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Abstract

We present a complete proof for the invariant optimal assignment for consecutive-k-
out-of-(2k+1): G cycle, which was proposed by Zuo and Kao in 1990 with an incomplete
proof, pointed out recently by Jalali, Hawkes, Cui, and Hwang.
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1 Introduction

A cyclic consecutive-k-out-of-n: G system cong(k,n : G) is a cycle of n(> k) components
such that the system works if and only if some & consecutive components all work. Suppose
n components with reliabilities py < pp < -+ < pj,) are all exchangeable. How can
they be assigned to the n positions on the cycle to maximize the reliability of the system?
Kuo, Zhang, and Zuo [2] showed that if & = 2, then the optimal assignment is invariant,
i.e., it depends only on the ordering of reliabilities of the components, but not their value.
Invariant optimal assignment is very important in practice. In fact, in the real world, one
usually know the ranking of reliabilities of components, but not their exact values. For
example, the ages of the components are known and one cannot compute the exact value
of reliability from the age of each component. However, one may rank reliabilities of of
components according to their age by the rule that the older the less reliable. Kuo, Zhang,
and Zuo [2] also showed that for £ > 3 and n > 2k + 1, Conc(k,n : G) has no invariant
optimal assignment. For n < 2k +1, Zuo and Kuo [3] claimed that there exists an invariant

optimal assignment
(P[1), P[3]> Pls)s -+ > Pl6]s Pla)s P[2))-

However, Jalali, Hawkes, Cui, and Hwang [1] found that their proof is incomplete. In this
paper, we give a complete proof for this invariant optimal assignment in case n = 2k + 1.
A similar situation occurred in a line system. A linear consecutive-k-out-of-n: G system
Conyp(k,n : G) can be defined in a similar way to the cyclic system Conc(k,n : G). Kuo,
Zhang, and Zuo [2] presented an invariant optimal assignment for Cong(k,n : G) with
n < 2k. However, the proof is incomplete, too. This was also pointed out by Jalali et al.
[1]. In addition, they gave a complete proof for the line system. It is worth pointing out
that by setting pj1j = -+ = ppapy1-n] = 0, the cycle system Conc(k,2k + 1 : G) becomes
the line system Cony,(k,n : G). Thus, our result yields the result of Jalali et al. [1]. The
cycle case is in general much more difficult than the line case, and our proof adopts a new

approach different from previous attempts.



2 Main Result

In this section, we show the following.

Theorem 1 Conc(k,2k +1: G) has invariant optimal assignment

(p[l}ap[ﬂap[ﬂa T 1p[2k+1}7p[2k}7 U ap[ﬁ}ap[ﬂap[ﬂ)‘

Let p1,pa,- -, porr1 be reliabilities of the 2k + 1 components on the cycle in counter-

clockwise direction. For simplicity of the proof, we first assume that

0<pp <pp<- <ppr < L

Our proof is based on the following representation of the reliability of consecutive-k-

out-of-n: G cycle for n <2k + 1

Lemma 1 The reliability of consecutive-k-out-of-n: G cycle for n < 2k + 1 under assign-

ment C can be represented as

n
R(C) = p1-pnt Z%’pi+1 “ Pitk
i=1

n n
= p1-Pn+t Zpi CPibk—1 — Zpi © o Pitk
i=1 =1
where ¢; = 1 — p; and pp4i = pi.

Proof. The system works if and only if all components work or for some i, the ith component
fails and the (i + 1)st component, ..., the (i + k)th component all work. Since n < 2k + 1,

there exists at most one such 7. Therefore,

n
R(C)=p1-pn+ D qiPit1 - Pitk-
=1

Note that
qiPi+1 " Pi+k = Pi+1 " Pi+k — Pi** Pi+k-

This implies the second representation. O



To prove Theorem 1, it suffices to show that in any optimal assignment,
(pi — pj)(Pic1 — pj4+1) >0 for 1 <i<j<2k+1. (1)
That is, selecting any component to be labeled p;, we always have
(pi — P2k+2-i)(Pit1 — Pak41-4) > 0 for o =1,--- k. (2)

For simplicity of representation, we denote i = 2k 4+ 2 — i. Note that (k+ 1)’ =k + 1 and
(i)' = i. Furthermore, without loss of generality, we assume p; > pys throughout this proof.

Then the condition (2) can be rewritten as
p; >py fori=1,--- k. (3)

We will employ an inductive argument to prove these k£ inequalities in the following ordering:

P > Dpr
Pk > D
p2 > Dpy

Pk—1 > Pk-1Y)

Let C; be the assignment obtained from C by exchanging components ¢ and i’ and C; ; ..., , =
(Cij,.y)z- Let C* be an optimal assignment. We divide this inductive argument into the

following lemmas.

Lemma 2 Under assumption that p1 > py, we must have py > pp and py---pr_1 >

b2 - Ple—1y-
Proof. Consider
0 < R(C*) — R(CT) = (p1 — pv)(p2 Pk — P2+ Pir ) Qh41-

Since p; > py/, we have

P2 PR 2 pac D (4)



Note that
0 < R(C*)— R(Cy)
= (pr — pe)l(@p1 + @pr41)P2 - Pr—1 — (Pr @1+ QuPk1)P2 - P—1y]  (5)

and
(qup1 + o) — (Pra1 + qupks1) = (p1 — p1r) (L — prgr) > 0.

We first claim that py > pgr. In fact, if py---pr1 > pa -+~ pr_1y, then it follows from (5)
that pr > pr; Wpa- - pr1 < py -+ pr_1y, then it follows from (4) that py > pp.

Now, we show that po - pr_1 > por - px_1)y. Note that
0 < R(CY)—R(Cry)

= [(ppx — prow) + Pk — Pr)Pks1 — PrP1(PE — Pe)] (P2 PE—1 — P2 - Pe—1) )k +1

= [(mprar — prow @)@ + (1 — pipv)(Pk — pr )Pky1](P2 - Pr—1 — P2 - Pr—1))-

Moreover, p1qiy —prq1 = p1—p1 > 0 and pg > ppr. Therefore, po -+ -pr1 > po - p_1y. O

To show inductive step, we first prove an equality.

Lemma 3 Suppose m < k/2. Then

omt1 k-1 k
Z (H P—m+it+j — Hp—m+z'+j)
im1 j=0 =0
m-1 i k—i k
= (I pivi) israay)C I 2) 0= C I]  pipj)prsd]
o1 =1 j=it2 kit
m i k—i k
> =T pipi)C IT pi)@r—ivrau—isny)C I pipj)prs
i1 =1 it kit
m k—m k
+qupr - prgeer + ([ oipg)C IT 20— C II  pips)prsa].
7j=1 Jj=m+1 j=k—m+1

Proof. Note that

brpr - Pr+1



and

Thus,

= pup1---Pr+19k + PUPL PP

= pup1-Pr+19k T qeP1rPL - PPk + P PUPL - Pe41PK

m—1 1 k—1i k
= > Hpjp] I ) e—ivraw—is1y)C TI  pipi)prs
=1 j=1 Jj=t+1 J=k—i+2

+

Ms

9 k
prp] (Pi+14(i+1y H i) T pipi)prs

1 J=1+2 J=k—i+1

[

m k
+(II pipsr) H p))C I  pipj )Pk
Jj=1 Jj=m+1 j=k—m+1

b1 Pk —PUP1" " Pk — Pl Pk+1

= qup1 - PkGk+1 — P1UP1 " Pk+1-

2m—+1 k—1 k

Z (H P—m+i+j — H pfm+i+j)

i=1 j=0 j=0
2m—+1

Zq mti—1 Hp m+itj + Z q—m+i+k Hp m+i+j
i=m+2

+;0 m+1 " Pm+k+P1 pk*po pk*pl © Dk+1
m—1 1

Z pipj) (Pir1q(i+1y H P;)
= =1 J=1+2

—_

k

m k—1
Y (CIT P we—isra—isny)C TI  pips)prs
+

i=1 j= j=k—i+2

m k—m

+(IT pipi)C II Pi) +p1-- Pk —prpi - Pk —pr - prpa
j=1 j=m+1

k

m—1 7
> Hpgpy (Pi+14(i+1y H p)—C I pips)prsd]

i=1 j=i+2 j=k—i+1

k—1 k

+Z(1— Hpjpy H P5) (Pk—it19(k—it1y H PP )Pk+1

i=1 j=1 Jj=i+1 j=k—i+2



m m k
+aqupr - praeer + ([ o) C I] p)0—=C II  pips)preal:

7j=1 Jj=m+1 j=k—m+1
Od
Lemma 4 Suppose m < k/2. If
pi>pi’fori:lu"'umak_m+17"'7k (6)
and
k—m k—m
Il »s> II »s (7)
j=m+1 j=m+1
then
Pm+1 > D(m1y
and

Hpg pr

j=m+2 j=m+2
Proof. We first show py, 411 > p(q1)y - For contradiction, suppose py,41 < p(q1) - It follows

from (7) that

k—m k—m
II »> II » (8)
Jj=m+2 Jj=m+2
By Lemma 3,
0 < R(C") = R(Cia)
2m+1 k—1 k—1 k
= Z (Hp7m+i+j Hp m+itj T Hp —m-+i+j) H —m+i+j)
i=1 =0 j=0 j=0 ]:0

2m+1

—Z

k — k
Pm+1
H P—m+i+j — H pfm+i+j) + (H P-m+itj — H p(*m+i+j)’)]
pm—|—1 §=0 §=0 p(m—l—l)’ j=0 3=0

m—1 1 k—1i
= (pm+1r — Py D (T pipi ) [(Pis1 a1y H p)C I »))
i=1 j=1

J=i+2 j=m+2

k—i k
P(it1) 1Gi+1) ( H 20 H pi)][1 = ( H Dipj)Pk+1]
j=i+2 j=m+2 j=k—i+1

k—i

+2 (=T ep)lCIT p)C I P Pritrgge—isny)
=1 7=1

Jj=i+1 Jj=m+2



m k
—( 1T »)C 11 pi)eg—ivryar—iv)IC TI  pipj)pe+s
j=it1 j=m+2 j=k—i+2

H(quUpL - PmPma2 Pk — QDU Pt P(m2) PR ) k1

m k—m k—m k
+(IT pipi)C 1] »i— II )0 —C TI  pipj)pesil}
j=1

j=m+2 j=m+2 j=k-m+1
< 0,

a contradiction. The last inequality holds because it follows from (6) and (8) that every
term in {---} is positive.
Now, we show
e
j=m+2 j=m+2

By Lemma 3, we have

k—m k—m
= pi— I »i)

j=m+2  j=mt2

m—1 1 m+1 k—1i

- (I pipi)l@ivraa+y)CIT 2)C T »y)

i=1 j=1 Jj=i+2 j=k—m+1
m+1 ki k

—(asya+)C I pi)C I el —=C II  pipj)pe+i]
j=it2 j=k—m+1 j=k—i+1

m—+1 k—1

+Y A= TIpiei)C T] P TI  Pi)(Pr—it19e—itry)
i=1 j=1

j=it1 j=k—m+1

mt1 ki k
I 200 I pi)wu—iviya—ic)IC T pipi)prsa
J=itl j—k-m+1 =kt
+(qup1 - Pt 1Pk—mi1 - Pk — Q1P1 - "Pim+1)P(k—m+1) " ° Pk ) Q41
k
+(IT pipi) a1 = pamay) (1= TI  pips)prsal}-
j=1 j=k—m+1

It follows from (6) and py11 > P41y that every term in {---} is positive. Therefore,

k—m k—m
Il riz II »



Lemma 5 Suppose m < k/2. Then

2m+2 k—1 2m+2 k
Z prm+i+]'_ Z Hp7m71+i+j
i=1 =0 i=1 j*O
m i k
Z pip;") (Pit14gi+1y H pl—C TI pipj)pesi]
i=1 j=1 =142 Jj=k—i+1
k—1i k
+Z(1* Hpjpy I »)wr—ivraw—iz1y)C T[]  pipj)prs
=1 7=1 Jj=i+1 J=k—i+2

+q17p1 - PrQkt1
k

m k—m
+(1*HPij')( IT »)C II pipj)pes-
7j=1

Jj=m+1 k—m-+1

Proof. 1t is similar to the proof of Lemma 3.
Lemma 6 Suppose m < k/2. If

p; >pp fori=1,----m+1k—m+1,---k

and
k—m k—m
II »i> II »s
j:m+2 ]:m+2
then
DPk—m > P(k—m)
and
k—m—1 k—m—1
Il »i> II »
j:m+2 ]:m+2

Proof. We first show (11). For contradiction, suppose pg_,, > DPk—m) -

k—m—1 k—m—1
Il vi> II o
j:m+2 ]:m+2



By Lemma 5,

0 < R(C") = R(Cyp)

m i k m—1 k—i
= (pkfm*p(kfm)’){Z(Hpjpj’ p2+1qz+1 H pj)( H pj)
i=1 j=1 =142 j=k—m+1
k—i k
—(P(it1y qit1)( H pi)C II et —C II  pipi okt
J=i+2 j=k—m+1 j=k—i+1
m i k—m—1 k—i
+> (0= TTee)C ITI »)C II 2 @r-ivr1qe—ir1y)
i1 j=1 j=itl  j=k-ma1
k—m—1 k—i k
~(II pC I pi)@@-izryar—is)IC TT  pipsdpra
j=it1 j=k-m+1 j=k—i+2

+(qUP1 - Pk—m-1Pk—m+1 Pk — QDY P(k—m—1)P(k—m+1) " Pk Q1

k—m—1 k—m—1 k

+( = JIpiei)C II »i— II »i)C II »ipi)pisi}
j=1

j=m+1 j=m+1 k—m+41
< 0,

a contradiction.

Now, we prove (12). Consider

0 < R(C")—=R(Cpio.k—m-1)

k—m—1 k—m—1
= (II »— II »»)
j=m+2 Jj=m+2
m i m+1 k—i
D (I pipi)lPisra6+1y)CTT 2)C TT »y)
i=1 j=1 j=i+2 j=k—m
m+1 k—i k
paiydiv)( [T pi)C I eIl =C I pipj)orsd]
j=1+2 j=k—m j=m—i+1
m+1 k—1

m )
+> (=TT eip)l IT »)C IT Pi)(or—is1qg—it1y)
i—1 j=1

j=i+1 j=k—m

m—+1 k—1 k
—(II p)C II pi)oe—isryae—is)lC TI  pipi)pksr
j=itl  j—k-m =k i42
+(qvp1 - Pt 1Pk—m Pk — QP17 "Pm+1)P(k—m) " " “ Pk )Gk+1
k
1[I pipi) ms1Pe—m — Pms1yPo—my) T pipj)PRA1}
j:l k—m+1

10



It follows from (9) and (11) that every term in {---} is positive. Thus, (12) holds. O

By Lemmas 2, 4, and 6, we know that (3) holds. Therefore, Theorem 1 is proved for
0 <ppp <o <Pkt < 1.
Finally, we deal with the case that some equality signs hold in 0 < p;;) < ppg < -+ <

Pk+1] < 1. I ppp = ppg) = -+ = ppag41), then Theorem 1 is trivially true. If there exists i,

1 <4 <2k +1, such that pjj < pj; 1], then for sufficiently small £ > 0, we have
0<pp+e<--<pytie<plp)— 2k+1—d)e < - <ppgpqr—e <L

For them, we already proved the optimality of assignment C* in Theorem 1, that is, for any
assignment C, R(C*) > R(C). Now, we can complete our proof of Theorem 1 by setting

e — 0.

3 Discussion

Zuo and Kuo [3] proved only that R(C*) > R(C?) for any 7. This cannot imply that
R(C*) > R(C) for any assignment C. Thus, their proof is incomplete.

Note that Cong(k,n : G) for n < 2k cannot be induced from Conc(k,2k +1 : G).
Moreover, our inductive argument does not work in cycle system Cong(k,n : G) for n < 2k.

Thus, some additional techniques are required to solve the general case.
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