
A Unified Algorithm for Load-Balancing Adaptive Scientific Simulations

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 00-033

A Unified Algorithm for Load-Balancing Adaptive Scientific

Simulations

Kirk Schloegel, George Karypis, and Vipin Kumar

May 22, 2000

A Uni�ed Algorithm for Load-balancing Adaptive Scienti�cSimulations �Kirk Schloegel and George Karypis and Vipin Kumar(kirk, karypis, kumar) @ cs.umn.eduArmy HPC Research CenterDepartment of Computer Science and EngineeringUniversity of Minnesota,Minneapolis, MN 55455Technical Report: TR 00-033July 27, 2000AbstractAdaptive scienti�c simulations require that periodic repartitioning occur dynamically throughoutthe course of the computation. The repartitionings should be computed so as to minimize both theinter-processor communications incurred during the iterative mesh-based computation and the data re-distribution costs required to balance the load. Recently developed schemes for computing repartitioningsprovide the user with only a limited control of the tradeo�s among these objectives. This paper describesa new Uni�ed Repartitioning Algorithm that can tradeo� one objective for the other dependent upona user-de�ned parameter describing the relative costs of these objectives. We show that the Uni�edRepartitioning Algorithm is able to reduce the precise overheads associated with repartitioning as wellas or better than other repartitioning schemes for a variety of problems, regardless of the relative costs ofperforming inter-processor communication and data redistribution. Our experimental results show thatthis scheme is extremely fast and scalable to large problems.Keywords: Uni�ed Repartitioning Algorithm, Dynamic Graph Partitioning, Multilevel Di�usion,Scratch-remap, Adaptive Mesh Computations1 IntroductionFor large-scale scienti�c simulations, the computational requirements of techniques relying on globally re�nedmeshes become very high, especially as the complexity and size of the problems increase. By locally re�ningand de-re�ning the mesh either to capture
ow-�eld phenomena of interest [1] or to account for variationsin errors [14], adaptive methods make standard computational methods more cost e�ective. The e�cientexecution of such adaptive scienti�c simulations on parallel computers requires a periodic repartitioningof the underlying computational mesh. These repartitionings should minimize both the inter-processorcommunications incurred in the iterative mesh-based computation and the data redistribution costs required�This work was supported by DOE contract number LLNL B347881, by NSF grant CCR-9972519, by Army Research O�cecontracts DA/DAAG55-98-1-0441, by Army High Performance Computing Research Center cooperative agreement numberDAAH04-95-2-0003/contract number DAAH04-95-C-0008, the content of which does not necessarily re
ect the position orthe policy of the government, and no o�cial endorsement should be inferred. Additional support was provided by the IBMPartnership Award, and by the IBM SUR equipment grant. Access to computing facilities was provided by AHPCRC, MinnesotaSupercomputer Institute. Related papers are available via WWW at URL: http://www-users.cs.umn.edu/~karypis1

Compute a New Partitioning

Iterative Mesh-based Computation

Redistribute Data

Mesh Adaptation

Figure 1: A diagram illustrating the execution of adaptive scienti�c simulations on high performance parallel computers.to balance the load. Recently developed schemes for computing repartitionings provide the user with only alimited control of the tradeo�s among these two objectives. This paper describes a new Uni�ed RepartitioningAlgorithm that can tradeo� one objective for the other dependent upon a user-de�ned parameter describingthe relative costs of these objectives.Figure 1 illustrates the steps involved in the execution of adaptive mesh-based simulations on parallel com-puters. Initially, the mesh is distributed among the processors. A number of iterations of the simulationare performed in parallel, after which mesh adaptation occurs. Here, each processor re�nes and de-re�nesits local regions of the mesh resulting in some amount of load imbalance. A new partitioning based on theadapted mesh is computed to re-balance the load, and then the mesh is redistributed among the processors,respectively. The simulation can then continue for another number of iterations until either more meshadaptation is required or the simulation terminates.If we consider each round of executing a number of iterations of the simulation, mesh adaptation, andload-balancing to be an epoch, then the run time of an epoch can be described by(tcomp + f(jEcutj))n+ trepart + g(jVmovej) (1)where n is the number of iterations executed, tcomp is the time to perform the computation for a singleiteration of the simulation, f(jEcutj) is the time to perform the communications required for a single iterationof the simulation, and trepart and g(jVmovej) represent the times required to compute the new partitioningand to redistribute the data accordingly. Here, the inter-processor communication time is described as afunction of the edge-cut of the partitioning and the data redistribution time is described as a function of thetotal amount of data that is required to be moved in order to realize the new partitioning.Adaptive repartitioning a�ects all of the terms in Equation 1. How well the new partitioning is balancedin
uences tcomp. The inter-processor communications time is dependent on the edge-cut of the new par-titioning. The data redistribution time is dependent on the total amount of data that is required tobe moved in order to realize the new partitioning. Recently developed adaptive repartitioning schemes[4, 5, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24] tend to be very fast, especially compared to the timerequired to perform even a single iteration of a typical scienti�c simulation. They also tend to balance thenew partitioning to within a few percent of optimal. Hence, we can ignore both trepart and tcomp1. How-ever, depending on the nature of the application, both f(jEcutj) and g(jVmovej) can seriously a�ect parallel1This is because, in the absence of load imbalance, tcomp will be primarily determined by the domain-speci�c computationand cannot be reduced further. 2

run times and drive down parallel e�ciencies. Therefore, it is critical for adaptive partitioning schemes toattempt to minimize both the edge-cut and the data redistribution when computing the new partitioning.Viewed in this way, adaptive graph partitioning is a multi-objective optimization problem.Two approaches have primarily been taken when designing adaptive graph partitioners. The �rst approachis to focus on minimizing the edge-cut and to minimize the data redistribution only as a secondary objective[11, 12, 16, 17, 20, 21, 22, 23, 24]. A good example of such schemes are scratch-remap repartitioners[11, 17, 20]. These use some type of state-of-the-art graph partitioner to compute a new partitioning fromscratch and then attempt to intelligently remap the subdomain labels to those of the original partitioning inorder to reduce the data redistribution costs. Since a state-of-the-art graph partitioner is used to computethe partitioning, the resulting edge-cut tends to be extremely good. However, since there is no guaranteeas to how similar the new partitioning will be to the original partitioning, data redistribution costs can behigh, even after remapping [2, 17, 18]. A second approach is to focus on minimizing the data redistributioncost and to minimize the edge-cut as a secondary objective [4, 13, 14, 15, 19]. Di�usion-based repartitioners[12, 16, 17, 22, 23, 24] are good examples of this approach. These schemes attempt to perturb the originalpartitioning just enough so as to balance it. This strategy usually leads to low data redistribution costs,especially when the partitioning is only slightly imbalanced. However, it can result in higher edge-cuts thanscratch-remap methods because perturbing a partitioning in this way also tends to adversely a�ect its quality.Both of these approaches to adaptive partitioning have two drawbacks. The �rst is that the two typesof repartitioners allow the user to compute partitionings that focus on minimizing either the edge-cut orthe data redistribution costs, but give the user only a limited ability to control the tradeo�s among theseobjectives. This control is su�cient if the number of iterations that a simulation performs during every epoch(i. e. the value of n in Equation 1) is either very high or very low. However, when n is neither very high norvery low, neither type of scheme precisely minimizes the combined costs of f(jEcutj)n and g(jVmovej). Thesecond disadvantage exists for applications in which n is di�cult to predict or those in which n can changedynamically throughout the course of the computation. As an example, one of the key issues concerning theelastic-plastic soil-structure interaction computations required for earthquake simulation is that the numberof iterations performed during each epoch is both unpredictable and dynamic. Here, zones in the 3D solidmay load (i. e., become plastic) and then unload (become elastic again) so that the extent of the plasticzone is changing. The change can be both slow and rapid. Slow change usually occurs during initial loadingphases, while the later deformation tends to localize in narrow zones rapidly and the rest of the solid unloadsrapidly [6].Recently, Castanos and Savage [2] presented an adaptive repartitioning algorithm that attempts to directlyminimize the communication overheads of adaptive multigrid-based �nite-element computations. Duringeach load-balancing epoch, their algorithm computes a repartitioning of the coarsest mesh of the hierarchyso as to optimize an objective that is similar to Equation 2 (given below). The coarse-mesh repartitioningis then used to partition the entire hierarchy of nested meshes. While this approach addresses the multi-objective nature of the adaptive repartitioning problem, Castanos and Savage's repartitioning algorithm isserial. Therefore, the scheme is suited only for problems in which: (i) the entire mesh re�nement history isretained (eg., multigrid solvers), and (ii) a nested partitioning of the successively �ner meshes is employed(i. e., for each coarse element, the entire hierarchy of corresponding �ner elements belongs to the sameprocessor).Our Contributions In this paper, we present a parallel adaptive repartitioning scheme (called the Uni�edRepartitioning Algorithm) for the dynamic load-balancing of scienti�c simulations that attempts to solve theprecise multi-objective optimization problem. By directly minimizing the combined costs of f(jEcutj)n andg(jVmovej), our scheme is able to tradeo� one objective for the other as required by the speci�c application.Our experimental results show that when inter-processor communication costs are much greater in scalethan data redistribution costs, our scheme obtains results that are similar to those obtained by an optimizedscratch-remap repartitioner and better than those obtained by an optimized di�usion-based repartitioner.When these two costs are of similar scale, our scheme obtains results that are similar to the di�usiverepartitioner and better than the scratch-remap repartitioner. When the cost to perform data redistribution3

G
G

3

O

G4

G

2

1

G

3G

G

O

1G

2G

C
o

ar
se

n
in

g
 P

h
as

e
U

n
co

arsen
in

g
 P

h
ase

Initial Partitioning Phase

Multilevel K-way Partitioning

Figure 2: The three phases of multilevel k-way graph partitioning. During the coarsening phase, the size of the graph issuccessively decreased. During the initial partitioning phase, a k-way partitioning is computed. During the multilevel re�nement(or uncoarsening) phase, the partitioning is successively re�ned as it is projected to the larger graphs. G0 is the input graph,which is the �nest graph. Gi+1 is the next level coarser graph of Gi. G4 is the coarsest graph.is much greater than the cost to perform inter-processor communication, our scheme obtains better resultsthan the di�usive scheme and much better results than the scratch-remap scheme. Finally, our experimentalresults show that our Uni�ed Repartitioning Algorithm is fast and scalable to large problems.2 Uni�ed Repartitioning AlgorithmWe have developed a new parallel Uni�ed Repartitioning Algorithm (URA) for dynamic load-balancingof scienti�c simulations that improves upon the best characteristics of scratch-remap and di�usion-basedrepartitioning schemes. A key parameter used in URA is the Relative Cost Factor (RCF). This parameterdescribes the relative times required for performing the inter-processor communications incurred duringparallel processing and to perform the data redistribution associated with balancing the load. Therefore, itdepends not only on n from Equation 1, but also on the speci�c machine and algorithm used. Using theRCF, it is possible to unify the two minimization objectives of the adaptive graph partitioning problem intothe precise cost function jEcutj + �jVmovej (2)where � is the Relative Cost Factor, jEcutj is the edge-cut of the partitioning, and jVmovej is the total amountof data redistribution. The Uni�ed Repartitioning Algorithm computes a partitioning while attempting todirectly minimize this cost function.The Uni�ed Repartitioning Algorithm is based upon the multilevel paradigm that is illustrated in Figure 2.We next describe its three phases: graph coarsening, initial partitioning, and uncoarsening/re�nement. Inthe graph coarsening phase, coarsening is performed using a purely local variant of heavy-edge matching[7, 16, 17, 24]. That is, vertices may be matched together only if they are in the same subdomain on theoriginal partitioning. This matching scheme has been shown to be e�ective at reducing both edge-cutsand data redistribution costs compared to global matching when the original partitioning is of high quality,although possibly imbalanced [17, 24]. (Note that for the adaptive partitioning problem, we can assumea high quality original partitioning.) Local matching is also inheritly more scalable than global matching[16, 17, 24]. 4

Graph Num of Verts Num of Edges Descriptionauto 448,695 3,314,611 3D mesh of GM Saturnmdual2 988,605 1,947,069 dual of a 3D meshmrng3 4,039,160 8,016,848 dual of a 3D meshTable 1: Characteristics of the graphs used in some of the experiments.Selecting an initial partitioning scheme for an adaptive repartitioner is complicated for a number of reasons.Experimental results [18] have shown that for some types of repartitioning problem instances, scratch-remaprepartitioners tend to obtain better results compared to di�usive repartitioners, while for other types ofproblem instances, di�usive repartitioners tend to do better than scratch-remap repartitioners. Furthermore,the e�ectiveness of each type of scheme is highly dependent on the value of the Relative Cost Factor. Forthese reasons, in the initial partitioning phase of URA, repartitioning is performed on the coarsest graphtwice by alternative methods. That is, optimized variants of scratch-remap and global di�usion [17] areboth used to compute new partitionings. The costs from Equation 2 are then computed for each of theseand the one with the lowest cost is selected. This technique tends to give a very good point from which tostart multilevel re�nement, regardless of the type of repartitioning problem or the value of the Relative CostFactor. Note that the fact that URA computes two initial partitionings does not impact the scalability ofthe algorithm as long as the size of the coarsest graph is suitably small [8].Most adaptive graph partitioning algorithms perform partition re�nement in order to reduce the edge-cutof the new partitioning. Some of these [16, 17] also attempt to reduce the data redistribution cost as atie breaking scheme. (That is, this objective is considered when the gain to the edge-cut that will resultfrom moving a vertex is the same for two or more di�erent subdomains.) However, even with such a tie-breaking scheme, these do not directly reduce the precise cost function described in Equation 2. A re�nementalgorithm that does so, especially one that is applied in the multilevel context, can potentially reduce the costfunction better than current re�nement schemes. The re�nement algorithm employed in the uncoarseningphase of URA attempts to minimize the precise cost function from Equation 2. Except for this importantmodi�cation, the re�nement algorithm used in URA is similar to the parallel adaptive re�nement algorithmdescribed in [17]. Note that since each time a vertex is moved, the cost function can be updated in constanttime using information local to the processor, these two algorithms have the same asymptotic run times.3 Experimental ResultsIn this section, we present experimental results comparing the cost function and run time results of theUni�ed Repartitioning Algorithm with optimized versions of scratch-remap (LMSR) [17] and multileveldi�usion (Wavefront Di�usion) [17] repartitioners.Experimental Setup The experiments presented in this section were conducted on graphs derived from�nite-element computations. These graphs are described in Table 1. For each graph, we modi�ed the vertexand edge weights in order to simulate various types of repartitioning problems. Speci�cally, we constructedfour repartitioning problems for each graph that simulate adaptive computations in which the work imbalanceis distributed globally throughout the mesh. An example of an application in which this might occur is aparticle-in-mesh computation. Here, particles may be located anywhere within the mesh and may be free tomove to any other regions of the mesh. The result is that both the densely and sparsely populated regionsare likely to be distributed globally throughout the mesh. Typically, this type of repartitioning problem iseasier for di�usion-based schemes compared to scratch-remap schemes [17, 18]. We also constructed fourproblems that simulate adaptive mesh computations in which adaptation occurs in localized regions of themesh. An example of this type of problem is a simulation of a helicopter blade. Here, the �nite-element5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

.0
01 .0
1 .1 .5 2 10 10
0

10
00

.0
01 .0
1 .1 .5 2 10 10
0

10
00

.0
01 .0
1 .1 .5 2 10 10
0

10
00

auto mdual2 mrng3

WF LMSR 32-way Results Normalized by URA

Figure 3: The cost function results obtained from the Uni�ed Repartitioning Algorithm (URA) compared to the resultsobtained from optimized multilevel di�usion (WF) and scratch-remap (LMSR) algorithms on 32 processors of a Cray T3E.mesh must be extremely �ne around both the helicopter blade and in the vicinity of the sound vortex thatis created by the blade in order to accurately capture
ow-�eld phenomena of interest. It should be coarserin other regions of the mesh for maximum e�ciency. As the simulation progresses, neither the blade nor thesound vortex remain stationary. Therefore, the new regions of the mesh that these enter need to be re�ned,while those regions that are no longer of key interest should be de-re�ned. In this case, mesh re�nement andde-re�nement are often performed in very localized regions of the mesh. This type of repartitioning problemtends to be easier for scratch-remap schemes than di�usion-based schemes [17, 18].Further experiments were performed on a real problem set from the simulation of a diesel internal combustionengine2. This is a particles-in-cells computation. The mesh consists of 175-thousand mesh elements. At�rst, no fuel particles are present in the combustion chamber. As the computation progresses, fuel particlesare injected into the chamber at a single point and begin to spread out. Thus, they may enter regions of themesh belonging to di�erent processors. Load imbalance occurs as processors are required to track di�erentnumbers of particles.Results on Synthetic Data Sets Figures 3 through 5 show the costs from Equation 2 obtained by theUni�ed Repartitioning Algorithm compared to those obtained by the optimized scratch-remap and multileveldi�usion algorithms, LMSR and Wavefront Di�usion [17], as implemented in ParMeTiS, Version 2.0 [9] on32, 64, and 128 processors of a Cray T3E. Speci�cally, these �gures show three sets of results, one for eachof the graphs described in Table 1. Each set is composed of �fteen pairs of bars. These pairs represent theaveraged results from the eight experiments (simulating global and localized imbalances) that are describedabove. For each pair of bars, the Relative Cost Factor was set to a di�erent value. These values are .001,.002, .01, .02, .1, .25, .5, 1, 2, 4, 10, 50, 100, 500, and 1000. Therefore, for each set of results, minimizingthe edge-cut is the dominate objective for the results on the left, while minimizing the data redistributioncost is the dominate objective for the results on the right. The results in the middle represent varyingtradeo�s between the two objectives. The bars in Figures 3 through 5 give the average costs obtained by theoptimized scratch-remap and multilevel di�usion repartitioners normalized by the average costs obtained byURA. Therefore, a result above the 1.0 index line indicates that the corresponding scheme obtained worseresults on average for Equation 2 than URA.2These test sets were provide by Boris Kaludercic, HPC Product Coordinator, Computational Dynamics Ltd, London,England. 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

.0
01 .0
1 .1 .5 2 10 10
0

10
00

.0
01 .0
1 .1 .5 2 10 10
0

10
00

.0
01 .0
1 .1 .5 2 10 10
0

10
00

auto mdual2 mrng3

WF LMSR 64-way Results Normalized by URA

Figure 4: The cost function results obtained from the Uni�ed Repartitioning Algorithm (URA) compared to the resultsobtained from optimized multilevel di�usion (WF) and scratch-remap (LMSR) algorithms on 64 processors of a Cray T3E.Figures 3 through 5 show that the Uni�ed Repartitioning Algorithm is able to compute partitionings withcomparable or lower costs compared with either of the other two schemes. Speci�cally, when the RelativeCost Factor is set low (i. e., minimizing the edge-cut is the key objective), URA minimizes the cost functionas well as the scratch-remap scheme and better than the multilevel di�usion scheme. Note that URA doesquite well here, because when the RCF is set low, it means that the edge-cuts of the partitionings areprimarily being compared. Therefore, in order to obtain costs that are similar to the scratch-remap scheme,URA must compute partitionings of similar edge-cut to a multilevel graph partitioner.For the experiments in which the Relative Cost Factor is set high (i. e., minimizing the data redistributioncost is the key objective), the Uni�ed Repartitioning Algorithm minimizes the cost function better thanthe multilevel di�usion scheme and much better than the scratch-remap scheme. URA beat the di�usionscheme here because it attempts to minimize the true cost function during multilevel re�nement. Themultilevel di�usion scheme, on the other hand, minimizes the edge-cut as the primary objective and the dataredistribution cost as the secondary objective during re�nement.For the experiments in which the Relative Cost Factor was set near one, URA tended to do about as wellas the di�usion-based scheme and somewhat better than the scratch-remap scheme in minimizing the costfunction. It is interesting to note that the multilevel di�usion algorithm performs well in this region. Thisis because in the initial partitioning phase of this algorithm, the partitioning is balanced while aggressivelyminimizing the data redistribution cost. During the uncoarsening phase, the multilevel re�nement algorithmfocuses on aggressively minimizing the edge-cut. The result is that this scheme presents an almost eventradeo� between the edge-cut and the data redistribution cost.The results presented in Figures 3 through 5 indicate that the Uni�ed Repartitioning Algorithm is able tomeet or beat the results obtained by either the scratch-remap or the multilevel di�usion repartitioner for avariety of experiments regardless of the value of the Relative Cost Factor. The other two schemes performwell only for limited ranges of values of the RCF.Results from a Simulation of a Diesel Combustion Engine Table 2 gives the edge-cut, the totalamount of data redistribution, and the cost function results for the optimized multilevel di�usion algorithm(WF), the optimized scratch-remap algorithm (LMSR), and URA on the diesel combustion engine test setwith 16 processors of a Cray T3E. The numbers at the top of each column indicate the Relative Cost Factorof the experiments in that column. Table 2 shows that across the board, URA computes partitionings with7

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6
3.8

.0
01 .0
1 .1 .5 2 10 10
0

10
00

.0
01 .0
1 .1 .5 2 10 10
0

10
00

.0
01 .0
1 .1 .5 2 10 10
0

10
00

auto mdual2 mrng3

WF LMSR 128-way Results Normalized by URA

Figure 5: The cost function results obtained from the Uni�ed Repartitioning Algorithm (URA) compared to the resultsobtained from optimized multilevel di�usion (WF) and scratch-remap (LMSR) algorithms on 128 processors of a Cray T3E.lower costs than either of the other two schemes. These results con�rm the trends shown in Figures 3 through5. Table 2 also shows that URA is able to tradeo� one objective for another as the input value for RCF ischanged. WF and LMSR compute the same partitioning regardless of the value for RCF.Parallel Run Time Results Tables 3 and 4 give the run time results of the optimized multilevel di�usionalgorithm (WF), the optimized scratch-remap algorithm (LMSR), and URA for selected experiments fromFigures 3 through 5 on a Cray T3E and for similar experiments performed on up to 8 processors of a clusterof Pentium Pro workstations connected by a Myrinet switch. Tables 3 and 4 show that the repartitioningalgorithms studied in this paper are very fast. For example, they are all able to compute a 128-way repar-titioning of a four million vertex graph in about a second on 128 processors of a Cray T3E. Tables 3 and 4show that URA tends to be slightly slower than the other two schemes. Note that all of the reported runtimes were obtained on non-dedicated machines. Therefore, these results contain a certain amount of noise.This reason, along with cache e�ects, explains the few super-linear speedups observed. The run time resultsof the diesel combustion engine follow these same trends, and so, were not reported.4 ConclusionsWe have presented a Uni�ed Repartitioning Algorithm for dynamic load-balancing of scienti�c simulationsand shown that this scheme is fast and e�ective. URA is signi�cant because it is able to tradeo� the objectivesof minimizing the edge-cut and the amount of data redistribution required to balance the load. The URAis also signi�cant because it is a key component in developing tools for automatically performing dynamicload-balancing. Load-balancing tools such as DRAMA [10] and Zoltan [3] can measure the times requiredto perform inter-processor communications and data redistribution for an application, use this informationto automatically compute an accurate Relative Cost Factor, and then call URA with the correct value asthe input. Therefore, the user need not determine a good value each time load balancing is required.
8

Metric 0.001 0.01 0.1 1 10 100 1000WFedge-cut 19,059 19,059 19,059 19,059 19,059 19,059 19,059data redist 45,491 45,491 45,491 45,491 45,491 45,491 45,491cost 19,104 19,514 23,608 64,550 473,969 4,568,159 45,510,059LMSRedge-cut 12,022 12,022 12,022 12,022 12,022 12,022 12,022data redist 73,312 73,312 73,312 73,312 73,312 73,312 73,312cost 12,095 12,755 19,353 85,334 745,142 7,343,222 73,324,022URAedge-cut 11,812 11,812 11,625 21,217 26,202 27,463 27,463data redist 72,905 72,905 72,507 41,006 37,330 36,293 36,293cost 11,885 12,541 18,876 62,223 399,502 3,656,763 36,320,463Table 2: The edge-cut, total amount of data redistribution, and cost function results of the adaptive graph partitioners WF,LMSR, and URA for various RCF values on problems derived from a particles-in-cells simulation on a Cray T3E. The numbersat the top of each column indicate the RCF of the experiments in that column.
Graph Scheme 8-processors 16-processors 32-processors 64-processors 128-processorsauto WF 2.35 1.25 0.62 0.37 0.35auto LMSR 2.31 1.16 0.62 0.58 0.45auto URA 2.42 1.20 0.73 0.55 0.49mdual2 WF 3.29 1.61 0.80 0.48 0.41mdual2 LMSR 3.25 1.56 0.80 0.50 0.42mdual2 URA 3.21 2.54 0.87 0.53 0.56mrng3 WF 11.11 5.55 2.88 1.47 0.93mrng3 LMSR 11.13 5.54 2.86 1.47 0.96mrng3 URA 11.32 5.71 3.06 1.64 1.11Table 3: Parallel run times of selected experiments for the adaptive graph partitioners WF, LMSR, and URA on a CrayT3E.

Scheme 2-processors 4-processors 8-processorsWF 12.88 6.98 4.08LMSR 12.90 6.86 4.04URA 13.08 7.55 4.44Table 4: Parallel run times of experiments performed on the graph auto for the adaptive graph partitioners WF, LMSR, andURA on a cluster of Pentium Pro workstations connected by a Myrinet switch.
9

AcknowledgementsThis work was supported by DOE contract number LLNL B347881, by NSF grant CCR-9972519, by ArmyResearch O�ce contracts DA/DAAG55-98-1-0441, by Army High Performance Computing Research Centercooperative agreement number DAAH04-95-2-0003/contract number DAAH04-95-C-0008, the content ofwhich does not necessarily re
ect the position or the policy of the government, and no o�cial endorsementshould be inferred. Additional support was provided by the IBM Partnership Award, and by the IBMSUR equipment grant. Access to computing facilities was provided by AHPCRC, Minnesota SupercomputerInstitute. We would like to thank Boris Kaludercic, HPC Product Coordinator, Computational DynamicsLtd, London, England for providing us with the data for the diesel combustion engine test sets.Related papers are available at: http://www-users.cs.umn.edu/~karypis.References[1] R. Biswas and R. C. Strawn. A new procedure for dynamic adaption of three-dimensional unstructured grids. AppliedNumerical Mathematics, 13:437{452, 1994.[2] J. Castanos and J. Savage. Repartitioning unstructured adaptive meshes. In Proc. Intl. Parallel and Distributed ProcessingSymposium, 2000.[3] K. Devine, B. Hendrickson, E. Boman, M. St. John, and C. Vaughan. Design of dynamic load-balancing tools for parallelapplications. In Proc. of the Intl. Conference on Supercomputing, 2000.[4] P. Diniz, S. Plimpton, B. Hendrickson, and R Leland. Parallel algorithms for dynamically partitioning unstructured grids.Proc. 7th SIAM Conf. Parallel Proc., 1995.[5] J. Flaherty, R. Loy, C. Ozturan, M. Shephard B. Szymanski, J. Teresco, and L. Ziantz. Parallel structures and dynamicload balancing for adaptive �nite element computation. Appl. Numer. Maths, 26:241{263, 1998.[6] B. Jeremic and C. Xenophontos. Application of the p-version of the �nite element method to elasto-plasticity withlocalization of deformation. Communications in Numerical Methods in Engineering, 15(12):867{876, 1999.[7] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal onScienti�c Computing, 20(1):359{392, 1998.[8] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for irregular graphs. Siam Review, 41(2):278{300,1999.[9] G. Karypis, K. Schloegel, and V. Kumar. ParMeTiS: Parallel graph partitioning and sparse matrix ordering library.Technical report, Univ. of MN, Dept. of Computer Sci. and Engr., 1997.[10] B. Maerten, D. Roose, A. Basermann, J. Fingberg, and G. Lonsdale. DRAMA: A library for parallel dynamic load balancingof �nite element applications. In Ninth SIAM Conference on Parallel Processing for Scienti�c Computing, 1999.[11] L. Oliker and R. Biswas. PLUM: Parallel load balancing for adaptive unstructured meshes. Journal of Parallel andDistributed Computing, 52(2):150{177, 1998.[12] C. Ou and S. Ranka. Parallel incremental graph partitioning using linear programming. Proceedings Supercomputing '94,pages 458{467, 1994.[13] C. Ou, S. Ranka, and G. Fox. Fast and parallel mapping algorithms for irregular and adaptive problems. Journal ofSupercomputing, 10:119{140, 1996.[14] A. Patra and D. Kim. E�cient mesh partitioning for adaptive hp �nite element meshes. Technical report, Dept. of Mech.Engr., SUNY at Bu�alo, 1999.[15] J. Pilkington and S. Baden. Dynamic partitioning of non-uniform structured workloads with space�lling curves. Technicalreport, Dept. of Computer Science and Engineering, Univ. of California, 1995.[16] K. Schloegel, G. Karypis, and V. Kumar. Multilevel di�usion schemes for repartitioning of adaptive meshes. Journal ofParallel and Distributed Computing, 47(2):109{124, 1997.[17] K. Schloegel, G. Karypis, and V. Kumar. Wavefront di�usion and LMSR: Algorithms for dynamic repartitioning ofadaptive meshes. Technical Report TR 98-034, Univ. of Minnesota, Dept. of Computer Sci. and Engr., 1998.[18] K. Schloegel, G. Karypis, V. Kumar, R. Biswas, and L. Oliker. A performance study of di�usive vs. remapped load-balancing schemes. ISCA 11th Intl. Conf. on Parallel and Distributed Computing Systems, pages 59{66, 1998.[19] A. Sohn. S-HARP: A parallel dynamic spectral partitioner. Technical report, Dept. of Computer and Information Science,NJIT, 1997.[20] A. Sohn and H. Simon. JOVE: A dynamic load balancing framework for adaptive computations on an SP-2 distributed-memory multiprocessor. Technical Report 94-60, Dept. of Computer and Information Science, NJIT, 1994.10

[21] R. VanDriessche and D. Roose. Dynamic load balancing of iteratively re�ned grids by an enhanced spectral bisectionalgorithm. Technical report, Dept. of Computer Science, K. U. Leuven, 1995.[22] A. Vidwans, Y. Kallinderis, and V. Venkatakrishnan. Parallel dynamic load-balancing algorithm for three-dimensionaladaptive unstructured grids. AIAA Journal, 32:497{505, 1994.[23] C. Walshaw, M. Cross, and M. G. Everett. Dynamic mesh partitioning: A uni�ed optimisation and load-balancingalgorithm. Technical Report 95/IM/06, Centre for Numerical Modelling and Process Analysis, University of Greenwich,1995.[24] C. Walshaw, M. Cross, and M. G. Everett. Parallel dynamic graph partitioning for adaptive unstructured meshes. Journalof Parallel and Distributed Computing, 47(2):102{108, 1997.

11

