viewed as a combination of a BSP-and R+-tree, or as a BSP-tree mapped on paged secondary memory.5.3 Candidate Bu�ering StrategiesWe evaluated three bu�ering strategies to replace the page in the memory bu�er. The simplestpage replacement algorithm is First In First Out(FIFO) algorithm. A FIFO replacement al-gorithm marks the time when each page was bought into memory bu�er. When a page mustbe replaced, the oldest page is chosen. The Least Recently Used(LRU) algorithm selects thepage that has not been referenced for the longest period of time for replacement. In con-trast, The Most Recently Used(MRU) algorithm replaces the page which has been just recentlyreferenced.6 Experimental Observations and ResultsIn this section, we illustrate outlier examples detected in the tra�c data set, test the statisticalassumption, present the results of our experiments, and test the e�ectiveness of di�erent page12



clustering methods. To simplify the comparison, the I/O cost represents the number of datapages accessed. This represents the relative performance of the various methods for very largedatabases. For smaller databases, the I/O cost associated with the indices should be measured.We examined the CRR measures in the set of experiments that deals with range outlier detectionqueries.6.1 Outliers DetectedWe tested the e�ectiveness of our algorithm on the Twin-Cities tra�c data set and detectnumerous outliers, as described in the following examples.In Figure 7, the abnormal station(Station 139) was detected whose volume values are sig-ni�cantly inconsistent with the volume values of its neighboring stations 138 and 140. Notethat our basic algorithm detects outlier stations in each time slot, the detected outlier stationsin each time slot are then aggregated to daily basis.
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(b) Outlier Station 139 0 2 4 6 8 10 12 14 16 18 20 22 24
0

20

40

60

80

100

Time

V
o

lu
m

e

Traffic Volume v.s. Time for Station 140 on 1/12 1997

(c) Station 140Figure 7: Outlier station 139 and its neighbor stations on 1/12 1997Figure 8 shows another example of tra�c ow outliers. Figure 8(a) and (b) are the tra�cvolume maps for I-35W North Bound and South Bound, respectively, on 1/21 1997. The X-axisis the 5-minute time slot for the whole day and the Y-axis is the label of the stations installedon the highway, starting from 1 in the north end to 61 in the south end. The abnormal darkline at time slot 177 and the dark rectangle during time slot 100 to 120 on X-axis and betweenstation 29 to 34 on Y-axis can be easily observed from both (a) and (b). This dark line attime slot 177 is an instance of temporal outliers, where the dark rectangle is a spatial-temporaloutlier. Moreover, station 9 in Figure 8(a) exhibits inconsistent tra�c ow compared with itsneighboring stations, and was detected as a spatial outlier.6.2 Testing Statistical AssumptionIn this tra�c data set, the volume values of all stations at one moment are approximately anormal distribution. The histogram of stations on di�erent volumes are shown in Figure 9(a)with a normal probability distribution superimposed. As can be seen in Figure 9(a), the normaldistribution approximates the volume distribution very well. We calculated the interval of13
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(b) I-35W South BoundFigure 8: An example of outlier[�v��; �v+�], [�v�2�; �v+2�], and [�v�3�; �v+3�] where �v and � are the mean and standard deviationof the volume distribution, and the percentages of measurements falling in the three intervalsare equal to 68.27%, 95.45%, and 99.73%, respectively, which �ts well with a normal distributionsince the expected values in a normal distribution are 68%, 95%, and 100%. Moreover, we plotthe normal probability plot in Figure9(b), and it appears linear. Hence the volume values ofall stations at the same time are approximately a normal distribution.Given the de�nition of neighborhood, we then calculate the average volume value ( �vN )around its k neighbors according to topological relationship for each station. Since the volumevalues are normally distributed, the average of the normal variables is also a normal distribution.Since the volume values and the average volume values over neighborhoods are normallydistributed, the di�erence(v � �v) between these volumes and their corresponding average vol-ume values over neighborhoods is also a normal distribution since the di�erence of two randomnormal random variables is always normal, as shown in Figure 9(c). Given the con�dence level100(1-�)%, we can calculate the con�dence interval for the di�erence distribution, i.e., 100(1-�)percentage of di�erence value distribution lies between �z�=2 and z�=2 standard deviation ofthe mean in the sample space. So we can classify the spatial outliers at the given con�dencelevel threshold.6.3 Evaluation of Proposed Cost ModelWe evaluated the I/O cost for di�erent clustering methods for outlier detection procedures,namely, Test Parameters Computation(TPC), Route Outlier Detection(ROD) and RandomNode Veri�cation(RNV). The experiments used Twin-Cities tra�c data with page size 1Kbytes, and two memory bu�ers. Table 2 shows the number of data page accesses for eachprocedure under various clustering methods. The CRR value for each method is also listed inthe table. The cost function for TPC is CTPC = N� + N � � � (1 � �). The cost function forRNV is CRNV = R+R��� (1��). The cost function for ROD is CROD = L� (1��)� (1+�),as described in Section 4.2.As shown in Table 1, CCAM produced the lowest number of data page accesses for the14
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(c) Histogram of volume dif-ference over neighborhoodFigure 9: Veri�cation of normal distribution for tra�c volumes and volume di�erence overneighborsClustering Parameters Computation Random Node Veri�cation Route Outlier Detect � =Method Actual Predicted Actual Predicted Actual Predicted CRRCCAM 628 687 241 246 30 36 0.68CELL 834 919 279 291 45 53 0.53Zord 1263 1269 349 357 78 79 0.31N = 773, L = 38, R = 150, � = 4, � = 2Table 2: The actual I/O cost and predicted cost model for di�erent clustering methodsoutlier detection procedures. This is to be expected, since CCAM generated the highest CRRvalue.6.4 Evaluation of I/O cost for TPC algorithmIn this section, we present the results of our evaluation of the I/O cost and CRR value foralternative clustering methods while computing the test parameters. The parameters of interestare bu�er size, page size, number of neighbor, and neighborhood depth.6.4.1 The E�ect of Bu�eringWe evaluated the e�ect of bu�ering on the performance of the page clustering methods andbu�er replacement strategies. The variable parameters were the number of bu�ers available.Figure 10(a) shows the e�ect of bu�ering on the performance of model construction for variousclustering methods with �xed page size 2K. As can be seen, the performance improves as thenumber of bu�ers increases. The performance ranking for each clustering methods remainsthe same for di�erent bu�er sizes. Figure 10(b) demonstrates the e�ect of di�erent bu�eringstrategies on the number of page accesses. When the bu�er size is small (e.g., 4-8), the LRU15



algorithm has the best performance. As the number of bu�ers increases to greater than 10,both FIFO and LRU have better performance than MRU.
100

120

140

160

180

200

220

240

260

2 4 6 8 10 12 14 16 18 20

N
u

m
b

e
r 

o
f 
p

a
g

e
 a

cc
e

ss
e

s

Number of Buffers

Zord
CELL

CCAM

(a) Page clustering methods 110
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(b) Bu�er replacement strategyFigure 10: E�ect of Bu�ering6.4.2 The e�ect of page size and CRR valueFigures 15 (a) and (b) show the number of data pages accessed and the CRR values respectively,for di�erent page clustering methods, as the page sizes change. The bu�er size is �xed at 32Kbytes. As can be seen, a higher CRR value implies a lower number of data page accesses, aspredicted in the cost model. CCAM outperforms the other competitors for all four page sizes,and CELL has better performance than Z-order clustering.
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(b) CRRFigure 11: E�ect of page size on data page accesses and CRR (bu�er size = 32K)16



6.4.3 The e�ect of neighborhood cardinalityWe evaluated the e�ect of varying the number of neighbors and the depth of neighbors fordi�erent page clustering methods. We �xed the page size at 1K, bu�er size at 4K, and usedthe LRU bu�ering strategy. Figure 12 shows the number of page accesses as the number ofneighbors for each node increases from 2 to 10. CCAM has better performance than Z-order andCELL. The performance ranking for each page clustering method remains the same for di�erentnumbers of neighbors. Figure 12 shows the number of page accesses as the neighborhood depthincreases from 1 to 5. CCAM has better performance than Z-order and CELL for all theneighborhood depths.
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(b) Neighborhood DepthFigure 12: E�ect of neighborhood cardinality on data page accesses (Page size = 1K, Bu�ersize = 4K)6.5 Evaluation of I/O cost for RNV algorithmWe also evaluated the performance for di�erent page clustering methods, page sizes, and bu�ersizes when the user issues a query to verify if a node is an outlier. In this experiment, werandomly generated 150 nodes for veri�cation, and accumulated the total number of pageaccesses. Figure 13(a) shows the e�ect of increasing bu�er size from two to eight, when thepage size is �xed at 1 Kbyte. As can be easily observed, the increase of bu�er number doesnot reduce the number of page accesses, and CCAM has the lowest number of page accesses.Figure 13(b) shows the e�ect of varying page size from 0.5 Kbytes to 2 Kbytes. The number ofpage accesses decreases as we increase the page size, and CCAM outperforms Zord and CELLfor all page sizes.6.6 Evaluation of I/O cost for ROD algorithmWe evaluated the performance for di�erent page clustering methods, page size, and bu�er sizewhen users request an outlier detection along a given route (e.g., I-35W North Bound) on ahighway. 17
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(b) E�ect of page size (Bu�ersize = 4K)Figure 13: E�ect of bu�er size and page size6.6.1 The e�ect of bu�eringFinally, we evaluated the e�ect of bu�ering for the outlier detection along a route. Figure 14shows the number of page accesses as we increase the bu�er number from 2 to 8. As can beseen, the increase of bu�er size does not improve the performance after a certain bu�er size,and CCAM has the best performance.
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Figure 14: E�ect of Bu�ering6.6.2 The e�ect of page size and CRR valueFigures 15 (a) and (b) show the number of data pages accessed and the CRR values respectively,for di�erent page clustering methods, as the page sizes change. The bu�er size is �xed at 418



Kbytes. As can be seen, a higher CRR value implies a lower number of data page accesses, aspredicted in the cost model. CCAM outperforms the other competitors for all three page sizes.Note that the Cell tree has a CRR value of 0 and generates the highest number of page accesseswhen page size is 0.5 Kbytes.
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(b) CRRFigure 15: E�ect of page size on data page accesses and CRR (bu�er size = 32K)7 ConclusionsIn this paper, we focus on detecting outliers in spatial graph data sets. We propose the notionof a neighbor outlier in graph structured data sets, design a fast algorithm to detect outliers,analyze the statistical foundation underlying our approach, provide the cost models for di�erentoutlier detection procedures, and compare the performance of our approach using di�erent dataclustering approaches. In addition, we provide experimental results from the application of ouralgorithm on Twin-Cities tra�c archival to show its e�ectiveness and usefulness.We have evaluated alternative clustering methods for neighbor outlier query processing,including model construction, random node veri�cation, and route outlier detection. Our ex-perimental results show that the CCAM, which achieves the highest CRR, provides the bestoverall performance.8 AcknowledgmentWe are particularly grateful to Professor Vipin Kumar, and our Spatial Database Group members, Weili Wu,Yan Huang, Xiaobin Ma,and Hui Xiong for their helpful comments and valuable discussions. We would also liketo express our thanks to Kim Ko�olt for improving the readability and technical accuracy of this paper.This work is supported in part by USDOT grant on high performance spatial visualization of tra�c data, andis sponsored in part by the Army High Performance Computing Research Center under the auspices of the De-partment of the Army, Army Research Laboratory cooperative agreement number DAAH04-95-2-0003/contractnumber DAAH04-95-C-0008, the content of which does not necessarily reect the position or the policy of the19
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